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Runtime Analysis of Ant Colony Optimization on Dynamic

Shortest Path Problems1

Andrei Lissovoia, Carsten Witta

aDTU Compute, Technical University of Denmark, Denmark

Abstract

A simple ACO algorithm called λ-MMAS for dynamic variants of the single-destination
shortest paths problem is studied by rigorous runtime analyses. Building upon previous
results for the special case of 1-MMAS, it is studied to what extent an enlarged colony using
λ ants per vertex helps in tracking an oscillating optimum. It is shown that easy cases of
oscillations can be tracked by a constant number of ants. However, the paper also identifies
more involved oscillations that with overwhelming probability cannot be tracked with any
polynomial-size colony. Finally, parameters of dynamic shortest-path problems which make
the optimum difficult to track are discussed. Experiments illustrate theoretical findings and
conjectures.

Keywords: Ant Colony Optimization; Shortest Paths; Dynamic Problems; Runtime
Analysis

1. Introduction

Ant colony optimization (ACO) is a class of nature-inspired algorithms that is mostly
used to solve combinatorial optimization problems. In recent years, runtime analysis of
nature-inspired algorithms has advanced considerably (Auger and Doerr, 2011; Jansen, 2013;
Neumann and Witt, 2010b). Even though the majority of results still apply to simple evolu-
tionary algorithms, a lot of progress has also been made in the analysis of ACO. With respect
to problems from combinatorial optimization, which is the classical domain of application
for ACO, there are results on shortest paths (Attiratanasunthron and Fakcharoenphol, 2008;
Sudholt and Thyssen, 2012a), minimum spanning trees (Neumann and Witt, 2010a), mini-
mum cuts (Kötzing et al., 2010) and the traveling salesperson problem (Zhou, 2009; Kötzing,
Neumann, Röglin and Witt, 2012).

Real-world optimization problems are not always static in nature. Often problem and
goal of optimization are dynamic, i. e., they change over time. In these cases, it is im-
portant to find a solution that is “good” with respect to the current goal of optimization.

1A preliminary version of this work appeared in GECCO ’13: Proceeding of the Fifteenth Annual Con-
ference on Genetic and Evolutionary Computation Conference, pages 1605-1612, ACM, New York, USA,
2013.
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Nature-inspired algorithms are often considered to be “robust” optimizers which can adapt
to such dynamic problems if the underlying optimal solution does not change too quickly or
extremely. In particular, many applications of evolutionary algorithms, as well as ACO, on
dynamic problems are reported in the literature (Garlick and Barr, 2002; Xiang and Lee,
2008; Nguyen et al., 2012).

In this paper, we are concerned with ACO on dynamic problems. Our aim is to un-
derstand, using rigorous runtime analyses, the conditions under which ACO algorithms are
able to track the optimum of a dynamically changing problem, i.e. maintain the ability to
construct optimum, or close-to-optimum solutions while the fitness function changes. Such
runtime analyses are motivated by related theoretical studies of evolutionary algorithms for
dynamic problems (Rohlfshagen et al., 2009; Jansen and Schellbach, 2005; Droste, 2003). We
have chosen the single-destination shortest path problem (SDSP) as object of our analysis
as this is probably the combinatorial optimization problem that ACO has been understood
best on. There are even runtime analyses of ACO on stochastic optimization problems
(Sudholt and Thyssen, 2012b; Doerr et al., 2012; Feldmann and Kötzing, 2013), which,
together with dynamic problems, can be subsumed under the term “optimization under un-
certainty”. However, methods for the analysis of stochastic optimization problems are not
directly applicable to dynamic problems.

So far, there is only a single runtime analysis of ACO on dynamic problems. Kötzing
and Molter (2012) compare a simple ACO algorithm and a simple evolutionary algorithm
on a dynamic pseudo-boolean problem and show that the ACO algorithm can outperform
the evolutionary one. To the best of our knowledge, our work is the first runtime analysis
of ACO on a dynamic combinatorial optimization problem.

Our findings can be summarized as follows. A simple ACO algorithm based on the Max-
Min Ant System (Stützle and Hoos, 2000) is studied on dynamic shortest path problems
with increasing amount of dynamics. First it is analyzed how long it takes the system to
adapt to a one-time modification of the graph, observing that if modifications to the weight
functions occur slower than this, the dynamic optimization process can be treated as a series
of adaptations to one-time changes. It is proved that two extreme cases can happen: only a
single pheromone value or all pheromone values might need to be updated to adapt. Upper
and lower bounds on the time required are proved. Then, more rapid periodic changes are
studied by considering changing between two different functions in every iteration as an
extreme case. Examples are shown where the changes exhibit enough locality for the system
to track them reliably by updating independent components, maintaining at least a constant
probability of constructing the optimum solution in any given iteration. Interestingly, this
is possible by increasing the size of the ant colony moderately. The utility of a population
for tracking problems was studied in evolutionary computation by Jansen and Schellbach
(2005), but our result seems the first of this kind in the runtime analysis of ACO. It is then
proved that a single ant started at each vertex is sufficient to track a slower oscillation in the
same setting. Finally, an example is given where the problem changes globally, which makes
it very unlikely that changes can be tracked quickly. Experiments supplement the theoretical
findings, and we discuss properties of the dynamics that are related to the difficulty of the
tracking problem.
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The paper is structured as follows. Section 2 introduces notation and the algorithm
λ-MMAS, which generalizes previously studied MMAS by introducing a larger population.
Section 3 proves polynomial lower and upper bounds on the time for the system to adapt to
one-time changes. Periodic changes with locality are studied in Section 4, where it is shown
that the oscillating optimum can be tracked by the ant colony for a super-polynomial number
of iterations, both for rapid oscillations using a larger colony, and for slower oscillations
using a single ant. Section 5 describes a globally changing example that is conjectured to be
difficult to track. Experiments are described in Section 6. We finish with some conclusions.

