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 7 

ABSTRACT  8 

Purpose While lasting mitigation solutions are needed to avoid climate change in the long-term, temporary solutions may 9 

play a positive role in terms of avoiding certain climatic target levels, for preventing the crossing of critical and perhaps 10 

irreversible climatic tipping points. While the potential value of temporary carbon storage in terms of climate change 11 

mitigation has been widely discussed, this has not yet been directly coupled to avoiding climatic target levels representing 12 

predicted climatic tipping points. This paper provides recommendations on how to model temporary carbon storage in 13 

products in LCA, in order to include the potential mitigation value relative to crossing critical climatic target levels. Further, 14 

estimates are made on potential magnitude of this value, highlighting the importance of including this aspect in climate 15 

change impact assessment of biomaterials. 16 

Methods The recently developed approach for quantifying the Climate Tipping Potential (CTP) of emissions is used, with 17 

some adaption, to account for the value of temporary carbon storage. CTP values for short-, medium- and long-term carbon 18 

storage in chosen biomaterials are calculated for two possible future atmospheric greenhouse gas (GHG) concentration 19 

development scenarios. The potential magnitude of the temporary carbon storage in biomaterials is estimated by considering 20 

the global polymer production being biobased in the future.  21 

Results and discussion Both sets of CTP values show the same trend; storage which releases the carbon again before the 22 

climatic target level is reached increases the CTP value of the product compared to a situation with no storage of the product, 23 
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whereas storage extending beyond the time where the climatic target level is predicted to be crossed according to the GHG 24 

concentration scenarios contributes with negative CTP values, which means mitigation. The longer the duration of the 25 

storage, the larger the mitigation potential.  26 

Conclusions Temporary carbon storage in biomaterials has a potential for contributing to avoid or postpone the crossing 27 

of a climatic target level of 450 ppm CO2e, depending on GHG concentration development scenario. The potential 28 

mitigation value depends on the timing of sequestration and re-emission of CO2. The suggested CTP approach enables 29 

inclusion of the potential benefit from temporary carbon storage in the environmental profile of biomaterials. This should be 30 

seen as supplement to the long-term climate change impacts given by the global warming potential which does not account 31 

for temporary aspects like benefits from non-permanent storage in terms of avoiding a critical climatic target level. 32 

 33 

KEYWORDS: Climate change mitigation, Temporary carbon storage, Biomaterials, Climate Tipping Potential (CTP), Life 34 

cycle assessment (LCA) 35 

 36 

1 Introduction 37 

Climate change is a major environmental concern of today and mitigation options are high on the global political agenda. 38 

Besides the general importance of limiting long-term climate change impacts, there are climatic ‘target levels’ which are 39 

important to stay below (see e.g. Jørgensen et al. 2013a). This is due to the predicted existence of so-called tipping points for 40 

our climate system, the crossing of which will lead to dramatic/structural changes in the climate system that may be 41 

irreversible (Meehl et al. 2007; Hansen et al. 2008). Mitigating climate change is thus both highly important and very urgent, 42 

and different options for climate change mitigation are currently being explored, including different ways to decrease CO2 43 

emissions. There is currently no consensus on how to assess the potential climate change mitigation value of this temporary 44 

carbon storage in life cycle assessment (LCA) (Brandão et al. 2012, Jørgensen and Hauschild 2013, Guest et al. 2013). 45 

Temporary storage of carbon in products makes little difference in terms of long-term climate change, so the value in terms 46 

of climate change mitigation is if the temporary carbon storage can help avoiding the passing of climate tipping points 47 

(Jørgensen and Hauschild 2013). Either through offering a bridging potential to a future with lower atmospheric greenhouse 48 

gas (GHG) concentration, thereby avoiding crossing the target level, or at least postponing it, thus buying time to allow 49 

lasting climate change mitigation and/or adaption solutions to be implemented. As a supplement to assessing long-term 50 

climate change impacts using the GWP, Jørgensen et al. (2013a) propose a method to assess the Climate Tipping Potential, 51 

CTP, based on the contributions of GHG emissions to the crossing of climate tipping points. The CTP method can also be 52 

used for estimating the climate change mitigation value of carbon storage in terms of its potential for helping avoiding 53 

 

 



3 

 

passing of such tipping points. However, being developed for estimating the short term climate change impacts of GHG 54 

emissions, the current approach needs to be adapted to distinguish between the value of permanent carbon storage and that 55 

of temporary carbon storage.  56 

The paper provides recommendations on how to model carbon storage in products in LCA in order to include the potential 57 

mitigation value relative to crossing critical climatic target levels, based on adaption of the newly developed CTP method 58 

