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A White Box Perspective on
Behavioural Adaptation?
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Abstract. We present a white-box conceptual framework for adaptation
developed in the context of the EU Project ASCENS coordinated by
Martin Wirsing. We called it CoDa, for Control Data Adaptation, since
it is based on the notion of control data. CoDa promotes a neat separation
between application and adaptation logic through a clear identification
of the set of data that is relevant for the latter. The framework provides
an original perspective from which we survey a representative set of
approaches to adaptation, ranging from programming languages and
paradigms to computational models and architectural solutions.

Keywords: Adaptation, Self-*, Autonomic Computing, Programming Lan-
guages, Software Architectures, Computational Models, Computational Reflection

1 Introduction

Self-adaptive systems have been widely studied in several disciplines like Biology,
Engineering, Economy and Sociology. They have become a hot topic in Computer
Science in the last decade as a convenient solution to the problem of mastering the
complexity of modern software systems, networks and architectures. In particular,
self-adaptation is considered a fundamental feature of autonomic systems, often
realized by specialized self-* mechanisms like self-configuration, self-optimization,
self-protection and self-healing, as discussed for example in [41].

The literature includes valuable works aimed at capturing the essentials of
adaptation both in the most general sense (see, e.g., [49]) and more specifically
fields such as software systems (see, e.g., [68,13,52,5,65]) providing in some cases
very rich surveys and taxonomies. A prominent and interesting example is the
taxonomy of concepts related to self-adaptation presented in [68], whose authors
remark the highly interdisciplinary nature of the studies of such systems. Indeed,
just restricting to the realm of Computer Science, active research on self-adaptive
systems is carried out in Software Engineering, Artificial Intelligence, Control
Theory, and Network and Distributed Computing, among others.

? Research supported by the European projects IP 257414 ASCENS and STReP 600708
QUANTICOL, and the Italian project PRIN 2010LHT4KM CINA.
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Despite all these classification efforts, there is no agreement on the conceptual
notion of adaptation, neither in general nor for software systems. Lofti Zadeh
noticed in [79] that “it is very difficult—perhaps impossible—to find a way of
characterizing in concrete terms the large variety of ways in which adaptive
behavior can be realized”. Zadeh’s concerns were conceived in the field of Control
Theory but as many authors agree (e.g., [65,68,5,49]), they are valid in Computer
Science as well. One reason for Zadeh’s lack of hope in a concrete unifying
definition of adaptation is the attempt to subsume two aspects under the same
hat: the external manifestations of adaptive systems, and the internal mechanisms
by which adaptation is achieved. We shall refer to the first aspect as the black-box
view on adaptation, and to the second aspect as the white-box one.4

Actually, in the realm of Software Engineering there are widely spread informal
definitions, according to which a software system is called “self-adaptive” if it

“modifies its own behavior in response to changes in its operating environment” [60],
where such “environment” has to be understood in the widest possible way,
including both the external environment and the internal state of the system
itself. Typically, such changes are applied when the software system realizes that

“it is not accomplishing what the software is intended to do, or better functionality
or performance is possible” [47]. Such definitions can be exploited to measure
what is often called the degree of adaptivity, i.e., to estimate the system robustness
under some conditions. This approach can be traced back to Zadeh’s proposal [79],
but has been later adopted by many other authors (e.g., [58,39]).

The problem is that almost any software system can be considered self-
adaptive according to the above definitions, as it can modify its behaviour (e.g.,
by redirecting the control flow) as a reaction to a change in its context of
execution (like the change of variables). Thus, such definitions, concerned with
the observational perspective only, are of difficult applicability for distinguishing
adaptive systems from “non-adaptive” ones. Also, they are of little use for design
purposes, where separation of concerns, modularization, reuse are crucial aspects.

The development and success of many emergent Computer Science paradigms
is often strongly supported by the identification of key principles around which
the theoretical aspects can be conveniently investigated and fully worked out. For
example, in the case of distributed computing, there have been several efforts in
studying the key primitives for communication, including mechanisms for passing
communication means (name mobility) or entire processes (code mobility), which
led to a widely understood theory of mobile process calculi. There is unfortunately
no such agreement concerning (self-)adaptation, as it is not clear what are the
characterizing structural features that distinguish such systems from plain ones.

Summarizing: (i) existing definitions of adaptation (and also adaptivity and
adaptability) are not always useful in pinpointing adaptive systems, but they
allow to discard many systems that certainly are not, and (ii) their focus is often
more on the issue of how much a system adapts than in which manner.

4 The black- and white-box perspective should not be confused with the white- and
black-box component adaptation techniques as discussed, e.g., in [12], where black
refers to exploiting the interface of a component and white to exploiting its internals.
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Contributions and structure. The paper presents a conceptual framework for
adaptation by means of a simple structural criterion. This framework, introduced
in Section 2, is called CoDa, Control Data Adaptation. Our contribution is a
definition of adaptation that is applicable to most approaches in the literature,
and in fact it is often coincident with them once it is instantiated to each approach.
Also, we aim at a separation of concerns to distinguish changes of behaviour that
are part of the application logic from those where they realize the adaptation logic,
calling “adaptive” only those systems capable of the latter. More precisely, we
propose concrete answers to basic questions like “is a software system adaptive?”
or “where is the adaptation logic in an adaptive system?”. We take a white-box
perspective that allows us to inspect, to some extent, the internal structure of
a system. Moreover, we provide the designer with a criterion to specify where
adaptation is located and, as a consequence, what parts of a system have to be
adapted, by whom and how. Note that while adaptation can be concerned with a
single component as well as with a whole system, we will not push this distinction
and will address both situations: the case will be evident by the context.

The second part of the paper (Sections 3–5) is devoted to a proof of con-
cept : we overview several approaches to adaptation and validate how the CoDa
definition of adaptation is applied to them. This part of the paper is organized
according to different pillars of Computer Science: architectural approaches (Sec-
tion 3), foundational models (Section 4), and programming paradigms (Section 5).
Approaches that cover more than one of such aspects are discussed only once.

It is worth remarking that it is not the programming paradigm, the archi-
tecture or the underlying foundational model what makes a system adaptive or
not. For example, adaptive systems can be programmed in any language, exactly
like object-oriented systems can in imperative languages, albeit with some effort.
However, it is beyond the scope of this paper to discuss approaches that do not
address adaptation in an explicit way, even if they might do so implicitly.

Section 6 overviews other surveys and taxonomies that address the same aim
of our work. Finally, Section 7 concludes the paper and discusses future research.

Our work would not be the same without the support and insights from
Martin Wirsing. It was indeed conceived in early meetings of the ASCENS
project, coordinated by Martin. The main questions under discussion were the
meaning of adaptation and its formalization. We presented some preliminary ideas
essentially based on the use of logical reflection in algebraic specifications. Though
sharing our passion for such disciplines and understanding our points Martin
suggested warned us about the difficulties of meta-programming techniques and
encouraged us to consider other approaches, including those proposed by other
teams of the project. This lead us to investigate the essence of adaptation, and
resulted first in the shorter, less inclusive version of this paper appeared as [20],
and ultimately in the present work. We would like to express infinite gratitude to
Martin, for his tenacious guidance, his calm patience and his pointed intuitions
during all these beautiful years of fruitful research collaborations.
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2 When is a software component adaptive?

The behavior of a software component is governed by a program, and, according
to the traditional view (e.g., [78]), a program is made of control (i.e., algorithms)
and data. This basic view of programs is sufficient for the sake of introducing our
approach. CoDa requires to make explicit that the behaviour of a component
depends on some control data that can be changed to adapt it. At this level of
abstraction we are not concerned with the structure of control data, the way they
influence the behaviour of the component, or the causes of their modification.

Our definition of adaptation is then very straight: Given a component with a
distinguished collection of control data, adaptation is the runtime modification
of such control data. From this definition we can easily derive several others.
A component is adaptable if its control data may be modified at runtime, it is
adaptive if its control data are actually modified at runtime in some execution,
and it is self-adaptive if it modifies its own control data at runtime.

