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ABSTRACT

High-resolution data are needed in order to assess potential impacts of extreme events on infrastructure in

the mid-latitudes. Dynamical downscaling offers one way to obtain this information. However, prior to

implementation in any impacts assessment scheme, model output must be validated and determined fit-

for-purpose. This study presents the results from two 8-km resolution perfect boundary experiments over

Scandinavia. Two different regional climate models were initialised and driven with ERA interim reanalysis

from 1990 to 2010. Reference data come from both gridded products and point-based station observations.

In addition to the canonical variables of daily precipitation and temperature, winds were also investigated. The

models exhibit systematic cold and wet biases on seasonal time scales (�1K and �50�100%, respectively).

However, frequency-based skill scores for daily precipitation and temperature are high, indicating that the

distributions of these variables are generally well captured. Wind speeds over the North and Norwegian

Seas were simulated more realistically in the models than in the ERA interim reanalysis. However, most

importantly, for impacts assessments, the models should be capable of capturing the timing, intensity and

location of short-duration extreme events, in particular precipitation. In this respect, both models outperform

the reanalysis over the city of Copenhagen, where recent pluvial floods led to costly damages to infrastructure.

Keywords: regional climate modelling, HIRHAM, WRF, validation, extreme precipitation, hydrology needs

1. Introduction

In light of climate change, it is likely that natural hazards

and extreme weather events are increasing (IPCC, 2012) in

most regions of the world. Consequently, this will lead to

new challenges for the design of infrastructure (e.g. coastal

protection and city sewage systems). One threat is extreme

precipitation and associated floods at regional to local

scales in the order of 10 km and below.

Assessing the impacts of climate change at scales below

100 km requires some sort of downscaling of global climate

models (GCMs). Due to their relatively low horizontal

resolution (�100km), the use of GCMs only is inappropriate

due to their inability to represent regional to local details

and underlying physical subgrid scale processes (e.g.

Rummukainen, 2010) that may cause extreme events.

The use of regional climate models (RCMs) as a tool to

dynamically downscale global atmospheric data products

can (1) provide ‘added value’ in this respect (e.g. Hanson

et al., 2007; Warner, 2011), and (2) allow for the study of

the physical�dynamical atmospheric processes that induce

extreme events. Downscaling provides detail and insight

into the regional to local-scale processes and phenomena

that are too small scale to be captured by coarse resolution

GCM. In particular, downscaling can improve the repre-

sentation of winds (e.g. Barstad et al., 2012) and intense

precipitation (e.g. Barstad and Caroletti, 2013). Current

methods for performing downscaling are divided into dy-

namical downscaling, which uses physics-based numerical
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models to simulate the climate at high resolution (e.g.

Christensen and Christensen, 2007), and statistical down-

scaling, which uses statistical models to link large-scale

predictors to local scale meteorological features (Maraun

et al., 2010).

During the last decade there has been lively research

activity in the field of dynamical downscaling using RCMs

and their potential to add value compared to lower resolu-

tion data products, such as data from global reanalysis

andGCMs (e.g. Christensen and Christensen, 2003; Barstad

et al., 2009; Soares et al., 2012). In this context, added

value means that higher resolution models simulate the

observed climate more realistically and therefore provide

more appropriate information compared to other lower

resolution models.

For the European continent, the PRUDENCE (Predic-

tion of Regional Scenarios and Uncertainties for Defining

European Climate Change Risks and Effects) project

(Christensen and Christensen, 2007) and the ENSEMBLES

project (Christensen et al., 2010; Kjellström and Giorgi,

2010) are probably the most well-known European down-

scaling projects. Recently, a next generation of simulations

have become publically available at two horizontal re-

solutions, 0.448 (:50 km) and 0.118 (:12 km) within the

Euro-CORDEX initiative (cordexesg.dmi.dk/esgf-web-fe/).

Within the RiskChange project (riskchange.dhigroup.

com) two RCMs have been run on an 8-km grid. As an

evaluation run, ERA interim (Uppala et al., 2005; Dee

et al., 2011) reanalysis data (0.58:70 km) were dynamically

downscaled by using HIRHAM5 (Christensen et al., 2006)

andWRF3.3.1 (Skamarock et al., 2005) on a domain centred

over Denmark (see Fig. 1) comprising 297�288 grid boxes

and 35 vertical levels.

Dynamical downscaling is expected to be useful when the

geographical region of interest is characterised by complex

terrain (e.g. mountain ranges and coastlines) and when the

representation and behaviour of extremes are important to

be captured in a realistic manner. Atmospheric phenomena

such as fronts, atmospheric rivers, squall lines and thunder-

storms that are not present in GCMs can cause intense

precipitation and destructive winds on regional to local

scale (in the order of 10 km). For example, very heavy

precipitation (�100mm day�1) impacted the Norwegian

southwest coast on 14 September 2005. This event was

Fig. 1. (a) 24-hour precipitation amount in mm on 14 September 2005 as represented in the ERA interim data product. The red box

indicates the domain used to perform dynamical downscaling. The locations of Bergen, Oslo and Copenhagen are indicated with red stars.

