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A B S T R A C T

Light-induced chemical processes are accompanied by molecular mo-
tion on the femtosecond time scale. Uncovering this dynamical mo-
tion is central to understanding the chemical reaction on a fundamen-
tal level. This thesis focuses on the aspects of excess excitation energy
dissipation via dynamic changes in molecular structure, vibrations
and solvation.

In this thesis, we employ our recently developed Quantum-/Molecular
-Mechanical Direct Dynamics method to do simulations of transition
metal complexes in solution, to uncover their energy dissipation chan-
nels, and how they are affected by the solvent. The simulations has
also served as benchmarks on this newly developed implementation

First, we establish that the chosen model provides a trustworthy de-
scription of the systems; since transition metals are heavier than purely
organic systems, we test a range of approximations to relativistic
quantum mechanic descriptions, to ascertain the accuracy of the quan-
tum model in the Direct Dynamics simulations. We then test - and im-
prove - the framework for calculating the experimental X-ray Diffuse
Scattering Difference signal from (any kind of) Molecular Dynamics
(MD) simulations. Comparisons of purely classical MD simulations
to literature Direct Dynamics simulations delineate the boundaries
for the force-field approximation: Classical MD provides a solvent
shell response sufficient for experimental fits, but fails to model spe-
cific solvent shell changes, such as intercalation.

The first Direct Dynamics project of this work focuses on a bi-metallic
Ir complex, where the excited state bond formation results in a large
Ir-Ir contraction with oscillatory behaviour. Forty simulated excited
state trajectories of 3.5 ps each compare well with experimental re-
sults, and uncover a new vibrational mode. We observe how the
wide distribution of ground state geometries is responsible for deco-
herence, and that the solvent cage actually facilitates coherent motion,
by blocking the newly discovered vibrational mode. We furthermore
observe a non-specific, rotational solvent response to the excitation.

The second Direct Dynamics project studies the effect of solvation on
a bi-centred Ru-Co complex, and we observe how the intercalation
solvation response which was lost in the study using only force-fields,
is recovered in the Direc Dynamics description.
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R E S U M É

Lys-aktiverede, kemiske processer hænger ubestrideligt sammen med
molekylær bevægelse på femtosekund tidsskalaen. Kortlæggelsen af
denne dynamik er af central vigtighed for at forstå den kemiske reak-
tion på det helt grundlæggende niveau. Denne afhandling fokuserer
på aspekterne ved energioverførsel via dynamiske ændringer in mole-
kylær struktur, vibrationer og solvatisering.

I denne afhandling anvendes vores nyudviklede Kvante-/Klassisk-
Mekaniske ’Direkte Dynamik’-metode til at foretage simuleringer af
overgansmetaller i opløsning. Med denne metode beskrives de rele-
vante energioverførselskanaler, og hvordan de påvirkes af solventet.
Simuleringerne har også fungeret som benchmarks af denne nye im-
plementering af metoden.

Først etableres at den valgte model troværdigt kan beskrive de under-
søgte systemer; da overgansmetaller er tungere end rent organiske
systemer, testes en række tilnærmelser til den fuldt ud relativistiske,
kvantemekaniske beskrivelse, for at konfirmere at den nødvendige
præcision kan opnås med den kvantemekaniske model der anven-
des til den ’Direkte Dynamik’. Efterfølgende testes - og forbedres
- rammerne for at beregne det eksperimentelle røntgensprednings-
differens-signal fra (enhver slags) molekyldynamiske (MD) simulering-
er. Ved at sammenligne rent klassiske MD simuleringer med Di-
rekte Dynamik simuleringer fra literaturen opridses grænserne for
kraftfelts-tilnærmelsen: Klassisk MD kan simulere solventskalsrespons
tilstrækkeligt mht. reproduktion af det eksperimentelle signal, men
fejler i beskrivelsen af solvent-interkalering.

Det første Direkte Dynamik-projekt fokuserer på et bi-metallisk Ir
kompleks, hvor bindingsdannelsen i den anslåede tilstand medfører
en betydelig Ir-Ir sammentrækning, og oscillatorisk opførsel. Fyrre
simulerede trajektorier på hver 3.5 ps reproducerer denne eksperi-
mentelt bekræftede dynamik godt, og simuleringerne viser samtidig
en ny vibrationel tilstand besiddet af molekylet. Vi observerer hvor-
dan den bredde grundtilstandsfordeling af geometrier er skyld i tabet
af den kohærente bevægelse, og at solventet faktisk faciliterer ko-
hærens ved at blokere denne ny-opdagede vibrationelle kanal for en-
ergioverføsel. Vi observerer yderligere et ikke-specifikt, rotationelt
solvent-respons.

Det andet Direkte Dynamik-projekt studerer effekten af solvatisering
af det dobbelt-centrede Ru-Co kompleks, og vi observerer hvordan
dén solvent-respons der gik tabt i den rent klassiske MD-metode kan
beskrives med den Direkte Dynamik-model.
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Part I

I N T R O D U C T I O N A N D B A C K G R O U N D





1
I N T R O D U C T I O N

The work presented in this thesis is focused on describing how the
dynamics behind nuclear motion play out on the stage of femtochem-
istry. The femtosecond timescale is the fundamental timescale on
which chemical reactions occur, since it is the timescale of nuclear vi-
brational motion. The pioneering experimental work on uncovering
the processes of the chemical reaction in its own temporal domain
was carried out by Ahmed Zewail and co-workers, for which he re-
ceived the Nobel prize in 1999[1], underscoring the importance of the
field. The seminal work used transient spectroscopy to follow the
dissociation of diatomic[2] and triatomic[3, 4] molecules in real time.
The ultrashort light pulses of the spectroscopic probe provides the nec-
essary ’shutter speed’ to catch the molecular motion, but just as a film
director needs a clapperboard to synchronise sound and vision, the
motion of millions of billions of molecules must be synchronised. In
this way, the averaged behaviour of molecules in the sample retains
information of the behaviour of each individual molecule. This is
achieved by using laser pump-pulses of few-femtosecond durations
to initiate the process. The combination of the pump- and probe tools
define the femtochemical pump-probe experiment, where the spectro-
scopic methods can be used to interpret the kinetics and the changes
in the energies of electronic states of the system. While they can be
informative in their own right, they do not necessarily have a 1:1 cor-
respondence to the changes undergone by the molecular structure,
and does thus not automatically shed light on the structure/function
relationships in the studied systems. However, less ambiguous in-
formation on the (changes in) molecular geometries can be obtained
by using X-ray scattering as the probe instead. Recently, the limits
of what processes are experimentally accessible to X-ray Diffuse Scat-
tering (XDS) in a pump-probe setup has been pushed back almost
3 orders of magnitude, with the introduction of X-ray Free Electron
Lasers (XFELs), large-scale facilities capable of producing < 100 fs X-
ray pulses of formidable intensity.

Whereas the ordered nature of solid state materials utilize the diffrac-
tion condition to precisely reconstruct crystal structures, the interpre-
tation of a time-resolved XDS signal from molecules in solvent intro-
duces further challenges on the interpretation of the signal, that em-
phasizes the necessity of theoretical modelling. Continuously work-
ing towards discovering the nature of the chemical reaction entails
scrutinizing molecular systems of increasing size and complexity,
which again motivates the need for development of theoretical tools
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4 introduction

that feasibly model the nature of the processes expressed in the ex-
perimental systems.

The main part of the work presented in this thesis is thus focused on
employing, benchmarking, and helping the development of a ’Direct
Dynamics’-model that combines the quantum mechanical description
of Density Functional Theory (DFT) with the classical Molecular Me-
chanical method that successfully and computationally feasibly can
represent the processes exhibited in molecular complexes of signifi-
cant size and intricacy. The name ’Direct Dynamics’ arises from the
notion that the atomic motion is simulated by directly calculating
the classical forces on the nuclei, influenced by the explicitly calcu-
lated electronic density of the Quantum Mechanical part of the sys-
tem. This calculation is again affected by the classical point charges
of the surrounding MM part. The resulting atomic motion is collected
- together with the associated velocities - into trajectories which can
be analysed to reveal information about the relevant processes under-
gone by the system.

