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Highlights 

 Combined Sewer Overflow was disinfected with performic acid in a sea-outfall pipe 

 Dosing 1-4 ppm performic acid removed indicator bacteria by 1-5 log units 

 Laboratory and field disinfection agreed fraction wise and detected known errors  

 Laboratory disinfection correlation with dose for ≤4 ppm initial performic acid 

 Performic acid water quality limits upheld through fast degradation, high dilution 
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Abstract  
Pollution of surface waters with pathogens from combined sewer overflows limits recreational use of surface waters. 

Large retention basins are a satisfactory solution but they are rarely sufficient for economic or space reasons. Fast 

disinfection during the overflow is an alternative, but few methods are known and each has problems. This work 

evaluated for the first time the full-scale disinfection using performic acid by the removal of the two currently regulated 

indicator bacteria for bathing water quality, E. coli and Enterococcus. Experiments were performed at a sewage bypass 

through a sea-outfall pipe with a minimum hydraulic retention time of 24 min.  

The disinfection efficiency in the field was measured by analyzing samples taken before and after the treatment. 

Samples were also treated with performic acid in the laboratory to measure the disinfection effectiveness and kinetic of 

degradation of performic acid. Doses of 1-8 ppm of performic acid achieved 1.0-3.5 log removal of E coli and 1.0-2.44 

log removal of Enterococcus in the field, but were somewhat higher in laboratory conditions at 1.69-4.38 and 1.0-4.27 

log units, respectively. Studies of the degradation of performic acid in collected real samples showed more than 50 % 

was degraded in 20 min, and mostly degraded by 120 min. Comparison of field and laboratory dosed samples detected 

that performic acid synthesis didn’t start in one event and clogging of the sampler in another event.  

Overall the tests showed that the treatment was successful but it is indicated that online control could benefit treatments 

efficiency. 

Keywords: Disinfection, Combined sewer overflow, Performic acid, Disinfix, Sewer system, Bathing water.  

1. Introduction 
Combined sewer overflow (CSO) is a well-known phenomenon in combined sewer systems where wastewater and rain 

water are transported in the same sewer network. Discharge of untreated CSOs deteriorates the quality of receiving 

surface waters, since CSOs contain a variable mixture of rain water, raw sewage, watershed run-off pollutants, variable 

pathogenic organisms, viruses, cysts, suspended solids, chemicals and floatable materials [1]. In recent years, the effect 

of CSOs on water bodies used for recreational purpose has caught significant attention in Europe. Particularly the 

dedication in 2002 of Copenhagen harbor for recreational purposes including swimming and water sports has yielded an 

economically significant added service and tourism industry to the harbor area. Corresponding economic losses when 

CSO events close the harbor for bathing has inspired the construction of significant retention basins which was meant to 

limit the CSO event frequency. However, due to the climate change related increased number of extreme rain events in 

2000-2011, 20 rain events caused temporary closing of  bathing in the harbor [2]. 

According to European Union directive 2006/7/EC for the good quality of bathing water, the number of indicator 

organisms should not exceed 500 MPN E. coli and 200 MPN Enterococcus per 100 mL water (based upon 95 percentile 

evaluation) in surface water intended for recreational purposes [3]. Microbial safe bathing water quality can be 

maintained by disinfecting the CSO water, and can be achieved in the existing sewer systems where sufficient holding 

time is available in an outlet pipe or detention tank, by adding a disinfectant at the beginning of the structure. The 

amount of disinfectant to be added will depend on the quality of CSO and the available residence time in the system. 

According to Tchobanoglous et al. [4], an ideal disinfectant should guarantee the maximum efficiency in pathogenic 

microorganism removal, without generating toxic and undesirable by-products. In addition, it should be inexpensive and 

technologically compatible [4]. There are various well known disinfectants used in the water industries such as 

hypochlorite and chlorine dioxide [5], which could be used to reduce contamination by microorganisms from CSO 

events, but the by-products of these are of environmental concern [6]–[10]. The organic peroxide, performic acid (PFA) 

emerged as a well-known disinfectant in the medical field and food industry [11]. In recent years, PFA has been used to 

disinfect primary and secondary WWTP effluents and can efficiently remove fecal coliforms [11], [12].  

PFA degrades into formic acid and water. Formic acid is not toxic to aquatic fauna and is easily biodegradable [11], 

[13]. Moreover, PFA is unstable and needs to be generated on-site, when needed, as a quaternary equilibrium mixture of 

performic acid (PFA), formic acid, hydrogen peroxide and water:  

CH2O2+H2O2 ⇌CH2O3+H2O (Eq. 1).  

