

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Dec 20, 2017

Reconciling White-Box and Black-Box Perspectives on Behavioral Self-adaptation

Bruni, Roberto; Corradini, Andrea; Gadducci, Fabio; Hölzl, Matthias; Lluch Lafuente, Alberto; Vandin,
Andrea; Wirsing, Martin
Published in:
Software Engineering for Collective Autonomic Systems

Link to article, DOI:
10.1007/978-3-319-16310-9_4

Publication date:
2015

Document Version
Peer reviewed version

Link back to DTU Orbit

Citation (APA):
Bruni, R., Corradini, A., Gadducci, F., Hölzl, M., Lluch Lafuente, A., Vandin, A., & Wirsing, M. (2015).
Reconciling White-Box and Black-Box Perspectives on Behavioral Self-adaptation. In M. Wirsing, M. Hölzl, N.
Koch, & P. Mayer (Eds.), Software Engineering for Collective Autonomic Systems: The ASCENS Approach
(Chapter II.1, pp. 163-184). Springer. (Lecture Notes in Computer Science, Vol. 8998). DOI: 10.1007/978-3-
319-16310-9_4

http://dx.doi.org/10.1007/978-3-319-16310-9_4
http://orbit.dtu.dk/en/publications/reconciling-whitebox-and-blackbox-perspectives-on-behavioral-selfadaptation(4f7dc81a-420b-4a49-b039-0ed9e1d98e37).html

Reconciling White-Box and Black-Box
Perspectives on Behavioural Self-Adaptation?

Roberto Bruni1, Andrea Corradini1, Fabio Gadducci1, Matthias Hölzl2,
Alberto Lluch Lafuente3, Andrea Vandin4, and Martin Wirsing2

1 Department of Computer Science, University of Pisa, Italy
2 LMU, Ludwig Maximilians University of Munich, Germany
3 DTU Compute, Technical University of Denmark, Denmark

4 Electronics and Computer Science, University of Southampton, UK

Abstract. This paper propose to reconcile two perspectives on be-
havioural adaptation commonly taken at different stages of the engineering
of autonomic computing systems. Requirements engineering activities
often take a black-box perspective: A system is considered to be adaptive
with respect to an environment whenever the system is able to satisfy
its goals irrespectively of the environment disturbations. Modelling and
programming engineering activities often take a white-box perspective: A
system is equipped with suitable adaptation mechanisms and its behaviour
is classified as adaptive depending on whether the adaptation mecha-
nisms are enacted or not. The proposed approach reconciles black- and
white-box perspectives by proposing several notions of coherence between
the adaptivity as observed by the two perspectives: These notions provide
useful criteria for the system developer to assess and possibly modify the
adaptation requirements, models and programs of an autonomic system.

Keywords: Autonomic Computing, Behavioural Adaptation, Requirements
Engineering, Software Engineering, Linear-time Properties, Games

1 Introduction

Autonomic systems operating in highly variable, even unpredictable, environments
must be self-adaptive. Unfortunately, there is not a widely accepted agreement on
a foundational model for adaptivity. Already in the early sixties Lofti Zadeh [27]
claimed that “it is very difficult – perhaps impossible – to find a way of charac-
terizing in concrete terms the large variety of ways in which adaptive behavior
can be realized” and was pessimistic regarding the possibility to obtain a unifying
definition due to the inherent difficulty of subsuming under the same hood both
the external manifestations of adaptive systems (black-box adaptivity) and the
internal mechanisms by which adaptation is achieved (white-box adaptivity).

? This research was supported by the European project IP 257414 (ASCENS) and by
the Italian project PRIN 2010LHT4KM (CINA).

Fig. 1. The ASCENS life cycle for autonomic software component ensembles

These two perspectives persist today. Often, requirements engineering activi-
ties take the black-box one, by expressing requirements as goals to be achieved
in some environments (cf. Chapter III.3 [26]). The system is adaptive to an
environment if it may satisfy the goal in that environment. Sometimes, pairs of
environments and goals is considered, if it makes sense to consider different goals
in different environments. An example of these approaches is in the ASCENS [4]
methodology (cf. Chapter III.1 [13]) to the engineering of autonomic systems
(cf. Fig. 1): The General Ensemble Model (Gem) [14], a formalisation of the
SOTA [1] approach to requirements engineering, takes a black-box perspective.

Later design activities such as modelling and programming tend to take the
white-box perspective by focusing on the realisation of adaptation mechanisms,
often based on linguistic or architectural techniques. A widely used approach is
to clearly separate the functional and adaptation logics when structuring the
behaviour of a system. Thus, computations are classified according to the presence
of normal steps aimed at realising the functional logic and adaptation steps aimed
at adapting the system’s behaviour. An archetypal approach are Adaptable
Interface Automata (AIAs) [6], a formalisation of white-box perspectives for
autonomic systems like CoDa [7] developed within ASCENS [4].

Contribution. Clearly, adaptation remains a subjective concept in both perspec-
tives. The fundamental difference lies in who is responsible of declaring whether
a system is adaptive or not: the requirements engineer (black-box) or the system
engineer (white-box). Ideally, both perspectives should be coherent. This paper
proposes an approach to reconcile black- and white-box approaches to behavioural
adaptation in autonomic systems and to asses their coherence.

The key idea is that the white-box perspective allows to classify and quantify
the behaviours of the system in an environment according to the presence of actual
adaptations. Mismatches between black- and white-box perspectives may arise, e.g.
if the system satisfies its goals in an environment, but no adaptation is observed.
Mismatches can be used to improve the system, e.g. by disabling computationally
expensive adaptation mechanisms based on monitoring and awareness (cf. Fig. 1).
Moreover, mismatches may provide information to requirements and system
engineers, since they can help to asses and modify specifications.

Our presentation focuses on the above mentioned approaches developed within
the ASCENS project [4], respectively Gem and AIAs. However, the methodology
we introduce is general enough to be applicable in a wide range of approaches to
the engineering of autonomic systems.

Structure of the Paper. Section 2 briefly presents a case study from the ASCENS
project that we use for illustrative purposes throughout the paper. Section 3
recalls two archetypal approaches to adaptation based on black-box and white-
box perspectives, namely Gem (Section 3.1) and AIAs (Section 3.2). Section 4
presents our approach to reconcile them. Section 5 discusses related works.
Section 6 concludes the paper and outlines opportunities for future research.

2 A Robot Rescue Case Study

We shall use the robot rescue scenario (cf. Chapter IV.2 [21]) from the ASCENS
case studies (cf. Chapter IV.1 [25]) as a running example throughout the paper.
Fig. 2 illustrates this scenario, where a swarm of rescuer robots (represented as
black circles with a grip) has to rescue victims (represented as stars) of a natural
or industrial disaster (toxic waves in the figure), possibly cooperating to secure
the area first (building a protection barrier in the figure) and then pulling the
victim with the grippers until a safe place (e.g. Home in the figure) is reached.

Fig. 2. Robot Rescue Scenario

To keep the scenario as simple as possible
we limit us in some cases to a single rescuer
robot and a single victim that has to be rescued.
We assume that the locations of the victim and
the robot are expressed as Cartesian coordi-
nates: The robot can navigate the environment
with constraints specified by kinematic equa-
tions and pick up objects in the environment
according to certain physical constraints. The
main requirement of the system is that the
robot transports the victim to a rescue zone,
but often a purely goal-based description is
not sufficient to capture the real requirements.

