

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Dec 21, 2017

Exact Methods for Solving the Train Departure Matching Problem

Haahr, Jørgen Thorlund; Bull, Simon Henry

Publication date:
2015

Link back to DTU Orbit

Citation (APA):
Haahr, J. T., & Bull, S. H. (2015). Exact Methods for Solving the Train Departure Matching Problem. DTU
Management Engineering.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Online Research Database In Technology

https://core.ac.uk/display/43248956?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://orbit.dtu.dk/en/publications/exact-methods-for-solving-the-train-departure-matching-problem(9ad24fe8-4e75-4b70-996f-ca35ca2be93d).html

Exact Methods for Solving the Train Departure Matching

Problem

Jørgen Thorlund Haahr and Simon Henry Bull
Department of Engineering Management

Technical University of Denmark

Abstract

In this paper we consider the train departure matching problem which is an important
subproblem of the Rolling Stock Unit Management on Railway Sites problem introduced
in the ROADEF/EURO Challenge 2014. The subproblem entails matching arriving train
units to scheduled departing trains at a railway site while respecting multiple physical and
operational constraints. In this paper we formally define that subproblem, prove its NP-
hardness, and present two exact method approaches for solving the problem. First, we present
a compact Mixed Integer Program formulation which we solve using a MIP solver. Second, we
present a formulation with an exponential number of variables which we solve using column
generation. Our results show that both approaches have difficulties solving the ROADEF
problem instances to optimality. The column generation approach is however able to generate
good quality solutions within a few minutes in a heuristic setting.

1 Introduction

Many railway planning problems have been studied in the literature for the last two decades.
These range from long term high level planning problems, such as line planing, to short term
rolling stock and crew scheduling problems. At train stations, planning problems include platform
assignment, routing, and shunting. These problems often have direct or indirect dependencies
but due to the high complexity, or company organizational structure, they are often solved in
isolation and in sequential order. The ROADEF/EURO Challenge 2014 presents a problem where
the goal is to use a holistic approach to the planning problems at railway stations. The problem
combines several planning aspects that must be handled between arrivals and departures at terminal
stations such as matching available trains to departures, routing trains in the station infrastructure
(without any two trains occupying the same infrastructure without sufficient time between them),
determining whether and when to perform maintenance, and when and where to do the couplings
and decouplings of train convoys.

In this paper we present our contribution for the Departure Matching Problem (DMP) in
this challenge. The DMP can be considered a pure subproblem of the problem presented in the
ROADEF/EURO Challenge 2014 document [11], which we will refer to as the Rolling Stock Unit
Management on Railway Sites (RSUM) problem.

The RSUM problem entails many different aspects but the performance of any solution approach
will be greatly affected by how trains are matched to departures. The considered subproblem (DMP)
is the problem of finding a good and feasible matching of trains to departures while respecting
train compatibility and maintenance constraints. In contrast to the RSUM problem the DMP does
not consider how to route, couple and de-couple train units in the station. For the purpose of
this paper, we will assume that routing is done in a subsequent step. Importantly, many routing
decisions are motivated by the matching of trains to departures; whether an arriving train should
visit a maintenance facility or be parked in a yard depends on the train’s subsequent departure.

In this paper we propose and benchmark two distinct optimal solution methods for solving the
DMP. We will consider finding solutions that are either optimal or proven to be some percentage

1

from the optimum. The proposed solution methods are however flexible and can easily be adjusted
to find solutions in a heuristic manner. We investigate the potential of the methods in a heuristic
setting.

1.1 Our Contributions

We present a definition for the DMP; a distinct, self contained sub-problem of the RSUM, and
present two optimization-based approaches for solving instances of the DMP. Firstly, we introduce a
Mixed Integer Program (MIP) mathematical model and present results produced using a commercial
MIP solver. Secondly, we propose an alternative but equivalent MIP mathematical model that is
solved using column generation. Due to time limitations and the hardness of the instances we only
solve the pricing problem at the root node. The results are presented in the benchmark section.

2 Problem Definition

A full solution to the RSUM problem requires routing trains in the station infrastructure, respecting
routing restrictions, headways, capacities, and many other constraints. Solutions are ranked using
a weighted sum of multiple objective measures such as making preferred matchings, allocating
arrivals and departures to preferred platforms, avoiding unnecessary platform dwell times etc.
Solving the entire problem as a single optimization problem is intractable considering the given
strict run-time requirements of the competition. We decompose the RSUM problem into several
subproblems. The first subproblem, namely the DMP, is the scope of this paper.

A solution to the matching subproblem (DMP) can be used to build a solution to the overall
RSUM problem, taking into account its other constraints and objectives. However the fixed matching
provided from the DMP may lead to suboptimal solutions to the entire problem. Our approach for
solving instances of the RSUM is to first solve a DMP instance, and then use an optimal approach
to assigning platforms, before heuristically finding train routes. Our solution method is described in
[3]. The DMP contains components of the RSUM sufficiently unrelated to routing, and those that
we have determined through experimentation provide a sufficiently detailed problem, capturing
related RSUM components to create a detailed but tractable subproblem.

The DMP is a matching problem between arrivals and departures at some terminal station,
with complicating dependencies between potential matches. Given a fixed planning horizon at the
station, there is a set A of trains arriving and a set of pre-specified departures D that must be
assigned some compatible train unit. Every arrival a ∈ A has an arrival time arrT imea, and every
departure d ∈ D has a departure time depT imed. One arrival corresponds to a single train unit,
and if several trains arrive together as a convoy then they are represented by multiple arrivals
with the same arrival time. Similarly one departure exists for every train that departs in a convoy
sharing the same departure time. A set I of initial trains may reside in the station infrastructure
at the start of the planning horizon. These are all available from the start of the planning horizon
h0. The total set of trains is denoted by T = I ∪A. We define the availability time of a train t ∈ T
as startT imet where startT imet = arrT imet if t is part of an arrival and startT imet = h0 if t is
an initial train (i.e. in I).

Some departures are the beginning of a tour that returns the train units to the terminal station
as arrivals within the planning horizon. If an arrival is linked to an earlier departure we call it a
linked arrival. Likewise we call the earlier departure a linked departure. In order to avoid confusion,
we note that the “linked” concept does not refer to physical train units that are coupled together
to form a convoy. A linked arrival states that the arriving train is the same train that was assigned
to the corresponding (earlier) linked departure. In contrast to a non-linked arrival, this means that
the arriving train is the same physical train which was assigned to the linked departure. If the
linked departure is cancelled, then a new replacement train arrives instead. The linking between
arrivals and departures is important because it means that the properties of (linked) arrivals are
not known, without knowing what trains (if any) are matched to those arrivals’ linked departures.

