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Abstract 
 

Since 1990s, oxide thermoelectrics have been considered as promising thermoelectric (TE) 

materials due to their non-toxicity, low-cost, and chemical stability at high temperatures. Studied 

results show great potential for applications in thermoelectric power generator (TEG) at high 

temperature and thus have drawn attentions over the years. However, oxides TEGs are still not used 

broadly due to their low performance. This thesis targets the research and development of exploring 

the use of these materials in high temperatures range using high conversion efficiency TEG based 

modules. This study demonstrates an effective way to improve the efficiency of oxide TEG by 

segmentation of oxide materials with other high-performance non-oxide materials, thereby, 

extending the temperature range.  

This thesis was started by developing of n-type oxide material e.g. CaMnO3 as possible 

alternative n-type candidate for a more stable high temperature material. In this study, thermoelectric 

properties from 300 to 1200 K of Ca0.9Y0.1Mn1-xFexO3 for 0 ≤ x ≤ 0.25 were systematically 

investigated in term of Y and Fe co-doping at the Ca- and Mn-sites, respectively. It was found that 

with increasing the content of Fe doping, the Seebeck coefficient of Ca0.9Y0.1Mn1-xFexO3 tended to 

increase, while the tendency towards the electrical conductivity was more complicated. Thermal 

conductivity of the Fe-doped samples showed a lower value than that of the non-doped sample. The 

maximum dimensionless figure-of-merit, zT was found to be improved about 20% for the sample 

with x = 0.05 as compared to that of the x = 0 sample at 1150 K. 

High-performance segmented legs/unicouples based on oxide materials are first designed by 

numerical modelling. The criteria of material selection for segmentation are based on their 

“efficiency ratio” described the total conversion efficiency per the materials cost and their 

compatibility factors. The numerical modeling results (chapter 3) showed that the maximum 

theoretical conversion efficiency of segmented legs/unicouples could be over 10%, which is more 

than twice as compared with the one comprised from non-segmented oxide elements. The calculation 

also takes into account the interfacial contact resistances to evaluate the influence on the total 

conversion efficiency. The obtained modeling results provide useful tools for designing future low-

cost, high-performance segmented TEGs. 

A high-performance segmented oxide-based module comprising of 4-unicouples using 

segmentation of the half-Heusler Ti0.3Zr0.35Hf0.35CoSb0.8Sn0.2 and the misfit-layered cobaltite 

Ca3Co4O9+ as the p-leg and 2% Al-doped ZnO as the n-leg was successfully fabricated and 

characterized. The results (presented in Chapter 5) show that at a temperature difference of 700 K, 

the maximum output power density attains a value of 6.5 kW/m2, which is three times higher than 

that of a non-segmented oxide module under the same condition. Initial long-term stability test of the 

module at hot and cold side temperature of 1073/444 K showed a promising result, although a slight 

degradation tendency could be observed after 48 hours of operating in air. Nevertheless, the total 
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conversion efficiency of this segmented module is still low less than 2%, and needs to be further 

improved. A degradation mechanism was observed, which attributed to the increase in the interfacial 

contact resistance between the n-type material (doped ZnO) and the metal electrode.    

The next study (Chapter 6) focuses on enhancing the efficiency of a single oxide-based 

segmented leg by further reducing the contact resistance and employing materials with better TE 

properties, i.e. a p-type leg that consists of misfit-layered cobaltite Ca2.8Lu0.15Ag0.05Co4O9+ nano-

composite and the half-Heusler Ti0.3Zr0.35Hf0.35CoSb0.8Sn0.2 alloy. For the first time, a maximum 

conversion efficiency as high as 5% at a T  756 K was measured. This high efficiency segmented 

leg is also tested for over two weeks at the hot and cold side temperatures of 1153/397 K, showing 

good durability as a result of stable, low electrical resistance contacts.  
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Abstract (Danish) 

Siden 1990'erne, har oxid termoelektriske materialer været betragtet som lovende termoelektriske 

(TE) materialer på grund af fraværet af giftige stoffer, lave omkostninger og kemisk stabilitet ved 

høje temperaturer. Resultaterne viser store muligheder for anvendelser i termoelektriske generatorer 

(TEG) ved høj temperatur og har derfor tiltrukket sig opmærksomhed gennem årene. Men oxid 

TEG’er bruges stadig ikke bredt på grund af deres lave ydelse. Denne afhandling er fokuseret på 

forskning og udvikling for at udforske brugen af disse materialer ved høje temperaturer ved hjælp af 

TEG baseret moduler med høj konverteringseffektivitet. Denne undersøgelse viser en effektiv måde 

at forbedre effektiviteten af oxid TEG ved segmentering af nitrogenoxid materialer med andre 

højtydende ikke-oxid materialer for derved at udvide temperaturintervallet. 

Denne afhandling starter med udviklingen af n-type oxid materialer fx CaMnO3 som mulig 

alternativ n-type kandidat til et mere stabilt høj-temperatur materiale. I denne undersøgelse, blev 

termoelektriske egenskaber fra 300 K til 1200 K af Ca0.9Y0.1Mn1-xFexO3 for 0 ≤ x ≤ 0,25 

systematisk undersøgt på med henblik på Y og Fe dotering på Ca- og Mn-pladserne, henholdsvis. 

Det blev konstateret, at med et stigende indhold af Fe dotering har Seebeck koefficient på 

Ca0.9Y0.1Mn1-xFexO3 tendens til at stige, mens den elektriske ledningsevne var mere kompliceret. 

Varmeledningsevnen af de Fe-doterede prøver viste en lavere værdi end for den ikke-doterede 

prøve. Den maksimale dimensionsløse “figure of merit”, zT, konstateredes at blive forbedret 

omkring 20 % i prøven med x = 0,05 i forhold til x = 0 prøven ved 1150 K. 

Højtydende segmenterede ben/unicouples baseret på oxid materialer er først designet ved 

numerisk modellering. Kriterierne i materialevalget er baseret på deres "effektivitets forhold" som er 

den samlede konverteringseffektivitet pr. materiale omkostning, og deres kompatibilitets faktorer. 

Numerisk modellerings resultater (kapitel 3), viste, at den maksimale teoretiske 

konverteringseffektivitet på segmenterede ben/unicouples kunne være over 10 %, hvilket er mere end 

det dobbelte af den fra ikke-segmenterede oxid elementer. Beregningen tager også hensyn til 

grænseflade kontaktmodstand for at vurdere indflydelsen på den samlede konverteringseffektivitet. 

De opnåede modellerings resultater giver et nyttigt værktøj til at designe fremtidens billige, 

højtydende segmenteret TEGs. 

Et højtydende segmenteret oxid-baseret modul bestående af 4-unicouples ved hjælp af 

segmentering af halv-Heusler materialet Ti0.3Zr0.35Hf0.35CoSb0.8Sn0.2 og den utilpassede-lags koboltit 

Ca3Co4O9 som p-ben og 2% Al-doteret ZnO som n-ben er blevet fremstillet og karakteriseret. 

Resultaterne (præsenteret i kapitel 5) viser, at ved en temperaturforskel på 700 K opnår den en 

maksimal effekttæthed på 6.5 kW/m2, hvilket er tre gange højere end for et ikke-segmenteret oxid 

modul under samme betingelser. Indledende langtidsstabilitet af modulet med varm og kold side 

temperaturer på henholdsvis 1073 K og 444 K, viste et lovende resultat, selv om en lille tendens til 

nedbrydning kunne konstateres efter 48 timers operation i luft. Ikke desto mindre er den samlede 

konverteringseffektivitet på dette segmenterede modul stadig lav, mindre end 2%, og skal forbedres 

yderligere. Den observerede nedbrydnings mekanisme tilskrives stigningen i grænseflade 

kontaktmodstand mellem n-type materialet og metal elektroden. 
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Den næste undersøgelse (kapitel 6) fokuserer på at styrke effektiviteten af et enkelt oxid-baseret 

segmenteret ben ved yderligere at reducere kontakt modstanden og benytte materialer med bedre TE 

egenskaber, dvs p-type ben bestående af utilpassede-lags koboltit Ca2.8Lu0.15Ag0.05Co4O9 + nano-

komposit og en halv-Heusler Ti0.3Zr0.35Hf0.35CoSb0.8Sn0.2 legering. For første gang blev en maksimal 

konverteringseffektivitet på ~5 % ved ∆T 756 K målt. Dette højeffektive segmenterede ben er også 

testet i over to uger ved varm- og koldside temperaturer på henholdsvis 1153 K og 397 K, hvor det 

udviser god holdbarhed som følge af stabile, lav-modstands elektriske kontakter. 

  



V 

 

Table of Contents 
 

 

Abstract ................................................................................................................................................. I 

Abstract (Danish) .............................................................................................................................. III 

Table of Contents ................................................................................................................................ V 

Acknowledgements ........................................................................................................................ VIII 

List of Publications ........................................................................................................................... IX 

List of Figures .................................................................................................................................... XI 

List of Tables ...................................................................................................................................XIV 

Chapter 1 Introduction ........................................................................................................................ 1 

1.1 Thermoelectric effects .................................................................................................................. 1 

1.2 Thermoelectric figure-of-merit and materials .............................................................................. 2 

1.3 Thermoelectric power generation ................................................................................................. 3 

1.3.1 Thermoelectric module ......................................................................................................... 3 

1.3.2 High temperature oxide thermoelectric modules .................................................................. 6 

1.3.3 Segmented thermoelectric modules ...................................................................................... 7 

1.4 Thesis outline ............................................................................................................................... 9 

Chapter 2 Experimental methods ..................................................................................................... 11 

2.1 Spark Plasma Sintering .............................................................................................................. 11 

2.2 Joining segmented leg ................................................................................................................ 12 

2.3 Module fabrication ..................................................................................................................... 13 

2.4 Characterization ......................................................................................................................... 14 

2.4.1 Contact resistances .............................................................................................................. 14 

2.4.2 Module power generation characteristics ............................................................................ 15 

Chapter 3 Segmentation of low-cost, high efficiency oxide-based thermoelectric materials ...... 17 

3.1 Introduction ................................................................................................................................ 18 



VI 

 

3.2 Calculation model ...................................................................................................................... 19 

3.3. Results and discussion ............................................................................................................... 20 

3.3.1 Material selection ................................................................................................................ 20 

3.3.2 Efficiency of individual segmented legs ............................................................................. 24 

3.3.3 Segmented unicouples ......................................................................................................... 25 

3.4 Conclusions ................................................................................................................................ 27 

Chapter 4 High-temperature thermoelectric properties of Ca0.9Y0.1Mn1-xFexO3 (0 ≤ x ≤ 0.25) .. 28 

4.1 Introduction ................................................................................................................................ 29 

4.2 Experimental .............................................................................................................................. 29 

4.3 Results and discussion ................................................................................................................ 30 

4.4 Conclusion .................................................................................................................................. 36 

Chapter 5 Segmented thermoelectric oxide-based module ............................................................ 37 

5.1 Introduction ................................................................................................................................ 38 

5.2 Modeling .................................................................................................................................... 39 

5.2.1 Formulation of the model .................................................................................................... 39 

5.2.2 Calculation results ............................................................................................................... 40 

5.3 Experimental procedures ............................................................................................................ 42 

5.3.1 Thermoelectric materials ..................................................................................................... 42 

5.3.2 Segmentation ....................................................................................................................... 43 

5.3.3 Module fabrication .............................................................................................................. 43 

5.3.4 Characterization................................................................................................................... 43 

5.4 Results and discussion ................................................................................................................ 46 

5.4.1 TE properties of the materials ............................................................................................. 46 

5.4.2 Interfacial Contacts.............................................................................................................. 46 

5.4.3 Power generation characteristics of the modules ................................................................ 47 



VII 

 

5.5 Conclusions ................................................................................................................................ 52 

Chapter 6 High performance p-type segmented leg of misfit-layered cobaltite and half-Heusler 

alloy ..................................................................................................................................................... 53 

6.1 Introduction ................................................................................................................................ 54 

6.2 Modelling ................................................................................................................................... 55 

6.2.1 Calculation model................................................................................................................ 55 

6.2.2 Efficiency of single materials and segmented legs.............................................................. 56 

6.3 Experimental procedures ............................................................................................................ 57 

6.3.1 Materials preparation and characterization ......................................................................... 57 

6.3.2 Segmented legs fabrication and characterization ................................................................ 58 

6.4 Results and discussion ................................................................................................................ 59 

6.4.1 Electrical properties of single and segmented legs.............................................................. 59 

6.4.2 Thermopower at small and large ∆T ...................................................................................... 60 

6.4.3 Power generation characteristics ......................................................................................... 61 

6.4.4 Long-term stability investigation ........................................................................................ 63 

6.5 Conclusions ................................................................................................................................ 64 

Chapter 7 Summaries and outlooks ................................................................................................. 66 

References ........................................................................................................................................... 68 

 

 

  



VIII 

 

Acknowledgements  

 

None of this work would have been possible without the guidance of my supervisors Dr. Ngo Van 

Nong, Prof. Nini Pryds, and Prof. Søren Linderoth. I have learnt, through them, the spirit of research – 

from basic lab skills and data analysis, to how to construct and write a scientific paper. My supervisors 

always motivate and guide me on how to approach and obtain the best results. More importantly, they 

have taught me how a scientific study should be done and how to deal with a problem, ranging from the 

general to the specific. I would like to take this opportunity to express my deep thanks to them. 

I would like to express my sincere thanks to people in thermoelectric groups Li Han, Tim Holtage, 

NingYu Wu, Pham Hoang Ngan, Dennis Valbjørn Christensen, Ali Sarhadi, Rasmus Bjørk, Dan 

Eriksen, and Kaspar Kirstein Nielsen, who have helped, supported and brought me memorable 

during my Ph.D. study. I would also like thanks to Christian Bahl for helping in the translation of 

the thesis abstract, Eugen Stamate and Feisal Kroushawi for their assisting in sputtering system. 

Thanks to our laboratory technicians and engineers Steen Bang, Ebtisam Abdellahi, Karl Thydén, 

Pernille Hedemark Nielsen, Annelise Mikkelsen, Agnes Kjøller, Henrik Paulsen, Xiufu Sun, 

Carsten Gynther Sørensen, and John Johnson for the practical laboratory works and safety issues. I 

would like to give special thanks to Jørgen Geyti and Søren Kock for helping in building up the 

Rig-test thermoelectrics. Thanks to our secretary Anita Voss, Lene Thorsted, and Heidi Pedersen 

for helping me with the administrative work. 

I would also like to give many thanks to our international collaborators Jeff Snyder, Benjamin Balke, 

Michitaka Ohtaki, Bo Brummerstedt Iversen, Man Hoang Viet, Dang Le Minh, and Kasper Andersen 

Borup, who have helped me immensely with modeling thermoelectrics, half-Heusler materials and 

Hall measurement. 

I would like to express my sincere thanks to the assessment committee members Dr. Luise Theil 

Kuhn, Prof. Lasse Aistrup Rosendahl, and Dr. Yaniv Gelbstein for evaluating and assessing my 

thesis. 

I would like to acknowledge our department, DTU Energy Conversion, for preciously supporting my 

study. Thanks to the Programme Commission on Energy and Environment (EnMi) which is part of 

the Danish Council for Strategic Research (Contract No. 10-093971), for financially supporting my 

research work which is part of the OTE-POWER project. 

I would also like to express my deep gratitude to Nong’s family for unlimitedly helping, sharing and 

caring for us since we moved to Denmark.  

Lastly, my deepest gratitude goes to my family, my parents, my wife and my son for their unending 

support and encouragement. They are always with me – through anything and everything.  



IX 

 

List of Publications  
(During PhD study only)  

 

Peer-reviewed Papers:  
 

[1] Le Thanh Hung, Ngo Van Nong, Li Han, Dang Le Minh, Kasper A Borup, Bo B. Iversen, 

Nini Pryds, Søren Linderoth, “High-temperature Thermoelectric Properties of Ca0.9Y0.1Mn1-

xFexO3 (0 ≤ x ≤ 0.25),” J. Mater. Sci. 48, 2817 (2013).  

[2] Le Thanh Hung, Ngo Van Nong, Søren Linderoth, and Nini Pryds. “Segmentation of low-

cost, high efficiency oxide-based thermoelectric materials”, Phys. Status Solidi A, 1–8 (2015) 

/ DOI 10.1002/pssa.201431626.. 

[3] Le Thanh Hung, Ngo Van Nong, G. Jeffrey Snyder, Li Han, Eugen Stamate, Man Hoang 

Viet, Benjamin Balke, Søren Linderoth, and Nini Pryds, “High Performance p-type 

Segmentation of Oxide and Half-Heusler Alloy”, Energy Conversion and Management, under 

review, (2014). 

[4]  Le Thanh Hung, Ngo Van Nong, G. Jeffrey Snyder, Benjamin Balke,  Li Han, Rasmus Bjørk, 

Pham Hoang Ngan, Tim C. Holgate, Søren Linderoth, and Nini Pryds, “Segmented 

thermoelectric oxide-based module,” Energy, under review, (2014). 

[5] Li Han, Ngo Van Nong, Thanh Hung Le, Tim Holgate, Nini Pryds, Michitaka Ohtaki, and 

Søren Linderoth, “The Influence of α- and γ-Al2O3 Phases on the Thermoelectric Properties 

of Al-doped ZnO,” J. Alloys Compd. 555, 291 (2013).  

[6] Li Han, Thanh Hung Le, Ngo Van Nong, Nini Pryds, and Søren Linderoth, “The Influence of 

Spark Plasma Sintering Temperature on the Microstructure and Thermoelectric Properties of 

Al,Ga Dual-Doped ZnO,” J. Electron. Mater. 42, 1573 (2013).  

[7] Pham Hoang Ngan, Dennis Valbjørn Christensen, Gerald Jeffrey Snyder, Le Thanh Hung, 

Søren Linderoth, Ngo Van Nong, and Nini Pryds, “Towards High Efficiency Segmented 

Thermoelectric Unicouples”, physica status solidi (a) 211: 9–17 (2014). 

[8] Li Han, Ngo Van Nong, Wei Zhang, Thanh Hung Le, Tim Holgate, Kazunari Tashiro, 

Michitaka Ohtaki, Nini Pryds, and Søren Linderoth, “Effects of morphology on the 

thermoelectric properties of Al-doped ZnO”, RSC Adv. 4, 12353 (2014).  

 

Conference Presentations 

[1] Le Thanh Hung, Li Han, Eugen Stamate, Benjamin Balke,  Pham Hoang Ngan, Søren 

Linderoth, Ngo Van Nong,  and Nini Pryds, “Preparation and characterization of segmented 

p-type Ti0.3Zr0.35Hf0.35CoSb0.8Sn0.2/Ca3Co4O9” Part of: Proceedings of the MRS 2013 Fall 

Meeting, 2013, Presented at: Materials Research Society 2013 Fall, Boston (Oral). 



X 

 

[2] Le Thanh Hung, Ngo Van Nong, Pham Hoang Ngan, Li Han, Tim Holgate, Søren Linderoth, 

and Nini Pryds “Fabrication and performance of high temperature segmented thermoelectric 

oxide-based module” Part of: Proceedings of the 32nd International Conference on 

Thermoelectrics, 2013, Presented at: 32nd International Conference on Thermoelectrics, 2013, 

Kobe (Poster). 

 [3] Le Thanh Hung, Ngo Van Nong, Søren Linderoth, and Nini Pryds, “High-temperature 

segmented thermoelectric oxide module using p-type Ca3Co4O9 and n-type 

ZnAlO/CaMn0.95Nb0.05O3 legs”, Presented at: 6th International Workshop on Advanced 

Materials Science and Nanotechnology, 2012, Ha Long City (Oral). 

 [4] Le Thanh Hung, Ngo Van Nong, Pham Hoang Ngan, Dan Eriksen, Li Han, Søren Linderoth, 

and Nini Pryds, “High-temperature Oxide Thermoelectric Modules With p-type Ca3Co4O9 

and n-type Al-doped ZnO Legs,” Presented at: 31st International & 10th European 

Conference on Thermoelectrics, 2012, Aalborg (Oral).  

[5] Le Thanh Hung, Ngo Van Nong, Li Han, Dang Le Minh, Nini Pryds, and Søren Linderoth, 

“High-temperature Thermoelectric Properties of Ca0.9Y0.1Mn1-xFexO3 (0 ≤ x ≤ 0.25)” Part of: 

Proceedings of the E-MRS 2012 Spring Meeting, 2012, Presented at: European Materials 

Research Society 2012, Strasbourg (Poster). 