The maps below show the same variable as simulated in the RCMs: (b) HIRHAM5 and (c) WRF.
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caused by an atmospheric river, which was formed by the

transport of subtropical and tropical moisture due to the

extratropical transition of two hurricanes over the North

Atlantic (Stohl et al., 2008). The atmospheric river im-

pinged on Norway’s north�south oriented mountain range

and the moist air associated with this weather system

underwent orographic lifting and thereby orographic en-

hancement of precipitation. This phenomenon caused a

600-yr event in the city of Bergen, Norway (156mm in

24 hours). The accumulated 24-hour precipitation for 14

September 2005 is shown in Fig. 1. In Fig. 1a, ERA

interim (70 km) indicates a smooth precipitation pattern,

underestimating the actual precipitation amount over the

Norwegian west coast by 50�100%, while the higher

resolved RCM simulations (8 km) add much greater detail

in the precipitation pattern both over sea and over land

areas. In fact, the atmospheric river which caused these

high precipitation amounts in this case becomes visible in

the high-resolution simulations (Fig. 1b and c), and both

models capture the actual precipitation amount. Within the

RiskChange project, one goal is to provide higher resolu-

tion simulations (8 km) to be able to resolve such extreme

events in greater detail. Further, the RCM results are used

as input for impact models that are employed to address

particular societal needs and risks.

Detailed and accurate local-scale information is a crucial

component for developing climate services as a pillar of

the EU’s policy position on climate change research (EU,

2011; van Deelen et al., 2011). In particular, the need for

reliable information concerning the hydrological impacts

of climate change is emphasised (Wilby and Harris, 2006).

As pointed out in the final reporting of the ENSEMBLES

project (van der Linden and Mitchell, 2009) and the IPCC

report on Climate Change and Water (Bates et al., 2008),

the impacts of anthropogenic emissions of greenhouse

gases on the hydrological cycle remain a major challenge

for the climate modelling community. This understanding

must be improved, and the information must be available

at higher resolution than what is provided by the climate

modelling community today in data repositories (e.g. Wilby

and Dessai, 2010). For hydrology, the requirements with

respect to spatio-temporal resolution are even higher

(Arnbjerg-Nielsen et al., 2013). So far downscaling to

higher resolutions has primarily been carried out by means

of statistical tools such as generalised linear models using

atmospheric variables as co-variates (e.g. Maraun et al.,

2010), scaling properties (e.g. Burlando and Rosso, 1996),

weather generators (e.g. Burton et al., 2008) and resam-

pling methods (e.g. Willems and Vrac, 2011). All of these

methods, however, have shortcomings relative to a dy-

namic downscaling where all relevant variables are mod-

elled concurrently and where the full dynamic range in

space and time is preserved. Hence, even though statistical

downscaling is highly useful for local-scale applications,

a dynamic downscaling is preferable, if physical consistency

between variables is desired and non-stationarity of abso-

lute values and biases is present. For climate services, the

physically linked variables of temperature, precipitation

and wind are those most often considered and are analysed

in this study by using the results of the 8-km simulations

from HIRHAM5 and WRF.

Before performing climate simulations under future emis-

sion scenarios, it is crucial to validate the model perfor-

mance under present-day climate conditions in order to

identify possible systematic biases within the models (Jacob

et al., 2007) and to analyse to what degree the models

simulate observed weather. This is done by performing a

so-called ‘perfect boundary experiment’ (Rummukainen,

2010) where global reanalysis data (ERA interim) are used as

atmospheric conditions to initiate and drive the RCMs at

their lateral and lower boundaries (e.g. sea surface tempera-

ture). The RCMs can therefore be seen as a sort of magnifier

as they are freely run on an 8-km grid, but fed with ERA

interim data at their boundaries.

2. Data

2.1. Reanalysis data

ERA interim is a global reanalysis dataset (Uppala et al.,

2005; Dee et al., 2011) that is provided by the European

Centre for Medium-Range Weather Forecasts (ECMWF)

with a horizontal resolution of approximately 70 km for

Northern Europe. Data on 37 pressure levels for every six

hours have been retrieved from ECMWF’s data server.

These data have been used as initial and boundary condi-

tions for driving the two RCMs (see Section 2.2). For the

spatio-temporal evaluation of small-scale extreme precipita-

tion (Section 3), data for every three hours have been

retrieved.