2

We define the set L ⊆ A as the set of arrivals which have an earlier linked departure, and define
σ(a) as the linked departure of the arrival train a ∈ L.

Every train t ∈ T belongs to some category catt ∈ C that defines common characteristics such as
train length, capacity and maintenance durations. Two trains of the same category are considered
interchangeable when assigning trains to departures – with one exception. All trains in the system
are subject to two types of maintenance constraints: Distance Before Maintenance (DBM) and
Time Before Maintenance (TBM). Each train t has some initial remaining DBM (remDBMt) and
remaining TBM (remTBMt). Every departure d ∈ D has a required DBM (remDBMd) and a
required TBM (remTBMd) to finish the task. If a train is to be matched to departure d, then it
must have sufficient DBM and TBM.

A train may visit a maintenance facility at the station between arriving and departing, which
in the RSUM problem takes a fixed amount of time and resets both the DBM and TBM to their
maximum value for the train, and we include the decision of whether or not to perform maintenance
in the DMP. The constants maxDBMt and maxTBMt indicate the level of DBM and TBM that
is obtained if a maintenance operation is performed on train t. For trains of the same category
(i ∈ C) the constants have identical values, and we can therefore use the notation maxDBMi and
maxTBMi without ambiguity. Due to a limited amount of manpower at the maintenance facilities
the total number of maintenance operations per day is limited to a constant of maxMaint ∈ Z+.
The imposed limit means that certain combinations of matches can not all be made: if there are
n > maxMaint otherwise independent matches that would all occur on the same day and all
require maintenance, at most maxMaint of them can be made. The remaining (n−maxMaint)
trains could not be maintained and would therefore not have sufficient DBM and TBM to be
matched to the (n−maxMaint) departures.

For those arrivals that have a linked departure, category, DBM and TBM are dependent on
any matching made to that linked departure. An arrival a ∈ L is linked to a previous departure
d ∈ D, i.e., the train t ∈ T assigned to departure d is the same train arriving later in a. The train
in a therefore inherits the remaining DBM and TBM and category of train t. In the case where no
train is assigned to d then another new train arrives with its own specified remaining DBM, TBM,
and category.

Every train t ∈ T can only be matched with a limited set of departures. We define CompDep(t)
as the set of departures that are compatible with t. Likewise we define CompTr(d) as the set of
trains that are compatible with departure d ∈ D. These two sets are considered as parameters to
the problem, and it is up to the end-user to specify which factors to consider. These factors could
include for example a minimum routing time, a maximum time between arrival and departure,
or a maximum number of potential matchings for any given train. For the sake of simplicity, we
define only a few simple rules for possible matchings. Given a departure d ∈ D and a non-linked
arrival train or initial train t ∈ T a matching is possible if the following conditions are satisfied:

catt ∈ compCatDepd
startT imet +maintenancet > depT imed

max{remDBMt, allowDBMt ·maxDBMt} ≥ reqDBMd

max{remTBMt, allowTBMt ·maxTBMt} ≥ reqTBMd

where the binary parameters allowDBMt and allowTBMt indicate whether DBM and TBM are
allowed to be performed. In some cases there is only time for one of the two operations but not
both. The constant maintenancet indicates the time needed to perform the necessary maintenance
operations for train t, or zero if no maintenance is required.

Given a departure d ∈ D and a linked arrival t ∈ L it is harder to limit the options beforehand.
In the preprocessing it can only be restricted by startT imet > depT imed as the category, remaining
DBM and remaining TBM of the linked arrival t are unknown.

In practice it is in some cases expected that certain arrivals are matched with specific departures.
If such a match is successful we call it a train reuse, otherwise it is a missed train reuse. We denote
U as the set of train uses, where tru and depu define the train t ∈ T and departure d ∈ D for a
reuse u ∈ U .

3

A1

c1

A2

c2

A3

c3

D1

c1, c2

D2

c2

Figure 1: An illustration of the matching problem showing potential matches between three arrival
trains (A1, A2, A3) and two departures (D1, D2). Each arrival has a train category (c1, c2, c3) and
each departure has one or more acceptable train categories. Departure D1 and arrival A3 are
linked; arrival A3 has replacement category c3 only if departure D1 is unmatched, but instead has
category c1 or c2 depending on which arrival is matched to D1. The only matching of cardinality 2
is {(A2, D1), (A3, D2)}; matching A1 with D1 precludes matching A3 with D2 as the category of
arrival A1 is incompatible with departure D2.

Definition 2.1 (The Departure Matching Problem Definition). We define the DMP as the problem
of finding a feasible matching between trains and departures that respects the departure maintenance
requirements, the departure train category compatibility, the time required to perform the needed
maintenance, and the total number of maintenance operations per day. The objective of the DMP
is to minimize the number of uncovered departures and to maximize the number of train reuses.
In every instance of the problem there is a fixed penalty for every missed train reuse and a fixed
penalty for every uncovered departure.

Figure 1 shows a small example with three arrival trains (A1, A2, A3) and two departure trains
(D1, D2), considering three different train categories having no maintenance requirements or other
restrictions. In this example departure D1 and arrival A3 form a linked arrival pair: whatever is
matched to departure D1 returns as arrival A3. Arrival train A3 is in L, and its linked departure is
D1; that is, σ(A3) = D1. In the figure, arrival A3 has category c3 marked as its replacement train
category. That is, it only has category c3 if no match is made to departure D1, but if instead some
match is made, the category of A3 is inherited from that match. The match between arrival A3

and departure D2 is not independent of other matchings made; it is only feasible if a match is also
made between arrival A2 and departure D1. If D1 is unmatched, arrival A3 will have the category
of its replacement train, incompatible with departure D2. Similarly, if D1 is matched to arrival A1

then arrival A3 will inherit the category of arrival A1, also incompatible with departure D2.

3 Related Problems

The RSUM as defined for the ROADEF competition is based on real station infrastructure
and problems, with certain simplifications to make it appropriate for the competition, such as
simplifications of the switching and yard infrastructure. Real train stations face similar problems,
though those problems differ in specific details. A matching problem similar to the DMP subproblem
(that we have identified) could also exist as a subproblem at stations, though it may not necessarily
be treated as a self contained sub-problem.