We assume that one of the main question
of interest is to determine whether the rescuer
robot is capable of rescuing the victim under
certain conditions on the environment. This
is, as we shall see in Section 3.1, precisely a
question about the adaptivity properties from
the black-box perspective. For instance, if the
victim has a weight of 80 Kg and the robot is capable of lifting only 20 Kg,
then it is simply not possible for the robot to complete the rescue mission, given
reasonable assumptions about the operating environment. However, an autonomic
robot with these specifications operating on the moon would be able to lift the
victim, and likewise a subaqueous robot.

The interplay between system and environment is not only important for the
general structure of the system, it remains relevant as designers progress to more
and more detailed system designs and their inherent trade-offs: A biped robot
that is in principle capable of lifting a victim might not be able to do so in a marsh
whereas a tracked vehicle might be able to. On the other hand, a tracked vehicle
might not be capable of navigating stairs that pose no problem for the biped.
A quadcopter might be able to lift a victim if the location is at sea level, but
not if it is high in the mountains. Of course, given a specification of the problem
the system designers and programmers have to decide how to actually solve the
problem from an architectural and algorithmic point of view. This very same
scenario has been tackled in the ASCENS project with a variety of techniques,
from aspect-oriented programming to high-level policies, to meta-programming
techniques (see e.g. the long discussion in [10] and the references therein).

3 Black-Box and White-Box Adaptation

This section offers a gentle introduction to two archetypal examples of black-box
and white-box approaches to adaptation in autonomic computing systems, namely
Gem (Section 3.1) and AIAs (Section 3.2). The presentation of both approaches
has been simplified to focus on their essential features.

3.1 A Black-Box Perspective on Adaptive Systems

Gem [14], the General Ensemble Model, is a formalisation of the statespace-
based SOTA approach to requirements engineering [1]. Gem models describe the
possible behaviours of a system as trajectories through its phase space5 while the
system is interacting with an environment, i.e., a system consists of a preordered
time structure T , a phase space X and a set of trajectories in T → X.6 T might
be as simple as the natural numbers with the usual order, while in our example
the state space might be the position of each robot. Since they are used during
the analysis or the high-level design of a system, the initial Gem models of a
system typically have very little information about its internal structure. Chapter
III.3 [26] in this volume discusses the Ensemble Development Life Cycle (EDLC)
and the role that SOTA plays in the overall development process.

We illustrate the kind of Gem models that might be built during the de-
velopment of a system like our scenario in Section 2, with some examples: The
developer might start the initial system inception by defining simple and abstract
requirements in the form of Gem models that are meant to analyse whether the
proposed system is feasible at all. These models can be either discrete-state or
continuous. For instance, for large ensembles we might approximate the number
r of rescue robots that are still properly working after time t by the differential

5 In this section we use the terms phase space and state space interchangeably.
6 Gem actually allows the definition of more general types of systems, and ensembles

in Gem are defined in a manner that is isomorphic but not identical to the one given
here. The definition given above corresponds to time ensembles.

equation ṙ(t) = −αr(t) + c, where α is the rate at which robots can be damaged
(e.g. by toxic waves), c is a constant rate of newly produced robots, and ṙ is
the derivation dr/dt. After the feasibility of the system has been determined,
a high-level Gem model for the rescue scenario might describe the state of the
system in an abstract manner, e.g. by specifying the aforementioned Cartesian
locations and movement constraints.

In general the phase space X becomes unwieldy as the systems become larger,
therefore Gem allows developers to define individual components of a system
on their own, and to combine them using combination operators that construct
a new state space from the state spaces of the components. Those operators
are denoted by ⊗. In the example, the system’s designers might define two
components, the robot Sr and the victim Sv, to investigate whether a robot
can transport victims under the given environment conditions. To be useful
the state of these components has to be sufficiently complete to allow a full
description of the relevant aspects of the system behaviour. The state Xr of
the robot would probably include state variables for the robot’s velocity and
orientation, its position, the configuration of its gripper, its carrying capacity and
so on. Similarly, the state of a victim would contain information about its physical
properties, e.g., weight and how the victim’s body behaves when it is picked up
by the robot. By applying a suitable combination operator, designers can build a
component Sr ⊗ Sv that represents a robot carrying a victim. In the combined
system, state variables of the individual components that are no longer necessary
to describe the combined system can be suppressed and new state variables that
result from the combination can be introduced. For example, the configuration
of the robot’s gripper and the physical properties of the victim’s body may be
replaced in Sr ⊗ Sv by state parameters that specify the manoeuvrability of the
robot while it is carrying the victim.

In a simple version of the rescue scenario, the main requirement for each
rescuer robot can be described in a purely goal-based manner: Transport the
victim to a safe zone. On the other hand, such a purely goal-based description
is often not sufficient to capture the real requirements. Therefore, Gem allows
developers to describe the quality of a solution (called its utility in Gem) using
real numbers. For example, the utility of the robot might be defined as the time
it needs to rescue the victim, possibly taking into account factors such as the
exposure of the victim to environmental hazards during the transport phase.

The Gem Approach to Black-Box Adaptation. Gem defines a notion of adaptation,
which we call black-box adaptation, that is applicable to models in the early stages
of requirements engineering of autonomic computing systems (cf. the leftmost
cycle in Fig 1). It is clear that at those stages the focus of the definition has to
rely on the “circumstances” aspect of adaptation and not on the “change of the
system”, since little or no information about the system’s internal structure is
usually available at this stage of the development process. Nevertheless there are
some interesting adaptation-related questions that can be answered by looking
at the intrinsic capabilities of a system S and its environment η.

As we already advanced in the previous section, the most obvious question
is perhaps “Is the system in principle capable of satisfying the requirements?”.
More precisely, it is mandatory to specify the range of environments E under
consideration and ask for which environments in E a given system can fulfil the
requirements. This is the basic idea underlying black-box adaptation.

While focusing on systems and environments would be sufficient from a
theoretical point of view, models are often not detailed enough to contain all the
information required to analyse the behaviour of the combination. For example,
the ability to recognise robots might be reduced because of lighting conditions in
the environment; however the robot’s model might not contain sufficient detail to
represent this when combining it with an environment. Gem therefore introduces
a third component into the ensemble model that describes the interaction of the
system with the environment. In Gem this component is called the network ν,
although in the rescue example “system/environment fit” might better describe
the role of ν. For example, the performance of a robot’s camera obviously depends
on the lighting conditions, but in many cases the modelers do not want to specify
the system in enough detail to compute the effect of lighting on the camera. To
model the decreased camera quality under the expected lighting condition, the
camera can instead be combined with the environment using a noisy or lossy
communication channel in ν, without adjusting the models of the system or the
environment themselves.

The Gem Formalisation of Black-Box Adaptation. We can now describe black-box
adaptation in slightly more detail.

Definition 1 (adaptation domain and requirements). Given a set of en-
vironments E, networks N and goals G, an adaptation domain A is a subset of
E × N × G, i.e., a set of triples (η, ν, γ) called an adaptation requirements.

An adaptation domain is therefore a package consisting of environments,
networks and goals that are of interest to the system designer. Adaptation
domains provide a basic signature for adaptation requirements that can be
instantiated in several ways as we shall see further in this paper. A concrete
example of this is the requirements specification language SOTA [1].

