-

View metadata, citation and similar papers at core.ac.uk brought to you byﬁ CORE

provided by Online Research Database In Technology

Technical University of Denmark DTU
>

Effective and efficient model clone detection

Storrle, Harald

Published in:
Software, Services, and Systems

Link to article, DOI:
10.1007/978-3-319-15545-6_25

Publication date:
2015

Document Version _
Peer reviewed version

Link back to DTU Orbit

Citation (APA):

Storrle, H. (2015). Effective and efficient model clone detection. In R. De Nicola, & R. Hennicker (Eds.),
Software, Services, and Systems: Essays Dedicated to Martin Wirsing on the Occasion of His Retirement from
the Chair of Programming and Software Engineering (pp. 440-457). Springer. (Lecture Notes in Computer
Science, Vol. 8950). DOI: 10.1007/978-3-319-15545-6_25

DTU Library
Technical Information Center of Denmark

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

e Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
e You may not further distribute the material or use it for any profit-making activity or commercial gain
e You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

https://core.ac.uk/display/43249141?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1007/978-3-319-15545-6_25
http://orbit.dtu.dk/en/publications/effective-and-efficient-model-clone-detection(bb60fc87-d1c7-44ed-8844-632dbfdc22e1).html

Effective and Efficient Model Clone Detection

Harald Storrle

Department of Applied Mathematics and Computer Science
Technical University of Denmark (DTU), hsto@dtu.dk

Abstract. Code clones are a major source of software defects. Thus, it
is likely that model clones (i.e., duplicate fragments of models) have a
significant negative impact on model quality, and thus, on any software
created based on those models, irrespective of whether the software is
generated fully automatically (“MDD-style”) or hand-crafted following
the blueprint defined by the model (“MBSD-style”). Unfortunately, how-
ever, model clones are much less well studied than code clones. In this
paper, we present a clone detection algorithm for UML domain models.
Our approach covers a much greater variety of model types than existing
approaches while providing high clone detection rates at high speed.

1 Introduction

Code clones (i.e., duplicate fragments of source code), have been identified as
“a magor source of faults, which means that cloning can be a substantial prob-
lem during development and maintenance” (cf. [8, p. 494]). As a consequence, a
large body of research has been developed on how to prevent, or spot and elim-
inate code clones (see [12] and [21] for surveys). The problem with code clones
is that they are linked only by their similarity, i.e., implicitly rather than explic-
itly which makes it difficult to detect them. Therefore, changes like upgrades or
patches that are often meant to affect all clones in a similar way, are frequently
not applied to all of them uniformly. Therefore, code quality deteriorates, and
maintenance becomes more costly and/or error prone. Jiirgens et al. report that
“nearly every second unintentionally inconsistent change to a clone leads to a
fault” (cf. [8, p. 494]). Experiences with large-scale models suggest that the phe-
nomenon of clones arises in models in a very similar way to how it does in source
code. Deifenbock et al. even consider it “obvious [that] the same [clone-related]
problems also occur [...[in model-based development” (cf. [5, p. 57]). Conse-
quently, the issue of clones has to be addressed for models, too: “detecting clones
in models plays the same important role as in traditional software development”
to use the words of Pham et al. [18, p. 276]. Observe that it is irrelevant whether
the models are used as the primary specification of a system, where production
quality code is to be generated from models only (as is frequently the case in
the automotive industry), or whether models are used in a more liberal way,
informing the software creation process rather than dictating it, as is the case
for more traditional domain models.

1.1 Approach

In 23], we have studied the origins of model clones, derived a formal definition of
model clones, and developed an algorithm for detecting them. Our approach was
the first to address all of UML’s 14 sub-languages rather than just a single model
or diagram type, and so it is not surprising that it left room for improvement
in terms of clone detection quality. In this article, we propose a modified algo-
rithm and new similarity heuristics that improve on our previous results, while
maintaining its generality. We also validate our approach far better, including 3
new case studies, and a field test.

1.2 Historical Background

As a young PhD-student under the tutelage of Martin, the author participated in
the first UML-conference in Mulhouse. There was a great amount of enthusiasm
about an important emerging topic, both in academia and industry, and the
excitement spread over to Martin’s chair, which of course was in a prime position
to pick up the trend. Soon, many people at LMU worked on UML, and to this
day, it is an important facet of the work done there.

One of the reasons why academia (and many formal-methods-inspired re-
searchers in particular) picked up UML so readily is that it could be viewed as a
visual front end to formal methods which had been less than popular with indus-
try. UML, many researchers hoped, might be a way to bring formal methods to
practice in a way that is easier to use. In fact, the author, in a fit of juvenile ex-
citement, proclaimed that it had to be so easy as to push the proverbial button.
While Martin was wise enough never to subscribe to the push-button bench-
mark, he was always keen on finding novel ways to improve software quality, one
of them being presented here.

1.3 Paper outline

The remainder of this article is structured as follows. In the next Section, we
define the notion of model clone, and provide a taxonomy of clone types. In
Section 3 we introduce an algorithm for clone detection and the model fragment
similarity heuristics used at its core. In Section 5 we evaluate the effectiveness
of our approach, and compare it to the related work in Section 6. Finally, we
summarize our approach and draw conclusions.

2 Defining model clones

Probably the biggest problem in model clone detection is defining exactly what
a model clone is—just as for code clones (cf. [9]). Fig. 1 shows a small part of
a domain model of the “Library Management System” case study (LMS) which
we use as our standard research object. The figure shows a part of the LMS

information model with two Packages.! Fig. 1 shows two alternative views of
the models: two class diagrams on the left, and the containment tree on the
right. Most UML modeling tools today will allow several visual representations
of the same model element, such as the Class “Reservation”: it appears in both
diagrams but exists only once in the containment tree. Thus, it is not a clone, but
just one element appearing in two views. On the other hand, the Class “Book”
occurs twice in the containment tree (highlighted by the red arrows). Looking
closer, we analyze how similar the two model elements are. Assume that in this
case, we find that they are identical in all but their internal identifier, so this
model element is certainly a duplicate model fragment, i.e., a model clone. This
kind of clone arises frequently in practical modeling, typically as a consequence
of restructuring models, or from combining independent contributions that are
not properly synchronized.