If the linking between some departures and later arrivals is ignored or not present, and performing
maintenance is ignored, then whether or not a match is possible would be pre-determinable. If
the problem was just that of minimizing the number of uncovered departures, then it would be a

4

max
∑

i∈{1,2,3}

p1xi1 + p2xi2 + p3xi3 + p4xi4

w1x11 + w2x12 + w3x13 + w4x14 ≤ c1
w1x21 + w2x22 + w3x23 + w4x24 ≤ c2
w1x31 + w2x32 + w3x33 + w4x34 ≤ c3

∑
i∈{1,2,3}

xij ≤ 1 ∀j ∈ {1, 2, 3, 4}

xij ∈ {0, 1}

Figure 2: Multiple Knapsack Problem instance with 4 (coloured) items and three knapsacks.

relatively simple maximal bipartite matching problem, solvable in polynomial time [4]. If minimizing
a weighted sum of uncovered departures and missed reuses, the problem could be formulated as an
assignment problem, also solvable in polynomial time [9].

The presence of linked arrivals inherently changes the structure of the problem. The matchings
themselves are not independent because whether or not some train can be matched to some
departure can depend on what other train is matched to some other departure. Similarly, the ability
to perform maintenance changes which matches are possible, and the restriction of the maximum
number of maintenance operations per day makes matches non-independent. The DMP combines
the matching with components of the RSUM that we have identified as being closely related to and
significantly interacting with the matching, without including so many aspects of the RSUM to
make the problem intractable. For example, in the RSUM problem the restriction of the maximum
number of maintenance operations per day means that some sets of potential matches can not all be
included, and maintenance decisions should be included with the matching subproblem. If however
there was no restriction on the maximum number of maintenance operations per day then perhaps
a subproblem that ignores maintenance could be sufficient to provide feasible or optimal solutions,
relying on it always being possible to perform maintenance if necessary. For some other similar
station arrival problem, a similar but distinct problem to the DMP might instead be identified as a
subproblem.

Freling et al. identify the subproblem of matching departures and arrivals as part of a shunting
problem [2]. The authors formulate a matching subproblem that considers the unattractiveness of
producing matches that require breaking up trains into units matching different departures. In
contrast, in the DMP we do not include any cost or penalty for matches which require coupling or
decoupling. The authors do not describe anything similar to linked arrivals or maintenance decisions
and daily restrictions, which are the features of our problem that make matches interdependent.

Kroon et al. identify a matching sub-problem as part of a larger station shunting problem [8].
However there is no analogue to the linked arrivals of the DMP. The authors do not solve the
matching problem in isolation but as part of a larger formulation that includes shunting features
that are not part of the DMP or even necessarily part of the RSUM.

In the shunting literature there are many problems that share similarities with the RSUM
problem and potentially have a subproblem that is very similar to the DMP. However shunting is not
necessarily an important component of the ROADEF challenge because the station infrastructure
has large and simplified “yard” resources. These are abstractions with only a maximum capacity,
but train units can be parked in or removed from the yards without considering their ordering.

5

T1

L1
L2

L3

L4

-p
1

-p
3

-p
4

T2
T3

-p
2

w3

w2

w1

w4

w3

w3w2

w4

w4

w4

Figure 3: The constructed Train Matching Problem instance from the Multiple Knapsack Problem
instance shown in Figure 2. Each train (T1, T2, T3) corresponds to a single knapsack, and each
linked departure (L1, L2, L3, L4) corresponds to one item. For the sake of clarity, initial trains
have been grouped together since the graph is identical for each train.

4 NP-hardness

It is relatively simple to prove that the DMP is NP-hard by reduction from the Knapsack Problem.
However, since the classic version of the Knapsack Problem is NP-hard in the weak sense, we prove
the same by reduction from the 0-1 Multiple Knapsack Problem (MKP). We adopt the definition
of the MKP of [7]:

Definition 1. Given a list of items to pack, each with a profit pi and weight wi, and one or more
knapsacks of capacity cj . The 0-1 Multiple Knapsack Problem is the problem of choosing a list of
items for every knapsack such that the profit of the selected items is maximized while respecting
the weight-restriction of every knapsack.

Note that the 0-1 variant only allows each item to be packed at most once. We show NP-
completeness by reduction from a MKP instance to a DMP instance with a simple mapping from
knapsacks to trains and items to departures. All physical train units have a DBM constraint that
must be respected, this will be the map to the capacity of a knapsack. All departures assigned to
a train consume some level of DBM and a profit/penalty is achieved/given, this corresponds to
putting an item into the knapsack. The weight corresponds to the required level of DBM.

An illustrative example of the transformation is shown in Figure 2. The knapsack example
contains four items and three knapsacks with individual knapsack capacities where every item can
be packed at most once. The resulting DMP instance is shown in Figure 3.

Consider a MKP instance with N items and M knapsacks, let the weights and profits respectively
be defined as wi and pi for every item i, and finally the capacities as cj for every knapsack j.

We construct a DMP instance with M initial (or arrival) trains and N linked departures. Each
individual train has remaining DBM corresponding to one of the capacities cj of a knapsack. We set
the remaining TBM to some high value such that this constraint is never binding. The departure
and arrival times are set such that any of the four trains could be matched to any of the four linked
departures, provided that it has sufficient remaining DBM. Any train can also visit any subset of
the departures. The cost of matching every respectable (linked) departure is set to the negative
profit of the item corresponding to each departure in the MKP instance. The cost of cancelling a
departure is set to zero, and w.l.o.g. no maintenance is allowed. We can ensure that no maintenance
will be performed by enforcing zero allowed maintenance operations, or by setting a high cost on
maintenance, or by setting the replenished value to zero after maintenance. No train-reuse costs
are defined. The initial trains are of the same single category, and all departures (of the linked
departures) are compatible with only that train type. The replacement train of the linked arrivals
have a different (incompatible) train type, and therefore do not influence the solution or quality in
any way. Thus it is only possible for the initial trains to be matched to any of the linked departures.
The optimal solution of the DMP instance will therefore only match the linked departures with the
physical trains starting as the specified initial trains. Further, the matching-sequences are restricted
by the given capacities of the MKP instance, where every matching/item consumes the specified
knapsack weights. Due to the departure constraint, every linked departure can be matched at

6

most once, thus every item is at most assigned to one knapsack. If any train is matched to linked
departure i, −pi is added to the objective and inflicts a consumption (reqDBMi) of wi to the
DBM of the train. As no costs, but the profits of the MKP instances are present, the optimal
solution value will correspond to the optimal value of the MKP instance, only with a negative
sign. Alternatively, in order to more closely follow the DMP objective function we adopt in later
sections, the profit can be reformulated in terms of minimizing the cost of cancellations. A item of
the MKP instance is only picked in a particular knapsack iff the corresponding linked departure is
matched in the DMP instance to a particular train (initially, or as a returning linked arrival of that
train). In conclusion, by transforming (in polynomial time and resources) an instance of the MKP
is solved by solving the constructed DMP instance. The transformation graph is polynomial in the
number of vertices and edges. The number of vertices is 1 +M . The graph is acyclic and every
node only connects forward in time (with respect to arrival and departure times) which results in a

total of
∑N
k=1 k = 1/2(N2 +N) edges.

