

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Dec 20, 2017

Design of a stateless low-latency router architecture for green software-defined
networking

Saldaña Cercos, Silvia; Ramos, Ramon M.; Eller, Ana C. Ewald; Martinello, Magnos; Ribeiro, Moisés R.N.
; Fagertun, Anna Manolova; Tafur Monroy, Idelfonso
Published in:
Proceedings of SPIE

Link to article, DOI:
10.1117/12.2077560

Publication date:
2015

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Saldaña Cercos, S., Ramos, R. M., Eller, A. C. E., Martinello, M., Ribeiro, M. R. N., Fagertun, A. M., & Tafur
Monroy, I. (2015). Design of a stateless low-latency router architecture for green software-defined networking. In
Proceedings of SPIE (Vol. 9388). [93880I] SPIE - International Society for Optical Engineering. (Proceedings of
SPIE, the International Society for Optical Engineering, Vol. 9388). DOI: 10.1117/12.2077560

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Online Research Database In Technology

https://core.ac.uk/display/43249027?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1117/12.2077560
http://orbit.dtu.dk/en/publications/design-of-a-stateless-lowlatency-router-architecture-for-green-softwaredefined-networking(40477ee5-e0e5-4711-9771-afeb9517ca5f).html

Design of a stateless low-latency router architecture for green
software-defined networking

Silvia Saldaña Cercósa, Ramon M. Ramos.b, Ana C. Ewald Ellerb, Magnos Martinellob, Moisés
R.N. Ribeirob, Anna Manolova Fagertuna, and Idelfonso Tafur Monroya

a DTU Fotonik, Technical University of Denmark, Kgs. Lyngby, Denmark;
b LabNERDS-Informatics and Electrical Engineering Department, Federal University of

Esṕırito Santo (UFES), Vitoria E.S. Brazil

ABSTRACT

Expanding software defined networking (SDN) to transport networks requires new strategies to deal with the large
number of flows that future core networks will have to face. New south-bound protocols within SDN have been
proposed to benefit from having control plane detached from the data plane offering a cost- and energy-efficient
forwarding engine. This paper presents an overview of a new approach named KeyFlow to simultaneously reduce
latency, jitter, and power consumption in core network nodes. Results on an emulation platform indicate that
round trip time (RTT) can be reduced above 50% compared to the reference protocol OpenFlow, specially when
flow tables are densely populated. Jitter reduction has been demonstrated experimentally on a NetFPGA-based
platform, and 57.3% power consumption reduction has been achieved.

Keywords: Energy-efficiency, optical networks, OpenFlow, NetFPGA -

1. INTRODUCTION

Current core network design strategies consolidate towards a cost-efficient solution by implementing a reduced
number of core network nodes that support higher bit rates.1 These strategies, combined with current Internet
growth, lead to a key challenge for network operators, namely to cater to the large volumes of traffic. One
solution for core networks is to define a forwarding plane of core nodes which ensures intra-domain routing
packet transport while mitigating the complexity of network forward engines. Besides low-complexity for the
elements in the forwarding plane, flexibility to cope with traffic changes on-demand is also required for meeting
future requirements as they arise. Software defined networking (SDN) is a promising technology that offers
this flexible and programmable networking platform with the control plane detached from the data plane.2

Current SDN implementations focus on Ethernet switching primarily for data centers, that can benefit from
centralizing the management intelligence.3 However, some challenges arise when extending SDN for transport
network architectures4 , where scalability is on a major concern.5 As the network scales up, the number of states
related to the active flows in the network increases as well as the number of lookups table operations. This leads
to an end-to-end higher latency.6

OpenFlow is the most used south-bound protocol within the SDN control architecture. However, it does
not offer a simple design for forwarding engines, and it contributes to scalability problems due to the number
of states related to the active flows. In this paper a protocol within the SDN architecture named KeyFlow for
design of stateless low-latency router architecture is presented. KeyFlows aims at coping with latency challenges
that arise in SDN transport network architectures since it does not require states associated to the active flows.
KeyFlow reduces the complexity of the core forward engines by replacing the traditional table lookup by a simple
operation: a division.7,8 Consequently, latency linked to the table lookup bottleneck in the data plane of the SDN
core networks is eliminated unlocking the potential usage of SDN technology in core networks. Besides latency,
power consumption has been a concern in core networks design9 since network equipment power consumption
accounts for 14% of the overall information and communications technology (ICT) sector.10 Ternary addressable
content memories (TCAMs) have become an indispensable resource to provide the throughput and high packet