Requiring duplicate model fragments to be identical is clearly no adequate
definition for the notion of “model clone”. Instead, we propose to define a model
clone as a set of model fragments each of which is closed under the containment-
relationship and that have a high degree of similarity. Observe that this definition
includes clones of all sizes, from individual elements via larger sets of model
elements like a Property to large Packages containing entire subsystems. In order
to refine this definition, we propose a taxonomy of model clone types. For code
clone detection, there is a commonly accepted taxonomy of four types (see e.g.
[12,21,26]). It can be generalized and adapted to accommodate our observations
of natural model clones, as follows.

— Type A: Exact model clones are identical up to secondary notation and
internal identifiers.

— Type B: Modified model clones may have small changes to names (e.g.,
typos) and other values, plus few additions/removals of parts.

— Type C: Renamed model clones may have any change to names, at-
tributes, and parts, plus many additions/removals of attributes and parts.

— Type D: Semantic model clones are duplicates in content arising, e.g.,
from convergent modeling.

Formal definitions of the notions model, submodel, and clone are found in
[23]. Orthogonal to the classification of the kind and degree of changes, model
clones can also be classified in other ways.

— Secondary clones are pairs of duplicate model elements that satisfy the
definition of a clone, but are each parts of larger model fragments, which
in turn are clones of each other. For instance, the Class “Book” in the first
example is a primary clone, and the Property “author” is a secondary clone.

— Loophole clones are duplicates introduced through idiosyncrasies of the
modeling language. For instance, any two Activities that refer to the same
data item will contain identical copies of a DataFlowNode, because the struc-
ture of the UML meta model forces these elements to be contained in an Ac-
tivity rather than existing on their own. The modeler has no choice but to

! We adopt the UML convention of using CamelCaps for UML meta classes.

create such duplicates. In another modeling language (or in a future version
of UML), they might not occur.

Both secondary and loophole clones will be among the detected clone candi-
dates, and they may score substantially higher than actual clones, so they are
presented before those clone candidates that, arguably, a modeler would expect
to be presented first. Clearly, this depends on the similarity measure. For sec-
ondary clones, this is easily solved: out of a set of clones that can be (partially)
ordered by containment, select only the largest one. But observe that loophole
clones can be bigger than true clones. For instance, ActivityPartitions often con-
tain many more elements than Properties, or even Classes. This is a substantial
obstacle in similarity scoring, and thus in clone detection.

E:ICatang / Model Elements Meta class

LMS Model
Information Model Package

Lease
lent: date

due: dat
\due: date , [Catalog
getMedium() : Medium \

Package
' HH MediM Class
ks H Book

N Class
1 M3 author Property
- - HA title Property
Medium Reservation | H rec_age Property
type: String W‘_med HH state Property
A = signature Property
DVD = <anonymous> Generalization

“H <anonymous> Property

HH <anonymous> Association
Ly res_med Association
ELend'ng / - Lending Package
- HH Reader Class
Reservation i A Lease Class
reserver: Reader il ! @ Book Class
issued: Date queue H author Property
a HE title Property
reserved by = rec_age Property
2 state Property
Book HH signature Property
title: String ;opy HB <anonymous> Generalization
;‘:act—:g;;'tr:eger {ordered} 'H <anonymous> Property
signature: String HH Reservation Class
“H <anonymous> Association

Fig. 1. Duplicate occurrence in diagrams does not constitute a clone (left, class “Reser-
vation”); duplicates in the containment tree may be model clones (right, class “Book”).

3 Detecting model clones

The starting point of the work reported here is the model clone detection algo-
rithm N2 [23]. We now describe its shortcomings and how we overcome them,
resulting in the new algorithm NWS. The improvements are based on (a) the
detailed analysis of the algorithms’ outputs for a great number of samples, and
(b) the systematic exploration of a large number of alternative improvements
and settings. We describe the various improvement steps from N2 to NWS.

The basic idea for detecting model clones is straightforward: (1) generate a
set of (possibly) matching pairs of model fragments, (2) compute the similarity of
each pair, and (3) select those pairs with the highest similarity. The problem with
this approach is that, clearly, a model with n elements has up to 2" fragments,
so that naively matching all pairs of fragments would result in exponential run-
time. We will now discuss the three stages of the algorithm in turn.

3.1 Model matching

Many previous approaches to model matching have been guided by the intuition
that models are more or less graphs, with the added assumption that a large part
of the model information is encoded in the links between nodes rather than by
the nodes themselves. Following this idea, matching models is essentially finding
a subgraph isomorphism which is known to be NP-complete [3].

We believe that this idea is indeed a valid assumption for Matlab/Simulink
flow models as considered by much of the related work. We have observed, how-
ever, that this intuition does not fit very well with UML models: here, important
aspects of the model information are stored in node attributes, e.g. the element
names. Furthermore, most of the links between nodes (typically about 85%,
see [23]) encode the containment relationship, and thus play a different role.
Therefore, looking at models as graphs is somewhat misleading in the case of
UML. Instead, we propose to look at models as sets of rich nodes owning small
trees, and consider the link structure only in a second step. Considering only the
containment structure, on the other hand (as is the case with XML-matching),
would leave out the semantic information stored in the graph-structure. Also
exploiting the symmetry of similarity, we can limit the number of pair-wise com-
parisons of model elements to "2—2 rather than having to consider all O(2") pairs
of subgraphs.