2. Preliminaries

The λ-MMAS algorithm (Algorithm 1) is a generalized version of the MMASSDSP ana-
lyzed on shortest path problems in Sudholt and Thyssen (2012a), where the generalization
is due to a use of a population (see Neumann et al., 2010 for a related algorithm in pseudo-
boolean optimization). The algorithm allows for negative weights, but requires that all
cycles in the graph are of strictly positive weight. We note that graphs with ∆ < 2 are not
interesting for shortest path problems, and assume that ∆ ≥ 2 throughout the rest of the
paper: otherwise, each vertex has at most one outgoing edge, and finding the shortest paths
is trivial.

Every iteration of the algorithm starts λ ants at each vertex, and each ant constructs
a simple path through the graph, following arcs randomly with probability proportional to
their pheromone values until it reaches the destination vertex t, or until it reaches a vertex
from which no arcs lead to a vertex that has not already been visited. For each vertex v,
the best-so-far path x∗v is updated to the path of least weight of the λ paths constructed
from v in the current iteration and the previous x∗v path, and is then used to update the
pheromone values on arcs leaving v.

The algorithm needs to start at least one ant at each vertex, even if the goal is to find
the shortest path between a specific pair of vertices, in order to ensure that the shortest
paths can be found in expected polynomial time. The issue is illustrated in Sudholt and
Thyssen (2012a) using the graph shown in Figure 1: if the weight on the (r, t) arc is n = |V |
and all other arcs have unit weights, the vertex r is avoided by the s-t shortest path. An
ant started at s will, with probability 1− (1/2)n/2, make no more than n/2 steps towards t
(each taken with probability 1/2 as the pheromone values are initialized to 1/deg+(v) = 1/2,
and sum to 1 for each vertex) before visiting r. Subsequent iterations will accept a path
that makes additional steps towards t only if it reaches t without visiting r, which occurs
with probability at most (1/2)n/2 (as each of the additional n/2 steps toward t is made with
probability at most 1/2); discovery, acceptance, and pheromone updates based on paths
that take even fewer steps towards t before visiting r will only decrease the probability of
reaching t without visiting r over time.

Three parameters affect the behavior of the algorithm: the evaporation rate ρ controls
the speed with which the pheromone values are updated, while the pheromone bounds τmin

and τmax control how likely an ant is to deviate from a pheromone trail, balancing exploration
with the ability to follow reinforced paths. As in Sudholt and Thyssen (2012a), we choose
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Algorithm 1 The λ-MMAS algorithm on a directed graph G = (V,A), with pheromone
bounds τmin and τmax, and evaporation rate ρ, where t ∈ V is the destination vertex, deg+(v)
is the outdegree of vertex v, and f(xv) is the fitness value of a given path (sum of its arc
weights if the path terminates at t, ∞ if it does not).

Initialize τa ← 1
/

deg+(v) for all a = (v, v′) ∈ A
for i← 1, 2, . . . do

for each v ∈ V do
for j = 1, 2, . . . , λ do

Let xv,j be an empty path starting at v
p← v, S ←

{
(p, v′) ∈ A | v′ 6∈ xv,j

}
while S is not empty and p 6= t do

Pick arc a = (p, h′) from S with probability:
pa = τa

/∑
s∈S τs

Append a to xv,j
p← h′, S ←

{
(p, v′) ∈ A | v′ 6∈ xv,j

}
xv ← arg minxv,j f(xv,j)
if i = 1 or f(xv) < f(x∗v) then

x∗v ← xv

for each a = (v, v′) ∈ A do

τa ←
{

min(τmax, (1− ρ)τa + ρ) if a ∈ x∗v
max(τmin, (1− ρ)τa) otherwise

the pheromone bounds are chosen based on ∆, the maximum vertex out-degree, and `, the
maximum number of arcs in any shortest path in the graph:

τmin = 1/(∆`) τmax = 1− τmin

where n = |V | can be used in place of ∆ or ` if either value is unknown. With this choice
of pheromone values, an ant is able to follow a reinforced path of ` − 1 arcs (where the
pheromone values on the arcs in the path are all τmax, and on all other outgoing arcs from
vertices visited by the path are τmin) with probability at least 1/e. This is proved in Sudholt
and Thyssen (2012a) by considering the probability of not deviating from the path at each

s . . . t

r

Figure 1: An example graph; the weight on the (r,t) arc affects whether the vertex r is visited or avoided
by the shortest paths to t.
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vertex, which is at least (1−∆τmin)`−1 ≥ (1− 1/`)`−1 ≥ 1/e, as the pheromones sum to at
least τmin + τmax = 1 whenever there’s an opportunity to deviate from the reinforced path.

The Lemma 1 is heavily used to study the probabilistic pheromone model, and is proved
in Sudholt and Thyssen (2012a). As λ-MMAS selects the next arcs with probability equal
to the arc’s pheromone value divided by the sum of pheromone values on viable arcs leaving
the vertex, the lemma allows us to bound the probability that an ant will follow any specific
outgoing arc to a vertex it has not visited before by at least τmin/2.

Lemma 1. The sum of pheromone values on all outgoing arcs from any vertex is always at
most 2.

When the first shortest path from vertex v is constructed by an ant, it will be used
as the best-so-far path x∗v in every subsequent pheromone update. The following Lemma
from Attiratanasunthron and Fakcharoenphol (2008) bounds the freezing time – the number
of iterations of reinforcing a single arc before the pheromone values reach the pheromone
bounds, at which point they will remain unchanged by subsequent pheromone updates until
a new best-so-far path, using a different arc to leave v, is discovered. The freezing time is
also a bound on the number of iterations between the discovery of a shortest path and the
pheromone value on its first arc reaching τmax.

