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Aspergillus, Penicillium, and Talaromyces are among the most chemically inventive of
all fungi, producing a wide array of secondary metabolites (exometabolites). The three
genera are holophyletic in a cladistic sense and polythetic classes in an anagenetic or
functional sense, and contain 344, 354, and 88 species, respectively. New developments
in classification, cladification, and nomenclature have meant that the species, series, and
sections suggested are natural groups that share many extrolites, including exometabolites,
exoproteins, exocarbohydrates, and exolipids in addition to morphological features. The
number of exometabolites reported from these species is very large, and genome
sequencing projects have shown that a large number of additional exometabolites may
be expressed, given the right conditions (“cryptic” gene clusters for exometabolites). The
exometabolites are biosynthesized via shikimic acid, tricarboxylic acid cycle members,
nucleotides, carbohydrates or as polyketides, non-ribosomal peptides, terpenes, or
mixtures of those. The gene clusters coding for these compounds contain genes for the
biosynthetic building blocks, the linking of these building blocks, tailoring enzymes, resis-
tance for own products, and exporters. Species within a series or section in Aspergillus,
Penicillium, and Talaromyces have many exometabolites in common, seemingly acquired
by cladogenesis, but some the gene clusters for autapomorphic exometabolites may have
been acquired by horizontal gene transfer. Despite genome sequencing efforts, and the
many breakthroughs these will give, it is obvious that epigenetic factors play a large role
in evolution and function of chemodiversity, and better methods for characterizing the
epigenome are needed. Most of the individual species of the three genera produce a
consistent and characteristic profile of exometabolites, but growth medium variations,
stimulation by exometabolites from other species, and variations in abiotic intrinsic and
extrinsic environmental factors such as pH, temperature, redox potential, and water activity
will add significantly to the number of biosynthetic families expressed in anyone species.
An example of the shared exometabolites in a natural group such as Aspergillus section
Circumdati series Circumdati is that most, but not all species produce penicillic acids,
aspyrones, neoaspergillic acids, xanthomegnins, melleins, aspergamides, circumdatins,
and ochratoxins, in different combinations.

Keywords: Aspergillus, Penicillium,Talaromyces, secondary metabolites, chemodiversity, chemoconsistency

INTRODUCTION
The genera Aspergillus sensu lato and Penicillium sensu lato con-
tain a high number of very diverse species. These species produce a
large number of exometabolites, also known as secondary metabo-
lites. Exometabolites are small molecules produced during mor-
phological and chemical differentiation that are outward directed,
i.e., secreted or deposited in or on the cell wall, and accumu-
lated in contrast to endometabolites (primary metabolites), that
are fluctuating in concentration (the fluxome), and either trans-
formed into other endometabolites or feeding into exometabolites,
exoproteins, exopolysaccharides, and morphological structures.
While endometabolites can be found in almost all species of fungi
(and most other kinds of organisms), exometabolites, exopro-
teins, and exopolysaccharides are taxonomically restricted, being
produced in species-specific profiles. Some metabolites can occur

both as endo- and exometabolites, for example citric acid. When
citric acid is part of the mitochondrial fluxome, it should be
regarded as an endometabolite, but when citric acid is secreted
and accumulated (Goldberg et al., 2006; Andersen et al., 2011;
Poulsen et al., 2012), as in Aspergillus niger, it must be regarded
as an exometabolite. Accumulation of citric acid requires that
there is a reductive pathway for it in the cytosol and that it can
be secreted to the surroundings via an exporter. Thus the trans-
port from the mitochondria to the cytosol, the cytosolic reduction,
and the secretion requires a dedicated gene cluster. Such a gene
cluster has been found in for example A. terreus that is cod-
ing for accumulating and secreting itaconic acid (van der Straat
et al., 2014), but the gene cluster for citric acid accumulation
has not been described yet. Some species related to Aspergillus
and Penicillium, such as Xeromyces bisporus, are predominantly
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stress-selected (S-selected) and the lack of any competitors at very
low water activities will have the consequence that X. bisporus
produces no exometabolites (Leong et al., 2014). In Aspergillus
most species produce a large number of exometabolites, but some
stress selected species, such as A. penicillioides and A. restrictus,
have only been reported to produce asperglaucide and cristatin A,
and the related arestrictin A and B (Itabashi et al., 2006). However,
the closely related xerotolerant/xerophilic species in the Aspergillus
subgenus Aspergillus (formerly Eurotium) produce a high number
of exometabolites in the ascomata, making them chemically very
diverse (Slack et al., 2009).

