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Abstract 

We demonstrate an electrochemical method - which we term oxidative decoupling transfer (ODT) - 

for transferring chemical vapor deposited graphene from physically deposited copper catalyst 

layers. This copper oxidation-based transfer technique is generally applicable to copper surfaces, 

and is particularly suitable where the copper is adhered to a substrate such as oxidized silicon. 

Graphene devices produced via this technique demonstrate 30% higher mobility than similar 

devices produced by standard catalyst etching techniques. The transferred graphene films cover 

more than 94% of target substrates – up to 100 mm diameter films are demonstrated here – and 

exhibit a low Raman D:G peak ratio and a homogenous and continuous distribution of sheet 

conductance mapped by THz time-domain spectroscopy. By applying a fixed potential of -0.4V vs. 

an Ag/AgCl reference electrode - significantly below the threshold for hydrogen production by 

electrolysis of water - we avoid the formation of hydrogen bubbles at the graphene-copper interface, 

preventing delamination of thin sputtered catalyst layers from their supporting substrates. We 

demonstrate the reuse of the same growth substrate for five growth and transfer cycles and prove 

that this number is limited by the evaporation of Cu during growth of graphene.  This technique 

therefore enables the repeated use of the highest crystallinity and purity substrates without undue 

increase in cost. 

 Keywords: CVD, wafer scale, G-FET, electrochemistry, intercalation, copper oxidation 

  



1. Introduction 

The growth of graphene by chemical vapor deposition on copper catalyst layers is a promising route 

for the scalable production of industrially relevant quantities of high crystal quality monolayer 

graphene [1, 2].  Techniques for the transfer of the graphene from metallic catalyst layers to 

substrates of interest - such as oxidized silicon or flexible polymers - form an integral part of the 

production process; but maintaining the quality of these single-atom thick layers during 

delamination from their parent catalyst substrates and subsequent adhesion to a target substrate is 

challenging. This is particularly the case if the catalyst needs to be reused. Published techniques for 

the transfer of graphene from growth substrates usually involve the complete destruction of the 

catalyst layer by dissolution with chemical etchants such as ferric chloride or ammonium 

persulphate [3-5]. In an industrial context such a process would significantly increase the costs 

associated with the production of graphene. In particular, dissolution precludes the reuse of catalyst 

layers where an investment has been made in optimizing the catalyst with respect to purity, grain 

size, flatness, composition or other desirable characteristics, effectively discouraging real 

development in advanced catalyst materials. A transfer technique that preserves such an optimized 

layer between growths would enable the repeated production of high quality graphene, with 

potentially high consistency if this transfer technique does not impair catalyst performance. 

 

One such technique has been demonstrated by Wang et al. [6] - the authors showed that application 

of a reducing potential of -5 V between a cathode consisting of PMMA-coated CVD grown 

graphene on metal foil and a glassy carbon anode in an aqueous solution of potassium thiosulfate 

results in the electrolysis of water and the generation of hydrogen gas bubbles at the graphene-metal 

interface. These bubbles rapidly delaminate the graphene and polymer from the catalyst layer.  This 

electrochemical technique, frequently termed ‘bubbling transfer’, is commonly employed for the 



transfer of CVD-grown graphene from copper foil substrates and other metals [7]. Graphene can 

also be electrochemically delaminated from copper catalyst layers by the application of a strong 

oxidizing potential, resulting in the dissolution of the catalyst, as demonstrated by Yang et al. [8]. 

This method is more controllable than chemical etching processes, but still results in the destruction 

of the catalyst layer. 

 

Hydrogen bubbling transfer is readily applicable to graphene grown on pure copper foils, but can 

give undesirable results in more complicated catalyst systems, such as physical vapor deposited  

thin films on support substrates (for example, copper on oxidized silicon wafers), which show a 

tendency to delaminate at the catalyst-support interface rather than the graphene-catalyst interface 

[9].   

The generation of hydrogen bubbles is also a concern for the integrity of the graphene film, since 

large surface tension forces encountered at gas-liquid interfaces are known to cause graphene to 

break and roll up – critical point drying is typically employed to avoid these effects [10-12], but is 

not applicable when the expanding bubbles are the driving force behind the delamination.  

Macroscopic tearing is a limiting factor for applications in both large area electrodes and 

electronics. 