Further author information: (Silvia Saldaña Cercós E-mail: ssce@fotonik.dtu.dk)

Invited Paper

Optical Metro Networks and Short-Haul Systems VII, edited by Atul K. Srivastava, Benjamin B. Dingel, Achyut K. Dutta,
Proc. of SPIE Vol. 9388, 93880I · © 2015 SPIE · CCC code: 0277-786X/15/$18 · doi: 10.1117/12.2077560

Proc. of SPIE Vol. 9388 93880I-1

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 03/20/2015 Terms of Use: http://spiedl.org/terms

5Z=09P°w(0+5t +517)=X
w P°w(ed.eW.ei+zd.zW.z-1+[d.[11.[-1) -X .£

Z=9P°w([-Z6)=£l

Z =
e P°w([-0Z)

= a
£ = "°%-56) =

[ua P°%-[W) = Z

36=£1A1`OZ=z1A1 `5l=[11<-09=5.£.ti=11 1
spod }ndino :(0` ` i.)='d

01 sepou :(5 `£ `ti)='ua

a)
ó'

processing rates that SDN requires. TCAMs are needed to perform the wildcard matching in flow table lookups
despite that they are pricey and power-demanding.11 Improvements upon the OpenFlow implementation in terms
of TCAMs utilization have been presented in literature,12 where per-port circuitry predicts the flow membership
of a packet in order to bypass TCAM lookups. KeyFlow expands the state-of-the-art beyond reported research
by investigating the potential benefits for a stateless low-latency and power-efficient router architecture.

The rest of the paper is structured as follows. First, the operating principle for KeyFlow is detailed. Then, the
design and implementation of a KeyFlow switch on a full line-rate 4-port 1 GbE NetFPGA-based is described.
Third, latency and jitter results based on an open source platform, Mininet, for a KeyFlow prototype and
OpenFlow switch are presented. Then an analysis on power consumption for a reference OpenFlow 1.0 switch
is also presented. A comparison between OpenFlow 1.0 and a novel KeyFlow switch from power consumption
point of view is performed. Finally, conclusions and future work is presented.

2. KEYFLOW: OPERATING PRINCIPLE

KeyFlow offers the possibility to reduce core network latency by removing the flow table lookup. Instead
of the traditional flow table, KeyFlow is based on a simple division which concurrently reduces core network
routers’ complexity. The forwarding mechanism is based on the well-known residue number system (RNS).13

The fundamental concept of RNS relies on the idea that every large number can be represented by a combination
of small numbers obtained from the reminder of the division of this number by a set of co-primes. KeyFlow uses
this mathematical property to define the path a packet follows. The large number represents the path ID, the
set of co-primes represent the nodes’ ID, and the reminder states the output port for each router.

Fig. 1 illustrates a KeyFlow network architecture example. A flow goes from the ingress node, mi = 1, to
the egress node, mi = 6, through the intermediate nodes 4, 3, and 5, mi = (4, 3, 5). The path is illustrated with
dash orange arrows. As depicted, the output ports are pi = (1, 1, 0) for each of the nodes, respectively. One
of the benefits from KeyFlow is that the number of interactions between core nodes and controller is reduced.
Communication occurs between node 1 and controller whenever there is no matching rule for a specific packet.
The ingress node sends a request to the controller which computes a unique path ID based on the route that
the packets needs to follow to reach its destination (e.g., the egress node with ID 6). In the illustrative example
from Fig. 1a) this path ID is 25. This path ID is the so-called key. The controller sends a rule to the edge
nodes with this information, so that every packet with the same destination is assigned with the same key. The
ingress edge node assigns the key onto the packet header. KeyFlow core nodes do not have a flow table. Unlike
traditional core intermediate nodes, KeyFlow core nodes perform a simple mathematical operation based on the
key in the header of the packet and the node ID to determine the output port. The output port is determined
by the reminder of the division between the key and the node ID.