2.2. RCMs and model setup

The simulations were performed as so-called perfect bound-

ary experiments on a horizontal grid of 8 km, that is, ERA

interim reanalysis data are used as initial and boundary

conditions to initiate and drive the RCMs. This setup

represents an increase in horizontal resolution by a factor

of 3 compared to ENSEMBLES and PRUDENCE projects

and a factor of 1.5 compared to the high-resolution Euro-

CORDEX simulations. The domain comprises 297�288

grid boxes which leads to a computation time of approxi-

mately 1 month for 20 model years. The rationale behind

such a computationally expensive setup is to (1) be able

to depict weather patterns that cause extreme events more

precisely and (2) account for the high spatio-temporal

ADDED VALUE IN HIGH-RESOLUTION CLIMATE SIMULATIONS 3



resolutions required for being used to drive impact models.

An hourly output frequency of surface variables was chosen

to account for impact modelling needs. This represents an

increase of a factor of 3 in temporal resolution compared to

recent dynamical downscaling projects for Europe, such as

Euro-CORDEX.

The Weather Research and Forecasting model WRF

version 3.3.1 (Skamarock et al., 2005) and the HIRHAM

model version 5 (Christensen et al., 2006) were used to

dynamically downscale ERA interim fields for Scandinavia

(see Fig. 1). For both simulations, ERA interim fields at

37 pressure levels from the surface to 10 hPa were used as

initial and boundary conditions. The lateral boundary

conditions and sea surface temperatures were updated

every 6 hours. No observations were assimilated in the

domain and the runs were not nudged towards the large

scale flow. The simulations were performed on a rotated

latitude�longitude grid with a horizontal grid spacing of

about 8 km with 31 (HIRHAM5) and 35 (WRF) vertical

levels. Thus, higher resolution is introduced in the hor-

izontal dimension but not in the vertical representation of

the atmosphere. Both models have been run in a single

domain set-up covering most of Scandinavia. The outer

10 grid points of the domain were used as relaxation zone

and are thus not analysed. The simulation period covers

1989�2010 with the first year considered spin-up and

discarded. The chosen physical parameterisations for

both models are summarised in Table 1.

2.3. Gridded observational data

To validate the simulations, both gridded data and station

observations were employed. The E-OBS data set (v9.0)

from the ENSEMBLES project EU-FP6 provides daily

mean, minimum and maximum temperature as well as

precipitation from station observations in Europe kriged

to a 0.228 (:25 km) grid (Klein Tank et al., 2002; Haylock

et al., 2008). The data are available from www.ecad.eu/

download/ensembles/download.php

For off-shore applications the accurate representation of

wind speed over the North Sea is of particular interest.

Therefore, we include an evaluation of surface wind speed

biases over the North Sea where satellite observations are

available from the QuikSCAT (Lungu, 2001) data set for

the period 20 July 1999 until 19 November 2009. The data

is downloaded from ftp://ftp.ssmi.com/qscat/bmaps_v04/.

The 10m winds are derived from the backscattering from

capillary waves using the Ku-2011 geophysical model

function (Ricciardulli and Wentz, 2011) which improves

retrieval in high wind speeds (20�30m s�1). The data are

gridded into 0.258 latitude�longitude cells. The satellite

passes the area of interest twice a day, thus, the corre-

spondingly simulated full-hour instantaneous wind speeds

have been analysed. Confidence in the Qscat data is

relatively high and it has been shown to compare well

with ship data (Bourassa et al., 2003) and satellite derived

products (Ricciardulli and Wentz, 2011). These studies

reported a bias of 1m s�1 and root mean square error

below 1m s�1 for no-rain conditions and wind speeds

below 20m s�1.

2.4. Station observational data

For the validation of small-scale extreme precipitation the

Danish local gauge data set abbreviated SVK (Madsen

et al., 2002; Sunyer et al., 2013) has been used. The length

of the single precipitations records varies between 5 and

33 years in the period 1979�2012. The spatial coverage is

most dense in urbanised areas of Denmark. In this analysis,

144 gauges are included for the period 1990�2010.

3. Methods

The performance of the RCMs was evaluated using vari-

ous methods in order to account for time scales ranging

from seasonal to subdaily. Maps of seasonal biases and

frequency skill scores as metrics are provided to identify

systematic biases. To investigate the models’ ability to

simulate extreme precipitation, the upper ten percentiles

of precipitation in Bergen, Oslo and Copenhagen are

shown. As a further helpful measure of the representation

of extreme precipitation in the models, spatio-temporal

correlation measures and statistical moments�scaling rela-

tionships are calculated.