 

In this work, by applying a fixed potential of -0.4 V versus an Ag/AgCl reference electrode to the 

catalyst/graphene/polymer stack, we are able to delaminate the graphene/polymer from the copper 

catalyst without the production of hydrogen gas bubbles at more negative potentials, and avoiding 

dissolution of the catalyst at more positive potentials. Delamination of the graphene from the 

catalyst layer instead proceeds through the formation and removal of a layer of insoluble copper (I) 

oxide on the catalyst surface. This oxide layer grows in from the edge of the graphene due to 



dissolved oxygen in the electrolyte. The adhesion of the graphene to the catalyst layer is weakened, 

until the graphene delaminates - we therefore term this procedure oxidative decoupling transfer 

(ODT).  

This transfer technique results in more than 94% coverage of graphene over large areas (up to 

100mm in diameter), and also enables the use of deposited thin-films of copper catalyst without 

destructively delaminating such deposited catalyst films from their carrier substrates. The copper 

thin-films can be reused for growth after a short hydrogen annealing step (20 min) in the CVD 

process. Graphene regrown in this way shows comparable quality to the first graphene growth, as 

confirmed by Raman spectroscopy, demonstrated here by five repeated growth and transfer cycles 

applied to the same copper substrate without compromising the quality of the graphene film.   

 

 

2. Experimental 

2.1 CVD growth 

Graphene is grown on either Cu foil (25 μm thick, Alfa Aesar, double side polished, 99.999% 

purity) or a 1.5 μm film of sputtered Cu supported by a 4” SiO2 (1 μm)/Si wafers by chemical vapor 

deposition (Aixtron Black Magic).  The CVD of graphene on copper, which follows published 

recipes [13, 14], consists of an initial annealing phase (20 min) in a hydrogen/argon atmosphere and 

a growth phase (40 min), in which a methane precursor is introduced in the chamber. 

A 5µm sacrificial layer of cellulose acetate butyrate (30 kDa, 0.3 g/l in ethyl acetate) (CAB), is 

spun (4000 rpm, 60 s) on the substrates after graphene growth, soft-baked at 80°C for 10 min and 

subsequently hard-baked at 130°C for an additional 10 min. Graphene on the back side of the foils 

is removed by oxygen plasma (100 W, 2 min).  



2.2 Graphene transfer 

Removal of Cu by etching 

Copper foils are etched away using ammonium persulphate (AP), following the procedure 

published in Refs [2, 15], which we summarise in Supplementary Information.  

Delamination of graphene-CAB by ODT method 

The copper/graphene/CAB stack is connected as the working electrode (WE) of an electrochemical 

cell. The counter electrode (CE) is a 200 nm thick layer of platinum sputtered onto a 4” oxidized 

silicon wafer to provide a large surface area. Picture and schematic of the system are reported in 

Figure S1. Voltages are applied to the WE by a potentiostat (Keithley 2400) with respect to a 

commercial Ag/AgCl reference electrode (RE), with current flowing only between the WE and CE. 

The electrolyte is 1M potassium chloride in deionized water, pH = 5.5. Local concentration 

gradients in the electrolyte are reduced by magnetic stirring.  

Adhesion to oxidized silicon 

The graphene/CAB stack is washed in deionized water and dried in a desiccator. The graphene 

surface is then placed onto an oxidized silicon wafer and dried at 80 °C for 1 hour. The temperature 

is increased to 135 °C for two hours to soften the polymer and promote adhesion. After cooling, the 

sacrificial CAB layer is removed in ethyl acetate.  

2.3 Characterization 

Raman Spectroscopy 

Raman spectra are recorded with a Thermo Fisher DXR microscope under ambient conditions using 

a 532 nm excitation laser source. The nominal spot size is 700nm. The power of the laser is kept 



below 1 mW. We fit the Raman spectra with Lorentzian functions to extract peak height, width and 

position data. 

Optical microscopy 

We quantitatively measure the coverage of the transferred graphene using an analytical microscopy 

technique based on Ref [16] as well as gigapixel microscopy. A Nikon Eclipse L200 microscope 

equipped with a programmable Prior Scientific XYZ stage and a 10x objective with NA = 0.3 

(0.484 µm / pixel) is used to acquire images with 20% overlap, allowing adjacent images to be 

stitched together. In order to minimize intensity variations each image was subject to 4x intensity 

averaging and dynamical autofocus. Unity gain was applied in the CCD sensor to minimize noise.  