PFA has shown high disinfection efficiency on treated wastewater effluents, but to our knowledge PFA has not been 

used to disinfect CSOs.  

If microbiological bathing water quality is the only concern from a CSO structure PFA can be a very economically 

attractive solution as e.g. a PFA generator with capacity to disinfect up to 4,500 m
3
/h with 4 ppm PFA costs about 

100,000 € and can deliver chemical for 0.06 €/m
3
 (Kemira Water, Denmark) while construction of a retention basin of 

4,000 m
3
 is estimated to cost about 2,800,000 € depending on the land cost.  

In our previous study Chhetri et al. [14], the degradation profile of PFA, disinfection efficiency on indicator organisms 

and residual toxicity on marine bacteria Vibrio fischeri were studied in both laboratory simulated CSO water and real 

CSO water. Furthermore, a PFA dose required to disinfect CSO water in full-scale operations was recommended based 
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on the experimental results from batch scale tests.   

The aim of this study was to test the full scale design and predicted performance of a disinfection system for combined 

sewer overflow (CSO) using performic acid based on our previous work on the characterization of the disinfection and 

degradation kinetics of performic acid in simulated and real CSO water. We constructed a dosing system where 

performic acid was synthesized using the commercial available Disinfix® system, and delivered to an overflow point in 

an existing CSO structure from a pumping station. To evaluate the performance, we collected water samples using two 

auto samplers connected to the water flow before and after the dosing point in order to collect untreated and treated 

water samples during the CSO events. We evaluated the disinfection performance by comparing the concentration of 

bathing water indicator organisms (E. coli and Enterococcus) in samples taken both before and after the treatment. 

Experimental dosing of field collected samples with performic acid in the laboratory was used to confirm the dose 

delivered in the field by comparing the achieved disinfection effect. Furthermore, the experiment was used to measure 

the kinetic of degradation of PFA in water. 

2. Materials and methods 

2.1 Chemicals 

Formic acid 85% w/w, hydrogen peroxide (50% w/w.), ABTS (2, 2’’-azino-bis [3-ethylbenzothiazoline-6-sulfonic acid] 

diammonium salt) and catalase from bovine liver were all purchased from Sigma-Aldrich (Brøndby, Denmark). All 

chemicals were reagent grade.  

Performic acid for laboratory use was prepared in two steps. Firstly, 11 mL formic acid (85% w/w.) was mixed with 1.0 

mL sulphuric acid (95%) in a glass test tube.  Secondly, 0.9 mL of the this mixture was added to 1.1 mL of hydrogen 

peroxide (50 % w/w) in a 5 mL test tube, and immersed in a water bath  controlled at 20° C. The product was allowed 

to react for 10 min before use in the experiments and was quantified in parallel by dilution of a subsample in 

demineralised water (125 µL to 100 ml) to yield a solution of approximately 2 mg·L
-1

. This solution was analyzed using 

the colorimetric method described by Chhetri et al. [14] based on selective oxidation of ABTS by PFA without 

interference from hydrogen peroxide. 

The field production of PFA was done continuously in a similar way using commercial chemical mixtures and reaction 

inside a tube reactor under automated temperature control in the Desinfix unit (Dex-135) from Kemira Water 

(Denmark).  

2.2 Full scale disinfection system  

The field experiment was performed at a large wastewater pumping station north of Copenhagen, in Skovshoved, which 

relays wastewater from Gentofte municipality and a part of Lyngby municipality to the Lynetten wastewater treatment 

plant. When the pumping capacity is exceeded during rain events CSO water bypasses the facility via a 1.6 km long 

outfall pipe into the Øresund. The hydraulic retention time in the pipe is, at minimum 24 min prior to discharge.  

For the experiment, CSO water bypassed into the sea was disinfected with PFA which was generated onsite from a 

Desinfix unit (provided by Kemira Water, Denmark). PFA was dosed to an overflow point in the existing CSO structure 

(See Figure 1). 

In order to be able to determine the effect of treatment two automatic sample collectors were installed to collect 

fractions of water before and after the dosing. It was not possible to collect disinfected water from the end of the sea-

outfall pipe which is required to evaluate the disinfection effect with the correct contact time. Therefore a tube reactor 

was made from a flexible polyethylene pipe (1.55 cm diameter and 100 m long) which was wound around a metal 

pillar. One end of the polyethylene pipe was inserted 6 m into the sea-outfall-pipe from the land side and the other end 

of the polyethylene pipe was connected to a pump (1 L·min
-1

) which delivered water to the sample collector with a 20 

min retention time. Each sample collector was set to collect 1 L sample time proportionally every 20 min with a 

capacity of 24 samples. As there is 20 min retention time between the samplers the first sample collected in autosampler 

1 correspond to the second sample collected in the second sampler. In order to make the naming straightforward the 

samples in autosampler 2 was named starting with fraction 0 while autosampler 1 started with fraction 1.  