Furthermore, in most UML tools it is not possible to change the meta class
of a model element once it is created. Thus, creating a clone with a changed type
can only be done intentionally or through convergent evolution. We ignore this
case and consider only pairs of model elements that are instances of the same
meta class. Since a typical UML model contains instances of between 50 and 60
different meta classes, this further reduces the number of fragment pairs to be
considered from "72 to around %(50_’_"60)2 per element type on average.

Finally, the containment structure of UML models as defined by the UML
standard implies that there are many model elements in a model that will typ-
ically not be considered as clones by a human modeler, i.e. the loophole clones

described in the previous Section. We exclude instances of these meta classes up
front, which typically account for more than half of all model elements in a UML
model. Thus, the number of pairs to be considered is halved again. Together,
these three assumptions drastically reduce the number of clone candidate pairs
to be compared in our algorithm. These assumptions are realized in the first part
of Algorithm 1.

3.2 Element similarity (comparison and weighing)

In the second step, suitable pairs of elements are compared using different heuris-
tics that are encapsulated in the sim-function used in step (2a) of Algorithm 1.
The model element similarity function in N2 is based on similarities of the names
of elements. We justified this by the observation that element names are very
important in domain models. Of course, this notion of similarity is sensitive to
renaming, a common operation in domain modeling. Thus, N2 also includes at-
tributes other than the element name. Also, matching of neighbor elements is
considered (by types and names).

While experimenting with this approach, we observed that the results were
often skewed towards small fragments, because the degree of similarity computed
by N2 is normalized by the number of potential similarities. Practically speaking,
that means that a pair of fragments that coincide in 3 out of 5 possible ways are
assigned a higher similarity measure than a pair of fragments that coincide in
30 of 51 possible ways. However, from a user’s perspective, the latter is a more
promising clone candidate by far: there is ten times as much evidence for the
second pair being a clone than for the first one.

In order to account for this factor, we have implemented a new similarity
heuristic in the NWS that includes the “weight” and “binding strength” of clone
candidates. The weight which is computed as the number of elements and at-
tributes of the elements contained in the clone candidates normalized by the
binding strength. The contained elements are the transitive closure of a model
element under UML’s containment relationship (meta attribute “ownedMem-
ber”). This way, large clones with many small, slightly similar parts may take
precedence over smaller clones with high similarity.

3.3 Candidate selection

In practical modeling, clone detection very much resembles a web search: there
are many potential hits, but modelers only ever explore a small fraction of them.
So, the design goal of model clone detection is to provide the highest possible
accuracy in a result set of a given (small) size. While weighing reduces the num-
ber of false positive clones, it is vulnerable against the phenomena of secondary
and loophole clones we have explained in Section 2. In order to reduce these
influences, NWS adds weighing and prioritizing to N2 (see stages 2b and the
loop in stage 3 of Algorithm 1, respectively.

Clones of non-trivial size in UML domain models usually imply the existence
of very similar sub-fragments, i.e., secondary clones. For instance in Fig. 1, a

result set might contain a reference to class “Book” as well as to the property
“author” it contains. This can happen despite weighing due to the large variety of
similarities and sizes of model clones: the secondary clones of one original may be
both more similar and larger than the primary clones of another original. Human
modelers usually have the insight to group together primary clones and secondary
clones belonging to them, but this puts an extra burden on the modeler. In order
to reduce this burden, we explicitly remove secondary clones from the result set
(see the comment “case distinction in NWS only” in Algorithm 1). Loophole
clones, on the other hand, are excluded by simply adding the respective meta
classes to the list of types that are not considered when selecting comparison
candidates (see parameter sensitivity in Algorithm 1).

4 Implementation

We have implemented our approach and integrated it into the MACH toolset [24].
MACH is available in various variants. First, there is stand-alone version with
a textual user interface (called “Subsonic”) which is available for download from
the MACH homepage www. compute.dtu.dk/~hsto. Subsonic is also available in
a pre-installed virtual machine that can be run remotely without installation or
configuration on the SHARE platform http://fmt.cs.utwente.nl/redmine/
projects/grabats/wiki, see the respective link at the MACH homepage.

Second, we have also provided a web-service based on MACH (called “Hyper-
sonic”, see [1]), where users simply upload a model in a web browser and receive
a report on the most likely clone candidates. The implementation technology in
all MACH variants (including the Hypersonic web server) is SWI Prolog (see
swi-prolog.org). The web service is publicly available via the MACH home-
page (http://www2.compute.dtu.dk/ hsto/tools/mach.html).

5 Evaluation

5.1 Samples

The work reported in this paper derives from the author’s experience from two
very large scale industrial projects. Due to legal and technical constraints, how-
ever, we could not use the models from these case studies directly for this paper.
In order to evaluate the quality of our approach, we ran our implementation on
four sample models created by students as part of their course work.

The first of these models, called LMS, has been created by a team of four
students over 10 weeks; it contains 2,781 model elements (before clone seeding)
and 74 diagrams. We used this model for exploration and experimenting with
our approach. For the validation, we used three different case studies (called
MMM, SBK, and HOS, respectively), created by teams of 5 to 6 students each
over a period of 7 weeks. Table 1 presents some size metrics of these models. All
of them were created using MagicDraw UML 16.9 (see www.magicdraw.com).

