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Abstract

In this paper we propose a method for identifying and validating a model of the heat dynamics of a super-
market refrigeration display case for the purpose of advanced control. The model is established to facilitate
the development of novel model-based control techniques for individual display units in a supermarket
refrigeration system. The grey-box modelling approach is adopted, using stochastic differential equations
to define the dynamics of the model, combining prior knowledge of the physical system with data-driven
modelling. Model identification is performed using the forward selection method, and the performance of
candidate models is evaluated through cross-validation.The model developed in this work uses operational
data from a small Danish supermarket. A three-state model is determined to be most appropriate for de-
scribing the dynamics of this system. Advanced local control employing the identified model can contribute
to the extension of the control capabilities of the entire supermarket refrigeration system.

Keywords: Grey-Box Modelling, System Identification, Model-Based Control, Demand Response, Semi-
Physical Modelling, Refrigeration

1 Introduction

The transition from passive control strategies such as hysteresis or threshold-based control to model-
based control for refrigeration display units can contribute to the optimised operation of the entire re-
frigeration system. This will offer opportunities for improved energy efficiency, reduced operating costs
when subject to time-varying electricity prices, and participation in the smart-grid through the provision
of demand response.

The thermal mass of the foodstuff stored within the display units of a refrigeration system provides a
form of energy storage, allowing power consumption to be shifted in time while maintaining acceptable
temperatures for food storage. This potential for flexibility in power consumption is attracting signifi-
cant research attention due to the perceived benefits for both the supermarket operator and the power
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system [Pedersen et al., 2013, 2014, Hovgaard et al., 2013, Shafiei et al., 2013]. Supermarkets represent
a sizeable share of national electricity consumption, at 2% (550GWh) and 4% (1.8TWh) in Denmark
and Sweden respectively [Hovgaard et al., 2013, Arias, 2005], of which refrigeration accounts for up to
47% [Furberg and Norberg, 2000]. Activating flexibility within this volume of electricity demand could
represent a significant resource to the power system, with a range of applications from managing distri-
bution system congestion to providing regulating power to maintain the balance of supply and demand
in real-time. The primary benefit of flexible power consumption to the supermarket operator is the
potential reduction in operating costs. Electricity costs make up only 1% of costs for the typical super-
market, however with a typical profit margin of only 3% any savings in energy costs would translate to
an increase in profit [Arias, 2005].

In order to realise this potential flexibility in power consumption it must be possible to control the re-
frigeration system in an intelligent manner. Control of the refrigeration system occurs on two distinct
levels: supervisory and local. Supervisory control concerns the operation of the centralised system com-
ponents such as the compressor banks and suction manifold, and affects the power consumption of the
system and the temperature of the refrigerant supplied to the display units. Local control focusses on
the individual display unit within the larger refrigeration system, overseeing the variations in local tem-
peratures, which are subject to the temperature of the refrigerant supplied by the supervisory system.

This work focusses on facilitating advanced model-based control at the local control level, through the
identification and validation of a grey-box model of a display unit using operational data from a su-
permarket in Denmark. Advanced control at this level will extend the capabilities of the supervisory
controller and subsequently facilitate flexibility in power consumption.

The general area of demand response, or optimised power consumption, in thermal-electric applications
such as building heating and cooling, water heating, and refrigeration systems is currently the subject
of intensive research effort. The potential for residential buildings to shift electrical demand in their
heating systems by up to 10 hours is demonstrated by Corradi et al. [2013], while the peak load reduction
and cost saving capabilities of residential heating, ventilation, and air conditioning (HVAC) systems are
discussed by Yoon et al. [2014]. Demand response from refrigeration is proposed for the provision of
frequency regulation by Nyeng et al. [2010] and Angeli and Kountouriotis [2012], while the ability of
refrigeration systems to respond to time-varying prices is demonstrated by Shafiei et al. [2013].

Grey-box modelling has been employed to identify models of residential buildings that are suitable for
demand response, [Bacher and Madsen, 2011, Andersen et al., 2014], however there is a dearth of such
models within the field of supermarket refrigeration. Grey-box modelling is employed by Costanzo
et al. [2013] for the estimation of models for household refrigerators, however these are substantially
simpler than their supermarket counterparts. In household refrigerators a single control system governs
all stages of the thermodynamic cycle, from power consumption to refrigeration temperature. Control
of cold storage refrigeration for demand response is described by Pedersen et al. [2013], however the
model employed for control is a simplified state-space model which is insufficient for accurate control
at the local level. Demand response from supermarket refrigeration systems is considered by Hovgaard
et al. [2013] and Shafiei et al. [2013], where models for control are developed from first principles and
using ordinary differential equations (ODEs), respectively.