Aspergillus AND Penicillium TAXONOMY AND
NOMENCLATURE
Because of their importance, species of Aspergillus and Penicillium
have been taxonomically treated several times, but the mono-
graphs by Raper and Thom (1949) for Penicillium and Raper and
Fennell (1965) for Aspergillus are still regarded as cornerstones
in the taxonomy of these fungi. In the period between these two
monographs, however, several authors (Benjamin, 1955; Malloch
and Cain, 1971) suggested to use names for the sexual state of
the Aspergilli and Penicillia, whenever possible, to adhere to the
Botanical Code in a nomenclatural sense. The use of Penicillium
and Aspergillus for species that had not yet been found to pro-
duce a sexual state could keep their Penicillium and Aspergillus
names, because of a special nomenclatural “exception” in the
Botanical Code (Art. 59) that allowed to use two names for a
specific fungal species, one for the asexual states (the “anamorph”)
and one for the sexual state (the “teleomorph”). Despite this it
was recommended to use the sexual name for the whole fungus
(the “holomorph”), whenever a sexual state had been found. For
this reason many species in Penicillium were renamed Eupeni-
cillium or Talaromyces (Pitt, 1980) and many Aspergillus species
were renamed Chaetosartorya, Emericella, Eurotium, Fennellia,
Hemicarpenteles, Hemisartorya, Neocarpenteles, Neopetromyces,
Neosartorya, Petromyces, Saitoa, Sclerocleista, or Warcupiella (Rai
and Chowdhery, 1975; Rajendran and Muthappa, 1980; Gams
and Samson, 1986). To give one example of the name changes
one can mention a fungus that was originally described as A.
fischeri. Since this fungus was described including the sexual
state, it could not be used for the asexual state anymore, so the
correct name for the fungus according the nomenclatural rules
before 2011 was Neosartorya fischeri, while A. fischeri had to be
renamed A. fischerianus if one wanted only to refer to the asex-
ual state. A full monographic revision of Aspergillus according to
the Botanical Code has not been written, but lists of accepted
Aspergillus and Penicillium species have been made (Pitt et al.,
2000) and several revisions of the individual genera have been
published.

In 2010 it was suggested to introduce a new nomenclatural sys-
tem in which one fungus had only one name (Hawksworth et al.,
2011; Hawksworth, 2012). This suggestion was adopted by the
Botanical Congress in Melbourne (McNeill et al., 2012), and thus
hereafter any species in fungi will only have one official name.
The selection of those names is encouraged to take place by con-
sensus among international experts in the group of fungi under
consideration. The International Commission of Penicillium and

Aspergillus (ICPA) has decided to use Penicillium for the mono-
phyletic clade that includes Penicillium subgenera Aspergilloides,
Furcatum, and Penicillium sensu Pitt (1980), Eupenicillium, Chro-
mocleista, Thysanophora and Eladia, and Talaromyces for the
monophyletic clade that includes Talaromyces itself and Penicil-
lium subgenus Biverticillium sensu Pitt (1980). For Aspergillus
sensu lato, a cladistic study using DNA sequence data, showed
that most known Aspergillus species were included in a mono-
phyletic clade (Houbraken and Samson, 2011), while a few rare
species, such as A. zonatus and A. clavatoflavus were more closely
related to other genera in the Eurotiomycetes. The nomenclatural
consequence of this is to call all the species in the monophyletic
clade Aspergillus (Houbraken et al., 2014; Samson et al., 2014)
or retypify the genus Aspergillus with for example A. niger, and
then subdivide Aspergillus into the genera Aspergillus, Neosartorya,
Emericella, Eurotium, and Chaetosartorya (Pitt and Taylor, 2014).
This would have the consequence that the name Aspergillus would
only be used for a paraphyletic weakly supported clade represent-
ing subgenus Aspergillus and that the genus Neosartorya would be
polyphyletic as it includes Dichotomomyces. Even though a major-
ity of ICPA members voted for the Aspergillus solution, which
includes mentioning the sexual state informally, for example A.
fischeri (neosartorya-morph present), general consensus has not
yet been reached. In this review Aspergillus names will be used,
as suggested by Samson et al. (2014), as the name Aspergillus can
be confidently used for the monophyletic clade that includes the
genera listed above (Houbraken et al., 2014). All species formerly
included in Dichotomomyces, Cristaspora, Phialosimplex, Polypae-
cilum, in addition to Penicillium inflatum, have been formally
combined into Aspergillus (Samson et al., 2014), while A. crystalli-
nus, A. malororatus, and A. paradoxus (Hemicarpenteles paradoxus)
have been combined into Penicillium, as P. crystallinum, P. mal-
odoratum, and P. paradoxum (Visagie et al., 2014b). This means
that the presence of aspergilla in an isolate does not necessarily
mean that the isolate belongs to Aspergillus sensu stricto, and the
presence of penicilli in an isolates does not necessarily mean the
species belong in Penicillium sensu stricto. However, in the major-
ity of cases aspergilla or penicilli indicates that the species belong
to Aspergillus and Penicillium, respectively.