By converting the conventional wavelength-dependent contrast of graphene [16] into the 

corresponding contrast of the red, green, and blue (RGB) channels, the RGB contrasts of clean, 

single-layer graphene on 300 nm SiO2 were found to be ~ 8.1%, 3.6%, and -0.2%, respectively. 

CAB was found to have a contrast changing linearly with thickness for thin films with the presence 

of graphene simply serving as an offset. By allowing for small variations in the pixel values, the 

above information can be used to generate three unique sets of pixels, defining either residues, 

graphene (with or without residues), or oxide. Binary images of the samples can then be generated, 

where white indicates graphene and black indicates absence of graphene. 

Terahertz Spectroscopy 

Terahertz sheet conductance maps were obtained with a fiber-coupled terahertz time-domain 

spectrometer (THz-TDS). Transmission measurement of sub-picosecond, electromagnetic pulses 

through the graphene films, allows contact-free measurement of the complex sheet conductance as a 

function of frequency from 0.1 to 1.4 THz. This covers the lower range of the typical intraband 

(Drude) conductivity response of CVD graphene, where AC sheet conductance can be directly 



extrapolated to the DC sheet conductance value of the film [17]. By raster scanning the graphene 

films in a focused beam, sheet conductance maps were built from the average real sheet 

conductance from 0.9-1.0 THz, with a diffraction-limited, spatial resolution of approximately 350 

µm. Details of the experimental setup and data analysis method are described elsewhere [17]. 

Electron Microscopy  

The SEM micrographs are taken in a Zeiss Supra 40 VP Microscope at 5 kV accelerating voltage 

with a current of 0.17 nA. 

X-ray Photoemission Spectroscopy 

The measurements are performed in ThermoScientific K-Alpha X-ray Photoelectron Spectrometer 

System. The base pressure in the analytical chamber is 10-9 Torr. The source is a monochromatic Al 

Kα X-ray radiation (1486 eV). The X-ray gun spot was adjusted to be 400 µm. The energy 

resolution of X-ray source was approximately 1 eV.  Data analysis was performed using 

ThermoAvantage version 4.87. 

Cyclic Voltammetry 

We perform our measurements using the same equipment and experimental set-up as described in 

Section 2b above. The voltage was swept forward from an initial value of -1 V to +0.7 V, and then 

swept in a reverse direction to -2.0 V before sweeping forward to -1V to complete the cycle. A scan 

rate of 50 mV/s was used throughout. 

 

 

 



3. Results 

Graphene is grown using published recipes on copper thin films sputtered on oxidized silicon 

carrier substrates (see Experimental section). After growth, a layer of cellulose acetate butyrate 

(CAB) polymer is spun on top of the graphene to support it after delamination. A combination of 

edge bead removal of the polymer and (oxygen) plasma ashing of the graphene is used to expose 

the catalyst layer and the edge of the graphene (Figure 1 f). 

The copper is oxidised beneath the graphene layer by applying a potential of -0.4 V to the catalyst 

vs. an Ag/AgCl reference electrode in a 1 M KCl solution. The oxidation front of the copper 

proceeds controllably from the exposed edge of the graphene layer, towards the center (Figure 1 b, 

f, g) at an average velocity of 24 mm per hour. Control experiments performed in degassed 

electrolyte protected from atmosphere by a nitrogen flow showed no oxidation, and the graphene 

did not delaminate. In samples processed in oxygenated electrolytes – those exposed to ambient 

conditions - a rise in the pH value from 3.5 to 8.0 is observed locally at the freshly exposed copper 

surface directly after delamination of graphene. 

The delaminated CAB-coated graphene is then adhered to a target substrate and the CAB is 

removed in ethyl acetate solvent, similar to typical PMMA-based transfer techniques (see 

Experimental section).  

 



 
Figure 1. a) Cyclic voltammetry of copper and graphene coated copper foil. The voltage is swept between -2 

V and 0.7 V (see Methods and Supplementary Information). Inset: Optical image and relative coverage map 

(average coverage of 48.7%) of graphene transferred by bubbling (-2 V) b) Optical images of oxidation front 

progressing beneath graphene/CAB. c) Current vs. time from the counter to the working electrode during 

ODT transfer – sample size 4 cm2. d) Optical image of transferred graphene (left triangle) with superimposed 

map of coverage (right triangle). White pixels indicate expected graphene contrast. Total coverage of 99.6% 

e) Gigapixel optical map of graphene transferred to 100 mm diameter SiO2 (100 nm)/Si wafer. f) Sample 

schematic. Catalyst layer is exposed by edge bead removal of CAB and O2 plasma ashing of graphene. g) 

Applying -0.4 V vs. Ag/AgCl results in oxidation of the catalyst surface and delamination of graphene. 

