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1. Introduction 16 

Ascaridia galli is a gastrointestinal nematode infecting chickens (Permin et al., 1999; Permin et al., 17 

1997). Substitution of traditional cages with alternative rearing systems in modern poultry 18 

production has led to an increase in the prevalence of A. galli and recent reports from Denmark 19 

and neighbouring countries show that the majority of chickens kept in free-range systems are 20 

indeed infected with A. galli (Jansson et al., 2010; Kaufmann et al., 2011; Permin et al., 1999). 21 

Infection with A. galli may directly contribute to economic losses due to higher feed conversion 22 

rates/reduced weight gain and decreased egg production (Permin and Ranvig, 2001; Skallerup et 23 

al., 2005). In severe cases, A. galli infections are furthermore associated with increased mortality 24 

(Das et al., 2010; Gauly et al., 2005; Kilpinen et al., 2005; Permin et al., 2006), increased 25 

susceptibility to secondary infections (Dahl et al., 2002; Eigaard et al., 2006; Permin etal., 2006; 26 

Saif et al., 2003), impaired vaccine responses (Pleidrup et al., 2014) and even migration of worms 27 

into eggs of laying hens (Fioretti et al., 2005; Reid et al., 1973). Previously, A. galli control has been 28 

based on synthetic anthelmintics, but concerns about parasite drug resistance and left-over 29 

residues in food products call for alternative disease control strategies (Sangster, 1999). An 30 

attractive alternative is vaccination, but no successful A. galli vaccines have yet been developed.  31 

Natural acquired immunity is described for avian coccidiosis, another important parasitic disease. 32 

Thus, trickle immunization may induce immunity against homologous Eimeria challenge (Brake et 33 

al., 1997; Joyner and Norton, 1973). Extensive Eimeria studies have been performed in order to 34 

understand host protective immune responses and aid vaccine development (Lillehoj et al., 2007). 35 

Natural acquired immunity against A. galli is less well described, but reports exist on variability in 36 

disease susceptibility. The outcome of infection may e.g. be influenced by age (Idi et al., 2004; 37 
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Tongson and McCraw, 1967) and host genetics (Herd and McNaught, 1975; Kaufmann et al., 2011; 38 

Permin and Ranvig, 2001). Estimated heritabilities for resistance/susceptibility to A. galli infections 39 

suggest that selective breeding for disease resistance may be possible (Gauly et al., 2002; 40 

Kaufmann et al., 2011; Schou et al., 2003). In addition, several reports describe the presence of 41 

very small larvae (with so called arrested development) in the late stages of an A. galli infection 42 

and acquired immunity was suggested to be related to this phenomenon (Chamanza et al., 1999a; 43 

Ferdushy et al., 2014; Herd and McNaught, 1975). Interestingly, Herd et al. (1975) reported that 44 

the proportion of larvae with arrested development was very low in chickens treated with an 45 

immunosuppressive agent. In general, it appears that development of anti-helminthic vaccines is 46 

far more challenging than the development of vaccines directed against viral and bacterial 47 

pathogens. This is in part due to their complex life cycles and the changing host-pathogen 48 

interactions occurring during different stages of helminth infections. Thus, a detailed 49 

understanding of anti-helminth immunity is essential for future disease control. 50 

The life cycle of A .galli is direct, starting with embryonation of shedded eggs in litter or soil. After 51 

10-20 days infective L3 stage larvae are found within the parasite eggs (Permin et al., 1997). When 52 

ingested by chickens, the A. galli eggs hatch within the first 24 hours either in the proventiculus or 53 

the duodenum of the host (Idi et al., 2004; Saif et al., 2003). After three to nine days the larvae 54 

enter their histotrophic phase where they move deeper into the mucosal layers of the intestine 55 

(Luna-Olivares et al., 2012; Saif et al., 2003; Tugwell and Ackert, 1952). Larvae recovery from the 56 

intestinal wall during the first week of infection was highest in the anterior part of the jejunum, 57 

but after day 7 post infection (p.i.) larvae was also found in the posterior part of the jejunum 58 