The following section will give a brief and general overview of these
dynamical processes of which some has been the focus of this work.

1.1 structural dynamics & solvent responses

The equation that fully describes a molecular system is the Time-
Dependent Schrødinger Equation (TDSE)[5]:

i
∂

∂t
Ψ(r, t) = HΨ(r, t) (1)

Where Ψ is the total nuclear and electronic wave function of the molec-
ular system, and H is the Hamilton operator. The general solution
of the TDSE is an arbitrary superposition of any number of particu-
lar functions that satisfy the equation, called a wave packet, which
propagates with time, in some cases coherently, meaning that the
spread of the wave packet stays the same[5]. Analytical solutions to
the TDSE only exists for the simplest of systems. However, the time-
dependence can be separated out, and due to their large difference
in mass, the nuclei can be assumed to appear stationary to the elec-
trons, such that the motion of the two types of particles also can be
separated[6, 7]. This is called the Born-Oppenheimer approximation,
and it means that any small change in the nuclear positions will in-
stantly be mirrored in the electronic structure, and as such, the nuclei
move in a potential of the (instantly corresponding) electrons. For
a diatomic molecule, this potential will simply be some function of
the distance of the two nuclei, but for an arbitrary number of nuclei,
this potential is called the Potential Energy Surface (PES), where the
surface is N-dimensional, with N being the degrees of freedom of the
molecule.
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Figure 1: A Franck-Condon diagram illustrating the general processes of
an electronic excitation. The ’S’ labels represent ’singlet’ surfaces,
where there is no unpaired electrons, so the multiplicity is 1.

The curves in figure 1 represent PESs of a molecule, where the multidi-
mensional hypersurface is simplified as a 1D curve. The state labeled
S0 represents the electronic ground state with a potential energy min-
imum for a given set of interatomic distances and angles, or simply
’Nuclear coordinates’. At 0 K the molecule can only exist in the vibra-
tionally lowest level, but at increasing temperatures, more vibrational
levels gradually become available. When a molecule is electronically
excited, e.g. by absorbing an incoming photon, an electronic transi-
tion following the Franck-Condon principle[8] takes place, which is
illustrated by the vertical blue arrow. Depending on the photon en-
ergy, the resulting electronic transition can be to any of the higher
electronic states, in any of their vibrational levels. Some can be asso-
ciative, as exemplified in the S1 surface in figure 1, while others can
be dissociative, e.g. like S2. An actual excitation is often to a higher-
lying electronic state, which is quickly relaxed to the S1. This ini-
tial, very fast relaxation cascade involves processes where the nuclei
do not appear stationary to the electrons, so that electronic motion
cannot be separated, and the description of these Internal Conver-
sion (IC) processes fall beyond the Born-Oppenheimer approximation.
Theoretical treatment of such so-called non-adiabatic processes are cur-
rently limited to systems of much fewer atoms than the ones in this
work.

Another possible route in the relaxation cascade is Intersystem Cross-
ing (ISC), where the spin of the electron flips, caused by coupling of
the intrinsic spin of the electron to its orbital angular momentum, so
that the overall multiplicity of the system, 2S+ 1, where S is the to-
tal spin momentum, changes. The grey T1 is an example of a triplet
surface, where there is two unpaired electrons which each has spin
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s = 1
2 , giving the total spin momentum S = 1, so the multiplicity is 3.

In any case, the the longest-lived state of the excitation will often be
the final excited state[9], within a time scale accessible to experiment.
The excess energy of the excitation is dissipated by non-radiative,
dynamic processes termed Vibrational Relaxation (VR): Vibrational
modes of the complex in which the structure dynamically oscillates
according to the potential it experiences. This process can be further
divided into two main channels of dissipation:

1. Intramolecular Vibrational energy Redistribution (IVR)

2. External Vibrational Relaxation (EVR)

- where IVR (as the name suggests) takes place within the molecule,
redistributing the excess energy into different vibrational modes. In
EVR, the energy is dissipated to the solvent, e.g. via collisions with
solvent molecules.

Since electronic excitation events often lead to significant changes in
the electronic structure of the molecule, its overall dipole moment µ
will change in those cases. For polar solvents, this means that the
solvent molecules closest to the solute will respond to this overall
change in electronic structure, which exemplifies apart of the EVR

process, here termed the non-specific solvent response.

Figure 2: Illustration of solvation dynamics following electronic excitation
of a molecule, which changes its dipole moment. Of course, the
solvent arrangement will also respond to structural changes in the
solute.

Figure 2 illustrates the corresponding solvent re-orientation dynam-
ics, wherein reciprocally, the solvent can stabilise (i.e. lower the en-
ergy of) certain Excited State (ES) nuclear coordinates, such that the
solvated structure differs from the gas-phase. Additionally, the fig-
ure depicts how the structural change started by the electronic excita-
tion can be different in a solvated system, compared to the gas-phase
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equivalent.

Another option for solvent response go under the label of ’specific sol-
vation dynamics’, where the closest solvent molecules which might
be intercalated in the solute are sterically forced away from the sol-
vent shell (i.e. the innermost region of solvent molecules), or con-
versely, changes in the solute geometry can open up for more solvent
molecules to intercalate, thus explicitly changing the solute-solvent
interaction of a well-defined set of molecules.

As previously mentioned, the choice of theoretical tools for studying
these processes will always depend on the size and complexity of the
system. The systems chosen for this project are described in the fol-
lowing section. They all exhibit (a combination of) the just described
processes. Therefore, examining the systems can provide answers to
the fundamental questions: How is excess energy from electronic exci-
tations dissipated? What is the role of the solvent?. The examination in
this work consists of Direct Dynamics simulations, also termed Quan-
tum Mechanical/Molecular Mechanical (QM/MM) Molecular Dynam-
ics (MD) simulations, as previously mentioned, and described in de-
tail in part iii of this work.

With these concepts in mind and tools in hand, we can begin the
endeavour of exploring the world of femtochemistry.
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1.2 outline

The thesis will try to present answers to the questions presented in
the previous section in the manner described below:

chapter 2 Describes the molecular systems which has been inves-
tigated, which all contain transition metals.

chapter 3 Investigates a range of possible methods for approxi-
mating relativistic effects which play a role in the structure of molecules
containing heavy atoms. In this chapter, a rudimentary DFT introduc-
tion is also provided, but can be skipped by readers familiar to the
theory.

chapter 4 Delves into the anchoring of simulation in experiment,
by looking at how one calculates the experimental X-ray scattering
signal from molecular simulations, and delineates the limits of simu-
lations based on purely classical force-field methods.

chapter 5 Introduces the QM/MM MD method, the QM code used,
and describes how to set up a QM/MM MD simulation in the developed
framework.

chapter 6 Uses QM/MM MD simulations to investigate the struc-
tural dynamics of an iridium dimer molecule described in chapter 2,
to uncover new modes, coherence effects and the role of the solvent.

chapter 7 Presents the current status of QM/MM MD simulations
on a bimetallic charge-transfer complex, and compares the resulting
solvation effects with the model from chapter 4.

chapter 8 Collects the attained results and observations, and
presents future goals and ambitions.

The choice of deviating from clumping the theoretical background
parts together is deliberate, since reading through it all at once with-
out harvesting a few results in between could be somewhat. . . dull.
This entails that a few results obtained with the electronic structure
method described in chapter 5 is presented in chapter 3, but the inter-
pretation of those results do not strictly require any of the information
given in chapter 5, so the author believes no real harm is done this
way. Conversely, the description of all the molecular systems benefit
from being grouped together. This organization could maybe require
a bit of going back to chapter 2, while reading the rest of the chapters,
however.