The CoDa point of view is in line with other white-box perspectives on
adaptation as we discuss in Section 6. Our goal is to show that the conceptual
view of CoDa enjoys two key properties: concreteness and generality.

Concreteness. Any definition of adaptation should face the problem that the
judgement whether a system is adaptive or not is often subjective. From the
CoDa perspective, this is captured by the fact that the collection of control data
of a component can be defined, at least in principle, in an arbitrary way, ranging
from the empty set (“the system is not adaptable”) to the collection of all the
data of the program (“any data modification is an adaptation”). As a concrete
example, consider the following conditional statement:

if the hill is too steep then assemble with others else proceed alone

Can it be interpreted as a form of adaptation? From a black-box perspective
the answer is “it depends”. Indeed, the above statement is typical of controllers
for robots operating collectively as swarms and having to face environments with
obstacles (see, e.g., [59]). As some authors observe [37] “obstacle avoidance may
count as adaptive behaviour if [...] obstacles appear rarely. [...] If the “normal”
environment is [...] obstacle-rich, then avoidance becomes [...] normal behaviour
rather than an adaptation”. In sum, the above conditional statement can be a
form of adaptation in some contexts but not in others.

Now, suppose that the statement is part of the software controlling a robot,
and that the hill is too steep is a boolean variable set according to the value
returned by a sensor. Then, in our framework the change of behaviour caused by
a modification of its value is considered as an adaptation or not depending on if
the hill is too steep is considered as part of the control data or not.

Such a boolean variable is not in itself a datum obtained by a sensor: it is
controlled by an adaptation logic that changes its value when a given threshold
is reached in the information received by the sensors: thus, our control data do
not by necessity coincide with sensor data. In more general terms, the difference
is going to be made explicit e.g. when we will instantiate our CoDa approach
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in the context of computational models that support meta-programming or
reflective features, where a program-as-data paradigm holds: the issue is tackled
in Section 4.2 and in the summary of forms assumed by control data in Fig. 1.

Summing up, the above question (i.e.,“can it be interpreted as a form of
adaptation?”) can be answered only after a clear identification of the control data.
This means that from the white-box perspective of CoDa the answer is still “it
depends” as it is for the black-box case. However, there is a fundamental difference:
the responsibility of declaring which behaviours are part of the adaptation logic
is passed from the observer of the component to its designer. Ideally, a sensible
collection of control data should be chosen to enforce a separation of concerns,
allowing to distinguish neatly, if possible, the activities relevant to adaptation
(those that affect the control data) from those relevant to the application logic
only (that should not modify the control data).

Generality. Any definition of adaptation should be general enough to capture the
essence of the most relevant approaches to adaptation proposed in the literature.
The generality of CoDa is witnessed by the discussion of Sections 3–5 where we
overview several approaches to adaptation, pointing out for each of them what
we consider the natural candidates for control data. More explicitly, the criterion
that we shall use for determining such data is the following: a system designed
according to one of such approaches manifests an adaptation exactly when the
corresponding control data are modified.

Adaptive systems are realized by resorting to a variety of computational
models and programming paradigms. The nature of control data can thus vary
considerably: from simple configuration parameters to a complete representation
of the program in execution that can be modified at runtime.

The variety of formalisms makes it hard to compare approaches with each
other, unless one manages to map them into a unifying model of computation
(which is far beyond the scope of this paper). However, for the sake of a brief
discussion we enrich our intuitive view of a system as made of control, control
data and ordinary data, with additional features such as the system’s architecture
(in a general sense, including the interconnection of components, communication
stacks, workflows, etc.), and the adaptation strategy used to enact adaptation.
Moreover we shall assume that the behavior of the system or component (i.e., its
control) may be structured into sub-parts that we call operation modes.

Such simple perspective on adaptive systems helps us in classifying the main
approaches surveyed in this paper as depicted in Figure 1. Symbol “*” is used
to denote generic approaches that propose reference models where control data
depends on concrete instances of the approach. The table also contains the control
data as-it-is and the section where the approach is discussed.

Such classification has several advantages: (i) It provides a criterion that is
orthogonal to those of the surveys and taxonomies discussed in Section 6 and to
the classification by research areas along which we structure Sections 3–5. (ii) It
allows us to relate approaches presented independently and in different areas but
sharing, essentially, the same category of control data. This is, e.g., the case of the
approaches based on modes of operation proposed by the Software Engineering
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CONTROL DATA CONTROL DATA Section

(as-it-is) (class)

[40] * * 3.1

[24] * * 3.1

[77] * * 3.1

[43] * * 3.2

[62] * * 4.3

[11] adaptation coordination strategies adaptation strategy 4.1

[48] adaptation rules adaptation strategy 5.3

[15] architecture architecture 3.1

[46] architecture architecture 3.2

[60] architecture architecture 3.2

[66] module stack architecture 3.2

[22] current workflow architecture 3.2

[7] connectors architecture 3.2

[11] architecture architecture 4.1

[76] effector channel architecture 4.3

[48] set of activities architecture 5.3

[61] entire programs entire program 4.1

[55] rewrite rules entire program 4.2

[35] processes entire program 4.3

[30] processes entire program 4.3

[28] features operation mode 4.1

[53] regions operation mode 4.1

[83] operation mode operation mode 4.1

[1] active configuration operation mode 4.1

[72] active configuration operation mode 4.1

[19] control proposition operation mode 4.1

[82] steady state programs operation mode 4.1

[42] state space zones operation mode 4.1

[33] graph rewrite rules operation mode 4.2

[80] base level Petri net operation mode 4.3

[51] adaptor processes operation mode 4.3

[16] adaptable (local) processes operation mode 4.3

[69] context stack operation mode 5.1

[36] advices operation mode 5.2

[44] policies operation mode 5.3

Fig. 1. Summary of some of the control data forms discussed.

community with paradigm-oriented approaches and by the Theoretical Computer
Science community with automata and process-algebraic approaches. (iii) It
allows us to compare approaches apparently similar (and falling in the same
section) but based on different categories of control data. For instance, in some
process-algebraic approaches the control data may reside in the communication
topology or in the entire program. Note that the classification depends on the
envisioned conceptual computational formalisms where we map the approaches.
We have proposed a simple one to illustrate a possible way of exploiting the
notion of control data for comparison purposes.
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3 Architectural approaches to adaptation

Several contributions to the literature describe architectural approaches to auto-
nomic computing and self-adaptive software systems. In this section we survey
some of such proposals, organizing the discussion around two main themes: refer-
ence models (Section 3.1) and reconfiguration-based approaches (Section 3.2).

3.1 Reference Models for Adaptation

In this section we review here, among others, two influential reference models
for adaptive and self-adaptive systems: MAPE-K [40] and FORMS [77]. Both
approaches propose general guidelines for the architecture of (self-)adaptive
systems, the first one based on the presence of a control loop, the second one
on the use of computational reflection. The identification of control data at this
level of abstraction can only be very generic, as concrete instances may realize
the reference models in significantly different ways.

The first reference model we consider is MAPE-K (Monitor, Analyse, Plan,
Execute, Knowledge), introduced in the seminal [40]. A self-adaptive system is
made of a component implementing the application logic, equipped with a control
loop that monitors the execution through suitable sensors, analyses the collected
data, plans an adaptation strategy, and finally executes the adaptation of the
managed component through some effectors; all the phases of the control loop
access a shared knowledge repository. The managed component is considered to
be an adaptable component, and the system made of the component and the
manager implementing the control loop is considered a self-adaptive component.

MANAGED COMPONENT

Control Data

Monitor ExecuteKnowledge

Analyze Plan

AUTONOMIC
MANAGER

C
o
n
tr

o
l

Sensor Data

Fig. 2. Control data in MAPE-K.