The contribution of this work lies in the employment of stochastic differential equations (SDEs) to model
this inherently stochastic system, and the focus on the local control system. The supermarket refrigera-
tion display case is subject to a number of stochastic stimuli that are not considered within traditional
ODE models. These include the opening and closing of insulating doors, the addition and removal of
foodstuffs and the thermal interactions with passing customers and staff. SDE-based models account
for such stochasticity by allowing for noise in both the modelled process and the measurement of the
temperature under control.

Furthermore, the model-based control architectures commonly proposed for applications in demand
response will require models such as that presented in this paper that can accurately represent highly
complex and stochastic systems. Model-based control architectures are considered for a wide range
of demand response applications, including for building climate control [Oldewurtel et al., 2012], con-
trol of thermal storage for power balancing [Halvgaard et al., 2013], control of commercial refrigeration
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[Hovgaard et al., 2013], and as the basis of large-scale control architectures for automated control of
demand response resources on the power system [Lampropoulos et al., 2012]. The emergence of model-
based control as a favoured option among other candidate control schemes is likely due to the increased
efficiency of model predictive control architectures over their conventional counterparts, as well as the
availability of computational resources for the identification of models for this control strategy [Old-
ewurtel et al., 2012]. Controlling such systems also requires knowledge about system states (e.g. tem-
peratures) that it may not be possible to measure directly, but which can be estimated using the grey-box
modelling approach employed in this work.

The remainder of this paper is organised as follows. Section 2 presents an outline of the grey-box mod-
elling method and an explanation of the model development technique. In Section 3, the supermarket
refrigeration system and available system data are described. Section 4 details the model development
process, and model fitting and evaluation are addressed in Section 5. Conclusions and final remarks are
presented in Section 6.

2 Grey-Box Modelling

2.1 Grey-Box Modelling Theory

Grey-box modelling facilitates the identification of models of dynamical systems using a combination of
prior physical knowledge of the system under examination and information revealed by observed time
series data. The grey-box modelling method benefits from the advantages of both white- and black-
box modelling; capturing potential non-linear behaviour typically considered with white-box models
derived from first principles, and accounting for both process and measurement noise, which are con-
sidered in black-box models [Kristensen et al., 2004]. A grey-box model consists of a set of SDEs that
describe a dynamical system, and a measurement equation. Together these form a continuous-discrete
time stochastic state-space model, where the discrete measurement equation describes how the mea-
sured data relates to the states of the system.

An initial, simplified, model of a display case system is presented here as an illustration of the format of
a grey-box model. Fig. 1 shows the electric-thermal equivalent RC-representation of a first order model
of the system. All of the models explored in this work consider the system as a set of lumped thermal
bodies, such models are known as lumped parameter models. Tr and Ta are measured inputs to the
model, the refrigerant temperature and the ambient temperature respectively. Ci is the thermal capacity
of the interior of the display case, which in this case includes its structure, the food being displayed and
the air circulating in the interior of the case. Rri and Ria represent the thermal resistance between the
interior and the refrigerant, and the interior and the supermarket ambient air respectively. AKV is the
opening degree of the expansion valve, this is the control variable that governs the variations in temper-
ature within the display case. It is a system input given as a percentage, and α is a scaling parameter.
This model assumes that all heat exchange occurs through the internal air, Ti, with heat exchange be-
tween the refrigerant and the interior, and the interior and the ambient, but no direct exchange of heat
between the refrigerant and the ambient. This can be represented in the form of a stochastic state-space
model as:

dTi =
( 1

CiRri
(Tr − Ti) +

1
CiRia

(Ta − Ti)−
1
Ci

AKVα
)

dt + σ dω , (1)

Yt = Ti,t + εt , εt ∼ N
(

0, σ2
ε

)
. (2)

The σdω term in (1) represents the process noise, where ω is a Wiener process, and σ2 is the incremental
variance of this process. This representation of the process noise is referred to as the diffusion term,
while the representation of the dynamics of the system (the remainder of (1)) is the drift term. The
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FIGURE 1: RC-Representation of the initial display case model (Ti)

measurements as represented by (2), are encumbered with measurement noise, εt. This is assumed to be
a Gaussian distributed white noise process that is independent of the process noise.