(Ferdushy et al., 2013). A high infection dose of parasite eggs may lead to a prolonged histotrophic 59 

phase, but usually young adult worms return to the intestinal lumen by day 17-30 of age during 60 
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which period co-existence of larvae in the intestinal wall and young worms in the intestinal 61 

content is seen (Ferdushy et al., 2013; Herd and McNaught, 1975; Katakam et al., 2010). Recently, 62 

Luna-Olivares et al. (2012) suggested that “mucosal phase” may be a more appropriate term than 63 

“histotrophic phase” (lamina propria invasive) as the larvae may not penetrate as deep into the 64 

intestinal tissue as originally thought. They reported that most larvae were observed in the lumen 65 

(but in close contact with the epithelium) (63%) followed by “within epithelium” (32%) and only 66 

few in the lamina propria (5%). However, only the very early time-point 3 days p.i. was 67 

investigated and it is uncertain what happened later in the histotrophic/mucosal phase. However, 68 

Katakam et al. (2010) was able to recover all larvae by an EDTA method, i.e. no additional larvae 69 

were recovered when applying additional pepsin digestion after EDTA incubation of intestinal 70 

samples taken 2 weeks p.i. indicating that lamina propria associated larvae are few also at this 71 

time point.  72 

The chicken spleen works as a secondary lymphoid organ where innate and adaptive immune 73 

responses are efficiently mounted. It is hypothesized that the avian spleen plays an even more 74 

important immunological role than in mammals as avian lymphatic vessels and lymph nodes are 75 

poorly developed. The aim of this study was to investigate systemic immunological responses at 76 

different stages of an A. galli infection by comparing gene expression profiles in spleen tissue 77 

between infected and control chickens at week 2, 6 and 9 post infection (p.i.).  78 

 79 

2. Materials and Methods 80 

2.1. Animals 81 
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In the experiment, chickens of mixed gender from the Aarhus University L133 were used. Line 133 82 

is of White Leghorn origin and contains only birds with the major histocompatibility complex 83 

(MHC) haplotype B13. Water and commercial chicken feed were supplied ad libitum. The lighting 84 

period was 12 h daily, and the chickens were kept at a temperature of 21°C. All experimental 85 

chickens were produced from MHC-characterized parents, and the MHC haplotypes of the 86 

offspring were confirmed by genotyping the LEI0258 microsatellite locus (McConnell et al., 1999) 87 

by PCR-based fragment analysis as earlier described (Dalgaard et al., 2005). Some birds in the 88 

current experiment were shared with an already published experiment (Pleidrup et al., 2014). 89 

2.2. Experimental outline 90 

Experimental chickens were divided into two treatment groups; 1) negative control chickens and 91 

2) chickens subjected to A. galli infection that were kept in separate rooms of the chicken facility. 92 

At 4 weeks of age, chickens in group 2 were orally infected with 1750 embryonated A. galli eggs 93 

recovered from female worm uteri obtained from naturally infected commercial hens and 94 

embryonated in H2SO4 as described in Permin et al. (1997). Sixteen animals from each group were 95 

used for weekly blood sampling and seven other animals from each group were sacrificed at week 96 

2, 6 and 9 p.i. for spleen collection. At week 6 and 9 p.i. faecal samples were collected before 97 

sacrificing the chickens. Licence to conduct the animal experiment was obtained from the Danish 98 