Theorem 1. The DMP is NP-hard

Proof. It is straightforward to verify whether a solution to the DMP is feasible or not. This
is verified by checking that the DBM and TBM constraints are valid, that the train types are
compatible, and that the matched arrival and departures times are respected by the train units.
Likewise, it is simple to calculate the objective cost of any given feasible solution. The number
of operations and resources used to construct the DMP instance is polynomial. The number of
vertices and edges created are polynomial in the MKP instance size. By reduction from the MKP,
as described in the example, we have argued that there is a one-to-one correspondence between
the solution of the constructed DMP instance and the MKP instance. Any feasible train matching
solution to the DMP instance is a feasible item selection for the MKP instance, and vice versa.

5 Mixed Integer Program Model

In this section we present a MIP mathematical model for the DMP. The size of the proposed MIP
model for the DMP is polynomial in the number of input trains and departures, and can be solved
using a commercial solver.

The model contains six types of variables. A set of binary variables md
t determine whether

train t ∈ T is matched to departure d ∈ D. Matches that are not present in the compatibility
set (CompDep(t) or CompTr(d)) are omitted or fixed to zero. We also introduce a set of binary
variables catit that indicate if train t ∈ T is of category i ∈ C. For all initial trains and non-linked
arrival trains the category is known and the corresponding variable can be fixed (or omitted). The
continuous variables dbmt and tbmt determine the DBM and TBM of train t ∈ T at the time before
departure, which is the initially available DBM/TBM or maxDBMt/maxTBMt if maintenance
is performed on the train. Finally we introduce the binary variables fdt and gdt that determine
whether a train t ∈ T matched to d ∈ D is being maintained on DBM or TBM. In the following
we will assume that maintenance of DBM and TBM can only be done on one specific known day,
for a particular matching. We introduce a binary parameter ωdt,day that is 1 if a match between t
and d would perform maintenance on day (if it performs it at all), and 0 otherwise. The objective
is formulated as a minimization of the number of unmatched departures and the cost of missed
train reuse:

min
∑
d∈D

cancellationCostd · cd

−
∑
u∈U

reuseCost ·mdepu
tru

+ reuseCost · |U|

7

We minimize the number of cancelled trains and maximize the number of reuses. Note that the
final term is constant and can be left out. The constraints of the model are the following:∑

t∈T
md
t ≥ 1− cd d ∈ D (1)∑

t∈T
md
t ≤ 1 d ∈ D (2)∑

d∈D

md
t ≤ 1 t ∈ T (3)∑

t∈T

∑
d∈D

(
ωdt,dayf

d
t + ωdt,dayg

d
t

)
≤ maxMaint day ∈ H (4)

fdt + gdt ≤ 2md
t t ∈ T , d ∈ D (5)

Constraints (1) ensure that every departure is assigned (to some train), unless there is a cancellation.
Constraints (2) ensure that at most one train is assigned to every departure. Constraints (3) ensure
that each train is assigned at most once. Constraints (4) ensure that the total number of maintenance
operations (every day) is respected. Constraints (5) prohibit maintenance usage on a match if that
match is not made.∑

i∈C
catit = 1 t ∈ T (6)

md
t ≤

∑
i∈compCatDepd

catit t ∈ T , d ∈ D (7)

catit ≥ catit′ +m
σ(t)
t′ − 1 t ∈ T , t′ ∈ T \ {t}, i ∈ C (8)

catitt ≥ cσ(t) t ∈ T (9)

Constraints (6) ensure that every train is assigned exactly one category. Again, the constraint
for initial trains and non-linked arrival trains can be omitted, if the correct value is fixed. Con-
straints (7) ensure that trains cannot be assigned to departures where the category is not compatible.
Constraints (8) ensure that if train t′ is matched to the linked departure σ(t) of train t, then train
t inherits the category i of train t′. Finally, constraints (9) ensure that, if the linked departure σ(t)
of train t is not covered, then train t has the category it of its replacement train.

dbmt ≤
∑

t′∈T \{t}

(
dbm

σ(t)
t′ − reqDBMσ(t)

)
·mσ(t)

t′ t ∈ T (10)

+ cσ(t) · remDBMt

+
∑
d∈D

fdt ·M

dbmt ≤
∑
i∈C

maxDBMi · catit t ∈ T (11)

0 ≤ dbmt −md
t · reqDBMd t ∈ T , d ∈ D (12)

Constraints (10) ensure that the available DBM for a train t is correct. The right hand side consists
of three terms. The first term counts the contribution from trains that are linked to t. If the train
is cancelled the term sum is zero, and the second term will contribute with remDBMt which
is the new train inserted in case of a cancellation of departure σ(t). The third term makes the
constraint non-binding if maintenance is performed; the constant M is a big number that is no less
than the maximum of maxDBMi for all i ∈ C. For the sake of clarity the constraints have been
presented using a non-linearity in the first term. In order to maintain a linear model we replace
the constraints with linear constraints described in section 5.1. Since the train category i of a
train t might be unknown we further constraint the DBM of the train to respect the maxDBMi in

8

Constraints (11). Constraints (12) make sure that enough DBM is available for a matching. For all
matchings that are not active the constraint is just requiring dbmt to be non-negative.

We will not present the corresponding constraints for TBM since they are analogous to
Constraints (10), (11) and (12).

5.1 Reformulating the Nonlinear Constraints

The first term on the right hand side of Constraints (10) is non-linear and can be remodelled as a
linear constraint by adding one more group of continuous variables and additional constraints. We
introduce one new auxiliary variable κdbmt for each train t that measures the DBM contribution of
the train linked to departure σ(t). We replace Constraints (10) with the following set of constraints:

dbmt ≤ κdbmt + cσ(t) · remDBMt +
∑
d∈D

fdt ·M t ∈ T (13)

κdbmt ≤ dbmt′ −mσ(t)
t′ · reqDBMσ(t) t ∈ T, t′ ∈ T \ {t} (14)

+
∑

d∈D\σ(t)

md
t′ ·M +

∑
t′′∈T \t′

m
σ(t)
t′′ ·M

κdbmt ≤M · (1− cσ(t)) t ∈ T (15)

The three terms of Constraints (13) are analogous to the three terms of Constraints (10), except
the first non-linear term is replaced with the new contribution term κdbmt . Constraints (14) have
four terms defining an upper bound on the linked contribution for train t. The first two terms are
relevant if train t′ is matched to the linked departure σ(t) and ensure the contribution is no greater
than the difference between the DBM for t′ and the required DBM for departure σ(t). The third
term loosens any bound on κdbmt related to t′ if t′ is matched to some departure other than σ(t).
The fourth term loosens the bound on κdbmt related to t′ if some other train t′′ is matched to σ(t).
Finally, Constraints (15) make sure that the contribution is zero if departure σ(t) is cancelled.