Let < X >i be defined as the remainder from X/i. In the KeyFlow core node, X is the key at the packet’s
header and i is its own ID. In the example presented in Fig. 1a) node 4 performs the following operation to

6

74

1
0

2

3

1

5

3

2

1

0
3

2

0

1

OpenFlow Controller

KeyFlow Application

Ingress

Node
Egress

Node

25 2
5

25

25

(a) (b)

Figure 1: KeyFlow: Operating principle. 1a) KeyFlow network architecture example, and 1b) KeyFlow key
calculation example

Proc. of SPIE Vol. 9388 93880I-2

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 03/20/2015 Terms of Use: http://spiedl.org/terms

s

a°

Key processor

Divider

1
Header parser

Exact match Wildcard match

LI Arbiter F

+

Packet processor

1

Result FIFO

I

a
óo
óa
5a5o

y

HHHHHH
In FIFO

V

Key processor

Divider

V

Packet processor

y

calculate the output port: < 25 >4= 1. Analogously, node 3 and 5 perform < 25 >3= 1, and < 25 >5= 0,
respectively, to calculate their respective output ports. Fig. 1b) shows an example for the key calculation
assessed in the control plane assuming that mi = (4, 3, 5) are the nodes IDs, 25 is the key, and pi = (1, 1, 0)
are the respective output ports. Key calculation consists of three steps. 1) The parameter Mi is obtained by
dividing M by each node ID, where M is the product of all nodes IDs. Thus, Mi = M/mi. 2) The parameter
Li is calculated. Li is the multiplicative inverse of Mi (i.e. Mi · Li ≡ 1 (mod mi)). 3) The key, X, is calculated
by summing up the product of each Li, Mi, and output port for each node, Li ·Mi · pi (mod M).7

3. KEYFLOW AND OPENFLOW IMPLEMENTATION

In this work, the OpenFlow and the KeyFlow design are implemented using NetFPGA as the implementation
platform. The hardware design is based on the reference implementations from Stanford University.14 The 4-
port 1 BgE NetFPGA Xilinx Virtex-II Pro 50 has been selected based on the following requirements: a platform
capable of supporting high data rates (near-application-specific integrated circuit (ASIC) performance);11,15

flexible enough to allow the implementation of a completely new core network forward engine. Due to the
NetFPGA platform capabilities, it has been used previously to implement an IP-less forwarding fabric named
Bloom-filter based.16

The OpenFlow reference design implemented on the NetFPGA includes MAC/CPU queues, output port
lookup, and user data path modules.14 From the OpenFlow modular NetFPGA pipeline structure presented
in the literature14 the work presented in this paper is based exclusively on the optimization of forwarding
plane. Consequently, only the module associated to output port lookup is detailed. However, latency and power
consumption calculations take into account all the modules of the reference pipeline.14 Fig. 2 presents the
modular NetFPGA structure for 2a) a Hybrid switch which includes both KeyFlow and OpenFlow capabilities,
and 2b) a KeyFlow switch. For a conventional OpenFlow core network node, when a packet reaches the node,
the packet enters into the output port lookup in order to find which output port to forward it to. In the output
port lookup module, the header parser extracts relevant information from the packet header. This relevant
information is sent to the exact match and the wildcard match in order to find a flow that matches the required
information and determines the output port. The exact match uses two hash functions to match an exact flow.
This process is performed off-chip on the static random access memories (SRAMs). The wildcard match, on the
other hand, uses the TCAMs built using the Xilinx SRL16e primitives.14 The arbiter module determines which
solution to use in case of getting a match from both modules: exact match has higher priority than wildcard
match. The forwarding information or associated action selected by the arbiter is stored in the Result first in first
out (FIFO) buffer and sent to the packet processor. Fig. 2b) illustrates how complexity is reduced when using
a KeyFlow switch as an alternative to the reference OpenFlow switch. The entire lookup process is replaced

(a) (b)

Figure 2: Modular NetFPGA pipeline structure for 2a) a Hybrid switch and 2b) a KeyFlow switch

Proc. of SPIE Vol. 9388 93880I-3

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 03/20/2015 Terms of Use: http://spiedl.org/terms

by a single module which performs the division explained previously. By adding this module and replacing the
traditional table look up three benefits are achieved: 1) latency is reduced. An OpenFlow switch by contrast
offers a latency which is dependent on the flow table size, 2) jitter is also reduced. Under OpenFlow there is
jutter because the delay associated with the table look up depends on where on the list the flow is placed, and
3) the need of using the pricey and power-demanding TCAMs is eliminated, since there is no need of performing
wildcard match any longer, and instead a simple operation is done. In order to facilitate the migration towards
KeyFlow core networks, a Hybrid switch has been implemented. A Hybrid switch keeps OpenFlow capabilities,
but it has the possibility to enable the key processor module presented in Fig. 2a) so that the packet does not
go through the header parser and subsequent modules. However, maintaining the modules gives the possibility
to use the network fabric as OpenFlow for user convenience.