Concrete Gem models where adaptation domains are given a precise semantics
can be subject to different kinds of analysis. A typical example is requirements
satisfiability. For instance, the adaptation domain A = {(η, ν, γ), (η, ν,¬γ)} is
unlikely to be satisfiable under any reasonable semantics for ¬.

Of course, given a satisfiable adaptation domain, the question remains whether
a given system can adapt to it. This concept is formalised as follows.

Definition 2 (adaptation to a domain). Let S ⊗ η ⊗ ν |= γ denote that
a system S fulfils a goal γ when in environment η with network ν. We say a
system S can adapt to an adaptation domain A, written S
 A, iff ∀(η, ν, γ) ∈
A . S ⊗ η ⊗ ν |= γ.

Again some of the concepts such as goal fulfillment |= and composition ⊗
are left underspecified on purpose. They can be instantiated in many different
ways. For instance, in this paper we shall see a trace-based semantics for |= and
automata synchronisation semantics for ⊗, which turn out to be very useful for
reconciling black- and white-box perspectives.

Very often, one needs to compare the adaptation ability of different systems,
which may correspond to different early designs of the same system. Recall, for
instance, our case study (cf. Section 2) and the example of biped and tracked
robots, where systems may make different trade-offs and therefore be able to
deal with different adaptation requirements or domains. For instance, given a
fixed adaptation domain A, a system S1 may be able to satisfy every adaptation
requirement system in A that S2 can satisfy; in that case we say S1 is at least as
adaptive to A as S2. But it can be also the case that a system S1 may be able to
operate in every adaptation domain of interest in which system S2 can operate;
in that case we say S1 is at least as adaptive as S2. If S1 can additionally adapt
to at least one adaptation domain to which S2 cannot adapt we call S1 more
adaptive than S2. More formally, we define an adaptation space A as a family of
adaptation domains, A ⊆ P(E × N × G). For any adaptation space we define a
preorder of adaptivity for systems as follows.

Definition 3 (adaptation pre-orders). Let A be an adaptation space and let
A ∈ A be one of its adaptation domains. The A-adaptation pre-order vA∈ S×S
is the relation among systems defined by

S vA S′ ⇐⇒ ∀(η, ν, γ) ∈ A . S ⊗ η ⊗ ν |= γ =⇒ S′ ⊗ η ⊗ ν |= γ

The adaptation pre-order vA∈ S × S is the relation among systems defined by

S vA S′ ⇐⇒ ∀A ∈ A : S
 A =⇒ S′
 A

It is worth to remark that S vA S′ implies ∀A ∈ A . S vA S′ but the contrary
is not true. A trivial example is one in which the adaptation space A is just {A},
neither S nor S′ adapt to A but S vA S′, i.e. S′ can satisfy more requirements
than S but they both adapt to the same set of domains, namely none.

It is easy to extend those relations to the case of utility-based systems;
intuitively a system S′ is more adaptive than a system S given an adaptation
domain A if the utility of S′ is at least as high as that of S for every element
of A, and higher for at least one element of A. This definition is extended to
adaptation spaces in the obvious way.

All in all, Gem’s approach to adaptation requirements engineering from a
black-box perspective provides a simple yet useful tool for designers to analyse
various aspects of early system specifications. For instance, Gem models can
be used to compare various early systems designs in terms of their adaptation
abilities to cope with the desired requirements; adaptation spaces can also be
used to check whether it is at all possible to satisfy all adaptation requirements,
or whether certain requirements are expensive to implement.

3.2 A White-Box Perspective on Adaptive Systems

White-box perspectives on adaptation shift the attention to later stages of
system design (e.g. Modelling and Programming in Fig. 1) and allow one to
specify or inspect (part of) the internal structure of a system in order to offer a
clear separation of concerns to distinguish changes of behaviour that are part
of the application or functional logic from those which realise the adaptation
logic. This section summarises the CoDa approach to adaptation and one of its
formalisations, namely Adaptable Transition Systems [6].

The CoDa Approach to White-Box Adaptation. In general, the behaviour of a
system is governed by a program and according to the traditional, basic view, a
program is made of control (i.e. algorithms) and data. The conceptual notion of
adaptation proposed in [7] requires to identify control data which can be changed
to adapt the system behaviour. Adaptation is, hence, the run-time modification
of such control data. According to this notion, a system is adaptable if it has a
distinguished collection of control data that can be modified at run-time, adaptive
if it is adaptable and its control data are modified at run-time, at least in some
of its executions, and self-adaptive if it modifies its own control data at run-time.
So, essentially, the CoDa approach to measure the adaptation ability of a system
is to identify control data and observe its modification in the system’s behaviours.
For example, the adaptation mechanisms of robots like the ones in our scenario
are sometimes based on the use of operation modes. Each mode of operation is
tailored to some specific class of situation and a high-level controller adapts the
behaviour of the robot by switching between modes of operation. In this case,
the control data is precisely the data defining the current mode of operation.

Several programming paradigms and reference models have been proposed
for adaptive systems. A notable example is the Context Oriented Programming
paradigm, where the contexts of execution and code variations are first-class
citizens that can be used to structure the adaptation logic in a disciplined
way [24]. This paradigm has also influenced the many programming and modelling
approaches developed within the ASCENS project [4] among which we cite the
Service Component Ensemble Language (see [11] and also Chapter I.1 [19])
and the architectural approach of [9]. Nevertheless, it is not the choice of the
programming language what makes a program adaptive: any computational
model or programming language can be used to implement an adaptive system,
just by identifying the part of the data that governs the adaptation logic, that is
the control data. Consequently, the nature of control data can vary considerably,
including all possible ways of encapsulating behaviour: from simple configuration
parameters to a complete representation of the program in execution that can
be modified at run-time, as it is typical of computational models that support
meta-programming or reflective features.

Adaptable Transition Systems: A Foundational Model for CoDa. Adaptable
Interface Automata (AIAs) are a model of adaptive component-based systems
built upon interface automata [2,3]. AIAs are an incarnation of the more general

concept of adaptable transition systems. The key feature of AIAs are control
propositions evaluated on states, the formal counterpart of control data. The
choice of such propositions is arbitrary but it imposes a clear separation between
ordinary behaviours and adaptive ones.

Interface automata were introduced in [3] as a framework for component-
based design and verification. Following [2], an interface automaton P is a tuple
〈V, V i,AI ,AO, T 〉, where V is a set of states; V i ⊆ V is the set of initial states,
which contains at most one element (if V i is empty then P is called empty);
AI and AO are two disjoint sets of input and output actions (we denote by
A = AI ∪ AO the set of all actions); and T ⊆ V ×A× V is a deterministic set
of transitions (also called steps), i.e. for any two transitions (u, a, v) ∈ T and
(u, a, v′) ∈ T we have that v = v′. An interface automaton can represent, for
instance, the behavioural model of one of our robots, where actions represent
interactions with the environment and the distinction between input and output
reflects the flow of information between them.

