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Abstract—For an AC/DC coupled transmission system, the 
change of transmission power on the DC lines will significantly 
influence the AC systems’ voltage. This paper describes a 
method to coordinated control the reactive power of power 
plants and shunt capacitors at DC converter stations nearby, in 
order to keep the voltage of the pilot bus tracking its set point 
considering the DC system’s transmission schedule change. The 
approach is inspired by model predictive control (MPC) to 
compensate for predictable voltage change affected by DC side 
transmission power flow and the potential capacitor switching at 
DC converter stations. The control strategies are calculated 
from a multi-step dynamic optimization problem that is solved 
by mixed integer quadratic programming method. Time-domain 
simulations showed positive results of the proposed voltage 
controller. 

Index Terms—HVDC system, Coordinated Voltage Control, 
Automatic Voltage Control, Model Predictive Control 

I. INTRODUCTION 

In China, in order to avoid sub-synchronous resonance and 
other problems, HVDC systems have been used to transmit 
large quantity of power energy between different large AC 
systems. Some DC converter stations at receiving side are 
located far from load center, where the network is very weak. 
The change of the DC lines’ transmission schedule, which 
may cause large variation of power flow, will result in violent 
voltage fluctuation inside AC systems. At the receiving side of 
HVDC system between northeast China power grid and north 
China power grid, Gaoling converter station discussed in this 
paper is just an example. 

Secondary voltage controller, which aims to keep the 
voltage of pilot buses close to their references and distribute 
reactive power appropriately [1-3], has been widely applied in 
power system. The control interval is about 1-5 minutes that is 
restricted by communication conditions. However, traditional 
control method based on static optimization only concerns 
steady state information, so it doesn’t always work well in an 
area containing DC converter stations since the shifting of DC 
operating mode could consequently lead to large active power 
flow changes. Furthermore, it is usually accompanied with 

automatic shunt capacitor switching inside the converter 
stations in only a few minutes, which may also cause reactive 
power change significantly and make the voltage much 
different from its last steady state. 

The key to control voltage better in an area containing DC 
converter station at operating mode shifting period is to take 
the trend of transmission power flow and the consequent auto 
actions of the capacitors at the converter stations into 
consideration. Therefore, an MPC based method for secondary 
voltage control in an AC/DC coupled transmission system is 
proposed in this paper. MPC is an important method of 
process control theory, and has been applied to distribution 
networks voltage control [4-6], transmission voltage control 
[7], voltage stabilization under contingency [8-9], active 
power dispatch [10-11], energy storage management [12] and 
other fields and is showed to have good performance at 
coordinating different control units through the time. 

The proposed method has some advantages comparing to 
the traditional one. Firstly, it concerns not only the present 
state but also the prediction states during a period of time in 
the future. That confirms an optimal control process of voltage. 
Secondly, predicted DC transmission power flow and behavior 
of shunt capacitors at converter stations are both considered, 
so it is possible to cooperate with power plants and the DC 
converter stations in the area. By the way, DC transmission 
power flow always changes according to a pre-defined 
schedule, so its predicted value could be exactly precise. 
Thirdly, voltage limits of all buses in the area are added to 
constraints, which assures the safety of the AC/DC system in a 
time-slot. 

II. MODEL PREDICTIVE CONTROL 

The proposed method concerns about the performance of 
system during N control circles in the future, and each control 
circle contains M predicted points as showed in Fig. 1. The 
value of DC power flow which changes according to pre-
defined transmission schedule. Meanwhile, the behavior of 
shunt capacitors at the converter station also obeys fixed rules, 
which means a determined model can be built.  
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Figure 1. MPC Time Sequence 

The first point of control sequence, the solution of 
optimization model, would be sent to each voltage control unit 
in the area according to MPC theory. 

A. Objective 

The voltage deviation of pilot buses is a key indicator of 
control system’s performance. Thus the objective of 
optimization is showed as below. 
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In the equation above, optimization variables set
GV  is the 

set point of each generators’ terminal voltage; 
( ),i jt Mi j t= + Δ  represents for the jth predicted point in the 

ith control period, and tΔ  is the interval between two 
predicted points; ρ is a decay coefficient with a value less than 
1; 1F  stands for deviations between predicted values and the 

references of pilot buses at the typical time ,i jt , and the 

specific expression is showed as below.  
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pre
Pilot,kV and ref

Pilot,kV  separately stand for the predicted voltage 

value and the reference of the kth pilot bus. 

B. Constraints 

i) Voltage prediction can be obtained by solving power 
flow sensitivity equations. 
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Here set
GV is the vector of generator terminal voltages’ set 

values, pre
PilotV  is the vector of predicted pilot buses’ voltages, 

pre
StV  is the vector of predicted converter stations’ bus voltages, 

and pre
OtherV  is the vector of other buses’ voltages. S  is the 

sensitivity matrix of bus voltage to injected power flow. pre
GP  

and pre
GQ  are separately the vector of predicted values of 

generators’ active and reactive powers. pre
StP  and pre

StQ  are that 
of DC transmission power flow, which can be precisely 
obtained according to their pre-defined transmission schedules. 