Lemma 2. If x∗v is unchanged for ln(τmax/τmin)/ρ iterations, the pheromone value on the
first arc of x∗v is τmax, and equal to τmin on all other arcs leaving v.

Proof. Consider the effect of ln(τmax/τmin)/ρ pheromone updates on the pheromone value on
an arc. It is easy to see that that this number of pheromone updates is sufficient to reduce
a pheromone value to τmin, even if it was originally τmax:

τmax · (1− ρ)ln(τmax/τmin)/ρ ≤ τmax · e− ln(τmax/τmin) = τmin

Consider two pheromone values, initially set to τmax and τmin; while the first evaporates,
the second is reinforced. The sum of the two values is initially 1, and remains 1 as multiplying
both values by (1−ρ) is exactly balanced by adding ρ to the second value. Thus the number
of iterations required to increase a pheromone value from τmin to τmax is equal to the number
of iterations required to reduce it from τmax to τmin.

Therefore, ln(τmax/τmin)/ρ iterations of reinforcing a single arc is sufficient to increase its
pheromone value to τmax, while also reducing the pheromone values on all other arcs exiting
its source vertex to τmin.

The next section examines how λ-MMAS is able to handle a one-time change to the
weight function, and motivates using λ > 1 ants to reduce the expected number of iterations
needed to discover the shortest paths after a one-time change. Following sections illustrate
the benefits and limitations of pheromone memory in a setting where the weight function is
changed more frequently: it allows a relatively small number of ants to keep track of shortest
paths if the differences between the weight functions are relatively minor, but requires a
super-polynomial number of ants if the changes are more significant.
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3. A one-time change

If the oscillation is sufficiently slow, λ-MMAS may be able to rediscover and re-freeze
all of the shortest paths before the next change to the weight function occurs. If this is the
case, the process can be treated as a series of one-time modifications to the weight function,
with each modification followed by a number iterations during which λ-MMAS rediscovers
the shortest paths, and a number of iterations during which the pheromones are frozen
to favor the shortest paths, resulting in each ant having at least a constant probability of
constructing the shortest path from its starting vertex.

The expected number of iterations λ-MMAS needs to discover the shortest paths of the
new weight function depends both on how similar these shortest paths are to those of the
previous weight function, and on the maximum number of arcs in any shortest path in
the graph using the new weight function. The more similar the shortest paths, the fewer
pheromone values need to be changed; and the fewer arcs in the longest shortest path, the
more shortest paths can be discovered in parallel.

The proof of the following theorem is based on the analysis in Sudholt and Thyssen
(2012a). The presentation here is simplified; a finer analysis in Sudholt and Thyssen (2012a)
demonstrates that it is not necessary to wait for the full freezing time, removing the log factor
from the freezing time component of the expected number of iterations.

Theorem 3. With high probability, 1-MMAS will after O(`∗/τmin + ` ln(τmax/τmin)/ρ) it-
erations have discovered all shortest paths after a one-time change to the weight function
given that such shortest paths are unique, where `∗ = max(`, log n) and ` is the maximum
number of arcs in any shortest path to t in the new graph. This is also the expected number
of iterations before all the shortest paths are rediscovered after the weight function is altered.

Proof. Consider an arbitrary vertex v: the shortest path from v to t has at most ` ≤ `∗

arcs. λ-MMAS can discover the shortest path from v to t by constructing all of its subpaths
(ending at t) in the order of increasing number of arcs. This allows shortest paths to be
discovered by only constructing subpaths with one arc with a sub-τmax pheromone value at a
time, waiting for the pheromones to freeze, and repeating the process for the next subpath.

Let ppath be the probability that a specific ant constructs a specific k-arc path containing
a single sub-τmax arc. In order to discover the v-t shortest path, at most `∗ subpaths, all
with k ≤ `∗, need to be constructed (and frozen). Assuming the pheromone values on the
shorter subpaths are frozen at τmax, the probability of discovering a new shortest path in
this fashion is at least ppath:

ppath ≥
τmin

2
· (1−∆τmin)k−1 ≥ τmin

2e

where 1−∆τmin ≥ 1− 1/` is the probability of selecting the arc with pheromone value τmax

at any frozen vertex, recalling that the pheromone bounds τmin and τmax were chosen so as
to ensure that the probability of following `− 1 such arcs was at least 1/e.

The number of the desired subpaths discovered in this fashion can be bounded using
a Chernoff bound: if every considered iteration is able to discover the next subpath with
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probability ppath, the `∗ desired subpaths are discovered in t = 10e`∗/τmin iterations with
high probability. Let Nt be the number of subpath discoveries in t iterations, then µ =
E(Nt) = t · ppath ≥ 5`∗ (treating Nt as binomially distributed), and apply the Chernoff
bound:

P (Nt < `∗) = P (Nt < (1− 4/5) · µ)

< e−5`∗·(4/5)2/3 = O
(
n−16/15

)
inserting `∗ ≥ log n in the last step.

At most ` ln(τmax/τmin)/ρ additional iterations are required to freeze the pheromone
values after each discovery to preserve the pmin lower bound on the probability of discovering
the next subpath in each iteration. Thus a shortest path from an arbitrary v to t is discovered
in at most 10e`∗/τmin + ` ln(τmax/τmin)/ρ iterations with high probability. Shortest paths
from all of the n vertices in the graph are also found with high probability, which can be
shown by applying a union bound:

P (min
v∈V

Nt ≥ `∗) ≥ 1− (1− P (Nt < `∗))n

≥ 1− nP (Nt < `∗)

= 1−O
(
n−1/15

)
Treating this as a success probability in a geometric distribution, it is clear that, in expecta-
tion, no more than O(1) phases of 10`∗/τmin + ` ln(τmax/τmin)/ρ iterations each are required.
Thus, the expected number of iterations before all shortest paths are rediscovered after the
weight function changed is O(`∗/τmin + ` ln(τmax/τmin)/ρ).