4. REDUCTION OF NETWORK LATENCY

The scope of the presented latency analysis is to determine the switch latency associated with the table
lookup bottleneck. This study gives an overview on the end-to-end latency impact when removing table look
and replacing it with a simple mathematical operation. Tests have been done on a linear topology assuming that
all the forwarding engines are under the same table utilization conditions, for table flow utilization of 0, 25, 50,
and 75%. For the latency analysis the emulation platform Mininet has been used as an experimental testbed.
For the experiment 5000 64-byte packets are generated and transmitted at constant time intervals. Fig. 3a) and
Fig. 3b) show the average and the worse round-trip-time (RTT) for the packets for different flow table utilization
as a function of the number of hops, in an emulated network with a reference OpenFlow and a KeyFlow switch.
Results show that for a low flow table utilization (i.e., 25%) there is no significant difference on the packet
RTT between the KeyFlow and OpenFlow switch. This is because the time needed to perform the division is
equivalent to the time needed to execute the frequent cache hits for the lookup process. As the table utilization
increases, the KeyFlow switch outperforms the OpenFlow switch. The OpenFlow switch offers an increased
packet RTT with the number of hops, whereas the KeyFlow switch presents average values below 3 ms. There
is a slight increase on the packet RTT when using a KeyFlow switch. This is expected, since higher number of
flows requires additional lookup processing at the edge nodes. For the worse case scenario presented in Fig. 3b),
values are one order of magnitude higher than for the average results presented in Fig. 3a). However, similar
qualitative performance is observed in both scenarios.

In order to analyze the jitter impact for both an OpenFlow and a KeyFlow switch, the packet RTT has
been measured on a NetFPGA-based platform for a single hop and 5000 packets for a) a KeyFlow switch (which
does not have a flow table), b) an OpenFlow switch with the flow table utilization set at 0%, and c) the same
OpenFlow switch with the flow table utilization set to 100%. As presented in Fig. 3 no differences in terms of

the OpenFlow and KeyFlow approaches. However, the net-
work state load increases steeply as densely populated flow
tables are present in longer paths across the core network. For
instance, it exceeds 400 Mbytes considering flow tables loaded
at 75 percent in 17 hops. On the other hand, KeyFlow stateless
core networks only need stateful elements at the edges and
remain virtually unaffected by the increase in both path length
and flow table utilization. To summarize these findings, the
potential KeyFlow relative reduction network state load is also
calculated. KeyFlow achieves a minimum of 33.33 percent
reduction in a three-hop path (i.e., ingress, one core, and
egress node). As expected, for longer paths, this reduction
tends to be substantially favorable toward KeyFlow, reaching
up to 90 percent reduction for 17 hops. These results show
that the KeyFlow network is more flexible and responsive in
adapting to traffic patterns and topology changes. This is due
to the decrease in the number of stateful elements in the net-
work, and thus the number and duration of the interactions
between the switches and the controller.

Experimental Testbed: Latency Analysis

In order to represent different path lengths in a mesh topolo-
gy, we built a linear topology assuming that all switches are
under the same flow table utilization. This topology is used to
emulate AS traffic crossing either a conventional OpenFlow
(Fig. 4a) or KeyFlow fabric (Fig. 4b). Actually, we have two
real hosts sending ICMP packets to each other through a
computer running Mininet with the two network environ-
ments described above, as illustrated in Fig. 4c. Finally, Fig.
4d outlines both the hardware and software used in our
testbed. Each path direction of a flow crossing the emulated
AS is identified, in both OpenFlow and KeyFlow, using the
VLAN ID field.

For each experiment, 64-byte packets at constant intervals
were generated to extract the round-trip time (RTT) statistics
out of 5000 realizations. The flow tables utilization was set to
the following values (25 , 50, and 75 percent). In order to
reduce the biasing of table lookup due to large caches of 4

IEEE Network • March/April 2014 17

Figure 4. Testbed schematic: a) OpenFlow network; b) KeyFlow network; c) Mininet setup; d) computer specs.

(b)

Type Hardware Software

1 Generic i686 PC
GigaEthernet interface

CentOS 5.0
GNU/Linux 2.6.18-274.e15

2 CPU Intel Xeon 3075 (2 cores),
2.66GHz, Cache: L1 32KB, L2 4MB
memory DDR2 800MHz 4GB
2 GigaEthernet PCI
1 FastEthernet PCI (eth0) (remote
access not shown)
Motherboard: ProLiant ML 110 G5

Mininet Ver. 1.0.0
Ubuntu 11.10
GNU/Linux 2.6.38-12-
generic i686

Host 2
10.0.0.2/24

Host 1

ping
10.0.0.2

10.0.0.1/24

Host 2
10.0.0.2/24

OpenFlow
edge

OpenFlow
edge

OpenFlow
edge

OpenFlow
edge

KeyFlow
core 1

KeyFlow
core N

OpenFlow
core N

(a)

(d)(c)

....