 

Figure 1 e shows an optical image of a 100 mm diameter region of single layer graphene transferred 

by ODT. We quantitatively measured the coverage of graphene produced on the silicon dioxide by 

digitally imaging the entire surface at a resolution of 0.96 µm per pixel, with a 20% oversampling to 



enable image stitching (see Experimental section). The resulting gigapixel image (Supplementary 

Information) shows the expected graphene contrast of ~7% on 100 nm oxidized silicon in 94.5% of 

the pixels over the entire wafer surface – most of the non-covered oxide surface is localized in 

macroscopic areas (some 5-10 mm2 in size), and, outside of these areas, the graphene coverage is 

better than 99% (Figure 1 d). 

 

After ODT of graphene and rinsing in DI water, the Cu thin-film substrate is re-used for CVD 

growth of graphene. The growth-transfer cycle was repeated for a total of 5 times. The transferred 

graphene is characterized with Raman spectroscopy by collecting more than 2500 point spectra per 

sample (Experimental section). Graphene films show consistent Raman 2D:G and D:G peak ratios 

when grown on recycled catalyst to which this method has been previously applied (Figure 2 a - c). 

In particular, the distributions of the D:G peak ratios (Figure 2 a) are largely centered around 0.1, 

with the exception of growth 4 (~ 0.22). The values of the 2D:G peak ratios (Figure 2 b) range from 

a mean of ~1.32 for the first growth to ~2 for the fifth growth.  

We compare the properties of graphene grown on PVD copper thin films and transfer by ODT to 

graphene obtained by the more common route of growth on copper foils and etching in ammonium 

persulphate. An identical growth recipe was used in both cases (see Experimental section). The 

ODT-transferred graphene generally shows a distribution of the Raman D:G peak ratio centered 

around 0.1, as compared to 0.26 for graphene grown by the same recipe on copper foils and 

transferred by ammonium persulphate etching (Figure 2 a).  



 
Figure 2. a, b) Bottom to top: Histograms of ~2500 Raman D:G (a) and 2D:G (b) peak ratios collected from 

graphene grown on commercial Cu foil and transferred by etching of the catalyst (blue, bottom), and five 

consecutive growth-transfer cycles using ODT from a single PVD copper sample (greyscale).c) Examples of 

single raw Raman spectra from the ensemble used for the histograms in (a, b). d) XPS analysis of the copper 

surface after copper deposition, after graphene growth, after ODT transfer (-0.4 V) and after water rinsing 

and annealing in the CVD chamber. e) The O1s peak measured by XPS. f) Histograms of average sheet 

conductance from 0.9 - 1.0 THz with normal distribution peak fits of graphene grown on 4” Si/SiO2 coated 

with PVD Cu film and transferred by ODT. Left inset shows the respective map. Right inset: Histograms of 

average sheet conductance from 0.9 - 1.0 THz with normal distribution peak fits of conventional etching 

transfer of graphene from copper foils. 

 

We use x-ray photoelectron spectroscopy (XPS) to determine the composition of the PVD deposited 

copper surface at each stage of our process (Figure 2 d). XPS shows the presence of Cu2O on the 

copper surface before growth and after transfer – no copper (I) oxide can be detected after graphene 

growth. After transfer of the graphene from the copper, elemental analysis shows the presence of 

both K and Cl, originating from the electrolyte. These species are removed by deionized water 

rinsing and annealing prior to regrowth to recover the original metallic copper surface. We 



determine the change in mass of individual catalyst layers plus carrier substrate at each stage of the 

growth and transfer process for 10 different growths using a quartz crystal microbalance – the 

sputtered copper catalyst weighs 122 +/- 22 mg for a 100 mm diameter catalyst layer, 

corresponding to around 2000 nm of sputtered copper. A full cycle results in an average loss of 

mass of 13.9 mg +/- 0.8 mg, a change in mass of around 11%, which corresponds to 200 nm loss in 

thickness of the catalyst layer. This loss occurs almost exclusively after graphene growth as a result 

of the evaporation of copper at the low growth chamber pressure used (10 mbar). We were also 

unable to detect a change in mass or thickness of a bare copper catalyst layer after it was subjected 

to 100 hours of ODT conditions (fixed potential at -0.4 V). 