The Rxx′ , Cx, α, and noise parameters of the model must be determined by fitting the described model
to the data, where x and x′ refer to arbitrary and distinct model states, as specified in the models that
follow. The maximum likelihood method is employed to fit the parameters. Maximum Likelihood
Estimates (MLE) of the parameters are found by maximising the likelihood function of the parameters
given the provided measurements. The likelihood function is:

L(θ,Y) = p(Y|θ) (3)

where θ is a vector containing the model parameters, and Y is a vector of the measured data. By finding
the parameters that maximise this expression, we find the parameters for the model described by (1)
which are most likely to generate the observed data, including process and measurement noise.

The observations are denoted as:

YN = [YN , YN−1, . . . , Y1, Y0] (4)

The likelihood can be expressed as a product of conditional densities:

L(θ;YN) =
( N

∏
k=1

p(Yk|Yk−1, θ)
)

p(Y0|θ) (5)

where p(Yk|Yk−1, θ) is the conditional density describing the probability of generating the current ob-
servation, given the previous observations and the parameters set θ. The initial conditional densities,
p(Y0|θ), are evaluated based on the estimation of the initial state of the system. The conditional den-
sities in (5) are Gaussian, following from the fact that the noise processes are Gaussian and the system
equations are linear.

Due to this, an ordinary Kalman filter can be used to evaluate the likelihood function and consequently
find the MLE, θ̂, of the unknown parameters. An optimisation function can then be used in conjunction
with the Kalman filter to determine the parameter values that maximise the likelihood function. In this
work, the software tool CTSM-R (Continuous Time Stochastic Modelling in R) [Juhl, 2013] is employed
to estimate these parameters. Detailed discussion on the mathematics behind this tool, and the maxi-
mum likelihood method, can be found in [Kristensen et al., 2004] and [Madsen and Thyregod, 2010].
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2.2 Model Development Process

A forward selection approach (see [Madsen and Thyregod, 2010] for detailed discussion) is adopted in
this work, similar to the approach used by Bacher and Madsen [2011]. Modelling commences with the
simplest feasible model, and additional complexity is introduced until the point where no significant
improvement is found. Model complexity refers to the number of states and parameters in the model.
The simplest feasible model is that given in (1) and (2); this is further developed by including addi-
tional states to represent more dynamics in the system and additional parameters to reflect different
relationships between the states. The relative performance of candidate models is considered in terms
of selected error metrics; the mean absolute error (MAE), root mean squared error (RMSE), and model
bias. These fit statistics consider the one-step prediction error of each of the models, where each step
corresponds to one minute. This is in line with the focus in this work on models for control rather than
longer-term forecasting.

The likelihood ratio test and the log-likelihood value [Madsen and Thyregod, 2010] are alternative met-
rics that are commonly adopted when comparing models, for an example see [Bacher and Madsen,
2011]. This approach is not adopted in this work for two reasons; first, sequential iterations of model
development do not always involve nested models, rendering the likelihood ratio test inapplicable;
secondly, not all models explored here are structurally identifiable, meaning that the parameter values
found by the CTSM-R solver are locally optimal but not necessarily globally optimal. Non-identifiability
is not a major concern for models for control as the physical meaning of the parameters is not relevant.
The determined parameter values and model structure govern the dynamics of the system, and it is not
necessary for them to reflect the actual physical construction of the system.

The model selection process is conducted in three stages: fitting, validation and testing. A separate
dataset is employed for each stage, where the data used for model fitting contains twice as many ob-
servations as each of the sets used for validation and testing, as recommended by Hastie et al. [2001].
The fitting step involves the fitting of parameters to a large number of models. In the validation step
only a subset of the models are considered; the model structures and corresponding parameters found
in the fitting step are retained and the performance of the selected models is compared using the error
metrics detailed above. Finally, the model with the best performance on the validation dataset is tested
using the testing dataset; the purpose of this test is to assess the generalization error of the model. The
testing stage is necessary to ensure that the model has not been over-fit. In all cases (fitting, validation
and testing) the model performance is defined by the one-step prediction error. As the models are being
employed for control purposes, it is intended that the selected model will adapt with the system. There-
fore, it is not necessary that a particular model performs as well in the testing step as in the fitting step,
however it is a useful indicator of the general performance of the model.