OpenFlow
core 1

Type 1Type 1 Type 2

Host 1

ping
10.0.0.2

10.0.0.1/24

eth2eth1eth0

UTP cat 5e cross UTP cat 5e cross

eth0

Mininet

Host 2Host 1

Figure 5. RTT Comparison between KeyFlow and OpenFlow core nodes: a) average and b) maximum.

Number of core switches

Average packet RTT for different flow table loads

Number of core switches

(b)

Worst packet RTT for different flow table loads

(a)

4

5

RT
T

(m
s)

RT
T

(m
s)

0

10

15

20

2 6 8 10 12 14 16 18 4

50

0

100

150

200

250

6 8 10 12 14 16 182

OF path 0%
OF path 25%
OF path 50%
OF path 75%
Key path 0%
Key path 25%
Key path 50%
Key path 75%

OF path 0%
OF path 25%
OF path 50%
OF path 75%
Key path 0%
Key path 25%
Key path 50%
Key path 75%

MARTINELLO_LAYOUT_Layout 1 3/27/14 12:17 PM Page 17

(a)

the OpenFlow and KeyFlow approaches. However, the net-
work state load increases steeply as densely populated flow
tables are present in longer paths across the core network. For
instance, it exceeds 400 Mbytes considering flow tables loaded
at 75 percent in 17 hops. On the other hand, KeyFlow stateless
core networks only need stateful elements at the edges and
remain virtually unaffected by the increase in both path length
and flow table utilization. To summarize these findings, the
potential KeyFlow relative reduction network state load is also
calculated. KeyFlow achieves a minimum of 33.33 percent
reduction in a three-hop path (i.e., ingress, one core, and
egress node). As expected, for longer paths, this reduction
tends to be substantially favorable toward KeyFlow, reaching
up to 90 percent reduction for 17 hops. These results show
that the KeyFlow network is more flexible and responsive in
adapting to traffic patterns and topology changes. This is due
to the decrease in the number of stateful elements in the net-
work, and thus the number and duration of the interactions
between the switches and the controller.

Experimental Testbed: Latency Analysis

In order to represent different path lengths in a mesh topolo-
gy, we built a linear topology assuming that all switches are
under the same flow table utilization. This topology is used to
emulate AS traffic crossing either a conventional OpenFlow
(Fig. 4a) or KeyFlow fabric (Fig. 4b). Actually, we have two
real hosts sending ICMP packets to each other through a
computer running Mininet with the two network environ-
ments described above, as illustrated in Fig. 4c. Finally, Fig.
4d outlines both the hardware and software used in our
testbed. Each path direction of a flow crossing the emulated
AS is identified, in both OpenFlow and KeyFlow, using the
VLAN ID field.

For each experiment, 64-byte packets at constant intervals
were generated to extract the round-trip time (RTT) statistics
out of 5000 realizations. The flow tables utilization was set to
the following values (25 , 50, and 75 percent). In order to
reduce the biasing of table lookup due to large caches of 4

IEEE Network • March/April 2014 17

Figure 4. Testbed schematic: a) OpenFlow network; b) KeyFlow network; c) Mininet setup; d) computer specs.

(b)

Type Hardware Software

1 Generic i686 PC
GigaEthernet interface

CentOS 5.0
GNU/Linux 2.6.18-274.e15

2 CPU Intel Xeon 3075 (2 cores),
2.66GHz, Cache: L1 32KB, L2 4MB
memory DDR2 800MHz 4GB
2 GigaEthernet PCI
1 FastEthernet PCI (eth0) (remote
access not shown)
Motherboard: ProLiant ML 110 G5

Mininet Ver. 1.0.0
Ubuntu 11.10
GNU/Linux 2.6.38-12-
generic i686

Host 2
10.0.0.2/24

Host 1

ping
10.0.0.2

10.0.0.1/24

Host 2
10.0.0.2/24

OpenFlow
edge

OpenFlow
edge

OpenFlow
edge

OpenFlow
edge

KeyFlow
core 1

KeyFlow
core N

OpenFlow
core N

(a)

(d)(c)

....