We performed spatially resolved sheet conductance mapping of as-transferred graphene films 

obtained by both ODT (graphene grown on PVD copper, 100 mm diameter) and etching 

(commercial Cu foil) using terahertz time domain spectroscopic (THz-TDS) mapping [17]. The 

sheet conductance maps of the transferred films show homogenous conductance, except for the 

small number of mm-scale defects visible in Figure 2 f, left inset.  Histograms of the two sheet 

conductance maps show bimodal distributions (Figure 2 f). Each sample histogram displays a 

Gaussian peak centered at 0 mS, which reflects the zero-conductance background of the areas not 

covered by graphene. In addition the graphene transferred by etching from foils and the graphene 

transferred by ODT from PVD film show Gaussian peaks at 0.5 mS and 0.95 mS, respectively, 

reflecting the actual sheet conductance distribution for the transferred graphene films. A small 

shoulder is also visible at the higher conductance of 1.3-1.4 mS for the ODT-transferred graphene 

from PVD copper. The broadening of the peaks is due to spatial blurring near edges of the graphene 

films in addition to any inhomogeneity in graphene conductance related to the growth process. 

 



 
Figure 3. a, b) Histograms of Raman D:G peak ratios collected from graphene grown (a) on PVD Cu and 

transferred by etching  and (b) by ODT transfer from PVD Cu. c, d) Histograms of THz spectroscopic map 

of sheet conductance of the same graphene sample analysed in (a, b).  Insets show the respective maps. e, f) 

Histograms of mobility measurements with normal distribution fits of graphene devices fabricated by (c) 

etching of PVD copper film and (d) ODT transfer from PVD copper film. Insets show histograms of charge 

neutrality points for the respective sets of devices. g) Optical image of G-FET devices. h) Optical image of 

graphene Hall bar defined in transferred graphene overlaid with schematic of contact geometry. 
 

 

In order to characterize the effect of different transfer techniques on the electrical quality of 

graphene, we fabricated graphene field effect transistors (G-FET) with Hall bar geometries by 

electron beam lithography on SiO2 (300 nm) / Si substrates (Figure 3 g, h) from graphene grown on 



PVD copper films, using either ODT or etching in ammonium persulphate to transfer the graphene. 

More than 1280 individual G-FET devices were fabricated and electrically characterized (four point 

measurements) using an automatic probe station.  

The fabrication yield was higher for graphene transferred by ODT (13.4%) than for graphene 

delaminated by etching the catalyst layer in ammonium persulphate (9.6%).  

The average mobility of devices produced by ODT was µ = 1930 cm2(Vs)-1 with a standard 

deviation of 950 cm2(Vs)-1, as compared to 1450 cm2(Vs)-1  with a standard deviation of 1190 

cm2(Vs)-1 for graphene transferred by etching (Figure 3 e, f). Moreover, etching transfer results in a 

distribution of measured mobility values with a long tail, rather than the normally distributed values 

for mobility observed for ODT. While the yield and the electrical quality in the case of ODT was 

noticeably better than the etching case, graphene samples transferred by etching display a lower 

level of p-doping, with VCNP = 25.5 V as compared to 40.5 V for graphene transferred by 

electrochemical delamination, but etching transfer results in a larger spread of observed doping 

levels, with a standard deviation of 8.8 V vs. 6.1 V (Figure 3 e, f insets), indicating that the ODT 

results in more reproducible and stable device performance. 

We further investigate graphene grown on PVD copper films and transferred using either ODT or 

etching in ammonium persulphate by Raman and THz spectroscopy. The histograms of the D:G 

peak ratios of graphene grown on PVD film and transferred by ODT are normally distributed 

around 0.1, with only few values above 0.2 (Figure 3 a). In contrast, the etched PVD samples show 

a bimodal distribution of D:G peak ratios, with two peaks at 0.2 and 0.5 (Figure 3 b). As reported in 

Figure 3 c, d, the distributions of the THz sheet conductances are both bimodal, with a peak at 0 mS 

(zero-conductance peak), and show higher values on average for graphene transferred by ODT 

(distribution centered around 1.3 mS) in comparison to the film transferred by etching of the PVD 

copper (centered around 0.8 mS). 