As usual, a transition (u, a, v) can be denoted by u
a−→ v. The absence of

non-determinism is not essential for the purposes of this paper, but it plays
a fundamental role for the feasibility of control synthesis. Given B ⊆ A, we
sometimes use P|B to denote the automaton obtained by restricting the set of
steps to those whose action is in B. Also, the set of actions in B labelling the
outgoing transitions of a state u is denoted by B(u). A computation ρ of an
interface automaton P is a finite or infinite sequence of consecutive transitions
{ui

ai−→ ui+1)}i<n from T (thus n can be ω).
In our case study, an interface automaton could represent the overall behaviour

of a robot, possibly obtained as the result of composing different components
such as controllers and sensors. The main idea of AIAs is to exhibit the minimal
amount of information that allows one to distinguish the ordinary behaviours
aimed at realising the application logic of the system (e.g. a robot) from the
behaviours aimed at realising the system’s adaptation. AIAs extend interface
automata with atomic propositions (state observations), some of which are called
control propositions and play the role of the control data of [7].

Definition 4 (adaptable interface automata). An adaptable interface au-
tomaton (AIA) is a tuple 〈P,Φ, l, Φc〉 such that P = 〈V, V i,AI ,AO, T 〉 is an
interface automaton; Φ is a set of atomic propositions, l : V → 2Φ is a labelling
function mapping states to sets of propositions; and Φc ⊆ Φ is a distinguished
subset of control propositions.

We call P an AIA with underlying interface automaton P , whenever this
introduces no ambiguity. Most of the ingredients of Interface Automata are
trivially lifted to AIAs. This includes the notion of computation. Furthermore,
we shall consider as well the usual notion of trace, denoting with Traces(P) the
set of traces of an AIA P , i.e. the projection of all computations of P on the
state observation Φ. More precisely, if u

a−→ v is a transition of a computation,
its projection on a trace will be the trace transition l(u)

a−→ l(v). Additional
lifted concepts are those of compatibility and composition among AIAs. Indeed,

AIAs come equipped with a suitable composition operator, denoted ⊗, which
essentially corresponds to lifting the composition operator on the underlying
Interface Automata structure. We refer the interested reader to [6]. The choice
of symbol ⊗ is not an accident: interpreting composition in Gem models as
composition of AIAs is indeed part of our approach to reconcile both views on
adaptation, as we shall explain later in Section 4.

The AIA Approach To White-Box Adaptation. A transition u
a−→ u′ ∈ T is called

an adaptation if it changes the control data, i.e. if there exists a proposition
φ ∈ Φc such that either φ ∈ l(u) and φ 6∈ l(u′), or vice versa. Otherwise, it is
called a basic transition. Consider for instance an AIA modelling one of the
robots of our case study. Let us assume that its control propositions allow one to
observe the robot’s mode of operation, whose change is the way of implementing
adaptive behaviours. Then the adaptive transitions will exactly correspond to
those adaptive behaviours, i.e. switching between modes of operation. The basic
behaviours would be the ordinary behaviour within a mode of operation. Clearly,
the concept trivially lifts to trace transitions. An action a ∈ A is called a control
action if it labels at least one adaptation. The set of all control actions of an
AIA P is denoted by AC

P .

Computations are classified according to the presence of adaptation steps.

Definition 5 (adaptive computations). Let P be an AIA and ρ be a com-
putation in P . We say that ρ is basic if it contains no adaptive transition, and
it is adaptive otherwise.

We will also use the concepts of basic computation starting at a state u and
of adaptation phase, i.e. a maximal computation made of adaptive steps only.
Again, this concept can be trivially lifted to traces.

The concept of adaptive trace can be formalised in temporal logics such as
LTL as follows, ψadaptive ≡ ¬

∧
φ∈Φc(φ ↔ Gφ), i.e. it is not the case that all

observable control data remain the same forever. This clearly enables the use of
standard model checking techniques to analyse properties of adaptive systems
(see e.g. the references and the discussion in [6]).

It is worth to remark that what distinguishes adaptive computations and
adaptation phases are not the actions, because control actions may also label
transitions that are not adaptations. However, very often an AIA has coherent
control, meaning that the choice of control propositions is coherent with the
induced set of control actions, in the sense that all the transitions labelled with
control actions are adaptations. In the rest of the paper we assume that every
system under consideration has coherent control.

The relationship between the set of control actions ACP and the alphabets
AIP and AOP is arbitrary in general, but it could satisfy some pretty obvious
constraints for specific classes of systems. Let P be an AIA. We say that P is
adaptable if ACP 6= ∅; controllable if ACP ∩ AIP 6= ∅; self-adaptive if ACP ∩ AOP 6= ∅.
Intuitively, an AIA is adaptable if it has at least one control action, which means

that at least one transition is an adaptation. An adaptable AIA is controllable if
control actions include some input actions and self-adaptive if control actions
include some output actions (which are under the control of the AIA). From these
notions we can derive others. For instance, we can say that an adaptable AIA is
fully self-adaptive if ACP ∩ AIP = ∅ (the AIA has full control over adaptations).
Note that hybrid situations are possible as well, when control actions include
both input actions (i.e. actions in AIP) and output actions (i.e. actions in AOP). In
this case we have that P is both self-adaptive and controllable. In our case study
we could expect to have fully self-adaptive ground rescue robots or partially
adaptive ones that can be influenced from supervisor quadcopter robots.

Those notions can be lifted to computations in the obvious way.

Definition 6 (adapted computations). Let P be an AIA and ρ be a compu-
tation in P . We say that ρ is controlled if it contains a transition which is an
adaptation and corresponds to an input action, and it is fully self-adapted if all
its adaptation transitions correspond to output actions.

Such concepts may be formalised as well with modal logics. Of course, LTL
cannot be directly applied since it is a pure state-based logic and here we need to
observe actions, but one may use logics for double-labelled transition systems or
standard encodings between action-labeled transitions systems (e.g. automata)
and state-labelled transitions systems (e.g. Kripke structures).

4 Reconciling Black-Box and White-Box Adaptation

We present here our approach to reconcile white-box and black-box perspectives
on adaptation. We assume that the black-box perspective on the systems under
study is formalised by Gem models whose systems, environments and networks
are suitably represented by AIAs, our reference model for white-box perspective.
One of the key observations regarding the different treatments of adaptation on
black-box and white-box perspectives is that adaptation in the former case is
“asymmetric” in that it considers various environments in which a system may
operate, but the system is defined by all its possible behaviours, irrespectively
of whether they require internal changes or not. Tackling this asymmetry is
one of the issues in the conciliation. We propose here two ways of reconciling
white-box and black-box perspectives on adaptation. A first, simple one is based
on a trace-based semantics of Gem and AIAs (cf. Section 4.1). The second one
(cf. Section 4.2) is based on game semantics.

4.1 Trace-based Reconciliation

A key assumption to combine Gem and AIA concepts is to assume that Gem
notion of property satisfaction is based on semantic relations on computations.
For the sake of illustration, we consider the well-studied and popular notion of
property satisfaction based on trace inclusion.

Definition 7 (trace-based adaptation). Let S be a system and (η, ν, γ) be a
requirement. We instantiate the fulfilment by S of a goal γ in an environment η
with network ν as

S ⊗ η ⊗ ν |= γ iff Traces(S ⊗ η ⊗ ν) ⊆ Traces(γ)

Recall that trace inclusion amounts to the satisfaction relation of model
checking linear-time temporal logics. This means that if goals are expressed as
LTL properties (as SOTA requirements essentially are), checking the fulfilment of
requirements can be done with efficient state-of-the art model checking techniques.