C C C
St St,1 St,2diag Q Q⎡ ⎤= ⋅⋅⋅⎣ ⎦Q  represents the capacity of a 

single capacitor in converter stations, while pre
StN  stands for 

the number of capacitors connected to the network.  
ii) In order to trigger the switching event of a capacitor, the 

voltage at the time just before the switching event should be 
obtained as a judgment. It can be deduced in the same way 
using sensitivity equations. 
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Here pre
PilotV̂  is the vector of predicted pilot buses’ voltages, 

pre
StV̂  is the vector of predicted converter stations’ bus voltages, 

and pre
OtherV̂  is the vector of other buses’ voltages at that time. 

pre
GQ̂  is correspondingly the vector of predicted values of 

generators’ reactive powers. 
iii) Shunt capacitors’ switching rules. 
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There is a set of rules for shunt capacitors at the converter 
station under voltage control mode. When the voltage of a 
converter station exceeds its upper or lower bound max min

St St/V V , 
a capacitor will be put into or cut off from the grid. Besides, 
there are also rules under other kinds of station control mode 
such as reactive control mode, under which voltage bounds are 
taken place by reactive power bounds. Logical constraints in 
equation 5 can be transferred into mix integer form as showed 
below. 
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pre
StCt  and pre

StPt  are both 0-1 variables, while R  is a big 
positive number. 

iv) Shunt capacitors in a converter station should not be 
frequently switched, since it may cause damage to both the 
capacitors and power system. Therefore, the constraints of 
switching times are set. 
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Apparently pre
StO  is a 0-1 variable representing the action 

of capacitors, while max
StO  is the limit of switching times.  

v) Operating limits of system including that of bus 
voltages, generator reactive powers and numbers of shunt 
capacitors in converter stations. 
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C. Solving Algorithm 

Expressions 1-4 and 6-8 compose the whole optimizing 
model of the secondary voltage controller in the AC/DC 
coupled transmission system. It is a mix integer quadratic 
programming problem, which can be solved by dual simplex 
algorithm accompanied with branch-and-bound method. 

III. SIMULATION RESULTS 

A. Simulation System 

The simulation system is built based on the north China 
power grid, and use the history data of it in Oct. 25th 2013 as 
input data. The secondary voltage control with a 5 minute 
cycle is restricted to an area showed in Fig. 2. High voltage 
bus of TM Station is selected as the pilot bus. In the 
simulation, the reference value of pilot bus voltage is set to 
520 kV, while the upper and lower voltage bounds that trigger 
switching events of capacitors at the converter station are 
separately 534 kV and 518 kV. Parameters N and M are 
separately set to 2 and 5, so that the MPC optimization time 
slot is 10 minute wide, and the interval of predictions tΔ  is 1 
minute. 
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Figure 2. Secondary Voltage Control Area 

Since the problem discussed doesn’t refer to transient 
process, a power flow calculation program is used to simulate 
the changing states of the system. The solving of optimization 
model is carried out by CPLEX. 

B. DC Transmission Power Decreasing 

DC transmission power starts to decrease at 1:00 a.m. from 
about 3000 MW to 2100 MW at a speed of -30 MW/min, as 
showed in Fig. 3. This results in voltages of nearby buses’ 
increasing and shunt capacitors’ being cut down at the 
converter station. 
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Figure 3. Active Power of DC Transmission Line 
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Figure 4. Converter Station Voltage 
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Figure 5. Pilot Bus Voltage 

Fig. 4 and Fig. 5 separately show the voltage value of the 
converter station and the pilot bus. We can see in Fig. 4, 
yellow circles and orange squares stand for switching events 
under traditional and MPC controller. With the MPC based 
method, switching times of capacitors is lesser. Meanwhile,  
Fig. 5 illustrates that controller using proposed method keeps 
the voltage of pilot bus staying in the safe range, but the 
traditional controller doesn’t always do (yellow circles). In 
fact with the MPC method, the system realizes that alongside 
with the decreasing of DC transmission power, voltage of the 
converter station has to reach its upper bound to trigger 
switching of capacitors. The voltage drop between the DC 
converter station and the pilot bus station is determined by the 
active and reactive power transferred between them which are 
strongly related with the DC power flow and the number of 
capacitors connected with the grid. The effect of DC power 
flow on voltage drop would more or less be offset regularly by 
capacitors. Thus, power plants will adjust their reactive power 
in advance to affect the switching time of capacitors, in order 
to enlarge the voltage drop and reduce the voltage value of the 
pilot bus at that time. 

C. DC Transmission Power Increasing 

DC transmission power starts to increase at 4:45 a.m. from 
about 2100 MW to 3000 MW at a speed of 30 MW/min, as 
showed in Fig. 6. This results in voltages of nearby buses’ 
decreasing and shunt capacitors’ being put into the power grid 
at the converter station. 
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Figure 6. Active Power of DC Transmission Line 
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Figure 7. Converter Station Voltage 
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Figure 8. Pilot Bus Voltage 

Fig. 7 and Fig. 8 separately show the voltage value of the 
converter station and the pilot bus. We can see in Fig. 7, 
yellow circles and orange squares stand for switching events 



under traditional and MPC controller. With the MPC based 
method, switching times of capacitors is lesser. Meanwhile,  
Fig. 8 illustrates that controller using proposed method keeps 
the voltage of pilot bus staying in the safe range, but the 
traditional controller doesn’t always do  (yellow circles). In 
fact with the MPC method, the system realizes that alongside 
with the increasing of DC transmission power, voltage of the 
converter station has to reach its lower bound to trigger 
switching of capacitors. Thus, power plants will adjust their 
reactive power in advance to affect the switching time of 
capacitors, in order to lessen the voltage drop and increase the 
voltage value of the pilot bus at that time. 

IV. CONCLUSIONS 

An MPC based secondary voltage control method is 
proposed in this paper. Here, what we predict include two 
parts, first is the active power variation trend according to the 
pre-defined transmission schedule of DC lines, and second is 
the reactive power variation trend considering the consequent 
auto-actions of shunt capacitors at converter stations. Based on 
the proposed dynamic programming problem, the control 
performances not only for the current snapshot but also for a 
future time-slot are optimized. In an AC/DC coupled area, 
especially where the DC lines feed into a relatively weak AC 
areas, it is proved that the proposed voltage control method 
would assure better voltage profiles. 
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