3 Description of System and Data

3.1 System Description

The system considered in this paper is a small supermarket located on the island of Funen, in Denmark.
The refrigeration system consists of 7 medium temperature (above freezing) display cases and 4 low
temperature (below freezing) units. Two compressor banks power the refrigeration system, and are
arranged in a booster configuration.

The refrigeration system operates in a hierarchical control structure. Supervisory control determines the
operation of the larger system, consisting of the compressor banks, fans, the condenser and the suction
manifold, such that a desired refrigerant temperature at the input to the medium and low temperature
display units can be achieved. The food display units are mounted in parallel, each of the medium
temperature units and each of the low temperature units have the same refrigerant temperature at the
input to their (individual) evaporators. Local control at each display unit ensures that temperature limits
are respected by modulating the degree to which the expansion valves in the individual evaporators are
open.
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Each display unit has distinct characteristics and thermal interactions, as a result of differing tempera-
ture bounds and different foodstuffs being stored. A single unit is modelled in this work, however the
modelling approach employed here can be used to identify models for each unit. The local control at the
level of the display case is the focus of this paper; currently it resembles hysteresis control, where the
temperature continually oscillates between upper and lower limits. This is a simplistic approach that is
acceptable in the current, passive, systems, however as the overall system becomes activated through
intelligence it will be advantageous to have more precise temperature control within the display cases,
such that the system as a whole can operate optimally. Fig. 2 provides a simplified schematic of the
display case system, the distinct control regions, and the link to the power system.

FIGURE 2: Simplified graphical representation of the display case system, including the local control system, the supervisory
control system and the link to the power system.

There are a number of complexities in the operation of the system that complicate the task of modelling
its thermal behaviour. Each of the display units undergoes numerous defrosting operations during the
day, where the temperature within the unit is raised above the typical operating range to allow any
accumulated ice to melt. Furthermore, there is an observable difference in how the system operates
during shop opening hours compared to the night-time period. This regime change can be explained
by the insulating covers placed on display units outside of opening hours. Stochasticity in the system is
the result of the random addition and removal of foodstuff in the system, and the thermal interactions
with passing customers and staff.

3.2 System Data

Data was recorded at multiple locations in the supermarket refrigeration system. Temperature sensors
were placed within the display units; the refrigerant temperature, the temperatures of the air at the
inlet and outlet of the evaporator, and the opening degree of the expansion valves are reported for
each display unit. General system data is also available, including the ambient air temperature within
the supermarket, the external air temperature, refrigerant mass flows throughout the system, and the
power consumption of each of the compressor banks. All of the data series were recorded at a resolution
of one minute. The models developed in this work are based on data recorded over 3 24-hour periods
in October 2010. The three datasets used for fitting, validation and testing correspond to consecutive
Wednesdays. These dates were selected to ensure reasonably similar system conditions in all datasets.
Large deviations in system conditions can be handled by adaptively fitting the model parameters during
operation.

Fig. 3 presents the training dataset employed to establish a grey-box model of the open medium tem-
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perature display unit considered in this paper. The uppermost plot shows the development of three key
temperatures in the display unit over 24 hours on the 10th of October 2010. The internal temperature
represents the temperature to be controlled within the display unit; this is the temperature most com-
monly monitored by supermarket operators and food regulatory bodies, and is consequently required
to remain strictly within set limits.

The evaporator temperature is the temperature of the air exiting the evaporator. The dynamics of these
two temperatures are very similar; the evaporator exhibits more extreme temperature variations, as the
evaporator temperature drives the internal temperature in the display unit, and is subject to thermal
losses to a number of sources. The blue trace shows the temperature of the refrigerant in the system.
This is common for all of the medium temperature display units, and is a fixed input, as determined by
the supervisory control of the system. The second plot in the figure indicates the instances of defrost
operation for the considered display case, and the hours during which the supermarket is closed. The
impact of these factors on the temperatures in the display unit can be observed in the first plot, with
spikes in temperatures during defrost operations and notably different temperature trends when the
supermarket is closed. This day/night difference can also be observed in the expansion valve time
series displayed in the third plot. During the night the unit benefits from increased insulation from
an insulating cover as well as decreased ambient air temperature, consequently the expansion valve is
not opened as frequently or for as long as occurs during the day. This change is also reflected in the
temperature plots, where the dynamics are notably slower outside of the supermarket opening hours.
The degree to which the expansion valve is open determines the temperature within the display unit
(subject to the refrigerant and ambient temperatures), it is the control variable in the local control system.
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data for an open medium temperature display case in a supermarket in Funen, Denmark
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4 Model Development