The conceptual role of the control loop
induces a natural choice for the control data:
while in the monitor phase a wide range of data
from the managed component may be sensed,
the control data are those that are modified
by the execute phase of the control loop. Thus
the control data of a managed component is
(explicitly or implicitly) available via the inter-
face it offers to its manager, which can use it
to enact its control loop, as shown in Fig. 2.
Clearly, the concrete structure of control data
(e.g., variables, policies, . . . ) depends on the
specific instance of the MAPE-K model and on the computational model or pro-
gramming language used, as discussed in the next two sections. The construction
can be iterated, as the manager itself can be an adaptable component.

M EK

A P

MANAGED ELEMENT

SD                  CD

M EK

A P

M EK

A P

SD                  CD

SD                  CD

SD                  CD

Fig. 3. Tower of adaptation.

Concrete instances of this scenario can be found,
among others, in [11,48,23]. For example, in the lat-
ter, components follow plans to perform their tasks
and re-planning is used to overcome unpredicted
situations that may make current plans inefficient or
impossible to realize. A component in this scenario
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M EK

A P

MANAGED ELEMENT

M EK

A P

MANAGED ELEMENT

SD                  CD

SD                  CD

SD                  CD

Fig. 4. External (top-left) and internal (bottom-left) control loop patterns and their
presentation in terms of the MAPE-K model (center), and the reactive pattern (right).

can be adaptable, having a manager which devises
new plans according to changes in the context or
in the component’s goals. In turn, this planning
component might itself be adaptable, with another
component that controls and adapts its planning
strategy, e.g., on the basis of a tradeoff between
optimality of the plans and computational cost of
the planning algorithms. In this case, the planning
component (that realizes the control loop of the base component) exposes some
control data (conceptually part of its knowledge), thus enabling a hierarchical
composition that allows building towers of adaptive components (Fig. 3).

The MAPE-K control loop is very influential in the autonomic computing
community, but control loops in general have been proposed and extensively
studied also by others as a key mechanism for achieving self-adaptation in
software systems, also on the basis of the crucial role they play in engineering
disciplines like Control Theory. An interesting survey of several types of control
loops is presented in [18], which among others identifies the Model Reference
Adaptive Control loop, where the control loop is fed with a model of the controlled
component, and the Model Identification Adaptive Control loop, where the control
loop tries to infer such a model directly from the behaviour of the component.

Typical control loop patterns are also proposed in [24], which presents a
taxonomy of design patterns for adaptation (see Fig. 4). In the internal control
loop pattern, the manager is a wrapper for the managed component and it
is not adaptable. Instead, in the external control loop pattern, the manager
is an adaptable component that is connected with the managed component.
The distinction between external and internal control loops is also discussed
in [68], where it is stressed that internal control loops offer poor scalability and
maintainability due to the intertwining of the application and the adaptation
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Fig. 5. The FORMS reference model.

logic. Indeed this contradicts the separation-of-concerns principle that the authors
(and many others) promote as key feature of self-adaptive systems. Like for
MAPE-K, also for these control-loop centered approaches to adaptivity a precise
identification of control data is only possible in concrete instances.

The taxonomy of [24] includes a third pattern called reactive pattern that
describes reactive components capable of modifying their behavior in reaction to
an external event, without any control loop (or, equivalently, with a degenerate,
“empty” control loop). In order to apply our definition of adaptation as runtime
modification of control data to a reactive system of this kind, one could simply
identify as control data those data that, when modified by sensing the environment,
cause an adaptation of the system. This is a good example of the generality of
our definition of adaptation, which is applicable also to such quite extreme case.

The reference model in [6] promotes computational reflection as a necessary
criterion for any self-adaptive software system. Reflection implies the presence,
besides of base-level components and computations, of meta-level subsystems
and meta-computations that act on a meta-model. Meta-computations inspect
and modify the meta-model that is causally connected to the base-level system,
so that changes in one are reflected in the other. The authors argue that most
methodologies and frameworks for the design and development of self-adaptive
systems rely on some form of reflection, even if not explicitly. Building on these
considerations, they introduce the FOrmal Reference Model for Self-adaptation
(FORMS) [77], providing basic modeling primitives, and relationships among
them, for the design of self-adaptive systems (cf. Fig. 5), and making explicit the
presence of reflective (meta-level) subsystems, computations and models.

The goals of [6] are not dissimilar from ours, as they try to capture the essence
of self-adaptive systems, identifying it in computational reflection (one of the
key features of self-adaptive systems according to [52] as well). The FORMS
modeling primitives can be instantiated and composed in a variety of ways. For
example, [77] provides one example that conforms to the MAPE-K reference
model and another one that follows an application-specific design.
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A precise identification of control data depends on the specific instance of
the approach, and more precisely on the way modifications to the meta-level
affect the base level, causing an adaptation. In instances featuring some kind
of hot-linking from the meta- to the base-level component, the meta-level itself
can be considered as control data. Otherwise, in general, control data will be
identified at the boundary between the meta-level and the base-level components.

3.2 Reconfiguration-based Approaches to Adaptation

Several approaches to the design of (self-)adaptive systems look at a system as
a network of components, suitably arranged in a logical or physical topology
that constraints the interactions or communications among components. Adapta-
tions in this context are typically realized via reconfigurations, which can range
from the replacement of a single component to local or even global changes
to the interaction topology. Usually such reconfigurations do not modify the
functionalities of the individual components, but only the way they are connected
and/or interact with each other (see the survey [15], summarized in Section 6,
and [46]). Therefore the control data in these approaches can be identified with
the interconnection topology itself, which depending on the approaches can be
made of channels, connectors, gates, protocol stacks, links, and so on.

A first example is the approach presented in [60], where dynamic software
architecture has a dominant role. The proposed methodology combines an Adap-
tation Management loop, which is essentially a distributed, agent-based MAPE-K
control loop, with an Evolution Management loop. In the latter, an architectural
model is maintained at runtime, that describes the running implementation and
that plays the role of our control data. In fact the architectural model, made of
components and connectors, can be modified by the control loop, by adding or
removing components or connectors or by changing the topology. An Architecture
Evolution Manger mediates the changes of the architectural model and maintains
the consistency between the model and the running implementation.

The Ensemble system [66] is a network protocol architecture conceived with
the aim of facilitating the development of adaptive distributed applications. The
main idea is that each component of the application relies on a reconfigurable stack
made of simple micro-protocol modules, which implement different component-to-
component communication features. The module stack imposes a layered structure
to the communication infrastructure which is used to guide its adaptation. For
instance, adaptation can be triggered in a bottom-up way, when a layer n discovers
some environmental changes that require an adaptation. Then the module at layer
n may be adapted and, if not possible, the adaptation request is propagated to the
upper layer n+1. Such structure is also exploited when a coordinated, distributed
adaptation is needed, which is tackled by the Protocol Switching Protocol, one the
key features of the approach. The protocol is initiated by a global coordinator
that sends the notification of the need of adaptation to each component. Within
each component the notification is propagated through the protocol stack, so
that each layer applies the necessary actions. Adaptation can happen at different
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points. In particular it may affect the components participating to the distributed
application (or to groups within it) or the communication infrastructure (i.e., the
module stack). Hence, generally speaking, the set of components, their state and
the module stack form the control data of the adaptive application.

The authors of [43] discuss how to apply this model-based approach to Model-
Integrated Computing to adaptive systems. Adaptation is mainly reconfiguration
followed by automatic deployment, triggered at runtime by the user or by the
system as a reaction to some events. In the proposed case study, a simple finite-
state automaton determines the transitions from one behaviour to another: here,
the natural choice of control data consists of the states of the automaton.

A life-cycle for service-based applications where adaptation is a first-class
concern is defined in [22]. Such life-cycle continues during runtime to cope with
dynamic requirements and the corresponding adaptations. In addition to the
life-cycle, [22] focuses on the identification of a number of design principles and
guidelines that are suitable for adaptable applications. Essentially, adaptation is
understood as the modification of the workflow implementing a service-based ap-
plication, from substituting individual services by equivalent ones, to recomposing
a piece of the workflow to obtain an equivalent result. Therefore, roughly speaking,
the current workflow is the control data of the service-based applications.