(Jørgensen et al. 2013a) and illustrates its use through case examples. 59 

  60 

2 Method  61 

2.1 Scope 62 

The geographical scope of the assessment is global, and while the focus is on temporary storage of carbon, the life cycle 63 

emissions of both CO2 and other GHGs are considered where relevant. Temporary carbon storage is here defined as carbon 64 

sequestered from atmospheric CO2, which is temporarily stored and later emitted again as CO2. 65 

Three case scenarios illustrate the adjusted CTP approach. One scenario addresses short-term storage of two years, one 66 

addresses medium-term storage of 10 years and finally one addresses long-term storage of above 50 years. The scenarios are 67 

hypothetic case scenarios of biobased polyethylene (PE) products, produced from miscanthus, sugar cane and maize.  68 

 69 

2.2 Atmospheric GHG concentration scenarios 70 

Two development scenarios of future atmospheric GHG concentrations are assumed in the assessment; one predicting a 71 

peak and decline and one predicting a continuous increase. The two scenarios are the RCP3PD and the RCP6 scenarios of 72 

the so-called Representative Concentration Pathway (RCP) scenarios (Meinshausen et al. 2011). The RCP3PD is a 73 

mitigation scenario with a peak radiative forcing level of 3 Wm-2, followed by a decline, so the radiative forcing level in year 74 

2100 is 2.6 Wm-2. The RCP6 is a medium stabilization level scenario with a radiative forcing level of 6 Wm-2 in year 2100. 75 

Both scenarios are made available by Meinshausen et al. (2011), based on background data from van Vuuren et al. (2007) 76 

and Fujino et al. (2006), respectively.  77 

An atmospheric GHG concentration of 450 ppm CO2e has been chosen as target level here, as discussed by Jørgensen et 78 

al. (2013a). In the RCP3PD Scenario, the target level of 450 ppm CO2e is only exceeded for a 24 years period (year 2034-79 

2057; see Figure 1a) and can thus be bridged if avoiding that temporary overrun, meaning that storage of enough carbon for 80 

a sufficiently long period of time has bridging potential in this case. In the RCP6 scenario, with continuously increasing 81 

GHG concentrations until year 2100 (see Figure 1b), the potential benefit of temporary carbon storage lies in buying time, 82 

by postponing the crossing of the target level, as bridging is not possible.  83 

 84 
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Fig. 1 85 

 86 

2.3 The CTP approach  87 

The CTP method proposed by Jørgensen et al. (2013a) describes the marginal contribution of GHG emissions to the 88 

passing of critical climate tipping points. It expresses the impact of each GHG emission relative to the available capacity of 89 

the atmosphere to take up additional GHGs before crossing a certain climate level through Equation (1): 90 
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Where CTPx,T(te) is the climate tipping potential measured in parts per trillion (ppt) of the remaining atmospheric capacity 92 

for receiving GHGs without crossing the target level (pptrc) AGWPx,T(te) is the absolute global warming potential of GHG x 93 

between emission time te [year], and target time T [year], ACO2,ppm is the specific radiative forcing of CO2 per ppm [Wm-2ppm 94 

CO2
 -1], CT is the target level concentration of atmospheric GHG, occurring at the target time [ppm CO2e], and Ct is the 95 

concentration of atmospheric GHG at time t [ppm CO2e] of the assumed GHG concentration scenario.  96 

For CO2, which requires a special expression to account for its complex atmospheric removal processes when calculating 97 

the AGWP, Equation (1) takes the form of Equation (2): 98 
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Where ACO2 is the specific radiative forcing of CO2 per kg in the atmosphere [Wm-2kg-1] and a and α are coefficients and 100 

time constants for the removal processes that are active in the IPCC decay function for CO2 in the atmosphere according to 101 

the revised Bern carbon cycle model (Forster et al. 2007): a0 = 0.217, a1 = 0.259, a2 = 0.338, a3 = 0.186, α1 = 172.9 years, 102 

α2 = 18.51 years, α3= 1.186 year.  103 

  104 

2.4 Adapting the CTP approach to address temporary carbon storage 105 

The CTP of a GHG emission reflects its impact in terms of contributing to the crossing of a climatic target level. 106 

Therefore, impacts occurring after the time when the target level is exceeded are not included in the calculation of the 107 

emission’s CTP, but only assessed in terms of long-term climate change impacts using the GWP. This approach is 108 
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immediately compatible with permanent carbon storage, where uptakes are counted as negative emissions, with te in this case 109 

being exchanged with the year of uptake and permanent storage, tst of atmospheric CO2. The logic derivation for this is to 110 

subtract the CTP of the amount of CO2 sequestered from the atmosphere by the biomass, at the time it occurs, from the CTP 111 

at the time it is released. For storage of one kg of carbon at time tst followed by its full release at time te, this is described by 112 

Equation (3): 113 

If tst < T, then: 114 
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 (3) 115 