The derivation of a grey-box model of the display case system is detailed in this section. The system
temperatures considered in this work include that of the refrigerant (Tr), the ambient air in the super-
market (Ta) (both known model inputs) and four temperatures in the interior of the fridge; the air at
the evaporator outlet (Te), the food (Tf ), the air within the display case (Ti), and the temperature of the
display structure (Ts). Only the model inputs and the air temperature within the display case are known
when fitting the models, the other temperatures are modelled as hidden states.

The models are presented in order of increasing complexity. Models of two, three and four states are
presented in the following sub-sections. A number of different configurations of the described models
were tested, with the most successful presented in detail. The performance of the alternative models
is given in tabular form in the results section which follows, with the electric-thermal equivalent RC-
representations provided in Appendix A.

4.1 Model TiTe

The two-state (Ti,Te) model shown in Fig. 4 considers that the dynamics of the system are governed
by the thermal masses in the interior of the unit (Ti) and at the outlet of the evaporator (Te). In this
model the impact of the expansion valve operation is considered to directly affect the temperature at
the evaporator outlet. Heat exchange from the refrigerant to the ambient occurs through the evaporator
and the interior of the display unit, in sequence, with no direct heat exchange between the refrigerant
or the evaporator outlet with the ambient.

The two-state stochastic model of this system is given by:

dTi =
( 1

CiRei
(Te − Ti) +

1
CiRia

(Ta − Ti)
)

dt + σ1 dω1 , (6)

dTe =
( 1

CeRre
(Tr − Te) +

1
CeRei

(Ti − Te)−
1

Ce
AKVα

)
dt + σ2 dω2 , (7)

Yt = Ti,t + εt , εt ∼ N
(

0, σ2
ε

)
. (8)

+
−Tr

Rre

Ce

Rei

Ci

Ria

+
−Ta

TiTe

αAKV

Tr Ta

FIGURE 4: RC-Representation of a two time constant model (TiTe)

4.2 Model TiTeTf

Additional complexity is added to the model from Subsection 4.1 by considering the thermal capacitance
of the food, C f . The simplest three-state (Ti,Te,Tf ) model is shown in Fig. 5, and comprises of thermal
links between the refrigerant, the air at the evaporator outlet, the internal air, the food, and the ambient
supermarket air, in sequence. Alternative considered configurations of this three state model include
the addition of a thermal link between the internal air and the supermarket ambient. This is an intuitive
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development as not all thermal energy can be expected to flow through the foodstuffs to the ambient,
and a degree of direct leakage of energy from the interior to the ambient is expected. Three further model
configurations consider inputs indicating the open/closed state of the supermarket and the instances of
defrosting operations. Full details of these alternative configurations are provided in Appendix 6. Fig.
5 illustrates the model in the form of an electric-thermal equivalent circuit, and the three-state stochastic
model of the system is as follows.

dTi =
( 1

CiRei
(Te − Ti) +

1
CiRi f

(
Tf − Ti

))
dt + σ1 dω1 , (9)

dTe =
( 1

CeRre
(Tr − Te) +

1
CeRei

(Ti − Te)−
1

Ce
AKVα

)
dt + σ2 dω2 , (10)

dTf =
( 1

C f Ri f

(
Ti − Tf

)
+

1
C f R f a

(
Ta − Tf

))
dt + σ3 dω3 , (11)

Yt = Ti,t + εt , εt ∼ N
(

0, σ2
ε

)
. (12)

+
−Tr

Rre

Ce

Rei

Ci

Ri f

C f

R f a

+
−Ta

Tr TiTe Tf Ta

αAKV

FIGURE 5: RC-Representation of a three time constant model (TiTeTf )