As remarked in Sudholt and Thyssen (2012a), the unique shortest paths constraint can
be dropped at the cost of introducing a log n factor to the first component of the bound,
by requiring in the analysis that all shortest paths of length i are found and frozen before
λ-MMAS is considered to have a change to discover a shortest path of length i + 1; the
expected time until all shortest paths of a particular length are found (given that all shorter
paths have been found and frozen) is dominated by the coupon collector problem, and is
therefore O(log n/τmin); in total, there are no more than `∗ such phases.

To illustrate the potential effects of a one time change, consider the graph in Figure 1 and
the weight functions w1 and w2 shown below; the shortest paths of w1 visit r immediately,
while w2 avoids r if possible:

w1(α) =

{
−1 if α = (r, t)
1 otherwise

w2(α) =

{
n if α = (r, t)
1 otherwise

If the pheromone values are frozen to the shortest paths using w1, λ-MMAS will require
a large number of iterations to rediscover all of the shortest paths when the weight function
is changed to w2. The proof of the following lower bound is also inspired by a related
result in Sudholt and Thyssen (2012a), which allows for even finer bounds, but considers a
uniform initialization of pheromone values, which is not given after λ-MMAS has frozen the
pheromones to favor specific shortest paths.
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Theorem 4. One-time changes to the weight function may require an expected Ω(`/τmin)
iterations for 1-MMAS with ρ = 1 to discover all shortest paths, where ` is the maximum
number of arcs in any shortest path to t in the new graph.

Proof. The theorem is proved by example: we’ll show that if, on the graph of Figure 1,
all shortest paths under w1 are discovered and frozen, Ω(`/τmin) iterations are required to
rediscover the shortest paths after the weight function is switched to w2. Given the high
evaporation rate (ρ = 1), after the first iteration, all pheromone values are at the pheromone
bounds, and switch between those instantly whenever new shortest paths are discovered by
λ-MMAS. Assume for a moment that the optimization proceeds as in the proof of Theorem 3:
only shortest paths with a single non-τmax arc are discovered until shortest paths from all
vertices have been found.

The probability that the next subpath (with only one non-τmax arc) is discovered in a
single iteration is at most τmin. Let Ti be the number of iterations between the discoveries of
subpaths i− 1 and i; as ∆ ≥ 2 and hence τmin ≤ 1/2, the probability that the next subpath
is not discovered for at least 1/(2τmin) iterations is:

P (Ti > 1/(2τmin)) ≥ (1− τmin)1/(2τmin)

=
√

(1− τmin)1/τmin ≥ 0.5

When the weight function is changed to w2, the entire `-arc longest shortest path needs
to be rediscovered, changing the pheromone values on the outgoing arcs from each of the
` non-trivial vertices. Let N be the number of subpaths for which Ti > 1/(2τmin), and
µ = E(N) ≥ `/2. A Chernoff bound shows that at least a quarter of the subpaths will
require more than 1/(2τmin) iterations each with overwhelming probability:

P (N ≥ `/4) = 1− P (N < (1− 1/2)µ)

> 1− e−µ/22/3 ≥ 1− e−`/24

Thus, if no shortest paths with more than one non-τmax arc are discovered, Ω(`/τmin)
iterations are required with overwhelming probability.

How likely is λ-MMAS not to find any shortest paths with more than one non-τmax arc?
The probability pf of discovering such a path is greatest at the beginning of the process,
when shortest paths with 2, 3, . . . , ` non-τmax arcs can be discovered; and the probability
that no such paths are found for 1/τmin

2 iterations is at least a constant:

pf ≤ τmin
2
∑̀
i=2

τmin
i−2 < 2 · τmin

2

(1− pf)
1/τmin

2 ≥ 1/16

assuming τmin ≤ 1/2 as before.
Thus, with at least constant probability, λ-MMAS does not discover any shortest paths

with more than one non-τmax arc in 1/τmin
2 ≥ `/τmin iterations, and Ω(`/τmin) iterations are
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required to rediscover the shortest paths with overwhelming probability if only subpaths with
a single non-τmax arc are discovered. Therefore, the expected number of iterations before
the shortest paths are rediscovered by λ-MMAS (with λ = 1 and ρ = 1) after switching
from w1 to w2 is Ω(`/τmax).

Conversely, there also exist combinations of weight functions for which the shortest paths
may be rediscovered relatively quickly – for example, switching from w2 to w1 on the graph
of Figure 1 is easier than the alternative, as a low ` = 2 value reduces the interdependency
between shortest paths, allowing them to be discovered in parallel without requiring ants to
select more than one non-τmax arc at a time. Additionally, changing the weight of the (r, t)
arc to values between the extremes considered in w1 and w2 would change only some of the
shortest paths, reducing the amount of pheromone values that need to be updated.

These analyses suggest that λ-MMAS spends most of the iterations waiting to discover
the next subpath. The expected number of iterations spent waiting can be reduced by
increasing the number of ants simulated in each iteration, as expanded upon in Theorem 5;
this is similar in effect to increasing the offspring population size in a (1+λ) EA, as considered
by Jansen et al. (2005).

Theorem 5. Using λ = 2e/τmin ants allows λ-MMAS to discover new shortest paths in ex-
pected constant time, allowing all shortest paths to be rediscovered in O(`+` ln(τmax/τmin)/ρ)
iterations.

Proof. The probability that a single ant will construct a specific path with only one non-τmax

arc is at least τmin/2e, so the probability that at least one of λ ants constructs it is at least
pc:

pc ≥ 1− (1− τmin/2e)
2e/τmin ≥ 1− 1/e

Shortest paths up to ` arcs long may therefore be discovered using the same mechanism as
in Theorem 3, with each subpath taking an expected e/(e−1) = O(1) iterations to discover,
and ln(τmax/τmin)/ρ additional iterations to freeze (as the freezing rate is unaffected by
the increased number of ants simulated in each iteration). The total number of iterations
required to rediscover and freeze all shortest paths is, per linearity of expectation, at most
O(`+ ` ln(τmax/τmin)/ρ).