A consequence of our choice of trace based semantics is that we are instan-
tiating the adaptation of a system S to an adaptation domain A as S
 A iff
∀(η, ν, γ) ∈ A.Traces(S⊗ η⊗ ν) ⊆ Traces(γ). This trace-based notion is not only
interesting from the theoretical point, but it allows us to re-use all the useful ma-
chinery of linear-time properties, including model checking. For instance, we may
assume goals γ to be suitably specified in languages with linear-time semantics
such as ω-regular expressions, linear-time temporal logic, and various forms of
automata or transition systems. Moreover, the SOTA approach to requirements
engineering for autonomic systems, for which Gem provides a formalisation, is
indeed based on trace semantics and inclusion relations.

More interestingly, the trace-based semantics offers a common ground to
compare and reason about properties of systems and their computations from
both the black-box and white-box perspectives. The first interesting question to
reconcile the two perspectives on a system is the following. Let S be a system
that is adaptive to an adaptation domain A (i.e. S
 A). Are the behaviours of
S that witness adaptation to A adaptive from the white-box point of view? This
leads us to the concept of coherent adaptation.

Definition 8 (coherent adaptation). Let S be a system and A be an adapta-
tion domain. We say that S is coherently adaptive to A if S
 A implies that for
all (η, ν, γ) ∈ A there is at least one trace ρ ∈ Traces(S ⊗ η ⊗ ν) that is adaptive.

It is worth to remark once more that coherence can be boiled down to a
standard model checking problem. Note that if a system S is not coherently
adaptive to an adaptation domain A then the system is able to satisfy one goal
in A without performing any transition observationally identified as adaptation
(from the white-box perspective). This implies a certain mismatch between what
is considered to be a normal operation environment from the system design
point of view (i.e. the system S as an AIA) and from the requirements point
of view (i.e. the adaptation domain A). The system designer can then exploit
this information for improving the design of the system. For instance, in the case
of our case study, a lack of coherent adaptation could help the designer decide
that the components of the robot software realising its adaptive behaviour are
not necessary so that robots can be deployed with a light-weight version of the
software, possibly consuming less computational resources and battery.

Further distinctions can be done by considering the presence/absence of
adaptation transitions controlled by the environment: if all adaptation transitions
correspond to output control actions of S, the system is fully self-adaptive to A,
even if it may not necessarily be fully self-adaptive in general.

Ideally, one would like to have a system S that is coherently adaptive and
fully self-adaptive with respect to the adaptation domain A under consideration.
That is, a system that has full control over its adaptation actions when operating
in A and whose adaptation mechanisms are actually enacted in all the situations
identified in the adaptation domain A. When this is not the case the system
designer can take the necessary actions as we exemplified above.

4.2 A Game-Based Reconciliation

The last section introduced the notion of coherent adaptation for systems rep-
resented by AIAs. This definition can be generalised to arbitrary SOTA/Gem
models if we define control propositions Φc (see Section 3.2) as propositions in a
suitable logic over the state space X. These propositions define a subset Xc ⊆ X
that we call the control space of the system. The notion of adaptive computation
from Definition 5 can then be applied to segments of SOTA/Gem traces: Let T
be the time domain of the model, θ : T → X a trajectory in X, and t1, t2 ∈ T .
We say that θ is adaptive in the interval [t1, t2] if it intersects the control space
in that interval, i.e., {θ(t) | t ∈ [t1, t2]} ∩ Xc 6= ∅; it is purely adaptive if it is
contained in Xc, i.e., {θ(t) | t ∈ [t1, t2]} ⊆ Xc; and it is basic if it is not adaptive.
Definition 8 can be applied to arbitrary SOTA/Gem models in a similar manner.

An environment that reacts to the system behaviours but does not pursue its
own goals is sometimes called (purely) parametric or stochastic; an environment
in which other agents pursue their own goals (and thus may actively work to
inhabit the ensemble goals) is called game-theoretic or strategic. Many interesting
and practically occurring environments are strategic; in these environments it
is useful to regard black-box adaptation as a game between two players System
and Environment, moderated by a Network that determines properties such as
the information available to each player during the game.

The structure of this game (e.g., whether the players move simultaneously
or in an alternating manner) and the features of the combined state space X
are given by a combination operator between the models of the System S, the
Environment η and the Network ν. The moves of System and Environment are
given by the models S and η, and their effect is described by the change to the
combined state space X. The information about the moves of the other player is
provided by ν (which may also contribute to the shared state space). Roughly
speaking, S and η determine the moves in the game, whereas ν describes the
information sets and thus, together with the combination operator, determines
whether the game is one with concurrent or sequential moves and whether it is
one of perfect or imperfect information. We call this way of specifying a Gem
model M a game-based presentation (of M). In a game-based presentation we
may say “M1 wins against more opponents (from an adaptation domain A) than
M2” instead of “M1 is more adaptive than M2.”

SOTA/Gem themselves impose no specific organisation on models, and many
SOTA/Gem models have a continuous time structure and large state spaces;
therefore writing a game-based presentation of a model does not imply that the
model becomes amenable to game-theoretic analysis. However, typical models
are often structured in a particular way: The model is represented as a hierarchy
of components, and components interact mostly in a local manner between
themselves and with the environment. The temporal structure of a model can
often be divided into several concurrent threads, where in each thread components
of the system interact in “episodes” that can themselves be regarded as a discrete
unit. Control propositions can then provide additional structure by classifying
each episode either as “adaptive” or “performative”. In this manner we can often
apply game-theoretic techniques to discrete abstractions of parts of the overall
model, and this analysis is often particularly useful to investigate the adaptation
strategies of a system. The following example will illustrate this in more detail.

To obtain more interesting adaptation concerns we focus on a slightly more
complex variant of the rescue scenario presented in Section 2. We assume that the
rescue mission is performed by an ensemble E (for ensemble or, as we see shortly,
evaders) consisting of a large number of robots Ei. To keep the kinematics simple
we assume that each robot can instantaneously change direction, but that its
speed is limited by vmax . We can describe its position in a cartesian coordinate
system at each instant with two state variables xi and yi. Its velocity is given by
the derivations vi = ẋi and wi = ẏi with the constraint that

√
v2i + w2

i ≤ vmax .
We assume that each robot has three ingress routes into the environment on

which it encounters different amounts of toxic waste. Route ρ1 is mostly free of
waste and therefore does not damage the robot; on route ρ2 the robot incurs a
10% chance of suffering debilitating damage that causes it to fail its mission, on
route ρ3 this chance is 20%.

To obtain more interesting adaptive behaviours, we now suppose that there
is a party actively opposing the rescue ensemble, either because there are raptors
in the area that mistake the robot for prey, or because the rescue mission takes
place in a conflict zone in which an enemy is shooting at the robot. We call this
opponent H (for hunters) and assume that each Hj moves at constant speed
vH where supposedly vH > vmax , but where Hj cannot instantaneously change
direction but only turn with a minimum radius τmin . Its cartesian coordinates ξ
and χ are thus described by the following equations

ξ̇ = vH cos θ χ̇ = vH sin θ θ̇ = u · vH/τmin , 0 ≤ u ≤ 1

where θ is the angle between Hj and the x-axis. It is easy to see that if the speed
vH of Hj is only slightly larger than vmax and if its turning radius τmin is large,
then it is impossible for Hj to catch any Ei. On the other hand, if vH is much
larger than vmax and τmin is small, then a Ei that finds itself close to Hj has no
hope of escaping. What might perhaps not be obvious is that even this simple
hunter/evader dynamics, known under the name “homicidal chauffeur problem”
generates a rich solution space that gives rise to multiple different strategies,
depending on the initial conditions and parameters [20].