Pitt and Taylor (2014) suggested to use Aspergillus for the para-
phyletic subgenus Circumdati only (after potential re-typification
of Aspergillus with A. niger), stating that this restricted use of
the genus Aspergillus would make this genus phenotypically dif-
ferent from the closely related Aspergillus subgenus Nidulantes
and therefore suggested the name Emericella for the latter mono-
phyletic clade. However, there are many phenotypic traits in
common between section Circumdati and Nidulantes, including
the presence of hülle cells and the exometabolites kojic acid,
aflatoxins, and sterigmatocystins in both subgenera (Raper and
Fennell, 1965; Wiley and Simmons, 1973; Frisvad and Samson,
2004a; Frisvad et al., 2005; Zalar et al., 2008). Subgenus Circum-
dati includes species with both multiple cleistothecia in sclerotia
(Petromyces, Neopetromyces, Saitoa; Udagawa et al., 1994; Yaguchi
et al., 1994; Frisvad and Samson, 2000; Horn et al., 2013) and
pseudoparenchymatous multiple ascomata in hyphal masses with
or without hülle cells (Fennellia and the perfect state of A. ter-
reus; Wiley and Simmons, 1973; Locquin-Linard, 1990; Yaguchi
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et al., 1994; Samson et al., 2011a; Arabatsis and Velegraki, 2013),
while several species in Aspergillus section Nidulantes produce
pseudoparenchymatous single ascomata and hülle cells.

Assistance in choosing between Aspergillus (Samson et al.,
2014) versus the genera Eurotium, Emericella, Neosarotrya and
Chaetosartorya, Phialosimplex, Polypaecilum, Dichotomomyces,
and Cristaspora (Pitt and Taylor, 2014) can be sought from sci-
entific databases. It is very clear that while Aspergillus has been
used in 56178 publications the other genera, when all added, have
only been used in 1093 publications (approximately 2%; Table 1).

A classification of isolates into sections and series in Penicillium,
Talaromyces, and Aspergillus based on phenotypic characters will
show that these supraspecific taxa are natural polythetic classes
(Beckner, 1959) in exometabolite, ecophysiological, and morpho-
logical characters. For example in Aspergillus subgenus Circumdati
section Circumdati (the former A. ochraceus group) most species,
but not all, produce aspyrones, penicillic acids, xanthomegnins,
ochratoxins, melleins, circumdatins, neoaspergillic acids, and
aspergamides/stephacidins (Frisvad et al., 2004a,b; Finefield et al.,
2012; Visagie et al., 2014a). In addition individual species produces
exometabolites that are only accumulated by few species in the

Table 1 | References to Aspergillus, Penicillium,Talaromyces, and

associated genera (Web of Science, as of 18 October, 2014).

Genus No hits in web of science

Aspergillus 56178

Penicillium 18011

Talaromyces 645

Eurotium 421

Emericella 379

Neosartorya 278

Eupenicillium 187

Thysanophora 35

Petromyces 31

Dichotomomyces 12

Fennellia 10

Basipetospora 9

Polypaecilum 7

Chaetosartorya 6

Eladia 5

Hemicarpenteles 5

Phialosimplex 5

Warcupiella 4

Neopetromyces 4

Chromocleista 4

Sclerocleista 3

Saitoa 1

Neocarpenteles 1

Cristaspora 1

Hemisartorya 0

section. A. westerdijkiae and A. ochraceus can both produce all
the exometabolites listed above, but in addition A. westerdijkiae
produces preussin and mellamide, not produced by A. ochraceus.

At present Aspergillus comprises 344 species (Samson et al.,
2014), Penicillium 354 species (Visagie et al., 2014b), and
Talaromyces 88 species (Yilmaz et al., 2014). These genera include
species that have been reported to produce large numbers of
exometabolites (Table 2).