4. Discussion 

Copper exposed to dissolved oxygen in the electrolyte naturally forms copper (I) oxide, Cu2O:  

4 𝐶𝐶 + 𝑂2 → 2 𝐶𝐶2𝑂  

The volume increase and binding energy change associated with this oxidation decouples the 

graphene from the catalyst surface [18]. In the absence of an externally applied potential, copper (I) 

oxide formed at the edge of the graphene will passivate the catalyst by preventing exposure to 

dissolved oxygen and further oxidation. The reaction would thus terminate with this stable oxide. 

Application of -0.4 V vs. Ag/AgCl in an aqueous solution is sufficient to reduce the copper (I) 

oxide back to metallic copper, producing hydroxide ions: 

 𝐶𝐶2𝑂 + 𝐻2𝑂 + 2𝑒− → 2 𝐶𝐶 + 2 𝑂𝐻− 

In our case this results in progress of the oxidation front beneath the graphene and polymer stack, 

leaving an excess of hydroxide ions. Capillary forces draw the electrolyte further under the 

graphene layer, eventually resulting in delamination. This mechanism would account for our 

observations that degassed electrolytes are ineffective – preventing the continued formation of 

copper (I) oxide - and that a locally more basic pH is observed at the area where graphene 

delaminates from copper.  

The copper oxidation process described here reduces the binding energy of the graphene to the 

catalyst layer, resembling an intercalation process [19]. In combination with growth on sputtered 

catalyst layers we achieve extremely high coverages of graphene during transfer - over 94% across 

a 100 mm diameter wafer. Coverages are substantially higher than those which we achieve by 

hydrogen bubbling (as shown in Figure 1 a, inset) and comparable with those we obtain by 

complete dissolution of the copper catalyst layer (Supplementary Information). We ascribe the 



extremely high graphene coverages observed to a lack of gas-liquid interfaces encountered by the 

graphene during this process - suspended graphene is likely to break due to the surface tension 

forces at such interfaces. Critical point drying is often used to avoid such effects in the preparation 

of these samples [10-12].  

We note that similar measures of coverage are not available for previous studies, due to the 

difficulty in determining coverage accurately over large areas prior to the presentation of the 

gigapixel optical microscopy techniques described here.   

Although microscopic tearing is reduced, macroscopic defects are visible in Figure 1 e due to 

pockets of trapped air during placement of the graphene/CAB stack on the target substrate. These 

pockets prevent adhesion of the graphene to the target substrate, and result in locally incomplete 

transfer. These problems are also encountered when transferring graphene from copper foils, which 

are prone to plastic deformation on handling leading to a poor contact when transfer to flat 

substrates is attempted. These effects are enhanced by the thick polymer layer used in our transfers. 

However, the use of a thick polymer layer is justified by the necessity of having a large and 

mechanically stable support layer able to withstand the forces inside the electrochemical cell.  Such 

a thick polymer layer allows for easy handling and simplifies the drying of graphene after water 

rinsing [20]. 

The consistency of the 2D:G and D:G peak ratios over the five repeated growth and transfer cycles 

demonstrates the preservation of the Cu catalyst layer during ODT transfer. In our case, it is the loss 

of catalyst mass through evaporation during low pressure CVD which limits the reuse of the 

catalyst, and not the transfer technique demonstrated.  Evaporation of a mass corresponding to 

approximately 200 nm of catalyst across a 100 mm wafer surface was observed during our 

experiments, which could be reduced by increasing the growth pressure. We were unable to observe 



any dissolution of copper during exposure of a bare copper surface to ODT conditions for a period 

of 100 hours.  

Improvements in the D:G peak ratios, which correspond to a reduce density of defects [21], 

observed for graphene transferred by ODT from PVD copper over those transferred by etching from 

copper foils (Figure 2 a) can be ascribed to a combination of both the reduced damage induced by 

the transfer process and a lack of residual catalyst particles from etching-based transfer. Such 

particles can gather at edges and defects and provide an enhancement of the Raman D peak signal 

from these areas. [22-24]. This interpretation is also supported by our observations that graphene 

grown on PVD films and transferred by etching shows a marked increase in D:G peak ratio over 

graphene from the same PVD films transferred by ODT (Figure 3 a, b). 

 THz-TDS measurements show that the sheet conductance for graphene grown on PVD copper 

films and transferred by ODT is relatively homogeneous, especially if compared to previously 

published results [17]. Higher values of the sheet conductance visible as the shoulder in the 

distribution (Figure 2 f) originate from localized areas of the sheet, particularly in the center (Figure 

2 f, left inset). We ascribe this difference to temperature inhomogeneity during growth in our CVD 

system – higher temperatures in the central area of the catalyst wafer may give rise to graphene with 

slightly higher electrical conductance here. Such observations demonstrate how THz-TDS mapping 

could be used to non-destructively probe the large-scale conductance of transferred graphene layers.  