ρ1 ρ2 ρ3

ρ1 0, 1 1, 0 1, 0

ρ2 0.9, 0.1 0, 1 0.9, 0.1

ρ3 0.8, 0.2 0.8, 0.2 0,1

Fig. 3. Payoff matrix for the choice of route

The rescue scenario now unfolds in the following way: Each hunter Hj chooses
a route ρκ to guard and each evader Ei chooses a route ρµ to take. The hunters
that have chosen to guard a given route then attack the evaders taking that
route. If Ei can successfully evade all attacks and it is not damaged by the waste,
it completes its rescue mission and receives a reward of 1, otherwise it receives a
reward of 0; if a hunter Hj captures an evader it receives a reward of 1 otherwise
of 0. If an evader Ei is disabled by toxic waves this results in a reward of 1 for
the ensemble H that is not attributed to any Hj .

Both E and H try to optimise their respective rewards; for each trip of
an evader Ei one of the players receives reward 1 and the other 0, therefore
the players will always try to obtain opposite outcomes. Obviously the rewards
obtained by E depend on the strategy chosen by H, and vice versa. Even for this
relatively simple scenario, finding the optimal behaviour for the rescue robots is a
non-trivial task. Therefore we have to divide the model into smaller components
that are more amenable to analysis, and then further refine our initial analysis
steps once we have gained a better understanding of the problem. To this end we
will first focus on the choices of single agents.

When looking at the trajectory of an evader Ei through the state space, we
see that it repeatedly moves through the following segments: (1) first it picks
a route ρµ without modifying other parameters in the state space; (2) then it
moves through the other dimensions of the state space without modifying its
choice of route. If we choose Φc so that Xc contains (1) the choice of a route ρµ
when all other parameters are kept constant and (2) the evasive manoeuvring of
an evader when avoiding a hunter, we see that the trajectory for Ei repeatedly
traverses the following stages: (i) a purely adaptive segment of the trace in which
Ei chooses the route it takes (the “adaptation stage”); (ii) a basic segment of the
trace in which Ei performs a rescue mission, possibly interrupted by Ei evading
a hunter (the “performance stage”), the evasion being an adaptive segment of Ei
trajectory that is not purely adaptive. This structure supports the design of the
ensemble relatively well: The non-adaptive behaviours that are required in the
basic segment (navigation, picking up the victim, etc.) can be implemented using
established methods. The adaptation in the performance stage depends only on
the local interaction of an evader and a hunter, and it can be solved for different
initial configurations of Ei and Hj . If the developers of the evaders know the
control strategies that are used by the hunters, the designers of the evaders can
exploit this model to develop efficient strategies to counter them, or determine
that no such strategies exist.

The adaptive segment is, in some respects, the most challenging part: It
cannot be locally solved since it depends crucially on the distribution of hunters
between the different routes, and on the expected outcomes of the “homicidal
chauffeur” game between hunters and evaders. In order to restrict the amount of
required game-theoretic background, we study a greatly simplified version of this
question. We assume, for now, that a single hunter H = H1 is matched against a
single evader E = E1 and that the hunter always manages to capture the evader
when they choose the same route. Fig. 3 shows the payoff matrix for this game.
The rows of this matrix represent the route choices of E, the columns the choices
of H. In each cell of the table, the first number gives the reward obtained by E
if this pair of strategies is played, the second number gives the reward of H. For
example, if H and E both choose route ρ1 then H receives a reward of 1 since
we assume that it always captures E, and E receives a reward of 0. If, however,
E chooses ρ2 while H chooses ρ1, then 90% of the time E receives a reward of 1,
whereas 10% of the time it is disabled by toxic waves, and therefore H receives
the reward even though the two players do not encounter each other. See [18] for
more information on utility theory and values of lotteries.

Given this payoff matrix, how should E choose its routes? It is clear that no
choice of route of E is a best reply against all possible choices of H, since the
pair of routes ρi, ρi always results in a loss for H. The solution for robot E is
therefore to mix the routes it chooses, so that H cannot predict the route that it
should guard. Closer investigation of the game results in the observation that to
prevent H from exploiting its choices E has to pick the probability pi of choosing
route ρi so that its probability of survival times the probability of choosing the
route is the same for all routes [22]: 1× p1 = 0.9× p2 = 0.8× p3. This results in
the approximate probabilities p1 = 30%, p2 = 33% p3 = 37%. Therefore, perhaps
slightly counter-intuitively, E has to choose the most dangerous route most
frequently to maximise its guaranteed reward. To refine this analysis we need to
compute the expected outcomes of the “homicidal chauffeur” (HC) game between
E and H. Whereas the choice of route could be cast in terms of a traditional
competitive game this is not possible for the HC game; here the continuous time
and the dynamics generated by the system of differential equations are essential.
We are therefore in the realm of differential games [15].

The HC game generates a rich and varied solution space that we only describe
qualitatively and in general terms: If the hunter H arrives in a position behind
and only slightly offset to the evader E as shown in Fig. 4(a), the best solution
for E is to move away from H in a straight line, and H will follow this line until
it captures E (indicated by the star). If the HC game continues indefinitely long,
the velocity of H is much higher than the maximal velocity vmax of E and the
turn radius τmin of H is sufficiently small this capture will always occur and the
strategy employed by E does not actually matter given the reward structure of
our model. But if H has only a limited range (e.g., due to a small fuel supply),
and the initial position of E is far enough away, E may successfully evade H.
The goal of E in the HC game is therefore to maximise the distance that H has
to cover before capture can no longer be avoided.

rmin

E

P

(a) Chase

rmin

E

P

(b) Direct approach

rmin

E

P

rmin

(c) Swerve

Fig. 4. Strategies for initial configurations: evader in back front (a) and back (b,c)

If the initial configuration is slightly different, with E behind H, a different
situation may arise: E may navigate towards H in order to arrive inside the circle
described by the turn of H, as shown in Fig. 4(b). Once E is inside the turning
circle of H, the hunter cannot reach the evader by continuing to turn in the same
direction. But this does not mean that E will necessarily escape H: the hunter
can “swerve” away from E, i.e., turn in the opposite direction, then continue
straight to gain some distance and, once it has gained enough separation, turn
back towards E as shown in Fig. 4(c). In this case the correct strategy for E is
to first turn towards H in order to force H into as big a swerve as possible, and
then to turn away from H once the chase situation of Fig. 4(a) has been reached.
By formalising these observations we can compute the probability that E can
escape H for a given distribution of initial configurations. It is thus possible to
use this estimate to improve the choice of ingress route by inserting these values
into the payoff matrix 3.

So far the analysis has only taken into account the interaction between two
players. This is not a problem for the HC game, since the pursuit dynamics of the
system consists of a number of independent two-player HC games. But for the
choice of route, the relative sizes of the ensembles E and H can greatly influence
the validity of the analysis: If the cardinalities of H and E are similar then the
analysis remains at least approximately valid for many reasonable strategies.
If, however there are three times as many members in H than in E, then the
system H has a strategy that prevents E from completing any rescue mission at
all (guard each route with one third of H’s members) and the analysis for the
single-robot case cannot be transferred.