Equation (3) can be applied to different amounts of carbon stored and later emitted, also in the case where not all stored 116 

carbon is emitted at the same time, by splitting the stored carbon into fractions and applying the respective emission time for 117 

each fraction. 118 

Using the CTP approach as given in Equation (3) means that all carbon storage will be given equal value to permanent 119 

storage independent of the length of the storage period, as long as it ends after the target time T. 120 

However, carbon storage in biobased materials can normally not be considered ‘permanent’ as the product lifetimes are 121 

finite and often relatively short. For assessing the value of temporarily storing carbon, the method needs to give a fair 122 

valuation in terms of the temporary aspect by addressing the following issues:  123 

• The value assigned to the temporary carbon storage beyond the target time T should increase with storage duration 124 

up to a period that is defined as comparable in value to permanent storage, regarding the avoidance of crossing 125 

the climatic target level (but not in terms of the long-term climate change impacts). 126 

• The adjusted CTP approach to assess temporary carbon storage beyond the target time should be compatible with 127 

the CTP approach to assess GHG emissions. 128 

 129 

In order to address those issues, the following steps have been performed for adjusting the CTP approach to the special 130 

case of addressing temporary carbon storage: 131 

• First, the duration of storage defined as having full benefit, τ, needs to be defined.  132 
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o In the case of the RCP3PD scenario, starting from year 2014, the storage needs to be at least 44 years to 133 

last beyond the period where the GHG level is above the target level, and preferably a few years more to 134 

have an increased capacity 135 

o In the case of the RCP6 Scenario, the value lies in buying time, which means that the storage time needs to 136 

be sufficient for implementing lasting solutions for mitigating climate change and/or adapting to the 137 

changes to mitigate the most dramatic impacts 138 

o For those reasons, we have chosen a duration of τ=50 years of storage as having full benefit using both 139 

scenarios 140 

o In order to ensure consistency in the assessment using the two different scenarios, the value of buying time 141 

is also reflected in the RCP3PD Scenario, which means the same method is used in both cases 142 

• The increasing value of storage as the year of CO2 uptake and storage approach T, is then represented automatically 143 

by the CTP approach, with uptake of CO2 being treated as negative emissions 144 

• The value of the storage, for all temporary carbon storages which end after T, is calculated from the full storage 145 

CTP value multiplied by the ratio between the storage period and τ (e.g. for 10 years storage after T the CTP 146 

value of the storage is 1/5 the value of 50 years storage) 147 

This is summarised in Equation (4), assuming that the temporarily stored carbon is sequestered from the atmosphere, and 148 

later emitted again, in the form of CO2: 149 

If tst < T:  150 

If te < T: Equation (3) applies 151 

 152 
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(4) 155 

Where n is the length of the storage period from 1 to τ [years], with all periods above τ having a value equal to that of a 156 

period of τ  . 157 
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This approach satisfies the requirements presented above and supports application together with the regular CTP for 158 

assessing climate tipping potential of GHG emissions. The adapted CTP characterisation factors for temporary carbon 159 

storage are shown in Figure 4 in Section 4, and applied to three case scenarios with different storage durations and different 160 

biomass feedstocks. The case scenarios are described in Section 3. 161 

 162 

3 Temporary carbon storage case scenarios 163 

All product level cases are based on products from biobased PE, with different lifetimes, to assess the impact of varying 164 

storage durations. The GHG emissions from conversion of biobased PE to final products are not included, as that would 165 

interfere with the illustration of CTP impacts from different carbon storage times.  166 

Packaging materials made from biobased PE offer a short-term storage case, with an assumed carbon storage period of 167 

two years including the time from carbon sequestration in the biomass until disposal, assuming the product is incinerated 168 

after disposal. 169 

A medium-term case example is biomass-based PE materials used in the automotive industry, with a carbon storage period 170 

of 10 years from the carbon sequestration into the biomass and through the lifetime of an average car. 171 

An example of long-term storage is building and construction materials from biomass-based PE with a lifetime in the 172 

building above 50 years from the sequestration of the carbon. 173 

The cases are hypothetic and created to provide simple illustrations of the use of the CTP approach for temporary carbon 174 

storage. PE is the polymer produced in the largest amounts globally, and currently 39% of the European production is used 175 

for packaging, while 21% is used in building and constructing and 8% is used in the automotive industry (PlasticsEurope 176 

2011). While the main part of the polymer production is still petrochemically based, biobased PE as produced today can be 177 

used in the same way as the petrochemical PE as the technical properties are identical (e.g Harmsen and Hackmann 2013). 178 