Algorithm 1: The NWS clone detection algorithm

Input:
— model M,
— result set size k > 0,
— threshold parameter sensitivity

Output:
— k clone candidates (pairs of elements of M)

1 - MATCH
Elements < {e € M | type(e) € T{Action, Actor,Class, ...}};
Candidates < {{e1,e2) | type(e1) = type(ez) Ne1 # ea A {e1,e2} C Elements};

2a - COMPARE
Comparisons < 0;
forall the (e1,e2) € Candidates do
E4 < transitive closure of e; wrt. ownedMember;
Fy < transitive closure of es wrt. ownedMember;
% sim is a new heuristics for NWS
s < sim(E1, E2);
if sensitivity > 1/s then
| Comparisons < Comparisons U (E1, E3, s)

2b - WEIGH Ynew in NWS
Results + 0;

forall the (F1, E2,s) € Comparisons do
/ . |E1|+|Es| .
L § s binding(E1,E2,Comparisons)’

Result < Result U (root(E1), root(E2), s');

3 - SELECT
sort Results by decreasing similarity;
Selection <+ 0;
Jprefer primary over secondary clones
while |Selection| < k do

Pick < first element in Results;

forall the X € Selection do

if X is contained in Pick then
L Selection < Selection — X

Selection < Selection U { Pick};

return Selection;

Functions
type : type of model element (i.e. meta class)
sim : heuristic similarity of model elements, different for N2 and NWS
binding : binding strength between two fragments relative to a given set
of similarities binding(E1, E2,C) =3 {s|(E1, E2,s) € C}
root : root element of a fragment

|E| : number of model elements in a fragment

The LMS model was clone seeded by the author, the other models were clone
seeded by their respective authors (i.e., teams of graduate students) as part of a
challenge to create clones that our tool could not detect. Identification of seeded
clones was achieved through a model difference. A typical example of a seeded
Type A clone would be class “Book” in Fig. 1.

Table 1. The sizes of the sample models after seeding

MoODEL [MMM[SBK[HOS[LMS] SumMm]|
ELEMENTS 837 11,037 1,650 | 2,893 || 6,417
ATTRIBUTES 2,097 |2,915(10,493|17,196/|32,701
DiacraMS 26 54 33 74 191
AcTIVIiTY 10 27 9 36 82

Use CASE 9 21 8 27 65
CLrass 4 4 7 7 22

OTHER 3 2 6 8 19
DiAGrRAM TYPES“ 6 [5 [8 [6 “ ‘

5.2 Method

As we have discussed in Section 1, there is no undisputed and precise definition
of what is and is not a model clone. Relying on industrial models with natural
clones, we have no control over the kinds and numbers of clones in them. Since
our main objective is to develop algorithms, we resorted to manually seed models
with clones. To do so, we randomly picked three typical examples of each of the
meta classes UseCase, Class, and Activity in the sample model. We copied them
(and their contained model elements), and changed them to emulate Type A, B,
and C model clones. Then we marked both the nine original model fragments
and the nine copied (and modified) model fragments manually as originals and
clones, respectively. This resulted in 145 model elements being marked as clones
and 155 being marked as originals, out of a total of 2893 model elements in the
model after seeding, i.e., approx. 5.5% of the model elements were marked. A
manual inspection of the LMS model did not reveal any natural model clones.
Our annotation allows automatic computation of precision and recall with
respect to the seeded clones. The annotation was done by attaching comments to
the elements. This way, the elements as such were not changed, as the connection
between an element and its comments is established by a link in the comment,
not in the commented element. Thus, we can exclude any influence on the clone
detection by the annotation. Initially, we ran the clone detection algorithm with-
out restricting the selection, thus yielding a very long list of clone candidates
that contained a mixture of seeded clones, natural clones, and false positives.
In order to identify the natural clone candidates, we manually reviewed them;

Table 2. Measurements of clone detection quality: each box represents an individual
seeded clone, a black box indicates detection within the respective constraints.

HEURISTIC N2 NWS

RESULTS @10 [@20[@30[@100[[@10] @20 [@30 [@100]
PRECISION (SEEDED) (100.0%54.5%|37.5%|16.7% ||85.7%|53.8%38.9%13.3%
RECALL (SEEDED) 44.4% (66.7%|66.7%|66.7% ||66.7%|77.8%|77.8%| 88.9%
F MEASURE (SEEDED)| 61.5% [60.0%48.0%(26.7% ||75.0%|63.6%(51.9%|23.1%
TypPE A CLONES HEE_] EEN EEN EEN BSEE EEE EEE EEE
Tyrpe B CLONES EE_ ENEN EEN EEN ESEE EEE EEE EEE
Type C CLONES 000 | 0040|000 | boo | 000 | DOm0 | Oed | O

almost all of them were loophole clones. We then annotated them so that they
could be automatically classified by the test instrumentation of our tool. In order
to control for bias originating from seeding by the experimenter, we conducted
a second experiment. We challenged our students in a modeling class to seed
their models with clones that our approach would not detect. This resulted in
three clone-seeded models (SBK, HOS, MMM) which were comparable in terms
of size and structure to the LMS model (see Table 1 for size metrics of these
models). Subsequently, we ran the three detection algorithms on these models.

5.3 Data

Table 2 shows results for the heuristics N2 and NWS with varying result-set sizes.
The first two lines show the precision and recall rates as percentages (based on
seeded clones only). Since the LMS model did not contain natural clones prior
to seeding, we compute recall and precision based on the seeded clones alone.
The next three lines show the detection for different kinds of clones. Every box
represents a particular seeded clone: the first box is a cloned UseCase, the second
one is a cloned Class, and the third one is a cloned Activity. If a box is filled, the
respective clone has been detected in the respective result set. So, for instance,
WO in line “Type C” and column “NWS @30” means that neither the seeded
UseCase nor Activity clones of type C were detected by algorithm NWS within
the first 30 results, but the seeded Class clone was correctly identified. Similarly,
HE[] in row “Type A” and column “N2 @10” means that the N2 algorithm did
not detect an identical copy of an Activity among the first ten results.