In the architectural approach of [7] a system specification has a two-layered
architecture to enforce a separation between computation and coordination. The
first layer includes the basic computational components and their interfaces,
while the second one is made of connectors (called coordination contracts) that
link the components to ensure the required system’s functionalities. Adaptation
in this context is obtained by reconfiguration, which consists of removal, addition
or replacement of both base components and connectors among them. The
possible reconfigurations of a system are described declaratively with suitable
rules, grouped in coordination contexts : such rules can be either invoked explicitly,
or triggered automatically when certain conditions are satisfied. In this approach,
as adaptation is reconfiguration, the control data consist of the whole two-layered
architecture, excluding the internal state of the computational components.

4 Computational Models for Adaptation

Computational reflection is widely accepted as one of the key instruments to build
self-adaptive systems (cf. [52,31]). Indeed computational paradigms equipped with
reflective, meta-level or higher-order features, allow one to represent programs as
first-class citizens. In these cases adaptation emerges, according to our definitions,
if the program in execution is represented in the control data of the system,
and it is modified during execution. Prominent examples of such formalisms are,
e.g., rewrite theories with logical reflection like rewriting logic [54] or process
calculi with higher-order or meta-level aspects like HO π-calculus [71]. Systems
represented within these paradigms can realize self-adaptation in a straightforward
manner. Of course, computational reflection assumes different forms and, despite
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of being a very convenient mechanism, it is not strictly necessary: as we argued in
Section 1 any programming language can be used to build a self-adaptive system.

We outline in this section some rules of thumb for the choice of control
data within some well-known computational formalisms (deferring programming
paradigms and languages to Section 5). In doing so, we restrict the attention
to computational models that have been purposely introduced to represent
adaptation and we point out how they can be used for modeling the behavior of
self-adaptive systems. In addition, we survey a representative set of models that
have been conceived with the specific purpose of modeling self-adaptive systems
and supporting their formal analysis. We structure the presentation along three
main strands: automata-like computational models (Section 4.1), declarative,
rule-based computational models (Section 4.2), and computational models from
the concurrency theory field (Section 4.3).

4.1 Automata-based Approaches to Adaptation

In many frameworks for the design of adaptive systems the base-level system has
a fixed collection of possible behaviours (or behavioural models), and adaptation
consists of passing from one behaviour to another. Some of the approaches
discussed in this section achieve this by relying on a multi-layered structure
reminiscent of hierarchical state machines and automata.

A first example of this tradition are the Adaptive Featured Transition Systems
(A-FTS) of [28], which were introduced for the purpose of model checking adaptive
software (with a focus on software product lines). A-FTSs are a sort of transition
systems where states are composed by the local state of the system, its configura-
tion (set of active features) and the configuration of the environment. Transitions
are decorated with executability conditions that regard the valid configurations.
Adaptation corresponds to reconfigurations (changing the system’s features).
Hence, in terms of our white-box approach, reconfigurable system features play
the role of control data. The authors introduce the notion of resilience as the
ability of the system to satisfy properties despite of environmental changes (which
essentially coincides with the notion of black-box adaptivity of [39]). Properties
are expressed in AdaCTL, a variant of the computation-tree temporal logic CTL.

Another example of layered computational structures are S[B] systems [53],
a model for adaptive systems based on 2-layered transitions systems. The base
transition system B defines the ordinary behavior of the system, while S is
the adaptation manager, which imposes some regions (subsets of states) and
transitions between them (adaptations). Further constraints are imposed by S via
adaptation invariants. Adaptations are triggered to change region (in case of local
deadlock). Such regions, hence, form the control data of the system according to
our white-box approach. The paper also formalizes notions of weak and strong
adaptability, defined as the ability to conclude a triggered adaptation in some or
all possible behaviors, respectively, and characterized by suitable CTL formulae.

Mode automata [50] have been also advocated as a suitable model for adaptive
systems. For example, the approach of [83] represents adaptive systems with
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two layers: a functional layer, which implements the application logic and is
represented by state machines called adaptable automata, and an adaptation layer
that implements the adaptation logic and is represented with a mode automaton.
Adaptation here is the change of mode, and these are the control data of this
approach. The approach considers three kinds of specification properties: local
(to be satisfied by the functional behavior of one particular mode, not involving
adaptation), adaptation (to be satisfied by adaptation phases, i.e., transitions
between modes), and global (to be satisfied by all behaviors). An extension of
linear-time temporal logic (LTL) called mLTL is used to express such properties.

Overlap adaptations [11] arise in long-running open and dynamic distributed
applications where components can be removed, added or replaced with a certain
frequency. Under these premises, it is clear that the set of components of the
application corresponds to its control data. An overlap adaptation occurs when
the execution of old components (i.e., components that need to be adapted)
overlaps with the execution of new components (i.e., adapted components). This
overlap introduces non-trivial issues but is required in order to adapt the whole
application in a distributed manner without stopping it.

The authors identify several kinds of overlap adaptations which vary in
the kind of allowed interactions between old and new components. The main
concern of the approach is verifying the correctness of adaptations. For this
purpose the approach relies on the concept of transitional adaptation lattices,
roughly, diamond-shaped graphs whose nodes are automata and whose transitions
correspond to atomic adaptation actions (cf. Fig. 6). Each automaton represents
the behavior of the whole system in some state. The top automaton corresponds
to the system before adaptation starts, while the bottom automaton corresponds
to the system when adaptation ends. The diamond shape of the lattice implicitly
imposes a confluent behavior of individual atomic adaptations.

Fig. 6. Adaptation lattice.

Actually, the approach considers a finer granular-
ity of components in terms of fractions, which are
essentially the local instances of components in pro-
cess locations, introducing a combinatorial explosion
in the size of the lattices which has a negative impact
in the effort required in their analysis. To mitigate
this the authors propose a framework based on partic-
ular architectures and coordination protocols, where
some specialized modules drive the adaptation phase
through designated paths in the adaptation lattices.
This implicitly introduces a higher-level adaptation
since a system may vary the strategy of such modules
according to various factors: the control data of the
system correspond to such strategies.

Another example of labelled transition system variant used for modeling
self-adaptive systems are the Synchronous Adaptive Systems of MARS [1,72],
where systems are modeled as sets of modules, each having a set of configurations.
At runtime only one configuration is active. Adaptation consists on changing the
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active configuration, selected according to the configuration and environment
status. Control data are thus those that determine the active configuration.

While the “programs-of-programs” spirit can raise scalability and complexity
issues, the layered structure of some of the above models can be exploited to study
adaptive systems compositionally. The authors of [82] propose a technique to verify
properties of adaptive systems in a modular way. Adaptive programs are modeled
with n-plex adaptive programs which are essentially sets of finite state machines,
some of which representing steady state programs [4] and the rest representing
adaptation transitions between those programs. The structure of an n-plex
adaptive program makes explicit the separation of functional concerns (realized
by steady state programs) and adaptation concerns (realized by adaptation
transitions), which is exploited to reason about such systems in a modular
way. Clearly, the separation of concerns coincides with the spirit of CoDa. In
particular, control data here are the individual steady state programs.

This separation of concerns has its counterpart in the property specification
language used, Adapt-operator extended LTL (A-LTL) [81]. A-LTL extends LTL
with an operator that does not provide more expressive power but allows to
express properties of adaptive systems more concisely. With respect to similar
approaches, the modular verification phase exploits the separation of concerns
and the assume/guarantee paradigm in order to avoid the state explosion problem,
thus providing a more scalable solution. For instance, this allows the authors
to tackle transitional properties of adaptation (e.g., graceful adaptation, hot-
swapping adaptation, etc.) in an efficient manner.