 179 

3.1 Production of biobased PE 180 

Biobased PE can be produced from different feedstocks. In the cases addressed here, results are calculated for three 181 

different biomass feedstocks; miscanthus, sugar cane and maize. The modelling of GHG emissions from the conversion over 182 

fermentable sugar yield to PE from the three types of biomass is based on current agricultural practice represented in data 183 

from Bos et al. (2012), which includes GHG savings from energy production from co-products to the extent that it is part of 184 

current agricultural practice, as outlined in Table 1. This assumption in Bos et al. (2012) affects GHG results for the 185 

biobased PE from the different biomass feedstocks. The purpose of presenting the hypothetic cases is to illustrate the use of 186 

the newly developed CTP approach adjusted to assess temporary carbon storage in LCA, including life cycle GHG 187 

emissions, and not to discuss the environmental performance of biobased PE produced from different biomass feedstocks. 188 
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Therefore, these assumptions are not important for the outcome of this article. Nevertheless, where the CTP results are 189 

presented, a comment is included on how they would be affected if GHG savings due to the energy production from co-190 

products were not included. 191 

 192 

Table 1 193 

 194 

4 Results 195 

Section 4.1 addresses the potential of temporary carbon storage in biomaterials to reach a magnitude at the societal level 196 

that makes it interesting for assisting in avoiding exceeding a climatic target level of 450 ppm. Sections 4.2 and 4.3, on the 197 

other hand, address temporary carbon storage at product level, presenting the newly developed CTP approach adjusted for 198 

temporary carbon storage assessment and showing results of its use in a product case. 199 

 200 

4.1 Climate change mitigation potential of temporary carbon storage in biopolymers 201 

The aspect of potential mitigation value of biomaterials in terms of avoiding the climatic target level of 450 ppm is 202 

addressed in Section 4.1.1 and 4.1.2, for the RCP3PD and the RCP6 Scenario, respectively. 203 

 204 

4.1.1 The RCP3PD Scenario 205 

For the case of the RCP3PD Scenario, which predicts crossing of the 450 ppm CO2e target level in year 2034, and getting 206 

back below in year 2058 as seen from Figure 1a), exceeding the target level could be avoided if GHG emissions contributing 207 

to the presence of GHGs in the atmosphere during that period are reduced. The amount of carbon emission that needs to be 208 

avoided can be estimated as the amount of C present in the atmosphere that corresponds to the atmospheric CO2 209 

concentration that is above the target level. The revised Bern carbon cycle model (see Forster et al. 2007) allows estimating 210 

how much of the carbon, if emitted as CO2, would be removed from the atmosphere again over time by the global carbon 211 

cycle processes. Due to those atmospheric CO2 removal processes, the sequestration in biomass of  x kg atmospheric CO2 in 212 

one year, will mean that the hereby induced reduction in atmospheric GHG concentration, compared to leaving the x kg CO2 213 

in the atmosphere, will in the following years decrease and thus be less than x kg CO2. Thus the revised Bern carbon cycle 214 

removals need to be accounted for when estimating the amount of carbon in the atmosphere over time which should be 215 

avoided, as done in Online Resource 1. 216 

The value of temporary carbon storage in biomaterials in terms of avoiding exceeding the climatic target level of 450 ppm 217 

CO2e can be estimated as its fraction of the estimated amount of carbon emission that must be avoided as described above. 218 
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The potential future market for biopolymers is estimated by assuming full substitution of the global, mainly 219 

petrochemically based, polymer production with biopolymers. While a lower consumption might often be preferred to a shift 220 

in materials from an environmental perspective, changing consumption patterns is not an issue addressed in this article. 221 

The future polymer demand is estimated by extrapolating from the global production of 0.265 GtC in 2010 222 

(PlasticsEurope 2011), assuming a 5% annual increase, which is in line with the long-term trend in global plastic production 223 

growth during the last 20 years (PlasticsEurope 2011). 224 

While many petrochemical polymers today cannot be directly substituted with biobased ones, substitution by new 225 

biopolymer types with similar properties is often an option, and further biopolymer development is ongoing. E.g. biobased 226 

polypropylene (PP) is expected very soon to be produced at commercial scale, and together, PP and PE account for 227 

approximately half of the mass of the current plastic consumption in Europe (PlasticsEurope 2011). Considering that the 228 

year that the target level is predicted to be crossed according to RCP3PD is 20 years from now, we see it as quite possible 229 

that the majority of current petrochemical polymers can be replaced by biopolymers at that time. 230 

In order to have a bridging potential, bridging beyond the time of the ‘peak level’ above the climatic target level, the 231 

storage duration must at least span the length of the period where the GHG concentration is above the peak, which is 24 232 

years. Starting from the year of predicted crossing of the target level, 2034, that means storage for at least 25 years and 233 

preferably more, to get well below the target level before reemission of the carbon. With this storage duration, only the 234 

fraction of polymers used in building and construction is relevant to consider here. This fraction is approximately 21% of 235 

global polymer production (PlasticsEurope 2011). Considering the five main polymer types, accounting for 74% of polymer 236 

consumption today in Europe, the weighted average carbon mass content is 77% (PlasticsEurope 2011)). 237 