4.3 Model TiTeTf Ts

Finally, additional complexity is added by considering that the dynamics of the system may not be fully
accounted for by the three states used in the previous models. A further state, Ts, is added. There is
no intuitive interpretation of this state as any particular component of the display case unit, however
it could be considered to be any number of possible components, including the structure of the unit.
Furthermore, as the model is based on a lumped parameter approximation of a distributed system, the
addition of an additional state could correspond to the better representation of an aspect of the model
that was previously represented by a single state; for example, the food may be better represented by
individual states for the inner and outer sections of the foodstuff. Fig. 6 shows the configuration of this
model in its electric-thermal equivalent circuit form. The four-state stochastic model of the system is:

dTi =
( 1

CiRsi
(Ts − Ti) +

1
CiRi f

(
Tf − Ti

))
dt + σ1 dω1 , (13)

dTe =
( 1

CeRre
(Tr − Te) +

1
CeRes

(Ts − Te)−
1

Ce
AKVα

)
dt + σ2 dω2 , (14)

dTf =
( 1

C f Ri f

(
Ti − Tf

)
+

1
C f R f a

(
Ta − Tf

))
dt + σ3 dω3 , (15)
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dTs =
( 1

CsRes
(Te − Ts) +

1
CsRsi

(Ti − Ts)
)

dt + σ4 dω4 , (16)

Yt = Ti,t + εt , εt ∼ N
(

0, σ2
ε

)
. (17)

+
−Tr

Rre

Ce

Res

Cs

Rsi

Ci

Ri f

C f

R f a

+
−Ta

Tr Te Ts Ti Tf Ta

αAKV

FIGURE 6: RC-Representation of a four time constant model (TiTeTf Ts)

No further complexity is considered in the modelling process as the four-state model is found to provide
no significant improvement over the three-state model, as discussed in the following section. Further-
more, the residuals of the three-state model show no systematic pattern that would have called for a
further state or time constant.

5 Results

The adequacy and performance of the models detailed in the preceding section is evaluated here. Model
adequacy is assessed by analysing the model errors. If the one-step prediction errors for a particular
model show a systematic pattern, this indicates an extension of the model is necessary. If, on the other
hand, the residuals resembles white-noise, it can be concluded that there is no information in the data
than contradicts the conclusion that the particular model adequately describes the system. This criterion
for model adequacy is checked by examining the histogram, auto-correlation function (ACF) and the
cumulative periodogram for each of the models in the fitting stage. The performance of the models is
assessed by comparing their error metrics; the RMSE, MAE and bias.

Fig. 7 shows the ACF for the simplest, single-state, stochastic model, as presented in Section 2. It is very
clear that the residuals of this model are not Gaussian distributed, and thus the model is inadequate.
The histogram reveals a positive bias in the model, and the behaviour of ACF indicates that there are
additional time constants in the system that are not accounted for by this model.

A significant improvement is achieved by adding an additional time constant to the model (TiTe), how-
ever the resulting model residuals are still not Gaussian distributed, indicating the need for additional
modelled states.

Fig. 8 shows that the residuals of the three-state model, TiTeTf , can be said to be normally distributed,
indicating that this model represents the dynamics of the observed system adequately. Similar results
are found for the residuals of the four-state model, TiTeTf Ts, thus the benefit of increasing the model
complexity to four-states must be evaluated by considering the error metrics.

Table 1 provides the error metrics for each of the models described above, as well as some of the al-
ternative configurations that were explored, as presented in Appendix A. The model selection process
involves the addition of model complexity through alternative configurations and additional states (and
correspondingly, time constants). The models are grouped according to the number of time constants,
denoted i in Table 1, and compared considering the number of parameters, m. Error metrics are pre-
sented in both absolute and relative terms, where the current model is compared to the most successful
model with one less time constant (as highlighted in red); for example, model TiTeTf , with three states,
is compared to model TiTe, the best performing two-state model. The best performing models at each
iteration of the model development process were selected by considering both their error metrics and
the ACF, cumulative periodogram and histogram. These models (excluding model Ti) were retained for
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FIGURE 7: Analysis of the residuals of a single-state model (Ti)
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the validation stage, all other models were discarded. It can be noted from Table 1 that the four-state
model provides no significant improvement over the three-state model and consequently the model
development process can be terminated at this stage.