2
T H E S Y S T E M S O F T H I S P R O J E C T

There are two overall groups of complexes in this study: Members of
the d8-metal complexes, known for the debated nature of the ’d8-d8-
interactions’[10], that can cause oligomerisation[11, 12]. This entails
having two (or more) electron-rich elements close to each other, but
weaker bound than in the covalent case, such that large changes in
molecular geometry are very likely to occur if the system is perturbed;
an opportune model system for dynamics measurable with the XDS-
pump-probe method.

The other general category also involves transition metals, but in
this case they appear in complexes exhibiting octahedral symmetry,
where the metal atom is centered between 6 nitrogen atoms of the lig-
ands. The complexes are of interest both due to an intricate relation-
ship between their spin-configurations and the resulting geometries,
and furthermore due to the effect this relationship on their excited-
state lifetimes.

2.1 tetracyanoplatinate , [pt(cn)4 ]2−

Figure 3: Illustration of the Tetracyanoplatinate complex [Pt(CN)4]2−. The
Pt atom is centered between the 4 cyano groups in D4h symmetry,
so the complex is square planar.

The origin of the interest in d8-metal compounds has been reviewed
by P. D. Harvey[13], focusing on the origin of- and motivation for
-the ligands. Gliemann & Yersin[12] provides an in-depth overview
of a single member of the square planar complexes: Tetracyanoplati-
nate(II), [Pt(CN)4]2−. According to Harvey, the interest in these com-
pounds originated from the work done by Gray et al. from 1977-
1981[14, 15, 16, 17], realising that the [Rh(CNR)4]+ complex oligomer-
izes, and that the oligomer structure is concentration dependent. This
oligomerization was also found to take place for [Pt(CN)4]2− ions in

9
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solution[11]. Apart from the fact that the metal-metal distance is con-
centration (-and pressure[18]) dependent, the metal-metal distance
can also be varied by changing the counter ion used in the crystalliza-
tion. Actually, the Pt-Pt distances in the crystals vary with up to 0.7
Å, depending on the counter ion[12].

The compound can be modeled as a quasi one-dimensional metal-
metal bonded chain, exhibiting extremely anisotropic conductivity
[19], making it interesting for transport studies and molecular elec-
tronics.

This kind of solvated species constitutes a complex system, with
oligomers of different numbers of units, and different structures present
in the solution at once. Thus, the host of dependencies diminishes
the level of attainable control desired for detailed dynamics studies,
or later applicability in energy conversion. However, the square pla-
nar symmetry of [Pt(CN)4]2− makes it feasible for full, 4-component
relativistic QM geometry relaxations, as the symmetry-induced degen-
eracy can be used to reduce the number of needed computations.

2.2 m2 (dimen)2+4

The need for better control of the binuclear complex structure moti-
vated the search for bridging ligands that could provide this. The
most widely employed bridging ligands are shown in figure 4.

Figure 4: Ligands for the binuclear systems. The complete complexes are
made from 2 metal ions, attached at the triple bonded carbon to
four opposing ligand units (see fig. 5). Here, the ligands are dis-
played with increasing flexibility from left to right.

The dimen molecules (see fig. 4, center) have intermediate flexibility
when used as ligands in the complex, since they are longer than the
’bridge’ (fig. 4, left), but are stabilized by the ring, compared to ’TMB’
(fig. 4, right). This makes them the best candidates for obtaining a
useful combination of control and flexibility, to mitigate the difficul-
ties in the experimental detection of structural change upon outside
action. The cyclohexane ring breaks the ligand symmetry such that
the final complex exists in four isomeric structures, as shown in fig-
ure 5.

The Ground State (GS) crystal structure of complexes from this group
with the dimen ligand was first determined with M=Rh by Mann[22].
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Figure 5: Schematic of the dimen orientation in the four M2(dimen)2+4 iso-
mers. The highlighted part of the 2:2 Trans isomer is repre-
sented in the schematic in figure 6. The statistical distribution
in solution[20] is displayed below each isomer. Adapted from [21]

Figure 6: Left: The ’windmill-like’ structure of the [M2(dimen)4]2+ com-
plex, here shown without hydrogens for clarity. Center: Schematic
representation which only needs to depict half of the complex, due
to its symmetry (see fig. 5). The schematic emphasises the atoms
of the ’ligand legs’ connected to the metals. This representation
will be used in the explanation of the simulated dynamics in chap-
ter 6. Right: Molecular orbital diagram, reconstructed from [24],
featuring the metal-centered, bonding LUMO and the antibonding
HOMO.

They were dubbed ’windmill’-like in their arrangement (see figs. 5

and 6). The suggestion that the structure was similar for all com-
plexes in the group was later confirmed for Rh2(dimen)2+4 [23] and
[Ir2(dimen)4]2+ as well[20]. Figure 6 shows the structure of the
[Ir2(dimen)4]2+ complex, without hydrogens, for clarity. While our
group has been experimentally investigating both [Rh2(dimen)4]2+

[25, 26] and [Ir2(dimen)4]2+ [27], the Ir variant was chosen for both
the further theoretical modelling, and for experimental investigation
at an XFEL. This choice is based upon the following reasons:

• The scattering signal from the Ir-containing complex is larger,
due to the larger amount of electrons in Ir.

• The excitation fraction of [Ir2(dimen)4]2+ is higher for the em-
ployed experimental setup [26].

• Transient optical spectroscopy has shown coherent oscillations
post excitation of this complex[28] (see fig. 9 and accompanying
text).
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Figure 7: Left: Deformational isomerism in [Ir2(dimen)4]2+. The ’Short &
Twisted’ conformer can only be theoretically described by map-
ping energy surfaces of the Ir-Ir distance and the twisting angle
between the metal ligand planes, while allowing the rest of the
structure to relax at each point. Right: Absorption spectrum of
[Ir2(dimen)4]2+ in acetonitrile: Pumping the molecule at 475 nm
or 585 nm selectively excites the long & eclipsed, or the short &
twisted conformer, respectively[28].

The electronic configuration of this complex features a σ-antibonding1

Highest Occupied Molecular Orbital (HOMO), while the Lowest Unoc-
cupied Molecular Orbital (LUMO) is σ-bonding[29, 24]. Thus, when
photoexcited, the complex effectively forms a chemical bond between
the two metals. This, in combination with the previously discussed
flexibility of the dimen ligand, causes the complex to undergo large
structural changes. We have previously reported a 1.3 Å contraction
along the Ir-Ir axis for [Ir2(dimen)4]2+ in solution[27], using pulsed
synchrotron radiation. While this contraction is far from unique to
the Ir-variant (a solid-phase Rh-Rh contraction of 0.86 Å has also pre-
viously been reported[30]), it is, to our knowledge, the largest.

Hartsock et al.[28] have carried out transient spectroscopy measure-
ments on the [Ir2(dimen)4]2+ complex, and report a deformational
isomerism which effectively splits the GS population in two main
structures: a ’short & twisted’ (Ir-Ir distance of ∼ 3.6 Å, 17◦ twist,
see fig. 7), and a ’long & eclipsed’ (Ir-Ir distance of ∼ 4.4 Å, 0◦ twist).
This isomerism has previously been observed[31], and is supported
computationally by constrained mappings of the energy landscapes,
made in-house by T. B. van Driel[26] (see fig. 8) and elsewhere[32],
and is reflected in the double-peak in the absorption spectrum of the
complex (fig. 7, right).