Initiation of the performic acid synthesis, dosing and activation of the two auto samplers were automatized based on 

signals from the digital control system of the pumping station and CSO system. 
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Figure 1: Schematic drawing of the combined sewer overflow system connected to the sea-outfall. 

2.3 Laboratory disinfection  

In order to confirm the PFA dose delivered in the field, comparable PFA treatments were made on three representative 

field collected (untreated) samples in the laboratory. Three PFA doses were applied to each fraction, in order to match 

the onsite disinfection dose in low and maximal flows of CSO in the sea out-fall pipe. After 20 min of contact time, a 

fraction of each sample was processed for E. coli and Enterococcus enumeration and in parallel concentration profiles 

of PFA was followed until 2h in the remaining sample.  

2.4 Chemical analysis of CSO water 

Conductivity, pH, and NH4
+
 were determined according to standard methods [15] and using standard operating 

procedures and control methods from the general water laboratory at Department of Environmental Engineering, 

Technical University of Denmark.  

2.5 Microbiological analysis 

Samples were processed within 2 h after collection. Residues of PFA were neutralized in laboratory experiments by 

adding 100 mg·L
-1

 sodium thiosulphate followed by 50 mg·L
-1

 catalase to destroy hydrogen peroxide [16]. Bottles in 

the auto sampler used to collect disinfected samples in the field experiments had 100 mg·L
-1

 sodium thiosulphate pre-

added followed by addition of 50 mg·L
-1

 catalase immediately on arrival in the laboratory. 

E. coli and Enterococcus were enumerated using the Colilert and Enterolert methods from IDEXX (IDEXX 

laboratories, Maine, United States) as described by Chhetri et al. [14]. 

3. Results and discussion 
3.1 Approval of field dosing experiments 

The environmental safety of the release of the chemicals related to the treatment was evaluated and approved by the 

local authority, Gentofte Municipality, according to the Danish statuary order 1022 of 25
th

 August 2010 [17]. Both the 

potential pH drop in water in the area around the outlet due to the acidity of the disinfectant mixture (sulfuric and 

formic acid) as well as the potential toxic effects of PFA, formic acid and hydrogen peroxide concentrations in the 

receiving water were initially considered. The toxicity evaluation was based on an initial dilution zone with a 50 m 

radius around the end of the pipe in which the CSO is instantaneously diluted 75-fold according to a standard model 

used by the Danish environmental authorities. The permit was finally based on that PFA degraded very fast and 

therefore hydrogen peroxide was the limiting factor. The permit allows that the undiluted treated effluent contains 7.5 

mg·L
-1

 hydrogen peroxide and 10 mg·L
-1

 formic acid, that the treatment can be performed for up to 8 h and that the 

quality criteria of 0.1 mg·L
-1

 hydrogen peroxide cannot be exceeded in the dilution zone. The criterion for hydrogen 

peroxide was derived from the dataset on eco-toxicity to aquatic organisms by JACC [18].  

3.2 Characterization of CSO events 

The two studied CSO events occurred on 28 October 2013 (first CSO event) and 7 May 2014 (second CSO event). The 

first CSO event lasted 5 h 40 min (12:40 pm to 6:20 pm) and the second CSO event lasted for 5 h 15 min (10:15am to 

3:30 pm). From the first CSO event 16 samples (CSO fraction) were collected from sampler 1 (non-disinfected) and 17 

samples were collected from sampler 2 (disinfected); from the second CSO event 16 non-disinfected samples were 

collected but only 12 disinfected samples were collected due to repeated clogging of the flexible polyethylene pipe 
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collecting disinfected samples. All samples were analyzed for conductivity, NH4
+
, and pH, as is illustrated in Figure 2. 

The conductivity and NH4
+
 of the non-disinfected and onsite disinfected samples from both CSO events showed the 

variation of the CSO composition over time (Figure 2, Table S1-S2). The conductivity and NH4
+
 peaked during the first 

hour of both events and decreased to reach a minimum during the second hour and remained constant. At the end of 

both CSO events conductivity increased progressively which was also observed by Passerat et al. [19]. The difference in 

conductivity between non-disinfected and disinfected samples is constant through both CSO events as it is due to the 

pre addition of sodium thiosulphate in bottles collecting disinfected samples to destroy residual PFA. The pH of non-

disinfected and disinfected samples showed variation but no trend was observed in both events which were due to the 

variation of CSO composition over time. This shows that the acidity in the PFA mixture is insignificant, compared to 

the alkalinity in the water and its variation. The matching trend in the parameters between the influent and effluent of 

the disinfection system prove that the retention time of 20 min is correct. 