Table 1. Chosen physical options within the two regional climate model simulations

Regional climate model

Physical option WRF3.3.1 HIRHAM5

Radiation CAM3, (Collins et al., 2004) Morcrette (1991), Giorgetta and Wild (1995)

Convection Tiedtke (1989), Zhang et al. (2011) Tiedtke (1989)

Micro-physics Thompson et al. (2008) Lohmann and Roeckner (1996)

Land-surface NOAH, (Ek et al. 2003)

Boundary-layer Mello-Yamada-Janjić, (Janjić, 2002) Louis (1979)

4 S. MAYER ET AL.
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Seasonal temperature biases (bias�model - observation)

are shown over land as maps for summer (JJA) and winter

(DJF) seasons. Model data was re-projected bilinearly to

the E-OBS 0.228 rotated latitude�longitude grid. A lapse

rate correction is applied to all temperature data. We have

identified height differences between model and reality of

about 100m for Bergen and Oslo, while they were negligible

for Copenhagen. Height difference between ERA interim

and reality was even larger with 370m for Oslo, for in-

stance. We account for observational uncertainty by using

the 92 standard error bounds which are given within the

E-OBS data set. Grid points where the temperature biases

lie outside these bounds are indicated. Relative precipita-

tion biases, RPB ¼ ð RCM
E�OBS

� 1Þ � 100%, are shown as per-

cent difference between the models and E-OBS. In addition,

we calculated seasonal temperature biases at a single point

for three stations. These are Landbohøjskolen for the city

of Copenhagen (Denmark), Blindern for the city of Oslo

and Florı́da for the city of Bergen (both Norway). For this

single-point analysis, we compare the nearest neighbouring

grid point from the RCMs with the station locations. With

the high horizontal resolution for the RCMs, the distance

between grid point and observational station is in all cases

less than 4 km. Both seasonal temperature and precipita-

tion biases for the three cities are summarised in Table 2.

Only wet-day precipitation (pr) is considered in the point-

based analysis (pr �1mm day�1). For the investigation of

daily extreme precipitation, we analysed data from the same

meteorological stations. As a measure for extreme precipi-

tation, we have chosen the 90�99.9th percentile in daily

precipitation amount.

For the analysis of seasonal biases in wind speed over

ocean, the model data have been regridded using the

distance weighted method to the Qscat grid (0.258), and
corresponding maps are shown.

Daily mean, minimum and maximum temperature and

mean precipitation are compared to E-OBS using a skill

score performance metric (Perkins et al., 2007). First

probability density functions (PDFs) of the chosen variable

(e.g. temperature) are built by binning data in N number

of bins. Based on the overlap of the simulations’ PDFs

(Fm) and observations’ PDFs (Fo) a skill score, Sscore, is

constructed by using

Sscore ¼
XN

1

minðFm;FoÞ: (1)

Here, PDFs are approximated by comparing discrete

histograms. A perfect overlap of Fm with Fo results in a

skill score of 1, while a score of 0 is the result of no overlap,

at all. As Perkins et al. (2007) we chose a bin size of

0.5K for validating daily temperature, and 1mm day�1 for

precipitation, respectively. Values below 0.5mm day�1

were omitted because this threshold to define a rainy day,

is used within E-OBS (Haylock et al., 2008).

For the investigation of daily extreme precipitation we

analysed data from the same meteorological stations as

shown in Table 2. As a measure for extreme precipitation we

have chosen the upper ten percentiles in daily precipitation

amount.

Additionally, precipitation extremes are extracted from

each data set (SVK, WRF, HIRHAM and ERA-interim)

using a varying threshold resulting in a similar number

of extremes from each data set. Here, we have chosen

an average of three extremes per gauge, and respective grid

cell per year as suggested by Madsen et al. (2002) and

Gregersen et al. (2013). These extremes are analysed for

Table 2. Seasonal biases of temperature and wet-day precipitation

Temp. bias [K] Wet-day precip. bias [%]

Location DJF MAM JJA SON DJF MAM JJA SON

Bergen

ERA interim �1.1 �0.5 �0.5 �0.7 �23.2 �28.8 �36.3 �33.6

WRF �0.3 �1.0 �1.0 �0.3 �10.5 �0.6 �16.6 �1.4

HIRHAM �0.6 �0.6 �0.4 �0.6 �14.1 �0.2 �28.9 �6.2

Oslo

ERA interim �0.3 �0.2 �0.2 �0.2 �15.0 �18.6 �17.0 �26.5

WRF �0.2 �1.9 �0.3 �0.1 �18.8 �7.8 �7.3 �9.7

HIRHAM �1.1 �0.4 �0.2 �0.6 �66.6 �24.4 �1.2 �14.8

Copenhagen

ERA interim �0.6 �1.1 �0.9 �0.6 �13.0 �26.6 �32.0 �25.5

WRF �0.7 �1.4 �0.1 �0.3 �1.3 �7.2 �11.6 �12.6

HIRHAM �1.2 �0.3 90.0 �0.6 �7.6 �6.1 �1.7 �5.3

Reanalysis and model data temperatures were corrected by assuming a temperature gradient of 6K km�1. A wet day is defined as a day

when the precipitation amount exceeds 1mm.
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temporal coexistence to extremes in all other gauges,

