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In the beginning of the twentieth century, Ludwig
Prandtl’s pupil, Albert Betz, proposed a model of an
optimum propeller [1]. However, first it was proved [2]
that an elliptic distribution of the load along the lifting
line of a finite�span wing in a uniform flow corre�
sponds to the lowest trailing�vortex drag and provides
uniform leaving of a vortex sheet from the trailing edge
(Fig. 1a). Generalizing this result, Betz formulated by
analogy the condition for the optimum of rotating
propeller: the distribution of circulation along the lift�
ing line replacing the blade should be such that the free
vortex sheet trailing from it has an exact helical shape
and moves uniformly along the axis in the direction of
the main flow (Fig. 1b). If we take into account the
rotation of the blade in a uniform flow giving the heli�
cal shape to the sheet leaving of the trailing edge, this
model looks like an obvious consequence of the wing
theory. Only in this case the circulation distribution is
already asymmetrical instead of elliptic. The search for
it becomes a challenge, which was not solved by Betz.
In addition, a unique solution does not follow from his
proof of the minimum of trailing�vortex drag for vor�
tex sheets of an exactly helical shape because it is still
necessary to set the value of a pitch of the helical sheet
from additional reasons. Three proved variants are
known for its determination based on different ways of
taking into account the velocity induced by the vortex
sheets: to neglect this velocity entirely, to take it into
account from its value on the rotor, or to consider it
from its double value in the far wake. In the table, we
listed the well�known rotor theories with the selection
of a different pitch in the vortex wake and their authors
[4–8]. This paper and the analysis presented in it have

the purpose to solve the problem of what pitch in the
theories mentioned gives the correct result. With this
purpose, the solution method [8, 9], which occurs
suitable for arbitrary methods of determining the vor�
tex�wake step, was unified for optimizing rotors with a
finite number of blades. It is constructed on the use of
the analytical approximation for the velocity induced
by each single helical vortex filament composing a
continuous wake vortex sheet [10].

The operating modes of wind turbine depend on tip
speed ratio or, otherwise, the dimensionless velocity of
the tip�blade rotation referred to the wind velocity;
i.e.,

, (1)

where Ω0 is the angular velocity of the wind turbine,
R0 is its radius, and U

∞
 is the unperturbed wind veloc�

ity. By analogy to the vortex theory of wings, the rotat�
ing blades are replaced by the distribution of the
bounded vortices along the lifting line of the blade,
while the wake is replaced by the system of free vorti�
ces in the form of fixed regular helical vortex sheets
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Basic assumptions for different rotor models

Theory Number
of blades

Determination of the 
vortex�wake pitch

Betz–Joukowsky 
limit [4]

actuator 
disk

not determined

Glauert calculation 
[5] by the blade ele�
ment method 

not deter�
mined

both induction factors 
are determined in the 
rotor plane

Goldstein solu�
tion [6]

finite without correction to 
the induction factor

Theodorsen solu�
tion [7]

finite corrected to the induc�
tion factor in the far wake

Solution by the 
model [8, 9]

finite corrected to the induc�
tion factor on the rotor
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leaving from the trailing edges of blades (Fig. 1b). The
load distribution along the blade in this case can be
found on the basis of the Kutta–Joukowsky theorem

, (2)

where dL is the lift acting on an element of the blade
with the running size dr, U0 is the relative velocity of
the incident flow, and  is the circulation of bounded
vortices.

In the rotor plane, the free vortex sheet of the wake
induces additional velocities  and ; i.e., the com�
ponents of relative velocity U0 in Eq. (2) take the form

 and . For their determi�
nation, the semi�infinite system of free helical vortex
sheets is replaced with the vortex system associated
with it [8], which extends on both sides to infinity
(Fig. 2a). According to the Helmholtz vortex theo�
rems, the bounded circulation  of a blade element is
unambiguously related to the circulation of the wake
vortex corresponding to it in the Treftz plane, which is

= ρ ×L U0d drΓ

Γ

0zu θ0
u

θ θ= Ω +

0 0
U r u θ ∞= −

0 0zU U u

Γ

located far from the rotor downwards through the flow.