 

 

  



XI 

 

List of Figures 
 

Figure 1.1 Schematic of Seebeck effect in a thermoelectric material. (a) The thermoelectric material 

contains majority charge carriers of p-type or n-type. (b) A potential difference is built up when 

applied a temperature gradient on the thermoelectric material. (c) The power output generates in the 

completing circuit apply an external load. ............................................................................................. 1 

Figure 1.2 Schematic dependence of zT, Seebeck coefficient, electrical conductivity (1/) and 

thermal conductivity on the carrier concentration of a thermoelectric material [3]. ............................. 2 

Figure 1.3 The material figure-of-merit, zT, of selected state-of-the-art p-type (a) and and n-type (b) 

for various temperature range. ............................................................................................................... 3 

Figure 1.4 Schematic thermoelectric module consists of 27 couples of p-type and n-type with the 

direction of heat and charge flows. The figure is taken from Ref. [3]. .................................................. 4 

Figure 1.5 Calculated conversion heat-electricity efficiency as a function of temperature and 

thermocouple device figure-of-merit. .................................................................................................... 5 

Figure 1.6 Schematic drawing of one-stage of (a) single material, (b) segmented two-material and (c) 

two-stage of cascaded thermoelectric generators. A, C and D are materials with high electrical and 

thermal conductivity. B is a material with high thermal conductivity and electrically insulating, in 

order to expect that there is no temperature gradient between A and C [6]........................................... 7 

Figure 2.1 Schematic representation of the park plasma sintering (SPS) process [135]. ................... 11 

Figure 2.2 Schematic configuration of the brazing joining oxide-metallic alloys used spark plasma 

sintering as hot press without current passing through the sample. ..................................................... 12 

Figure 2.3 A proven picture of segmented half-Heusler/oxide legs were successfully joined by silver 

brazing method. .................................................................................................................................... 13 

Figure 2.4 Schematic of the whole thermoelectric module construction process from sintering and 

characterized materials to modelling, built up and test modules. ........................................................ 14 

Figure 2.5 Schematic of the fixture used to measure the electrical contact resistances. (a) The darker 

shaded material is the Ca3Co4O9 or 2% Al doped ZnO and the sign convention of the current is for 

forward current mode. (b) A real picture of a fixture used to measure ASR. (c) Schematic 

configuration of the voltage probes along the segmented leg. ............................................................. 15 

Figure 2.6  (a) Schematic illustration of module tester. (b) The complete view of the Rig-test used to 

measure the power generation characteristics of legs and modules in this thesis. ............................... 16 

Figure 3.1 The material figure-of-merit zT and their compatibility factor s of selected state-of-the-art 

p-type (a and b) and n-type (c and d) for various temperature range. .................................................. 21 

Figure 3.2 A plot of price in dollars per mole (a) and (b) efficiency ratio for various high-

temperature TE materials. .................................................................................................................... 22 

Figure 3.3 (a) Temperature dependence of the s and the u. (b) local and reduced efficiencies using 

value of u for highest efficiency compared to the maximum reduced efficiency for n-type segmented 

file:///C:/PhD%20presentation/PhD%20Thesis-Final.docx%23_Toc411450839
file:///C:/PhD%20presentation/PhD%20Thesis-Final.docx%23_Toc411450839
file:///C:/PhD%20presentation/PhD%20Thesis-Final.docx%23_Toc411450839
file:///C:/PhD%20presentation/PhD%20Thesis-Final.docx%23_Toc411450839
file:///C:/PhD%20presentation/PhD%20Thesis-Final.docx%23_Toc411450840
file:///C:/PhD%20presentation/PhD%20Thesis-Final.docx%23_Toc411450840
file:///C:/PhD%20presentation/PhD%20Thesis-Final.docx%23_Toc411450841
file:///C:/PhD%20presentation/PhD%20Thesis-Final.docx%23_Toc411450841
file:///C:/PhD%20presentation/PhD%20Thesis-Final.docx%23_Toc411450842
file:///C:/PhD%20presentation/PhD%20Thesis-Final.docx%23_Toc411450842
file:///C:/PhD%20presentation/PhD%20Thesis-Final.docx%23_Toc411450843
file:///C:/PhD%20presentation/PhD%20Thesis-Final.docx%23_Toc411450843
file:///C:/PhD%20presentation/PhD%20Thesis-Final.docx%23_Toc411450844
file:///C:/PhD%20presentation/PhD%20Thesis-Final.docx%23_Toc411450844
file:///C:/PhD%20presentation/PhD%20Thesis-Final.docx%23_Toc411450844
file:///C:/PhD%20presentation/PhD%20Thesis-Final.docx%23_Toc411450844
file:///C:/PhD%20presentation/PhD%20Thesis-Final.docx%23_Toc411450845
file:///C:/PhD%20presentation/PhD%20Thesis-Final.docx%23_Toc411450846
file:///C:/PhD%20presentation/PhD%20Thesis-Final.docx%23_Toc411450846
file:///C:/PhD%20presentation/PhD%20Thesis-Final.docx%23_Toc411450847
file:///C:/PhD%20presentation/PhD%20Thesis-Final.docx%23_Toc411450847
file:///C:/PhD%20presentation/PhD%20Thesis-Final.docx%23_Toc411450848
file:///C:/PhD%20presentation/PhD%20Thesis-Final.docx%23_Toc411450848
file:///C:/PhD%20presentation/PhD%20Thesis-Final.docx%23_Toc411450849
file:///C:/PhD%20presentation/PhD%20Thesis-Final.docx%23_Toc411450849
file:///C:/PhD%20presentation/PhD%20Thesis-Final.docx%23_Toc411450849
file:///C:/PhD%20presentation/PhD%20Thesis-Final.docx%23_Toc411450849
file:///C:/PhD%20presentation/PhD%20Thesis-Final.docx%23_Toc411450850
file:///C:/PhD%20presentation/PhD%20Thesis-Final.docx%23_Toc411450850
file:///C:/PhD%20presentation/PhD%20Thesis-Final.docx%23_Toc411450851
file:///C:/PhD%20presentation/PhD%20Thesis-Final.docx%23_Toc411450851
file:///C:/PhD%20presentation/PhD%20Thesis-Final.docx%23_Toc411450852
file:///C:/PhD%20presentation/PhD%20Thesis-Final.docx%23_Toc411450852
file:///C:/PhD%20presentation/PhD%20Thesis-Final.docx%23_Toc411450853
file:///C:/PhD%20presentation/PhD%20Thesis-Final.docx%23_Toc411450853


XII 

 

CoSb/ZnO and HH/ZnO legs. (c) Total efficiency of single components, incompatible segmented leg 

CoSb/ZnO and compatible segmented HH/ZnO. ................................................................................ 23 

Figure 3.4 The diagram of the maximum total efficiencies of the state-of-the-art oxide-based 

segmented legs (solid column), and their device ZTs (pattern column). ............................................. 24 

Figure 3.5 The influence of contact resistance on the total efficiency of unicouple comprised from p-

BiTe/HH/Ca3Co4O9 and n-BiTe/HH/ZnO. .......................................................................................... 26 

Figure 4.1 X-ray diffraction patterns of CaMnO3 and Ca0.9Y0.1Mn1-xFexO3 with x = 0, 0.05, 0.1, 0.15, 

0.2, 0.25 samples after calcining at 1273 K for 24 h in air. ................................................................. 30 

Figure 4.2 X-ray diffraction patterns of a typical sample Ca0.9Y0.1Mn0.95Fe0.05O3: (a) Rietveld 

refinement profile of the calcined powder, (b) pellet sample sintered by SPS at 1173 K under 

pressure 50 MPa for 8 minutes under Ar atmosphere, (c) SPS sample after annealing at 1523 K in air 

for 24 h. ................................................................................................................................................ 31 

Figure 4.3 Lattice parameters and cell volume of Ca0.9Y0.1Mn1-xFexO3 as function of Fe content (x). ...... 32 

Figure 4.4 Temperature dependence of the electrical conductivity for Ca0.9Y0.1Mn1-xFexO3 with x = 0, 

0.05, 0.1, 0.15, 0.2, 0.25 SPS sintered samples; Inset, the activation energies were fitted from 

experimental data. ................................................................................................................................ 33 

Figure 4.5 Temperature dependence of the Seebeck coefficient for Ca0.9Y0.1Mn1-xFexO3 with x = 0, 

0.05, 0.1, 0.15, 0.2, and 0.25 SPS sintered samples. ............................................................................ 33 

Figure 4.6 Temperature dependence of (a) the Seebeck coefficient (solid symbols) and the electrical 

conductivity (open symbols), and (b) the power factors for all the SPS sintered samples Ca0.9Y0.1Mn1-

xFexO3 with x = 0, 0.05, 0.1, 0.15, 0.2, 0.25 and selective samples with x = 0, 0.05, 0.1, 0.15 after 

annealing annealed at 1523 K for 24 h in air. ...................................................................................... 34 

Figure 4.7 SEM images from fractured surfaces of a typical Ca0.9Y0.1Mn1-xFexO3 with x = 0.05 

sample: a) sample was sintered by SPS, b) sample was annealed at 1523 K for 24 h in air flow. ...... 35 

Figure 4.8 The total thermal conductivity (total), the electronic and phonon components (e and ph) 

of Ca0.9Y0.1Mn1-xFexO3 samples with x = 0, 0.05, 0.1, 0.15 as a function of temperature. .................. 35 

Figure 4.9 The dimensionless figure-of-merit (zT) as a function of temperature for Ca0.9Y0.1Mn1-xFexO3 

with x = 0, 0.05, 0.1, 0.15 selective SPS samples after heated treatment at 1523 K for 24 h in air. ............ 36 

Figure 5.1 (a)Temperature dependences of zT and s of p-type Ca349 and HH alloys. (b) Absolute 

efficiencies of p-type Ca349, HH and segmented HH/Ca349. ............................................................ 41 

Figure 5.2 1D and 3D calculated efficiency as a function of the cross-sectional area ratio Ap/An at 

Th/Tc = 1173/300 K for 4 couples of NTEG and STEG with Zn0.98Al0.02O as n-legs. ......................... 42 

Figure 5.3 Configurations of the electrical contact resistance measurement for the non-segmented leg 

(a) and the segmented leg (b). .............................................................................................................. 44 

Figure 5.4 Temperature dependence of the Seebeck coefficient and power factor of (a) p-type Ca349 

and Ti0.3Zr0.35Hf0.35CoSb0.8Sn0.2 and (b) n-type 2% Al-doped ZnO. .................................................... 46 

file:///C:/PhD%20presentation/PhD%20Thesis-Final.docx%23_Toc411450853
file:///C:/PhD%20presentation/PhD%20Thesis-Final.docx%23_Toc411450853
file:///C:/PhD%20presentation/PhD%20Thesis-Final.docx%23_Toc411450854
file:///C:/PhD%20presentation/PhD%20Thesis-Final.docx%23_Toc411450854
file:///C:/PhD%20presentation/PhD%20Thesis-Final.docx%23_Toc411450855
file:///C:/PhD%20presentation/PhD%20Thesis-Final.docx%23_Toc411450855
file:///C:/PhD%20presentation/PhD%20Thesis-Final.docx%23_Toc411450856
file:///C:/PhD%20presentation/PhD%20Thesis-Final.docx%23_Toc411450856
file:///C:/PhD%20presentation/PhD%20Thesis-Final.docx%23_Toc411450857
file:///C:/PhD%20presentation/PhD%20Thesis-Final.docx%23_Toc411450857
file:///C:/PhD%20presentation/PhD%20Thesis-Final.docx%23_Toc411450857
file:///C:/PhD%20presentation/PhD%20Thesis-Final.docx%23_Toc411450857
file:///C:/PhD%20presentation/PhD%20Thesis-Final.docx%23_Toc411450858
file:///C:/PhD%20presentation/PhD%20Thesis-Final.docx%23_Toc411450859
file:///C:/PhD%20presentation/PhD%20Thesis-Final.docx%23_Toc411450859
file:///C:/PhD%20presentation/PhD%20Thesis-Final.docx%23_Toc411450859
file:///C:/PhD%20presentation/PhD%20Thesis-Final.docx%23_Toc411450860
file:///C:/PhD%20presentation/PhD%20Thesis-Final.docx%23_Toc411450860
file:///C:/PhD%20presentation/PhD%20Thesis-Final.docx%23_Toc411450861
file:///C:/PhD%20presentation/PhD%20Thesis-Final.docx%23_Toc411450861
file:///C:/PhD%20presentation/PhD%20Thesis-Final.docx%23_Toc411450861
file:///C:/PhD%20presentation/PhD%20Thesis-Final.docx%23_Toc411450861
file:///C:/PhD%20presentation/PhD%20Thesis-Final.docx%23_Toc411450862
file:///C:/PhD%20presentation/PhD%20Thesis-Final.docx%23_Toc411450862
file:///C:/PhD%20presentation/PhD%20Thesis-Final.docx%23_Toc411450863
file:///C:/PhD%20presentation/PhD%20Thesis-Final.docx%23_Toc411450863
file:///C:/PhD%20presentation/PhD%20Thesis-Final.docx%23_Toc411450864
file:///C:/PhD%20presentation/PhD%20Thesis-Final.docx%23_Toc411450864
file:///C:/PhD%20presentation/PhD%20Thesis-Final.docx%23_Toc411450865
file:///C:/PhD%20presentation/PhD%20Thesis-Final.docx%23_Toc411450865
file:///C:/PhD%20presentation/PhD%20Thesis-Final.docx%23_Toc411450866
file:///C:/PhD%20presentation/PhD%20Thesis-Final.docx%23_Toc411450866
file:///C:/PhD%20presentation/PhD%20Thesis-Final.docx%23_Toc411450867
file:///C:/PhD%20presentation/PhD%20Thesis-Final.docx%23_Toc411450867
file:///C:/PhD%20presentation/PhD%20Thesis-Final.docx%23_Toc411450868
file:///C:/PhD%20presentation/PhD%20Thesis-Final.docx%23_Toc411450868


XIII 

 

Figure 5.5 (a) Contact resistance of, Ag electrode with Ca349, (b) Ag electrode with 2% Al doped 

ZnO, (c) the contact resistance of HH/Ag/Ca349 was extracted from sandwich structure and single 

component Ca349 and HH. .................................................................................................................. 47 

Figure 5.6 Voltages and output power for the 4 p-n couples NTEG (a) and STEG (b) as a function of 

current under different temperature gradient. ...................................................................................... 48 

Figure 5.7 The open voltage and maximum output power of NTEG and STEG as a function of 

temperature differences, T. Inserted photos showing the actual segmented and non-segmented modules. 

(b) 3D modeling results used experimental measurement data of STEG with and without heat losses 

(Qloss) and total contact resistances (Rc) at hot and cold side temperatures of 1173/473 K. ......................... 51 

Figure 5.8 The long term stability test of STEG in air at hot and cold sides of 1073/444 K. ............. 51 

Figure 6.1 Selected dimensionless figure-of-merit zT of state of the art p-type TE materials, (b) 

temperature dependence of compatibility factors of MnSi, HH and CCO. (c) Calculated efficiency of 

single CCO, HH and segmented HH/CCO. ......................................................................................... 56 

Figure 6.2 (a) Schematic configuration of the voltage probes along the segmented leg. (b) Images of 

the fabricated segmented HH/CCO legs. (c) Schematic of the long-term stability measurement 

configuration using test Rig system. .................................................................................................... 58 

Figure 6.3 (a) Temperature dependence of the electrical resistivity of CCO, HH, and segmented 

HH/CCO. Star symbol curve denotes the calculated electrical resistivity. (b) The electrical contact 

resistance of joint interface HH/Ag/CCO as a function of temperature, inset SEM picture of 

HH/Ag/CCO. ....................................................................................................................................... 59 

Figure 6.4 (a) Temperature dependence of Seebeck coefficient of CCO, HH, segmented HH/CCO 

legs at small temperature gradient. (b) The calculated and experimental total Seebeck coefficient of 

the segmented leg HH/CCO under large temperature gradient. .......................................................... 60 

Figure 6.5 (a) Voltages and output power for the segmented HH/CCO legs as a function of current 

density under different temperature gradient. (b) The experiment and calculation of V(J) and the 

efficiency of the segmented legs with and without the electrical contact resistances at highest 

temperature difference. ........................................................................................................................ 62 

Figure 6.6 The long term stability test of the HH/Ag/CCO leg in air under hot and cold side 

temperatures of 1153/397 K. ................................................................................................................ 63 

Figure 6.7 SEM joint interface of CCO/Ag and HH/Ag after joining 0 Hrs and after test 336 Hrs in 

air with hot and cold side temperatures of 1153/397 K. ...................................................................... 64 

 

  

file:///C:/PhD%20presentation/PhD%20Thesis-Final.docx%23_Toc411450869
file:///C:/PhD%20presentation/PhD%20Thesis-Final.docx%23_Toc411450869
file:///C:/PhD%20presentation/PhD%20Thesis-Final.docx%23_Toc411450869
file:///C:/PhD%20presentation/PhD%20Thesis-Final.docx%23_Toc411450870
file:///C:/PhD%20presentation/PhD%20Thesis-Final.docx%23_Toc411450870
file:///C:/PhD%20presentation/PhD%20Thesis-Final.docx%23_Toc411450871
file:///C:/PhD%20presentation/PhD%20Thesis-Final.docx%23_Toc411450871
file:///C:/PhD%20presentation/PhD%20Thesis-Final.docx%23_Toc411450871
file:///C:/PhD%20presentation/PhD%20Thesis-Final.docx%23_Toc411450871
file:///C:/PhD%20presentation/PhD%20Thesis-Final.docx%23_Toc411450872
file:///C:/PhD%20presentation/PhD%20Thesis-Final.docx%23_Toc411450873
file:///C:/PhD%20presentation/PhD%20Thesis-Final.docx%23_Toc411450873
file:///C:/PhD%20presentation/PhD%20Thesis-Final.docx%23_Toc411450873
file:///C:/PhD%20presentation/PhD%20Thesis-Final.docx%23_Toc411450874
file:///C:/PhD%20presentation/PhD%20Thesis-Final.docx%23_Toc411450874
file:///C:/PhD%20presentation/PhD%20Thesis-Final.docx%23_Toc411450874
file:///C:/PhD%20presentation/PhD%20Thesis-Final.docx%23_Toc411450875
file:///C:/PhD%20presentation/PhD%20Thesis-Final.docx%23_Toc411450875
file:///C:/PhD%20presentation/PhD%20Thesis-Final.docx%23_Toc411450875
file:///C:/PhD%20presentation/PhD%20Thesis-Final.docx%23_Toc411450875
file:///C:/PhD%20presentation/PhD%20Thesis-Final.docx%23_Toc411450876
file:///C:/PhD%20presentation/PhD%20Thesis-Final.docx%23_Toc411450876
file:///C:/PhD%20presentation/PhD%20Thesis-Final.docx%23_Toc411450876
file:///C:/PhD%20presentation/PhD%20Thesis-Final.docx%23_Toc411450877
file:///C:/PhD%20presentation/PhD%20Thesis-Final.docx%23_Toc411450877
file:///C:/PhD%20presentation/PhD%20Thesis-Final.docx%23_Toc411450877
file:///C:/PhD%20presentation/PhD%20Thesis-Final.docx%23_Toc411450877
file:///C:/PhD%20presentation/PhD%20Thesis-Final.docx%23_Toc411450878
file:///C:/PhD%20presentation/PhD%20Thesis-Final.docx%23_Toc411450878
file:///C:/PhD%20presentation/PhD%20Thesis-Final.docx%23_Toc411450879
file:///C:/PhD%20presentation/PhD%20Thesis-Final.docx%23_Toc411450879


XIV 

 

List of Tables 
 

Table 1.1 Research progress on the power generation characteristics of oxide thermoelectric modules. ....... 6 

Table 1.2 Research progress on the power generation characteristics of segmented thermoelectric 

modules.......................................................................................................................................8 

Table 3.1 The possible materials for segmenting legs of p-Ca3Co4O9 and n-ZnO ............................. 24 

Table 3.2 Maximum efficiency of unicouples with various combination of p-n leg. ......................... 25 

Table 4.1 Structural refinement factors, lattice parameters and cell volumes of Ca0.9Y0.1Mn1-xFexO3. ...... 32 

Table 4.2 Relative densities and electrical characteristics of Ca0.9Y0.1Mn1-xFexO3. ............................ 34 

Table 5.1 The experimental measurement conditions and uncertainty. .............................................. 45 

Table 5.2 The power generation characteristics of oxide-based thermoelectric modules reported in 

literatures. ............................................................................................................................................. 50 



1 

 

Chapter 1 Introduction  
 

In this chapter, the basic principles of thermoelectric effects, materials, and modules are 

introduced. It also contains an overview of current high-temperature non-segmented and segmented 

thermoelectric modules, and their typical applications and developing progress. An outline of the 

thesis is presented at the end of this chapter. 

1.1 Thermoelectric effects 

The thermoelectric effect is the direct conversion of a temperature gradient to electricity 

(Seebeck effect) and vice versa (Petier effect). Since this study mainly focuses on power generation, 

the Seebeck effect will be described in more detail. 

The Seebeck effect was discovered in 1821 by the physicist and chemist Dr. Med. Thomas 

Johann Seebeck (1770–1831) [1,2]. In general, the Seebeck effect can be described as shown in 

Figure 1.1a, b. When a temperature gradient is applied to a thermoelectric material (often a doped 

semiconductor), the majority charge carriers (electrons for n-type material and holes for p-type 

material) will thermally diffuse from the hot side (more energy) to the cold side (less energy) 

together with carrying the charge. As a result of this thermal diffusion of charge carriers, an 

electrostatic potential (voltage) is created. The polarization of charge carriers between the hot side 

and the cold side keeps the balance in this electric field, and the voltage drop across the material is 

called thermo power or Seebeck voltage, as presented in Fig. 1.1b. Thus, the Seebeck coefficient  is 

the ratio of potential difference (∆V) and temperature gradient (∆T), which can be expressed as: 

 ∆V =  ∆T  (1.1) 

 An output power generates when an electrical connection to an external load is established on the 

hot side and the cold side. Since the electric field due to a temperature gradient results in a positive 

Figure 1.1 Schematic of Seebeck effect in a thermoelectric material. (a) The thermoelectric material contains 

majority charge carriers of p-type or n-type. (b) A potential difference is built up when applied a temperature 

gradient on the thermoelectric material. (c) The power output generates in the completing circuit apply an 

external load. 
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voltage for a p-type material and a negative voltage for an n-type material, p- and n-type materials 

are usually connected to form a thermocouple. The heat to electricity conversion efficiency is then 

defined as the total electric power output, P, divided by the total heat input on the hot side, Qh, which 

can be written as: 

  =
𝑃

𝑄ℎ
  (1.2) 

1.2 Thermoelectric figure-of-merit and materials 

The efficiency of material is evaluated by the figure-of-merit z or the dimensionless figure-of-

merit zT, which can be expressed as  

 z𝑇 =
2


𝑇  (1.3) 

where , , , and T are the Seebeck coefficient, electrical resistivity, thermal conductivity, and 

absolute temperature, respectively. The concept of figure-of-merit was first proposed by a Russian 

physicist, Abram Fedorovich Ioffe, in 1949.  

It can be seen from equation (1.3) that high zT requires a high value of Seebeck and a low value of 

electrical resistivity and thermal conductivity in a material, as presented in Figure 1.2. The good 

thermoelectric materials are of carrier concentrations of 1019 and 1021 carriers/cm3 [3]. The 

optimization of the thermal conductivity is complicated by the heat transport including lattice and 

electronic thermal conductivity.  

Figure 1.2 Schematic dependence of zT, Seebeck coefficient, electrical conductivity (1/) 

and thermal conductivity on the carrier concentration of a thermoelectric material [3]. 
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Figure 1.3 shows the dimensionless figure-of-merit, zT, as a function of temperature for state-of-the-

art TE materials. The new approach of nanostructured thermoelectric material has recently been used 

in reducing the lattice thermal conductivity. The results show very promising values with the peak zT 

reached at about 2.2 at 915 K [4] for polycrystalline PbTe compounds or zT = 2.6 at 923 K for SnSe 

single crystals [5]. 

1.3 Thermoelectric power generation 

1.3.1 Thermoelectric module 

The thermoelectric modules usually consist of several to hundreds thermoelectric couples of p-

type and n-type materials, which are connected electrically in series and thermally in parallel, as 

shown in Figure 1.4. The top and bottom sides of the module are often covered by substrates that 

made by material with good thermal conductance and electrical insulation such as aluminum oxide 

(Al2O3) or aluminum nitride (AlN). 

A thermoelectric generator uses heat flow across: heat absorbed and rejected at the hot side and the 

cold side of the module, respectively, to power output through an external circuit. The voltage output 

of the module is generated from the Seebeck effect. In case of the open-circuit, the output voltage 

(VOC) can be expressed as [6,7]: 

 𝑉OC = 𝑆 = 𝑛 ∫ {𝑝(𝑇) − 𝑛(𝑇)}𝑑𝑇
𝑇ℎ

𝑇𝑐
  (1.4) 

where Th and Tc are the hot and cold side temperatures, n is the number of p-n couples, p and n are 

the Seebeck coefficients of p- and n-type legs, respectively. 

The thermoelectric elements are connected electrically in series. Thus, the total resistance of the 

Figure 1.3 The material figure-of-merit, zT, of selected state-of-the-art p-type (a) and and n-type (b) for 

various temperature range. 
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module, Rint, can be approximately defined by 

 𝑅𝑖𝑛𝑡 = 𝑛 (
𝑛𝑙

𝐴𝑛
+

𝑝𝑙

𝐴𝑝
) + 𝑅𝑐   (1.5) 

here, l is the length of the legs, An and Ap are the cross-sectional area of p- and n-type legs, 

respectively, and Rc is the total contact resistance, which includes the electrical contact resistances at 

the joined part of the leg i.e. the hot and cold side junctions.  

Similarly, the total thermal conductance of the module, K, can be determined by 

 𝐾 = 𝑛 (
𝑛𝐴𝑛

𝑙
+

𝑝𝐴𝑝

𝑙
) + 𝐾𝑐    (1.6) 

Kc is the total thermal losses including thermal contact, heat conductance and heat radiation losses. 

The magnitude of the output current, I, is proportional to the sum of the internal resistance of the 

Figure 1.4 Schematic thermoelectric module consists of 27 couples of p-type and n-type 

with the direction of heat and charge flows. The figure is taken from Ref. [3]. 
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module Rint and the external resistive load RLoad and it is given by: 

 𝐼 =
𝑆

𝑅𝑖𝑛𝑡+𝑅𝐿𝑜𝑎𝑑
    (1.7) 

The power output of the module as a function of VOC and the resistance is given by 

 𝑃 = 𝐼2𝑅𝐿𝑜𝑎𝑑 = 𝑆2 [
𝑅𝐿𝑜𝑎𝑑

(𝑅𝑖𝑛𝑡+𝑅𝐿𝑜𝑎𝑑)2]     (1.8) 

The maximum power output (PMax) occurs when an external load resistance is equal to the internal 

resistance (Rint= RLoad). The load resistance needs to be continuously adjusted to match the internal 

module resistance to generate a thermoelectric module at its maximum output power. 