While increasing the number of ants simulated does not reduce the amount of work
performed by the algorithm, it does allow the work to be parallelized to a greater extent, as
each ant in an iteration can be simulated independently of others, only needing to compare
the fitness values of the constructed paths at the end of the iteration.

The theorems presented in this section used `, the maximum number of arcs in any
shortest path to t, to bound the complexity of rediscovering the shortest paths after a
weight function change. In the examples considered so far, this has been accurate; though
there are graphs where it is an overestimation (see e.g. Figure 2). More precise bounds could
instead consider, for each shortest path, the number of vertices along the path at which an
ant would have opportunity to deviate from the shortest path, and for which the shortest
path was altered by the weight function change.
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s . . . t

b

a

c

Figure 2: Changing the weight of arc c controls which of the a and b arcs is on the shortest path from s to t.

4. Periodic local changes

If the weight functions change more frequently than the expected number of iterations
required to rediscover and re-freeze the shortest paths after each change, the process can no
longer be treated as a series of recoveries from one-time changes. Taken to the extreme, the
weight functions could change in every iteration of λ-MMAS. In this section, we consider
such rapid oscillation between two weight functions the shortest paths of which are extremely
similar, differing only in the choice of outgoing edge from a single vertex in the graph.
Somewhat surprisingly, λ-MMAS, with only a constant number of ants, maintains at least
a constant probability of constructing the optimum shortest path solution in each iteration
in this setting. We’ll then show that if the oscillation between these two weight functions is
slower (though not as slow as to allow analysis as a series of one-time changes), 1-MMAS is
also able to track the optimum.

Throughout this section, λ-MMAS is considered able to track the optimum solution if
it is able to maintain a constant probability of constructing the shortest paths in any given
iteration, i.e. the best possible probability of success when a starting a constant number
of ants at each vertex. In the local changes setting, only a single choice of outgoing edge
changes between the shortest paths of the two different weight functions. λ-MMAS must
therefore keep the pheromone values on the oscillating edges within a constant distance of
1/2, as approaching the pheromone bounds would reduce the probability that the correct
shortest paths is constructed in every iteration to a sub-constant value. We note that
adjusting the pheromone bounds directly, to keep the pheromones close to 1/2, would be
counterproductive: such bounds would reduce the probability of ants following the non-
oscillating portion of the shortest paths, which would’ve been reinforced, to a sub-constant
value when alternative paths are available. Additionally, a low evaporation rate is required
in order for λ-MMAS to be able to keep the pheromone values on the oscillating edges close
to 1/2 for significant amounts of time, as, intuitively, a too-high evaporation rate causes
λ-MMAS to forget that an arc was part of a shortest path sooner rather than later.

This section considers oscillation between two similar weight functions, shown below, on
the graph in Figure 2.

w1(α) =

{
1 if α = c
0 otherwise

w2(α) =

{
−1 if α = c

0 otherwise

The graph and weight functions are chosen such that the longest shortest path has at
least n − 2 arcs, the shortest paths are only changed at a single vertex, which isolates the
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simplest possible dynamic shortest path problem, and the simulated ants only have the
opportunity to deviate from the shortest path at a single vertex. The latter limit on the
opportunities to deviate from the shortest paths is used only to simplify the analysis, and
could be relaxed at the cost of increasing the required number of ants by a constant factor, as
discussed at the end of this section; thus, similar results could be obtained for less artificial
graphs, as long as the oscillation could be isolated to a single triangle in the graph.

In this situation, it is possible for λ-MMAS to use relatively few ants and still maintain
the ability to correctly identify the shortest path in each iteration with at least constant
probability for a super-polynomial number of iterations.

Lemma 6. Consider switching between the weight functions w1 and w2 on the graph of
Figure 2 during every iteration. Starting λ = 4 ants at each vertex is sufficient to ensure
that λ-MMAS, with ρ ∈ o(1/log n), will keep the pheromone values on outgoing arcs from s
in the [0.3, 0.7] range for a super-polynomial number of iterations with respect to n with a
probability super-polynomially close to 1.

Proof. Let τ ′t = min(τt(a), τt(b)) be the minimum of the pheromone values on the arcs a and
b after iteration t. Consider the effect of two sequential pheromone updates on τ ′t :

−ρ < τ ′t+2 − τ ′t < 2ρ (1)

as evaporation may at most reduce the smaller value by ρ/2 (as τt(a) + τt(b) = 1, and hence
τ ′t ≤ 1/2), and reinforcement may at most increase the smaller value by ρ.

If the arc with the smaller pheromone value τ ′t is only reinforced in the second of two
pheromone updates, the effect is:

τ ′t+2 − τ ′t ≥ τ ′t(1− ρ)2 + ρ− τ ′t ≥ ρ− 2ρτ ′t (2)

It is convenient to scale the minimum pheromone values, such that a constant number
of pheromone updates alter the scaled values by at most a constant:

g(τt) = min(τt(a), τt(b))/ρ

Consider the expected change ∆t(τ
′
t) = g(τt+2)−g(τt) of these scaled values two pheromone

updates after an update that favored reinforcing the arc with the τ ′t pheromone value. For a
lower bound, assume that the τ ′t arc is never reinforced during the next iteration (when it is
not on the shortest path), and let pf be the probability that it is also not reinforced during
the iteration after the next (when it is on the shortest path), which yields:

E(∆t(τ
′
t)) > (1− pf) · (1− 2τ ′t) + pf · (−1)

= 1− 2pf(1− τ ′t)− 2τ ′t

by applying g to the bounds in (1) and (2). For the weight functions w1 and w2, pf ≤
(1− τ ′t(1− ρ))λ. The drift is at least 0.02 when 0.3 ≤ τ ′t ≤ 0.4, λ = 4, and ρ ≤ 0.05.