5.2 Reducing the Model

In order to simplify (and streamline) the model description we treated every train as a linked
arrival train. However, some arrival trains are not linked, and some trains are initial trains already
in the system. For both types of trains the constraints can be simplified, and for an instance with
few linked arrivals the model may be reduced substantially. The variables catit decide the category
for a train t. For initial trains and non-linked arrivals the category is set as a problem parameter,
and so for such trains Constraints (6) are not necessary. Constraints (7) can be removed and
replaced by setting the upper bound to zero for any departure for which the known category of t is
incompatible. Constraints (8)-(9) are unnecessary.

A non-linked arrival or an initial train t has no DBM or TBM contribution from any previous
train. Constraints (14) can have the κdbmt term removed, and we can set cσ(t) = 1 (because instead
train t will always take its own remaining DBM). Constraints (14)-(15) are unnecessary in such
cases.

6 Column Generation Model

The formulation presented in section 5 models every initial and arrival train individually even
if some of them constitute a sequence of linked arrivals and departures and therefore essentially
represents a single physical train unit. In this section we present a formulation that models each
physical train unit using a single variable. The number of possible variables grows more than
exponentially by the number of present linked arrivals. Initially every train can be matched to
any linked departure (i.e. departure with a linked arrival), and continue to any other linked
departure, before it finally reaches its final departure. The number of potential paths is bounded

9

by O(|T | · |L|! · |D|), where |L| is the number of linked arrivals/departures. We therefore propose a
column generation approach for solving the model. Column generation is a well-described technique
used with success for solving MIP problems, e.g. the Vehicle Routing Problem with Time Windows
(VRPTW) [1, 6, 10]. It is assumed that the reader is familiar with column generation solution
methods.

The model contains two types of variables. For every departure d ∈ D we introduce a binary
variable cd that indicates whether d is cancelled or not. For every possible train unit pattern p ∈ P
we have a binary variable λp that indicates whether pattern p is used or not. A pattern represents
a sequence of linked arrivals and departures. The objective is formulated as a minimization of the
number of unmatched departures and cost of missed train reuses :

min
∑
d∈D

cancellationCost · cd (16)

−
∑
u∈U

∑
p∈P

reuseCost · αdepup · βarrup · λp

+ reuseCost · |U|∑
p∈P

αdpλp ≥ 1− cd d ∈ D (17)

∑
p∈P

αdpλp +
∑
p∈P

φdpλp ≤ 1 d ∈ D (18)

∑
p∈P

βtpλp +
∑
p∈P

ϕtpλp ≤ 1 t ∈ T (19)

∑
p∈P

maintdayp · λp ≤ maxMaint day ∈ H (20)

λp ∈ {0, 1} p ∈ P (21)

cd ∈ {0, 1} d ∈ D (22)

The αdp is a binary coefficient that indicates whether departure d is covered by pattern p. The βtp is

a binary coefficient that indicates whether train t is used by patten p. Therefore αdepup indicates
whether departure depu ∈ D is covered by pattern p, and βarrup whether train depu ∈ T is used

by p. Finally, φdp and ϕtp are binary coefficients that indicate whether a departure d or train t is
blocked as a result of pattern p. A train is blocked by a pattern if the final matching of the pattern
ends (or terminates) on a departure that is linked to some arrival. No other pattern may use this
arrival-train, as it would mean that two patterns are using the same physical train without keeping
proper score on train type, DBM and TBM. A departure is likewise blocked by a pattern if it starts
using a train of a linked arrival. This corresponds to using one of the replacement trains which
assumes (or requires) that the linked departures was cancelled. Essentially this means that the
departure must be blocks if such a pattern is used. Finally, the coefficient maintdayp ∈ Z+ indicates
the number of maintenance operations performed on day day using pattern p.

Constraints (17) ensure that every departure is assigned (to some train), unless there is a
cancellation. Constraints (18) ensure that at most one train is assigned to every departure, and also
blocks departures for trains that assume that the departure is cancelled. Constraints (19) ensure
that each train is assigned at most once. Trains are blocked by patterns if they use the corresponding
linked departure. Constraints(20) ensure that the total number of maintenance operations (every
day) is respected. For comparability it is here assumed that, given a matching (t,d), the day that a
maintenance operation is performed is fixed. The day of maintenance operations can however be
made a choice in the subproblem without difficulty. Finally, Constraints (21) and (22) show the
variable domains. Note that Constraints (22) can be relaxed as Constraint (17) ensures that the
variables are naturally binary in all feasible solutions.

The number of variables in the model is exponential by the number of linked departures,
however compared to the MIP model present earlier the number of constraints is reduced to

10

a b c d es t

Figure 4: An illustration of the underlying graph for the matching subproblem. Every arc represents
a match between a train and a departure. A feasible path (or linked sequence pattern) starts in the
source s and ends in the sink/target t traversing a set of arcs. The feasible path (s, a, d, t) is shown
in green. A linked sequence can start (or terminate) with many different trains (or departures) thus
the dashed arcs illustrate where multiple arcs exist with the same origin and destination vertex.

O(|D|+ |T |+ |H|).
For obtaining the optimal integer solution to this problem (using column generation) a Branch

and Price (B&P) framework can be adopted. In our solution method we will however only add
columns in the root node and use Branch and Bound (B&B) for finding the best solution using
the generated columns. In general this produces solutions of high quality, but no guarantee of
optimality can be given in general. The gap between the found solution and the LP solution (of
the root node) gives a bound on the optimality gap. It is left as future research to develop a full
B&P framework.

6.1 Column Generation Subproblems

We distinguish between generating two families of columns. The first family of variables consists
of patterns containing only one train-to-departure matching. It is relatively easy to enumerate
all choices in this family and produce columns with the most negative reduced costs. In our
implementation we pre-generate all columns of this family. Therefore, for the next family of
variables, assume that the following patterns consist of at least two train-to-departure matches.