There are two additional complications when considering the adaptation of
competing ensembles consisting of multiple members each: (1) When there are
multiple players in each “team” E and H, there is no guarantee that a stable
equilibrium of strategies will emerge; instead, at each point of time E is trying
to find a best strategy against the mix of strategies currently played by the
members of H while simultaneously H is trying to find a best strategy against
the mix of strategies currently played by the members of E. This results in a
dynamical system that may exhibit stable behaviour, periodic cycles between

different strategy mixes, or even chaotic changes in the strategy mixes of E and
H. (2) The previous analysis relies on the assumption that both players play
optimal strategies. This is not necessarily the case when a system is deployed in
a real environment, and assuming that opponents play optimally when this is
not often the case leads to less than optimal performance.

For these reasons, systems will rarely be developed with fixed adaptation rules;
instead, members of an ensemble will often observe which strategies (used either
by themselves or by other members) are particularly successful and use these
strategies more frequently in the future. The effects of these kinds of adaptations
can also be modelled and analysed in a game-theoretic setting: Since it is possible
to compute the reward obtained by different strategy combinations in the basic
segment of our example, we can compute the expected reward for a strategy used
by a rescue robot Ei against a distribution of strategies for H. If we have large
numbers of evaders and hunters, we can regard the sequence of adaptations as an
evolutionary game: We abstract from the detailed interleaving of the segments
of individual agents and assume that adaptation is a continuous game played
between randomly chosen evaders and hunters. We assign a probability of being
chosen to each of the paths ρµ for Ei ∈ E and for Hj ∈ H: The expected
value of a choice of ρµ against the distribution of H (respectively E) in the
adaptation stage can be computed using the corresponding performance stages.
The probabilities in the next round of the game are adjusted using these values:
strategies with high values in the previous stage are played more frequently in
the next stage; strategies with low values are played less frequently.

Chapter II.4 [12] in this volume goes into more details about evolutionary
games and the methods to solve them. Note that the separation of behaviours
into adaptive and base behaviours allowed us to reduce the analysis task into
the pairwise evaluation of configurations (which depends on the number of
configurations but not on the number of agents), and an evolutionary game
between two populations of configurations (which, again, depends on the number
of configurations but not the size of the ensembles). Since neither part of the
analysis depends on the size of the ensembles, they scale to ensembles of arbitrary
size. Furthermore, while the computation of the values of the performance stages
is rather involved, this computation can be performed offline; for a moderate
number of configurations the computation of an adaptation strategy via the
evolutionary game becomes viable at run time. This is important if the evaders
need to dynamically adjust their adaptation strategy (e.g., because there is
uncertainty about the distribution of strategies used by the hunters).

We conclude this section by returning to the connection between black-box
and white-box adaptation mentioned in Section 4.1: Suppose that we start
with a simple system that supports neither the choice of route nor the evasive
manoeuvring described in this section. By adding either of these features to the
implementation we allow the system to move along trajectories through its control
space XC that were not present in the original system. The new trajectories
in turn allow the system to operate in adaptation spaces in which it previously
could not reach its goals, i.e., they increase its black-box adaptivity. Similarly,

if we want to increase the system’s black-box adaptivity so that it can operate
in new environments, we have to add new trajectories through its phase space.
Since these trajectories serve the express purpose of adapting the system to
novel situations it is sensible that the parts of the phase space traversed by these
trajectories belong to the control space XC . This shows again that black-box
and white-box adaptation are closely connected when the control propositions of
the system are appropriately defined.

5 Related Work

The notion of behavioural adaptation has been studied in several works. The
interested reader is referred to [7,10,23]. For a discussion of work related to the
main formalisms used in this paper like Gem [14] and AIAs [6] we refer to
the corresponding publications. We briefly discuss here some works related to
properties of adaptive systems, a key notion in the presented contribution.

Several proposals follow a black-box perspective that aims at somehow mea-
suring or expressing requirements on how a software system changes its ability
to reach a goal under specific context variations. An interesting contribution of
this kind is represented by [17], which analyses the notion of adaptation in a
very general sense and identifies the main concepts around adaptation drawn
from several different disciplines, including evolution theory, biology, psychology,
business, control theory and cybernetics. Furthermore, it provides some general
guidelines on the essential features of adaptive systems in order to support their
design and understanding. The author claims that “in general, adaptation is a
process about changing something, so that it would be more suitable or fit for some
purpose that it would have not been otherwise”. Accordingly, the term adaptability
is then used to denote the capacity of enacting adaptation, and adaptivity for
the degree or extent to which adaptation is enacted. The author concludes by
suggesting that “due to the relativity of adaptation it does not really matter
whether a system is adaptive or not (they all are, in some way or another), but
with respect to what it is adaptive”.

A formal black-box definition is proposed in [5]. If a system reacts differently
to the same input stream provided by the user at different times, then the
system is considered to be adaptive because ordinary systems should exhibit a
deterministic behaviour. Thus, a non-deterministic reaction is interpreted as an
evidence of the fact that the system adapted its behaviour after an interaction
with the environment. For example, a system where a change of behaviour is
triggered by an interaction with the user would not be classified as adaptive,
which we think is too strong a requirement.

A different line of research studies the properties of adaptive systems and
their classification according to the kind of computations that are concerned
with, so that the usual adaptation analysis S
 A is instantiated in some of the
computations of S depending of the class of goals in A. We have seen this in the
trace-based semantics of Gem presented here.

Some authors [29,28,16] distinguish the following three kinds of properties.
Local properties are “properties of one [behavioral] mode”, i.e. properties that
must be satisfied by basic computations only. Adaptation properties are to be
“satisfied on interval states when adapting from one behavioral mode to another”,
i.e. properties of adaptation phases. Global properties “regard program behavior
and adaptations as a whole. They should be satisfied by the adaptive program
throughout its execution, regardless of the adaptations.”, i.e. properties about the
overall behaviour of the system.

The authors of [6] consider also the class of adaptability properties, i.e. proper-
ties that may fail for local (i.e. basic) computations, and that need the adapting
capability of the system to be satisfied. We refer to [6] for a presentation of some
such properties in the context of AIAs.

6 Conclusion

The development of reliable autonomic computing systems poses many challenges
for the software engineer. Several approaches have been proposed to tackle those
challenges at different stages of system development and regarding the various as-
pects of those systems. In this paper we focused on behavioural adaptation aspects
as tackled in requirements engineering, modelling and programming activities
within development methodologies such as the one of ASCENS (cf. Fig.1).

We have reconciled two foundational approaches to behavioural adaptation,
each taking a different perspective: Gem which provides a black-box perspective,
useful to reason about adaptivity from the requirements point of view, and AIAs,
which provide a white-box perspective, useful to reason about adaptivity from
the modelling and programming point of view. A first common ground to relate
both approaches is a trace-based semantics. First, Gem is instantiated on a
trace inclusion-based notion of property satisfaction (i.e. adaptation in the Gem
approach). Second, the AIA approach allows us to distinguish adaptations from
normal behaviours within traces. A notion of coherence is then defined which can
be used to identify mismatches between requirements and models in the design of
an autonomic system. A second, more sophisticated approach has been presented
as well, built on a game-based semantics of adaptive systems, as aspirated in [8].

An interesting line of research is to investigate quantitative notions of the
hereby proposed notion of adaptation coherence, e.g. to measure the influence
of adaptation mechanisms to achieve certain goals that would provide system
developers with further tools to asses and analyse their designs.