Assuming an average carbon mass content of the polymers of 77%  the carbon storage in construction biopolymers could 238 

account for at least 26% of the total mass of carbon that must be avoided emitted each year (as CO2) from 2034 until 2057. 239 

In many years, it could even account for more than the total amount, as shown in Figure 2 (details on calculations can be 240 

seen in Online Resource 1).  241 

 242 

Fig. 2 243 

 244 

The estimates given in Figure 2 only consider the potential of the temporarily stored amount of carbon in long-lived 245 

biopolymer products, and do not take into account life cycle GHG impacts from production, nor the potential GHG savings 246 

from substituting conventional petrochemical products. Finally, no land use or land use change impacts are included in these 247 

estimates. 248 

 249 
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4.1.2 The RCP6 Scenario 250 

Contrary to the RCP3PD Scenario, the GHG concentrations in the RCP6 Scenario keep increasing towards year 2100 as 251 

shown in Figure 1b), and so does the amount of carbon emission that must be avoided to stay below 450 ppm CO2e as seen 252 

in Figure 3. In this case the potential benefit of temporary carbon storage lies in buying time up to a maximum of 50 years 253 

(as described in Section 2.4). Similar as for the RCP3PD Scenario, amounts of GHG to be avoided to avoid crossing 450 254 

ppm are calculated as shown in the Online Resource 1, Table O2 and the resulting values are given in Figure 3. The 255 

mitigation potential of long-term storage in biopolymers is 10-28% each year, except for the first year, where it is 90%, as 256 

the target level is only slightly exceeded that year according to the RCP6 Scenario. 257 

 258 

Fig. 3 259 

 260 

4.2 Adjusted CTP approach for addressing temporary carbon storage 261 

While Section 4.1.1 and 4.1.2 illustrated that there is a noteworthy potential of temporary carbon storage in biomaterials to 262 

contribute to avoiding/postponing the crossing of the 450 ppm CO2e target level, this potential is currently not included in 263 

LCIA. A possibility of expressing this value is introduced by the adapted CTP approach to incorporate temporary carbon 264 

storage as described by Equation (4). Using this gives the temporary carbon storage CTP characterisation factors shown in 265 

Figure 4a) and 4b), for the RCP3PD mitigation GHG concentration scenario and the RCP6 medium target level GHG 266 

concentration scenario, respectively. 267 

 268 

Fig. 4  269 

 270 

Figure 4a) and 4b) illustrate the development in CTP of temporary carbon storage as function of time of sequestration for 271 

selected storage periods. CTP characterisation factors for storage periods between 2 years and 50 years for all CO2 uptake 272 

times from present until the target time T are shown for both presented scenarios in the Online Resource 2. 273 

While the trends of the CTP values for the two scenarios are similar, the timing and the size of CTP values differ. It is 274 

obvious from the figures that the timing of the CO2 uptake and storage, and later emission, is decisive for the potential value 275 

of temporary carbon storage. Temporary carbon storage for relatively short periods ending before the target time T will have 276 

a positive net climatic tipping potential, rather than a mitigation value, as the atmospheric capacity is critically declining 277 

close to the target level, and avoiding GHG emissions thus becomes more urgent. This means that for storage that begins the 278 

same year and ends before the target year, longer storage durations will result in higher CTP values for a given sequestration 279 

year, as the longer storage duration results in emission closer to the target year. For storage durations above 20 years for the 280 
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RCP6 Scenario, and 30 years for the RCP3PD Scenario, all temporary storage with sequestration year from present until the 281 

target time will have a mitigation value, which increases with storage duration and proximity of the storage year to the target 282 

year.  283 

 284 

4.3 Product level results based on the adjusted CTP approach 285 

Using the adjusted CTP approach the mitigation value of temporary carbon storage in biomaterials in terms of avoiding 286 

crossing the climatic target level of 450 ppm CO2e can be estimated. Here this is done for the three case examples with 287 

different storage durations and different biomass feedstocks, as defined in Section 3. The purpose of these hypothetic case 288 

examples is to illustrate the potential and consequences of using the newly developed CTP approach to assess temporary 289 

carbon storage in LCA, under different conditions. 290 

CTP impacts of lifecycle GHG emissions other than the temporarily stored carbon are calculated using CTP 291 

characterisation factors for GHG emissions from Jørgensen et al. (2013a). Results are shown as function of time of carbon 292 

sequestration in Figure 5. 293 

 294 

Fig. 5 295 

 296 

At a first glance, results may seem a bit complex, as impacts do not follow a simple pattern as function of storage 297 

duration, timing of sequestration or feedstock type. This is due to the merging of two aspects, the temporary carbon storage 298 

part and the life cycle GHG impacts, which vary differently with those parameters. Disregarding the life cycle impacts, 299 

results could be extracted directly from Figure 4, which shows a more homogenous picture in terms of trends. As shown in 300 