The subproblem can be split into one subproblem per train category. This transformation will
both simplify and reduce each individual problem as the number of compatible departures is lower.
The complexity of a labeling algorithm is also reduced since it is no longer needed to keep track of
the train category when extending arcs. An additional advantage is that all subproblems can then
be solved in parallel.

The subproblem consists of solving a Resource Constrained Shortest Path Problem (RSCPP).
The underlying graph consists of one node per linked arrival in addition to one source and one
sink node, see Figure 4. The arcs constitute matching choices. Three types of arcs are added. First,
arcs originating from the source to every node in the graph represent compatible trains that are
matched to the linked departure of the node. Second, arcs are added between nodes that represent
compatible linked continuations, i.e., linked arrival/departures that connect to another linked
arrival/departure. An example: in the (s, a, d, t) path the departure of the initial train matching
(represented by arc (s, a)) is linked to a arrival (node a). The departure of the next matching (arc
(a, d)) is connected to another linked arrival (node d). The departure of the last matching is not
linked to any arrival, and thus the sequence ends. As described earlier, some patterns (represented
by the path) may block other trains or departures.

More formally, we construct a directed non-cyclic graph G(V,A) for every category c ∈ C. Let
vπ ∈ V denote the source vertex, and vω ∈ V denote the sink vertex. Finally, we construct one
vertex vla ∈ V per compatible linked arrival la ∈ {a ∈ L|c ∈ compCatDepa}. The arcs in the
graph represents a train and departure match. For every train t of category c ({t ∈ T |catt = c}) an
arc a(π,la) ∈ A connects vπ and to vla if the distance between availability time of t and departure
time of departure σ(la) is sufficient1. Likewise for every departure d compatible with category

1This could depend on multiple factor such as expected/minimum routing time, maintenance time and dwell
time. For the sake of simplicity and comparability reasons we only require that the train availability time is less (or

11

c ({d ∈ D|c ∈ compCatDepd}) an arc a(ld,ω) ∈ A connects vertex vla with vω, again only if the
necessary time is available. Finally for every pair of linked arrivals (la1, la2) an arc a(la1,la2) connects
the train of la1 to departure σ(la2) if it respects the required time. No edge directly connects the
vπ to vω.

Observation 1. Any path originating in π and terminating in ω represents a feasible matching.

Proof. Every path consists of an initial arc and an terminating arc, and optionally multi intermediate
arcs. All arcs represent matchings that are possible to make. Since we only have one category per
subproblem, the construction of the graph inherently ensures that the train category is compatible
with the assigned departures. Since we assume that maintenance can be performed on any matching,
the required DBM and TBM can be fulfilled.

Observation 1. All possible matchings of at least two departures are valid paths in the constructed
graph, originating in π and terminating in ω.

Proof. All feasible matchings, w.r.t. category and time, are present in the graph. All initial
matchings are represented as arcs originating in the source π. All intermediate matchings are
present as arcs connecting the non-terminal nodes. Finally, all possible terminations of linked
sequences are represented as arcs terminating in the sink ω.

The subproblem can now be defined as the problem of finding the minimum cost path originating
from vπ and to vω, given some edge costs, maintenance costs and restrictions. Every edge has a
primal cost corresponding to the objective in the master problem, i.e., zero if no train reuses are
satisfied or −(n · reuseCost) cost if n reuses have been satisfied by the path. A dual cost also
appears on every edge that depends on the dual values given after solving the master problem in
each iteration. The dual value of (17) and (18) are added to all arcs that include the corresponding
departure. The dual of (19) is added to arcs including the corresponding train. The maintenance
restrictions relate to the DBM and TBM restrictions. These values must be positive at all times,
and all edges either increase or decrease these values. A path starts with values of 0 for DBM and
TBM. All arcs originating from the source increase the values as indicated by the remDBM and
remTBM on the train (of the arc). Other edges only decrease the values as indicated by reqDBM
and reqTBM of the departures. Before extending an arc maintenance can be performed, which
replenishes the DBM and/or TBM levels, but this comes at a cost of the corresponding dual of
(20).

The problem is a RSCPP due to the maintenance constraints. In addition to the objective
coefficients, the duals from Constraints (17) and (18) are added to arcs of the corresponding
departure, and the duals from Constraint (19) are added to arcs of the corresponding trains. The
appropriate dual from Constraints (20) is added every time a maintenance operation is scheduled.

The subproblem can be formulated as a mathematical problem:

equal) to the departure time.

12

min
∑

(i,j)∈A

cijxij +
∑

(i,j)∈A

βijyij +
∑

(i,j)∈A

αijzij (23)

s.t.
∑

(i,j)∈δ+(π)

xij = 1 (24)

∑
(i,j)∈δ−(ω)

xij = 1 (25)

∑
(i,j)∈δ+(v)

xij =
∑

(i,j)∈δ−(v)

xij ∀v ∈ V \ {π, ω} (26)

∑
(i,j)∈Πv

reqDBMij · xij +maxDBM · yij ≥ 0 ∀v ∈ V (27)

∑
(i,j)∈Πv

reqTBMij · xij +maxTBM · zij ≥ 0 ∀v ∈ V (28)

xij ∈ {0, 1} yij ∈ {0, 1} zij ∈ {0, 1}

Where δ+(v) and δ−(v) respectively denote the outgoing and ingoing edges of vertex v. The binary
variables xij define whether flow is used on edge (i, j) in shortest path, and yij and zij respectively
determine whether DBM and/or TBM is performed on arc (i, j). Constraints (24)-(26) constitute
the flow-conservation in a shortest path formulation. Constraints (27) and (28) ensure that the
sufficient DBM and TBM is available - these levels can never be negative. Note that the graph is
acyclic which means that we know all possible edges that can appear before reaching any vertex v -
we denote Πv as the set of all such edges. The constraints thus ensure that if a matching is made,
then the DBM/TBM levels on any edge (leading up to v) must be non-negative.

6.1.1 Labeling Algorithm

As an alternative to solving the mathematical model of the sub-problem directly, we propose a
dynamic programming approach for finding the optimal paths for the resource constrained shortest
path. We refer to Irnich [5] for a more in-depth description of a this topic.

The labeling algorithm is similar to a shortest path algorithm that uses full enumeration, e.g.
using a Breath First Search (BFS) strategy, to find the minimum cost path. In addition, we also
need to respect some side-constraints. In our method, a label is a partial path from the source to
some intermediate vertex that also keeps track of the total reduced cost, remaining DBM, remaining
TBM and performed maintenances. Every arch has a primal and dual cost and a required level of
DBM and TBM.