References

1. Abeywickrama, D.B., Bicocchi, N., Zambonelli, F.: SOTA: towards a general model
for self-adaptive systems. In: Reddy, S., Drira, K. (eds.) WETICE 2012. pp. 48–53.
IEEE Computer Society (2012)

2. de Alfaro, L.: Game models for open systems. In: Dershowitz, N. (ed.) Verification:
Theory and Practice. LNCS, vol. 2772, pp. 269–289. Springer (2003)

3. de Alfaro, L., Henzinger, T.A.: Interface automata. In: ESEC/SIGSOFT FSE 2001.
ACM SIGSOFT Software Engineering Notes, vol. 26(5), pp. 109–120. ACM (2001)

4. Autonomic Service Component Ensembles (ASCENS), http://www.ascens-ist.eu
5. Broy, M., Leuxner, C., Sitou, W., Spanfelner, B., Winter, S.: Formalizing the notion

of adaptive system behavior. In: Shin, S.Y., Ossowski, S. (eds.) SAC 2009. pp.
1029–1033. ACM (2009)

6. Bruni, R., Corradini, A., Gadducci, F., Lluch-Lafuente, A., Vandin, A.: Adaptable
transition systems. In: Mart́ı-Oliet, N., Palomino, M. (eds.) WADT 2012. LNCS,
vol. 7841, pp. 95–110. Springer (2012)

7. Bruni, R., Corradini, A., Gadducci, F., Lluch Lafuente, A., Vandin, A.: A conceptual
framework for adaptation. In: de Lara, J., Zisman, A. (eds.) FASE 2012. LNCS,
vol. 7212, pp. 240–254. Springer (2012)

8. Bruni, R., Corradini, A., Gadducci, F., Lluch-Lafuente, A., Vandin, A.: Adaptation
is a game. TinyToCS 2 (2013)

9. Bruni, R., Corradini, A., Gadducci, F., Lluch-Lafuente, A., Vandin, A.: Modelling
and analyzing adaptive self-assembly strategies with Maude. Science of Computer
Programming 99(1), 75–94 (2015)

10. Bruni, R., Corradini, A., Gadducci, F., Lluch Lafuente, A., Vandin, A.: A white box
perspective on adaptation. In: Nicola, R.D., Hennicker, R. (eds.) Software, Services
and Systems. LNCS, vol. 8950 (2015)

11. De Nicola, R., Loreti, M., Pugliese, R., Tiezzi, F.: A formal approach to autonomic
systems programming: The SCEL language. ACM Transactions on Autonomous
and Adaptive Systems 9(2), 7:1–7:29 (2014)

12. Hölzl, M., Gabor, T.: Reasoning and Learning for Awareness and Adaptation.
In: Wirsing, M., Hölzl, M., Koch, N., Mayer, P. (eds.) Software Engineering for
Collective Autonomic Systems: Results of the ASCENS Project, Lecture Notes in
Computer Science, vol. 8998. Springer Verlag, Heidelberg (2015)

13. Hölzl, M., Koch, N., Puviani, M., Wirsing, M., Zambonelli, F.: The EDLC and
best practises for collective adaptive systems. In: Wirsing, M., Hölzl, M., Koch, N.,
Mayer, P. (eds.) Software Engineering for Collective Autonomic Systems: Results
of the ASCENS Project, LNCS, vol. 8998. Springer (2015)

14. Hölzl, M.M., Wirsing, M.: Towards a system model for ensembles. In: Agha, G.,
Danvy, O., Meseguer, J. (eds.) Formal Modeling: Actors, Open Systems, Biological
Systems. LNCS, vol. 7000, pp. 241–261. Springer (2011)

15. Isaacs, R.: Differential Games. Dover (1965)
16. Kulkarni, S.S., Biyani, K.N.: Correctness of component-based adaptation. In:

Crnkovic, I., Stafford, J.A., Schmidt, H.W., Wallnau, K.C. (eds.) CBSE 2004.
LNCS, vol. 3054, pp. 48–58. Springer (2004)

17. Lints, T.: The essentials in defining adaptation. Aerospace and Electronic Systems
27(1), 37–41 (2012)

18. Maschler, M., Solan, E., Zamir, S.: Game Theory. Cambridge University Press
(2013)

19. Nicola, R.D., Latella, D., Lluch Lafuente, A., Loreti, M., Margheri, A., Massink, M.,
Morichetta, A., Pugliese, R., Tiezzi, F., Vandin, A.: The SCEL language: Design,
implementation, verification. In: Wirsing, M., Hölzl, M., Koch, N., Mayer, P. (eds.)
Software Engineering for Collective Autonomic Systems: Results of the ASCENS
Project, LNCS, vol. 8998. Springer (2015)

20. Patsko, V.S., Turova, V.L.: Homicidal chauffeur game: History and modern studies.
In: Breton, M., Szajowski, K. (eds.) Advances in Dynamic Games, Annals of the
International Society of Dynamic Games, vol. 11, pp. 227–252. Birkhäuser (2011)

http://www.ascens-ist.eu

21. Pinciroli, C., Bonani, M., Mondada, F., Dorigo, M.: Adaptation and awareness in
robot ensembles: Scenarios and algorithms. In: Wirsing, M., Hölzl, M., Koch, N.,
Mayer, P. (eds.) Software Engineering for Collective Autonomic Systems: Results
of the ASCENS Project. Springer (2015)

22. Ross, D.: Game theory. In: Zalta, E.N. (ed.) The Stanford Encyclopedia of Philoso-
phy. Stanford University, Winter 2014 edn. (2014), http://plato.stanford.edu/
archives/win2014/entries/game-theory/

23. Salehie, M., Tahvildari, L.: Self-adaptive software: Landscape and research chal-
lenges. ACM Transactions on Autonomous and Adaptive Systems 4(2), 14:1–14:42
(2009)

24. Salvaneschi, G., Ghezzi, C., Pradella, M.: Context-oriented programming: A pro-
gramming paradigm for autonomic systems (v2). CoRR abs/1105.0069 (2012)

25. Serbedzija, N.: The ASCENS case studies: Results and common aspects. In: Wirsing,
M., Hölzl, M., Koch, N., Mayer, P. (eds.) Software Engineering for Collective
Autonomic Systems: Results of the ASCENS Project, LNCS, vol. 8998. Springer
(2015)

26. Vassev, E., Hinchey, M.: Requirements engineering. In: Wirsing, M., Hölzl, M.,
Koch, N., Mayer, P. (eds.) Software Engineering for Collective Autonomic Systems:
Results of the ASCENS Project, LNCS, vol. 8998. Springer (2015)

27. Zadeh, L.A.: On the definition of adaptivity. Proceedings of the IEEE 51(3), 469–470
(1963)

28. Zhang, J., Goldsby, H., Cheng, B.H.C.: Modular verification of dynamically adaptive
systems. In: Moreira, A., Schwanninger, C., Baillargeon, R., Grechanik, M. (eds.)
AOSD 2009. pp. 161–172. ACM (2009)

29. Zhao, Y., Ma, D., Li, J., Li, Z.: Model checking of adaptive programs with mode-
extended linear temporal logic. In: EASe 2011. pp. 40–48. IEEE Computer Society
(2011)

http://plato.stanford.edu/archives/win2014/entries/game-theory/
http://plato.stanford.edu/archives/win2014/entries/game-theory/

	 Reconciling White-Box and Black-Box Perspectives on Behavioural Self-Adaptation