CHEMODIVERSITY
Species of Aspergillus, Penicillium, and Talaromyces are extraor-
dinarily productive concerning exometabolites. A comparison
with other genera shows that most exometabolites have been

Table 2 | Individual exometabolites produced by important genera of

filamentous fungi ranked according to highest number of

exometabolites reported (according to AntiBase).

Genus Number of exometabolites

reported

Aspergillus 1984

Penicillium 1338

Fusarium 507

Trichoderma 438

Talaromyces 316

Phoma 263

Drechslera, Curvularia, Bipolaris,

Cochliobolus

258

Alternaria and Ulocladium 231 + 7

Chaetomium 230

Acremonium 187

Phomopsis 186

Xylaria 143

Stachybotrys 138

Pestalotiopsis 133

Claviceps 130

Cladosporium 113

Botrytis 102

Byssochlamys/Paecilomyces sensu stricto 94

Hypoxylon 88

Cordyceps 77

Clonostachys 72

Arthrinium 26

Nigrospora 25

Septoria and Stagonospora and

Parastagonospora

22

Stemphylium 17

Trichophyton 10

Species of Penicillium listed were revised to Talaromyces if they belonged there
(Yilmaz et al., 2014).
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reported from Aspergillus (1984), next-most from Penicillium
(1338), and fifth-most by Talaromyces, (316), with only Fusarium
(507) and Trichoderma (438) producing more exometabolites in
toto (Table 1). The number of exometabolites pr species is 5.77
for Aspergillus, 3.77 for Penicillium, and 3.58 for Talaromyces.
These number per species are clearly underestimates as some
exometabolites are produced by more than one species in a genus,
in addition to the fact that many species have not been examined
and that some exometabolites are only expressed under unique
circumstances and thus may remain undetected (Sanchez et al.,
2012; Brakhage, 2013; Scherlach et al., 2013; Takahashi et al., 2013;
Bertrand et al., 2014; Marmann et al., 2014). Light, pH, redox
potential, temperature, water activity, carbon sources, nitrogen
sources, iron starvation, and exometabolites from other species
can all have a regulatory effect on the regulatory proteins for
exometabolite expression in a fungus (Brakhage, 2013). A major-
ity of the exometabolites produced by Penicillium and Aspergillus
are only found sporadically in other genera, but a large number
of exometabolites are in common between Aspergillus and Peni-
cillium. On the other hand exometabolites from Talaromyces are
nearly all unique to that genus (Samson et al., 2011b), or only
shared with few other species.

The same exometabolite may be produced by widely different
species. For example aflatoxin is produced by the species listed
in Aspergillus section Flavi (15 spp.), Aspergillus section Nidu-
lantes (3 spp.), Aspergillus section Ochraceorosei (2 spp.), and
Aschersonia (2 spp.; Frisvad and Samson, 2004a; Frisvad et al.,
2005; Zalar et al., 2008; Varga et al., 2009, 2011; Kornsakulkarn
et al., 2012, 2013; Massi et al., 2014). Three species in Aspergillus
section Flavi and all the seven species outside section Flavi listed
above only produce aflatoxins of the B type. It is surprising that
aflatoxins have never been found in Penicillium, but they have
been found in the unrelated scale insect fungi Aschersonia cof-
fea and Aschersonia marginata (Kornsakulkarn et al., 2012, 2013).
However, the precursor sterigmatocystin, although end-product
for some species, has been found in a large number of unre-
lated genera (Rank et al., 2011), suggesting that this complicated
gene cluster has been horizontally transfered between species in
widely different genera, as shown by Slot and Rokas (2011) for
Podospora anserina and A. nidulans. Fungal species are specifi-
cally associated to certain habitats or few plant, animal, or other
kind of organisms (Filtenborg et al., 1996), and will therefore pro-
duce exometabolites in reponse to the challenges in the particular
habitat. For example P. herquei was thought to be a soil fungus
saprophyte (Kwaśna, 2004), but recent studies have shown tha
the leaf-rolling weevil (Euops chinensis) have developed mycangia
to inoculates leaves with P. herquei conidia to protect the weevil
eggs (Li et al., 2012). P. herquei produce a species specific profile
of exometabolites, of which several are antibiotically active (Petit
et al., 2009; Tansakul et al., 2014). Thus the specificity in both
association of fungal species to other species and the profile of
exometabolites are factors that have boosted the evolution of so
many exometabolites.