Ministry of Justice, Animal Experimentation Inspectorate by Helle R. Juul-Madsen. The experiment 99 

was conducted according to the ethical guidelines 100 

2.3. A. galli-specific IgG ELISA 101 
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Blood samples from infected animals were taken at weeks 0, 6, 7, 8, 9 p.i. and from negative 102 

controls at week 0, 6, 9 p.i. and serum was used for detection of A. galli-specific IgG antibodies as 103 

earlier described (Norup et al., 2013).  104 

2.4. Faecal A. galli egg excretion 105 

Faecal samples were obtained from A. galli-infected chickens before sacrificing them for spleen 106 

sampling at weeks 6 and 9 p.i. Faeces was not sampled from chickens sacrificed 2 weeks p.i. as 107 

adult egg secreting worms are not developed until week 5-8 p.i. (Permin and Hansen, 1998). The 108 

faecal samples were examined for the presence of A. galli eggs using a modified McMaster 109 

counting technique (Henriksen and Aagaard, 1976; Permin et al., 1997) with a detection limit of 20 110 

eggs per gram faeces (EPG). 111 

 112 

2.5. RNA extraction 113 

After collection, spleens were sectioned (triangular cross-sectional slice from upper part) and 114 

identical samples from each chicken were immediately placed in RNAlater (Ambion/Life 115 

Technologies), kept overnight at 4°C and then at -20°C until further processing. Amounts of 7 to 15 116 

mg tissue were homogenised on a TissueLyzer LT (Qiagen), and RNA isolation and DNA digestion 117 

was done using the NucleoSpin 96 RNA kit (Macherey-Nagel) according to the manufacturer’s 118 

instructions. RNA quality was controlled on a 1 % agarose gel and the RNA concentration and 119 

purity were determined using a NanoDrop spectrophotometer (Saveen and Werner AB).  120 

 121 

2.6. cDNA synthesis and pre amplification of mRNA 122 
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cDNA synthesis and preamplification was performed as described previously (Skovgaard et al., 123 

2013). Extracted total RNA was converted into cDNA by reverse transcription of 480 ng RNA using 124 

the QuantiTECT Reverse Transcription kit (Qiagen), cDNA was diluted 1:5 in low EDTA TE-buffer 125 

(VWR – Bie & Berntsen) prior to preamplification. Preamplification was performed using TaqMan 126 

PreAmp Master Mix (Applied Biosystems) and a 200 nM pooled primer mix was prepared 127 

combining each primer used in the present study.  TaqMan PreAmp Master Mix (5 µl) was mixed 128 

with 2.5 µl 200 nM pooled primer mix and 2.5 µl diluted cDNA, and incubated at 95°C for 10 min 129 

and 16 cycles of  95°C for 15 sec and 60°C for 4 min. 16 U of Exonuclease I (New England BioLabs) 130 

was added to the preamplified cDNA, thermal cycling conditions were set to 37°C for 30 min 131 

followed by 80°C for 15 min. Preamplified cDNA was diluted 1:10 in low EDTA TE-buffer (VWR – 132 

Bie & Berntsen) before qPCR. Primers were designed using Primer3 (http://bioinfo.ut.ee/primer3-133 

0.4.0/) as described in (Skovgaard et al., 2010), and purchased from Sigma-Aldrich. Primer 134 

sequences, efficiencies and amplicon length are shown in Table 1.   135 

 136 

2.7. qPCR  137 

Gene expression mRNA was analysed by quantitative real-time PCR (qPCR) performed in Dynamic 138 

Array Integrated Fluidic Circuits (Fluidigm) following the protocol described previously (Skovgaard 139 

et al., 2013).  The following cycle parameter was used: 2 min at 50°C, 10 min at 95°C, followed by 140 

35 cycles with denaturing for 15 sec at 95°C and annealing/ elongation for 1 min at 60°C. Melting 141 

curves were generated after each run to confirm a single PCR product (from 60°C to 95°C, 142 

increasing 1°C/ 3 sec). Reactions were performed in duplicates (cDNA replicates). Non template 143 

controls (NTC) were included to indicate potential problems with non-specific amplification or 144 
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sample contaminations. Non-reverse transcriptase controls were included to assess potential DNA 145 

contamination.  146 

 147 

Expression data (Cq values) were acquired using the Fluidigm Real-Time PCR Analysis software 148 

3.0.2 (Fluidigm) and exported to GenEx (MultiD) for data pre-processing including interplate 149 

correction, correction for PCR efficiency for each primer assay individually, normalising to six 150 

highly stable reference genes, and averaging of cDNA technical repeats. Using GeNorm (17) and 151 