The simplified drift theorem (Oliveto and Witt, 2011, 2012) can then be applied to
the scaled values when the pheromones are within this region, treating two iterations of
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λ-MMAS as a single step in a Markov process over the scaled values, ensuring that the arc
with the minimum pheromone value was always favored by the last iteration in the step.
This requirement simplifies the following analysis, but may mean that the pheromone values
enter the considered drift region during a “wrong” iteration; to accommodate this, we will
adjust the size of the drift region by the equivalent of one iteration, pessimistically assuming
that the iteration resulted in the pheromone values being brought closer to the bounds.

The drift is greater than 0.02 within a region specified by a = (3/10)/ρ and b = (4/10)/ρ.
As mentioned perviously, the length of the drift region may need to be reduced by the
equivalent of a single pheromone update to ensure that the last pheromone update favored
reinforcing the τ ′t arc, so the length of the drift region is ` ≥ b − a − 1 = ω(log n). This
region then satisfies the first requirement of the simplified drift theorem.

As a consequence of (1), the process cannot make large changes to the scaled values in
a single iteration. The second requirement of the simplified drift theorem is satisfied by
setting r(`) = 4 and δ = 1:

P (|∆t| ≥ j) ≤ r(`)

(1 + δ)j
= 22−j

as P (|∆t| > 2) = 0, and the right side of the inequality is at least 1 for j ≤ 2.
Then, per the simplified drift theorem, there exists a constant c∗ such that with probabil-

ity 1− 2−ω(logn), the Markov process first reaches a state Xt ≤ a (and hence first encounters
a τ ′t ≤ 3/10) after at least 2c

∗ω(logn) iterations.

Given that the pheromone values remain within this range for a super-polynomial number
of iterations, the probability that the correct shortest path x∗s is constructed also remains
bounded for a super-polynomial number of iterations.

A more detailed analysis than the approximations used in Lemma 6 is needed to show
whether λ = 3 ants are also sufficient. This setting is revisited as part of an experiment in
Section 6.

Theorem 7. Consider switching between the weight functions w1 and w2 on the graph of
Figure 2 during every iteration. 4-MMAS with evaporation rate ρ ∈ o(1/log n) will with
probability super-polynomially close to 1 be able to find the correct s-t shortest path with at
least a constant probability in each iteration for any polynomial number of iterations.

Proof. Let τ ′t = min(τt(a), τt(b)) after iteration t; then, the probability that x∗s is correct is
at least the probability of any ant constructing a path through the arc with pheromone value
τ ′. As long as τ ′t is at least a constant, e.g. 0.3, this probability is also at least a constant:

P (x∗s is correct | τ ′t ≥ 0.3) ≥ 1− (1− 0.3)4 = 0.7599

Per Lemma 6, τ ′t ≥ 0.3 for a super-polynomial number of iterations with probability
super-polynomially close to 1, which proves the theorem.
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The proof relies on a special property of the considered weight functions: only the choice
made at s affects whether the ant constructs a correct shortest path to t. If the weight
function or graph were changed to require the ants to follow a pheromone-reinforced path
after leaving s, λ = 4 ants may be insufficient to ensure a positive drift. Using the usual
pheromone bounds, the probability of an ant successfully following any pheromone-reinforced
path is at least 1/e, so the failure probability can be adjusted accordingly:

pf ≤ (1− τ ′t(1− ρ) · 1/e)λ

With this adjustment, λ = 12 ants are sufficient to ensure that the drift is greater than
0.003 for the same constraints on τ ′t and ρ as were used in Lemma 6.

4.1. Tracking slower local changes

The preceding section has shown that an ant colony can be useful when tracking rapid
oscillations, as increasing the number of ants increases the amount of exploration the λ-
MMAS algorithm performs before altering pheromone values. If the evaporation rate is also
sufficiently low, during rapid oscillation between two similar shortest paths, λ-MMAS is
able to keep the pheromone values on the affected arcs close to 0.5, essentially being able to
remember that both outgoing arcs have been part of the shortest path recently.

A colony with only a single ant cannot track rapid oscillation in this fashion, but as
the following theorem shows, it can keep the pheromone values within a constant range if
the oscillation is sufficiently slow (i.e. each shortest path remains the optimum for at least
T ∈ ω(log n) iterations). With only a single ant, the pheromones are instead kept within a
constant range by the difference in magnitude of the pheromone updates which change the
values toward the middle, and those toward the extremes.

Theorem 8. Consider switching between the weight functions w1 and w2 on the graph of
Figure 2 every T = 2/ρ iterations. 1-MMAS with an evaporation rate ρ ∈ o(1/log n) will
keep the pheromone values within the [0.01, 0.99] range for an expected super-polynomial
number of iterations.

Proof. Consider the optimization process as a series of phases, with alternating phases using
w1 and w2 as the weight functions. Then, at the beginning of an optimization phase, at
iteration t, let τt(a) be the pheromone value on the arc favored by (i.e. on the shortest
path of) the weight function used in the phase that has just began. We shall show that
if τt(a) ∈ [0.03, 0.5], then with super-polynomially high probability, the pheromone value
on the non-favored arc will be in this range at the end of this optimization phase, i.e.
τt+T (b) ∈ [0.03, 0.5].

If the new shortest path is discovered immediately, the pheromone value τt(b) will not
be reinforced in the following T iterations. Recall that τt(a) + τt(b) = 1, so τt(b) ≥ 0.5,
which after T evaporating pheromone updates will be reduced to no less than 0.03, given
that ρ ≤ 0.1, i.e. n is large enough:

τt+T (b) ≥ τt(b)(1− ρ)T

≥ 0.5(1− ρ)2/ρ ≥ 0.03

13



So regardless of when the new shortest path is discovered, the pheromone value τt+T (b)
cannot be reduced below the range acceptable for the next optimization phase.