 𝑃𝑀𝑎𝑥 =
𝑆2

4𝑅𝑖𝑛𝑡
    (1.9) 

The total heat absorbed at the hot side of modules is expressed as 

 Q = 𝐼𝑉𝑂𝐶𝑇 − 𝐾∆𝑇 −
1

2
𝐼2𝑅  (1.10) 

The device figure-of-merit can, therefore, be calculated as 

 𝑍𝑇 =
𝑆2𝑇

𝐾𝑅
 (1.11) 

The maximum conversion efficiency of thermoelectric module is often given as 

 
𝑚𝑎𝑥

=
𝑇ℎ−𝑇𝑐

𝑇ℎ

√1+𝑍𝑇−1

√1+𝑍𝑇+
𝑇𝑐
𝑇ℎ

  (1.12) 

where ZT is approximated equally to the material figure-of-merit zT. 

Figure 1.5 displays the conversion efficiency as a function of ZT and temperature differences. The 

first term of equation (1.12),
𝑇ℎ−𝑇𝑐

𝑇ℎ
 is known as the Carnot efficiency which is the upper limited 

Figure 1.5 Calculated conversion heat-electricity efficiency as a 

function of temperature and thermocouple device figure-of-merit. 
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conversion efficiency at infinity ZT. The maximum conversion efficiency of module increased with 

increasing the hot side temperature as a result of high Carnot efficiency contribution. Therefore, high 

temperature thermoelectric module is of great interest in high temperature heat-electricity conversion 

e.g. waste heat recovery from steel industrial and transportation sectors.   

1.3.2 High temperature oxide thermoelectric modules 

Oxide thermoelectric materials, consisting of abundant elements, have low-cost and 

environmentally-friendly processing, and hence, have attracted great interest in the area of advanced 

renewable energy. Many modules have been fabricated and characterized using a different 

combination of p and n-type of TE oxide materials such as p-type Ca3Co4O9 and n-type CaMnO3 or 

ZnO [8–11] or p-type NaCo2O4 and n-type  ZnO [5, 7], etc. The power generation characteristics of 

different oxide modules are summarized in Table 1.1. 

Table 1.1 Research progress on the power generation characteristics of oxide thermoelectric modules. 

* Only the modules with the number of p-n couples from 4 or higher are selected.  

As seen in Table 1.1, although many combinations of p-n couples have been employed in the 

oxide modules, its performance i.e. voltage, and current output are still relative low compared with 

modules constructed from metallic alloys; even the experimental value of the conversion efficiency 

Ref. Year Materials 
No. p-n 

couples  

Jointing 

technique 

Thot  

(K) 

ΔT 

(K) 

V0 

(V) 

Pmax 

(mW) 

Legs-size 

(mm) 

Power 

Density 

(mW/cm
2
) 

[13] 2001 
p-Ca2.7Bi0.3Co4O9 

n-Ca0.92La0.08MnO3 
8 Pt paste 773 390 0.9 63.5  33 44.1 

[14] 2006 
p-Ca2.7Bi0.3Co4O9 

n-La0.9Bi0.1NiO3 
140 Ag paste 1072 551 4.5 150 1.31.35 31.7 

[5] 2006 
p-NaCo2O4 

n-Zn0.98Al0.02O 
12 

Diffusion 

welding 
839 462 0.8 58 3410 20.1 

[16] 2006 
p-Ca2.7Bi0.3Co4O9 

n-CaMn0.98Mo0.02O3 
8 Ag paste 897 565 1 170 554.5 42.5 

[7] 2007 
p-NaCo2O4 

n-Zn0.98Al0.02O 
12 

Diffusion 

welding 
934 455 0.8 52.5 3410 18.2 

[17] 2007 
p-Ca2.7Bi0.3Co4O9 

n-CaMn0.98Mo0.02O3 
8 Ag  1273 975 0.7 340 554.5 85 

[18] 2011 
p-Ca3Co4O9 

n-(ZnO)7In2O3 
44 Ag paste 1100 673 1.8 423 

p:1515 27  

n:151518 
2.1 

[9] 2014 
p-Ca3Co4O9 

n-Zn0.98Al0.02O 
6 Ag 773 248 0.12 2.26 4410 1.2 
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has not been reported yet on those oxide modules. The highest estimated number is still lower than 

2%. One of the main reasons for this low result is the low performance of oxide materials in the low-

temperature range (< 750 K). To overcome the limitation mentioned above, new strategies on 

improved material of zT and a new concept in module design and fabrication are needed. 

1.3.3 Segmented thermoelectric modules 

From equation (1.12) and Fig. 1.5, one can see that in order to achieve high conversion efficiency 

of a thermoelectric power generator (TEG), both high figure-of-merit and large temperature 

differences are desired. The material zT is computed from (T), (T), and (T) using Eq. (1.3) 

strongly depend on temperature. The large temperatures that drop along the leg are dominated by 

large change in the zT curve. In general, each material exhibits a peak zT value, which is defined as 

their optimum working temperature interval. It means that for a given temperature interval, one 

material may have its highest ZT while in another temperature interval, a second material will have a 

higher ZT. Therefore, a TEG constructed from one material is limited to a particular operation 

temperature range which is determined by the type of materials used. To overcome the limitation of 

generator built-up from one material, TEGs based of two or more materials can solve this problem by 

either cascaded or segmented generators as schematically showed in Figure 1.6 [6].  

Fig. 1.6a presents a typical p-n unicouple made of a single material, for example, a low-

temperature BiTe, a high-temperature oxide or SiGe. In BiTe-based module, the maximum highest 

temperature at the hot side is 450 K and 300 K at the cold side. When the temperature at the hot side 

is higher than 450 K, the material based on BiTe cannot be sustained because of oxidation, 

decomposition or volatility of the p and/or n legs. For modules made of oxide or SiGe-based 

materials, their peaks zT values are obtained at 1000 K as presented in Fig. 1.2 so that the highest 

device performance can only be reached at temperatures between 750 and 1200 K. Ideally, a 

Figure 1.6 Schematic drawing of one-stage of (a) single material, (b) segmented two-material and (c) two-stage of 

cascaded thermoelectric generators. A, C and D are materials with high electrical and thermal conductivity. B is a 

material with high thermal conductivity and electrically insulating, in order to expect that there is no temperature 

gradient between A and C [6]. 
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combination of two types of material in one device is expected to achieve higher efficiency by either 

segmenting or cascading, as shown in Fig. 1.6b, c [19–23]. A cascaded generator consists of two 

stages, where each stage is fabricated by a single p- and n-type TE material (Fig. 1.6c). A high-

temperature material can be used for the hottest stage (>750 K) and then a metal alloy of high TE 

performance in the mid-low temperature range (<750 K). The stages have their electrical circuit and 

optimal load resistance, it often requires an external device to achieve maximum performance at each 

stage. Therefore, the major loss will appear on the electric connector as either heat conductance loss 

due to the low electrical resistivity or Joule heating loss due to the high electrical resistance [19,24]. 

In addition, a cascaded generator requires good electrically insulating, good thermal conductivity, 

and thermal contact at interfaces. Thus, it is a complicated technique in the practice of module 

construction. In contrast, a segmented generator uses only a single electric circuit, and each leg is 

designed by a combination of different materials with their highest value of ZT. However, in order to 

obtain an improved efficiency of a segmented TEG, the selected materials have to be compatible, 

namely, the difference in the compatibility factor (𝑠 =
√1+𝑧𝑇−1

 𝑇
) is within a factor of two [25,26]. 

 With the above-mentioned advantages, the modules based-segmented legs have been broadly 

studied and the Jet Propulsion Laboratory (JPL-NASA) is the frontier research group in segmented 

generators aiming for space application. Many studies were conducted and focused on achieving as 

high of a thermal-electrical conversion efficiency as possible at various temperature differences, as 

shown in Table 1.2. 

Table 1.2 Research progress on the power generation characteristics of segmented thermoelectric modules. 

 

It can be seen from Table 1.2 that remarkable results were obtained with the based-segmented 

generator. The highest efficiency was attained at about 15% in the segmented TEG using p- 

Ce0.9Fe3.5Co0.5Sb12/Yb14MnSb11 and n- CoSb3/La3-xTe4 on the hot side 1246 K and a cold temperature 

of 473 K [27]. The BiTe materials are preferred to use in the segmented leg at low temperatures 

[20,28–36] since both p- and n-type BiTe-based materials are hitherto the best-performing materials 

in the low-temperature range (300 K to 500 K), as shown in Fig. 1.3. While the p-type material e.g. 

PbTe [28,29], Zn4Sb3 [35,37], MnSi [38] and CeFe4Sb12[33,39], and n-type CoSb3 [34,35,37], TAGS 

[28] applied for segmented legs in the higher temperature region (500 K to 800 K). For the efficiency 

Ref. Year Materials No. seg. 
Thot  

(K) 

ΔT 

(K) 

Test 

condition 

Eff. (%) 

Cal. Exp. 

[27] 2013 
p- Ce0.9Fe3.5Co0.5Sb12/Yb14MnSb11 

n- CoSb3/La3-xTe4 
2 1246 773 Vacuum - 15 

[28] 2011 
p-BixSb2xTe3/Ag0.9Pb9Sn9Sb0.6T20 

n-Bi2Te3xSex/Ag0.86Pb19+xSbTe20 
2 670 358 Vacuum 9 6.56 

[29] 2009 
p-Bi2Te3/PbTe 

n- Bi2Te3/TAGS 
2 803 510 Vacuum  - 10 

[30] 2003 
p-Bi2Te3/CeFe4Sb12 

n- Bi2Te3/CoSb3 
2 885 569 Vacuum+Ar 12 5.5 
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of the segmented generator, the experimental results are always smaller than the calculated one due 

to a large contribution of thermal and electrical losses. The main factors that affected the conversion 

efficiency are summarized by the following [20]: 

 The material figure-of-merit of segments is determined by a small temperature gradient, ∆T, 

less than 10 K, while the devices work under large temperature differences (200 to 700 K). 

 The compatibility factor, s. 

 Interfacial contact (electrical and thermal) resistance. 

 Heat losses on the side of the leg. 

According to results reported in Refs. [20,28,32,36,40], the functionally graded materials have been 

suggested as a good solution to reduce contact resistance. In this way, the material zT could be 

optimized by tuning the carrier concentration layer by layer in the TE leg; the contact resistance 

between layers can be therefore negligible. However, the grade materials required similar sintering 

conditions i.e. temperature, pressure and environment, which lead to limits in materials selection. 

Generally, the previously-studied materials were only based on metallic compounds and the 

segmented TEG measurements conducted in high vacuum or inner gas in order to protect the legs 

against oxidation or sublimation. In some cases the leg is coated by protected layers [33]. Therefore, 

application of these generators often requires an encapsulation process, which increases the capital 

cost of modules. For high temperatures > 1000 K, the segmented materials used in Ref. [27,35] 

contained large quantity ratios of rare earth elements, e.g., La, Yb, and Ce, which are very expensive 

and might only be used for space application. Other inexpensive materials such as high-temperature 

oxide and mid-temperature half-Heusler alloy, have not been investigated yet. Thus, a study of 

segmentation based on cheap, stable, scalable materials is necessary to bring up low-cost and high 

efficiency TEG for high temperatures in waste heat recovery.  

1.4 Thesis outline 

The thesis consists of seven chapters which cover the content of modeling segmented 

thermoelectrics, development of oxide materials, the joining between oxides and metal, oxides and 

alloys, and the construction of segmented thermoelectric oxide-based legs/modules. The main 

scientific results and findings are presented in Chapter 3 to Chapter 6. 

Chapter 1 presents the basic principles of thermoelectric effects, materials and modules. An 

overview of the current study on high-temperature thermoelectric modules was also given. 

In Chapter 2, all the typical experimental methods and characterization techniques used in the 

thesis will be presented. They include: spark plasma sintering, joining legs, and module fabrication, 

as well as contact resistance and module measurements. Other experiments for particular works will 

be described in detail in each sub-chapter. 

Chapter 3 will describe the modeling on segmented thermoelectrics used to predict the 

performance of non-segmented and segmented leg/unicouples. Based on the study on the efficiency 

ratio i.e. the conversion efficiency vs. materials cost, it shows that some oxides such as layered-

cobaltite Ca3Co4O9 and doped ZnO are good candidates for hot side materials for segmentation. 

Various state-of-the-art metallic materials are selected based on the calculation results of the 



10 

 

compatibility factor and the maximum total conversion efficiency of the segmented legs. The 

evaluation was carried out using a one-dimensional (1D) numerical modeling. The influence of the 

interfacial contact resistance on the performance of the segmented legs/unicouples is also considered 

and discussed in this chapter. 

Chapter 4 presents the study on n-type oxide materials of CaMnO3. For the investigation of 

CaMnO3, the Ca0.9Y0.1Mn1-xFexO3 system with 0 ≤ x ≤ 0.25 was prepared, in which Ca-site was 

substituted with Y at a fixed concentration and Mn-site was partly replaced by Fe. The structural and 

the thermoelectric properties of these materials are investigated in detail. The influence of Y and Fe 

doping at Ca- and Mn-sites, respectively, on the crystal structure, is carefully studied by the Rietveld 

refinement analysis. The correlation between the crystal structures and the thermoelectric properties 

is discussed.  

In Chapter 5, segmentation of the half-Heusler Ti0.3Zr0.35Hf0.35CoSb0.8Sn0.2 (HH) and the non-doped 

layered-cobaltite Ca3Co4O9 is investigated both by modeling and experiments. A 4 p-n couples 

segmented thermoelectric generator comprised of the segmented HH/Ca3Co4O9 as p-legs and n-legs 

2% Al-doped ZnO was fabricated and characterized at various hot side temperatures up to 1173 K. 

The power generation characteristics obtained experimentally for the correlation with theoretical 

calculations are compared with a non-segmented oxide module built up from p-leg Ca3Co4O9 and n-

leg 2% Al-doped ZnO.  

Chapter 6 focusses on the fabrication and characterization of a high efficiency segmented p-leg 

building up from half-Heusler Ti0.3Zr0.35Hf0.35CoSb0.8Sn0.2 (HH) and doped Ca2.8Lu0.15Ag0.05Co4O9+. 

It is found that a maximum efficiency of 5% is attained at a temperature gradient of about 756 K. In 

this chapter, the influence of the contact resistance on the total conversion efficiency was also 

evaluated by modeling, and correlated with the experimental results.  

Finally, Chapter 7 is summary of the main findings and results of the thesis. Some future works and 

outlooks are also mentioned at the end of this chapter. 
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Figure 2.1 Schematic representation of the park 

plasma sintering (SPS) process [135]. 

Chapter 2 Experimental methods 
 

The experimental methods used in the thesis include powder synthesis, bulk material sintering, 

joining two dissimilar materials, module construction process, and characterization of materials, 

single legs, segmented legs, contact resistance and device performance. In this chapter, only the 

typical methods are focused on and described in detail.  Other common experiments will be 

mentioned in each sub-chapter. 

2.1 Spark Plasma Sintering  

In the fabrication of thermoelectric materials, the most-effective method used to enhance 

thermoelectric performance is to make bulk nanostructured materials (pellet) consisting of separate 

nanoparticles connected through “particle’s neglect” and its grain size is retention. In those materials 

with nanostructures, their thermal conductivity could be reduced as a result of the increase in phonon 

scattering. Therefore, retention of nano-size particles in bulk form during the sintering process is of 

prime importance. In the sintering technique, spark plasma sintering (SPS) is known as a powerful 

tool that can not only be used for consolidation/synthesis [41], but can also be used for 

coating/joining materials [42,43]. The SPS’s principle is based on an electric current assisted 

sintering technique, which simultaneously applies an electric current and mechanical pressure, as 

schematically shown in Figure 2.1. With this technique, the sintered powders are consolidated and 

simultaneously densified with desired shape and density [41]. It can be seen from Fig. 2.1 that the 

pulse electric current can pass through both of the die and the sintered powder. The SPS processes 

can be used in efficient heat input, particularly when electrical-insulating die is used the electric 

current is applied to the electrical conductance punch and powder for an extremely short duration (a 
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few microseconds). The heat, therefore, will be concentrated on the sintered elements which avoid a 

large quantity of heat loss to the surrounding environments. In another way, the SPS can be used as a 

fast hot pressing technique without the current going through samples. In this thesis, the SPS will be 

used for sintering oxide materials and semimetal half-Heusler materials as well as the joining of 

metallic alloy, oxide compounds, and module fabrication. 

For the sintering materials process, after calcination, milling, sieving, and checking the phase of 

samples, the obtained powders were covered with graphite paper and put into graphite die. The 

densified processing was carried out using a spark plasma sintering system (SPS). The SPS unit of 

Dr. Sinter 515S (Syntex Inc., Japan) was used, with a pulsed direct current regulated by the on/off 

settings, with each pulse lasting 3.3 ms and having a 12:2 on/off ratio. For the sintering parameters, a 

constant uniaxial pressure of 50 MPa, was used. The samples were heated to setting temperature e.g. 

1123 K for p-type oxide Ca3Co4O9 and Ca2.8Lu1.5Ag0.05Co4O9+δ while a uniaxial pressure of 50 MPa 

was applied for holding 5 min. During the experiment, the temperature, applied pressure, and 

displacement or shrinkage of the sample were recorded. The as-prepared samples were then polished 

to remove the graphite foil. The details of these works can be seen elsewhere [8,44–46].  

2.2 Joining segmented leg 

Metal-ceramic joining has a long history. 

Egyptians first used it to cover their enamels 

several centuries B.C [47]. In general, joining 

provides a new structured ceramics in a way that 

manufacturing components cannot be made in 

one piece. This method is cheaper than others 

[47,48]. There are several joining techniques 

which can be roughly classified as: joining with 

intermediate material and direct joining. In direct 

joining, joint materials are directly connected to 

each other using co-sintering, explosion welding, 

and diffusion welding. A strong mechanical 

interface connection is usually provided, but its 

electrical and thermal properties are relatively 

poor. In contrast, when joining with intermediate 

material e.g. soldering and brazing uses a molten 

filler metal, the joint materials are connected by 

filler media so that its interface is normally not 

deformed after joining. 

In order to obtain high performance of 

segmented thermoelectrics, the joint processes 

are required to achieve good interface connection 

with a low electrical and a high thermal contact. 

In this thesis, the silver brazing joint was 

Figure 2.2 Schematic configuration of the brazing 

joining oxide-metallic alloys used spark plasma 

sintering as hot press without current passing through 

the sample. 

Ca3Co4O9 

HH 

Graphite 

punch 

Graphite 

punch 

Graphite 

Die 

Thermocouple 

Al2O3 
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carefully investigated on metallic half-Heusler alloys and oxide Ca3Co4O9 compounds. To fabricate 

the segmented legs, the obtained pellets of Ca3Co4O9 and HH were cut, polished and then cleaned 

with acetone, isopropyl alcohol and deionized water and finally dried with nitrogen. The length of 

oxide and half-Heusler materials was designed as the demanding hot and cold side temperatures.  150 

µm thick Ag foil with a purity of 99.99% was used as the standard joining material between the half-

Heusler and the oxide, while 400 µm thick Ag foil was used to make electrodes. In order to avoid the 

influence of high density current of SPS on the thermoelectric properties of joint legs, the top and 

bottom of the sample were covered with a thin layer of alumina oxide that allows good heat 

conductance from graphite die as showed in Figure 2.2. The brazing process was conducted in a 

vacuum using an SPS under 20 MPa at 973 K for 10 min. Figure 2.3 shows some typical segmented 

legs of Ag/Ca3Co4O9/Ag/HH/Ag obtained with a good adhesion at the interface. 

2.3 Module fabrication 

Figure 2.4 shows the whole process of module fabrication used in this thesis. The materials of p- 

and n-type were first optimized the fabrication condition and followed by characterization step. 

Using the measured data of materials properties, the modelling is used to calculate and design 

appropriate output performance. The legs were then cut into fixed dimensions according to the 

calculation results. For the fabrication of module substrate, the Ag electrodes were first fabricated on 

top of two alumina substrates by hot-pressing at 1073 K for 2 h in air. The substrate was chosen to fit 

the size of the graphite die used in an SPS process. p-legs and n-legs were attached to these designed 

Figure 2.3 A proven picture of segmented half-Heusler/oxide legs were successfully joined by 

silver brazing method. 
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substrates. The whole module was then placed in a graphite die and hot-pressed at 973 K under a 

pressure of about 20 MPa in Ar atmosphere. It is seen from Fig 2.4 that all the step connection in 

series if any step is failed the process is required restart from fabricated material step. 

 

2.4 Characterization  

2.4.1 Contact resistances  

Figure 2.5a presents a schematic configuration that used to determine the interfacial contact 

resistance (Rc) by linear extrapolation of the resistance (R) versus the distance of measuring probes 

(xn to 0) and subsequent subtraction of the contribution from the alloy between the probe lead and the 

interface. The contact resistance is actually the interface resistance, which is multiplied by the cross-

sectional area of the interface to give the area specific resistance of the interface (ASR). Fig. 2.5b 

illustrates a real picture of the fixture used to determine contact resistance of leg with electrode in 

this thesis. The fixture consists of long alumina tube which intergraded electrical connection wires 

and thermocouple. A spring system was installed to get a good thermal contract of two-end 

electrodes as showed in Fig. 2.5b. The terminal connected to the cooling water at the end of fixture 

Figure 2.4 Schematic of the whole thermoelectric module construction process from sintering and 

characterized materials to modelling, built up and test modules. 
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allowed measurement disregard thermal effect on the electrical conductivity of connected wires. As 

presented in Fig. 2.5a, the accuracy of the measurement also affected by the distance of probes 

placed on the surface of the sample. Shorter distance between two-probe higher uncertainties 

appears. It is normally required long sample (> 10 mm). However, the homogeneous temperature 

distributes on the long samples might difficult to archive. Therefore, the short segmented legs were 

employed other way that is demonstrated in Fig. 2.5c for determining the contact resistance between 

the different TE materials in a segmented leg using the ZEM-03. In the ZEM-03 system allows a 

small temperature gradient on sample (< 0.5 K) during measure electrical resistance. In addition, the 

one-dimensional heat transfer in the measured sample will minimize the influence of heat losses. The 

contact resistance can be determined by measuring the electrical resistivity of individual TE materials 

(V1 and V3) and the resistance across the interface of the segmented materials (V2). By measuring the 

contact resistances of the sample with various cross-sectional areas (AR), the ASR is then calculated 

from the slope of the fitted R-1/AR curve using the least-squares method. 

 

2.4.2 Module power generation characteristics 

The power generation characteristics of the segmented legs and modules were performed in air 

using an in-house Rig-test system. The Rig-test consists of temperature and electrical measurement 

parts which controlled by a PC via feedback signal from multi-channel Keithley. The heat flux values 

at the hot and the cold sides of TEG can be determined through the measurement of temperatures 

(a) (c) 
v1 

v2 

v3 

I+ 

HH 

Ca349 

Figure 2.5 Schematic of the fixture used to measure the electrical contact resistances. (a) The darker shaded 

material is the Ca3Co4O9 or 2% Al doped ZnO and the sign convention of the current is for forward current mode. 

(b) A real picture of a fixture used to measure ASR. (c) Schematic configuration of the voltage probes along the 

segmented leg.  

(b) spring cooling water 
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dropped on two heat transfer blocks at hot and cold sides. The voltage of the cell test is directly 

determined on the output wires of the device while current values are calculated in term of voltage 

dropped on shunt resistance and the value of electric load device. The heater made of SiN 

compounds that allow to use an extremely high ramping rate (6000 oC/hour) and also be able to apply 

high pressure on its surface as presented in Figure 2.6a.  