The transient spectroscopy carried out by T. Harlang[21] and in[28]
clearly shows signs of coherent vibrations. The results are reproduced
in figure 9. The choice of which GS deformational isomer structure
is excited influences the ES dynamics: When pumping the short &
twisted structure (the 585 nm peak), two dynamic modes are ob-
served, with frequencies of 80 and 119 cm−1, and assigned to a pinch

1 A term originating from orbital- and hybridisation theory, where the overlap of
atomic s orbitals makes a molecular σ orbital
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Figure 8: Ground- and excited-state energies (left and right, respectively) of
the 3 : 1 isomer of [Ir2(dimen)4]2+, evaluated in vacuum as a func-
tion of Ir-Ir distance and dihedral angle of the opposing ligands.
While the GS potential is very shallow, there is an indication of a
minimum around 3 Å and 35◦. Reproduced with permission from T. B.
van Driel[26]

Figure 9: Ultrafast Time-resolved Spectroscopy studies of [Ir2(dimen)4]2+

in acetonitrile solution. Left: Transient absorption, pumped at
527 nm[21]. Middle: Stimulated Emission from pumping at 590
(short & twisted)[28]. Right: Stimulated Emission pumped at 477
nm (long & eclipsed). Restating the article, the electronic decay
of the signal was fitted to a multiexponential decay. The residual
between this decay and the signal was Fourier transformed for
time delays after t > 0.5 ps to get a vibrational frequency of 75
cm−1.
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along the Ir-Ir axis and a dihedral twist, respectively. When pumping
the long & eclipsed structure (the 475 nm peak), only one mode is
observed, with a frequency of 75 cm−1, assigned to the Ir-Ir pinch.
These assignments of the normal mode vibrations can be significantly
expanded upon, and more information of the underlying structural
dynamics can be revealed through simulations of this system, when
anchored in the experimental results. Furthermore, the experiments
must of course be carried out in solution, but it is difficult to exper-
imentally distinguish between solvation-induced effects and features
purely from internally in the molecule. Simulations can help establish
the role of the solvent, and the interplay between the complex and its
environment. All this information can then again be used in the inter-
pretation of data gathered at the Linac Coherent Light Source (LCLS)
XFEL, where we have attempted to directly probe these coherent mo-
tions.

To our knowledge, no attempts (including our own) to freely relax
the geometry of the molecule into the short conformer has proved
successful, when using DFT methods. This is why we in chapter 6

focus on simulating the long & eclipsed isomer.

2.3 [fe(bpy)3 ]2+

 

R (Fe-L)

En
er

gy

5T2
1A1

3T

1,3 MLCT

Figure 10: Left: A Ball-and-stick model of the [Fe(bpy)3]2+complex, taken
from Daku et all, using their definitions of angles important for
the overall structure of the complex[33]. Right: Schematic draw-
ing of the states believed to take part in the spin crossover dynam-
ics, as represented in[34], where changes in spin induces changes
in Fe-ligand bond length.

The [Fe(bpy)3]2+- and related- complexes has a long history of inter-
est and controversy regarding the spin dynamics expressed in them[35,
36, 37, 38, 39, 40, 41, 34]. As an example, previous work[39] has
mapped the excitation-relaxation cascade devoid of transitions to a
triplet intermediate, but recent work by collaborators[34] found the
relaxation spin dynamics cascade shown in fig. 10, right. Since
the relevant occupied orbitals of the states labeled 3T and 5T2 are
antibonding[37], the excitation is accompanied by a Fe-N bond elon-
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gation. These dynamics are relevant due to the structure-spin-state
interplay, and their effect on the lifetimes of each state. Understand-
ing this interplay, and obtaining control of the lifetimes is impor-
tant since Fe-complexes like [Fe(bpy)3]2+could hopefully be able to
replace their efficient Ru-counterparts in Dye-Sensitized Solar Cell
(DSSC)-technologies (see fig. 11 for a schematic of how a DSSC func-
tions). [Ru(bpy)3]2+, described in more detail in the next section, is
known for its efficiency within photoconversion[42, 43, 44, 45], but Ru
is a low-abundance metal, so replacing it with Fe while retaining the
efficiency could make a significant impact for light-harvesting appli-
cations. However, the lifetime of the Metal-to-Ligand Charge Trans-
fer (MLCT) state is greatly reduced for the Fe counterparts[41, 40]. This
is problematic, because the longer lived this state is, the more likely
it will be for the charge to enter in an electrical circuit. Nevertheless,
studies on Ru-complexes with only slightly changed geometries can
affect the lifetime by orders of magnitude[46], and similar Fe-based
complexes have shown 100-fold increase in the lifetime, compared to
[Fe(bpy)3]2+[47].

[Fe(bpy)3]2+ has simultaneously obtained the role of a photophysical
factotum for benchmarking novel tools, techniques, methods, and ma-
chinery[40, 41, 34], [VI,I]. This is also the role it will play in this
work. The consequences of electronically exciting [Fe(bpy)3]2+ has
already been simulated in the inspiring work by L. M. L. Daku & A.
Hauser[33], where the authors use ab initio MD, an electronic structure-
dynamics method akin to Direct Dynamics used in the main part of
this project, to show that the Fe-N bond expansion results in further
structural deformations. The changes in both electronic and geomet-
ric structure causes a change in solvent orientation, and ultimately
leads to an expulsion of two water molecules from the first solvation
shell. As such, the system of solvated [Fe(bpy)3]2+ exhibits both non-
specific, and specific solvation dynamics.

Chapter 4 deals with how solvent-contributions to the scattering sig-

Figure 11: The basic principle of a Dye-Sensitized Solar Cell (DSSC). The
semiconductor material is photosensitized by a dye adsorbed to
the surface, which, when photoexcited, injects an electron into it,
into the anode. This oxidizes the dye, which then in turn oxidizes
the electrolyte mediator, which is then reduced by the cathode.
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nal are simulated, and presents a ’first approximation’-model, based
on sampling solvent configurations of fixed-structure solutes using
classical MD, and calculating the scattering. This is computationally
less demanding than the QM/MM MD, but also has limitations with
regards to the level of intricacy of the systems and processes it can
describe.

2.4 [(bpy)2ru
II (tpphz)co

III (bpy)2 ]5+ : ru=co
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Figure 1 (A) Molecular structure of the [
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] dyad studied in this work. (B) 
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III
] in acetonitrile. The pump 

wavelength used for all the optical and X-ray experiments is indicated by the blue arrow.
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Figure 12: The [(bpy)2RuII(tpphz)CoIII(bpy)2]5+complex, where (tpphz) =
tetrapyrido (3,2-a:2’3’-c:3”,2”-h::2”’,3”’-j) phenazine[48]. For
brevity, the molecule is called Ru=Co throughout this work.

The [(bpy)2RuII(tpphz)CoIII(bpy)2]5+(Ru=Co, for brevity) system is
a member of a larger group of heteronuclear, charge-transfer model
complexes. The system can be thought of as a [Ru(bpy)3]2+

complex2, linked to a [Co(bpy)3]3+complex by an aromatic bridge.
The [Ru(bpy)3]2+end is very well-studied[49, 50], in part due to its
photo-sensitizing/-conversion abilities[42, 43, 44, 45], related to its
MLCT-state following electronic excitation[51, 49, 52, 53, 54, 55, 56, 57].
The singlet 1MLCT undergoes efficient ISC to a triplet 3MLCT[55, 53],
with a lifetime of 600 ns[54].

It has been known for a long time that the metal-ligand bond lengths
of Co are changed by 10-45 pm upon Electron Transfer (ET)[58]. Like
with [Fe(bpy)3]2+, population of the antibonding e∗g orbitals (see fig.
13), affects the bond length. We recently experimentally observed that
photoexcitation of Ru=Co induced ET from the Ru centre to the Co
site, This was accompanied by a spin-flip of 2Co to 4Co, and an on

2 structurally similar to the Fe variant from the last section

Figure 13: The various electronic valence configurations of Co-systems for
their common multiplicities and oxidation states.
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average 0.2 Å elongation of the Co-N bonds in Ru=Co [IV]. The spin
state of the entire complex when the Co-centre is a doublet, or quar-
tet, is denominated Low Spin (LS), or High Spin (HS), respectively.