Suppose that the new shortest path is not discovered immediately, so the pheromone
value on arc a is evaporated until the shortest path is discovered. In the first T/2 iterations,
the pheromone value on arc a cannot be reduced below 0.01, given that ρ ≤ 0.1 as before:

τt+T/2(a) ≥ τt(a)(1− ρ)T/2

≥ 0.03(1− ρ)1/ρ ≥ 0.01

Thus the shortest path is discovered in the first T/2 iterations with super-polynomially high
probability:

1− (1− 0.01)T/2 ≥ 1− 0.991/ρ ≥ 1− 0.99ω(logn) ≥ 1− n−ω(1)

If the shortest path is discovered in the first T/2 iterations, the pheromone value on arc b
will be evaporated for at least T/2 iterations:

τt+T (b) ≤ τt+T/2(b)(1− ρ)T/2

≤ 0.99(1− ρ)1/ρ ≤ 0.99/e < 0.5

and will therefore be within the acceptable range for the next optimization phase.
Therefore, if at the beginning of the phase, the pheromone value on arc favored by the

phase is within [0.03, 0.5], the pheromone value on the arc favored by the next phase will
also be within this interval at the start of the next phase with super-polynomially high
probability.

The first phase of the optimization process satisfies this precondition (as pheromone
values are initialized s.t. τ1(a) = τ1(b) = 0.5); and as each phase has a super-polynomially
small probability of failing, a failure occurs (potentially causing pheromone values to exit
the [0.01, 0.99] range) in an expected super-polynomial number of iterations.

This illustrates that if the oscillation is sufficiently slow, and the evaporation rate is suf-
ficiently low, the pheromone update mechanism in MMAS can still prevent the pheromones
from freezing for an expected super-polynomial number of iterations, even in a single-ant
colony. More specifically, the magnitude of the change in the pheromone values of an up-
date bringing pheromone values closer to 1/2 is greater than that in an update bringing
pheromone values closer to their bounds.

5. Periodic global changes

Using pheromones as an implicit memory, λ-MMAS is able to reliably construct shortest
paths even with a constant number of ants when the oscillating weight functions only make
slight alterations to the shortest paths in the graph. In this section, we consider an oscillation
between two weight functions where the shortest paths at many vertices change, and there
are many opportunities for an ant to deviate from the shortest path.
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Figure 3: Multiple oscillating triangles on the path from s to t.

Suppose that there are k oscillating triangles on the path from s to t, as illustrated in
Figure 3. The weight functions w1 and w2 can be extended such that the shortest path using
w1 avoids all of the vertices u1, . . . , uk, while w2 favors visiting all of those vertices. Let U
be the set of arcs leaving the ui vertices; the extended weight functions are then:

w1(α) =

{
1 if α ∈ U
0 otherwise

w2(α) =

{
−1 if α ∈ U
0 otherwise

When k is large, i.e. k ∈ ω(log n), ensuring that the correct shortest path from s to t
is constructed with at least constant probability in each iteration requires starting a super-
polynomial number of ants at each vertex. While tracking the optimum during an oscillation
between two dramatically different weight functions is difficult, this setting illustrates a
limitation of the pheromone memory used by MMAS: it is unable to store distinct solutions
(unlike e.g. a (µ + λ) EA, which might be able to store both shortest path trees in the
population, and clone both in any given iteration if µ and λ are large enough).

Theorem 9. Rapid oscillation between two weight functions may require as many as 2Ω(n)

ants to be started at each vertex in order for λ-MMAS with ρ ≤ 0.5 − Ω(1) to maintain at
least a constant probability of constructing the shortest paths in each iteration.

Proof. The theorem is proved by example: we’ll show that on the graph of Figure 3 with k =
Ω(n) triangles, with weight functions swapping between w1 and w2 during every iteration,
λ-MMAS requires λ = 2Ω(k) = 2Ω(n) ants to be started at each vertex to maintain a constant
probability of constructing the shortest path from s in each iteration. Essentially, λ-MMAS
is no better in this setting than exhaustive search during every iteration; this is somewhat
expected as the shortest paths for w1 and w2 are substantially different, and λ-MMAS is
not able to store distinct solutions in the pheromone memory.

Consider the pheromone state in an iteration of λ-MMAS. Classify triangle i as favorable
with respect to the current weight function if the pheromone value on the correct shortest
path arc from si is at least 0.5. If less than k/2 triangles are favorable, constructing the
shortest path from s requires a number of ants that is exponential with respect to k, as
at least some ant has to make the correct choice of outgoing arc in all of at least k/2
unfavorable triangles. Let ps be the probability that one of the λ ants started at s constructs
the correct shortest path, pk be the probability that a particular ant correctly navigates the
k/2 unfavorable triangles, and p1 ≤ 0.5 be the probability that a particular ant correctly
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navigates a specific unfavorable triangle, then

ps ≤ 1− (1− pk)λ ≤ 1− (1− (0.5)k/2)λ ≤ λ · 2−k/2

To ensure that ps is at least a constant, at least 2Ω(k) ants must be started from s.
If more than half the triangles are favorable in the current iteration, an exponential

number of ants will be required to construct the shortest paths from s in the next iteration.
Let τ ≥ 0.5 be the pheromone value on the correct shortest path arc in a triangle in the
current iteration; then 1 − τ is the pheromone value on the other arc in the same triangle.
In the next iteration, that other arc will be on the shortest path, and its pheromone value
will be at most 0.5 + ρ. As long as ρ is upper-bounded by a constant less than 0.5, the
derivation of ps can be repeated using p1 ≤ 0.5 + ρ to show that an exponential number of
ants must be started from s in the next iteration.