Table 3 shows the clone detection results in the models that were seeded
by the students. We inspected the models manually to check detection results
for accuracy. We also manually classified the clones according to our taxonomys;
interestingly, the students’ models also contained a number of natural clones
that the students apparently were not aware of, but which our tool detected. See
Table 3 for the detection rates.

Table 3. Clone detection accuracy by case study and model type: N stands for natural
clones, precision and recall are given relative to the first ten results, computed on
seeded as well as natural clones.

DETECTED /SEEDED CLONES NWS @10
MopeL| A | B| C | NaruraL |PRECISION|RECALL|F-MEASURE
MMM |[4/ 4 [2/ 2[1/ 4 1/- 80.0%| 88.9% 84.2%
SBK 6/6(2/ 20/ 2 2/- 100.0%| 83.3% 90.9%
HOS 3/311/2]2/5 2/- 80.0%| 80.0% 80.0%
ALL [[13/13]5/ 6[3/11] 5/- I 86.7%| 84.1%] 85.4%

5.4 Observations

Table 2 shows that precision decreases when recall increases, as is to be expected.
Also, Type C clones are less often discovered than Type A and B clones. This is
also no surprise since Type C clones have the greatest difference to the originals,
and thus the least similarity. The table also shows that NWS provides better
detection rates than N2: among the first 10 hits, it covers more seeded Type A
and Type B clones than N2. Among the first 20 hits, NWS yields fewer false
positives. The same is true when extending the search focus to the first 30 hits.
Then, most noticeably, NWS also finds the first Type C clone. Extending the
search focus even further to the first 100 hits gives the same result. The increase
in the number of false positives indicates that less duplicates are reported. The
second Type C clone is reported among the first 100 hits.

Clearly, the results reported so far could have been achieved by tuning the
algorithm to fit to the data, in particular to the seeding process. In order to
ensure this is not biasing the results in a misleading way, we repeated the clone
detection experiments with the models SBK, HOS, and MMM. They present
a greater variety of models, and the seeding was done by students, not the
author, with the specific instruction to try and break the approach. Even in
these samples, however, we found the same differences in the detection rates of
different clone types. Similar to the results obtained for the LMS model, Type
A and B clones were detected reliably by NWS, that is, all seeded clones with no
or little changes were among the first ten clone candidates. In the three models
MMM, SBK, and HOS together, three out of eleven Type C clones were also
correctly identified. Five natural (i.e., non-seeded) clones were identified, four of
which were type A clones, and one of which was a type B clone.

In Fig. 2 (left), we show the first ten hits for each combination of the three
algorithms and four models we have studied. We have sorted these ten reported
clone suspects by the following four conditions: primary, secondary, duplicate,
and false positive. Clearly, the goal is to have as many of the first kind in the
result set as they will lead the modeler directly to a clone. Finding a secondary
clone is second best, as it does lead the modeler to a clone, but only after
having lead the modeler to some suspicious fragment of the clone first. Increasing
either of these groups increases the detection precision and recall. Duplicate

detections of clones do not add to the set of true positives, thus they do not
increase precision and recall, though they still are, technically speaking, correctly
identified clones. Finally, false positives are clearly the least desirable kind of
reported clone candidates. The perfect score is to have ten primary clones among
the first ten reported clone candidates.

Runtime
10 5 Elements 15 20,000
A== is) <)
S THH I Attributes 18,000
=1=| 1.25
8 THH i N2 ——m 16,000
7 B2 I NWS eeeses 10 14,000
6 5 Zl 12,000
= 7 a
5 18 4. 0.75 - 10,000
0 K
41 é I M False Positive K /——0 8,000
z) o
3 e I & Duplicate 05 6,000
2 Bsecondary ...-A'
I) 025 | eeenset 4,000
1 I M Primary / 2,000
0 eTm a o m A o m A o m A 00 T T T o
N2 NW NWS N2 NW NWS N2 NW NWS N2 NW NWS [Algorithm]
MMM SBK HOS LmMS [Case Studyl MMM SBK HOS LMs

Fig. 2. Performance of three approaches to clone detection: a closer look at the first
ten candidates (left); run-time vs. model size (right).

Obviously, the relative difference in clone detection accuracy between the
three approaches that we have found in the previous experiment can be observed
again in this sample: NWS outperforms N2 in all samples, if not in terms of
precision then in terms of a higher rate of primary clones (case studies SBK and
LMS). It is also clear, that the different case studies resulted in very different
detection rates. Judging by these samples, our approach performs better on clone
seeding done by other persons than the author.

Another important aspect of clone detection is the run-time. We have shown
the measurements in Fig. 2 (right) by lines. We show the average of three sub-
sequent runs to cancel out any effects due to garbage collection and similar
factors. All of the experiments were conducted on a modest laptop computer
(Intel 15-2520M 64bit processor at 2.5GHz with 8GB RAM running Windows
7). The run-time differed only insignificantly between NWS and N2 and seems to
be independent from the size of the result set (see last row of Table 2). For N2,
the run-time seems to slightly increase with the result size, but more detailed
measurements would be required to support any stronger claims. The detection
run-times are generally very low. To assess the relationship between run-times
and model sizes, we have added the number of model elements and attributes
in models as grey and blue bars, respectively. The measurements indicate that
run-times of all algorithms are mildly polynomial in the model size. In fact,
the polynomial appears to be so small, that for the model sizes at hand, it ap-
pears to be little more than linear, implying that the approach scales well and
is applicable to real models.

5.5 Interpretation of findings

100% 4 180.
90% > 217
80%
70%
60%
50%
40%

Coverage of seeded clones

som ET e NWS
20% — N2
10%
0% . First
200 250 Detection

Fig. 3. Both heuristics find all seeded clones eventually, but NWS finds them faster
than N2. The numbers in the graph indicate the rank of the last five detected seeded
clones for NWS and N2, respectively.