The bond-elongation is effectively a relocation of the nitrogen atoms
in the Co-centre. Therefore, the reorganization energy - both from
solvent- and the intramolecular - will play a large role in the final
ET rates of these compounds. These ET rates (both from Ru to Co
and the return ET) have been studied for similar complexes[59, 48],
where the later article introduces an ISC step to a 4Co(II) state in the
ET mechanism, and shows that the return ET in the Ru(III)→Ru(II) re-
covery in the complexes is faster for 2Co(II) ions than for 4Co(II), due
to a suspected smaller intramolecular reorganization for the doublet
pathway[48].

Recently, Co(II)/Co(III) have been proposed as an alternative to the
more volatile I−3 /I− redox mediators[60, 61] for DSSCs. Unfortunately,
the same studies have shown that the efficiency drops dramatically.In
a combined computational/experimental study, Mosconi et al.[62] ar-
gued that the cause of the reduced efficiency was the possible forma-
tion of a flexible complex between the cobalt electrolyte and the dye,
which brings the cobalt molecule too close to the semiconductor sur-
face. This allows the cobalt molecule to intercept the semiconductor-
injected charges, effectively ’short-circuiting’ the DSSC.

In any case, the relevance of these systems are not limited to so-
lar energy conversion; another application perspective is the known
(photo-)catalytic activity of cobalt containing complexes in water--
splitting processes[63, 64, 65].

Apart from the already published results[IV] that confirms the Co-N
elongation of the final excited state: [2RuIII=4CoII], the first round
of results we obtained at the Japanese XFEL SACLA further suggests
an intermediate spin-state in the electronic relaxation cascade, before
the final state is reached: [2RuIII=2CoII],[II]. The next step in the on-
going investigation, also encompassing experimental data from LCLS,
will require simulations of the structural dynamics, and solvent inter-
play of all these three electronic configurations: the GS, the low spin
ES, and the high spin ES. Therefore, chapter 7 is dedicated to these
simulations, where we attempt to achieve a clearer picture of the av-
erage solvated structures, their distributions, and how the solvent
responds to the charge transfer.

2.5 summarising the systems

The systems studied here are interesting in their own right, some
as model systems for processes with application-potential within the
fields of green technologies and catalysis, others maybe as direct can-
didates for application in technology. However, it is through the
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study of the processes themselves - exemplified through these systems
- where basic knowledge about natural phenomena - and nature itself
- can be obtained. Therefore, in this work, the described complexes
has been used to concretise the questions posed in the introduction
further, in the following ways:

[pt(cn)4 ]2− : What are the options for treating relativistic effects in a
satisfactory manner, while ending up with a computationally feasible descrip-
tion for the later studies?

[fe(bpy)3 ]2+ : How far can we get with purely classical methods and
steady-state approximations? Furthermore, how does one calculate the ex-
perimental signal from simulations?

[ir2 (dimen)4 ]2+ : What dynamic modes channels the dissipation of
excess excitation energy? For how long is the process coherent, and what is
the cause for decoherence? What is the role of the solvent in this case?

[(bpy)2ru
II (tpphz)co

III (bpy)2 ]5+ : How does the solvent affect the
structure and the ISC-induced structural changes? Are the solvation effects
purely non-specific, or does this complex exhibit specific solvation dynamics?

The next part of the thesis will attempt to answer the first two set
of questions, to build the foundation for using Direct Dynamics in
tackling the final sets of challenges.



Part II

P R E L I M I N A RY S T U D I E S

Benchmarking models, testing implementations and lim-
its of approximations. Setting the stage for Direct Dynam-
ics.





3
T R E AT I N G R E L AT I V I S T I C E F F E C T S I N
T R A N S I T I O N M E TA L C O M P L E X E S

Working with transition metal complexes in a computational environ-
ment presents itself with a set of added considerations: In force-field
methods, the more universal force fields are often not optimized to
work with the more exotic elements[66, 67], and (standard) force field
methods cannot describe processes such as chemical reactions[6]. In
using ab initio methods, problems can arise in how the attractive Lon-
don dispersion interactions are modelled, as will be touched upon
during next part of this work. This chapter, however, is devoted to
examining another feature of the electronic structure that becomes
relevant when dealing with transition metal complexes: How to de-
scribe relativistic changes to the orbital shapes, kinetic repulsion, and
other effects that might change the overall geometry of the complex.

The following introduction is based upon [7].

3.1 the dirac equation, and the pauli- and zora hamil-
tonians

The time-dependent Schrödinger equation, using a non-relativistic
Hamiltonian:1(

−
1

2m
∇2 + Vext

)
|Ψ(r, t)〉 = i ∂

∂t
|Ψ(r, t)〉 (2)

- is not Lorentz-invariant. The Lorentz transformation from one iner-
tial frame to another requires equivalent space and time coordinate,
such that the speed of light remains unchanged in all frames. How-
ever, the wave function that describes the system is doubly differen-
tiated w.r.t. space and singly differentiated w.r.t. time, and as such,
using (methods based on) the Schrödinger equation for solving the
electronic structure of a system leaves out relativistic changes to the
electronic density. The relativistic effects become apparent as the clas-
sical velocities of the particles approach the speed of light[68], and as
a rule of thumb, the average classical velocity of an electron in the 1s
shell is roughly equal to the atomic number2[69], so the further we go
in the periodic system, the more we will need a relativistic treatment
of the electronic density.

1 the electron mass is explicitly included in this section.
2 This is a rough estimation, based on the energy of a 1s electron in hydrogen in

atomic units is V = −−Z2

2 , and that the classical virial theorem: T = v2

2 = −V
2

2

21
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A full relativistic description can be obtained by replacing the non-
relativistic Hamilton operator, as done by Dirac:

[
cα · p +βmc2 + Vext

]
|Ψ〉 = i ∂

∂t
|Ψ〉 where |Ψ〉 =


|ΨLα〉
|ΨLβ〉
|ΨSα〉
|ΨSβ〉

 (3)

where the momentum operator p = −i∇ is of the same order deriva-
tive as the derivative of time, making the Dirac equation Lorentz-
invariant. α and β are 4× 4 matrices:

α =

(
0 σx,y,z

σx,y,z 0

)
β =

(
0 0

0 −2I

)
(4)

where σ are the 2× 2 Pauli spin matrices, and I is a 2× 2 unit matrix.
The indices on σ is in Einstein notation, so that σx,y,z means a sum of
the three Pauli matrices, shown below:

σx =

(
0 1

1 0

)
σy =

(
0 −i

i 0

)
σz =

(
1 0

0 1

)
(5)

In short, the Dirac equation is somewhat more involved than the
Schrödinger equation, and the wave functions that solve it now con-
tain four components, and the spin-property is now inherent in the
description, since the σx,y,z matrices can be viewed as spin operators,
and two main components |ΨL〉 and |ΨS〉 of the relativistic wave func-
tion (termed the ’Large’ and the ’Small’ component) each has two
spin components, α and β. Solving the Dirac equation produces a
spectrum described in the left side of figure 14, which compares it to
the non-relativistic result.
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Figure 14: Scheme illustrating the differences of the spectra of the non-
relativistic and relativistic Hamiltonian. By solving the Dirac
equation, apart from a shift in zero-point for the energy, one also
obtains a negative continuum of unbound states.