Structuring the behavior of adaptive system is a major concern in [42]. The
authors identify four main modes of operation (called state space zones) in an
adaptive system: the normal behavior zone (the system operates as expected), the
undesired behavior zone (the system has violated some constraint and needs to be
adapted), the invalid behavior zone (the system has violated some constraint and
cannot be adapted), and the adaptation behavior zone (the system is adapting
to re-enter the normal behavior zone). The work is motivated by the necessity of
shifting the focus to behavioral aspects of adaptation, as evidenced in previous
experiences of the authors that were mainly concerned with architectural as-
pects [77]. In this approach, hence, the control data are those used to characterize
the state space zones. The approach is validated with a case study of a decentral-
ized adaptive traffic control system using timed automata and a timed extension
of CTL. The authors distinguish two different adaptation capabilities (from the
black-box perspective): flexibility (ability to adapt to changing environments,
e.g., to improve performance) and robustness (ability to recover from failures).

Some of the above approaches rely on logical reasoning mechanisms to prove
properties of adaptation. To this end, base steady programs are annotated with
the properties they ensure (cf. the above discussed adaptation lattices [11]).
This idea of specification-carrying programs is investigated in [61]. Suitable
semantical domains aimed at capturing the essence of adaptation are identified.
The behaviour of a system is formalized in terms of a category of specification-
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carrying programs (also called contracts), i.e., triples made of a program, a
specification and a satisfaction relation among them; arrows between contracts
are refinement relations. Contracts are equipped with a functorial semantics, and
their adaptive version is obtained by indexing the semantics with respect to a
set of stages of adaptation, yielding a coalgebraic presentation potentially useful
for further generalizations. An adaptation is a transformation of a specification-
carrying-program into another one, satisfying some properties. Therefore, the
control data includes the entire program being executed.

Different in spirit is our proposal in [19] where we studied the consequences
of making a particular choice of control data in automata-like models (and, in
particular, in Interface Automata [3], a foundational model of component-based
systems). For this purpose we introduced the concept of Adaptable Transition
System and its instantiation to Adaptable Interface Automata (AIA), an essential
model of adaptive systems inspired by our white-box approach. The key feature of
AIAs are control propositions, the formal counterpart of control data. The choice
of control propositions is arbitrary, but it imposes a clear separation between
ordinary behaviors and adaptive ones.

4.2 Rule-based Models for Adaptation

Rule-based programming is an excellent example of a successful and widely
adopted declarative paradigm, thanks to the solid foundations offered by rule-
based theoretical frameworks like term and graph rewriting. As many other
programming paradigms, several rule-based approaches have been tailored or
directly applied to adaptive systems (e.g., graph transformation [33]). Typical
solutions include dividing the set of rules into those that correspond to ordinary
computations and those that implement adaptation mechanisms, or introducing
context-dependent conditions in the rule applications (which essentially corre-
sponds to the use of standard configuration variables). The control data are
identified by the above mentioned separation of rules in the first case, and they
correspond to the context-dependent conditions in the latter.

The situation is different when we consider rule-based approaches which
enjoy higher-order or reflection mechanisms. A good example is logical reflection,
a key feature of frameworks like rewriting logic [54]. At the ground level, a
rewrite theory R (e.g., a software module) lets us infer a computation step
R ` t → t′ from a term (e.g., a program state) t into t′. A universal theory U
lets us infer the computation at the “meta-level”, where theories and terms are
meta-represented as terms: the above computation step can be expressed in U as
U ` (R, t) → (R, t′); moreover, the rewrite theory R can be also rewritten by
meta-level rewrite rules, like in U ` (R, t)→ (R′, t′). Since U itself is a rewrite
theory, the reflection mechanism can be iterated yielding what is called the tower
of reflection, where not only terms t, but also rewrite rules of the lower level can
be accessed and modified at runtime. This mechanism is efficiently supported by
Maude [26] and has given rise to many interesting meta-programming applications.
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Fig. 7. RRD.

In particular, rewriting logic’s reflection has
been exploited in [55] to formalize a model for
distributed object reflection, suitable for the
specification of adaptive systems. Such model,
called Reflective Russian Dolls (RRD), has a
structure of layered configurations of objects,
where each layer can control the execution of
objects in the lower layer by accessing and
executing their rules, possibly after modifying them, e.g., by injecting some
specific adaptation logic in the wrapped components (cf. Fig. 7). The RRD
model falls within our conceptual framework by identifying as control data for
each layer the rules of its theory that are possibly modified by the upper layer.
Note that, while the tower of reflection relies on a white-box architecture, the
Russian Dolls approach can deal equally well with black-box components, because
wrapped configurations can be managed by message passing. RRD has been
further exploited for modeling policy-based coordination [73], for the design of
PAGODA, a modular architecture for specifying autonomous systems [74], in the
composite actors used in [32], and, by ourselves, in the design and analysis of
self-assembly strategies for robot swarms [21].

4.3 Concurrency Models for Adaptation

Languages and models conceived in the area of concurrency theory are also good
candidates for the specification and analysis of self-adaptive systems. We inspect
some paradigmatic formalisms to see how the conceptual framework can help us
in the identification of the adaptation logic within each model.

Petri nets are undoubtedly the most popular model of concurrency, based
on a set of repositories, called places, and a set of activities, called transitions.
The state of a Petri net is called a marking, that is a distribution of resources,
called tokens, among the places of the net. A transition is an atomic action
that consumes several tokens and produces fresh ones, possibly involving several
repositories at once. In coloured Petri nets, the tokens can represent structured
data and transitions can manipulate them.

Fig. 8. Adaptive system’s Petri net

The approach proposed in [80] empha-
sizes the use of Petri nets to validate the de-
velopment of adaptive systems. Specifically,
it represents the local behavioural models
with coloured Petri nets, and the adapta-
tion change from one local model to another
with an additional Petri net transition la-
beled adapt (cf. Fig. 8). Such adapt transi-
tions describe how to transform a state in
the source Petri net into a state in the target
one, thus providing a clean solution to the
state transfer problem (i.e., the problem to
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consistently transfer the state of the system
before and after the adaptation) common to
these approaches. In this context, a natural choice of control data would be the
Petri net that describes the current base-level computation, which is replaced
during an adaptation by another local model.

Petri nets are used in [62] to formalize multi-layer adaptation in large scale
applications spanning over heterogeneous organizations and technologies. Here the
multi-layered architecture is motivated by the presence of different languages and
technologies addressing their own concerns and views within the same application
in a coherent manner and multi-layered adaptation must ensure that coherence
between views is always maintained. For example, a three-layers architecture
is typical of service-based applications: one layer for service specification (e.g.,
WSDL); one for behavior description (e.g., BPEL); and one for the organizational
view that specifies the stakeholders involved in the business process.

Multi-layer adaptation is triggered by adaptation events that are raised by
human stakeholders or by layer-specific monitors that discover, e.g., message-
ordering mismatches (at the behavior level), or invocation mismatches (at the
service layer). Application mismatches are organized along tree-based taxonomies
that are put in correspondence with suitable adaptation templates. The main
idea is that adaptation techniques that can tackle one application mismatch
m can also be used to adapt mismatches that are “below” m in the taxonomy.
Cross-layer adaptation is achieved by linking templates at different application
layers: templates may trigger the executions of other templates both through
direct invocation or by raising other adaptation events. Adaptation templates,
the taxonomy navigation and the template-selection environment are modeled
as Petri nets (they support the search of the templates starting from the more
specific to the more general, w.r.t. the raised adaptation event). As the emphasis
is the specification of a generic adaptation model for pervasive applications, the
Petri net abstracts away from the execution of multi-layered applications and
thus the identification of control data is only possible for concrete instances.

Classical process algebras (CCS, CSP, ACP) are tailored to the modeling of
reactive systems and therefore their processes easily fall under the hat of the
reactive pattern of adaptation. Instead, characterizing the control data and the
adaptation logic is more difficult in this setting. The π-calculus, the join calculus
and other nominal calculi, can send and receive channels names, realizing some
sort of reflexivity at the level of interaction: they transmit communication media.