 

The I-V curves of legs and modules were automatically measured at different ∆T by sweeping 

electronic load that has the current value from 0 to 15 A with a minimum step of 1 mA. The 

controlled software system is based on Apache web server software (Open Source Software, OSS) 

and allow flexibility about the type gas control, cycling, long-term stability tests, etc. The 

measurements can be able to perform both power generation and heat pump effects in one setup. For 

the measurement of single leg, in order to define the accurate temperature difference across the leg, 

0.5 mm n-type thermocouple was directly inserted inside the Ag electrodes at the vicinity of the top 

part of the leg. The thermocouple at the hot side is also used for setting up the PID of the heater 

controller. To minimize the heat losses during the test the heater was covered with a thick layer of 

silica felts. The efficiency of a TEG can be calculated in term of measured electric power out and the 

heat flux values at hot and sides. However, the heat transfer block at hot side is needed to be well-

defined which mean all the heat losses including convection, radiation and conductance are 

negligible. The functionality of the test-rig is calibrated by measuring the commercial G2-40-0329 

Tellurex Corperation module [49].  

 

  

 

V1 

 

Keithley 

E.load 

V2 

Rshunt 

Load cell 

Heater 

T1 

T2 

T3 
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T6 

Cooling 

Qcold 

Qhot 

Figure 2.6  (a) Schematic illustration of module tester. (b) The complete view of the Rig-test used to measure the 

power generation characteristics of legs and modules in this thesis.  

(a) 
(b) 

TEG 
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Chapter 3 Segmentation of low-cost, high efficiency oxide-based 

thermoelectric materials 

Abstract 

Thermoelectric (TE) oxide materials have attracted great interest in advanced renewable energy 

research owing to the fact that they consist of abundant elements, can be manufactured by low-cost 

processing, sustain high temperatures, be robust and provide long lifetime. However, the low 

conversion efficiency of TE oxides has been a major drawback limiting these materials to broaden 

applications. In this work, theoretical calculations are used to predict how segmentation of oxide and 

semimetal materials, utilizing the benefits of both types of materials, can provide high efficiency, 

high temperature oxide-based segmented legs. The materials for segmentation are selected by their 

compatibility factors and their conversion efficiency versus material cost, i.e. “efficiency ratio”. 

Numerical modelling results showed that conversion efficiency could reach values of more than 10% 

for unicouples using segmented legs based p-type Ca3Co4O9 and n-type ZnO oxides excluding 

electrical and thermal losses. It is found that the maximum efficiency of segmented unicouple could 

be linearly decreased with increasing the interfacial contact resistance. The obtained results provide 

useful tool for designing a low-cost and high efficiency thermoelectric modules based-oxide 

materials. 

 

 

 

 

 

 

 

 

 

The work presented in this chapter is submitted to Physica Status Solidi A: Applications and 

Materials Science 2014: Le Thanh Hung, Ngo Van Nong, Søren Linderoth, and Nini Pryds, 

“Segmentation of low-cost, high efficiency oxide-based thermoelectric materials”.  



18 

 

3.1 Introduction 

Thermoelectric generators are solid-state devices which directly convert heat to electricity 

without any moving part, and maintenance free, and hence have attracted increasing interest in waste 

heat recovery which improves the overall energy efficiency used of many various applications [3,50–

52]. A typical TEG usually constructs from p- and n-type TE materials and its maximum thermal-

electricity conversion efficiency, ηmax, can be expressed as 

  
𝑚𝑎𝑥

=
𝑇ℎ−𝑇𝑐

𝑇ℎ

√1+𝑧𝑇−1

√1+𝑧𝑇+
𝑇𝑐
𝑇ℎ

 (3.1) 

where Th is the hot side temperature, Tc is the cold side temperature, 
𝑇ℎ−𝑇𝑐

𝑇ℎ
 is known as the Carnot 

efficiency, 𝑇 =
𝑇ℎ+𝑇𝑐

2
, and the TE material figure of merit z (=2/, where, , and  are the 

Seebeck coefficient, the electrical resistivity, and the thermal conductivity, respectively), and T is 

absolute temperature. It is obvious from Eq. (3.1) that besides the zT, large temperature spans also 

are required to increase in the conversion efficiency. Under such high-temperature conditions, oxide 

TE materials are of the most promising candidates due to their natural durability, robustness to the 

surroundings in additional with their low-cost and abundant source compared with conventional TE 

intermetallic compounds [53–57]. They have therefore been widely studied with the aim to improve the 

value of zT using for example heavy element doping [44,58,59], nano-structuring [53,54,60], nanowire 

and optimized morphology [61–63], and nano-inclusion [58,64]. During recent years, remarkable 

results have been reported on Al and Ga dually doped-ZnO [59,61,62,65,66] and Ca3Co4O9 

nanocomposite [44,67,68] with the peak zT reached the values of 0.65 at 1200 K and 0.61 at 1140 K, 

respectively. However, the performance of oxide modules are still relative low, and so far their 

estimated conversion efficiency is smaller than 3% [69], which is due to the low thermoelectric 

performance of oxide materials in the low temperature range. To overcome the limitation mentioned 

above, two possible solutions are available: cascaded and segmented generators. In a cascade module 

the performance can be enhanced by stacking several TE modules on top of each other. This type of 

module is often requires an external device to accumulate the maximum performance in each single 

module. The main losses in such module are either heat conductance loss due to the low electrical 

resistivity or Joule heating loss due to the high electrical resistance [17]. In contrast, a segmented 

generator uses only single electric circuit, and each leg is designed by a combination of different 

materials with their highest value of zT. In order to obtain an improved efficiency of a segmented 

TEG the selected materials have to be compatible i.e. the difference in their compatibility factor 

(𝑠 =
√1+𝑧𝑇−1

 𝑇
) must be within a factor of two [25,26]. With the purpose of pursuing low-cost, and 

high-conversion efficiency of TEGs based-oxide, we have in this study, applied one-dimensional 

(1D) numerical modelling using various state-of-the-art intermetallic compounds TE materials to 

achieve high conversion efficiency of the segmented legs. The influence of the interfacial contact 

resistance on the total conversion efficiency of the segmented unicouple is also evaluated.  
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3.2 Calculation model 

In order to evaluate the efficiency of non-segmented and segmented TE elements, a one-

dimensional (1D) model of the thermoelectrics is used and detailed of the model can be found in 

[8,24,70]. In this calculation, the efficiency of segmented and non-segmented TE elements was 

calculated under the ideal conditions, i.e. neglecting all the heat losses, thermal and electrical contact 

resistances, but including all the thermoelectric effects. The calculations can, therefore, be considered 

as an upper limit for the obtainable actual efficiency in experiments. The 1D model solves for the 

reduced current density u (= J/κ), which is defined as the ratio between the electrical current 

density (J) and the heat flux by conduction (). The values of u at any temperature along the leg can 

be determined by solving the following differential equation [16]: 

 
𝑑𝑢

𝑑𝑇
= 𝑢2𝑇

𝑑𝛼

𝑑𝑇
+  𝑢3𝜌𝜅, (3.2) 

The differential equation is valid for both non-segmented and segmented legs if – for the latter – the 

material properties are changed from one material to another at a particular known interface 

temperature (TM) where the segments meet. 

The reduced current densities at the various temperatures can be calculated by the following 

equation: 
 1

𝑢𝑛
 =  

1

𝑢𝑛−1
 √1 − 2𝑢𝑛−1

2 𝜌𝜅̅̅̅̅ ∆𝑇 – 𝑇̅∆𝛼   (3.3) 

Here, ∆𝛼 = 𝛼(𝑇𝑛) − 𝛼(𝑇𝑛−1) and 𝜌𝜅̅̅̅̅ = [𝜌(𝑇𝑛)𝜅(𝑇𝑛) + 𝜌(𝑇𝑛−1)𝜅(𝑇𝑛−1)]/2. From u values, the 

reduced (r) and total efficiency (leg) of a segmented or non-segmented leg can be found: 

 r = 
𝑢(𝛼−𝑢𝜌𝜅)

𝑢𝛼 + 
1

𝑇

 (3.4) 

 
𝑙𝑒𝑔

= 1 −
𝛼𝑐𝑇𝑐 +

1

𝑢𝑐

𝛼ℎ𝑇ℎ + 
1

𝑢ℎ

  (3.5) 

Where uc and uh are values of the reduced current density at the cold and hot side temperatures, 

respectively. 

As for the segmented legs, leg is determined by an optimum interface temperature TM. To simplify 

the choice of temperature, TM often sets to be the temperature where the material at the cold side 

reaches its maximum zT.  

The value of uh is a free parameter varied in the equation (3.5) to get the highest efficiency, a 

Fortran program was used to numerically calculate the value of u(T) in this work. In practice, uh is 

varied by changing the load resistance. When an n-type leg and a p-type leg are connected 

electrically in series and thermally in parallel to form a unicouple, the efficiency is calculated by 

 
𝑢𝑛𝑖𝑐𝑜𝑢𝑝𝑙𝑒

= 1 −
𝑐,𝑝𝑇𝑐,𝑝+

1

𝑢𝑐,𝑝
 −𝑐,𝑛𝑇𝑐,𝑛− 

1

𝑢𝑐,𝑛

ℎ,𝑝𝑇ℎ,𝑝+
1

𝑢ℎ,𝑝
 −ℎ,𝑛𝑇ℎ,𝑛− 

1

𝑢ℎ,𝑛

  (3.6) 
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Where the subscripts n and p denote the n- and p-type legs. Numerically, both up,h and un,h are 

optimized simultaneously. 

With the purpose of evaluating the relationship between material cost and conversion efficiency, 

the term “efficiency ratio” which calculated using the peak zT value divided by material cost has 

been used in Ref. [56]. Although the “efficiency ratio” can somehow describe qualitative the 

feasibility and the sustainability features of p- and n-type TE materials, the peak zT excluded 

temperature dependent thermoelectric properties and boundaries condition i.e. hot and cold side 

temperatures of TE leg in which might be not fully reflected conversion efficiency. In this study, we 

have used the exact solution [24] to find the efficiency value of the leg (
𝑙𝑒𝑔

) in a particular 

temperature interval instead of using the peak zT value. The “efficiency ratio”, ratio, therefore, can be 

expressed as: 

 
𝑟𝑎𝑡𝑖𝑜

=
𝑙𝑒𝑔

𝑀𝑐𝑜𝑠𝑡
  (3.7) 

   

Where, 
𝑙𝑒𝑔

is calculated from Eq. (3.5) and Mcost is the TE material cost. Mcost is computed by the 

sum of the costs of raw materials and processing that need to produce 1 mol of e.g. Ca3Co4O9. 

3.3. Results and discussion 

3.3.1 Material selection   

In this section, the selection of materials for segmentation will be based on the figure-of-merit zT, the 

“efficiency ratio” and the compatibility factor. Other properties including thermal expansion 

coefficient, chemical stability, toxicity and mechanical properties are not taken into account for the 

theoretical model. However, it should be noted that these properties are very important in practical of 

TEG manufacturing and its long term stability. 

On the material figure- of- merit zT 

Figure 3.1 displays the material figure-of-merit zT and the compatibility factor s of collected 

state-of-the-art p- and n-type materials in the low temperature range from low (300 to 450 K), 

mid (450 to 800 K) and high (800 to 1200 K). In this collection, the zT and s factors were 

computed from the temperature dependence of thermoelectric properties i.e. Seebeck coefficient,  

electrical resistivity and thermal conductivity (not show here). In the low temperature range, 

BiTe [71,72] alloys monopolize with the peak zT value over 1, while in the mid-temperature 

range PbTe [4] compounds are leading TE materials which can reach the zT values of 2 at 750 K 

and 1.6 at 700 K for p- and n-type, respectively. Although presented the highest peak zT value, 

the compounds contain Pb element which might be concerned to environmentally unfriendly 

issues [73]. To avoid environmental impact, studies on less toxic compounds have been 

flourishing recently, among those materials,  p-type of Zn3Sb4 [74], MnSi [38], HH [75], 
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BiBaCuSeO [76] , and n-type of CoSb [77], HH and Mg2Si [78] these show for example very 

promising zT values of ~1.7 for n-type CoSb [77] at 850 K and ~ 1.4 for p-type Zn3Sb4 [74]. In 

the high temperature range, conventional alloys e.g. the p and n-type SiGe [79,80] and state-of-

the-art intermetallic compounds such as p-type Yb14MnSb11 [81] and n-type La3Te4 [82] are the 

materials with the highest peak zT values of about 1. However, a high-temperature TEG 

constructed from these materials often need to have encapsulation to prevent against the 

oxidation, sublimation and volatility processes when devices operated at high temperature 

[83,84]. Besides, the metallic compounds containing Tellurium tend to decompose and release 

harmful vapor in the high-temperature application [56]. In contrast, oxide materials such as 

Ca3Co4O9 [44], Ca3Co2O6 [85], Na2CoO4 [86], ZnO [61,62,65], SrTiO3 [87], CaMnO3 [88] are 

environmental friendly operating for high-temperature usage. Although the peak zT values of 

oxide materials have relative low as compared with traditional intermetallic compounds, their 

chemical composition contains abundant elements and low-cost of raw and material processing 

[56]. Therefore, it will be useful to develop a criterion, which include the materials performance 

but also the overall cost of these materials.  

Figure 3.1 The material figure-of-merit zT and their compatibility factor s of selected state-of-the-art p-type (a 

and b) and n-type (c and d) for various temperature range. 
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On the “efficiency ratio” 

In order to provide a better comparison of materials selection in term of efficiency and material 

cost, the efficiency ratio, ratio, is exploited to appraise candidates for high temperature TE materials. 

In this calculation, the costs of raw materials that need to produce 1 mol of e.g. Ca3Co4O9 

nanocomposite [44], doped-ZnO [65], SiGe [79,80], La3Te4 [82] etc. are taken from Alfa Aesar [89] 

with the purity of elements selected corresponding to its references. The bulk manufacturing cost of 

these materials are followed the data previously reported by LeBlanc et al. [90]. The manufacturing 

cost of Si80Ge20 and oxides are about 1.1 $/kg, while that of  Yb14MnSb11 or La3Te4 is 1.26 $/kg [90]. 

As shown in Fig. 3.2a, the metallic compounds containing rare earth elements have the highest value 

of material cost, e.g. Yb14MnSb11 and La3Te4 are four orders more expensive than oxide materials. 

The values of ratio are calculated from Eq. (3.7), the efficiency of single materials was computed 

using Eq. (3.5) with fixed cold and hot side temperatures of 300/1173 K and without including 

electrical and thermal losses. As seen from Fig.3.1a, c, the peak zT values of oxide materials are only 

60% that of compared e.g. SiGe or skutterudite, but their efficiency ratios are higher by a factor of 

five for p-type and twenty for n-type materials as clearly shown in Fig. 3.2b. This result points out 

that doped-ZnO and Ca3Co4O9 nano-composite are the good candidates as hot-side materials for low-

cost high performance segmented legs.  

On the compatibility factor 

Aforementioned, in order to ensure high conversion efficiency of segmented module the 

compatibility factor of materials to be segmented must be first considered. Here, the rule of thumb is 

that the difference in compatibility factors between two materials should be within a factor of two 

[25,26]. To evaluate the effect of compatibility, s, segmented legs containing compatible and non-

compatible materials segmentations of n-type leg contain doped ZnO and HH or CoSb alloys were 

chosen. Fig. 3.3 shows the temperature dependence of the compatibility factor, the relative current 

density, and the reduced efficiency as well as the absolute efficiency as a function of relative current 

Figure 3.2 A plot of price in dollars per mole (a) and (b) efficiency ratio for various high-temperature TE 

materials. 

(a) (b) 
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Figure 3.3 (a) Temperature dependence of the s and the 

u. (b) local and reduced efficiencies using value of u for 

highest efficiency compared to the maximum reduced 

efficiency for n-type segmented CoSb/ZnO and 

HH/ZnO legs. (c) Total efficiency of single 

components, incompatible segmented leg CoSb/ZnO 

and compatible segmented HH/ZnO. 

density for ZnO, HH, CoSb, segments of HH/ZnO 

and CoSb/ZnO. It can be seen that the s values of 

CoSb are three times as much larger than that of 

ZnO, while the difference in s between HH and ZnO 

is less than a factor of 2 (Fig. 3.3a). The relative 

current density u was computed from the 

temperature dependence of thermoelectric properties 

e.g. Seebeck, electrical and thermal conductivity. 

Here, the value of uh (T=Thot) was numerically 

calculated in order to obtain the highest efficiency 

Eq. (3.5). It can be seen from Fig. 3.3a that the 

values of uCoSb-ZnO and uHH-ZnO start separating in the 

high temperature range.  This is due to the fact that 

their u values are different at hot side temperature. 

Shown in Fig. 3.3b is the actual reduced efficiency 

that was calculated based on the u values using Eq. 

(3.4), and the maximum reduced efficiency 

(max
𝑟

=
√1+𝑧𝑇−1

√1+𝑧𝑇+1
) at u = s. The maximum reduced 

efficiency of CoSb is higher than that of HH due to 

its higher zT. However, the actual reduced efficiency 

of segmented CoSb/ZnO is lower than HH-ZnO over 

the whole temperature range. Eventually, even under 

a larger temperature span the maximum total 

efficiency of the segmented CoSb/ZnO leg was 

decreased by 3.5% as compared with non-segmented 

CoSb one (Fig. 3.3c). Strikingly, with the 

segmentation of HH and ZnO, the maximum total 

efficiency was increased by 6.3% as compared with 

non-segmented ZnO.  

With the aim of pursing low-cost, high 

efficiency high-temperature TEG, based on ratio 

values n-type ZnO and p-type Ca3Co4O9 were 

selected as the best candidates for the hottest part 

(773 K to 1173 K) of segmented leg. For these 

calculations, the temperatures of the legs were 

chosen to be 1173 K for the hot side and 300 K for 

the cold side. The materials, which can be 

segmented at different temperature ranges, are 

summarized in Table 3.1. The interface temperatures 

(TM) between two materials were evaluated based on 

their zT and the s values as shown in Fig. 3.1. Due to 
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the high performance of the BiTe compounds, in the low temperature range, they were selected for 

segmentation at the range of 300 K to 500 K for the p-type and 300 K to 450 K for n-type. However, 

since the compatibility factor of oxide does not match that of BiTe, they cannot directly segmented. 

Therefore, the HH (or PbTe) compounds were chosen as the best material to connect these two to 

form oxide/HH/PbT/BiTe. 

Table 3.1 The possible materials for segmenting legs of p-Ca3Co4O9 and n-ZnO 

3.3.2 Efficiency of individual segmented legs 

Figure 3.4 shows the calculated maximum efficiency of non-segment, two-, three- and four-

segments for p- and n-type legs.  In these calculations, the hot and cold side temperatures of the legs 

were fixed at 300/1173 K without any thermal and electrical losses. It is clear from Fig.3.4 that 

segmentation increases the maximum efficiencies for both p- and n-type materials. Both conversion 

efficiencies and device ZTs are increased with increasing the number of segments. The increments in 

the efficiencies are 9.6% and 11.5% for p-type HH/Ca3Co4O9, and n-type HH/ZnO two-segmented 

n-BiTe n-PbTe n-HH n-ZnO 

 

p-Ca3Co4O9 p-HH p-PbTe p-BiTe 

- - 300773 7731173 two-segment 1173773 773300 - - 

300450 - 450773 7731173 three-segment 1173773 773500 - 500300 

300450 475650 650773 7731173 four-segment 1173773 773650 650500 500300 

Figure 3.4 The diagram of the maximum total efficiencies of the state-of-the-art 

oxide-based segmented legs (solid column), and their device ZTs (pattern column). 
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legs, respectively as compared with 5.3% for single legs of oxide materials ZnO and Ca3Co4O9. The 

highest efficiency of 11.7% for p- BiTe/PbTe/HH/Ca3Co4O9 and 12.5% for n- BiTe/PbTe/HH/ZnO 

were calculated for four-segment legs.   

When the reduced efficiency is equal to the maximum reduced efficiencies, i.e. u = s, the highest 

efficiency value of the legs can be achieved. As an example (Fig. 3.4), although three-segment p-type 

BiTe/HH/Ca3Co4O9 has a higher value of ZT = 0.66 than that of two-segment n-type HH/ZnO (ZT = 

0.57), the maximum total conversion efficiency attained for three-segment p-type (11%) is smaller 

than that for two-segment n-type (11.6%). This difference implies the importance of s and u values 

when designing segmented legs. These results also suggest that in additional to the improvement of 

materials zT values, optimized local compatibility factor is an efficient route that need to be 

considered [91,92]. 

3.3.3 Segmented unicouples 

Combining the p- and n-type oxide-based segmented legs resulted in a unicouple whose 

efficiencies can be calculated by using Eq. (3.6). The highest calculated efficiency values for 

different unicouples are listed in Table 3.2. From Table 3.2, one can see that the efficiency of 

unicouples significantly increases with increasing the number of segments. The highest value of 

12.2% was obtained for unicouple of p-BiTe/PbTe/HH/Ca3Co4O9 and n-BiTe/PbTe/HH/ZnO four-

segmented legs. For the chosen combinations of materials, an efficiency of more than 10% could be 

attained for unicouples of any of two segments e.g. p- HH/Ca3Co4O9 and n-HH/ZnO (10.1%) or any 

of three segments of p-BiTe/HH/Ca3Co4O9 and n-BiTe/HH/ZnO (10.9%). Although, the highest 

maximum efficiency of two-segment unicouple (10.1%) is 17% smaller than the one of four-segment 

(12.2%) the number of interfaces is also increased about 67% (from six to ten interfaces). Thus, the 

trade-off between the complicated legs production and the increment in conversion efficiency should 

be taken into account.  

Table 3.2 Maximum efficiency of unicouples with various combination of p-n leg. 

As mentioned above, all efficiencies of segmented single legs and unicouples were calculated 

under the assuming a perfect thermal and electrical contact between two adjusted materials. The 

 

Ca3Co4O9 
HH/Ca3Co4O9 

(TM/773 K) 
BiTe/HH/Ca3Co4O9 

(TM/500/773 K) 
BiTe/PbTe/HH/Ca3Co4O9 

(TM/500/650/773 K) 

ZnO 5.3% 7.0% 7.5% 7.7% 

HH/ZnO 
(TM/773 K) 

7.4% 10.1% 10.9% 11.3% 

BiTe/HH/ZnO 
(TM/450/773 K) 

7.7% 10.7% 11.2% 11.9% 

BiTe/PbTe/HH/ZnO 
(TM/450/650/773 K) 

7.8% 10.9% 11.7% 12.2% 
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contact resistance, is known as one of the main sources that detriment the performance of a TEG, 

especially for a segmented module which includes multiple number of interfaces, i.e. contact 

resistance [8,28,34]. In the current calculations, we have included a parameter called “resistance 

ratio”,  =Rc/Rleg, which is defined as the total contact resistance (Rc) divided by the total electrical 

resistance (Rleg) for a TE leg. Fig. 3.5 presents calculations of efficiency of a segmented unicouple 

made of p-BiTe/HH/Ca3Co4O9 and n-BiTe/HH/ZnO legs as a function of the resistance ratio at the 

hot side and cold side temperatures of 1173 K and 300 K, respectively.  

It can be seen from Fig. 3.5 that the conversion efficiencies of segmented unicouple are linearly 

decreased with increasing the value of contact resistance. In practical, the contact resistance between 

metal-metal is in the range of 2 to 50 µΩcm2 [93–95] and for oxide with metal electrode e.g. 

Ca3Co4O9 and ZnO with Ag it is about 100 µΩcm2 at about 1000 K [8,96]. As a result, the major 

contribution to the  magnitude is usually attributed to the oxide-metal conjunctions. Therefore it is 

essential to be able to reduce the total contact resistance in the segmented legs based oxide. In 

addition, the value of  not only depends on the total thermal contact resistance, but it also depends 

on the total electrical resistance of the legs, which is determined by the dimension of the leg, i.e. the 

length and cross-sectional area, that need also to be optimized. For example, for a given value of the 

electrical contact resistances, larger dimensions of a TE leg are often preferable to achieve a high 

efficiency. However in this case, the materials and manufacturing cost for fabrication such 

thermoelectric modules also need to be considered [90,97].  