Figure 4, temporary carbon storage gives a CTP saving if the carbon is stored beyond the target time, but increases CTP 301 

impacts if carbon is released again before the target time. This is why biobased PE products with short- and medium-term 302 

lifetimes in some cases have high CTP impacts, while in other cases show CTP savings, depending on the timing of the 303 

sequestration, and thus of the emission.  304 

What further differentiates the results is that for miscanthus and sugar cane there is a net GHG saving in the production 305 

year due to energy surplus production from by-products, whereas for maize there is a net GHG emission from the production 306 

as more energy is used for producing bio-PE from maize, than the energy produced from by-products, according to current 307 

agricultural practice (Bos et al. 2012). GHG emission savings always lead to negative CTP values (savings), while GHG 308 

emissions lead to positive values, but the magnitude depends again on the timing of the emissions relative to the target time. 309 

CTP values in Figure 5 are thus negative if there is a net mitigation of climate tipping potential, e.g. when the CTP saving 310 
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value of buying time by storing the carbon beyond the target time is larger than the CTP impacts of the product over the rest 311 

of its life cycle.  312 

In the long-term storage case, CTP values are all negative, and increasingly so, the closer to the target time the storage 313 

starts, as the capacity left is then smaller and the urgency of action for avoiding the target level therefore more critical. 314 

If, on the other hand, no energy was produced from by-products, that would give net GHG emissions from producing bio-315 

PE from all three feedstocks considered here, leading to CTP impacts for bio-PE in all the cases addressed in Figure 5. 316 

CTP values are similar for the two GHG concentration scenarios in most cases, with a higher numeric trend for the 317 

peaking scenario (RCP3PD).  For the biobased PE products with short-term storage however, there are some obvious 318 

differences for the case of carbon sequestration in year 2030, which is due to the different target times of the two scenarios.  319 

The impact of a GHG depends on the time it resides in the atmosphere before the target time, meaning that in Scenario 320 

RCP3PD where the target time occurs two years later than in the RCP6 Scenario, the impact of a GHG emissions in a given 321 

year will be a little higher for the RCP3PD Scenario. The same is true in the case of a mitigation value from carbon 322 

sequestration in a given year. Further, due to the differences in the pathways of the two scenarios, the remaining capacity in 323 

each year is higher in the RCP6 Scenario, until a few years before T. Both aspects lead to a higher numeric CTP value of an 324 

emission/sequestration in the RCP3PD Scenario than in the RCP6 Scenario in a given year (except in year 2031, which is the 325 

last year before T in the RCP6 Scenario). 326 

Using the CTP approach without the adaption for temporary storage would give the same results as here for emissions 327 

before the target level and for emissions with at least 50 years storage, as inherent in the derivation using 50 years as τ (i.e. 328 

Equation (4)). 329 

 330 

5 Discussion 331 

5.1 The adapted CTP approach for temporary carbon storage 332 

The developed approach reflects that emission before the target level is always worse than after, and thus that temporary 333 

carbon storage pushing impacts beyond the target time, T, should always be of value in terms of mitigating climate change. 334 

However, this means that a gradual decrease of impacts after the target time is not possible, as later emission might then be 335 

worse than earlier. Consequently, emissions in year T-1 will have large impact whereas emissions one year later will have no 336 

impact. Likewise, using the method directly, all uptakes of carbon just before T will yield large benefits, regardless of when 337 

it is reemitted. For including the aspect that short-term storage (e.g. just a few years) does not have the same value as 338 

permanent storage, the gradual valuation in terms of length of storage has been introduced as described in Section 2. This is 339 

necessary in order to give fair weighting to storage of different lengths, as storage for just a few years has accordingly less 340 
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potential for ‘buying’ time than long-term storage. This is in line with the fact that pushing emissions a few years ahead will 341 

not have much real value in terms of avoiding tipping points, but at the most just push the target year.  342 