An example of use of π-calculus for modeling autonomic systems is [76].
There, adaptive systems are organized in two-levels, local and global. The local
level is formed by autonomic elements structured in the MAPE-K spirit as a
managed element and an autonomic manager, defined by π-calculus processes
that communicate over designated channels. In particular, the effector process
enacts adaptation requests by sending messages to its managed element over
the effector channel, which acts as the control data (storing a message in the
channel triggers adaptation) of the local adaptive behavior. At the global level
a centralized autonomic manager monitors and controls the locally distributed
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autonomic managers. Again, adaptation is realized by sending messages through
suitable effector channels.

Fig. 9. A KLAIM node.

Similar approaches have been explored
within process calculi that feature primitives
adequate to model autonomic systems, includ-
ing explicit locality aspects, asynchronous com-
munication and code mobility. A paradigmatic
example is KLAIM [29], which has been stud-
ied as a convenient language for modeling self-
adaptive systems in [35]. The authors describe
how to adopt in KLAIM three paradigms for
adaptation: two that focus on the language-level, namely, context-oriented and
aspect-oriented programming (cf. Sections 5.1 and 5.2, respectively), and one
that focuses on the architectural-level (MAPE-K).

The main idea is to rely on process tuples, that is, tuples (the equivalent of
messages in the tuple-space paradigm) that denote entire processes. Process tuples
are sent by manager components (locations in KLAIM) to managed components,
which can then install them via the eval primitive of KLAIM (cf. Fig. 9), i.e.,
adaptation is achieved by means of code mobility and code injection. The control
data in this case amounts to the set of active processes in each location.

Stemming from this approach, the Service Component Ensemble Language
(SCEL) has been proposed in [30] which realizes adaptation by combining different
paradigms, i.e., policy-based programming (discussed in Section 5.3), tuple-space
communication, and knowledge-based reasoning. In this case control data is
spread among the policy rules, the process tuples and the knowledge facts.

In [51] the authors present a lightweight approach to service adaptation based
on process algebraic techniques. As in [14], adaptation is achieved by the design-
time synthesis of service adaptors that act as mediators for the communication
between two services and allow to overcome signature and behaviour mismatches
between their contracts. Differently from [14], an adaptor process is deployed
that is itself adaptive, in the sense that its behaviour is initially distilled on the
basis of adaptation contracts and then the adaptor is progressively refined at
run-time exploiting the collected information about interaction failures. This
is useful when service behavior may evolve at runtime due to changes of the
environmental conditions in ways not foreseeable in the contract, e.g., depending
on the current load of its server. The approach is lightweight because it introduces
low overhead. Learning adaptors have been implemented and included in the
Integrated Toolbox for Automatic Composition and Adaptation (ITACA) [25].
The control data of the approach are the adaptors themselves.

We conclude this section by mentioning the approach in [16], where the
concept of adaptable process has been put forward to model dynamic process
evolution patterns in process algebras. Adaptable processes are assigned a location
and can be updated at runtime by executing an update prefix related to that
location. Roughly, if P is an adaptable process running at location a, written
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a[P ], and U is a process context, called update pattern, then the execution of the
update prefix ã{U} stops the execution of P within a (i.e., a[P ] is removed) and
replaces it with U(P ). Note that location a is not necessarily preserved by the
update, providing flexibility on the allowed update capabilities. For example, the
prefix ã{nil} would just remove a[P ]; the prefix ã{a[Q]} would replace a[P ] by
a[Q]; the prefix ã{b[·]} would move P from location a to the location b; and the
prefix ã{a[·|·]} would spawn an extra copy of P within a. The authors exploit the
formal model to study undecidability issues of two verification problems, called
bounded and eventual adaptation, i.e., that there is a bound to the number of
erroneous states that can be traversed and that whenever a state with errors is
entered, then a state without errors will be eventually reached, respectively. The
control data of [16] are the adaptable processes of the form a[P ].

5 Programming paradigms for Adaptation

As we observed, the nature of control data can vary considerably depending both
on the degree of adaptivity of the system and on the nature of the computational
formalisms used to implement it. Examples of control data include configuration
variables, rules and plans (in rule-based programming), code variations (in context-
oriented programming), interactions (in connector-centered approaches), policies
(in policy-driven languages), advices (in aspect-oriented languages), monads
and effects (in functional languages), and even entire programs (in models
of computation exhibiting higher-order or reflective features). Indeed, many
programming languages that consider such forms of control data as first-class
citizens have been promoted as suitable for programming adaptive systems (see the
overviews of [34,70]). Just restricting to Java, technologies supporting adaptation
include Jolie [57], ContextJ [8], JavAdaptor [64] and Chameleon [9]. This section
surveys a representative set of such programming paradigms and explain their
notion of adaptation in terms of CoDa. The approaches are organized according
to three paradigms: context-oriented programming (Section 5.1), aspect-oriented
programming (Section 5.2), and policy-oriented programming (Section 5.3).

5.1 Context-Oriented Programming for Adaptation

Context-oriented programing [38] (COP) has been designed as a convenient
paradigm for programming autonomic systems [69]. The main idea is to rely on
a pool of code variations choosen according to the program’s context, i.e., the
runtime environment under which the program is running. Under this paradigm
the natural choice of control data is the current set of active code variations.

Fig. 10. MAPE-K archi-
tecture in COP .

Many languages have been extended to adopt this
paradigm. We mention among others Lisp, Python,
Ruby, Smalltalk, Scheme, Java, and Erlang. The no-
tion of context varies from approach to approach and it
might refer to any computationally accessible informa-
tion. Without giving any concrete reference, a typical



20 R. Bruni, A. Corradini, F. Gadducci, A. Lluch Lafuente, A. Vandin

example is the environmental data collected from sen-
sors. In many cases the universe of all possible contexts
is discretised in order to have a manageable, abstract
set of fixed contexts. This is achieved, for instance by
means of functions mapping the environmental data
into the set of fixed contexts. Code fragments like
methods or functions can then be specialized for each
possible context. Such chunks of behaviours associated
with contexts are called variations.

COP can be used to program autonomic systems by activating or deactivating
variations in reaction to context changes. The key mechanism is the dynamic
dispatching of variations. When a piece of code is being executed, a dispatcher
examines the current context of the execution in order to decide which variation
to invoke. Contexts thus act as some sort of possibly nested scopes. Indeed,
often a stack is used to store the currently active contexts, and a variation can
propagate the invocation to the variation of the enclosing context. The key idea to
achieve adaptation along the lines of the MAPE-K framework is for the manager
to control the context stack and for the managed component to access it in a
read-only manner. The points of the code in which the managed component
queries the current context stack are called activation hooks (adaptation hooks
in [48] and in [35], as we shall see in Sections 5.2 and 5.3, respectively).

Given our informal description, COP falls into CoDa assuming the context
stack as control data. The only difference between the approach proposed in [69]
(cf. Fig. 10) and our ideas is that the former suggests the context stack to reside
within the manager (this may not be clear in the figure, and we refer to the
example in [69]), while for us the control stack resides in the interface of the
managed component, in order to identify such component as an adaptable one.

5.2 Aspect-Oriented Programming for Adaptation

Aspect-oriented programming [45] and, in particular, dynamic aspect-oriented
programming [63] have been advocated as a convenient mechanism for developing
self-adaptive software by many authors since the original proposal of [36]. The
main idea is that the separation-of-concerns philosophy of aspects facilitates the
addition of autonomic computing capabilities. Indeed, while early works [36] put
the stress on monitoring as an aspect, subsequent works have generalized this
idea to other capabilities. Adaptation can be realized through aspect weaving,
i.e., the activation and deactivation of advices (the code to be executed at
join points), possibly enacted by an autonomic manager. Advices, hence, can
be understood as the control data of the aspect-based adaptation paradigm.
Dynamic aspect oriented programming languages, equipped with dynamic aspect
weaving mechanisms, thus facilitate the realization of dynamic adaptation.
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5.3 Policy-Oriented Programming for Adaptation

As we have seen in Section 4.2, rule-based approaches have been advocated as
a convenient mechanism for realizing self-adaptation. Another example of this
tradition are policies. Generally speaking, policies are in fact rules that determine
the behavior of an entity under specific conditions. Policies have been seen as
mechanisms enjoying the flexibility required by self-* systems, and tackling the
problem at the right (high-) level of abstraction. Quite naturally, adaptation can
be realized by changing policies according to the program’s current status. The
natural choice of control data is then the current set of active policies.