The improvements of NWS over N2 come as no surprise: large duplicates are
preferred over small duplicates with the same similarity. However, the details
of the detection quality of NWS shown in Table 2 seem to be counter-intuitive:
more false positives, and yet a higher coverage rate of seeded clones. This is
entirely explained by the specific contribution of NWS, namely, the elimination
of secondary clones. When there are indeed secondary clones for one primary
clone in a given result set, removing all the secondary clones will promote the
next batch of even less likely clone candidates into the result set. Sometimes,
this batch contains another, true positive primary clone, but most of the time,
there are just more false positives. And so, the precision drops. What NWS does
in comparison to N2 is that it compresses the result set towards the top of the
list, i.e., the quality of the first hits is improved. This can be seen quite clearly in
Fig. 3, where we ran the three heuristics again and kept increasing the result set
until all of them had perfect recall. We recorded the earliest position where each
of the seeded clones was detected (x-axis) and plotted these against the number
of detected clones in terms of the coverage (y-axis). It is easy to see how NWS
consistently finds the seeded clones earlier than the other two heuristics.

Considering the run-time, it is at first sight surprising that the more elabo-
rate heuristics in NWS would run faster than that of N2. However, recall that the
largest part of the run-time is determined by model size, and that more selective
similarity heuristics also imply an earlier elimination of potential solutions, re-
ducing resource consumption. It is difficult to compare other approaches in terms
of run-time: different settings may strongly influence the results. It does seem
to be true, though, that competing approaches generally have higher run-times,
that are either in the same order of magnitude (eScan), or one to three orders
of magnitude larger (CloneDetective and aScan, respectively, see [18, p. 285]).

5.6 Threats to validity

We have argued that code clones are actually occurring in practical settings,
and that they are potentially damaging. However, most of our argument is only
based on plausibility and subjective observations. Also, since this is a new area
of research, there is not yet a large body of literature on this topic we can refer
to support our point of view. Roy & Cordy described this as: “more empirical
studies with large scale industrial and open source software systems are required.”
(cf. [21, p. 87]). However, it is very difficult to get access to industrial models,
and there are very few suitable freely available models, a problem that impedes
progress in this field (cf. the “Free Models Initiative”, [25]).

The generalizability of our findings is limited by the number and the nature
of the models used to develop and validate our approach and the nature of the
clones in them: First, the model sample was not created in an industrial context,
but in an academic environment, so the models may not be representative. Sec-
ond, the clones in the sample models are not natural but seeded, i.e. artificial,
so they may not be representative of the phenomena found in real models.

With regards to the first argument, consider that the related work in this
area has similar limitations: while they may use models of industrial origin, they
use very small sets of such models: e.g., the validations of [8], [6], and [18] are
based on five, one, and four different models, respectively. Clearly, such small
samples do not exhibit a higher level of representativeness than our models do. In
the absence of large scale representative field studies, using “real” models cannot
claim higher validity than using seeded models—only a large scale field study
will allow more general conclusions. However, in vitro work such as presented in
this paper is a necessary step towards such a large scale field study.

This observation applies to the second argument, too: seeded clones might
not be representative of real clones, but using such specimen is a necessary
stepping stone while better sample models are missing. Moreover, by seeding
the clones manually we can ensure that all kinds of clones are present in defined
quantities and qualities. In natural models, such properties are rarely found, and
any such selection would of course introduce undue bias, thus threatening the
representativeness of the model sample again. Since the primary purpose of the
work reported in this article is to develop algorithms, however, we think manual
seeding with full control over quantity and quality of clones across all categories
is not just acceptable, but actually essential. Developing our approach with the
models seeded by students would have been much more difficult, as the detection
results in Fig. 2 (left) suggest.

Still, one might object that it is unacceptable if the seeding is done by the
author himself; clearly, he is a potential source of bias. Therefore we also con-
ducted the second experiment where we had no control over the models or the
clone seeding process. Surprisingly, the detection rates there are better than for
the models under the control of the authors, suggesting that the original bench-
marks were biased, but no in favor of the algorithm under test, but against it.
As we have remarked, the resulting clone seedings were indeed different from
what we had expected, sometimes in quite surprising ways. However, our system

recognized 18 out of 18 seeded Type A and B clones, and 3 out of 11 seeded
Type C clones, within the very low threshold of just ten candidates. The seeded
clones that were not among the top ten candidates had undergone substantial
changes that made them hardly recognizable as clones, even to human observers
(in some cases, this included the students that created the respective clones).

5.7 End User Evaluation

The original implementation of our approach [23] had well over 100 parameters
to be set manually. It required a deep understanding of the algorithms limit-
ing the audience. Therefore, we have integrated our approach into the MACH
model analysis and checking tool. We then deployed MACH to an undergraduate
course on model based software development (41 students). After the course, we
surveyed the students for their tool usage during the course (68% response rate),
and found that students had some trouble installing MACH, and were unused
to command line interfaces as such, but there were no negative remarks on the
clone detection facilities. However, there were several positive remarks about
this feature, e.g., students reported that it had helped them assess the quality
of their models in unexpected ways. There were no problems in interpreting the
results of clone detection either, although these results were not always perfect.

The field test clearly demonstrated, that it is possible to empower students
with a very low level of qualification to routinely run an advanced clone detection
algorithm without any additional support, without any noticeable problems. It
is quite telling that the most negative comment on the clone detection was
that “at some point it reported clones that were actually not clones” (i.e., false
positives). We have since then used MACH in two more classes (48 and 54
students, respectively), without any problems.