While further elaboration is possible, the presented method fulfils the task of showing the value of temporary carbon 343 

storage in terms of only yielding a value if pushing impacts beyond the target level, thus buying time, and giving value 344 

gradually in terms of length of the time bought. 345 

 346 

5.2 Impact of choice of τ 347 

The sensitivity of the approach to the choice of the parameter τ is straightforward, as the temporary storage value varies 348 

with the inverse of τ for all storage durations up to the new value of τ, so a doubling of τ leads to half the value for a given 349 

temporary storage duration (when te > T, that is there is a mitigation value of the storage). This means that the choice of τ is 350 

rather important for the outcome and should be chosen carefully. The proposed choice of a τ value of 50 years is based on 351 

the reasoning in Section 2.4. 352 

 353 

5.3 Difference between CTP and GWP 354 

The CTP results from Section 4.3 can be seen to differ a lot for the different cases. In contrast, GWP100 for the same 355 

biobased PE production is constant and independent on sequestration year, production year and storage duration, as GWP100 356 

is a static measure aimed at long-term assessment and not taking into account storage and emissions timing. GWP100 per ton 357 

miscanthus, sugar cane and maize based PE in the three cases is thus -1789 kg CO2e100
†, -1042 kg CO2e100 and 3031 kg 358 

CO2e100, respectively, irrespective of the duration of the temporary carbon storage. 359 

 360 

5.4 The potential contribution of carbon storage in biomaterials for mitigating climate change 361 

As shown in Section 4.1.1, biomaterials can play a quite substantial role in terms of avoiding the crossing of a climatic 362 

target level in the RCP3PD Scenario. In the case that the RCP6 Scenario applies, biomaterials can also have a noteworthy 363 

contribution to postponing the crossing of the 450 ppm CO2e target level for 50 years, thus buying time, as shown in Section 364 

4.1.2.  365 

† Note the notation of the unit, for clearly illustrating over which period the CO2e is determined. Such notation is here suggested to always 

be used when giving CO2e for a certain integrated period, rather than instant equivalence in terms of specific radiative forcing, to avoid 

misunderstanding. 
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For the potential to buy time, this should not be considered a way to push impacts to later, which would be contradicting 366 

to sustainability agendas on intergenerational equality/rights to meet their needs. Rather, it should be seen as a limited 367 

extension of time to react to the threat of crossing critical climatic target levels, by developing and implementing additional 368 

measures for climate change mitigation, or at least adaptation, to avoid the most critical impacts. This would be in the 369 

interest of both current and future generations.   370 

While the storage potential in long-lived biopolymers alone does not provide sufficient mitigation potential to avoid or 371 

postpone the crossing of the target level of 450 ppm CO2e in the respective scenarios, temporary carbon storage in other 372 

biomaterials, substituting current petrochemical based materials, can further add to the mitigation potential. Thus 373 

biomaterials could be part of the solution for avoiding the crossing of a climatic target level of 450 ppm CO2e, giving the 374 

temporary storage of carbon in biomaterials a clear mitigating value in terms of the impacts of man-made climate change. 375 

One important aspect of biobased production is the need for land. According to results from Bos et al. (2012), the land use 376 

for producing 1 t biobased PE varies between ~0.34 ha, if sugar cane is used as feedstock, and just below or above 0.6 ha if 377 

using miscanthus or maize, respectively. Comparing these numbers to the current global polymer demand, the substitution 378 

of all polymers with biobased ones does not seem unrealistic in terms of land requirements (while PE is the most abundant 379 

polymer today, a large part of global polymer production of course comes from other polymer types; however as the land 380 

requirement of PE is rather high, e.g. nearly three times higher than that of polylactic acid (Bos et al. 2012), it seems 381 

reasonable to assume that the required land for biopolymers on average  will likely not be much higher).  382 

Another aspect connected to land use and land use change of biomass production is the potential change in biogenic 383 

carbon stocks, including soil organic carbon, as well as surface albedo on the land (see e.g. Bright et al. 2012; Cherubini et 384 

al. 2012; Jørgensen et al. 2013b). It is of course important to include all relevant GHG emissions and changes in biogenic 385 

carbon stocks in the CTP assessment, just as it is for the GWP. The inclusion of climate change impacts from surface albedo 386 

change is likewise important; however the application of the CTP approach for this aspect requires further elaboration, 387 

which is beyond the scope of this paper. On a qualitative note, it may be mentioned that such impacts may be influential for 388 

the results, and that the influence can go in both directions leading to both increasing and decreasing atmospheric GHG 389 

concentrations depending on the conditions. It is thus important that the increased biobased production is done in a 390 

sustainable way, not decreasing existing carbon stocks or changing the surface albedo in a way that counteracts the potential 391 

climate change mitigation value from the temporary carbon storage in biomaterials.  392 

 393 

6 Conclusions 394 

Temporary carbon storage in biomaterials has the potential for playing a noteworthy role in mitigating climate change, in 395 

terms of avoiding or postponing (depending on the GHG concentration development scenario) the crossing of a climatic 396 
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target level of e.g. 450 ppm CO2e and thus the related predicted tipping point damages. However, the potential mitigation 397 

value is highly dependent on the timing of sequestration and re-emission of carbon relative to the target time, and re-398 

emission before the target time even increases the CTP impact rather than mitigating it.  399 