A prominent example is the Policy-based Self-Adaptive Model (PobSAM) [44],
a formal framework for modeling and analyzing self-adaptive systems which relies
on policies as a high-level mechanism to realize adaptive behaviors. Building upon
the authors experience in the development of the PAGODA framework [74] (cf.
Section 4.2), PobSAM combines the actor model of coordination [2] with process
algebra machinery and shares the white-box spirit of separating application and
adaptation concerns. Indeed, the overall architecture of the system is composed
by managed actors, which implement the functional behavior, and autonomic
manager (meta-)actors, which control managed actors by enforcing policies. Thus,
the adaptation logic is encoded in policies whose responsibility relies on well-
identified system components (i.e., the managers). In particular, the configuration
of managers is determined by their sets of policies which can vary dynamically.
The currently active set of policies represents the control data in this approach.
Adaptation is indeed the switch between active policies. Policies are rules that
determine under which condition a specified subject must or must not do a
certain action. PobSAM distinguishes between governing policies, which control
the managed actors in their stable (cf. steady, normal) state and adaptation
policies, which drive the actors in the transient states (cf. adaptation phases).

The authors of [48] propose a framework for dynamic adaptation based on
the combination of adaptation hooks, which specify where to apply adaptation,
and policies called adaptation rules, which specify when and how to apply it. In
their approach an adaptable application is an application that exposes part of
its states and the set of activities that it performs in a suitable interface called
application interface. Adaptation is enacted by suitable managers that exploit
the adaptation rules to introduce changes in the application through its interface.
In particular, the rules define adaptations that may change the activities by
instantiating new code or changing their configuration parameters and may also
change part of the application’s state. Hence, in this approach both the set of
activities and the exposed application state are to be considered as control data
in the basic adaptation layer. On top of this basic layer, dynamic adaptation can
occur, which consists on modifying the adaptation rules at runtime. This makes
adaptation managers adaptable as well. At this layer, hence, the control data are
the adaptation rules, which determine the behavior of the adaptation managers.

The approach is instantiated in the Java Orchestration Language Interpreter
Engine (Jolie) [57], a framework for rapid prototyping of service oriented applica-
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tions. The approach is, however, language agnostic, as the authors identify the
basic ingredients needed to implement their approach in other settings and a
generic architecture to structure it. The former consists of mechanisms needed to
implement the adaptation interface and its manipulation based on code mobility.
At the architectural level applications are structured as clients which rely on an
activity manager to run their activities. Adaptation is governed by adaptation
servers, which are coordinated globally by an adaptation manager service.

6 Related Work

We have already discussed some of our sources of inspiration in the previous
sections and spelled out how their underlying notion of adaptation can be
recast in terms of our approach. This section discusses two kinds of related works.
Section 6.1 is devoted to works that propose a definition of adaptation. Section 6.2
discusses works that provide a classification of approaches and techniques, guided
by a set of dimensions or facets relevant to adaptive systems. Clearly, the
references considered here represent only a fragment of the vast literature on
adaptive systems: we refer the interested reader to the bibliography of the surveys
discussed in this section for completing the picture.

6.1 On the Essence of Adaptation

This sections focuses on other approaches that aim to provide conceptual notions
of adaptation. Several proposals follow a black-box perspective that, as discussed
in the Introduction, focuses on the external observation of self-adaptive systems.

An interesting contribution is [49], which analyses the notion of adaptation in
a general sense and identifies the main concepts around adaptation drawn from
different disciplines, including evolution theory, biology, psychology, business,
control theory and cybernetics. Furthermore it provides guidelines on the essential
features of adaptive systems in order to support their design and understanding.

The author claims that “in general, adaptation is a process about changing
something, so that it would be more suitable or fit for some purpose that it
would have not been otherwise”. The term adaptability denotes the capacity of
enacting adaptation, and adaptivity the degree or extent to which adaptation is
enacted. This leads to the identification of four issues that typically play a role
in adaptation: context, goals, time-frames, and granularity that are discussed
in Section 6.2. The author concludes suggesting that “due to the relativity of
adaptation it does not really matter whether a system is adaptive or not (they all
are, in some way or another), but with respect to what it is adaptive”.

A formal black-box definition is proposed in [17]. If a system reacts differently
to the same input stream at different times, then the system is considered to
be adaptive, because ordinary systems should exhibit a deterministic behavior.
Thus, a non-deterministic reaction is interpreted as an evidence of the fact that
the system adapted its behaviour after an interaction with the environment.
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Despite its appeal and crispness, we believe that this and similar definitions
of adaptation are based on too strong assumptions, restricting considerably its
range of applicability. For example, a system where a change of behaviour is
triggered by an interaction with the user would not be classified as adaptive.

As we argued in the Introduction, black-box approaches are interesting and
useful for evaluating the system robustness under some conditions. However, they
are of little use for design purposes where modularization and reuse are critical
aspects. Therefore, we believe that a formal definition of adaptation should not be
based on the observable behaviour of systems only, as it happens in the black-box
approaches. At the same time, we do believe that research efforts are needed to
conciliate black-box and white-box perspectives. Ideally, the internal mechanisms
and external manifestations of adaptive behavior should be coherent, so that,
for instance, a black-box analysis can validate that the degree of adaptability is
strongly dependent on the adaptation mechanisms.

A different perspective on adaptation, inspired by the seminal work of IBM on
autonomic computing, has been adopted by many authors, e.g., [68]. The starting
point is the observation that modern software can be seen as an open loop. Indeed,
a software system is inevitably subject to continuous modifications, reparations
and maintenance operations which require human intervention. Self-adaptation
is seen as the solution to such openness by closing the loop with feedback from
the software itself and its context of operation. In this view self-adaptation is
seen as a complex feature built upon self-awareness and other self-* mechanisms.
Control loops are seen as a fundamental process to achieve adaptive behaviors.

The kind of adaptation discussed so far is concerned essentially with individ-
ual components. However it may also happen that a complex system made of
non-adaptive components exhibits a collective behavior which is considered to
be adaptive (see e.g., the discussion in [49]). Such emergent adaptation, typical
of massively parallel and distributed systems such as swarms, results from the
components’ interactions. Often, emergent adaptation relies on decentralized
coordination mechanisms (e.g., based on the spatial computing paradigm [75,10]).
Interesting in this regard can be to shift the focus to Singerian forms of adapta-
tion [67,13], where the subject of adaptation is the environment, as opposed to
the Darwinian one we have focused on, where it is the system who adapts.

A conceptual framework for emergent adaptation would require to shift from
a local notion of control data to a global one, where the control data of the
individual components are treated as a whole, possibly requiring mechanisms to
amalgamate them for the manager, and to project them back to the components.

6.2 The Facets of Adaptation

The literature on adaptive systems contains several interesting surveys and
taxonomies based on the identification of the main facets of adaptation. The
concept of control data provides one such facet that has been used in this paper
to classify many proposals as discussed in Sections 3–5 and summarized in Fig. 1.
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In this section we relate control data with other facets proposed in the literature.
In most cases these are orthogonal and provide complementary classification
criteria. In a few cases they are closely related with control data, thus providing
a more concrete perspective on the corresponding approaches.