OpenFlow
core 1

Type 1Type 1 Type 2

Host 1

ping
10.0.0.2

10.0.0.1/24

eth2eth1eth0

UTP cat 5e cross UTP cat 5e cross

eth0

Mininet

Host 2Host 1

Figure 5. RTT Comparison between KeyFlow and OpenFlow core nodes: a) average and b) maximum.

Number of core switches

Average packet RTT for different flow table loads

Number of core switches

(b)

Worst packet RTT for different flow table loads

(a)

4

5

RT
T

(m
s)

RT
T

(m
s)

0

10

15

20

2 6 8 10 12 14 16 18 4

50

0

100

150

200

250

6 8 10 12 14 16 182

OF path 0%
OF path 25%
OF path 50%
OF path 75%
Key path 0%
Key path 25%
Key path 50%
Key path 75%

OF path 0%
OF path 25%
OF path 50%
OF path 75%
Key path 0%
Key path 25%
Key path 50%
Key path 75%

MARTINELLO_LAYOUT_Layout 1 3/27/14 12:17 PM Page 17

(b)

Figure 3: RTT comparison between a reference OpenFlow and a KeyFlow switch: 3a) average and 3b) maximum
packet RTT

Proc. of SPIE Vol. 9388 93880I-4

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 03/20/2015 Terms of Use: http://spiedl.org/terms

0 . 0 0 . 1 0 . 2 0 . 3 0 . 4 0 . 5 0 . 6 0 . 7 0 . 8 0 . 9 1 . 0 1 . 1
0
5

1 0
1 5
2 0
2 5
3 0
3 5
4 0
4 5

 K e y F l o w

J i t t e r m e a s u r e m e n t s : K e y F l o w p a c k e t R T T
Pa

cke
t R

TT
 [m

s]

D a t a r a t e [G b p s]

(a)

0 . 0 0 . 1 0 . 2 0 . 3 0 . 4 0 . 5 0 . 6 0 . 7 0 . 8 0 . 9 1 . 0 1 . 1
0
5

1 0
1 5
2 0
2 5
3 0
3 5
4 0
4 5

 J i t t e r m e a s u r e m e n t s : O p e n F l o w p a c k e t R T T

 O p e n F l o w (F l o w t a b l e 0 %)

Pa
cke

t R
TT

 [m
s]

D a t a r a t e [G b p s]

(b)

0 . 0 0 . 1 0 . 2 0 . 3 0 . 4 0 . 5 0 . 6 0 . 7 0 . 8 0 . 9 1 . 0 1 . 1
0
5

1 0
1 5
2 0
2 5
3 0
3 5
4 0
4 5

 J i t t e r m e a s u r e m e n t s : O p e n F l o w p a c k e t R T T

 O p e n F l o w (F l o w t a b l e 1 0 0 %)

Pa
cke

t R
TT

 [m
s]

D a t a r a t e [G b p s]

(c)

Figure 4: Jitter measurements based on the packet RTT for 4a) a KeyFlow switch, 4b) an OpenFlow switch
with the flow table utilization at 0%, and 4c) an OpenFlow switch with the flow table utilization at 100%

latency are expected for a single hop. Fig. 4a) and Fig. 4b) are in accordance with previous results, showing
identical results for both the KeyFlow and the OpenFlow switch with an empty table flow. However, as the flow
table utilization increases (Fig. 4), variations on the packet RTT are observed. This error bars represent the
jitter impact on an OpenFlow switch since the packet RTT depends on where the rule associated to a specific
packet is located on the table. Higher latency and jitter is achieved for bit rates close to the port line rate.

5. CORE FABRIC POWER CONSUMPTION

In this section power consumption measurements are presented. First, the used methodology is described.
Then, a set of results is detailed including power consumption of a reference OpenFlow switch and a stateless
KeyFlow switch. Power consumption is broken down into different components: 1) Total power consumption is
presented accounting for both static and dynamic contributions, 2) Module-based power consumption is described
including all the modules defined in the implementation section, and 3) A resource-based overview is given, where
the power consumption of each of the NetFPGA resources is stated.

