

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Dec 20, 2017

Optimization of Partitioned Architectures to Support Soft Real-Time Applications

Tamas-Selicean, Domitian; Pop, Paul

Published in:
Proceedings of 2014 IEEE 20th Pacific Rim International Symposium on Dependable Computing (PRDC)

Publication date:
2014

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Tamas-Selicean, D., & Pop, P. (2014). Optimization of Partitioned Architectures to Support Soft Real-Time
Applications. In Proceedings of 2014 IEEE 20th Pacific Rim International Symposium on Dependable Computing
(PRDC) (pp. 223 - 224). IEEE.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Online Research Database In Technology

https://core.ac.uk/display/43248788?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://orbit.dtu.dk/en/publications/optimization-of-partitioned-architectures-to-support-soft-realtime-applications(9f12de68-c7ec-42e2-8218-b3af664824f9).html

Optimization of Partitioned Architectures to
Support Soft Real-Time Applications

Domiţian Tămaş–Selicean and Paul Pop
DTU Compute Technical University of Denmark

Kongens Lyngby, 2800 Denmark

I. INTRODUCTION

Partitioned architectures (PAs) allow the safe integration of
applications of different criticality levels on the same platform,
reducing the development, verification and integration costs.
PAs rely on partitioning mechanisms at the platform level to
ensure temporal and spatial separation between applications
of different criticality levels. With PAs, each application is
running in its own partition. Spatial partitioning protects the
private data or devices of an application in a partition from
being tampered with, by another application. Temporal parti-
tioning ensures that an applications access to shared resources
is not affected by applications in other partitions.

PAs have been successfully used in several industries, in-
cluding automotive and avionics. For example, in the avionics
area, platform level separation mechanisms are described in
the ARINC 653 software specification, also called Integrated
Modular Avionics [3]. Recently, the European Space Agency
(ESA) and the National Aeronautics and Space Administration
(NASA) have also shown interest in PAs, as a way to “manage
the growth of mission function implemented in the on-board
software” [8], and as intermediate step to introducing multi-
core processors in spacecraft computers [7].

In [6], we have addressed the optimization of PAs for hard
real-time applications, focusing on finding schedulable imple-
mentations that minimize the development and certification
costs. In this paper we are not interested in the issue of cost
minimization, but in supporting soft real-time applications that
share the same PA with critical hard real-time applications.
The advantage of a PA is that it allows the integration of
mixed-criticality applications, including non-critical and soft
real-time applications, onto the same platform. Our proposed
optimization approach determines an implementation such that
all hard real-time applications are schedulable and the quality
of service of the soft real-time tasks is maximized.

II. SYSTEM MODEL

On a processing element (PE) Ni, a partition Pj is defined
as the sequence Pi j of partition slices. A partition slice is a
predetermined time interval in which the tasks of application
A j mapped to Ni are allowed to use the PE. All the slices on
a processor are grouped within a Major Frame (MF), that is
repeated periodically. The period TMF of the major frame is not
yet known and will be decided by our optimization approach.
Several MFs are combined together in a system cycle that is
repeated periodically, with a period Tcycle. Within a Tcycle, the
sequence and length of the partition slices are the same across
MFs (on a given PE), but the contents of the slices can differ.

The set of all applications in the system is denoted with
Γ = ΓH ∪ΓS, where ΓH is the subset of hard real-time applica-

tions (HRT), and ΓS is the subset of soft real-time applications
(SRT). The applications can be of different criticality levels.
We model an application as a directed, acyclic graph, where a
node represents one task. An edge indicates a communication.
The mapping of tasks to processors is denoted by the function
M : Vi → N , where N is the set of PEs in the architecture.
We consider this mapping as given by the designer. For each
task τi we know the worst-case execution time (WCET) Ci
on the PE where it mapped. Furthermore, the assignment of
tasks to partitions as fixed. The applications can be scheduled
using either fixed-priority scheduling (FPS) or static cyclic
scheduling (SCS). A deadline Di ≤ Ti is imposed on each task
graph Ai for SCS applications, and on each τi for FPS tasks,
where Ti is the period of the application/task.

Unlike for HRT applications, missing a deadline will
not lead to system failure for SRT applications: they will
continue functioning, but with a degraded service. For each
SRT application A j, we use a quality of service (QoS) function
QoS(A j) ∈ [0,1]. This function is specific for each application
and is given by the designer.

III. PROBLEM FORMULATION

The problem can be formulated as follows: given a set
Γ of applications, an architecture of N of PEs, the mapping
of tasks to PEs, the assignment of tasks to partitions, and
the application cycle Tcycle, we are interested to find an
implementation Ψ such that the HRT applications meet their
deadlines and the QoS is maximized for the SRT applications.
Deriving an implementation Ψ means deciding on the set P of
partition slices on each PE, the size of the major frame TMF ,
and the schedule S for all the tasks.

IV. PARTITIONED ARCHITECTURE OPTIMIZATION

Next, we describe the proposed “Partitioned Architecture
Optimization” (PAO) strategy. We have modified and extended
our Tabu Search (TS) approach from [6] to solve the problem
formulated in the previous section. TS [2] is a meta-heuristic
optimization that searches for the solution that minimizes the
cost function. The exploration of the design space is done
by applying design transformations (moves) to the current
solution. To escape local minima, and to prevent the search
from revisiting solutions, TS uses an adaptive memory (called
“tabu list”).

PAO uses four types of moves applied to partition slices:
resize, swap, join and split. These moves are applied to
a randomly selected partition slice on each PE. PAO also
uses a resize MF move that increases or decreases the TMF ,
proportionally adjusting the partition slice sizes.