Initially, we generate the empty label at the source. In every iteration of the labeling algorithm,
we pick one label at some vertex v and extend it. When extending we generate new labels from
every outgoing edges from v. Due to the possibility of performing maintenance, we generate multiple
labels for every outgoing edge: one that does not perform any maintenance, one that only performs
DBM maintenance, one that only perform TBM maintenance and one that performs both DBM
and TBM maintenance. Labels are not extended if either DBM or TBM becomes negative when
subtracting the required level of DBM and TBM since these represent prefixes of infeasible paths.

In order to reduce computational time, we introduce dominations rules. A label a is said to
dominate another label b, if we can safely remove b without loosing optimality. By removing a label
b we omit searching all paths that follow the matching pattern of b.

Domination 1. A label (costa, remDBMa, remTBMa) at vertex v dominates (costb, remDBMb,
remTBMb) at vertex v if costa ≥ costb and remDBMa ≥ remDBMb and remTBMa ≥ remTBMb.

Proof. The first label has lower cost and more DBM and TBM remaining. The second label cannot
have any advantages in terms of future matchings or maintenance costs. Thus, no matter how the
path continues from v, the first label will always be at least as good as the second label.

13

Instance Arrivals Linked Departures Reuses

B1 1235 475 1235 804
B2 1235 475 1235 0
B3 1235 0 1235 0
B4 1780 722 1780 1089
B5 2153 720 2153 1089
B6 1780 722 1780 1089
B7 304 144 304 187
B8 304 144 304 187
B9 1967 860 1967 1226
B10 196 89 196 123
B11 1122 486 1122 726
B12 570 263 570 377

Table 1: A description of the tested instances. The columns show instance names, number of train
arrivals, number of linked train arrival/departures, number of train departures and number of
specified train reuses.

Finding the optimal path in the subproblem can be both time and space consuming. Since it
is sufficient to find any one path with negative reduced cost, we will rely on generating heuristic
columns initially. Only when no heuristic columns (with negative reduced cost) can be found, we
solve using the exact labeling algorithm.

We adopt two variations of the full labeling algorithm to find heuristic negative reduced cost
paths. The first variant allows no DBM nor TBM maintenance which efficiently limits the number
of possible matchings. The second variant only allows at most one DBM and at most one TBM
maintenance. This is motivated by the fact that one maintenance is likely sufficient when considering
short planning periods, c.f., the provided data-set.

7 Benchmarks

The main characteristics of the tested instances are shown in Table 1. They correspond to the
instances of the final phase of the ROADEF Challenge 2014. All tests are run on a dedicated machine
with dual 2.66 GHz Intel Xeon E5345 processors and 24 GB of memory. Both processors have 4
physical cores supporting 2 threads per core. The IBM ILOG CPLEX version 12.5 optimization
software is used for solving all Linear Programs (LPs) and MIPs. All solutions are verified to be
correct (with respect to feasibility and solution cost) using a modified version of the provided
solution checker [11]. In the modified version all constraints unrelated to the matching have been
omitted.

The timelimit set in the ROADEF Challenge 2014 was 10 minutes. Within this limit the
submitted algorithms had to perform both matching and routing within the station. The provided
instances cover up to 7 consecutive days of arrivals and departures. The provided timelimit for the
challenge seems a bit restricting given a planning horizon of several days. Due to the difficulty of
the problem we target a time limit of 10-30 minutes.

An initial benchmark shows that both solution methods are unable to solve all instances to
optimality within a few hours. Table 2 shows the details of the instances that were solved to
optimality using the Column Generation Method (CGM). A few instances run out of memory
before being able to solve the root relaxation to optimality. Given a high time-limit the MIP
method is able to solve the same instanced except B12. We discuss details of the column generation
later in this section.

Solving the root relaxation of the instances seems to be a hard in general. Given a time-limit of
30 minutes only four instances are solved, see Table 3.

14

Runtime in seconds

Instance Obj Generated Cons Vars Sub LP MIP Total

B3 0 0 3 749 229 841 0.0 3.3 21.0 25.0
B7 4 400 15 629 946 19 048 33.4 28.2 20.3 83.0
B8 4 400 17 070 946 19 027 27.4 25.9 21.1 76.0
B10 2 100 3 413 620 7 050 0.7 2.4 0.2 3.0
B12 14 700 25 017 1 753 47 258 22 912.6 81.0 52.3 23 115.0

Table 2: Instances solved using column generation. The columns show instance name, objective of
found solution, number of generated column, number of constraints and variables in final program,
and finally total runtime of subproblem, LP solving, MIP solving and total. The omitted instances
(B1, B2, B4, B5, B6, B9, B11) were not solved.

Runtime(s)

Instance LP Relaxation Columns Subproblem LP

B1 74 278 363 378 255.9 1 484.1
B2 32 596 633 486 214.9 1 532.0
B3 0 0 0.0 3.6
B4 134 582 619 406 264.2 1 485.9
B5 132 582 429 643 191.9 1 567.7
B6 133 095 652 439 270.3 1 477.5
B7 3 400 28 980 10.6 52.4
B8 3 400 30 242 12.0 55.7
B9 222 156 399 799 253.4 1 508.2
B10 1 800 6 168 1.1 3.4
B11 34 735 285 340 393.4 1 368.3
B12 13 503 71 922 1 533.2 173.6

Table 3: Root relaxations results given a time limit of 30 minutes. The columns show the instance
name, objective of final relaxation, number of generated columns, and time spent generating
columns and solving the LP relaxations. Optimal results were found for B3, B7, B8 and B10.

15

Using Column Generation No Column Generation

Instance Columns Time Objective Time Objective

B1 278 229 1 207 93 200 1 213 254 600
B2 383 937 1 200 61 000 1 201 228 000
B3 0 26 0 5 0
B4 300 143 1 162 209 300 333 379 000
B5 248 919 1 203 221 100 87 370 900
B6 285 498 1 201 211 800 341 379 000
B7 30 245 78 4 300 81 73 200
B8 27 942 86 4 400 81 73 200
B9 277 485 1 207 252 900 1 215 456 700
B10 5 908 5 2 000 26 42 400
B11 171 118 1 215 80 600 1 210 258 000
B12 71 442 1 206 14 300 1 205 135 600

Table 4: Solutions found using the column generation approach in 20 minutes. Results are compared
to using no column generation, i.e., allowing no linked sequences.