Measuring the power consumption of the two different switches is achieved by following three steps. The
presented methodology is associated to the NetFPGA Xilinx platform. The first step includes a gate-level
simulator, ModelSim. ModelSim is a Perl-based testing infrastructure which provides functional verification of
the design. The outcome of the simulations includes the activity rates for each of the NetFPGA resources.
These activity rates, also known as toggle rates, are needed to define how often there is a gate transition, and
thus contributing into the overall power consumption. NetFPGA resources constitutes logic resources, signals,
input/outputs (IOs), the input clocks for the block random access memories (BRAMs), and the digital clock
managers. The simulation tool also provides the frequency for each of the internal clocks. Once these toggle
rates are calculated they are exported into a .vsd file. Additionally, the design needs to be synthesized using a
Xilinx ISE Virtex II 50 Pro NetFPGA. The synthesized design is described in a native circuit description (NCD)
file. This file contains the logic of the design mapped to components. This file is also used to create a physical
constraints file (PCF) which is important when determining the overall power consumption.17 This synthesized
design is used in the final step, together with the .vsd file to calculate the power consumption. The Xilinx
XPower Analyzer (XPA) tool from Xilinx ISE design software is used. This tool provides the power consumption
for each of the components based on the NCD and the toggle rates of each of the NetFPGA resources.

All the results presented in this section have been taken generating a single 1500-byte packet in order to
avoid bottlenecks from buffering. Additionally, for the reference OpenFlow switch the flow table is set to 40
flows based on previous work presented in literature.7

Table 1 presents the static and the dynamic components of the power consumption for a) OpenFlow switch, b)
Hybrid switch, and c) KeyFlow switch. The static power consumption is constant for the three implementations
and it is measured to be 159 mW. From the dynamic power consumption perspective, 6% savings and 53.7%

Proc. of SPIE Vol. 9388 93880I-5

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 03/20/2015 Terms of Use: http://spiedl.org/terms

1300

1200

1100

1000

900

800

700

600

500

40C

300 -

200 -

100 -

0
Clocks Logic

IM KeyFlow
EN OpenFlow
El Pure KeyFlow

94.46%

Signals lOs

NetFPGA resources

BRAMs DCMs

Table 1: Total power consumption [mW]
Static Dynamic Total

OpenFlow 159 2514 2673
Hybrid 159 2384 2543

KeyFlow 159 1164 1323

savings are achieved by the Hybrid and the standalone KeyFlow switch, respectively, compared to the reference
OpenFlow switch. This outcome is achieved since the KeyFlow switch does not require the use of TCAMs when
performing the table lookup. These results are verified when looking in detail at the contribution of each of the
modules for the Hybrid switch. Fig. 5a) depicts a broken down analysis of each of the implementation modules.
As expected, the most power-demanding module is the wildcard match since it requires TCAMs. It accounts
for 78.75% of the overall power consumption of the output port lookup module. Exact match, result FIFO,
and arbiter, which are used in the lookup process contribute with 6.51%, 6.83%, and 6.66%, respectively. The
key processor accounts only for 0.97% of the overall power consumption. The data and control signals are the
most power demanding resources for the NetFPGA as presented in Fig. 5b). Further analysis on the signals can
be achieved by using a NetFPGA analyzer module which captures and allows designers to further work with
control, data, inwire, and outready signals.18 A pure KeyFlow implementation, where the entire lookup process
is eliminated as presented in Fig. 2b), achieves further savings compared to a KeyFlow switch that mantains
the OpenFlow switch capabilities. This outcome is reflected in the resource-based power consumption analysis
presented on Fig. 5b). Signals and logic power consumption can be reduced by 94.66% and 94.16%, respectively,
compared to the reference OpenFlow switch. The reduction of the complexity of the forwarding engine leads to
an overall power savings of 53.7%.

(a) (b)

Figure 5: 5a) module-based and 5b) resource-based power consumption contributions for an OpenFlow, KeyFlow
(or Hybrid), and Pure KeyFlow switch

6. CONCLUSIONS

This article presents a new approach named KeyFlow for a south-bound protocol for SDN in order to offer
a cost- and energy-efficient solution for the forwarding plane in transport networks. The proposal is based on
an RNS. The presented results include RTT analysis evaluated on an emulation scenario based on a Mininet
platform, a jitter comparison between an OpenFlow and a KeyFlow switch implemented on a NetFPGA-based
platform, and power consumption comprehensive analysis for a reference OpenFlow switch, a KeyFlow switch,
and a hybrid switch that offers both OpenFlow and KeyFlow capabilities. The RTT depends on the number of
hops and how much populated the flow tables are. For flow table utilization below 25% no significant difference
on the packet RTT is observed between the KeyFlow and the OpenFlow switch. For packets below 3 hops
both switches perform similarly. As the number of hops increases KeyFlow outperforms OpenFlow specially for
densely populated flow table switches, achieving more than 50% RTT reduction when using the novel KeyFlow

Proc. of SPIE Vol. 9388 93880I-6

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 03/20/2015 Terms of Use: http://spiedl.org/terms

approach. KeyFlow is an alternative for current power-demanding high-performance switches. The major power
consumption contribution in core network nodes are the TCAMs used for the wildcard match in the table lookup
process. Wildcard match accounts for more than 78% of the output port lookup module, and thus, 57.3% power
savings are achieved when replacing the traditional table lookup by a simple mathematical operation.