Figure 3.5 The influence of contact resistance on the total efficiency of unicouple 

comprised from p-BiTe/HH/Ca3Co4O9 and n-BiTe/HH/ZnO. 
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3.4 Conclusions 

In summary, the low-cost, high efficiency oxide-based segmented legs/unicouples have been 

investigated using the numerical modelling. The materials to be segmented were selected based on 

their figure-of-merit, the “efficiency ratio” and their compatibility factors. The calculated results 

indicate that oxides materials are good candidates at the hot side for achieving low-cost, high 

performance segmented legs/unicouples. A maximum efficiency of more than 10% could be attained 

for the unicouples built up from segmented legs of p-Ca3Co4O9 and n-ZnO with intermetallic 

compounds such as HH and BiTe. The modelling results have showed that in the building up TEG 

based segmented legs the trade-off between the increment in conversion efficiencies and the external 

factor i.e. complicated production and increasing interface contact resistances and should be taken 

into consideration. The obtained results suggest a tool to construct low-cost and high efficiency 

thermoelectric modules based on oxide materials for high-temperature power generation. 
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Chapter 4 High-temperature thermoelectric properties of Ca0.9Y0.1Mn1-xFexO3 

(0 ≤ x ≤ 0.25) 

 

 

With the aim of the thesis is to develop low-cost, high-temperature TEG based oxide materials 

through the investigation in the Chapter 3 pointed out that the p- type nanocomposite Ca3Co4O9 and 

the n-type doped ZnO materials are selected as the best candidates. The modules construction will be 

then used the oxide materials which are cooperated with two separate projects on development and 

processing of n-type, p-type oxide thermoelectric materials. The results have been published 

elsewhere [44,46,61,98]. As reported in the literature, so far, the studies indicated that n-type 

materials, such as ZnO, SrTiO3, have much lower thermoelectric performance than their p-type 

counterparts. Therefore, in this chapter, the study of n-type of Ca0.9Y0.1Mn1-xFexO3 is chosen as an 

alternative n-type oxide. 

Abstract 

Polycrystalline compounds of Ca0.9Y0.1Mn1-xFexO3 for 0 ≤ x ≤ 0.25 were prepared by solid-state 

reaction, followed by spark plasma sintering (SPS) process, and their thermoelectric properties from 

300 to 1200 K were systematically investigated in term of Y and Fe co-doping at the Ca- and Mn-

sites, respectively. Crystal structure refinement revealed that all the investigated samples have the O-

type orthorhombic structure, and the lattice parameters slightly increased with increasing Fe 

concentration, causing a crystal distortion. It was found that with increasing the content of Fe doping, 

the Seebeck coefficient of Ca0.9Y0.1Mn1-xFexO3 tended to increase, while the tendency towards the 

electrical conductivity was more complicated. The highest power factor was found to be 2.1 x10-4 

W/mK2 at 1150 K for the sample with x = 0.05 after annealing at 1523 K for 24 h in air. Thermal 

conductivity of the Fe-doped samples showed a lower value than that of the x = 0 sample, and the 

highest dimensionless figure-of-merit, zT was found to be improved about 20% for the sample with x 

= 0.05 as compared to that of the x = 0 sample at 1150 K. 

 
 

 

The work discussed in this chapter is published in: Le Thanh Hung, Ngo Van Nong, Li Han, Dang Le 

Minh, Kasper A Borup, Bo B. Iversen, Nini Pryds, Søren Linderoth, “High-temperature 

Thermoelectric Properties of Ca0.9Y0.1Mn1-xFexO3 (0 ≤ x ≤ 0.25)”, J. Mater. Sci. 48, 2817 (2013).  

[45]. 
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4.1 Introduction 

With increasing the global energy demand, thermoelectric materials have recently gained much 

interest in both the theoretical and technological aspects due to the potential use of these materials in 

converting waste heat into electricity [3,99]. In general, for a single thermoelectric material the 

conversion efficiency can be evaluated by the dimensionless figure-of-merit (zT = S2T/, where , 

S, T,  are the electrical conductivity, the Seebeck coefficient, the absolute temperature, and the 

thermal conductivity, respectively). The requirements for practical application of high thermal-to-

electrical energy conversion place on finding suitable thermoelectric materials, and are not easily 

satisfied. They should not only possess good thermoelectric performance, they must also be stable at 

high temperatures and be composed of nontoxic and low-cost elements, but also must be able to be 

processed and shaped cheaply. For this purpose, metal oxide-based materials are considered as good 

candidates.  

CaMnO3, which is a perovskite oxide with orthorhombic structure at room temperature, has also 

been considered as a promising thermoelectric n-type material for high-temperature application 

[88,100–105]. Many attempts have been made in order to improve the thermoelectric performance of 

this type of material, mainly to enhance the electrical conductivity, reduce further the thermal 

conductivity, while avoiding degradation of the Seebeck coefficient. Most of these studies have been 

focused on doping for example Yb at Ca-site [88,100–103] or Nb at Mn-site [88,104], while only few 

reports performed the research on dually doping e.g. Sr and Yb at Ca-site [105]. Previous reports 

have showed that the substitution of Y for Ca resulted in a significant improvement in the 

thermoelectric performance of Ca1-xYxMnO3 system in a wide temperature region, and the optimum 

doping level was found to be around x = 0.1 [101,106]. Similar to other multi-valence systems such 

as cobaltites [44] or titanates  [107], the interrelation between Mn3+ and Mn4+ should be responsible 

for the transport mechanism in the CaMnO3 material. Therefore, doping of trivalent ions such as Fe3+ 

or Co3+ at the Mn-site would probably influence the transport properties of this material.  

In this chapter, we have prepared the Ca0.9Y0.1Mn1-xFexO3 system with 0 ≤ x ≤ 0.25, in which Ca-

site was substituted with Y at a fixed concentration and Mn-site was partly replaced by Fe. The 

structural and the thermoelectric properties of these set of materials were investigated in detail. The 

influence of Y and Fe doping at Ca- and Mn-sites, respectively, on the crystal structure was carefully 

studied by the Rietveld refinement analysis. The correlation between the crystal structures and the 

thermoelectric properties are discussed. 

4.2 Experimental 

Polycrystalline samples of Ca0.9Y0.1Mn1-xFexO3 with x = 0, 0.05, 0.15, 0.2, and 0.25 were 

synthesized by a solid-state reaction. A mixture of commercially available CaCO3 (98 %), MnO2 

(99.9 %), Fe2O3 (99.9 %), and Y2O3 (99.9%) precursors were thoroughly mixed by ball milling with 

ethanol for 24 h. The mixtures were dried, and then calcined at 1273 K for 24 h in air with an 

intermediate grinding procedure. The densify processing was carried out using a spark plasma 

sintering (SPS) system (SPS Syntex Inc., Japan). The samples were heated to 1123 K, while a 
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uniaxial pressure of 50 MPa was applied for 8 min in Ar atmosphere. During the experiment, the 

temperature, applied pressure, and displacement of the sample were recorded continuously. The as-

prepared samples were then polished in order to remove the graphite foil used during the SPS 

processing. The pellets were then cut into bar (3.5 × 3.5 × 12 mm3) and plate (10 × 10 × 1.4 mm3) 

shapes for the thermoelectric properties and thermal conductivity measurements, respectively. XRD 

analysis was carried out on the powders after calcining and after the SPS processing using a Bruker 

robot diffractometer with Cu Kα radiation. Structural refinement was carried out using the Rietveld 

method with TOPAS 4.1. Microstructures of the samples were observed using scanning electron 

microscopy (SEM) with a Hitachi TM-1000 system. The electrical resistivity and the Seebeck 

coefficient were measured simultaneously from room temperature to 1200 K using an ULVAC-

RIKO ZEM3 measurement system in a low-pressure helium atmosphere. The thermal conductivity, 

κ, was determined from the measured thermal diffusivity, , the heat capacity, Cp, and the density, d, 

using the formula: κ = d    Cp. The densities of the samples were measured by an AccuPyc-1340 

pycnometer. The thermal diffusivity was measured by a LFA-457 laser flash system. 

4.3 Results and discussion 

Figure 4.1 shows powder X-ray diffraction (XRD) spectra measured at room temperature for pure 

CaMnO3 and for Ca0.9Y0.1Mn1-xFexO3 samples with x = 0, 0.05, 0.1, 0.15, 0.2, and 0.25 after they 

were calcined at 1273 K for 24 h in air. All the visible XRD peaks can be indexed as the pure phase 

of CaMnO3, indicating that all the investigated samples are single phase.  

Figure 4.1 X-ray diffraction patterns of CaMnO3 and Ca0.9Y0.1Mn1-xFexO3 with x = 0, 

0.05, 0.1, 0.15, 0.2, 0.25 samples after calcining at 1273 K for 24 h in air. 
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Figure 4.2 displays XRD patterns of a typical sample with x = 0.05 for the calcined powder (a), SPS 

sintered pellet (b), and the SPS sample after further heat treatment at 1523 K for 24 h in air (c). As 

indicated by this figure regardless of heat treatment, the structure remained the same. The structure 

refinement for the calcined powders Ca0.9Y0.1Mn1-xFexO3 system was conducted using Topas 4.1 

Rietveld refinement software with input parameters which were taken from Poeppelmeier et al. [108] 

using space group Pnma (No.62), and the refined results are summarized in Table 4.1. The profile R 

value (Rp), weighted profile R-factor (Rwp), and Goodness of fit (GOF) values obtained in this 

analysis are of high quality, and is clearly illustrated in Fig. 4.2 for a typical Ca0.9Y0.1Mn1-xFexO3 

sample with x = 0.05 as an example. This result implies that Y and Fe most likely substituted on the 

Ca- and Mn-sites of CaMnO3, respectively. It can be judged from the data in Table 4.1, that the 

lattice parameters follow a relation of 𝑐/√2 ≤ 𝑎 ≤ 𝑏, confirming that the polycrystalline compounds 

Ca0.9Y0.1Mn1-xFexO3 of our samples have O-type orthorhombic structure [105,109]. 

The dependence of the lattice parameters and the cell volumes of Ca0.9Y0.1Mn1-xFexO3 on the 

amount of Fe substituent are presented in Fig. 4.3. The result shows that the lattice parameters 

slightly increased with the increasing Fe concentration, resulting in an expansion in the unit cell 

volume. The increase in lattice parameters may be associated with the substitution of Fe3+ with a 

larger ionic radius (0.55 Å) for smaller Mn4+ (0.53 Å) ion [110]. 

 

Figure 4.2 X-ray diffraction patterns of a typical sample Ca0.9Y0.1Mn0.95Fe0.05O3: (a) Rietveld 

refinement profile of the calcined powder, (b) pellet sample sintered by SPS at 1173 K under pressure 

50 MPa for 8 minutes under Ar atmosphere, (c) SPS sample after annealing at 1523 K in air for 24 h. 
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In the case if Fe3+ substitutes for Mn3+ (0.58 Å), which has larger ionic radius, one would expect a 

slight contraction of the unit cell volume. The geometric distortion of ABO3-type perovskites can be 

explained by Goldsmith tolerance factor, which is defined as 

 𝑡 = (𝑟𝐴 + 𝑟𝑂)/√2(𝑟𝐵 + 𝑟𝑂) (4.1) 

where rA, rB and rO are the ionic radii of A, B, and O atoms, respectively [110]. For Ca0.9Y0.1Mn1-

xFexO3 compounds, calculation of Goldsmith tolerance factors (t) showed that the highest t value was 

0.988 in the case of Fe3+ substitutes for Mn4+ and the smallest t value was 0.963 with Fe3+ substitutes 

for Mn3+. It implies that the orthorhombic structure is stable for all Ca0.9Y0.1Mn1-xFexO3 compounds. 

Figure 4.4 depicts the temperature dependence of the electrical conductivity for Ca0.9Y0.1Mn1-

xFexO3 with x = 0, 0.05, 0.1, 0.15, 0.2, and 0.25 SPS sintered samples. The result points out that the 

electrical conductivity of the entire samples exhibit a semiconducting-like behavior over the whole 

measured temperature range. However, the electrical conductivity of the SPS sintered samples does 

Compositions (x) 0 0.05 0.1 0.15 0.2 0.25 

Rwp(%) 8.42 9.33 9.39 11.27 10.62 10.62 

Rp(%) 6.68 6.70 6.42 7.67 7.45 6.63 

GOF 1.73 1.90 1.71 1.83 1.92 1.85 

a (Å) 5.28233(2) 5.27480(3) 5.3018(3) 5.3004(1) 5.29596(2) 5.29999(3) 

b (Å) 7.46185(3) 7.45797(4) 7.4846(6) 7.4806(2) 7.48990(3) 7.49067(5) 

c (Å) 5.26841(2) 5.27498(5) 5.2899(2) 5.3035(3) 5.28405(2) 5.28344(3) 

V (Å
3
) 207.659(2) 207.514(2) 209.914(2) 210.284(3) 209.598(3) 209.755(2) 

Table 4.1 Structural refinement factors, lattice parameters and cell volumes of Ca0.9Y0.1Mn1-xFexO3. 

Figure 4.3 Lattice parameters and cell volume of Ca0.9Y0.1Mn1-

xFexO3 as function of Fe content (x). 
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not show a clear tendency with the increase 

of Fe doping concentration. The value of  

tends to decrease with increasing Fe 

concentration for x > 0.1, while 𝜎 increases 

for the samples with x  0.1. It should be 

noted here that those samples were sintered 

under a high pressure at high temperature, 

and in inert gas atmosphere. The oxygen 

content or even the microstructure may be 

varied from the samples, causing the 

different behaviors of the electrical 

conductivity as a result.   

Temperature dependence of the Seebeck 

coefficient (S) for the SPS sintered samples 

of Ca0.9Y0.1Mn1-xFexO3 with x = 0, 0.05, 0.1, 

0.15, 0.2, and 0.25 are shown in Fig.4.5. S of 

all investigated samples show a negative 

values over the whole measured temperature 

range, indicating n-type conduction. 

Contrastingly to the electrical conductivity, 

the absolute S values increase with 

increasing Fe concentration, and the effect 

was more substantial in low temperature 

region.  

In order to understand further the 

influence of the Fe doping on the 

thermoelectric properties, four SPS samples 

with x = 0, 0.05, 0.1, and 0.15 were selected 

and further annealed at 1523 K for 24 h in 

air. Figure 4.6a shows the electrical 

conductivity and the Seebeck coefficient as a 

function of temperature after annealing at 

1523 K for 24 h in air. As seen from Fig. 

4.6a a clear tendency showing the decrease 

of , while S increases with increasing Fe concentration from x = 0, 0.05, 0.1 to 0.15. The value of 

electrical conductivity was found to increase with more than two times as compared with post 

samples, while the Seebeck coefficient remained almost the same. 

In general, the conduction mechanism of CaMnO3 can be interpreted by hopping conduction [111] 

where hopping of the charge carriers is thermally activated with the activation energy Ea, the 

temperature dependence of the electrical conductivity 𝜎 is given as 

Figure 4.4 Temperature dependence of the electrical 

conductivity for Ca0.9Y0.1Mn1-xFexO3 with x = 0, 0.05, 0.1, 

0.15, 0.2, 0.25 SPS sintered samples; Inset, the activation 

energies were fitted from experimental data. 

Figure 4.5 Temperature dependence of the Seebeck 

coefficient for Ca0.9Y0.1Mn1-xFexO3 with x = 0, 0.05, 0.1, 

0.15, 0.2, and 0.25 SPS sintered samples. 
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  𝜎 = C/T exp(-Ea/kBT) (4.2) 

where T is absolute temperature, kB is the Boltzmann constant, and C is a constant depending on the 

charge carrier concentration. The activation energy could be estimated from the Arrhenius plot of 

Ln𝜎T versus 1/T as shown in the inset in Fig. 4.4.  

The calculated activation energy, Ea is listed in Table 4.2 for all investigated samples, showing 

that Ea is linearly increasing with the increase of Fe substituent. However, the relationship between 𝜎 

and Ea is only obeyed the hopping conduction’s equation at temperatures below 700 K, as shown in 

Fig. 4.4 inset as well as in Table 4.2. As for the x = 0 and 0.05 samples, the Ln𝜎T versus 1/T curve 

showed two different slopes in the temperature regions of T < 700 and T > 700 yielding two activate 

energies (see Table 4.2), which is similar to the observation by Vecherskii et al. [112] on the oxygen 

non-stoichiometry CaMnO3- system. 

Table 4.2 Relative densities and electrical characteristics of Ca0.9Y0.1Mn1-xFexO3. 

Compositions 

(x) 
0 0.05 0.1 0.15 0.2 0.25 

Relative 

density (%) 
94.36 94.86 97.40 96.65 95.60 93.39 

Ea (meV) 117.46 146.15 155.28 181.33 189.69 227.47 

 

For an extrinsic n-type semiconductor with negligible hole conduction, the thermoelectric power can 

be given by [18, 19]: 

Figure 4.6 Temperature dependence of (a) the Seebeck coefficient (solid symbols) and the electrical conductivity 

(open symbols), and (b) the power factors for all the SPS sintered samples Ca0.9Y0.1Mn1-xFexO3 with x = 0, 0.05, 0.1, 

0.15, 0.2, 0.25 and selective samples with x = 0, 0.05, 0.1, 0.15 after annealing annealed at 1523 K for 24 h in air. 
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 𝑆(𝑇) ≈ −
𝑘𝐵

𝑒
[ln (

Nv

𝑛
) + A]  (4.3) 

where e is the electric charge of the carrier, kB the Boltzmann constant, NV the density of states 

(DOS), n the carrier concentration, and A is a transport constant. Equations 4.2 and 4.3 clearly show 

that the decrease in carrier concentration (n) will result in an increase in the thermoelectric power (S) 

and vice versa. This can well explain the tendency of the Seebeck coefficient and the electrical 

conductivity as a function of temperature observed for the investigated samples after annealing with 

the increasing Fe concentration (see Fig. 4.6). Increasing the Fe content decreases the conductivity 

and increases the Seebeck coefficient which is also related to the carrier concentration via Eq. 4.3. 

However, further investigation on the carrier density and the mobility by means of the Hall 

measurements is currently ongoing to evidently support this interpretation. 

Figure 4.6b shows the power factor (PF) as a function of temperature for all the SPS sintered samples 

and the selected ones after annealing. 

It is obvious that the PF values were 

remarkably improved by further heat 

treatment in air. The x = 0.05 sample 

showed the highest PF values over the 

whole measured temperature region, 

and the maximum PF attained was 2.1 

x 10-4 W/mK2 at about 1150 K. 

To understand the reason which led to 

the finding interesting effect on the 

thermoelectric properties of the 

samples after heat treatment, the 

microstructure of the samples after 

SPS and after further annealing was 

studied using SEM, and the results are 

Figure 4.7 SEM images from fractured surfaces of a typical Ca0.9Y0.1Mn1-xFexO3 with x = 0.05 sample: a) sample 

was sintered by SPS, b) sample was annealed at 1523 K for 24 h in air flow. 

 

(a) (b) 

Figure 4.8 The total thermal conductivity (total), the electronic 

and phonon components (e and ph) of Ca0.9Y0.1Mn1-xFexO3 

samples with x = 0, 0.05, 0.1, 0.15 as a function of temperature. 
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shown in Fig. 4.7a-b. Figure 4.7 shows 

an obvious difference in the grain size 

before and after the annealing. The 

small grains size structure observed for 

the SPS sintered sample means to be 

more grain boundaries, leading to the 

increase in electron scattering at the 

grain boundaries, and thus decreasing 

the electrical conductivity. This result 

well explained the behavior of the 

electrical conductivity for the samples 

before and after heat treatment.  

Figure 4.8 shows the total thermal 

conductivity (total) for all investigated 

samples. It can be seen that  decreases 

with increasing temperature. The 

substitution of Fe at Mn-sites generally 

decreases the thermal conductivity. The total thermal conductivity can be expressed by the sum of a 

lattice component (ph) and an electronic component (e), i.e., as total = ph + e. In this case, the 

contribution of e to total, estimated from the Wiedemann–Franz relation, is small, indicating the 

major contribution of the phonon term ph, as clearly illustrated in Fig. 4.8. Finally, using the 

measured thermoelectric data, the dimensionless figure-of-merit of these compositions was 

calculated. Figure 4.9 presents the dimensionless figure-of-merit, zT, versus temperature for the x = 

0, 0.05, 0.1 and 0.15 samples, showing that zT increased for the x = 0.05 and then decreased again 

with increasing x over the whole temperature range. The maximum zT value reached a value of 0.11 

at about 1150 K for the x = 0.05 samples. 

4.4 Conclusion 

The effect of Fe substitution on the structure and the high-temperature thermoelectric properties of 

Ca0.9Y0.1Mn1-xFexO3 (x = 0, 0.05, 0.1, 0.15, 0.2, 0.25) was investigated in details. Structural analysis 

shows that lattice parameters slightly increase with increasing amount of Fe substituent, which 

originates from the difference in the ionic radii between Fe and Mn ions. The thermoelectric 

properties were found to be improved for the Fe-doped samples with x < 0.1, particularly for the SPS 

samples with further annealing mainly due to the increase in the Seebeck coefficient that could 

overcome the simultaneous decrease of the electrical conductivity. The thermal conductivity was 

suppressed by the substitution of Fe for Mn. The maximum PF attained was 2.1 x 10-4 W/mK2 for the 

x = 0.05 sample at 1150 K giving a maximum zT = 0.11, which is about 20 % higher than the x = 0 

sample. Further study should be performed with finer Fe substituent tuning with x < 0.1 in order to 

optimize these compounds high-temperature thermoelectric properties.  

Figure 4.9 The dimensionless figure-of-merit (zT) as a function of 

temperature for Ca0.9Y0.1Mn1-xFexO3 with x = 0, 0.05, 0.1, 0.15 

selective SPS samples after heated treatment at 1523 K for 24 h in 

air. 

zT 
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Chapter 5 Segmented thermoelectric oxide-based module 

 

 

 

 

 

Abstract 

To improve the thermoelectric (TE) power generation performance of an oxide-based module, a 

segmentation of the legs is implemented. A high-performance segmented oxide-based TE module 

using segmentation of the half-Heusler Ti0.3Zr0.35Hf0.35CoSb0.8Sn0.2 and the misfit-layered cobaltate 

Ca3Co4O9+ as the p-leg and 2% Al-doped ZnO as the n-leg was for the first time fabricated and 

characterized. The TE properties of individual legs as well as the interfacial contact resistances as a 

function of temperature were investigated. Numerical modeling was used to predict the efficiency 

and to evaluate the influence of the electrical and thermal losses on the performance of TE 

modules. The maximum output power of a 4-couples segmented module at a temperature 

difference of about 700 K attained 829 mW corresponding to a power density of 650 mW/cm2, 

which is three times higher than that of the best reported non-segmented oxide module under the 

same condition. Initial long-term stability test of the module at hot and cold side temperatures of 

1073/444 K showed a promising result although a slightly degradation tendency could be observed 

after 48 h operating in air. 
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5.1 Introduction 

Thermoelectric (TE) energy conversion, which directly generates electricity from waste heat, has 

been considered to play an important role in a global sustainable energy solution [3,52]. In a such 

energy conversion device, the maximum energy conversion efficiency ηmax, can be expressed as  

  
𝑚𝑎𝑥

=
𝑇ℎ−𝑇𝑐

𝑇ℎ

√1+𝑧𝑇−1

√1+𝑧𝑇+
𝑇𝑐
𝑇ℎ

 (5.1) 

where Th is the hot side temperature and Tc is the cold side temperature, 
𝑇ℎ−𝑇𝑐

𝑇ℎ
 is known as the Carnot 

efficiency, 𝑇 =
𝑇ℎ+𝑇𝑐

2
, z (= 2/(.), where, , and  are the Seebeck coefficient, the electrical 

resistivity, and the thermal conductivity, respectively) is the dimensionless TE figure-of-merit and T 

is absolute temperature. It is obvious from equation (5.1) that as the temperature span increases both 

the TE conversion and Carnot's thermodynamic efficiencies of a thermoelectric generator (TEG) can 

be significantly improved [99]. Under a large temperature gradient in air, oxide-based thermoelectric 

materials are one of the strongest candidates due to their good thermal and chemical stabilities 

compared to TEGs made of conventional alloys, such as PbTe, complex Zintl compounds, etc. In 

addition, TEGs made of oxides are cost-effective due to the fact that the materials are cheap and 

easily processed. Among TE oxides, the layered-cobaltite Ca3Co4O9+ (Ca349) and doped ZnO 

materials are of the best candidates for high temperature applications [44,65,115]. Although a 

considerable number of oxide-based TE modules have been fabricated and tested [54] the output 

power generation of oxide modules are still limited due to the drawback of low performance of oxide 

materials in particular in mid-to-low temperature range [11,54]. In medium temperature range, half-

Heusler compounds have recently emerged as good materials. The peak zT of a p-type half-Heusler 

material e.g. Hf0.8Ti0.2CoSb0.8Sn0.2 [75] can  reach a value of 1 at 1073 K, which makes these 

materials promising candidates for waste heat recovery for the transportation sector [75,116]. 