By including the CTP approach in the environmental impact assessment, the potential benefit from temporary carbon 400 

storage in biomaterials can be included in their environmental profile, and the different potentials from different biomaterials 401 

and different feedstock use etc. can be distinguished. As CTP characterisation factors for all storage durations at different 402 

sequestration times are given for the two GHG concentration development scenarios, this can be directly included in LCA. 403 

This should be seen as supplement to the long-term climate change impact assessment given by the GWP, which clearly has 404 

a different role than the CTP, as it gives the same value for all storage durations and thus does not account for the potential 405 

value of the temporary carbon storage in terms of avoiding a critical climatic target level. This emphasizes the value of 406 

including the CTP, for inclusion of that important aspect. 407 
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 462 

Table 1 Uptake and release of GHGs over time from sequestration to release R years later for 1 t biobased PE produced from various 463 

feedstocks according to current agricultural practice. Data for GHG emissions from biobased PE production (cradle to gate) from different 464 

feedstocks estimated based on Bos et al. (2012) 465 

Time, Process GHG emission [kg]/t biobased PEa 

year 
 

Miscanthusb Sugar cane Maize 

1 
CO2 avoided through carbon sequestration and storage in 

biobased PE product   
-3138 -3138 -3138 

 N2O emissions from agricultural production of biomass c 0.8 0.7 3.7 

 CO2 emissions from production of biobased PE d  -2038 -1405 2038 

2 to R Storage in biobased PE products e   
 

R Incineration - CO2 emission f  3138 3138 3138 

a In current agricultural practice, there are GHG saving in the production year for miscanthus and sugar cane due to energy surplus 466 

production from by-products, whereas for maize this is not the case for current agricultural practice, where more energy is consumed than 467 

produced in the process (Bos et al. 2012).   468 

b Miscanthus is not yet produced in a large scale quantities as the other two feedstocks (Bos et al. 2012) 469 

c Reported as CO2-eq. in Bos et al. (2012), here converted back to N2O emission using GWP100 of  N2O: 298 CO2-eq. (Forster et al. 2007) 470 

d CO2 emissions are estimated from original data given as GJ non-renewable energy use (NREU)/ton biobased PE, converted to CO2e 471 

assuming oil as the NREU source, with conversion factors of 0.43 tCO2/barrel and 5.8 mmBtu/barrel (EPA 2013a), as well as 0.9478 472 

mmBtu/GJ (EPA 2013b) 473 

e The storage in the biomass starts from the time of sequestration, that is year 1, and continues through the life time of the product 474 

f As the products are assumed incinerated at their end-of-life, all carbon stored in the biomass will be released as CO2 475 

 476 

Fig. 1 Excess atmospheric GHG concentrations (grey hatched area) above the level of 450 ppm CO2e (grey punctured line) in the future, 477 

following a) the peak and decline scenario (RCP3PD) (Meinshausen et al. (2011) and van Vuuren et al. (2007)) and b) the continuous 478 

increase scenario (RCP6) (Meinshausen et al. (2011) and Fujino et al. (2006)) 479 
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 480 

Fig. 2 Additional CO2 emissions that must be avoided each year in the period, provided that the avoided emissions needed for previous 481 

years have been accomplished, in order to avoid exceeding the climatic target level of 450 ppm CO2e, following the RCP3PD Scenario 482 

(black bars). Grey negative bars show the potential role of temporary carbon storage in long-lived biopolymer products for removing 483 

atmospheric CO2 in the period  484 

 485 

Fig. 3 Additional CO2 emissions that must be avoided each year in the period, provided that the avoided emissions needed for previous 486 

years have been accomplished, in order to buy 50 years of extra time before exceeding the climatic target level of 450 ppm CO2e, 487 

following the RCP6 Scenario (black bars). Grey negative bars show the potential role of temporary carbon storage in long-lived 488 

biopolymer products for removing atmospheric CO2 in the period 489 

 490 

Fig. 4 CTP for temporary carbon storage, with uptake before T for different storage durations and start years of storage, assuming a) 491 

Scenario RCP3PD and b) Scenario RCP6. CTP is measured in ppt of the remaining atmospheric capacity for taking up GHGs without 492 

exceeding the target level (pptrc), with negative values meaning mitigation potential 493 

 494 

Fig. 5 CTP of temporary carbon storage in one t biobased PE products of varying durations (short: 2 years, medium: 10 years, long: above 495 

50 years), and different years of carbon sequestration in biomass, including life cycle GHG impacts for current agricultural practice as 496 

outlined in Section 3, for three different feedstock crops, using a) the RCP3PD Scenario and b) the RCP6 Scenario    497 

498 
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