NormFinder (18), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), β2 microglobulin (B2M), 152 

peptidylprolyl isomerase A (PPIA), hypoxanthine phosphoribisyl transferase I (HRPT1), TATA-box 153 

binding protein (TBP), and tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation 154 

protein,  zeta polypeptide (YWHAE) were identified as the most stably expressed reference genes 155 

out of eight candidates. For each primer assay, the mean relative expression level of the control 156 

group was scaled to one during data transformation log2 (Cq) to linear scale. Gene expression data 157 

were log2-transformed before testing for normal distribution, Student t test was used to analyse 158 

normally distributed data, while the non-parametric test (Wilcoxon–Mann–Whitney test) was 159 

used when data was non-normal distributed. Gene expression was considered significantly 160 

different if the 𝑃𝑃 value was less than 0.05 and the relative expression was greater than 2.0. 161 

Experimental practice and reporting have been performed according to the Minimum Information 162 

for Publication of Quantitative Real-Time PCR Experiments (MIQE) guidelines (Bustin et al., 2009).   163 

 164 

3. Results and Discussion 165 

According to earlier studies, week 2 p.i. represents the mucosal phase of the A. galli larvae 166 

whereas at weeks 6 and 9 adult worms are present in the intestinal lumen. In the present 167 
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experiment only 43 % of the animals (data not shown) shedded A. galli eggs in faeces at week 6 168 

p.i., and we hypothesise that the A. galli worms are young and have just recently started 169 

producing eggs. Presumably some larvae are also still present in the mucosa at this time point as 170 

earlier reported by Ferdushi et al. (2013). In contrast, 73 % of the chickens (data not shown) 171 

shedded A. galli eggs in faeces at week 9 p.i. and with a higher mean EPG per animal than at week 172 

6 (Figure 1a). Thus, this time point may represent more mature adult worms. None of the chickens 173 

in the A. galli-free group tested EPG positive at any time-point during the experiment (data not 174 

shown). Additional chickens allocated to blood sampling were sero-negative at the day of infection 175 

(data not shown). Chickens in the blood sampled A. galli-inoculated group had seroconverted by 176 

week 6 p.i. and showed positive titres of A. galli-specific serum IgG throughout the rest of the 177 

experiment. Chickens from the blood sampled negative control group were tested at weeks 6 and 178 

9 p.i. and were found to be sero-negative at both time-points (Fig. 1.b). A systemic humoral 179 

immune response is reported by others as early as 2 weeks p.i., but serum titres do not appear to 180 

correlate with egg excretion or worm burden (Marcos-Atxutegi et al., 2009; Norup et al., 2013; 181 

Schwarz et al., 2011). 182 

 183 

In order to understand systemic molecular response mechanisms in different stages of an A. galli 184 

infection we studied gene expression profiles in spleen sampled 2, 6 and 9 weeks after the 185 

experimental infection. Twelve genes (representing inflammatory cytokines, antimicrobial 186 

peptides, acute phase proteins, soluble pattern recognition receptors and T cell signature 187 

cytokines) were differentially expressed (P < 0.05) at at least one of the three analysed time points 188 

after the A. galli infection compared to the control group.  189 

 190 
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3.1. (Pro-)Inflammatory cytokines 191 

Only few studies have been published concerning innate immune responses towards A. galli in 192 

chickens and focus has been on local responses in the small intestine. Thus, a single study reports 193 

increased numbers of mast cells in the chicken jejunum 2 weeks post A. galli infection (Darmawi et 194 

al., 2013). Another study reports increased numbers of presumably heterophils in the jejunum 3 195 

days after an A. galli infection (Luna-Olivares et al., 2012). Interestingly, a genetic association 196 

study indicated that chicken IFN-γ gene variants may influence A. galli susceptibility (Luhken et al., 197 

2011). In the present study, we analysed the expression of inflammatory cytokines in the spleen 198 