The survey on self-adaptive software of [68] is one of the most comprehensive
studies on the topic, including also approaches to adaptation from the fields of
artificial intelligence, control theory and decision theory. It presents a taxonomy
of adaptation concerns, surveys a wide set of representative approaches from
many different areas, and identifies some key research challenges. The discussion
is driven by the so-called six honest men issues in adaptation: (1) Why is
adaptation required? Is the purpose of adaptation to meet some robustness
criteria, to improve the system’s performance or to satisfy some other goal? (2)
When should adaptation be enacted? Should adaptation be applied reactively
or proactively? (3) Where is the need to do an adaptation manifested? That is,
which artifacts (sensors, variables, etc.) indicate that it is necessary to perform
an adaptation? (4) What parts of the system should be adapted? That is, which
artifacts (variables, components, connectors, interfaces, etc.) have to be modified
in order to adapt? (5) Who should enact the adaptation? Which entity (e.g.,
human controller, autonomic manager) is in charge of each adaptation? (6) How
should adaptation be applied? That is, which is the plan that establishes the
order in which to apply the necessary adaptation actions?

Our conceptual framework fits well with this approach and is mainly devoted
to the identification of the where, which then facilitates finding the right character-
ization for the remaining honest men of a system’s adaptation mechanism. In fact,
in our view the where includes our control data, since it is their manipulation that
forces a system to adapt. Interestingly, the taxonomy distinguishes between weak
adaptation (e.g., modifying parameters) and strong adaptation (e.g., replacing
entire components): the granularity of control data obviously provides a finer
spectrum between these two extremes.

The authors of [52] identify three key technologies that enable the development
of adaptive systems and that are nowadays widely accepted: component-based
design, separation of concerns, and computational reflection. We remark that our
aim is more devoted to providing a common understanding of adaptation rather
than promoting particular mechanisms. They argue that there are two main
approaches to adaptation: parameter adaptation and compositional adaptation.
In parameter adaptation control data can be identified in those program variables
that affect the system behavior, and adaptation coincides with the modification of
those variables. Instead, in compositional adaptation control data can be identified
in the system’s architecture, i.e., in the system components and interconnection,
and adaptation coincides with architectural reconfiguration, from replacing entire
components to modifying only parts of them. The authors pay a special attention
to compositional adaptation and propose a taxonomy that focuses on three main
questions: the when, how, and where to compose.
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While our aim is centered around the conceptual forms of control data,
the authors focus on concrete technological mechanisms and do not consider
foundational models such as those discussed in Section 4.

The authors of FORMS (cf. the discussion on [6,77] in Section 3) provide in [5]
a classification of modeling facets for self-adaptive systems. The focus is on the
underlying conceptual models rather than on the concrete technologies used to
realize them. As a result, four main groups of facets are identified: those regarding
the goals of adaptation, the changes that trigger it, the mechanisms that realize
it, and its effects. Goal dimensions include flexibility, duration, and dependency
of the system objectives. Change dimensions regard e.g. the source, the frequency,
and the level of anticipation of the adaptation triggers. The mechanism-related
dimensions range from the type to the level of autonomy, passing through scope,
duration, and timeliness. Last, the dimensions concerning the effects of adaptation
include criticality, predictability, and resilience. The proposed classes for each
facet seem however orthogonal with respect to the choice of control data.

The authors exploit such classes to identify the research challenges of adap-
tation. They e.g. stress the need of mechanisms to conciliate conflicting goals
of participants in open systems; of decentralized mechanisms for coordinating
adaptation in distributed systems; and of verification, validation, and prediction
mechanisms to ensure that self-adaptive systems behave correctly and predictably.

The survey [15] provides an overview of those approaches that support self-
adaptation based on architectural reconfiguration. The authors consider that an
architecture is self-managed if it can perform architectural changes at runtime
by initiating, selecting, and assessing them by itself, without the assistance of an
external entity. Contrary to other surveys on architectural reconfiguration (e.g.,
[27,56]) the focus is on formal models such as graphs, process algebras and logic.

The considered approaches are evaluated in terms of their support for basic
reconfigurations such as component or connector addition/removal and composite
reconfiguration operations such as sequentialization, iteration and choices. With
respect to our proposal, they clearly identify the software achitectures themselves
as control data (cf. also the discussion in Section 3.2).

7 Conclusion

We have presented CoDa, a white-box conceptual framework for adaptation
that promotes a neat separation of the adaptation logic from the application
logic through a clear identification of control data. To validate CoDa we have
described a representative set of approaches to (self-)adaptation ranging from
architectural solutions (Section 3), to computational models (Section 4), and to
programming languages and paradigms (Section 5). For each of them we have
highlighted the main distinguishing features and we have discussed the way they
fit in CoDa. As a byproduct, our work provides an original perspective from
which to survey Computer Science approaches to adaptive systems. We have
also discussed (Section 6) other surveys and taxonomies conceived with the aim
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to establish a common ground for fruitful research debates by clarifying and
identifying the key features of adaptive systems.

The discussion of this paper has also helped us to identify many different forms
of control data that can be found in the literature. Our position is that the best
form of control data does not exist. Every form of control data can be adequate.
However, we strongly believe that the choice of control data should adhere to
the following three principles (cf. [52]): separation of concerns, component-based
design and computational reflection.

Regarding the first two principles, we believe that the choice of control data
should neatly separate the application logic from the adaptation logic, and should
be clearly identified and encapsulated in a specific component of a suitable
adaptation loop, in order to guarantee an understandable, modular design. For
this purpose, sound design principles should be developed in order to ensure
correctness-by-design, and guidelines for the development of adaptive systems
conforming to well-understood patterns.

As for the third principle, we believe that higher-order forms of control data
are to be preferred if computationally affordable, since they make it easy to
carry the life-cycle of reliable adaptive systems to runtime, by providing runtime
models that can be used to monitor, predict and modify the systems.

In Fig. 11 we recap how the (macro) classes of control data identified in
Fig. 1 and discussed in Sections 3–5 (i.e., the rows of the table in Fig. 11) have
been exploited for adaptation along three pillars of Computer Science (i.e., the
columns of the table Fig. 11). Broadly speaking, the presence of blank cells in
the table suggests us two main interesting and maybe surprising facts, which are
concerned with: (i) the use of reflection in programming languages for adaptation;
and (ii) the abstraction from operational aspects in architectural approaches.

While it is out of doubt that reflection offers a natural mechanism to implement
adaptation, our analysis shows that it is more common to allow only some
controlled form of reflection in languages designed for programming adaptive
systems. This is witnessed by the fact that the class “entire program” has no direct
representative in the pillar “Languages”. Our understanding is that reflection
as-it-is does not offer a convenient abstraction to programmers, because it is too
powerful and too risky (i.e., error-prone).

Regarding the pillar “Architectures”, it seems that the only class of control
data exploited for adaptation is that of “architecture” themselves (e.g., compo-
nents and their connections), whereas operational aspects are disregarded such
as those related to the how and why questions. While one can argue that both
classes “entire program” and “operation mode” of adaptation can somehow be
represented at the architecture level (e.g., the notion of component replacement
can be instantiated to both such classes), we think that the same does not apply
to the class “adaptation strategy”. This observation was implicit in [15], where
a lack in meta-levels for the architectural formalisms was already noted. To fill
the gap exposed in Fig. 11, we believe that defining an architectural reference
model of adaptation that has adaptation strategies as control data would be an
interesting subject of further studies.
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Architectures Models Languages

adaptation strategy 4.1 5.2 5.3

architecture 3.1 3.2 4.1 4.3 5.3

entire program 4.1 4.2 4.3

operation mode 4.1 4.2 4.3 5.1 5.3 4.3

Fig. 11. Control data classes per pillars
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31. Dowling, J., Schäfer, T., Cahill, V., Haraszti, P., Redmond, B.: Using reflection to
support dynamic adaptation of system software: A case study driven evaluation.
In: Cazzola, W., Stroud, R.J., Tisato, F. (eds.) OORaSE 1999. LNCS, vol. 1826,
pp. 169–188. Springer (2000)



A White Box Perspective on Behavioural Adaptation 29
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