 
Figure 2: Conductivity, ammonium and pH of non-disinfected and disinfected CSO fractions from the CSO event 
occurred on the 28

th
 October 2013 (top) and 07

th
 May 2014 (Bottom). 

3.3 Field disinfection 

Disinfection effectivity was derived by comparing concentrations of indicator organisms measured in fractions of the 

CSO event collected in the two auto samplers with adjustment for the 20 min delay in the tube reactor to simulate the 

hydraulic retention time in the outfall-pipe. Results are shown as connected points in Figure 3 and in Table S3-S4 and 

S6-S7 for the two CSO events and two indicator organisms. The maximum initial start concentration of E. coli and 

Enterococcus was 10
6.3

 and 10
5.9

 MPN and minimum was 10
5.6

 and 10
5.0

 MPN per 100 mL respectively in the October 

2013 CSO event. In the May 2014 CSO event the maximum initial start concentration of E. coli and Enterococcus was 

10
6.9

 and 10
6.0

 MPN and the minimum was 10
5.9

 and 10
5.2

 MPN per 100 mL, respectively.   

In the October 2013 CSO event the Disinfix unit was set to deliver 0.08 kg·min
-1

 performic acid which would give a 

minimum delivered concentration of 2 mg·L
-1

 PFA if the flow in the sea outfall-pipe was at the maximal hydraulic 

capacity of 2500 m
3
·h

 -1
. The first 3 CSO fractions collected were not disinfected due to a failure in the automated start 

of the Disinfix unit. The remaining CSO fractions were disinfected with a variable PFA dose, detailed in Figure 3 with 

dotted line resulting from the constant dose from the Disinfix unit but variable flow in the sea-outfall pipe. The removal 

of E. coli increased from 2.5 to 3.0 log units in CSO fractions 4 to 8 when the PFA dosing changed from 2.5 mg·L
-1

 to 8 

mg·L
-1

 and remained constant for the remaining CSO. Similarly, removal of Enterococcus changed from 1.0 to 2.3 log 

units in CSO fractions 4-8 treated with 2.5 mg·L
-1

 to 8 mg·L
-1 

PFA and remained constant for the remaining CSO. The 

average E. coli and Enterococcus concentration after full scale disinfection was 10
3.1

 MPN E. coli and 10
3.6

 MPN 

Enterococcus per 100 mL of CSO fraction. The CSO water is diluted a minimum of 75 times around the discharge point 

which means the concentration will be below the 500 MPN E. coli and 200  Enterococcus per 100 mL limits mentioned 

in the European Union directive 2006/7/EC for the good quality of bathing water.  

In the May 2014 CSO event the Disinfix unit was set to deliver half the dose of that was used in the first overflow event 

i.e. 0.04 kg·min
-1

 PFA. The PFA dose was changed to observe the variation in disinfection efficiency on indicator 
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organisms. The observed removal of E. coli was 1.0 to 3.5 log units in CSO fractions treated with 1 to 4 mg·L
-1  

PFA. 

The removal of E. coli decreased to 0.9 log unit at the end of the overflow event. This is believed to be due to clogging 

of the inlet to the tube reactor that simulated the retention time before the second automatic sampler. The removal of 

Enterococcus was 1.0 to 2.44 log units in this CSO event while the system was running properly but in the last fractions 

it was observed to decrease to 0.5 log unit while the tube reactor wasn’t functioning properly. It is believed that this is a 

sampling artifact and that the disinfection in the full system remained higher towards the end of overflow event. The 

average E. coli and Enterococcus concentration after full scale disinfection was 10
4.9

 MPN E. coli and 10
4.8

 MPN 

Enterococcus per 100 mL of CSO fraction. Considering the 75-fold dilution into the surface water the E. coli and 

Enterococcus concentrations will be higher than that allowed for bathing water in the European Union directive 

2006/7/EC. In both events it was evident that Enterococcus is more difficult to disinfect with PFA than E. coli which 

was also observed by Chhetri et al. [14] and Ragazzo et al. [12]. 

 
Figure 3: Dose (minus sign, right axis) and disinfection effect in laboratory and field (symbols, left axis) of PFA on E. coli 
and Enterococcus in two CSO events from 28th October 2013 (two graph from left) and 07th May 2014 (two graph from 
right). T-bars indicate 95% confidence interval of experimentally observed disinfection effectiveness. 