respective grid cells, using the unconditional correlation

presented by Mikkelsen et al. (1996). The analysis of

temporal coexistence requires that events are paired in

such a way that they may be regarded as concurrent in

a physical sense. In other words, the method calculates

the correlation between extreme events that originate from

the same meteorological phenomenon. The mathematical

expression can be found in Mikkelsen et al. (1996) and

Gregersen et al. (2013). The unconditional correlation, r, is

then constructed by dividing the covariance of two extreme

events, Z, at two locations, indexed by A and B, with the

product of the sampling error standard deviations, s,

estimated from the time series of extreme precipitation at

the two locations

q ¼ CovfZA;ZBg
rA � rB

: (2)

r is a measure for the likelihood that extreme precipitation

at two locations originates from the same extreme weather

event. Gregersen et al. (2013) recently used this approach

to evaluate ENSEMBLES extreme precipitation data for

Denmark as a measure of the actual spatial extent of the

extreme precipitation events in the data set. This is very

important for hydrological needs as short-term extreme

convective precipitation often has a very limited spatial

extend. This is often overestimated by coarse resolution

models which leads to an overestimation of impacts when

propagated to other models. The approach of Gregersen

et al. (2013) was adopted for this analysis.

The sample moments of the station Landbohøjskolen,

the two RCMs and ERA-interim are compared at different

temporal aggregations. The nearest-neighbour method is

also used here to interpolate the RCMs and ERA-interim

to the station location. The aim is to assess the performance

of the RCMs in the simulation of different sample moments

as well as the relationship between the moments at differ-

ent temporal aggregations; that is, do the RCMs reproduce

the scaling behaviour present in observed precipitation?

The scaling behaviour of precipitation refers to the fact

that there exists a log�log linear relationship between two

precipitation moments at different temporal aggregations.

This relationship is often used in precipitation disaggrega-

tion methodologies for urban drainage applications (e.g.

Gupta and Waymire, 1993; Over and Gupta, 1996; Molnar

and Burlando, 2005; Onof and Arnbjerg-Nielsen, 2009).

Random cascade models are an example of a disaggrega-

tion approach. In a typical cascade model, the precipita-

tion depth (i.e. over space and time) at a time step is

disaggregated into two subdivisions. This is repeated several

times to obtain high-temporal resolution time series. Here

we apply the same notation as in the cascade model shown

by Molnar and Burlando (2005). The scaling behaviour is

analysed by using the temporal scale and non-central

sample moments. First, a level n is assigned to temporal

aggregations of 1, 2, 3, 6, 12 and 24 hours. The levels are

set equal to 0 for daily aggregation, and become negative

for shorter (subdaily) aggregation periods, for example,

n��1.4 corresponds to 1 hour precipitation. A log�log
linear regression is fitted for each order q. The negative

value of the slope of this linear regression is t(q)

sðqÞ ¼ lim
kn!0

logMnðqÞ
� log kn

; (3)

where ln represents the temporal scale.

4. Results

4.1. Temperature

Seasonal temperature biases over land are shown in Fig. 2.

Both models show seasonal biases in the range of �3K

to �3K with regional and seasonal differences. In winter

(DJF), both models show a predominantly cold bias of

1�3K which is slightly more pronounced within the WRF

simulation. The region east of the Norwegian mountains

represents an exception as there is a warm bias of 1�3K
in both models. This pattern is similar to that seen in the

driving ERA-interim data and is most strongly reproduced

by the WRF model. In summer (JJA), the temperature

bias is smaller in both models and changes sign over most

parts of the domain within the HIRHAM5 simulation.

Both models are well within the observational uncertainty

(92 standard error in E-OBS) with exception for some

station limited mountainous areas. Seasonal temperature

biases at the three locations of interest are given in Table 2.

For all three cities, these biases range between �1.9K and

�0.5K and neither distinct differences nor improvement

between the RCMs and ERA interim could be found.

In the Sscore maps for daily mean (see Fig. 3), minimum and

maximum temperature (see Fig. 4), we see that Sscore]0.75

over most land areas within the study area, that is, simu-

lated temperature distributions match by more than 75%

with the observed temperature distributions. As already

reflected in the seasonal bias maps for temperature, moun-

tainous areas represent an exception during summer season

with a somewhat lower Sscore. Comparing to correspond-

ing ERA interim maps (not shown), we cannot identify

significant improvement in the RCM simulations.

4.2. Wind speed

For the wind speed biases over the North Sea, we show

the corresponding ERA interim maps (see Fig. 5). It

appears that ERA interim underestimates wind speed

6 S. MAYER ET AL.



by 2�2.4m s�1 between Scotland and the coast of

western Norway (see Fig. 5e). For this region, both

RCMs show a reduction of the wind speed bias by 1�2m
s�1 and an increase in frequency skill scores (not shown).