Dichotomomyces cejpii was transferred to A. cejpii by
Samson et al. (2014), and this new combination is supported by
chemotaxonomic evidence. D. cejpii was reported to produce
gliotoxin, xanthocillin X monomethylether, tryptoquivalones,

JBIR-03, emindole SB, emindole SB beta-mannoside, and 27-O-
methylasporyzin (Varga et al., 2007; Harms et al., 2014). While
gliotoxin, tryptoquivalones, and xanthocillins (Frisvad et al., 2009;
Zuck et al., 2011) indicates a relationship to A. fumigatus and
tryptoquivalones a close relationship to A. clavatus, as supported
by DNA sequences (Varga et al., 2007), production of emindole
SB indicates a relationship to Aspergillus section Nidulantes. The
report of emindole SB, emeniveol, asporyzin A-C, and JBIR-03
from a marine-derived A. oryzae (Qiao et al., 2010), indicates what
they identified as “A. oryzae” is a fungus related to A. cejpii or a
species in Nidulantes rather than A. oryzae, however.

CHEMOCONSISTENCY AND OSMAC
The abbreviation OSMAC (one strain many compounds) was
introduced by Bode et al. (2002) where the authors showed, among
several examples, that a strain of A. westerdijkiae produced a series
of exometabolites that could be ordered into different biosynthetic
families. Furthermore, by using several media a more full pro-
file of these exometabolites could be revealed. The idea that one
strain can produce several exometabolites was already introduced
by Frisvad (1981) and Frisvad and Filtenborg (1983, 1989). These
authors showed that terverticillate penicillia produced a unique
profile of different exometabolites and also that certain media,
such as Czapek yeast autolysate (CYA) agar and yeast extract
sucrose (YES) agar were very efficient for production of a large
number of different exometabolites, while further media may
increase the number of exometabolites expressed (Bills et al., 2008;
Nielsen et al., 2011; Frisvad, 2012). Furthermore they showed that
these profiles of exometabolites were species specific and consis-
tent from isolate to isolate, i.e., the isolates in anyone fungal species
were chemo consistent (Larsen et al., 2005). One of the original
terms for exometabolites or secondary metabolites was idiolites,
the latter indicating that production of exometabolites was strain
specific, however, exometabolite profiles are clearly species spe-
cific (Frisvad et al., 2008). However, a single mutation in a gene
in an exometabolite gene-cluster will often be sufficient for loss
of phenotypic expression (Susca et al., 2014), and this may be the
reason some authors call the production of certain exometabolites
“strain-specific” (i.e., Engel et al., 1982). The ability to produce
mycophenolic acid in P. roqueforti is retained in most strains, how-
ever, (Frisvad and Filtenborg, 1989; Geisen et al., 2001; Frisvad and
Samson, 2004b), but is not as consistent as in P. brevicompactum,
where a non-producing strain has never been found (Frisvad and
Filtenborg, 1989; Frisvad and Samson, 2004b). Reasons for observ-
ing “unusual “ or “unexpected” exometabolites in a species may be
horizontal gene transfer of a gene cluster in only one or few strains,
hybridization (which is not common in filamentous fungi), or
epigenetic priming. Raper and Thom (1949) mentioned a strain
of P. citrinum (NRRL 822, their group III in a subdivision of P.
citrinum “transitional toward P. chrysogenum series”) produced
both citrinin, known from this species, and penicillin, known
from P. chrysogenum. They also mentioned that their strain had
the cultural appearance of both P. citrinum and P. chrysogenum.
We have re-examined this strain, and indeed it had characters
of both species, and appeared to be a (rare) hybrid. However,
exometabolites from co-occurring species from the same habitat
may stimulate the epigenome by acting as inhibitors of histone
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acetylation or methylation, and this exometabolite stimulation
will be one of many ways of having silent exometabolite gene
clusters in filamentous fungi expressed (Bertrand et al., 2014). It
was recently shown that A. niger could produce sclerotia with many
hitherto not expressed aflavinins in them (Frisvad et al., 2014) sim-
ply by stimulating A. niger with whole fruits or rice. Whether this
stimulation is caused by extrolites from those whole fruits or rice
or from a physical stimulation is not yet known. Furthermore vari-
ations in the growth medium and ecophysiological factors such as
pH, temperature, and water activity will obviously also stimulate
expression of gene clusters of exometabolites that were initially
thought to be silent.

In conclusion Aspergillus, Penicillium, and Talaromyces con-
tain species that produce a very large number of species-specific
exometabolites with a high degree of chemoconsistency. The
chemodiversity of the many species in these three genera is
extremely high and many more bioactive compounds from
the species will be found in the future. Both ecological and
genetic/molecular approaches are needed to fully explore this
treasure-trove of natural products.
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