Thus, at least every second iteration requires λ to be exponential with respect to the
number of triangles in order for λ-MMAS to have a constant probability of at least one ant
constructing the shortest path from s to t.

A closer analysis may be able to show that in expectation, no more than some constant
fraction of the triangles will favor a specific weight function. This would mean that an
exponential number of ants is required in every iteration (rather than at least every second
iteration as concluded in the proof of Theorem 9) to ensure a constant probability of the
correct s-t shortest path being constructed in an arbitrary iteration.

In general, the smaller the evaporation rate, the less effect the first iteration has on the
pheromone values, reducing the amount of bias towards w1 introduced at the start of the
optimization process. A smaller λ has a similar effect: ants started further away from t
may not be able to find the full shortest path, which reduces the probability that the w1-
favored arc is reinforced. Subsequent iterations will, due to drift, reduce the bias introduced
by the asymmetry at the start of the process; i. e. if more triangles favor w1 than w2, in
expectation more w1-favoring triangles will be reinforced towards w2 during a w2 iteration
than w2-favoring triangles towards w1 during a w1 iteration.

In any case, the example illustrates the nature of the difficulty: the pheromone memory
isn’t capable of separating the two weight functions, and thus does not scale well if the
differences between the weight functions extend over multiple vertices.

6. Experiments

To illustrate the behavior of λ-MMAS in settings introduced in previous sections, a
number of simulations were performed; all averages and medians presented in the figures
in this section are computed based on data from 1000 simulations for each combination of
MMAS parameters ρ and λ, and, where applicable, oscillation frequency.

In the local changes setting with a single triangle, λ-MMAS with 2 ≤ λ ≤ 4 ants started
at each vertex was simulated with different evaporation rates, recording the first iteration
at which the pheromone values on the triangle exited the [1/10, 9/10] range (i. e. were about
to freeze) for the first time; the averages are shown in Figure 4. While it seems the λ = 2
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Figure 4: Number of iterations before pheromone values on the triangle leave [0.1, 0.9] for the first time for
varying evaporation rates for λ-MMAS, with λ = 2, 3, 4 ants started at each vertex during a single iteration.

curve is concave, which suggests that λ = 2 ants are not sufficient to prevent pheromones
from freezing for a super-polynomial number of iterations, it seems that λ = 3 ants may be
sufficient to achieve this.

For 1-MMAS in the local changes setting, the single-ant colony was simulated with differ-
ent evaporation rates and phase lengths T , recording the first iteration at which pheromone
values on the triangle arcs exited specific ranges; the results are shown in Figure 5. There
appears to be a more significant difference between T = 4 and T = 3 than T = 3 and T = 2.
Additionally, it seems that the pheromone values also remain within more restrictive ranges
than [0.01, 0.99] for significant numbers of iterations.

In the global changes setting with k = 200 triangles in series, λ-MMAS was simulated
with λ = 6 and ρ = 1/50. The number of triangles with pheromone values outside the
[1/4, 3/4] range was recorded; Figure 6 displays the average number of triangles favoring with
pheromone values outside this range, collated by which weight function the pheromone values
were favoring. Notably, the number of triangles favoring either weight function increases at
approximately equal rates, and eventually stabilizes, keeping approximately a third of the
triangles in the graph within the [1/4, 3/4] pheromone range.

Figure 7 presents the same metric in the global changes setting with the evaporation rate
set to ρ = 1 to maximize the impact of the first iteration. Somewhat surprisingly, even with
this extreme evaporation rate, the ratio between the number triangles frozen to favor w1 and
w2 is initially only 3:2. As suggested in Section 5, the ratio decreases gradually over time,
illustrating that the impact of the initial bias is counteracted, rather than compounded, by
subsequent iterations.

The number of triangles favoring w1 in Figure 6 is consistently greater than the number
of triangles favoring w2; this is an artifact of always recording the number of triangles after
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Figure 5: Local changes with slower oscillation periods; showing the median, quartiles, and 9th and 91st
percentiles of the number of observations required to leave specific pheromone ranges. The left subfigure
illustrates the effect of of phase length, while the right subfigure illustrates, for T = 4, the number of
iterations during which 1-MMAS pheromone values remain within [a, 1− a] for various constants a.

an iteration using the w1 weight function. In 7, the data points alternate between iterations
using w1 and w2, causing the lines to appear jagged.

7. Conclusions

We have studied a simple ACO algorithm called λ-MMAS for dynamic variants of the
single-destination shortest paths problem. Building upon previous results for the special case
of 1-MMAS, it was studied to what extent an enlarged colony using λ ants per vertex helps
in tracking an oscillating optimum. We showed that λ-MMAS, even with constant number of
ants per vertex, can deal with dynamic shortest paths problems where the shortest paths are
changed infrequently (by rediscovering the shortest paths before the next change occurs), or
changed rapidly between a small set of possible similar solutions (by keeping the pheromone
values close to 1/2 for the affected arcs). It has also been shown that even a single-ant colony
can prevent the pheromone values from freezing for a sufficiently slow oscillation. However,
we also identified an example where a fast oscillation between two weight functions that are
sufficiently different is so hard to track that a super-polynomial number of ants is needed.
Furthermore, we have discussed properties of the dynamics that make the problem hard.
Experiments show that the theoretical results are also valid for small problem dimensions
and illustrate effects that are not yet visible in theorems.

8. Future Work

In the future, the performance of λ-MMAS in settings with more complex weight function
changes could be analyzed – for instance, generalizing the results to oscillations with constant
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Figure 6: 200 triangles in series; average across 1000 simulations; λ = 6, ρ = 1/50.

phase lengths, oscillations between more than two weight functions, or using a less regular
schedule than was considered here. Having different components of the graph oscillate at
different frequencies could also pose an interesting challenge to ACO algorithms, one that
could potentially be addressed by maintaining several sets of pheromones updated using
different evaporation rates.
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