This is within a region which is known for the mesoscale

sensitivity to large-scale wind speeds particularly dur-

ing winter time when low pressure systems impinge the

Scandinavian peninsula, and air masses are accelerated
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Fig. 2. Biases of seasonal temperature in K (simulation minus E-OBS data) in the WRF simulation for (a) winter and (b) summer season;

(c, d) for the HIRHAM5 simulation; and (e, f) for ERA interim. Model data is re-projected bilinearly to the E-OBS 0.228 rotated grid.

Yellow dots indicate grid points where the model biases lie outside an interval of92 standard error which is given within the E-OBS data set.
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along the southwest Norwegian coast (Barstad and

Grønås, 2005).

4.3. Precipitation

Overall both models exhibit a wet bias of 50�100%
(1�3mm day�1) in seasonal precipitation (see Fig. 6).

This bias is mostly pronounced in winter. For example,

ERA interim shows a wet bias over parts of Poland and

Belarus which increases within both RCM downscalings.

This is also reflected in the skill score maps (Fig. 7) as

these regions show slightly lower skill scores ranging

between 0.8 and 0.85, while the bulk of the study area

shows Sscore]0.85. However, in summer the wet bias in

simulated precipitation (Fig. 6) is less pronounced and

frequency skill scores are generally higher in these regions

compared to winter.

Considering seasonal wet-day precipitation on a local

scale, ERA interim shows an underestimation in all four

seasons over Bergen, Oslo and Copenhagen by 13�36%

(Table 2). The RCM simulations show quite a large

reduction in most cases of the negative bias and indicate

a sign change in some seasons/locations.

Precipitation extremes can be caused by different types

of weather patterns that occur predominantly in differ-

ent seasons. During winter, most extreme precipitation is

caused by advective systems, that is, low-pressure systems

and storms that originate over the North Atlantic and

impact the north European continent. In contrast, most

summer precipitation extremes are caused by more localised

convective systems. For example, in Copenhagen (see

Fig. 8a and b), the most extreme precipitation with up to

70mm day�1 occurs during summer when convective systems

are more active. In Oslo, the difference in precipitation

amounts is not as clear as for Copenhagen and in both

winter and summer extreme precipitation ranges between

15 and 55mm day�1. However, in Bergen most extreme

precipitation is caused by storms during fall and winter

that impinge the Norwegian west coast causing extremes
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Fig. 3. Skill scores for daily mean temperature, T, for the WRF simulation for the seasons (a) winter and (b) summer; (c, d) as simulated

in HIRHAM5. The skill score is dimensionless and ranges from 0 to 1, where 1 is a perfect match between the observed and modelled

distributions. The colour bar ranges from 0.5 to 1 to make regional differences more visible.
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of 100mm day�1. ERA interim considerably underesti-

mates extreme precipitation in all locations in both seasons

(blue line in Fig. 8). Both models either agree very well with

the observations or lie above them (Fig. 8f for Bergen is

an exception). Assuming a wind-induced underestimation

of approximately 10�20% in the observations (indicated by

a grey band in Fig. 8), this is a clear improvement compared

to ERA interim.

As a further step to validate the models with respect to

the need for both high temporal and spatial resolution

in hydrological applications, we evaluated the spatio-

temporal correlation of downscaled precipitation extremes

(see Fig. 9). The sharp exponential decay in the 3-hourly

observational correlation structure indicates that these

events are highly localised, while this behaviour is not

reflected within the ERA interim data. Just by visual

comparison both RCM downscalings are much closer to

the observational behaviour, suggesting that short duration

extreme precipitation is well captured by both models.

To quantify the differences of the correlation curves, the

e-folding distances were calculated as suggested by Gregersen

et al. (2013). The values are summarised in Table 3.

Typically for shorter durations (3 hours) shorter correla-

tion lengths are obtained; that is, extreme precipitation on

a short time scale is very localised (B10 km) in reality.

Both for subdaily and daily extreme precipitation, this

behaviour is not represented at all in ERA interim with

correlation differences beyond 100 km. However, both

RCMs are much closer to a realistic behaviour with cor-

relation differences of 30 km on a subdaily time scale and

40 km on a daily time scale. This is also an improvement

compared to ENSEMBLES simulations on a 25 km grid

where correlation differences of 50�80 km on a subdaily

time scale were identified by Gregersen et al. (2013).

As a final step we compare the scaling properties of

the non-central moments estimated from the precipitation
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Fig. 4. As in Fig. 3 for extreme temperatures. (a) winter minimum temperature, Tmin, in WRF and (c) Tmin in HIRHAM5. (b) and (d)

represent the skill scores in summer maximum temperatures, Tmax, in WRF and HIRHAM5, respectively.
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observations at Landbohøjskolen in Copenhagen, the RCM

simulations and ERA interim. Figure 10 shows the loga-

rithm of the non-central moments (log(Mn(q))) estimated

for each temporal aggregation for winter (DJF) and sum-

mer (JJA). The first moment (q�1) is the mean precipita-

tion, the second moment is equivalent to the variance.