6 Related work

There is a large body of work on code clones: [12] provides a survey of the field,
and [4] gives an overview of the state of the art. Clones in models, on the other
hand, have received much less attention, only in the last few years have there
been investigations into this topic. They can be divided broadly into four classes.
First, the CloneDetective system by Deiflenbéck et al. detects clones in Mat-
lab/Simulink flow graph models [6, 5]. This approach suffers from “a large num-
ber of false positives” (cf. [6, p. 609]), as the authors admit. It is also relatively
slow (see [18]), since it effectively uses a graph isomorphism algorithm, Pham
et al. [18] report run-times for CloneDetective in the range of a few hundreds
of seconds for non-trivial models. Pham et al. then address this shortcoming
with their ModelCD system using a hash-based clone detection algorithm. They
achieve run-times roughly comparable to the ones we have presented above. Both
CloneDetective and ModelCD are limited to Matlab/Simulink flow-models.
Second, there are various approaches dealing with matching of individual
UML model types such as interactions [13,20] or state charts [17]. In contrast,

our approach deals with all the UML’s notations, including flow-like models
such as activities, but also class models, use case models, interactions (“sequence
diagrams”), and state machines.

Third, there have been approaches that have explored graphs and graph
grammars as a generic underlying data structure for all types of models (cf. the
PROGRESS system, [16, 22]). These approaches have developed graph matching
algorithms that might possibly be used for clone detection, but have not been
studied under this angle. It does not seem like a promising avenue to explore,
however, due to the fact that UML models do not store (much of) their semantic
information in a graph structure. Rather than relatively dense and homogeneous
networks of light-weight nodes, UML models are trees of heavy-weight nodes with
some additional non-tree connections. Generic graph algorithms do not exploit
this fact and thus miss a valuable opportunity (see [19] for a survey of graph-
and tree-matching algorithms). In particular, consider Similarity Flooding (SF)
[14], which is a fixed point computation that may take many iterations. Given
the large number and size of potential mappings between duplicate fragments,
such algorithms will not be applicable to clone detection for realistic models. To
use the words of the inventors of Similarity Flooding: “ This approach [Similarity
Flooding] is feasible for small schemas, but it does not scale to models with tens
of thousands of concepts.” (cf. [15, p. 3]). The heuristics we propose, however,
appear to scale almost linearly. Moreover, Similarity Flooding depends on a
reasonable initial seed value which is available for model matching in version
control, but not for the kind of matching task we find in model clone detection.

Fourth, there are approaches that explore model matching for version control
of models. Alanen and Porres [2] study set theory-inspired operators on models.
Kolovos et al. on the other hand have proposed the Epsilon Merge Language
([11]) using a identifier-based matching process, while Kelter et al. [10] uses the
Similarity Flooding algorithm in their SiDiff tool. Observe that in version control
one can reasonably expect most model elements to have the same unchanged
internal identifier in two subsequent model versions. Thus, it is easy to find a
high-quality mapping to seed a matching algorithm. In clone detection, however,
the problem is to efficiently find the mapping in the first place.

7 Conclusion

Model clones increasingly are a problem for model based development: there
is “strong evidence that inconsistent [code] clones constitute a major source of
faults” (cf. [8, p. 494]) and “detecting clones in models plays the same important
role as in traditional software development” (cf. [18, p. 276]). However, there is
currently not much published work on model clones, in particular on clones in
UML models. In [23], we have developed a clone type taxonomy, and proposed
an algorithm to detect clones. In this paper, we improved our earlier algorithm
in terms of detection quality, and provide new front-ends to our implementation
so that it can be used by non-experts. We also improved the scientific validity of
our results by testing our approach with additional case studies that were clone

seeded by independent parties, and a field test to assess the practical usability
of our tool and approach.

The published data on approaches such as ModelCD and CloneDetective is
somewhat incomplete making it difficult to compare them, though it seems that
our approach is at least as good in terms of run-time and detection quality,
while being applicable to a far wider range of model types: existing approaches
cover only a single model type (e.g., UML State machines, or Matlab/Simulink
models), while our approach applies to all of UML, and even DSLs.

Improving our previous work, the NWS algorithm provides much better de-
tection rates, in particular with respect to improving the ranking of the first few
clone candidates. Thus, from a modeler’s point of view, the findings presented
by NWS are of much higher quality. We have evaluated our approach, including
also a field test with undergraduate students, underlining that clone detection is
a practical tool rather than a mere research prototype. Reducing the number of
false positives was made possible by understanding the structure of clones; these
insights will likely be applicable in use cases of model similarity, too.

References

1. ACRETOAIE, V., AND STORRLE, H. Hypersonic - Model Analysis as a Service.
In Joint Proc. MODELS 2014 Poster Session and ACM Student Research Compe-
tition (2014), S. Sauer, M. Wimmer, M. Genero, and S. Qadeer, Eds., vol. 1258,
CEUR, pp. 1-5. available online at http://ceur-ws.org/Vol-1258.

2. ALANEN, M., AND PorrEs, I. Difference and Union of Models. In Proc. 6*® Intl.
Conf. Unified Modeling Language (K UML>’08) (2003), P. Stevens, J. Whittle,
and G. Booch, Eds., vol. 2863 of LNCS, Springer Verlag, pp. 2-17.

3. Cook, S. A. The complexity of theorem-proving procedures. In Proc. 3™ Ann.
ACM Symp. Theory of Computing (1971), ACM, pp. 151-158.

4. Corpy, J. R., InoUE, K., KosCHKE, R., AND JARZABEK, S., Eds. Proc. jth
Intl. Ws. Software Clones (IWSC’10) (2010), ACM.

5. DEIssENBOCK, F., HUMMEL, B., JUERGENS, E., PFAEHLER, M., AND SCHATZ,
B. Model Clone Detection in Practice. In Cordy et al. [4], pp. 57-64.