Nevertheless, TE modules constructed from these materials are unstable at high temperatures 

(usually ≥ 773 K) [93] due to sublimation and oxidation. Therefore, segmentation of a half-Heusler 

alloy with an oxide TE material (at the hot side) may either improve the overall conversion efficiency 

of an oxides-based TEG or prevent the half-Heusler from sublimation/oxidation at high temperatures. 

In this work, with the aim to improve the conversion efficiency of high temperature oxides-based 

TEG, a p-type half-Heusler Ti0.3Zr0.35Hf0.35CoSb0.8Sn0.2 (HH) alloy was selected to be segmented with 

the Ca349 oxide. A one-dimensional (1D) model [117] was first used to design and predict the 

conversion efficiencies of TEGs with various segmented leg designs. Based on these results, a 4 p-n 

couples segmented thermoelectric generator (STEG) using the segmentation of HH/Ca349 as the p-

leg and 2% Al-doped ZnO as the n-leg was constructed. A non-segmented thermoelectric generator 

(NTEG) using n-type 2% Al-doped ZnO and p-type Ca349 was also used for comparison. The power 

generation characteristics of the NTEG and the STEG were then characterized under various 

temperature gradients in air with the hot side temperatures varying up to 1173 K. The interfacial 

contact resistances and TE properties of the legs were investigated as a function of temperature and 

the results of these analyses were fed into a 3D model. Using the 3D model [118], a comparison 

between the experimental results and the model were carried out taking into account the contact 
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resistances as well as other parasitic losses. In addition, a preliminary long-term test was also 

performed on the STEG at high temperature to investigate the stability of the module.  

5.2 Modeling 

5.2.1 Formulation of the model 

With the purpose of evaluating the efficiency of non-segmented and segmented TE elements, both 

the 1D [26,117] and the three-dimensional 3D [118] numerical models are used. These models take 

into account all thermoelectric effects i.e. the Peltier, Seebeck and Thomson effects, as well as heat 

conduction, Joule heating and the temperature dependence of the resistivity (T), thermal 

conductivity (T), Seebeck coefficient α(T), and compatibility factor 𝑠 =
√1+𝑧𝑇−1

 𝑇
. To have a 

guideline on the materials selection and TEG design, the efficiencies of segmented and non-

segmented TE elements were first calculated under the ideal conditions, i.e. neglecting all the heat 

losses, thermal and electrical contact resistances. The calculations can therefore be considered as an 

upper limit for the obtainable actual efficiency in experiments. As for a practical TEG, the 

performance strongly depends on the thermal and electrical losses. Therefore, the 3D numerical 

model is used to evaluate the module’s characteristics under realistic conditions including losses. 

Besides using the 3D numerical model, 1D modeling was used to confirm the design of the module 

geometries. 

The 1D model solves for the reduced current density u (= J/κ), which is defined as the ratio 

between the electrical current density (J) and the heat flux by conduction. When u is defined at a 

single point – e.g. at the hot side, u (T = Th) – the value of u at any temperature along the leg can be 

determined using the following the differential equation 

 
𝑑𝑢

𝑑𝑇
= 𝑢2𝑇

𝑑𝛼

𝑑𝑇
+ 𝑢3𝜌𝜅, (5.2) 

with an approximate recursive solution given elsewhere [99,119]. The differential equation is valid 

for both non-segmented and segmented legs if – for the latter – the material properties are changed 

from one material to another at a certain interface temperature (Tm) where the segments meet. From 

the reduced current densities evaluated at the cold and hot side temperatures, uc = u (T = Tc) and uh = 

u (T=Th), the efficiency of a segmented or non-segmented leg can be found: 

 
𝑙𝑒𝑔

= 1 −
𝛼𝑐𝑇𝑐 +

1

𝑢𝑐

𝛼ℎ𝑇ℎ + 
1

𝑢ℎ

  (5.3) 

As for the segmented legs, leg is determined by an optimum interface temperature Tm. To simplify 

the issue, Tm is often sets to be the temperature where the material at the cold side reaches its 

maximum zT.  

For a typical n-p unicouple, the electric current through both elements is the same, but the relative 

contribution to the total heat flux is regulated by having different cross-sectional areas Ap and An 

(with Ap and An being the cross-sectional areas of p- and n-type legs, respectively). The maximum 

efficiency condition therefore requires a specific ratio of Ap/An to optimize the electric current of the 

unicouple. Assuming the n-element and the p-element have the same total length (l = lp = ln), the 
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ratio of the cross-sectional areas can be calculated by equating the total electric current (I = JpAp = - 

JnAn): 

 
𝐴𝑝

𝐴𝑛
=

−𝐽𝑛

𝐽𝑝
=

− ∫ 𝑢𝑛𝑛dT
Th

Tc

∫ 𝑢𝑝𝑝dT
Th

Tc

  (5.4) 

The electric current can be solved in term of the total area (Atotal = Ap + An): 

 𝐼 =
𝐴𝑡𝑜𝑡𝑎𝑙

𝑙


− ∫ 𝑢𝑛𝑛dT
Th

Tc
∫ 𝑢𝑝𝑝dT

Th
Tc

∫ 𝑢𝑝𝑝dT
Th

Tc
−∫ 𝑢𝑛𝑛dT

Th
Tc

  (5.5) 

The total voltage produced by a p-n unicouple can be computed by 

 𝑉 =
1

𝑢ℎ,𝑝
+ ℎ,𝑝𝑇ℎ −

1

𝑢𝑐,𝑝
− 𝑐,𝑝𝑇𝑐 +

1

𝑢ℎ,𝑛
+ ℎ,𝑛𝑇ℎ −

1

𝑢𝑐,𝑛
− 𝑐,𝑛𝑇𝑐 (5.6) 

The total electric power generation can then be determined by the relationship, W = IV. The total heat 

flowing through the p and n legs can be expressed as  

 𝑈𝑡𝑜𝑡𝑎𝑙 = 𝐼(𝑝𝑇 +
1

𝑢𝑝
− 𝑛𝑇 −

1

𝑢𝑛
) (5.7) 

Finally, the thermal-to-electric energy conversion efficiency can be obtained: 

  =
𝑊

𝑈𝑡𝑜𝑡𝑎𝑙 
 (5.8) 

As for the 3D modeling, the software COMSOL Multiphysics was used to solve the full 

thermoelectric equations on the specified geometry which includes p- and n-type legs, electrodes and 

substrates. The coupled differential equations describe the electrical current density, J, and the heat 

flux, JQ, as 

 −𝑱 = 𝜎∇𝑉 + 𝜎𝛼∇𝑇 (5.9) 

 𝑱𝑄 = −𝜅∇𝑇 + 𝑇𝛼𝑱 (5.10) 

In the equation (5.9) for J, the first term is Ohms law, while the second describes the Seebeck effect. 

In the equation (5.10) for JQ, the first term describes Fourier heat conduction, while the latter 

describes the Peltier effect. Both Joule heating and the Thomson effect are included in the model. 

The heat losses by conduction, convection and surface to surface radiation can also be included in the 

model as well as contact resistances [118].  

5.2.2 Calculation results 

From the measured data of (T), (T), and α(T), the efficiencies of non and segmented legs/TEGs 

can be calculated using the theoretical models described above. The materials for segmentation are 

selected based on figure of merit (zT) and compatibility factors (s). Fig. 5.1 shows the calculated 

results of zT, s, and absolute efficiency of non-segmented p-type HH, Ca349 and segmented 

HH/Ca349 materials. The zT value was determined to be 0.2 for the p-type Ca349 at 1100 K and 

0.65 for the Ti0.3Zr0.35Hf0.35CoSb0.8Sn0.2 (HH) at a temperature of 750 K as showed in Fig. 5.1a. The 

results of p-type materials prepared in this study are comparable with previous works reported for 

misfit-layered cobaltate Ca3Co4O9+ [44,115] and half-Heusler [75]. It can be seen from Fig. 5.1a that 

the zT of Ca349 has low value in the low-medium temperature regions, where HH alloy exhibits 

good zT. Therefore, the segmentation of Ca349 and HH is expected to exhibit high performance in 

wide temperature range. In addition, an advantage of using oxide Ca349 at the hot side is that it can 

help to protect the HH from oxidation and sublimation at high temperatures and possibly no 
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encapsulation is necessary for modules based 

on segmented HH/Ca349. However, in order 

to achieve higher thermal to electrical energy 

conversion efficiency the compatibility 

factor, s, of these materials has to be first 

considered [26,35,70]. From Fig. 5.1a, one 

can see that the compatibility factors of both 

HH and Ca349 slightly increased with 

increasing temperature, and they are within a 

factor of two. This implies that the 

segmented HH/Ca349 leg should provide a 

higher performance at a larger working 

temperature span [25]. Accordingly, the 

maximum conversion efficiency of the 

segmented HH/Ca349 leg  could attain a 

value of about 7.1%, which is about 2.5 

times higher than the single material Ca349 

(2.9%) - under the same hot side and cold 

side temperatures of 1173/300 K (as showed 

in Fig. 5.1b). The maximum efficiency of 

single HH can attain a value of 6.4% at the 

hot and cold side temperatures of 773/300 K. 

The results point out that the main 

contribution to the increasing performance of 

segmented HH/Ca349 leg is attributed to the 

high performace of HH in the low-mid 

temperature range. Consequently, a TEG 

comprising of segmented HH/Ca349 legs is 

expected to achieve higher power generation in comparision with the one using non-segmented legs. 

For many applications e.g. power generation from waste heat, finding the optimized  

thermoelectric generation efficiency from given TE materials is a crucial step which affects extrinsic 

properties such as geometry of p-n legs [120]. Fig. 5.2 displays the maximum efficiency of 4 p-n 

couples of STEG and NTEG modules as a function of Ap/An ratio with fixed Tc = 300 K, Th = 1173 K 

and 8 mm in length. In this calculation, we have assumed that the n-element and p-element have the 

same length and Ap is varied while An is fixed at 0.16 cm2, and contact resistances are neglected. As 

seen in Fig. 5.1c, the maximum efficiency of STEG increases sharply with increasing the Ap/An ratio 

reaching a maximum 2.7% at Ap/An = 2.4 and then decreases slowly above this value. As for the 

NTEG, the maximum efficiency attains 1.6% at Ap/An = 3.5. These results suggest that the STEG 

would be able to perform a maximum efficiency, which is 170% higher than the NTEG at their 

respective optimized Ap/An ratio. As seen from Fig. 5.2, a good agreement was obtained between the 

1D and the 3D modeling. When combining with n-legs of Zn0.98Al0.02O, both the STEG and NTEG 

have an efficiency of less than 3%. This is due to the fact that an n-Zn0.98Al0.02O leg could produce a 

Figure 5.1 (a)Temperature dependences of zT and s of p-type 

Ca349 and HH alloys. (b) Absolute efficiencies of p-type 

Ca349, HH and segmented HH/Ca349. 
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maximum efficiency of only 0.7% under the hot and cold side temperatures of 1173/300 K.  At the 

ratio of Ap/An = 1, the efficiency of STEG attains 2.3%, which is about 85% of the maximum value 

(2.7%) at the optimum Ap/An = 2.4. However, the total volume of TE legs with Ap/An = 1 (1.024 

cm3) is only 59% of the total volume of TE legs with Ap/An = 2.4 (1.74 cm3), suggesting that the 

capital cost might reduce due to the less amount of materials required. Therefore, we have chosen the 

ratio of Ap/An = 1 to build up and characterize the 4 p-HH/Ca349, n-Zn0.98Al0.02O couples modules. 

5.3 Experimental procedures 

5.3.1 Thermoelectric materials 

2%Al-doped ZnO platelets were synthesized using the nanoparticles as a seed by hydrothermal 

method at 368 K for 24 h in a solution of 0.49 M Zn(CH3COO)2•H2O, 0.01 M Al(NO3)3, (Zn/Al = 

98:2), 0.1 M NaOH, and 0.17 mM sodium citrate [18]. After hydrothermal process, the formed 

precipitates were centrifugally washed several times with de-ionized water and ethanol, and then 

dried in vacuum. Spark plasma sintering (SPS) system of Dr Sinter 515S (Syntex Inc., Japan) was 

used to consolidate the samples under the following conditions: constant uniaxial pressure of 50 

MPa; holding temperature of 1223 K; holding time of 8 min, Ar atmosphere, and a ramping rate of 

130 K/min. The details of this work could be seen elsewhere [61]. 

The p-type Ca3Co4O9 were prepared by the solid state reaction followed by a spark plasma 

sintering process. Powders of CaCO3 (99.99%) and Co3O4 (99.7%) were mixed, ball milled for 48 h 

in ethanol. The mixture was then dried and calcined in air at 1173 K for 24 hours. The obtained 

Figure 5.2 1D and 3D calculated efficiency as a function of the cross-

sectional area ratio Ap/An at Th/Tc = 1173/300 K for 4 couples of 

NTEG and STEG with Zn0.98Al0.02O as n-legs. 
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calcined powders were then pressed into pellets using SPS with optimized sintering conditions under 

a uniaxial pressure of 50 MPa at 1123 K for 5 min in vacuum.  

HH compound samples with the stoichiometric composition of Ti0.3Zr0.35Hf0.35CoSb0.8Sn0.2 were 

prepared by arc melting from the pure (99.999%) metals Ti, Zr, Hf, Co, Sb, and Sn under argon 

atmosphere. In the course of the arc melting, the samples were re-melted and turned over three times 

to ensure the homogeneity. The obtained ingots were milled in a high-energy ball milling station 

(PM-100; Retsch, Germany) for 5 h under a protective argon atmosphere. The powder was filtered 

through a 60-mesh sieve and then sintered using SPS at 1373 K for 20 min (heating/cooling rates of 

50 K/min) under a pressure of 50 MPa. 

Pellets of p- and n-type materials Ca3Co4O9, HH and 2% Al-doped ZnO were cut into bars of 

448 mm3, which were then characterized for their thermoelectric properties and used as legs for 

building modules.  

5.3.2 Segmentation 

To make segmentation, the obtained pellets of Ca349 and HH were cut, polished and then cleaned 

with acetone, isopropyl alcohol and deionized water and finally dried with nitrogen. As designed 

module can work at hot side temperature up to 1223 K with optimum interface temperature Tm = 773 

K and cold side temperature 300 K, the length of Ca349 and HH was calculated to be 4 mm for each 

with the negligible interface thermal resistance assumption. 150 µm thick Ag foil with a purity of 

99.99% was used as the standard joining material between the HH and the Ca349 while 400 µm thick 

Ag foil was used to make electrodes which coupled the n and the p-type materials. The brazing 

process was conducted in vacuum using a SPS under 20 MPa at 973 K for 10 min. The TE properties 

of both the p- and n-legs were also characterized after making the contacts, and the result (not shown 

here) confirmed that there is no significant change during the joining process. 

5.3.3 Module fabrication  

For TE modules fabrication, the Ag electrodes was first fabricated on top of two alumina substrates 

with the dimension of 21211 mm3 by hot-pressing at 1073 K for 2 h in air. The 21211 mm3 

substrate was chosen to fit the size of the graphite die used in a SPS process. A set of 4segmented p-

legs and 4 non-segmented n-legs was attached onto these designed substrates according to the 

configuration shown in Fig. 5.1c. The whole module was then placed in a graphite die and hot-

pressed at 973 K under a pressure of about 20 MPa in Ar atmosphere. 

5.3.4 Characterization 

Before and after sintering, the samples were examined by X-ray diffraction (XRD) on a Bruker 

D8 diffractometer (Bruker, Germany) using Cu-Kα radiation. The measurements of the electrical 

resistivity and the Seebeck coefficient were carried out on an ULVAC-RIKO ZEM-3 from room 

temperature up to 1200 K under a low-pressure helium atmosphere. The thermal conductivity (κ) was 

determined from the thermal diffusivity (γ), the mass density (ρ) and the specific heat capacity (Cp) 
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according to the equation κ = γρCp. The thermal diffusivity was obtained by the laser flash method 

(Netzsch LFA-457, Germany), the mass densities of the samples were measured by Archimedes’ 

method using water with surfactant, and the specific heat capacity was measured using a differential 

scanning calorimeter (Netzsch DSC 404C, Germany). 

Figure 5.3a presents a schematic configuration used to determine the interfacial contact resistance 

Rc by linear extrapolation of the resistance (R) vs. the distance of measuring probes (V0-1 to V0-4) and 

subsequent subtraction of the contribution from the alloy (VII-0, VI-0) between the probe lead and the 

interface. The contact resistance is actually the interface resistance, which is multiplied by the cross-

sectional area of the interface to give the area specific resistance of the interface (ASR). The 

experiments were conducted in steady gas flow from 300 K to 850 K for the n-type leg of doped 

ZnO/Ag and from 300 K to 1070 K for p-type leg of Ca349/Ag. Fig. 5.3b demonstrates the method 

for measuring the contact resistance between the different TE materials in a segmented leg using the 

ZEM-03. The contact resistance can be determined by measuring the electrical resistivity of 

individual Ca349 (V1) and HH (V3) materials and the resistance across the interface of the segmented 

HH/Ca349 materials (V2). By measuring the resistances of the segmented sample [V2(1,..4)] with 

various cross-sectional areas A(1,..4), the ASR is then calculated from the slope of the fitted R-1/A curve 

using the least-squares method.  

Microstructure of the contacts and joining part were observed by a scanning electron microscopy 

(SEM) TM3000. 

The power generation characteristics of STEG and NTEG were performed in air using an in-house 

Rig-test system. The I-V curves at different temperature gradients were automatically measured by 

sweeping the load resistance using an electronic load system. The designed measurement system is 

allowed to setup the measuring current range from 0 to 15 A with the minimum 1 mA step size, 

while the electronic load and shunt resistance are then applied and scanned until reaching a value 

closest the defined current together with measured voltage of TEG. The controlled software system 

Figure 5.3 Configurations of the electrical contact resistance measurement for the non-segmented leg (a) 

and the segmented leg (b). 
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was designed based on the Apache web server software (Open Source Software, OSS) which is able 

to have maximum flexible setting up of required measurements such as gas control, cycling and long-

term stability tests etc. In order to define the accurate temperature gradient, three 0.5 mm N-type 

thermocouples were attached on the Ag electrodes at the hot side and the cold side of module. The 

thermocouple at the hot side is also used as the process variable for the PID of the heater controller. 

The conditions of the measurement and their uncertainties are summarized in Table 1. The values 

of uncertainty are calculated in term of the mean value divided by standard deviation. For the 

maximum output power uncertainty is estimated from the uncertainties of the electric current and 

voltage [121]. 

 

Table 5.1 The experimental measurement conditions and uncertainty. 

Experiments Measurement conditions Uncertainty (%) 

TE properties 

Seebeck () Helium atmosphere 3-5 

Res. () Helium atmosphere 2-5 

Thermal cond. () Vacuum < 5 

Contact resistance 

(RC)* 

Leg-electrode Air 1-3 

Seg. leg HH/Ca349 Helium atmosphere 2-5 

Module 

NTEG 

& 

STEG 

Temp. 

Tc (< 450 K) Air 4.7 

Th Air 2.3 

Current (I) @ Pmax Air 0.2 

Voltage VOC Air 0.1 

V @ Pmax Air 1.2 

Pmax Air 1.21 

*The values excluded the geometric uncertainty. 
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5.4 Results and discussion 

5.4.1 TE properties of the materials 

Figure 5.4 shows the thermoelectric properties of a single p-type leg of HH and Ca349 as a 

function of temperature. For both p-type materials, the Seebeck coefficient () increased with 

increasing temperature (Fig. 5.4a). The  values of Ca349 were measured to be about 150 V/K at 

room temperature and 180 V/K at 1100 K. As for the HH alloys,  values increased from 160 to 

230 V/K as temperature increasing from room temperature to 700 K.  The power factor (=2/) of 

HH is about an order higher than that of Ca349. The thermoelectric properties of n-type 2% Al-

doped ZnO, the absolute Seebeck coefficient of n-type increased from about 40 V/K at room 

temperature to about 170 V/K at 1150 K. The power factor of the n-type materials increased with 

increasing temperature and reached a maximum value of about 1110-4 W/mK2 at 1150 K (Fig. 

5.4b). The total thermal conductivity (not shown here)  decreased with increasing temperature, and 

the κ values was 23 and 5 W/mK at room temperature and 1150 K, respectively. The calculated zT 

were determined to be 0.25 at about 1150 K. Thermoelectric properties of TE p and n-type in this 

work are reproducible and in good agreement with the other reported values of the same 

compositions [11,122].  

5.4.2 Interfacial Contacts 

In thermoelectric power generation devices, interfacial contact resistances are directly added to 

the TE module’s internal resistance, thus it strongly decreases the electric current, I, and the output 

power, P [30,123,124]. Therefore, the effect of contact resistance on output power cannot be 

neglected and must be taken into account. In this study, the interfacial contact resistance between 

Ag/Ca349, Ag/Zn0.98Al0.02O and HH/Ag/Ca349 have been characterized as a function of temperature, 

the obtained results are presented in Figure .5a-c. Fig. 5.5a-b plots the temperature dependence of 

Figure 5.4 Temperature dependence of the Seebeck coefficient and power factor of (a) p-type Ca349 and 

Ti0.3Zr0.35Hf0.35CoSb0.8Sn0.2 and (b) n-type 2% Al-doped ZnO. 
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contact resistance between Ag electrodes with p-

Ca349 and n-Zn0.98Al0.02O. The interfacial 

microstructure is shown through SEM images in 

the inset-figures. It can be seen that the Ag 

electrodes and the oxide materials have good 

adhesion at the interface. SEM and EDS analyses 

revealed that there are no obvious diffusion and 

secondary phase observed in the vicinity of those 

connections. Consequently, the obtained contact 

resistance values were found to be around 400 

µΩcm2, which are lower than the electrode using 

Fe22Cr [125]. Fig. 5.5c illustrates the contact 

resistance of segmented HH/Ag/Ca349. The 

contact resistance tends to decrease from 170 

µΩcm2 at room temperature to 100 µΩcm2 at 

1000 K. Measurement of contact resistance of 

the interface between HH and Ag electrode at 

room temperature showed that the contact 

resistance was as small as 5 µΩcm2. Therefore, 

the main contribution to the total contact 

resistance of the HH/Ca349 segment could be 

attributed to the contacts of the Ca349 with Ag. 

It can also be observed in Fig. 5.5c that the 

interfacial resistance exhibited an abrupt change 

in their temperature dependences at about 600 K. 

It might be associated with a first-order 

transition of Ca3Co4O9+ [125]. 