The third and fourth moments are considered high-order

moments. They are equivalent to the skewness (a measure

of the asymmetry) and kurtosis (a measure of peakedness) of

the distribution. High-order moments are an indication

of the extreme precipitation properties, higher values of

these moments translate into higher extreme events. On

the abscissa, log(l)�0 corresponds to a temporal aggrega-

tion of 24 hours and log(l)��1.4 corresponds to 1 hour,

Fig. 5. Biases of wind speed in m s�1 (simulation minus Qscat) in (a) and (b) WRF; (c, d) HIRHAM; and (e, f) ERA interim. The winter

season is shown in the left column and the summer season in the right column. Grey areas indicate no data.
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respectively. ERA interim is only available for temporal

aggregations of 3�24 hours.

In winter, both RCMs and ERA interim overestimate

the mean precipitation (q�1) for all temporal aggregations

but the overestimation is less pronounced in the reanalysis

(blue line). For this season and for the second and high-

order moments (i.e. q�2,3 and 4), ERA interim shows an

underestimation and the RCMs an overestimation; that is,

ERA interim underestimates extreme precipitation, while

the RCMs overestimate it. For all moments, ERA interim is
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Fig. 6. Relative precipitation bias, RPB ¼ ð RCM
E�OBS

� 1Þ � 100% in the WRF simulation for (a) winter and (b) summer season; (c, d) for

the HIRHAM5 simulation; and (e, f) for ERA interim. Yellow dots indicate grid points where the model biases lie outside an interval

of 92 standard error which is given within the E-OBS data set. The absolute error ranges between 93mm day�1.
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closer to the observations than the RCMs for large

durations (12 and 24 hours). On the other hand, for

durations of 3 and 6 hours and high order moments (q�3

and 4), HIRHAM is closer to the observations than WRF

and ERA interim. The slopes of the linear regressions

estimated for the RCMs and ERA interim for all the

moments are steeper than in the observations. This indicates

that the overestimation of precipitation in the RCMs is

higher at 24 hours than at 1 hour, while the opposite occurs

for ERA interim. In summer, both RCM simulations

are closer to the observational statistical moments than

for winter. For this season, WRF (red line) overestimates

mean precipitation, while HIRHAM (green line) and ERA

interim slightly underestimate it. In the second and higher

order moments, ERA interim clearly exhibits an under-

estimation for all temporal aggregations. For these mo-

ments (q�2,3 and 4), both RCMs are considerably closer

to the observations than ERA interim. HIRHAM slightly

overestimates extreme precipitation (overestimation of

moments of order 3 and 4), while WRF shows a small

underestimation. For these moments (q�3 and 4) and all

durations, the values obtained from WRF are closer to

the observations than the values obtained for HIRHAM.

It must also be noted that for all moments HIRHAM shows

a similar performance for all temporal aggregations, while

the performance of WRF enhances for larger durations.

These results show that WRF is closer to the observa-

tion when looking at the value of the moments but that

HIRHAM is closer to the observations when comparing the

slopes of the linear regressions. In summary, both RCMs

show a clear improvement in the representation of summer

extreme precipitation compared to ERA interim, but in

winter the results depend on the temporal aggregation.

As expected, in both seasons larger biases occur in the

magnitude of the moments, and in the slope of the linear

regressions for high-order moments.
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Fig. 7. As in Fig. 3 for daily mean precipitation amounts for the WRF simulation for the seasons (a) winter and (b) summer; c, d) as

simulated in HIRHAM5.
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Fig. 8. 90�99.9 percentiles for extreme precipitation in mm day�1 for (a) and (b) Copenhagen; (c, d) Oslo; and (e, f) Bergen.

Corresponding model data was retrieved with the nearest-neighbour method for the single locations. The subfigures in the left column

represent wintertime (DJF) extreme precipitation. In the right column, summertime (JJA) extreme precipitation is shown. An assumed

observational undercatch of 20% is illustrated with a grey band.
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Figure 11 shows t(q) (the negative value of the slopes

in Fig. 10). In this figure, overestimation (underestimation)

of t indicates that the models overestimate (underestimate)

the importance of precipitation at short durations. For

example, in the case of q�2, an overestimation of t means

that the comparison of the RCM with the observations

shows that the variance at 1 hour resolution is too large

in relation to the variance at 24 hours. In winter, the RCMs

and ERA interim underestimate the value of t found for

the observations for q�1. A smaller bias is obtained for

HIRHAM and ERA interim. This indicates that both the

RCMs and ERA interim underestimate the importance

of short duration precipitation; that is, precipitation at

long durations is more relevant than at short durations.

In summer, HIRHAM shows the same t as the observa-

tions for qB3, while it slightly overestimates t for q]3.