We can recover the time-independent Schrödinger equation by elim-
inating the small component and setting the speed of light c → ∞.
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First, we write out the time-independent Dirac equation, the Hamil-
tonian of which is often called the Dirac-Coloumb Hamiltonian, HD:

HD|Ψ〉 = E|Ψ〉 ⇒[
c

(
0 σx,y,z

σx,y,z 0

)
·p+

(
0 0

0 −2I

)
mc2+Vext

](
|ΨL〉
|ΨS〉

)
= E

(
|ΨL〉
|ΨS〉

)
(6)

Then, we factor out the Dirac equation into two equations from the
block matrices (and omitting the indices on σ for brevity):

c(σ ·p)|ΨS〉+ Vext|ΨL〉 =E|ΨL〉 (7)

c(σ ·p)|ΨL〉+ (−2mc2 + Vext)|ΨS〉 =E|ΨS〉 (8)

The small component can be isolated in the second equation:

(2mc2 + E− Vext)|ΨS〉 =c(σ ·p)|ΨL〉

|ΨS〉 =
c(σ ·p)

(2mc2 + E− Vext)
|ΨL〉

=K
(σ ·p)
2mc

|ΨL〉 (9)

where K =
(
1+ E−Vext

2mc2

)−1
. If this expression for |ΨS〉 is inserted in

to equation 7, we get[
1

2m
(σ ·p)K(σ ·p) + (Vext − E)

]
|ΨL〉 = 0 (10)

and as c → ∞, K → 1, due to the way the Pauli matrices are con-
structed, the σ’s cancel out[7], we will end up with:[

p2

2m
+ Vext

]
|ΨL〉 = E|ΨL〉 (11)

or, the time-independent Schrödinger equation, but for the two-com-
ponent spin wave functions. These can be separated out if desired,
since the momentum operator does not contain any spin dependence.

Instead of setting K = 1 and ending up almost where we started,
we can make a 2-component approximation to the full relativistic
description by the series expansion for small x values 1/(1 + x) =

1 − x + x2 − x3 . . ., and only keeping the first two terms, such that
K ≈ 1− E−Vext

2mc2
, which holds in most cases (but not all, as we shall

see), since the denominator contains c2. After a considerable amount
of algebra (which is skipped here, but more info can be found in
[7, 70, 68]) obtain the Pauli equation, where the often-mentioned ’rel-
ativistic effects’ are neatly defined as relativistic correction terms to
the non-relativistic Hamiltonian:[

p2

2m
+ Vext︸ ︷︷ ︸

Non-Relativistic
Terms

+ −
p4

8m3c2︸ ︷︷ ︸
Mass-Velocity

Correction

+
Zs · L
2m2c2r3︸ ︷︷ ︸
Spin-Orbit

Term

+
Zπδ(r)

2m2c2︸ ︷︷ ︸
Darwin

Correction

]
|ΨL〉 = E|ΨL〉
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(12)

The Mass-Velocity term arises from the dependence of the electron
mass on its velocity. The spin-orbit term couples the orbital angular
momentum of the electron with its spin, and the Darwin correction
can be interpreted as the electron making a high-frequency oscillation
around its mean position. The mass-velocity- and Darwin -correction
terms are often named ’scalar relativistic’ effects. We mention here
in passing, that in principle, the ISC processes described in the intro-
duction would not be allowed if the spin-orbit coupling shown in the
above did not exist.

The expansion K ≈ 1− E−Vext
2mc2

is only valid for E− V � 2mc2, but
close to the nuclei, the external potential will go towards −∞ such
that the expansion becomes invalid. Instead, one can define

K ′ =
(
1+

E

2mc2 − Vext

)−1

(13)

which will have the first term of the expansion K ′ ≈ 1− E
2mc2−Vext

and following the same strategy as before, one will (eventually) arrive
at the Zeroth Order Regular Approximation (ZORA) Hamiltonian[71,
72, 73, 74]:[

c2p2

2mc2 − Vext
+

2c2

(2mc2 − Vext)2
−
Zs · L
r3

+ Vext

]
|ΨL〉 = E|ΨL〉

(14)

which, contrary to the Pauli equation, is variationally stable[68], which
means that it is useful in the traditional energy minimization frame-
work, even though the non-relativistic, scalar relativistic and spin-
orbit terms are not as neatly distinguished in this approximation. The
ZORA Hamiltonian has been implemented in the ORCA program, and
presents itself as a way of approximating the full, 4 component rela-
tivistic description while saving a considerable amount of computa-
tional cost.

3.2 effective core potentials / pseudopotentials and

paw

In order to save computational effort, systems containing many elec-
trons are often approximated by replacing the core electrons of the
atoms in the system with Effective Core Potentials (ECPs). Coinciden-
tally, this allows for an implicit incorporation of the most important
relativistic effects simply by parametrising the ECPs with respect to
corresponding relativistic, all-electron data[75, 76].

So when generating an ECP for an element, one must first produce
or obtain a high-quality, (relativistic) all-electron wave function for
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an isolated atom. Then, the valence orbitals are replaced by pseudo-
orbitals, that are smoother, thus requiring expansions in smaller ba-
sis sets (described in the next section), when used. The core elec-
trons must then be replaced by analytically solvable functions of
the nuclear-electron distance. The resulting potential should then of
course match, or be fitted to match the relativistic behaviour of the
core electrons, as well as the original all-electron valence orbitals.

The Projector Augmented Wave method (PAW) method can[77, 78]
be considered an advanced pseudopotential technique that retains
the core electrons (more info in section 5.1, chapter 5). The Grid-
based Projector Augmented Wave method (GPAW) technique[79, 80]
is somewhat unique compared to the more standard computational
chemistry methods, and will be introduced when necessary, but for
the time being it is sufficient to think of GPAW as an advanced ECP-
method, where the PAW functions are not expanded in either plane
waves or a Gaussian basis set, but evaluated on a real space grid, us-
ing finite difference methods.

All the different relativistic methods are applicable within DFT, the
outlines of which will be briefly introduced in the following section.

3.3 density functional theory

In this section, we briefly open the lid on the black box of DFT codes,
to have a brief look of the basic principles behind the theory. However,
much more comprehensive descriptions are available[81, 6, 7].

The main idea behind DFT is that the electron density ρ(r) has all the
information on the variables of which the Hamiltonian is a function
of: The number of electrons, and the potential created by the positions
and charges of the nuclei in the system. Thus, the energy of the
system can be described as a functional of the electron density, i.e.
E[ρ(r)], which has the general form:

E[ρ(r)] =
∫
ρ(r)

∂E[ρ(r)]
∂ρ(r)

dr (15)

This would reduce the complexity of the problem of electronic struc-
ture a great deal, seeing as how a wave function for an N electron
system contains 4N variables (three spatial and one spin coordinate
for each electron), whereas each electronic density only depends on
r, independent of N.

In 1964, Hohenberg and Kohn helped along this idea by proving that
(1) no two electronic densities will give the same energy (i.e. the total
energy is a unique functional of the electron density), and (2) that the
exact GS density will give the exact GS energy, provided that the exact
density functional is used.

To prove (1), assume that two different external potentials (which
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is often the potential from the nuclei, according to the Born-Oppen-
heimer approximation, but could also contain terms of other external
fields), Vext and V ′ext give the same ρ(r) - i.e. that (1) is not true. This
means that we also have two different Hamiltonians H and H ′ with
corresponding wave functions |Ψ〉 and |Ψ〉 ′. The variational principle
says that the energy of an approximate wave function must be higher
than the exact one, so if we switch up the Hamiltonians and the wave
functions and apply the principle to each one, we will arrive at an
contradictory result. Here it is shown for the combination of H and
|Ψ ′〉:

〈Ψ ′|H|Ψ ′〉 > E0
〈Ψ ′|H ′|Ψ ′〉+ 〈Ψ ′|H − H ′|Ψ ′〉 > E0

E ′0 + 〈Ψ ′|Vext − V ′ext|Ψ
′〉 > E0

E ′0 +
∫
ρ(r)(Vext(r) − V ′ext(r))dr > E0 (16)

and the other combination of H ′ and Ψ will follow the same way:

E0 + 〈Ψ|V ′ext − Vext|Ψ〉 > E ′0
E0 +

∫
ρ(r)(V ′ext(r) − Vext(r))dr > E ′0

E0 −

∫
ρ(r)(Vext(r) − V ′ext(r))dr > E ′0 (17)

which added up with equation 16 becomes:

E0 + E
′
0 > E0 + E

′
0

- an impossible inequality. Thus, the assumption that two different
external potentials Vext(r) and V ′ext(r) can give the same electronic
density ρ(r) is wrong. So there is a one-to-one correspondence be-
tween the electron density and the potential.