1

We define the cost function as:

Cost(ψ) =
{

c1 = ∑Ai∈ΓH max(0,Ri−Di) ifc1 > 0
c2 =−∑A j∈ΓS

QoS(A j) ifc1 = 0 (1)

If at least one HRT application Ai from the set ΓH is not
schedulable, there exists one Ri greater than the deadline Di,
and therefore the term c1 will be positive (c1 drives the search
towards schedulable solutions). If all the applications in ΓH are
schedulable, then each Ri is smaller than Di, and the term c1
= 0. In this case, we use c2 as the cost function: once the HRT
applications are schedulable, we are interested to maximize the
QoS for the SRT applications.

The alternative solutions provided by PAO are evaluated
using a List Scheduling-based heuristic to determine the sched-
ule tables for each SCS application. The worst-case response
times for the FPS tasks are determined using a Response Time
Analysis that we modified to take into account partitions [4].

V. CASE STUDY

We have evaluated our PAO strategy using an aerospace
case study, with two mixed-criticality applications running on a
partitioned PE: the mixed-critical Mars Pathfinder Mission [1]
(MESUR), and the non-critical controller for the Composi-
tional Infrared Imaging Spectrometer [5] (CIRIS), a Fourier
Transform Infrared Spectrometer.

The MESUR tasks are HRT (scheduled with FPS), mixed-
critical, with 4 high-criticality (MHC) and 3 low-criticality
(MLC) tasks (see Fig. 1a). The CIRIS application is non-
critical, SRT scheduled with SCS. The task set is shown
Fig. 1b. CIRIS acquires 160 interferograms, which it pro-
cesses using Fast Fourier Transform (FFT) tasks (f f ti tasks
in Fig. 1b). The avg j, dc j, cal j and avg tasks in Fig. 1b are
post-processing tasks. A detailed description of the task set
can be found in [5]. We have shown in [5] how the number
of the acquired and processed interferograms affects the signal
to noise performance of the instrument, which is a measure of
the QoS. We define the QoS function for CIRIS as the:

QoS(CIRIS) =
executed FFT tasks

total FFT tasks
(2)

Thus, a QoS of 1 means that all 160 FFT tasks are executed.
A QoS of 0 means that none executed.

We have run our proposed PAO strategy on this case study,
and we have obtained the solution depicted in Fig. 2d, where
all the hard tasks are schedulable and the QoS for the soft
tasks is maximized (QoS=1, corresponding to a high quality
signal). Fig 2 presents the partition tables as Gantt charts, with
the green partitions corresponding to CIRIS, red partitions

(a) MESUR task set (b) CIRIS task graph

Fig. 1: Case study applications

Fig. 2: Partition table configurations

to MHC tasks and blue partitions to MLC tasks. Next to
each partition table configuration we present for CIRIS the
number of processed interferograms and the resulting QoS,
and the number of schedulable MESUR tasks. The figure
also shows the initial solution (Fig. 2a) and two intermediate
solutions visited during the search. In Fig. 2a all MESUR
tasks are schedulable, but CIRIS processes only 4 out of 5
interferograms. In the solution in Fig. 2b CIRIS successfully
executes 134 FFT tasks, increasing the QoS to 0.84. In Fig. 2c
we are able to increase the QoS to 1 at the expense of 2 MHC
tasks missing their deadlines.

This case study shows that it is important to carefully
optimize PAs to support soft real-time applications and at the
same time meet the stringer constraints of the critical hard
real-time applications.

VI. CONCLUSION

In this paper we have proposed a new Tabu Search-based
design optimization strategy for mixed-criticality systems im-
plementing hard and soft real-time applications on the same
platform. Our proposed strategy determines an implementation
such that all hard real-time applications are schedulable and
the quality of service of the soft real-time tasks is maximized.
We have evaluated our strategy using an aerospace case study.

REFERENCES
[1] F. Cottet, J. Delacroix, C. Kaiser, and Z. Mammeri. Scheduling in Real-

Time Systems. John Wiley & Sons, LTD, 2002.
[2] F. Glover and M. Laguna. Tabu Search. Kluwer Academic Publishers,

Norwell, MA, USA, 1997.
[3] J. Rushby. Partitioning for avionics architectures: Requirements, mecha-

nisms, and assurance. NASA Contractor Report CR-1999-209347, NASA
Langley Research Center, June 1999.

[4] D. Tamas-Selicean and P. Pop. Optimization of time-partitions for mixed-
criticality real-time distributed embedded systems. International Sym-
posium on Object/Component/Service-Oriented Real-Time Distributed
Computing Workshops, pages 1–10, 2011.

[5] D. Tămaş-Selicean, D. Keymeulen, D. Berisford, R. Carlson, K. Hand,
P. Pop, W. Wadsworth, and R. Levy. Fourier transform spectrometer
controller for partitioned architectures. In Proc. of the Aerospace
Conference, pages 1–11, 2013.

[6] D. Tămaş-Selicean and P. Pop. Design Optimization of Mixed-Criticality
Real-Time Applications on Cost-Constrained Partitioned Architectures.
In Proc. of the Real-Time Systems Symposium, pages 24–33, 2011.

[7] J. Windsor, K. Eckstein, P. Mendham, and T. Pareaud. Time and space
partitioning security components for spacecraft flight software. In Proc.
of the Digital Avionics Systems Conference, pages 8A5–1–8A5–14, 2011.

[8] J. Windsor and K. Hjortnaes. Time and space partitioning in spacecraft
avionics. Proc. of Intl. Conf. on Space Mission Challenged for Informa-
tion Technology, pages 13–20, 2009.

2