It is clear that the velocities  and  induced in an
arbitrary cross section of the associated vortex system
precisely describe the properties of the semi�infinite
wake with the same distribution of circulation only in
the Treftz plane. For the passage in the rotor plane, we
noted that, because of symmetry, the velocity induced
by a semi�infinite wake (half of the associated vortex
system) is equal to half of the velocity induced at the
corresponding point on the Treftz plane [1, 3]:

(3)

After integrating Eq. (2) along the lifting vortex line
and summing the contribution from each blade, on the
basis of Eq. (3), the power and thrust coefficients,
which are made dimensionless with respect to the
kinetic wind energy in the cross section equivalent to
that swept by the rotor take the form
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(a) (b)

Fig. 1. (a) Prandtl vortex model of the wing with a finite span and the elliptic distribution of the load along the span [2]; (b) vortex
model of the propeller proposed by Betz [1].
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Fig. 2. (a) Schematic representation of the associated wake structure; (b) triangles of velocities: for the first wake model w = 0; for

the second model w = w, and for the third model .1
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(4)

where Nb is the number of blades in the wind�turbine
rotor. Because we neglected the wake expansion, the
sheet radius coincides with the rotor radius . In
Eq. (4), the distribution of circulation  along the
blade and the velocities uz and  induced by the vortex
sheet remain unknown. Thus, the solution is reduced
to determining the radial distribution of the circula�
tion  providing the equilibrium motion in the axial
direction with a constant velocity  of the associ�
ated infinite vortex sheet of the constant radius R0 with
a certain step h = 2πl or is simply l. In the case of wind
turbines, the coefficient w characterizes the decelera�
tion of the wake motion with respect to the wind due
to self�induction, i.e., the proper wake displacement
under the action of velocities induced by it. The proper
wake displacement can be decomposed into the nor�
mal wU∞cosΦ and tangential wU∞sinΦ components
(Fig. 2b). Because the tangential component corre�
sponds to the displacement of vortex particles along
the sheet and does not change its position, for deter�
mining the sheet displacement, only the normal com�
ponent should be taken into account. After its decom�
position, the axial and circular components uz and uθ

of the induced velocity can be written through the
deceleration rate of the sheet motion in the form

, . (5)

From simple geometrical reasons, these formulas
can be rewritten:

, , (6)

where x =  and  are the dimensionless radius

and pitch.

For the vortex sheets of the still abstract arbitrarily
chosen pitch l, we find the circulation  of their equi�
librium relative motion with a constant velocity wU∞.
We introduce the dimensionless circulation in the
form

. (7)

The dimensionless radial distribution of the circu�
lation  for an arbitrary value of the pitch in
Eq. (7) is conventionally called the Goldstein function
after the scientist who first solved analytically the
problem of its determination but only for the cases
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 and 4 [4]. For its calculation at arbitrary Nb

and l, we discretize each vortex layer with the help of
100 uniformly distributed single helical filament [10]
between which we fulfill the condition of their motion
with a constant relative velocity wU

∞
. Solving the

obtained set, we find the necessary distributions of cir�
culation of this uniform motion of vortex sheets. The
efficiency of the solution algorithm for this problem is
confirmed in [8, 9] by good coincidence with the data
calculated from the exact Goldstein solution in [11].

For obtaining the final form of power and thrust
coefficients, as was already mentioned, it is necessary
to set the pitch l. We consider all three variants of its
determination subscripting different values with the
first letter of surnames of the authors listed in the table:

(i) the step is independent of velocities induced by
the wake:

;

(ii) the step depends on the velocities induced in
the far wake:

;

(iii) the step depends on the velocities induced on
the rotor:

.