(Table 2). Surprisingly, the expression of IFN-α, IL-1β, IL-12β and Il-18 was up regulated at week 6 199 

p.i., but not at week 2 p.i. or week 9 p.i. The IL-8 expression was up regulated at week 2 as well as 200 

week 6 p.i. in A. galli-infected chickens. Despite structural differences most avian cytokines display 201 

conserved functions compared to their mammalian counterparts (Staeheli et al., 2001), and roles 202 

in the chicken inflammatory response have been described for IL-8, IL-1β, IL-18, IL-12β (Balu and 203 

Kaiser, 2003; Barker et al., 1993; Laurent et al., 2001; Schneider et al., 2000; Weining et al., 1998; 204 

Withanage et al., 2004). Also chicken IFN-α (ChIFN-I) was identified to have a similar function to 205 

the mammalian counterpart as a potent antiviral agent (Schultz et al., 1995; Sick et al., 1996). It is 206 

now accepted that IFN-α in mammals beside its antiviral properties shows additional 207 

immunomodulating effects. Although little is known of IFN-α’s role in parasite infections, 208 

treatment of helminth disease in mice has been attempted with recombinant IFN-α (Godot et al., 209 

2003).  210 

3.2. Antimicrobial peptides 211 
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The expression of DEFβ1 was significantly reduced at week 2 p.i. and significantly increased at 212 

weeks 6 and 8 p.i. in spleen tissue of A. galli-infected chickens (Table 2). Antimicrobial peptides 213 

like defensins play an important role in innate immunity, and activity directed against bacteria, 214 

fungi and viruses has been reported (Ganz, 2003). Interestingly, defensins may influence adaptive 215 

immune responses as they can affect the maturation of dendritic cells as well as effector T cell 216 

recruitment (Yang et al., 2002). In the chicken genome, 14 beta-defensin/gallinacin genes exist and 217 

the nomenclature AvBD1-14 was suggested (Lynn et al., 2007). Local expression of several of the 218 

AvBD genes and their antimicrobial activity against avian enteric pathogens have been described 219 

(Evans and Harmon, 1995; Harmon, 1998; Hong et al., 2012; Sugiarto and Yu, 2004).  However, the 220 

role of AvBD in innate immunity towards helminth infections is not clear. In humans, some beta-221 

defensins are up regulated by pro inflammatory cytokines (McDermott et al., 2006; Scott and 222 

Hancock, 2000). In the present study an increased expression of DEFβ1/AvBD1 coincided with an 223 

increase in the expression of pro-inflammatory cytokine genes at week 6 p.i., but not at week 9 p.i. 224 

3.3. Acute phase proteins 225 

Mannose binding protein (MBL) and C-reactive protein (CRP) are soluble pattern recognition 226 

receptors. Few reports exist on chicken CRP, but it appears that infections with Eimeria spp. and 227 

Histomonas meleagridis induce high levels of CRP (Chamanza et al., 1999). In mammals, MBL binds 228 

to microbial surface carbohydrates and mediates opsonophagocytosis directly or through 229 

activation of the lectin complement pathway. A conserved function of MBL in the chicken was 230 

suggested as cMBL in a heterologous in vitro assay was shown to enhance human complement 231 

factor 4 (C4) deposition in a calcium dependent way (Norup and Juul-Madsen, 2007). As in 232 

mammals, reduced levels of serum MBL in chickens may lead to increased disease susceptibility to 233 
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viral and bacterial infections (Juul-Madsen et al., 2007; Schou et al., 2010). Chicken MBL is mainly 234 

produced in the liver, but constitutive and inducible local expression of the gene has also been 235 

reported (Hogenkamp et al., 2006; Laursen et al., 1998; Nielsen et al., 1998). In this study, MBL 236 

expression was significantly increased in spleen tissue of A. galli-infected chickens 6 weeks p.i. 237 