TABLE 1: Error metrics for all models at the model fitting stage, where m denotes the number of parameters.

i Model m Absolute [◦C] Relative [%]
RMSE MAE Bias RMSE MAE

1 Ti 7 0.1549 0.1138 7.03e-5 - -

2
TiTe 11 0.0577 0.0424 -6.34e-4 62.74 62.74
TiTe2 11 0.0727 0.0508 -1.69e-3 53.07 55.36
TiTe3 12 0.0577 0.0424 -6.21e-4 62.76 62.76

3

TiTeTf 15 0.0556 0.0407 2.47e-4 3.85 4.02
TiTeTf 2 16 0.0556 0.0408 1.28e-4 3.69 3.63
TiTeTf N 16 0.0558 0.0407 -2.15e-4 3.23 4.01
TiTeTf N2 17 0.0559 0.0407 -2.12e-4 3.22 4.01
TiTeTf ND 18 0.0558 0.0407 -2.02e-4 3.26 3.99

4 TiTeTf Ts 19 0.0560 0.0407 1.15e-4 -0.08 0.09

5.1 Validation Stage

Fig. 9 shows the cumulative periodograms of the residuals of each of the models when validated using
the validation dataset (retaining the model parameters determined in the model fitting stage). Table
2 provides the error metrics for this validation. By considering both the proximity of the residuals to
white noise, and the error metrics, it can be seen that model TiTeTf is the best candidate. This model
most closely represents the observed dynamics of the display unit system.
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FIGURE 9: Cumulative periodograms of the residual of the models selected for advancement to the validation stage, using the
validation dataset

TABLE 2: Error metrics for models at the model validation stage

Model RMSE [◦C] MAE [◦C] Bias [◦C]
TiTe 0.069 0.047 6e-3
TiTeTf 0.064 0.043 1.9e-3
TiTeTf Ts 0.066 0.044 2.1e-3
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5.2 Testing Stage

Model TiTeTf is tested using testing dataset. Fig. 10 shows the performance of this model. Although
the residuals are clearly not white noise, the performance is satisfactory considering that the parameters
were fit using a completely separate dataset. Most interestingly, the model performs better with the test
dataset than with the validation dataset. This suggests that the generalisation error is very low. The
MAE, RMSE and Bias in this case are 0.0664, 0.0424 and -3.5e-3 respectively.
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FIGURE 10: Analysis of the residuals of the three state model (TiTeTf ) using the test dataset

6 Conclusions

A grey-box model describing the dynamics of a supermarket refrigeration display case has been devel-
oped in this work. The system is described by stochastic differential equations, reflecting the inherent
stochasticity of a system with randomly occurring stimuli, including the addition and removal of food-
stuffs, and the opening and closing of unit doors. The model selection procedure is described in detail,
commencing with the simplest feasible model and continuing with increasing complexity until no fur-
ther significant improvement occurs. Models are compared using a defined set of metrics describing
the model residuals, and model performance and generalization error are evaluated by employing three
independent datasets for model fitting, validation and testing.

The results show that a three time constant model (TiTeTf ) is most appropriate for modelling the dis-
play case considered in this study. This model is specific to the display case considered here, and is
not directly applicable to other display units, as the model is dependent on the foodstuff stored in the
display case and the case structure, among other factors. Going forward, it would be advantageous for
this modelling approach to be applied to a number of different display units in different supermarkets.
The parameter values found in this work could be used as a priori information to provide a starting
point for further model development.

The model developed in this work and the method employed to identify it have an important applica-
tion in the development of novel local control strategies for supermarket refrigeration system. There is
a particular relevance considering the focus on model-based control frameworks within the field of de-
mand response. Advanced control strategies beyond the current hysteresis approach will enable greater
flexibility throughout the refrigeration system. This is a key contribution towards achieving overall flex-
ibility of power consumption of the supermarket refrigeration system. This has advantages for both the
supermarket and power system operators; allowing the supermarket operator to optimise operations
towards cost- or energy-efficiency, and facilitating the participation of demand in the electricity market
and for the provision of power system services.
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Appendix A: Equivalent RC-Networks of Models Investigated

The additional model configurations not detailed in the main body of this paper are presented here.
Four further variables are introduced in the circuits below; βN introduces the impact of opening/closing
hours of the supermarket into the model, where N is a binary input to the model indicating the regime
(open or closed) and β is a parameter that is fit; γD introduces the impact of defrosting operations into
the model, where D is a binary input to the model indicating the regime (defrost or regular operation)
and γ is a parameter that is fit.
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