3.4 Laboratory disinfection  
Based on ammonium concentration and conductivity, three non-disinfected CSO fractions were selected to match the 

quality of overflow to the first flush, typical overflow and extended overflow during rain event as described in Chhetri 

et al. [14]. These samples were disinfected with 3 (or 4) different concentration of PFA in the first and second CSO 

events to verify the onsite disinfection efficiency towards E. coli and Enterococcus (Figure 3, Table S5, S8). For E. coli 

and Enterococcus enumeration residual PFA was quenched by adding sodium thiosulphate and catalase to the samples 

after 20 min and in parallel concentration profiles were measured for 2 h to determine the degradation kinetic of PFA in 

CSO water as shown in Figure 4.  

The disinfection effect with varied doses of PFA added in the laboratory to the selected CSO fractions is plotted in 

Figure 3 and complete data is shown in Table S5 and S8. The removals obtained for E. coli and Enterococcus with low 

PFA doses were similar with onsite disinfection removal in both CSO events. The removal obtained from laboratory 

disinfection for Enterococcus was lower than those observed for E. coli which was also evident from onsite 

disinfection. The laboratory removal of E. coli and Enterococcus increased in both CSO events when higher 

disinfection doses were used, but the same effect was not observed in the full scale experiments when onsite 

disinfection doses were increased. Some dissimilarity in removal of indicator bacteria between laboratory and field-

scale is expected as laboratory experiments are conducted in controlled condition whereas onsite disinfection of a real 

CSO event occurs under highly variable operational conditions and are affected by numerous factors. 

3.5 Concentration profiles 

Three selected fractions of each of the CSO events were used for investigating the concentration curves with time of 

different PFA at different initial concentrations as seen in Figure 4. The degradation appears to be slower in water from 

the first CSO event with residual concentration of 0.5-1 mg·L
-1

 from 2.7, 3.7 and 7.5  mg·L
-1

 PFA remaining after 120 

min, while initial concentrations of 4 mg·L
-1

 PFA were degraded in all fractions from the 2
nd

 CSO event.   
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Figure 4: Concentration profile of PFA in CSO fraction collected before disinfection from 28th October 2013 (top) and 7th 
May 2014 event (bottom). 

3.6 Dose dependency of disinfection effectiveness 

Generally, chemical disinfection design and control is based on the concept that the disinfection is proportional with the 

exposure of the organism to the disinfectant, expressed as the product of concentration and time (Chick-Watson model). 

However, this has been difficult to demonstrate in previous work with PFA in wastewater [12] and CSO water [14] 

where both used the nominal dose as predictor.  

Our laboratory disinfection and concentration profile provides data to compare this in 20 combinations of PFA doses 

and different CSO water samples but with the same exposure time. The correlation between disinfection with either the 

product of the exposure time and concentration (Ct) or nominal concentration of PFA (C0) is plotted in Figure 5. 

Calculation of Ct was done by integrating the actual concentration (C) of the disinfectant from the addition until the 

contact time (t) (area under the curve) of each concentration profiles in Figure 4.  

 
Figure 5: Correlation between disinfection effectiveness in laboratory treated CSO fractions either exposure (Ct: two 
graph from left) or nominal dose (C0: two graph from right). 

For both the product of the exposure time and concentration and the nominal concentration of PFA the observed 

correlation with the disinfection appears to be continuous and positive but far from linear. The minimum Ct of 8 mg·L
-

1
·min removed 1.96 log units of E. coli whereas the highest Ct of 102 mg·L

-1
·min removed 4.38 log units of E. coli. 

Similarly, the minimum Ct of 8 mg·L
-1

·min removed 1.33 log units of Enterococcus and Ct of 102 mg·L
-1

·min removed 

3.31 log units of Enterococcus. Thus increasing the Ct 13-fold only increased disinfection by 2.2-fold and 2.5-fold of E. 

coli and Enterococcus, respectively. Thus, it appears that the disinfection is far more efficient at lower doses than at 
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higher doses 

3.7 Considerations of experimental installation 

The constructed full scale test system is far from perfect and many improvements could be envisioned. The most 

obvious is that the dosing of PFA from the Desinfix unit should be adjustable, so that the PFA dose will change 

proportionally to the CSO flow giving a constant treatment concentration. A further improvement would be to dose 

based on the water quality,  e.g., the first 60 min of an overflow could be treated with a higher concentration of PFA as 

the bacteria and matrix concentrations are higher in the beginning of CSO events [14].  

A much more reliable evaluation of the achieved disinfection could be achieved if the pump that draws water into the 

retention tube was also regulated according to the flow, so that the retention before the second auto sampler matched the 

retention time in the sea-outfall pipe rather than just delivering the minimum retention time before the PFA is quenched.  
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