Future work includes embedded KeyFlow on wireless access points for mesh networks, and an enhanced
version of KeyFlow to achieve higher power savings tackling the clock frequencies which are the second major
power consumption contributor of a forwarding network node. On-chip solutions are the next step towards
power-aware low latency SDN transport networks.

REFERENCES

[1] Betker, A., Gamrath, I., Kosiankowski, D., Lange, C., Lehmann, H., Pfeuffer, F., Simon, F., and Werner,
A., “Comprehensive topology and traffic model of a nationwide telecommunication network,” Journal of
Optical Communications and Networking 6, 1038–1047 (November 2014).

[2] Iovanna, P., Michele, F. D., Palacios, J. P. F., and López, V., “E2E traffic engineering routing for transport
SDN,” Proc. OFC W1K.3 (March 2014).

[3] Marconett, D., Liu, L., and Yoo, S. J. B., “Optical FlowBroker: load-balancing in software-defined multi-
domain optical networks,” Proc. OFC W2A.44 (March 2014).

[4] Gringeri, S., Bitar, N., and Xia, T. J., “Extending software defined network principles to include optical
transport,” IEEE Communications Magazine 51, 32–40 (March 2013).

[5] Yeganeh, S. H., Tootoonchian, A., and Ganjali, Y., “On scalability of software-defined networking,” IEEE
Communications Magazine 51, 136–141 (February 2013).

[6] Vencioneck, R. D., Vassoler, G., Martinello, M., Ribeiro, M. R., and Marcondes, C., “FlexForward: Enabling
an SDN manageable forwarding engine in open vswitch,” 10th CNSM and Workshop (2014).

[7] Martinello, M., Ribeiro, M. R. N., de Oliveira, R. E. Z., and de Angelis Vitoi, R., “KeyFlow: A prototype
for evolving SDN toward core network fabric,” IEEE Network 28, 12–19 (March 2014).

[8] Saldaña, S., Oliveira, R. E., Vitoi, R., Martinello, M., Ribeiro, M. R. N., Fagertun, A. M., and Monroy,
I. T., “Tackling opeflow power hog in core networks with keyflow,” Electronic letters (2014).

[9] Saldaña, S., Resendo, L., Ribeiro, M. R. N., Fagertun, A. M., and Monroy, I. T., “Power-aware multi-layer
translucent network,” Proc. OFC W2A.53 (March 2014).

[10] Vishmanath, A., Sivaraman, V., Zhao, Z., Russell, C., and Thottan, M., “Adapting router buffers for energy
efficiency,” CoNEXT (ACM) , 19 (March 2011).

[11] Zerbini, C. A. and Finochietto, J. M., “Performance evaluation of packet classification on FPGA-based
TCAM emulation architectures,” Globecom (2012).

[12] Congdon, P. T., Mohapartra, P., Farrens, M., and Akella, V., “Simultaneously reducing latency and power
consumption in OpenFlow switches,” IEEE ACM transactions on networks 22 (June 2014).

[13] Garner, H. L., “The residue number system,” Trans. Electronic Computers , 140–147 (1959).

[14] Naous, J., Erickson, D., Covington, G. A., Appenzeller, G., and McKeown, N., “Implementing an OpenFlow
switch on the NetFPGA platform,” Proc ANCS (2008).

[15] Jiang, W., “Scalable ternary content addressable memory implementation using FPGAs,” ANCS (2013).

[16] Keinanen, J., Jokela, P., and Slavov, K., “Implementing zFilter based forwarding node on a NetFPGA,”
Proc. of NetFPGA Developers Workshop (2009).

[17] Xilinx, I., “FPGA editor guide,” http : //www.xilinx.com/support/swmanuals/21i/download/fpedit.pdf
(November 2014).

[18] Goodney, A., Shailesh, N., Mengchen, W., Peigen, S., Vivek, B., and Cho, Y. H., “NetFPGA logic analyzer,”
2nd North American NetFPGA developers workshop (2010).

Proc. of SPIE Vol. 9388 93880I-7

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 03/20/2015 Terms of Use: http://spiedl.org/terms