The simplest first model was used in the first calcu�
lations of the rotor [1, 3, 6]. It was considered as a good
approximation for weakly loaded rotors and was
applied with the purpose of simplification of the solu�
tion of the problem in order that the helical pitch be
independent of the induced velocities  and ,
which, in turn, themselves depend on the pitch.
According to the second model introduced by The�
odorsen [7], the velocities in the far wake were used for
determining the pitch. At that time, it was considered
that the near wake is unstable. In fact, the induced
velocity should change two times in it until its final
value in the far wake, where, as it seems, a steady vor�
tex structure with a constant pitch can be formed. The
third model was implemented by us in [8, 9]. After
simplifying the formulas for the determination of the
vortex�structure pitch in the second and third models
on the basis of the formulas from the appendix in [12],
we obtain for values of the pitch, respectively,

or ;   or

= 2bN
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; (8)

or .

Introducing the dimensionless radius  and

the pitch  after the substitution of Eqs. (6), (7),

and (8) in Eq. (4) and identical transformations, we
obtain for all cases different force coefficients:

(i) for the first rotor model according to Betz and
Goldstein:

(9)

(ii) for the second rotor model according to The�
odorsen:

(10)

(iii) for the third rotor model from [8, 9]:

(11)

where

, , 

, (12)

.

When obtaining the thrust coefficient , the rela�

tion  following from

determining the pitch for the third model was used
in (11). It is very important that force coeffici�
ents (9)–(11) for all three models at each fixed value
of the vortex�sheet pitch are the functions of only one
parameter—the induction factor w, which is identical
for all sheet points. For this reason, it is convenient to
use it for optimizing the problems. Taking into consid�
eration that these are the power coefficient that only
matter for wind turbines and that the thrust coefficient
is not principal, we find at what values of w the peak
efficiency is achieved. After differentiating CP with
respect to w and equating the result to zero, we find the
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optimum parameter specified for each pitch and
model, respectively:

,

, (13)

.

For the limiting case, the rotor with an infinite
number of blades , the value of the Goldstein

circulation has a simple form G
∞

(x, ) = . For

it, I1 and I3 from Eq. (12) can be presented in a simple
analytical form [9]:

(14)

i.e., the solutions for all optimum�rotor theories at
 are written in the analytical form through a

combination of conventional functions. This limiting
case is of great importance for ideal lost�free rotor
models because it corresponds to the most likely value
of the power coefficient for each model. Therefore, in
abstract comparison of rotor theories regardless of the
exact number of blades, it is expedient to analyze pre�
cisely this limiting case. According to Eq. (8), for a
correct comparison of each model, it is necessary to
pass from an abstract pitch to a mode parameter for
controlling the wind turbine—rapidity (1) unified for
all theories:

, , (15)

with the determination of w from Eq. (13). The results
of the optimization for all cases are shown in Fig. 3. In
the case of the operation of the rotor in the wind tur�
bine mode, there is a restriction for the power coeffi�
cient in the form of the Betz–Joukowsky limit [4],
which should not be exceeded. As a reference case, we
also mention the Glauert calculation [5] obtained by
the blade element momentum method section. The
comparison of the power coefficients obtained for the
first two wake models with them shows their inadmis�
sibility. The first model [6] gives an absurd prediction
for the possibility of 100% wind�energy utilization,
and the second model [7] underestimates the limiting
value. Only the third model is confirmed by the Betz–
Joukowsky limit and correlates very well with the
Glauert calculation. It enables us to choose this wake
model from [8, 9] as the correct one completely clos�
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ing the problem. The long existence of former errone�
ous models [6, 7] was related to their conventional
application for describing the propeller modes, where

it is necessary to analyze the ratio . From Fig. 3, it

can be seen that, if we rule out the anomalous behavior
of the thrust coefficient  for the first model at small

, the specified ratio is approximately identical to all
three wake models, which prevented for a long time
establishing the mistake in the Goldstein and The�
odorsen theories of rotors.

Thus, in this study, we obtained for the first time
analytical solutions of the problems on the rotor opti�
mization for three vortex models in the limiting case of
an infinite number of blades. The analysis of these
solutions on the rotor modes operating as the wind
turbine enabled us to reveal the correct theory devel�
oped in [8, 9] and to establish the fallacy in the tradi�
tional Goldstein [6] and Theodorsen [7] optimiza�
tions. This conclusion completely agrees with the con�
clusions made on the basis of preliminary
computations in [13].
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