The higher mobility values observed for devices produced from graphene using ODT show that the 

growth of graphene on PVD films and transfer by this technique is a promising route for the 

production of devices. We ascribe this difference to a lack of contamination from residual catalyst 

particles and etchant residues when applying ODT transfer. Although potassium present in the 

electrolyte is a strong n-dopant of graphene [25], strong p-type doping is present in devices 



produced by etching and ODT techniques. p-doping is typically observed for graphene FET devices 

exposed to ambient conditions and without pretreatment of the silicon oxide surface [26].  

Annealing of the devices to remove contaminants or treatment of the silicon dioxide surface to 

make it more hydrophobic [26] would reduce the observed doping. We note that in both datasets 

there are outlier devices which demonstrate high calculated mobility values up to  ~  12,000 

cm2(Vs)-1. These results are also supported by THz measurements on the same films, which show 

an average sheet conductance higher for graphene transferred by ODT than by etching from the 

same PVD copper samples (Figure 3 c, d).  

 

5. Conclusions 

We have demonstrated the transfer of 100 mm diameter graphene layers from sputtered layers of 

copper catalyst by the introduction of a new transfer technique based on the oxidative decoupling of 

graphene from its growth substrate, resulting in graphene coverage greater than 94% across a wafer 

surface, as demonstrated by quantitative wafer-scale gigapixel optical microscopy mapping of the 

contrast. The use of a reducing electrochemical potential (-0.4V) applied with respect to a reference 

electrode prevents the dissolution of the copper catalyst, and enables the continual formation and 

reduction of a copper (I) oxide layer on the catalyst surface, which delaminates the graphene. In 

combination with a hydrophobic polymer support (CAB), this lifts the graphene from the catalyst 

surface with minimal mechanical and electrical damage. 

Graphene field effect transistors produced using this technique demonstrate a mobility 30% higher 

than those produced from the same graphene but delaminated by dissolving the catalyst in 

ammonium persulphate. Though ODT method leads to a higher level of p-doping, it provides 

improved consistency and yield. 



The ODT technique demonstrated is applicable to thin film catalyst layers which would be 

destroyed by previously published chemical etching or hydrogen bubbling techniques. It is not 

possible to apply the hydrogen bubbling electrochemical transfer technique to thin film catalyst 

layers on carrier substrates that are the subject of this investigation, as hydrogen evolution at the 

catalyst / carrier substrate interface delaminate and destroy the catalyst layer rather than 

delaminating the graphene. The presented ODT technique is to our knowledge the only means of 

transferring graphene from thin copper films supported by carrier substrates whilst simultaneously 

enabling the reuse of the catalyst film. 

The use of thin film catalysts is advantageous because it reduces the amount of copper catalyst 

needed for the growth of graphene to around 0.1 g per 100 mm diameter wafer, and the enhanced 

flatness of the wafer surface allows closer contact of the graphene-polymer stack to a target wafer 

surface during transfer, improving coverage. Additionally, the purity of sputtered copper layers can 

be controlled at source, and the layers can be produced under cleanroom conditions to minimize 

surface contamination. Thinner copper layers also require shorter annealing times, improving the 

throughput of the CVD process. 

Our results show that it is possible to reuse such thin catalyst layers multiple times without loss of 

quality in the grown and transferred graphene. We succeeded in reusing a catalyst layer four times 

above and beyond the initial growth, with reuse of catalyst layers limited only by loss of catalyst 

through evaporation of Cu during growth. Any loss of catalyst mass could also be replaced by a 

remedial catalyst sputtering step, as opposed to the complete replacement of the catalyst layer 

necessary if it is completely dissolved. Moreover, atmospheric pressure CVD processes would 

reduce the metal evaporation during graphene growth, resulting in enhanced reusability of the 

catalyst.  



The non-destructive delamination of graphene and recycling of the copper catalyst demonstrated 

here also allows the use of highly optimized growth substrates such as single crystal copper ingots 

for CVD growth. The very high coverage levels observed over large areas open the way for wafer-

scale graphene device production from CVD graphene grown on reusable, highly optimized catalyst 

layers, whilst minimizing costs and maximizing graphene quality.  
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