5.4.3 Power generation characteristics of the 

modules 

The power generation of module is expected to 

improve by using segmented legs as predicted in 

the modeling part. However, in a realistic working 

condition there are many factors which effect the 

output power of modules such as heat losses, 

contact resistances, heat transfer, etc. In order to 

demonstrate the influence of segmentation in 

TEG, two type of 4 p-n couples modules STEG 

(p-segmented HH/Ca349, n-2% Al-doped ZnO) and NTEG (p- pure Ca349 and 2% Al-doped ZnO as 

n-legs) were prepared, tested and compared. Figure 5.6a-b shows the power generation 

characteristics of NTEG and STEG at various applied temperature gradients. As expected, both 

voltage-current V (I) and output power-current P (I) show the same tendency of increasing value as 

Figure 5.5 (a) Contact resistance of, Ag electrode 

with Ca349, (b) Ag electrode with 2% Al doped ZnO, 

(c) the contact resistance of HH/Ag/Ca349 was 

extracted from sandwich structure and single 

component Ca349 and HH. 
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the temperature increases. At the highest applied temperature difference (T
h
/T

c
 = 1173 K/473 K), 

T  700 K, the measured open circuit voltage (VOC) of the NTEG was found to be 677 mV, and the 

voltage decreased linearly with increasing current. The measured maximum output power reached a 

value of 256 mW at a current of 742 mA and a voltage of 345 mV (Fig. 5.6a). As for the STEG, the 

measured maximum output power attained 829 mW at T  700 K which is three times higher than 

that of NTEG.  

In order to understand the sources that influence on the obtained experimental results, we have 

conducted theoretical calculations of the power generation characteristics of the TEGs under ideal 

conditions i.e. no heat losses or contact resistances (electrical or thermal). The relationship between 

the open-circuit voltage VOC and the Seebeck coefficients of the TE materials forming the module 

can be then expressed as [7]: 

 VOC = n ∫ {p(T) − n(T)}dT
Th

Tc
  (5.11) 

where Th and Tc are the hot and the cold side temperatures, n is the number of p-n couples, p and n 

are the Seebeck coefficients of p- and n-type legs, respectively. One should note that, the 

thermocouples used to measure the temperature were placed on surface of Ag electrodes and their 

thermal contact resistance was assumed to be small. Therefore, the VOC values measured are well 

reflecting the actual temperature span across the TE legs. At a temperature gradient of about 700 K, 

the calculated VOC for non-segmented TEG was 685 mV, which is very close to the experimental 

value of 677 mV. 

As for the STEG, formula (11) can be rewritten as: 

 VOC = 𝑛 ∫ 𝐶𝑎349(𝑇)dT
Tℎ

T𝑚
+ 𝑛 ∫ 𝐻𝐻(𝑇)dT

Tm

T𝑐
− 𝑛 ∫ n(T)dT

Tℎ

T𝑐
  (5.12) 

Where Tm is the temperature at the connection junction. The Tm can be determined by the continuity 

of the heat flux at the junction, which yields [126]: 

 Ca349(Th − Tm) + Ca349TI = HH(Tm − Tc) + HHTI  (5.13) 

In case of the open circuit voltage the Tm can be obtained by: 

 Tm =
Ca349Th+HHTc

Ca349+HH
 (5.14) 

The Tm was found to be 735 K, and the calculated VOC of segmented was 768 mV which is slightly 

Figure 5.6 Voltages and output power for the 4 p-n couples NTEG (a) and STEG (b) as a function of current under 

different temperature gradient. 
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higher than the measured value 765.7 mV. At the same temperature difference, T  700 K, the 

measured VOC of STEG is 100 mV larger than the VOC of NTEG indicating that the voltage of TEG is 

improved by using HH segmentation. 

The magnitude of the output current, I, is proportional to the sum of the internal resistances of the 

module Rint and the external resistive load RLoad and it is given by [7]: 

 I =
VOC

Rint+RLoad
  (5.15) 

where Rint = Rlegs + RC  is the sum of the resistances of the p-n legs without metal electrodes Rlegs and 

the total contact resistance RC, which includes the contact resistances at the joining part of segmented 

leg, the hot-side junction and the cold-side junction.  

The power output of the module as a function of VOC and the total resistance is given by 

 P = I2RLoad = VOC
2 [

RLoad

(Rint+RLoad)2] (5.16) 

It is clear from Eq. (5.11), (5.12), (5.15) and (5.16) that the power output of the module is dependent 

on the Seebeck coefficient, the internal resistance and the external load resistance. The maximum 

power output (PMax) occurs when the external load resistance is equal to the internal resistance. To 

generate a thermoelectric module at its maximum power output, the load resistance needs to be 

continuously adjusted to match the internal module resistance.  

 𝑃𝑀𝑎𝑥 =
𝑉𝑂𝐶

2

4𝑅𝑖𝑛𝑡
  (5.17) 

This resistance can vary greatly with temperature due to the temperature dependences of the 

resistivity of the TE materials itself as well as the temperature dependence of the total contact 

resistances. It is obvious that the smaller the internal resistance, the higher the maximum output 

power can be obtained. 

In order to give a quantitative evaluation to the results, the internal resistances of the modules 

(Rint) were also calculated from the slope of the fitted I-V curve using the least-squares method. The 

obtained result shows that at a T  700 K, the Rint of the NTEG and STEG were found to be 

approximately 447 and 177 m, respectively. Since the electrical resistivity of the HH is much lower 

than the Ca349 in the temperature range of 473 K to 735 K, the total Rlegs of the STEG (135 m) was 

subsequently reduced by 65% as compared to the NTEG (199 m). When combining the higher 

Seebeck coefficient and lower internal electrical resistance, the maximum output power of the STEG 

attained a value of 829 mW, which is about three times higher than that of the NTEG counterpart, as 

clearly shown in Fig. 5.7a. 

At T  700 K, the power density (maximum power output divided by the total area of the TE 

legs) attained about 650 mW/cm2, which is higher than any reported values of the high temperature 

oxide modules (see Table 5.2). In order to have a fair comparison in Table 5.2, only the modules 

comprising of at least 4 p-n couples were selected. The power density can also be expressed as output 

power divided by the total area of the module; in this case, the value is  200 mW/cm2 for our STEG. 

However, in the literature ones often do not report the actual dimension of their modules, making it 

difficult to compare the results. The obtained results indicate the advantages of using STEG for 

effective power generation from waste heat recovery where the required device has to work at a high 

temperature and in oxidizing conditions. 
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Table 5.2 The power generation characteristics of oxide-based thermoelectric modules reported in literatures. 

In practical applications, the contact resistances (electrical and thermal contact resistances) and 

the heat losses (radiation, convection and conduction) are strongly influence on the modules 

performance, particularly under operation in air and at high temperature [14,30,124,128–130]. 

Therefore, 3D numerical modeling was used to evaluate the effects of these losses on the 

performance of STEG and NTEG [118].  The efficiency as a function of current has been calculated 

for different cases and the results are also given in Fig. 5.7b. The maximum calculated efficiencies 

including heat losses and contact resistances were found to be 1.16% for the STEG and 0.37% for the 

NTEG. The model provides the opportunity to study the influence of the contact resistance as well as 

the heat loss on the efficiency. For the STEG without contact resistance the model predicated an 

efficiency of 1.51%, while excluding contact resistance and heat loss the efficiency can be as high as 

Ref. Year Materials 
No. p-n 

couples  

Jointing 

technique 

Thot  

(K) 

ΔT 

(K) 

V0 

(V) 

Pmax 

(mW) 

Legs-

size 

(mm) 

Power 

Density 

(mW/cm2) 

[13] 2001 

p-Ca2.7Bi0.3Co4O9 

n-

Ca0.92La0.08MnO3 

8 Pt paste 773 390 0.9 63.5  33 44.1 

[14] 2006 
p-Ca2.7Bi0.3Co4O9 

n-La0.9Bi0.1NiO3 
140 Ag paste 1072 551 4.5 150 

1.31.3

5 
31.7 

[5] 2006 
p-NaCo2O4 

n-Zn0.98Al0.02O 
12 

Diffusion 

welding 
839 462 0.8 58 3410 20.1 

[16] 2006 

p-Ca2.7Bi0.3Co4O9 

n-

CaMn0.98Mo0.02O3 

8 Ag paste 897 565 1 170 554.5 42.5 

[7] 2007 
p-NaCo2O4 

n-Zn0.98Al0.02O 
12 

Diffusion 

welding 
934 455 0.8 52.5 3410 18.2 

[17] 2007 

p-Ca2.7Bi0.3Co4O9 

n-

CaMn0.98Mo0.02O3 

8 Ag  1273 975 0.7 340 554.5 85 

[18] 2011 
p-Ca3Co4O9 

n-(ZnO)7In2O3 
44 Ag paste 1100 673 1.8 423 1515 27  2.1 

[127

] 
2013 

p-

Ca2.76Cu0.24Co4O9 

n-Ca0.8Dy0.2MnO3 

4 Ag paste 937 321 
0.2

8 
31 79 25 6.2 

[9] 2014 
p-Ca3Co4O9 

n-Zn0.98Al0.02O 
6 Ag 773 248 0.12 2.26 4410 1.2 

This work 

p-Ca3Co4O9 

n-Zn0.98Al0.02O 
4 Ag 

117

3 
700 0.67 256 448 200 

p-HH/Ca3Co4O9 

n-Zn0.98Al0.02O 
4 Ag 

117

3 
700 0.76 829 448 650 
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1.80%. From, these results it is clear that the 

overall efficiency of the STEG is reduced due 

to the combined effect caused by the contact 

resistances and the heat loss. This illustrates 

the need for reducing the contact resistance 

and the heat losses in TEG in general and in 

these modules in particular.  

Besides the high output performance, the 

long-term stability also plays a very 

important role in the practical application. 

Figure 5.8 exhibits the initial long-term 

stability test of our STEG, which was 

conducted in air while maintaining the hot 

side at 1073 K and the cold side at 444 K. 

These results revealed that the output power 

of the module was relatively stable in air up 

to 48 hours with a slight degradation rate of approximately 0.5 mW/h. After 48 h, the maximum 

output power of STEG was degraded about 4%. The decreasing may be associated with the changing 

of interfacial contact resistance at the hot side of the oxides with electrodes. However, the further 

investigations are needed to elucidate the source of this effect.   

 

Figure 5.7 The open voltage and maximum output power of NTEG and STEG as a function of temperature 

differences, T. Inserted photos showing the actual segmented and non-segmented modules. (b) 3D modeling 

results used experimental measurement data of STEG with and without heat losses (Qloss) and total contact 

resistances (Rc) at hot and cold side temperatures of 1173/473 K. 

Figure 5.8 The long term stability test of STEG in air at hot 

and cold sides of 1073/444 K. 
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5.5 Conclusions  

In conclusion, a high temperature segmented thermoelectric oxide-based module comprising of p-

legs segmentation of Ti0.3Zr0.35Hf0.35CoSb0.8Sn0.2 and the misfit-layered cobaltate Ca3Co4O9+, and n-

legs 2% Al-doped ZnO has been successfully fabricated and tested for the first time. The 

enhancement of output power generation was originated from the half-Heusler alloy with higher 

thermoelectric performance in the low-to-mid temperature range comparing with oxides. The high 

performance of the STEG also benefitted from the reduction in the total internal resistance of module 

due to the low contact resistance between the half-Heusler alloy and the Ag electrodes.  At a hot side 

temperature of 1173 K corresponding to a temperature gradient of about 700 K, the maximum power 

density of the module reached 650 mW/cm2, which is among the highest values reported so far for 

oxide-based modules. Using the 3D numerical modeling in combination with the experimental data 

we found that the efficiency of the STEG (1.16%) was significantly improved as compared with the 

NTEG (0.37%). Initial long-term testing showed that a segmented oxide module is a promising route 

for power generation e.g. from waste heat at high temperatures.  
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Chapter 6 High performance p-type segmented leg of misfit-layered cobaltite 

and half-Heusler alloy   

Abstract 

In this study, a segmented p-type leg of the doped misfit-layered cobaltite Ca2.8Lu0.15Ag0.05Co4O9+ 

and the half-Heusler Ti0.3Zr0.35Hf0.35CoSb0.8Sn0.2 alloy was fabricated and characterized. The 

thermoelectric properties of single components, segmented leg, and electrical contact resistance of 

the joint part were measured as a function of temperature. The output power generation 

characteristics of segmented legs were characterized in air under various temperature gradients, T, 

with the hot side temperature up to 1153 K.  At T  756 K, the maximum conversion efficiency 

reached a value of 5%, which is about 65% of that expected from the materials without parasitic 

losses. The long-term stability investigation over two weeks at the hot and cold side temperatures of 

1153/397 K shows that the segmented leg has good durability as a result of stable, low electrical 

resistance contacts. 
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6.1 Introduction 

Thermoelectric (TE) power generation devices are offering environmentally friendly power 

generation from waste heat, and hence have attracted increasing interest in the last two decades as an 

advanced technology for renewable energy [3,50,99]. Improvements of the efficiency and the 

durability of the thermoelectric materials have long been the major focused topics. To enhance heat 

to electricity conversion efficiency, studies on thermoelectrics have been aiming at raising the value 

of the TE material figure-of-merit, zT = α2T/(.), where α,  and  are the Seebeck coefficient, the 

electrical resistivity and the thermal conductivity, respectively, and T is the absolute temperature. 

With increasing value of zT, a higher maximum device energy conversion efficiency ηmax, which can 

be expressed as   

   
𝑚𝑎𝑥

=
𝑇ℎ−𝑇𝑐

𝑇ℎ

√1+𝑧𝑇̅−1

√1+𝑧𝑇̅+
𝑇𝑐
𝑇ℎ

 (6.1) 

is expected. Th is the hot side temperature and Tc is the cold side temperature, 
𝑇ℎ−𝑇𝑐

𝑇ℎ
 is known as the 

Carnot efficiency, and 𝑇̅ =
𝑇ℎ+𝑇𝑐

2
. However, each TE material exhibits their best performance in 

different temperature range. For p-type TE materials, Bi2Te3 [3] works the best in the low 

temperature range from 300 to 450 K, while half-Heusler alloys [8,75], PbTe [131], Zn4Sb3 [74] and 

MnSi [38] operate in the mid-temperature range from 450 to 800 K and oxide materials [11], Zintl 

compounds [132], SiGe [79] are in the high temperature range from 800 to 1200 K. Therefore, a 

thermoelectric power generator (TEG) constructed from single materials is limited to a particular 

operation temperature range, which is determined by the type of materials used [3,133]. In this 

context, a segmentation of different thermoelectric materials shows their best performance in 

different temperature ranges has been demonstrated as one of the most effective methodologies to 

achieve high thermoelectric efficiency [8,25,28,34,70]. By this way, a segmented leg can operate 

with its highest efficiency in specific wide temperature range. 

Under high temperatures (>750 K) in air, oxide TE materials could be one of strong candidate due to 

their chemical stability, low-cost and abundant source in comparing with intermetallic compounds 

[11,53,55]. Among p-type polycrystalline TE oxide materials, the doped layered-cobaltite 

Ca2.8Lu0.15Ag0.05Co4O9+ (CCO) material could attain a peak zT = 0.61 at 1100 K [44]. This material 

also shows a very good durability over many thermal cycles in air at high temperature [44]. 

However, like other TE oxide materials, CCO only shows good performance in the high temperature 

range. Although many modules have been fabricated and characterized using a different combination 

of p and n-type of TE oxide materials such as p-type Ca3Co4O9 and n-type CaMnO3 or ZnO [8–11], 

or p-type NaCo2O4 and n-type  ZnO [15], the estimated conversion efficiencies are still lower than 

3%. 

It is seen from equation (6.1) that besides the zT, the conversion efficiency can also be significantly 

increased as the operating temperature increases. With the purpose of making a low-cost, high 

performance and high-temperature TE segmented leg, CCO is chosen as hot side material to combine 

with other materials. However, in order to achieve an improved efficiency segmented TE leg, the 
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materials to be segmented must have a difference in compatibility factors (𝑠 =
√1+𝑧𝑇−1

𝑇
) within a 

factor of two according to the concept suggested in Refs. [25,26].  

In this work, the segmentation of p-type the half-Heusler Ti0.3Zr0.35Hf0.35CoSb0.8Sn0.2 (HH) and the 

Ca2.8Lu0.15Ag0.05Co4O9+ (CCO) is selected based on the calculation results of the compatibility factor 

and total conversion efficiency. The p-type segmented HH/CCO legs were then fabricated, and their 

thermoelectric properties, as well as electrical contact resistances between the two parts of the legs, 

were investigated as a function of temperature. The performances i.e. the output power and efficiency 

of the segmented legs, were measured at different temperature span with hot side temperature up to 

1153 K. The influence of the contact resistance on the total conversion efficiency was evaluated, and 

correlated with the calculated results.  

6.2 Modeling   

6.2.1 Calculation model  

With the purpose of evaluating the efficiency of non-segmented and segmented TE elements, a one-

dimensional (1D) model of the thermoelectric legs is used [8,24]. This model takes into account all 

thermoelectric effects i.e. the Peltier, Seebeck and Thomson effects, as well as heat conduction, Joule 

heating and the temperature dependence of the resistivity, (T), thermal conductivity (T) and 

Seebeck coefficient, α(T). In these calculations, the efficiency of segmented and non-segmented TE 

elements were calculated under the ideal conditions, i.e. neglecting all the heat losses, and thermal 

and electrical contact resistances. The calculations can, therefore, be considered as an upper limit for 

the actual obtainable efficiency in experiments. The 1D model solves for the reduced current density 

u (= J/κ), which is defined as the ratio between the electrical current density (J) and the heat flux 

by conduction. The u values at any temperature can be determined by solving the following 

differential equation 

 
𝑑𝑢

𝑑𝑇
= 𝑢2𝑇

𝑑𝛼

𝑑𝑇
+  𝑢3𝜌𝜅,  (6.2) 

with an approximate recursive solution [24]. The differential equation is valid for both non-

segmented and segmented legs if – for the latter – the material properties are changed from one 

material to another at a particular known interface temperature (Tm) where the segments meet. The 

reduced current densities at the various temperatures can be calculated by numerical method using 

the following equation:  

 
 1

𝑢𝑛
 =  

1

𝑢𝑛−1
 √1 − 2𝑢𝑛−1

2 𝜌𝜅̅̅̅̅ ∆𝑇 – 𝑇̅∆𝛼, (6.3) 

here, ∆𝛼 = 𝛼(𝑇𝑛) − 𝛼(𝑇𝑛−1) and 𝜌𝜅̅̅̅̅ = [𝜌(𝑇𝑛)𝜅(𝑇𝑛) + 𝜌(𝑇𝑛−1)𝜅(𝑇𝑛−1)]/2. From u values, the total 

(leg) efficiencies of a segmented or non-segmented leg can be calculated using the following 

expressions: 

 
𝑙𝑒𝑔

= 1 −
𝛼𝑐𝑇𝑐 +

1

𝑢𝑐

𝛼ℎ𝑇ℎ + 
1

𝑢ℎ

  (6.4) 
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As can be seen from equation (6.4) that the 

efficiency values of the leg are defined by u(T) 

which calculated in term of temperature 

dependent thermoelectric properties i.e. Seebeck 

coefficient, thermal conductivity and electrical 

conductivity.   

For a situation where the dimensions of the legs 

are fixed, i.e. the length (l) and the cross-

sectional area, the current density can be 

calculated in term of u and κ along the leg.  

𝐽 =
1

𝑙
∫ 𝑢dT

𝑇ℎ

𝑇𝑐
  (6.5) 

The total electric power density then can be 

determined by using the following expression Pd 

= JV, where voltage can be expressed as [24,26]: 

𝑉 =
1

𝑢ℎ
+ ℎ𝑇ℎ −

1

𝑢𝑐
− 𝑐𝑇𝑐 (6.6) 

6.2.2 Efficiency of single materials and 

segmented legs 

According to Snyder [25], the compatibility 

factors of the prospective materials should be 

within “a factor of two” to obtain high efficiency 

of a segmented leg. Fig. 6.1a shows the figure-

of-merit of some typical p-type TE materials in 

the temperature region from 300 to 1200 K. For 

temperatures above 750 K, SiGe [79] and 

Yb14MnSb11 [132] are the potential candidates 

which show high TE performance (zTmax  1). 

However, TEGs based on these materials often 

require a complex processing in inert gas or 

vacuum, followed by encapsulation of the legs to 

protect them against oxidation at high 

temperature in air [83,84,128]. In contrast to 

conventional metallic alloys, the CCO oxide can 

be processed in air, and its high-temperature 

stability in air has been demonstrated [44]. In 

addition, the bulk material cost of CCO is only 

1.2 $/mol, which is much lower than that of e.g. 

147 $/mol for Si80Ge20 and 19000 $/mol for 

Yb14MnSb11. Bulk material cost is the costs of all 

precursors and the manufacturing cost that require for producing 1 mol bulk material. The prices of 

precursors are taken from Alfa Aesar [89]), while the manufacturing costs are followed the data 

Figure 6.1 Selected dimensionless figure-of-merit zT 

of state of the art p-type TE materials, (b) 

temperature dependence of compatibility factors of 

MnSi, HH and CCO. (c) Calculated efficiency of 

single CCO, HH and segmented HH/CCO. 
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reported by LeBlanc et al. [90].  With above reasons, CCO has been chosen as key material for the 

high temperature (above 750 K) part of the segmentation. In order to achieve high performance over 

a large temperature range, ideally, CCO should combine with materials that have high performance 

in the low-mid temperature range. At a temperature below 750 K, the PbTe [131], Zn4Sb3 [74], HH 

[8] and MnSi [38] are the potential candidate materials showing high TE performance. However as 

can be seen from Fig. 6.1b, although the PbTe and the Zn4Sb3 have high peak zT values their 

compatibility factors are more than two times larger than that of CCO, pointing out that they are 

incompatible. The only compatible materials with the CCO are the HH and the MnSi, which lie 

within a factor of two. In this study, we have chosen the HH for the reason that its compatibility 

factors are more closer to the CCO (Fig. 6.1b) than those of  MnSi. In addition, the average zT is 

higher for the HH (0.43) than for the MnSi (0.36) over the same temperature range. Fig. 6.1c shows 

the calculated efficiency for CCO, HH and segmented HH/CCO legs. The maximum efficiency of 

segmented HH/CCO leg attained a value of 9.1%, which is about 60% higher than the single material 

CCO (5.3%) under the temperature difference of 1173/300 K (Fig. 6.1c). Since the HH alloys can not 

be sustained at higher temperature due to sublimation and oxidation, its maximum efficiency could 

only reach a value of 6.4% at hot and cold side temperatures of 773/300 K. Therefore, the segmented 

HH/CCO legs are expected to have higher performance in comparison with the non-segmented legs 

as a result of increasing zT and larger temperature span. 

6.3 Experimental procedures 

6.3.1 Materials preparation and characterization 

Polycrystalline samples of Ca2.8Lu1.5Ag0.05Co4O9+δ (CCO) were synthesized by solid-state 

reaction. Commercial precursors of CaCO3 (99.5%), Co3O4 (99.7%), AgNO3 (99.9+ %) and Lu2O3 

(99.9%) with appropriate ratio were thoroughly mixed by ball milling with ethanol for 36 h. The 

mixtures were dried and then calcined at 1203 K for 48 h in air with an intermediate grinding 

procedure. The calcined powder was densified using spark plasma sintering (SPS) system (SPS-515S 

Syntex Inc., Japan). The samples were heated to 1123 K, while a uniaxial pressure of 50 MPa was 

applied for 5 min. The details of this work could be seen elsewhere [44]. 

HH compound samples with the stoichiometric composition of Ti0.3Zr0.35Hf0.35CoSb0.8Sn0.2 were 

synthesized by arc melting of the pure (99.999%) metals Ti, Zr, Hf, Co, Sb, and Sn under argon 

atmosphere. In the course of the arc melting, to ensure the homogeneity of the samples, samples were 

re-melted and turned over three times. The synthesized ingots were milled for 4 h at 700rpm in a 

high-energy ball milling station (PULVERISETTE 7 premium line, Fritsch, Germany) under a 

protective argon atmosphere. The powder was then filtered through a 60-mesh sieve and spark 

plasma sintered at 1373 K for 20 min (heating/cooling rates of 50 K/min) under mechanical pressure 

of 50 MPa. 