6. DEISSENBOCK, F., HUMMEL, B., SCHAETZ, B., WAGNER, S., GIRARD, J., AND
TEUCHERT, S. Clone Detection in Automotive Model-Based Development. In
Proc. IEEE 30th Intl. Conf. Software Engineering (ICSE) (2008), IEEE Computer
Society, pp. 603-612.

7. Proc. IEEE 31st Intl. Conf. Software Engineering (ICSE). In Proc. IEEE 31st Intl.
Conf. Software Engineering (ICSE) (2009), IEEE Computer Society.

8. JUERGENS, E., DEISSENBOCK, F., HUMMEL, B., AND WAGNER, S. Do code clones
matter? In ICSE’09 [7], pp. 485—495.

9. Kapser, C., ANDERsSON, P., Goprrey, M., KoscHKE, R., RIEGER, M.,
VAN RYSSELBERGHE, F., AND WEISSGERBER, P. Subjectivity in clone judg-
ment: Can we ever agree? Tech. Rep. 06301, Internationales Begegnungs- und
Forschungszentrum fiir Informatik Schlofs Dagstuhl, 2007.

10. KeELTER, U., WEHREN, J., AND NIERE, J. A Generic Difference Algorithm for
UML Models. In Proc. Natl. Germ. Conf. Software-Engineering (SE’05) (2005),
K. Pohl, Ed., no. P-64 in Lecture Notes in Informatics, GI e.V, pp. 105-116.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

KovLovos, D. S., Paice, R. F., AND Porack, F. A. Merging models with the
Epsilon Merging Language (EML). In 9th Intl. Conf. Model Driven Engineering
Languages and Systems (MoDELS’09) (2006), O. Nierstrasz, J. Whittle, D. Harel,
and G. Reggio, Eds., no. 4199 in LNCS, Springer Verlag, pp. 215-229.

KoscHKE, R. Survey of research on software clones. In Duplication, Redundancy,
and Similarity in Software (2006), A. Walenstein, R. Koschke, and E. Merlo, Eds.,
no. 06301 in Dagstuhl Seminar Proceedings, Intl. Conf. and Research Center for
Computer Science, Dagstuhl Castle.

Liu, H., MA, Z., ZHANG, L., AND SHAO, W. Detecting duplications in sequence
diagrams based on suffix trees. In 13th Asia Pacific Software Engineering Conf.
(APSEC) (2006), IEEE CS, pp. 269-276.

MELNIK, S., GARCIA-MOLINA, H.; AND RAHM, E. Similarity flooding: A versatile
graph matching algorithm and its application to schema matching. In Proc. 18th
Intl. Conf. Data Engineering (ICDE’02) (2002), IEEE, pp. 117-128.

MoRrk, P., AND BERNSTEIN, P. A. Adapting a Generic Match Algorithm to
Align Ontologies of Human Anatomy. In Proc. 20th Intl. Conf. Data Engineering
(ICDE’04) (2004), IEEE Computer Society, pp. 787-791.

NaGL, M., AND SCHURR, A. A Specification Environment for Graph Grammars.
In Proc. 4th Intl. Ws. Graph-Grammars and Their Application to Computer Sci-
ence (1991), H. Ehrig and G. Kreowski, H.and Rozenberg, Eds., vol. 532 of LNCS,
Springer Verlag, pp. 599-609.

NEJaTI, S., SABETZADEH, M., CHECHIK, M., EASTERBROOK, S., AND ZAVE,
P. Matching and merging of statecharts specifications. In Proc. 29th Intl. Conf.
Software Engineering (ICSE) (2007), IEEE Computer Society, IEEE Computer
Society, pp. 54-64.

PuaMm, N. H., Naouven, H. A., NguveNn, T. T., Ar-KoraHni, J. M., AND
Nauven, T. N. Complete and accurate clone detection in graph-based models.
In ICSE’09 [7], pp. 276-286.

RanM, E.; AND BERNSTEIN, P. A. A Survey of Approaches to Automatic Schema
Matching. VLDB Journal 10 (2001), 334-350.

REN, S., Rui, K., aAND BUTLER, G. Refactoring the scenario specification: A
message sequence chart approach. In 9th Intl. Conf. Object-Oriented Information
Systems (2003), no. 2817 in LNCS, Springer, pp. 294-298.

Roy, C. K., aAND CorDY, J. R. A Survey on Software Clone Detection. Tech.
Rep. TR 541, Queen’s University, School of Computing, 2007.

SCHURR, A. Introduction to PROGRESS and an Attribute Graph Grammar Based
Specification Language. In Proc. 15th Intl. Ws. Graph-Theoretic Concepts in Com-
puter Science (WG’89) (1989), M. Nagl, Ed., vol. 411 of LNCS, Springer Verlag,
pp. 151-165.

STORRLE, H. Towards Clone Detection in UML Domain Models. J. Softw. Syst.
Model. 12, 2 (2013), 307-329.

STORRLE, H. UML Model Analysis and Checking with MACH. In jth Intl. Ws.
Academic Software Development Tools and Techniques (2013), M. van den Brand,
K. Mens, P.-E. Moreau, and J. Vinju, Eds.

STORRLE, H., HEBIG, R., AND KNAPP, A. The Free Models Initative. In Joint
Proc. MODELS 2014 Poster Session and ACM Student Research Competition
(2014), S. Sauer, M. Wimmer, M. Genero, and S. Qadeer, Eds., vol. 1258, CEUR,
pp. 36-40.

Tiarks, R., KoscHKE, R., AND FALKE, R. An Assessment of Type-3 Clones
as Detected by State-of-the-Art Tools. In Intl. Ws. Source Code Analysis and
Manipulation (2009), IEEE Computer Society, pp. 67-76.