The proof of the second theorem uses the first: Since two different
wave functions |Ψ ′〉 and |Ψ〉 cannot yield the same electronic density
ρ(r), the density ρ(r) ′3 would be the result of |Ψ ′〉 (and not |Ψ〉). Thus,

E[ρ(r) ′] = 〈Ψ ′|H|Ψ ′〉 > 〈Ψ|H|Ψ〉 = E[ρ(r)] (18)

which is recognized as the variational principle, but for electronic
densities instead of wave functions.

All this means that, if the exact functional E[ρ(r)] connecting the en-
ergy and the density was known, the complexity of obtaining the
energy of a quantum mechanical system would be greatly reduced in
comparison to wave function approaches.

However, this functional is not known.

3 which still integrates up over all space to the number of electrons in the system.
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The reason why DFT was not simply put back into the lowest drawer
was given by Kohn & Sham[82], who reintroduced wave functions
as single-particle orbitals |φi〉, describing the kinetic energy of a non-
interacting system:

Tnonint = −
1

2m

∑
i

fi〈φi|∇2|φi〉 (19)

where fi are the occupation numbers of the orbitals. Therefore, the
DFT method uses basis sets like Hartree-Fock, or Self-Consistent Field
(SCF)-theory[7], so the Kohn-Sham orbitals are represented as linear
combinations of atomic orbitals:

|φi〉 =
∑
n

cn,i|χn〉 (20)

where |χn〉 is often expanded in a(nother) linear combination of Gaus-
sian functions. If only enough functions are used to contain the elec-
trons of the system, the basis set is minimal, if twice as many func-
tions are used, it is called double zeta, three times as many: triple zeta,
etc. . . The ’zeta’ term arising from the most often used symbol for the
exponent. The larger the amount of functions used in the expansion,
the more accurate (and computationally expensive) the basis set de-
scription will be.

The exact kinetic energy levels of the non-interacting system are ob-
tained by solving the one-electron Schrödinger (i.e. the Kohn-Sham
(KS)) equation:

HDFT |φi〉 = Ei|φi〉 (21)

where the electronic density are given through the single particle
states:

ρ(r) =
Ne∑
i

fi〈φi|φi〉 =
Ne∑
i

fi |φi(r)|
2 (22)

and the general expression for the DFT energy becomes:

EDFT [ρ(r)] = Tnonint[ρ(r)] +
∫
ρ(r)Vext(r)dr (23)

However, the electrons are of course interacting, and thus the total
energy expression for the DFT energy defines the energy originating
from electronic interaction in terms of what is missing from the exact
expressions (here we leave out the r-dependency of the density, for
clarity):

EDFT[ρ] = T [ρ] + Ene[ρ] + J[ρ] + EXC[ρ] (24)

with

EXC[ρ] = (T [ρ] − Tnonint[ρ]) + (Eee[ρ] − J[ρ]) (25)
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J[ρ] is the Coloumb repulsion between electron pairs, Ene[ρ], is the
nuclei-electron potential, and EXC is the exchange-correlation term:
Basically ’what is left’, when reintroducing interactions between elec-
trons. The first parenthesis is often termed the kinetic correlation
energy, while the second contains both potential correlation and ex-
change energy, such that Eee[ρ] is the total, exact potential energy of
the many-particle system.

Finally, the same DFT approximations can also be made to the fully
relativistic Hamiltonian presented in the previous section, the further
details of which are beyond the scope of this work.

There is a host of functionals approximating the unknown, exact func-
tional for the exchange-correlation term. They vary in complexity and
suitability for different systems, but they are generally computation-
ally much less expensive than traditional, high-level computational
chemistry methods, while still often achieving considerably accurate
results.The exchange-correlation functionals employed later in this
work, for the Direct Dynamics simulations, are all within the Gener-
alized Gradient Approximation (GGA) group. GGA functionals make
exchange and correlation energies dependent on derivatives of the
electronic density, as well as the density itself. For these preliminary
studies of relativistic effects, hybrid GGAs will also be used. These
include a fraction of the exchange energy from Hartree-Fock theory,
at an added computational cost.

The exchange-correlation functionals can be totally ab initio in na-
ture, i.e. they are fitted to data from higher order methods, and
should recover analytic/known results, or they can be fitted to ex-
perimental data, which makes them semiempirical. Examples of the
first category are P86[83], PBE[84], VWN[85] and PW91[86], whereas
the semiempirical category includes functionals such as B(88)[87],
LYP[88], and more. Thus, labeling e.g. computational work done
with the BLYP (B(88) for exchange, LYP for correlation) as ab initio
would not be entirely correct.

3.4 benchmarking the methods on tetracyanoplatinate

As mentioned in chapter 2, [Pt(CN)4]2− is one of the ’most basic’
members of the d8 − d8 group, and while the simple cyano-ligands
do not allow for much structural control, compared to the other stud-
ied systems, the smaller amount of atoms in the complex, and its
planar (D4h) symmetry makes it feasible to structurally relax the sys-
tem using the Dirac-Coloumb Hamiltonian within the DFT framework.
Thus, this system is optimal for benchmarking the various relativistic
approximations described in the previous sections against the fully
relativistic result. Pt is the transition metal with the highest atomic
number of the metals in the systems of this work, so it is also assumed
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to be the system with the most pronounced relativistic behaviour.

Earlier work[89] has shown that if solvation is neglected completely,
a structural optimization of the [Pt(CN)4]2− dimer will not converge.
This, together with the ’silicon-limits’ imposed by the computational
effort needed for the fully relativistic geometry relaxations, means
that the benchmarking has been carried out on the [Pt(CN)4]2− mono-
mer, where we compare the optimized Pt-C and C-N bond lengths
obtained with the different descriptions.

3.5 initial calculations

The initial mapping of the dependence of the structure of the molecule
on the employed basis set for a set of commonly used exchange-
correlation functionals were carried out before the start of this PhD
project, so they are not included here. The interested reader can seek
more information in [V], which was written during this project, and
combines these studies with the final calculations, also carried out as
a part of this PhD project. Here, we simply recount the conclusion of
the basis-set study: With the largest basis sets employed in the differ-
ent approaches, sufficient basis set convergence has been reached - in
particular in the light of the much larger variations with the exchange-
correlation functionals, as discussed in the following section.

3.6 comparing the methods
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Figure 15: Benchmark of relativistic approximations on the Tetracyano-
platinate geometry. The scale of the Pt-C plot is ten times larger
than the C-N plot. Neglecting any type of relativistic treatment
has a large impact on the Pt-C bond. The labels ’Dyall.v3z’, ’aug-
cc-pVTZ’, and ’def2-TZVP’ do all correspond to various triple-
zeta basis sets[90, 91, 92, 93, 94, 95, 96], and their corresponding
ECPs[97, 98].
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Different studies on similar transition metal compounds reported sat-
isfactory results using various exchange-correlation functionals, such
as B3LYP[99, 100] and PBE0 [99, 101]. Both are hybrid functionals,
but the PBE0 exchange-correlation functional includes 5% more exact
Hartree-Fock exchange than B3LYP, in the standard setup. Here, we
compare their performance with their two corresponding non-hybrid
functionals BLYP and PBE. Figure 15 compares the results for the four
functionals and the largest basis sets with all relativistic methods.

With regards to the choice of functional, a significant difference be-
tween the change in platinum-carbon and carbon-nitrogen bond length
is observed. For the C-N bond length, the crucial factor is whether
the functional includes exact Hartree-Fock exchange or not. The Pt-C
bond, on the other hand, is in general more sensitive and in particular
the choice of correlation functional has a larger impact. Employing
the hybrid functionals shortens thus the C-N bond length by 1.2 to
1.4 pm or approximately 1% for all methods, while the differences be-
tween the exchange-correlation functionals BLYP and PBE or B3LYP
and PBE0 amounts to not more than 0.1 pm. For the Pt-C carbon
bond employing a hybrid functional shortens the bond length by al-
most 1 pm or 0.5 %, whereas using PBE or PBE0 instead of BLYP or
B3LYP shortens the bond length by 2.0 to 2.5 pm or 1%.