Before and after sintering, the samples were examined by X-ray diffraction (XRD) on a Bruker 

D8 diffractometer (Bruker, Germany) using Cu-Kα radiation. The measurements of the electrical 

resistivity and the Seebeck coefficient were carried out on a ULVAC-RIKO ZEM-3 from room 
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temperature up to 1200 K under a low-pressure helium atmosphere. The thermal conductivity (κ) was 

determined from the thermal diffusivity (γ), the mass density (ρ) and the specific heat capacity (Cp) 

according to the equation κ = γρCp. The thermal diffusivity was obtained by the laser flash method 

(Netzsch LFA-457, Germany), the mass densities of the samples were measured by Archimedes’ 

method using water with a surfactant, and the specific heat capacity was measured using a 

differential scanning calorimeter (Netzsch DSC 404C, Germany). Scanning electron microscope 

(SEM, Supra; Carl Zeiss, Inc., Germany) was used to observe the microstructures of the samples. 

6.3.2 Segmented legs fabrication and characterization 

For the fabrication of segmented legs, the obtained pellets of CCO and HH were cut, polished and 

then cleaned with acetone, isopropyl alcohol and deionized water and finally dried with nitrogen gas. 

As designed, the segmented HH/CCO leg can work at hot side temperature up to 1173 K with 

interface temperature Tm = 773 K and cold side temperature 300 K, the lengths of CCO and HH were 

calculated to be 2 and 4 mm, respectively. 150 µm thick Ag foil with a purity of 99.99% was used as 

the joining material between the HH and the CCO while 600 µm thick Ag foil was used to make 

electrodes. Brazing joining process was conducted in a vacuum using the SPS under 20 MPa at 973 

K for 10 min to achieve a good contact between the two materials. 

The electrical contact resistance is the interface resistance, which is multiplied by the cross-sectional 

area of the interface to give the area specific resistance of the interface (ASR). Fig. 6.2a demonstrates 

a method for measuring the contact resistance between the different TE materials in a segmented leg 

using the ZEM-03. The contact resistance can be determined by measuring the electrical resistivity of 

individual TE and v3) materials (v1 and the resistance across the interface of the segmented materials 

(v2). By measuring the contact resistances of the sample with various cross-sectional areas (AR), the 

ASR is then calculated from the slope of the fitted R-1/AR curve using the least-squares’s method. 

The power generation characteristics of the segmented legs were performed in air using an in-house 

Rig-test system. The I-V curves at different ∆T were automatically measured by sweeping the current 

from 0 to 15 A with a minimum step of 1 mA. The controlled software system is based on Apache 

web server software (Open Source Software, OSS) and allow flexibility with regard to the type gas 

control, cycling, long-term stability tests, etc. In order to define the accurate temperature difference 

(a) 
v1 

v2 

v3 

I+ 

HH 

Ca3Co4O9 

(b) 

Figure 6.2 (a) Schematic configuration of the voltage probes along the segmented leg. (b) Images of the fabricated 

segmented HH/CCO legs. (c) Schematic of the long-term stability measurement configuration using test Rig system. 
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across the leg, 0.5 mm n-type thermocouple was directly inserted inside the Ag electrodes at the 

vicinity of the top part of the leg. The thermocouple at the hot side is also used for setting up the PID 

of the heater controller (Fig. 6.2b). To minimize the heat losses during the test, the heater was 

covered by a thick layer of silica felts. 

6.4 Results and discussion 

6.4.1 Electrical properties of single and segmented legs 

In thermoelectric power generation devices, the magnitude of the measured electrical current is 

inversely proportional to the total electrical resistivity of the TE leg including their interfacial 

electrical contact resistance. For a segmented TE leg, the total contact resistance usually increases 

due to the increasing number of interfaces. Therefore, minimizing the electrical contact resistance 

between joined materials is of prime important in the module construction process. 

Fig. 6.3a shows the temperature dependence of the electrical resistivity of CCO, HH, and segmented 

HH/CCO legs. As expected, the HH samples revealed a metallic conduction behavior while the CCO 

sample displayed a semiconductor-like electrical resistivity. As can be seen from this figure, the 

electrical resistivity of CCO is higher by a factor of eight compared with the HH in the low 

temperature range. Unsurprisingly, the electrical resistivity of segmented HH/CCO is between the 

electrical resistivity of CCO and HH. The experimental result exhibited the same tendency with the 

calculated one. The difference between these curves could be attributed to the interfacial electrical 

contact resistance at joint part of HH/Ag/CCO. Fig. 6.3b displays the contact resistance of the joint 

part as a function of temperature. Over measured temperature range, the contact resistance values are 

around 100 µΩcm2, which is lower than the previously reported values of 800 µΩcm2 for the 

electrical contacts of pure Ca3Co4O9+ with Fe22Cr electrode [125]. There is no crack or gap could be 

observed at the interfaces between HH and CCO with Ag (see Fig. 6.3b inset). In addition, EDX 

Figure 6.3 (a) Temperature dependence of the electrical resistivity of CCO, HH, and segmented HH/CCO. Star 

symbol curve denotes the calculated electrical resistivity. (b) The electrical contact resistance of joint interface 

HH/Ag/CCO as a function of temperature, inset SEM picture of HH/Ag/CCO. 
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analysis at the interfacial region (not shown here) revealed that there is no reaction or significant 

diffusion layer. These observation may explain for the lower measured interfacial contact resistance 

than that reported in [30] with Fe22Cr electrode. Measurement of the contact resistance of HH/Ag at 

room temperature revealed that the electrical contact resistance is in the order of 5 µΩcm2, 

suggesting that the contact resistance at the cold side of HH/CCO segmented leg is small. The total 

electrical resistance of the TE leg is the sum of the resistances of the TE materials Rlegs without silver 

electrodes and the total contact resistance RC, which includes the contact resistances at the joining 

part, the hot and the cold side junctions. At hot and cold side temperatures of 1173/300 K, the ratio of 

RC/Rlegs is about 0.08. These results indicate that the Ag brazing is an effective way to achieve low 

electrical contact resistance.  

6.4.2 Thermopower at small and large ∆T  

For the thermoelectric modules 

construction, it is important that the TE 

properties of a single or segmented leg 

can be maintained after the joining 

process. Therefore in this work, the TE 

properties as a function of temperature 

of joined segmented legs of HH/CCO as 

well as single HH and CCO were 

carefully characterized. Fig. 6.4a shows 

the temperature dependence of the 

Seebeck coefficient () of the single 

CCO, HH and the segmented HH/CCO 

legs. For both the single and segmented 

samples, the Seebeck coefficient () 

increased with increasing temperature 

(Fig. 6.4a). The  values of CCO were 

measured to be about 150 V/K and 235 

V/K at room temperature and 1140 K, 

respectively. As for the HH alloys,  

increased from 160 to 230 V/K as the 

temperature increased from room 

temperature to 700 K. In the segmented 

HH/CCO, the  values were in between 

the values of two single components. 

The intrinsic  value of segmented leg 

can be expressed via single components 

as [126]: 

  

Figure 6.4 (a) Temperature dependence of Seebeck coefficient of 

CCO, HH, segmented HH/CCO legs at small temperature 

gradient. (b) The calculated and experimental total Seebeck 

coefficient of the segmented leg HH/CCO under large 

temperature gradient. 
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 𝑠𝑒𝑔 =
∆𝑉

∆𝑇
=

𝐻𝐻𝐻𝐻+CCOCCO

𝐻𝐻+CCO
 (6.7) 

 

Where seg is the Seebeck coefficient of the segmented HH/CCO leg, HH, HH, CCO, CCO are 

thermal conductivity, Seebeck coefficient of HH alloys, thermal conductivity and Seebeck coefficient 

of CCO, respectively. In the calculation of seg using equation (6.7), the thermal contact of CCO and 

HH with silver filler was neglected. The measured seg is in good agreement with the calculation 

although there is a small fluctuation in the temperature range from 550 to 700 K (Fig. 6.4a). These 

results indicated that the silver brazing at the interface preserved the intrinsic thermopower of the 

segments at small temperature difference.  

Fig. 6.4b shows the calculated and experimental open circuit voltage (∆Voc) of the segmented leg 

HH/CCO at various temperature differences (∆T). It can be seen that the open circuit voltage 

increased rapidly with increasing ∆T. The experimental and calculated ∆Voc curves are well fit, 

suggesting that thermal contact resistance at the interfaces as well as the heat loss through the 

segmented leg are very small. The relationship between the open-circuit voltage ∆Voc and the  value 

of the single TE material can be then expressed as [7]: 

 ∆𝑉𝑜𝑐 = ∫ (𝑇)𝑑𝑇
𝑇ℎ

𝑇𝑐
 (6.8) 

Where Th and Tc are the hot and cold side temperatures, respectively. As for the segmented leg, 

equation (6.8) can be rewritten as: 

 ∆𝑉𝑜𝑐−𝑠𝑒𝑔 = ∫ CCO(𝑇)dT
Tℎ

T𝑚
+ ∫ 𝐻𝐻(𝑇)dT

Tm

T𝑐
 (6.9) 

where Tm is the temperature at the connection junction. In case of the open circuit voltage the Tm can 

be determined by the conservation of the heat transfer at the junction. The one-dimensional the heat 

flow equation, q, can be expressed as Fourier's law: 

 𝑞 =  
∆𝑇

𝑙
𝐴   (6.10) 

Where A is the cross-sectional area and l is the length of the TE leg. Tm can then be obtained as: 

 𝑇𝑚 =
𝐶𝐶𝑂𝑇ℎ𝑙𝐻𝐻+𝐻𝐻𝑇𝑐𝑙𝐶𝐶𝑂

𝐶𝐶𝑂𝑙𝐻𝐻+𝐻𝐻𝑙𝐶𝐶𝑂
  (6.11) 

Th, Tc, lHH and lCCO are the hot side temperature, the cold side temperature, the length of HH and the 

length of CCO, respectively. Under the highest hot side temperature of 1153 K and cold side of 397 

K, Tm is found to be 737 K, and the calculated ∆Voc-seg of the segmented leg was 160 mV that is 

almost the same as the measured value of 158.6 mV. The measured data of ∆Voc-seg (blue open circle) 

exhibits similar tendency with the calculated line (red solid line). This result again suggests that the 

silver brazing is a suitable material for joining between semi-metal (HH) and oxide materials (CCO).  

6.4.3 Power generation characteristics 

Fig. 6.5a exhibits the experimental results on the voltage V and output power density Pd depended 

on the current density J of the segmented HH/CCO leg at various applied temperature gradients. As 

can be seen, both V and Pd present the same tendency of increasing values as the temperature 

gradient increases. At the highest applied temperature difference T = 756 K (T
h
/T

c
 = 1153 K/397 
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K), the measured open circuit voltage (Voc ≡ ∆Voc-seg) of the segmented leg was found to be 158.6 

mV, and the measured maximum output power density reached a value of 2.34 W/cm2 at a current 

density of 30 A/cm2 and a voltage of 81 mV (Fig. 6.5a). In practice of making TEG, the contact 

resistance is one of the main factors affecting the conversion efficiency [30,50]. In order to evaluate 

this effect, the measured power generation characteristics of the segmented legs were analyzed and 

compared with the theoretical results under both ideal (no contact resistance) and practical conditions 

(including contact resistance). The magnitude of the output current density, J = I/A, is proportional to 

the sum of the internal resistances of the TE leg, Rint, and the external resistive load, RLoad, and it is 

given by the following expression [7]: 

 𝐽 =
𝐼

𝐴
=

𝑉𝑜𝑐

𝐴(𝑅𝑖𝑛𝑡+𝑅𝐿𝑜𝑎𝑑)
               (6.12) 

where Rint = Rleg + RC is the sum of the resistances of the segmented legs without metal electrodes Rleg 

and the total contact resistance RC. 

The output power density of the leg as a function of Voc and the resistance is given by 

 𝑃𝑑 = 𝐽2𝑅𝐿𝑜𝑎𝑑 =
𝑉𝑜𝑐

2

𝐴
[

𝑅𝐿𝑜𝑎𝑑

(𝑅𝑖𝑛𝑡+𝑅𝐿𝑜𝑎𝑑)2] (6.13) 

Equation (6.13) clearly shows that the power output of the leg depends on the Seebeck coefficient 

(via Voc), the internal resistance and the external load resistance. The maximum output power density 

(PMax) occurs when an external load resistance is equal to the internal resistance. To operate 

thermoelectric devices at a maximum output power, the load resistance needs to be continuously 

adjusted to match the internal resistance.  

 𝑃𝑀𝑎𝑥 =
𝑉𝑜𝑐

2

4𝐴𝑅𝑖𝑛𝑡
  (6.14) 

Disregarding the varying dimensions of the segmented legs due to thermal expansion, it is obvious 

that the smaller the internal resistance, the higher the maximum output power obtained. In our 

measurement, the influence of heat losses (radiation and convection) could be negligible since the 

segmented leg is small and well covered by a thick layer of the thermal insulator material (silica 

felts). To investigate the influence of the electrical contact resistance on the conversion efficiency of 

segmented leg, the model described in detail in Ref. [24] was used. Fig. 6.5b shows the experimental 

Figure 6.5 (a) Voltages and output power for the segmented HH/CCO legs as a function of current density under 

different temperature gradient. (b) The experiment and calculation of V(J) and the efficiency of the segmented legs 

with and without the electrical contact resistances at highest temperature difference. 



63 

 

and calculated V-J and -J curves with and without the electrical contact resistances for the 

segmented leg at the highest temperature difference. As seen in Fig. 6.5b, the measured voltage, V, 

(blue open circle) fitted well with the calculated one (blue solid line) which included the contact 

resistance, RC. From the slope of the I-V curves, the electrical resistance of the segmented leg was 

determined to be 164.2 mΩ and 179.6 mΩ for the conditions with and without interfacial contact 

resistances, respectively. These results indicate that the electrical contact resistance contributed about 

8.6% to the total resistance of the leg, which is in good agreement with calculated 8% under ideal 

one-dimensional heat flow (hot and cold side temperatures of 1173/300 K). The efficiency as a 

function of current density has also been calculated for different cases, and the maximum values 

were found to be 7.6% and 5% for the segmented HH/CCO leg without and with contact 

resistances, respectively. The efficiency of our segmented leg is comparable to the efficiency of 

commercial modules (e.g., module TG12-4-01Lby Marlow Industries, Inc.) constructed from state-

of-the-art p and n TE materials but lower than the BiTe/PbTe segmented modules, which can reach 

6.5% [28]. This is the first time an oxide-based segmented leg has been tested in an oxidative 

condition at high temperature. The results of the test clearly show that contact resistance strongly 

influenced on the total conversion efficiency, and, in this case, the suppression was about 35%. This 

investigation suggests that the efficiency of segmented leg can be significantly improved by reducing 

further the contact resistance. Forming a buffer layer of good conductive material of e.g. metal or 

alloy between oxide and electrode may be a good solution to minimize the contact resistance.  

6.4.4 Long-term stability investigation 

Besides improving the thermoelectric conversion efficiency of TEGs, the long-term stability is 

equally important for application of heat-electricity energy conversion. Oxide-based TEGs can be 

potentially used for waste heat recovery 

at high temperatures e.g., >750 K from 

metal refining furnaces, which is often 

switched off once/month. Therefore, in 

this study we have performed the long 

term stability test of the segmented leg 

at a constant high temperature. Fig. 6.6 

displays the maximum power density 

and the changed total resistivity over a 

period of 336 h for the segmented 

HH/CCO leg. All the measurements 

were conducted in air by keeping the hot 

and the cold side temperatures at 

1153/397 K. The I-V curves during these 

measurements were recorded every 30 

min. The overall resistances of the legs 

including silver joint and electrodes 

were then calculated from the slope of 
Figure 6.6 The long term stability test of the HH/Ag/CCO leg 

in air under hot and cold side temperatures of 1153/397 K. 
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the I-V curves. Interestingly, the total resistance and the maximum power density of the segmented 

HH/CCO leg remain almost constant up to 336 hours. In addition, the I-V curves (not shown here) 

were linear pointing out that the Ohmic contacts were maintained during the test at high temperature.  

Fig. 6.7 shows SEM images of the HH and CCO with Ag joint cross-section at 0 h and 336 h 

operated at 1153 K.  It can be seen from the micrographs that interfacial contacts remained the same 

good quality i.e. no evidence for cracks or elemental diffusions was observed at the interfaces. This 

observation is in good agreement with the almost unchanging total resistance of the HH/CCO 

segmented leg over a long period of holding time.  

Fig. 6.7 shows SEM images of the HH and Ca3Co4O9 with Ag joint cross-section before and after the 

long-term experiments. The micrographs confirm that contacts are stable, i.e. no evidence for cracks 

or elemental diffusions were observed at the interfaces. Noticeably, microstructure of Ca3Co4O9 was 

even enhanced after a long time testing at high temperature. 

6.5 Conclusions 

In summary, for the first time the segmented p-type leg of the half-Heusler 

Ti0.3Zr0.35Hf0.35CoSb0.8Sn0.2 and the doped misfit-layered cobaltite Ca2.8Lu0.15Ag0.05Co4O9+ (CCO) 

was successfully fabricated and characterized using the silver brazing joining technique. With this 

Ca2.8Lu0.15Ag0.05Co4O9+

 

2 µm 

Ag filler 

0  Hrs 336 Hrs 

Ti0.3Zr0.35Hf0.35CoSb0.8Sn0.2 

Ca2.8Lu0.15Ag0.05Co4O9+

 

Ag filler 

Ti0.3Zr0.35Hf0.35CoSb0.8Sn0.2 

Ag filler Ag filler 

2 µm 

Figure 6.7 SEM joint interface of CCO/Ag and HH/Ag after joining 0 Hrs and after test 336 

Hrs in air with hot and cold side temperatures of 1153/397 K. 
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technique, the total contact resistance was obtained to be about 8% of the total resistance of 

segmented leg. The calculation results pointed out that CCO and HH have their compatibility factors 

close to each other, and thus the efficiency of HH/CCO segmented leg could be improved to a value 

of 9.1% under conditions without parasitic losses. The output power generation characteristics of the 

segmented legs were measured in air with various temperature gradients, T. At T of about 756 K, 

the maximum generated power density attained 2.34 W/cm2 corresponding to 5% conversion 

efficiency, which is about 65% of the ideal condition. Long term stability investigation for over two 

weeks in air suggests that this oxide-based segmented leg is very promising for generating electricity 

from high temperature waste heat. According to our recent report [134], n-type segmented leg of 

doped ZnO and half-Heusler could be a promising partner to build up low-cost high performance 

oxide-based TEG. 

. 
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Chapter 7 Summaries and outlooks 
 

Summary of some selected main results obtained in this thesis are given below: 

 Theoretical description of segmented thermoelectric generators have been formulated and 

numerically solved. A rule of thumb when selecting a segmented material is that the difference in 

compatibility factors of two different thermoelectric materials should be within a factor of two. This 

has been proven theoretically by obtaining the conversion efficiency of n-type segmented ZnO with 

HH and CoSb. The one-dimensional numerical modelling has been developed and used to evaluate 

the efficiency of single and segmented oxide based materials. A new concept was used to select 

segmented materials and it is based on their figure-of-merit, the “efficiency ratio” and their 

compatibility factors. In comparison with other metallic alloys, it was found that oxides materials are 

good candidates for hot-side materials for building up low-cost, high performance segmented 

legs/unicouples. A maximum efficiency of more than 10% was calculated for the unicouples made of 

segmented legs of p-Ca3Co4O9 and n-ZnO with intermetallic compounds such as HH and BiTe. The 

results of the modeling indicate that building TEG-based segmented legs include a trade-off between 

the increment in conversion efficiencies and the module processing and fabrication costs, effects that 

should be taken into consideration when building a module. The obtained results suggest a useful 

tool to construct low-cost and high-efficiency thermoelectric modules based on oxide materials for a 

high-temperature power generation. 

 n-type oxide CaMnO3 compound includes environmentally friendly materials and offers a 

stable thermoelectric properties in oxidative condition at high temperature and used in commercial 

oxide modules. The effect of Fe substitution on the structure and the high-temperature thermoelectric 

properties of Ca0.9Y0.1Mn1-xFexO3 (x = 0, 0.05, 0.1, 0.15, 0.2, 0.25) was investigated in details. 

Structural analysis shows that lattice parameters slightly increase with increasing amount of Fe 

substituent, which originates from the difference in the ionic radii between Fe and Mn ions. The 

thermoelectric properties were found to be improved for the Fe-doped samples with x < 0.1, 

particularly for the SPS samples with further annealing mainly due to the increase in the Seebeck 

coefficient that could overcome the simultaneous decrease of the electrical conductivity. The thermal 

conductivity was suppressed by the substitution of Fe for Mn. The maximum zT attained was 0.11 at 

1150 K for the sample x = 0.05, which is about 20% higher than the x = 0 sample. Further study 

should be performed with finer Fe substituent tuning with x < 0.1 in order to optimize thermoelectric 

as well as mechanical properties of these compounds. 

 For the first time, a high-temperature segmented thermoelectric based-oxide module 

comprising of p-legs segmentation of Ti0.3Zr0.35Hf0.35CoSb0.8Sn0.2, and the misfit-layered cobaltite 

Ca3Co4O9+, and n-legs 2% Al-doped ZnO has been successfully fabricated and tested. Numerical 

modeling was used to optimize and design the TEG. The input for the model was the experimental 

data on the TE properties of the legs, as well as on electrical contact resistance. The enhancement of 

output power generation of the segmented TEG originated from the properties of the HH alloy in the 

low-to-mid temperature range, compared with those of the oxides. The high-performance of the 

segmented TEG also benefited from the reduction in the total internal resistance of the module due to 
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the low contact resistance between the HH alloy and the Ag electrodes.  At a hot side temperature of 

1173 K corresponding to a temperature gradient of about 700 K, the maximum power density of the 

module reached 0.65 W/cm2, a value which is among the highest reported so far for oxide-based 

modules. Using 3D numerical modeling in combination with the experimental data, we found that the 

efficiency of the segmented TEG (1.16%) was significantly improved compared with the non-

segmented TEG (0.37%). Initial long-term testing showed that a segmented oxide module is stable 

and exhibits a promising power generation e.g. from waste heat at high temperatures.  

 High-temperature segmented p-type leg of the half-Heusler Ti0.3Zr0.35Hf0.35CoSb0.8Sn0.2 (HH) 

and the doped misfit-layered cobaltite Ca2.8Lu0.15Ag0.05Co4O9+ was successfully fabricated. The 

resultant microstructure and the electrical contact resistance at the junction suggest that silver brazing 

is a suitable material for joining semi-metal and oxide material. The thermoelectric properties of 

single components and the segmented HH/Ca2.8Lu0.15Ag0.05Co4O9+ legs were characterized as a 

function of temperature. The results also indicated that the silver brazing at the interface preserved 

the intrinsic thermopower of the segments at small temperature difference. The output power 

generation characteristics of the segmented legs were measured in air under various temperature 

gradients. At T of about 756 K, the maximum generated power density was attained with a value of 

2.34 W/cm2 corresponding to 5% conversion efficiency, which is of date the highest value reported 

on oxide-based thermoelectrics. Long-term stability investigation in air suggests that this oxide-based 

segmented leg is very promising for generation of electricity from high-temperature waste heat. 

Outlook of the future prospects  

 Three-segment p-type BiTe/HH/Ca3Co4O9 would be a good solution to improve the total 

conversion efficiency further. 

 While the thermoelectric performance of n-type oxide materials is still much lower than the 

p-type counterparts, a uni-leg TEG which uses single segmented p-legs and metal connection may be 

considered a good solution. 

 Doped CaMnO3 oxide is a promising material, i.e. stable in air, and may be a good candidate 

for hot side material for a high-temperature segmentation if ZnO:Al will be replaced. 
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