(Table 2). An in vivo function of MBL in intestinal helminth infections has not yet been determined, 238 

but preliminary results suggest that faecal shedding of A. galli eggs is reduced in infected inbred 239 

chickens with high MBL serum levels (unpublished, Norup). 240 

3.4. Th signature cytokines 241 

In mammals, Th2 polarised cells drive responses to helminth infections. Also in the chicken a Th2 242 

polarised cytokine response was reported in the jejunum and spleen of A. galli-infected chickens 2 243 

weeks p.i. (Degen et al., 2005; Kaiser, 2007; Pleidrup et al., 2014; Schwarz et al., 2011). In 244 

agreement with former studies, we observed an increased expression of the Th2 signature 245 

cytokine IL-13 at 2 weeks p.i. in the spleen of A. galli-infected chickens, but not at later stages of 246 

the infection (Table 2). This time-point corresponds to the mucosal phase of the infection which 247 

co-incides with influx of both αβ (including CD4+ve cells) and γδ T cells in the jejunal mucosa as 248 

reported by others (Schwarz et al., 2011). In the present study we observed a slightly decreased 249 

expression of the Th1 signature cytokine IFN-γ at week 9 p.i. in spleen tissue of A. galli-infected 250 

chickens. This observation is in contrast to earlier findings by Degen et al.  (2005) who reported 251 

decreased relative cytokine mRNA ratios (infected/non-infected) for IFN-γ as early as 2 weeks p.i. 252 

Earlier reports do suggest that onset and length of the larvae mucosal phase depend on infection 253 

dose which differed between the two experiments. 254 

3.5. Anti-inflammatory cytokines 255 

12 
 



In human and murine infections the survival strategy of helminth parasites is largely based on 256 

immunoregulation by excretory-secretory (ES) products through mechanisms involving regulatory 257 

T cells (Taylor et al., 2012).  No Foxp3 orthologue has been identified in the chicken, but thymic 258 

CD4+CD25+ T cells were characterised as counterparts of mammalian natural Tregs by production 259 

of IL-10 and TGF-β (Shanmugasundaram and Selvaraj, 2011). In the present study, an increased 260 

expression of TGF-β4 was observed 6 weeks p.i. in spleen tissue of A. galli- infected chickens 261 

(Table 2). The chicken TGF-β gene-family includes: TGF-β2, TGF-β3 and TGF-β4, of which the latter 262 

is the chicken orthologue of mammalian TGF-β1 acting as an anti-inflammatory cytokine 263 

(Jakowlew et al., 1997; Pan and Halper, 2003). IL-10 has a conserved function in the chicken acting 264 

as an anti-inflammatory cytokine (Rothwell et al., 2004). No increased expression of IL-10 was 265 

observed in the present study; instead the expression was lower in the spleen tissue of A. galli-266 

infected chickens 6 and 9 weeks p.i. than in  controls where expression increased by age (data not 267 

shown). We have no explanation for this and further studies in other inbred chicken lines as well 268 

as outbred lines need to be conducted in order to elucidate if this is a general response in A. galli 269 

infections. Further studies of the expression of anti-inflammatory cytokines may also help us to 270 

understand why A. galli infected chickens appear to have impaired vaccine responses towards 271 

third party antigens (Pleidrup et al., 2014). 272 

3.6. Conclusion 273 

In summary, we have investigated the avian systemic immune response to A. galli infection by 274 

expression analyses of immune genes in spleen. Interestingly, we observed only few differentially 275 

expressed genes at week 2 p.i. which corresponds to the larvae mucosal phase. In contrast, by 276 

week 6 p.i. where the larvae expectedly have matured and migrated back into the intestinal 277 
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lumen, we observed increased expression of pro-inflammatory cytokines and acute phase 278 

proteins. It is yet to be determined if the observed pro-inflammatory response is caused by A. galli 279 

specific pathogen-associated molecular pattern molecules (PAMPs), host specific damage-280 

associated molecular pattern molecules (DAMPs) released by tissue damage, DAMP homologues 281 

in parasite secretions of even by opportunistic secondary infections.  282 
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