Instance Objective Constraints Variables Time

B3 0 1 151 899 706 138 1199.4
B7 3 400 119 708 42 400 31.3
B8 3 400 119 708 42 400 31.0
B10 1 000 72 160 20 440 56.0
B12 43 900 571 526 131 360 1204.5

Table 5: Solutions found using the MIP approach. This approach was unable to produce any feasible
solution to the omitted (B1, B2, B4, B5, B6, B9, B11) instances.

7.1 Heuristic Results

Solving the problem instances using the exact methods proves to be very difficult and we therefore
also investigate the performance of the methods in a heuristic context.

The next benchmark shows results obtained using CGM with a 20 minute time limit. We
allocate 10 minutes for generating columns, followed by a 10 minute MIP solve (using CPLEX)
of the master problem. Table 4 summarizes the results. The results are compared to no column
generation, i.e., not allowing any linked sequences. It is observed that the result of disabling column
generation seems to have a drastic effect on solution quality. This argues that ignoring linked
sequences altogether is undesirable as it will drastically penalize the achievable objective. Solutions
are now found for all instances in contrast to the exact approach, were only 4 instances where solved
within the same timelimit. It is observed that the time is mostly spent solving LP relaxations,
except for one case. Heuristic columns were used to speed up the subproblem process instead of
solving the exact optimization problem in every iteration. Whenever no columns with negative
reduced cost are found the method solves the exact problem. Preliminary results show that this
approach is favourable as solving the exact subproblem is in many cases extremely time-consuming.
Many columns are generated during the execution of CGM, and these are gradually increasing the
master problem size. In future work, it might be interesting to remove unnecessary columns after a
few iterations.

In our final benchmark we run the instances using the MIP Method (MIPM). As before we
set a runtime limit of 20 minutes – the results are shown in Table 5. We note that this approach
was unable to provide any solution for most instances. However, for instances B7, B8 and B10
MIPM was able to find slightly better results than CGM. A worse objective was found for the B12
instance. MIPM was unable to find solutions to all instances due to insufficient memory.

16

8 Conclusions

We have described and investigated the Departure Matching Problem which is identified as a crucial
subproblem of the RSUM problem in the ROADEF/EURO Challenge 2014. Without explicitly
considering the matching problem, too many departures will be uncovered.

We prove in section 4 that the DMP is NP-hard in the strong sense by reduction from the 0-1
Multiple Knapsack Problem.

We have proposed two methods for solving the DMP. We first presented a pure MIP formulation
of the problem which could act as the least technical reference point for future studies. The model
is however large in terms of variables and constraints and the benchmarks show that this model is
unable to solve most of the proposed instances. Memory usage is one significant drawback of this
method.

A second solution method based on column generation has also been presented. This model
is simple and can without much difficulty be extended even further to handle more constraints.
It is show how the subproblem can be split into several independent problems thereby reducing
complexity and enabling parallelism. The benchmarks for this approach show that we can find
good solutions fast, if the method is used with time limits. However, even solving the root node
relaxation is shown to be difficult in multiple cases. We expect that the method could be improved
if embedded in a B&P framework with more efficient handing of the columns. Furthermore, the
performance of this method could be further improved if a good initial solution can be provided as
a hotstart to CGM, e.g., the result of a heuristic method.

The considered data instances proved to be surprisingly hard to solve. The final results of the
ROADEF challenge winners suggests that it is not possible to obtain a satisfactory solution to
the overall problem, RSUM. There may not even exists a good solution, i.e., a solution without
cancellations.

For the sake of simplicity it has been assumed that all matches are possible where the departure
time occurs after the arrival time. In reality it might be more realistic to remove matching options
where the time between arrival and departure is sufficiently high. Trains may arrival late, some
time is required to perform routing inside the station and time is required to perform maintenance.
Further, it may not be necessary to consider long matchings, e.g., an arrival on day 1 with a
departure on day 7. Reducing the number of possible matchings will reduce the number of decision
variables and constraints and likely improve the success-rate of solution methods. This may be a
viable practical approach to ensure feasibility.

For future work there are a multiple matters worth considering. There are several column
generation techniques that can be investigated to improve performance, e.g., dual stabilization,
branch-and-price and reduced-cost fixing. The potential of heuristic methods for DMP is unknown
and can possibly find good solutions fast, or even be used to speed up an exact approach. It would
be interesting to consider new data instances where it is know that there exists at least one feasible
solution without any cancellations.

References

[1] Cynthia Barnhart, Ellis L Johnson, George L Nemhauser, Martin WP Savelsbergh, and
Pamela H Vance. Branch-and-price: Column generation for solving huge integer programs.
Operations Research, 46(3):316–329, 1998.

[2] Richard Freling, Ramon M Lentink, Leo G Kroon, and Dennis Huisman. Shunting of passenger
train units in a railway station. Transportation Science, 39(2):261–272, 2005.

[3] Jørgen Haahr and Simon Bull. A Math-Heuristic Framework for the ROADEF/EURO
Challenge 2014. Technical report, The Technical University of Denmark, 2014.

[4] John E Hopcroft and Richard M Karp. An nˆ5/2 algorithm for maximum matchings in
bipartite graphs. SIAM Journal on computing, 2(4):225–231, 1973.

17

[5] Stefan Irnich. Resource extension functions: properties, inversion, and generalization to seg-
ments. OR SPECTRUM, 30(1):113–148, 2008. ISSN 01716468, 14366304. doi: 10.1007/s00291-
007-0083-6.

[6] Brian Kallehauge, Jesper Larsen, Oli B.G. Madsen, and Marius M. Solomon. Vehicle routing
problem with time windows. In Column Generation, pages 67–98. Springer US, 2005. ISBN
978-0-387-25485-2.

[7] Hans Kellerer, Ulrich Pferschy, and David Pisinger. Knapsack problems. Springer, 2004.

[8] Leo G Kroon, Ramon M Lentink, and Alexander Schrijver. Shunting of passenger train units:
an integrated approach. Transportation Science, 42(4):436–449, 2008.

[9] Harold W Kuhn. The hungarian method for the assignment problem. Naval research logistics
quarterly, 2(1-2):83–97, 1955.

[10] Marco E. Lübbecke and Jacques Desrosiers. Selected topics in column genera-
tion. Operations Research, 53(6):1007–1023, 2005. doi: 10.1287/opre.1050.0234. URL
http://dx.doi.org/10.1287/opre.1050.0234.

[11] François Ramond and Marcos Nicolas. Trains don’t vanish! ROADEF EURO 2014 Challenge
Problem Description. SNCF - Innovation & Research Department, 2014.

18