The overestimation of t for high-order moments shows

that this model overestimates more extreme precipitation at

short duration compared to long duration precipitation.

ERA interim and WRF underestimate t for all moments

q�1. This indicates that they underestimate the impor-

tance of precipitation at short durations more compared to

long duration.

5. Conclusion and discussion

This paper introduces a set of two new high-resolution

(�8 km) RCM simulations performed with WRF and

HIRHAM5 over Scandinavia and the surrounding seas.

The study assesses how well the two RCMs simulate

temperature, wind speed and precipitation in the study

area. The motivation for this study was whether added

value can be identified using high-resolution RCMs com-

pared to the lower resolution ERA interim data product.

The term ‘added value’ is used in the sense of whether higher

resolution models simulate critical aspects of the observed

climate in a more realistic way compared to lower resolution

data products such as ERA interim.

Seasonal surface temperature and precipitation over land,

and surface wind speed over the North Sea were evaluated

for bias and skill. Seasonal temperature and precipitation

biases were also examined for selected urban locations.

Daily extremes of precipitation were evaluated by compar-

ing the upper decile of the models, observations and re-

analysis. To evaluate if the models are fit for purpose, for

example, hydrology applications, the spatial structure and

statistical moments of subdaily precipitation was investi-

gated at selected locations with point-scale observations.

In summary, biases of seasonal temperature and precipi-

tation in both models are mostly within the observational

uncertainty, and when comparing them to ERA interim,

a direct improvement is not evident. However, this was to

be expected due to temporal smoothing when considering

seasonal means. ERA interim and the RCMs capture the

shape of the daily temperature and precipitation distribu-

tions (seasonal skill scores). Both models perform well in the

representation of seasonal wind speeds over the North Sea

especially in the region west of the Norwegian southwest
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Fig. 9. Spatio-temporal correlation structure of observed (SVK), ERA interim (70 km) and downscaled (8 km) mean intensities of

extreme precipitation for 3 hour (a) and 24 hour (b) duration. To highlight the tendencies, an exponential function is used for fitting by

using the least-square method.

Table 3. Estimated e-folding distances in km of extreme

precipitation for the duration of 3 hours and 24 hours

3 hours 24 hours

SVK 8 13

WRF 28 42

HIRHAM 32 32

ERA interim 119 128

As in Gregersen et al. (2013), the estimates are derived from the

fitted exponential models shown in Fig. 9.
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Fig. 10. Moment scaling relationships for the observed and simulated precipitation in Copenhagen during winter (left) and summer

(right). q�1 mean; q�2 standard deviation; q�3 skewness and q�4 kurtosis. The abscissa represents the different temporal

aggregations.
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coast. For this area, added value compared to ERA interim

both in the representation of seasonal means and frequency

skill scores is found; that is, wind speed biases in the RCMs

are reduced and skill scores are increased. This improvement

may be a direct consequence of a better representation of

dynamic mesoscale features due to the higher horizontal

resolution within the RCM simulations.

Considering wet-day precipitation, for the selected loca-

tions, Bergen, Oslo and Copenhagen, we find that in the

reanalysis it rains too often but overall too little. Both

RCMs capture the timing of precipitation especially during

summer more realistically. Clearly, added value is identified

in the spatio-temporal representation of extreme precipita-

tion for Denmark on daily to subdaily scale. In addition

to better capturing the magnitude of extreme precipita-

tion, the models are also able to capture the highly local-

ised spatial structure of extreme precipitation events. The

analysis of statistical moments of precipitation for the

location of Copenhagen yield that the models show a clear

improvement (added value) compared to ERA interim

during summer. For the city of Copenhagen, this is an

important result since summer time extreme precipitation

(thunderstorms and cloud bursts) is a challenge for the city

sewage water systems to catch large water masses during

a short time. One example was the cloud burst on 2 July

2011 that caused substantial building damages resulting

in insurance claims of approximately 600 million Euros

(Kaspersen, 2013). Under the assumption of a warmer and

wetter climate in mid-latitudes, convective extreme pre-

cipitation may increase and the design of infrastructures

has to be adapted accordingly. Within the RiskChange

project, both models are currently run to dynamically

downscale global climate model projections for the near-

future period of 2021�2050 and the far-future period 2071�
2100 under the assumption of climate change with the

representative concentration pathways rcp4.5 and rcp8.5.

This will enable projections of changes in extreme pre-

cipitation at high temporal and spatial resolution and con-

tribute to a new data repository for adaptation purposes.

This will be the subject of a separate paper.

Finally, we note that both models, and their computa-

tionally very expensive set up (8-km grid, hourly output),

show a clear improvement compared to lower resolution

reanalysis data, provided one is interested in subdaily

timescales and a more accurate spatial structure of extreme

precipitation events. Hence, the models’ expense needs to

be weighed against the purpose they are intended for.
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