3.7 the origin of the relativistic pt-c contraction

Figure 15 also compares the bond lengths obtained using various ap-
proximations to the fully relativistic 4-component treatment using the
Dirac-Coloumb Hamiltonian. The Pt-C bond contracts when increas-
ing the precision of the relativistic description, and becomes shortest
when using the Dirac-Coloumb Hamiltonian, for all the functionals in
agreement with the previous study on the cationic platinum carbene
complex PtCH2

+[100], and the general rule-of-thumb that the effect
of relativity on chemical bonds from a heavy atom is in most cases a
contraction. This might seem counter-intuitive due to the fact that it
is the 5d atomic orbitals from Pt that contributes to the Pt-CN bond,
orbitals that are known to expand when treated relativistically[69].
However, it has been known for a long time that bond-length con-
tractions are not caused by orbital contractions, but rather due to the
relaxation of the kinetic repulsion [102, 103]. If a bond is contracted,
the electrons will have to occupy a smaller volume, which will result
in a rise of kinetic energy, due to the uncertainty principle. How-
ever, the relativistic mass-velocity correction becomes more negative
with increasing non-relativistic kinetic energy, thus diminishing the
relativistic kinetic repulsion term, effectively shifting the minimum
of the total binding potential. As such, our results are in accordance
with the expected effects of a relativistic treatment.
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3.8 gpaw results

While GPAW supports a long list of functionals, we restrict this study
to only encompass the PBE functional, which is used in the later
QM/MM MD studies. A test of basis set-dependence akin to what
was done in [V] is carried out, but with GPAW, the electronic density
is solved on a real-space grid via finite-difference methods4, which
means the structural convergence now also depends on the gridspacing,
h.

The calculations were carried out in a cell of dimensions 16x16x10
Å, to avoid any wave function cutoff, and the QuasiNewton opti-
mizer from the Atomic Simulation Environment (ASE)-package[104]
was used to minimize the forces in the structure to a convergence
limit of 0.05 eV/Å.

d z
t

(qzp)

Figure 16: [Pt(CN)4]2− Bond lengths as a function of real-space grid spacing
h, and basis set size. Left: Pt-C, Right: C-N. The bold line on both
plots represent the value h = 0.18 Å, which is often employed in
GPAW.

Since there is now two structural convergence parameters instead of
only the size of the basis set, we present the data in the surface plots
of figure 16. The figure shows that, for the Pt-C bond, grid-spacings
larger than 0.22 Å produce inconsistent results, with distances fluctu-
ating with up to 6 pm when varying the basis set. When using grid
spacings below 0.18 Å, basis sets from dzp and up increases the bond
length with a maximum of 2 pm, not far from the largest change ob-
served for the initial ECP studies of [V].

The C-N bond length is much more affected by basis set size than
grid spacing, but the description seems to converge around dzp-size.
Going from tzp to qzp only changes the bond length by 0.2 pm, for
h = 0.18 Å.

We can now compare all the relativistic approximations using the PBE
functional, to the 4-component calculations of same basis set size, as
is done in table 1. Where all the other approximations do better for

4 Details in section 5.1, chapter 5
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Approximate Method ∆r(Pt-C) / pm ∆r(C-N) / pm

ZORA/Dyall.v3z/cc-pVTZ 0.45 0.05

ZORA/def2-TZVP 0.21 0.01

ECP60MDF/cc-pVTZ 0.21 0.05

ECP60MWB/def2-TZVP 0.79 0.01

GPAW/h = 0.15Å - tzp 0.98 1.10

Table 1: Deviations from the 4-component results for the optimized Pt-C
and C-N bond lengths of [Pt(CN)4]2− in pm. The four-component
calculation compared to here is PBE/Dyall.v3z/cc-pVTZ.

the C-N bond, the GPAW method deviates from the 4-component re-
sult by an equal amount for both bonds. This indicates that the devi-
ation is not due to the relativistic approximations. All methods come
within 1 pm of the fully relativistic bond-length, an error which is
easily overshadowed by other changes, such as the ones experienced
from switching exchange-correlation functional. All in all, this means
that it is very unlikely that later results obtained with GPAW will be
contaminated with errors from the description of relativistic effects.

3.9 comparison to experiment

Finally, we briefly compare our theoretical predictions of bond lengths
with one experimental X-ray and neutron scattering study[105] on
-[K2Pt(CN)4Br0.30 · 3.2H2O] crystals. The X-ray and neutron scatter-
ing C-N bond lengths are 117.0 pm and 116.4 pm, respectively, which
are in excellent agreement with our calculated results, even though
the bromine and crystal water is likely to perturb the bond lengths.
The same study also reports Pt-C bond lengths of 200.7 pm and 200.1
pm, measured using X-rays and neutrons, respectively. These differ
by at most only 2 pm from our 4-component results.

3.10 conclusions

We find, as expected, that relativistic effects contract the Pt-C bond,
making it approx 4.6-4.8% shorter (depending on the functional used),
when comparing the full relativistic calculation to the non relativistic,
while the C-N bond is not affected (as) much. This relativistic bond
contraction is almost perfectly reproduced in scalar ZORA calculations
and also in calculations with relativistic ECPs and in GPAW. The pre-
dicted bond lengths are in good agreement with experimental X-ray
and neutron scattering values for [K2Pt(CN)4Br0.30 · 3.2H2O] crystals.

We observe that addition of exact Hartree-Fock (HF) exchange in the
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hybrid functionals plays a large role for the C-N bond lengths, but
only a small role for the Pt-C bond lengths, whereas it is the choice
of correlation functional, which has a large effect on the Pt-C bond
lengths with PBE and its hybrid version generally producing shorter
Pt-C bond lengths than B(3)LYP. Furthermore, we note that the choice
of DFT functional has a larger effect on the bond lengths than the level
of relativistic treatment. Finally, we observe that an adequate descrip-
tion of the distance from the heavy Pt atom to the C atom, as expected,
requires some method of relativistic treatment, but the different lev-
els of approximations used, all show good performance. Thus, the
choice of relativistic method to be employed in the main studies of
this work should reflect other considerations, such as computational
effort, applicability to the Direct-Dynamics framework, and so on.
Considering all these factors, we have chosen GPAW, since, as we shall
see, it possesses the computational efficiency imperative to the costly
direct-dynamics simulations, and the real space method allows for
a simple interfacing to regions with molecules described by classical
point charges.





4
X R AY S C AT T E R I N G F R O M P U R E LY C L A S S I C A L M D

4.1 probing structural change using x-ray scattering

At the beginning of this project, the already established method within
our group for fitting experimentally recorded XDS signals to molecu-
lar geometries was (very) simply put to (1) use DFT calculations to op-
timize geometries, (2) systematically modify important interatomic
distances, and (3) calculate and compare the X-ray scattering from
each modification step with the experimental data within a statistical
χ2-framework[106, 27, 107, 89, 25, 21]. Scattering happens when an
incident photon with wave vector ki related to the radiation wave-
length as |ki| =

2π
λ scatters of a particle, so the momentum transfer

becomes q = ks − ki, where ks is the wave vector of the scattered
photon. The isotropic scattering signal from a molecular structure is
typically calculated via the Debye-equation[108]1

S(q) =
∑
i

∑
j

fi(q)fj(q)
sin(qrij)
qrij

(26)

with rij being the distance between atom i and j, and f being the
atomic form factor. The next steps will progress as follows: We use
this simple and established formulation on molecular structures ob-
tained from MD simulations, and identify places where it can be im-
proved. We then go back and take a closer look at the theory of X-ray
scattering to make these improvements. Finally, we test the imple-
mentation of them.

As mentioned in the introduction, the experimental method employed
by our group is of the X-ray ’pump-probe’ kind: An ultra-short laser
pulse - the ’pump’ pulse, electronically excites the molecule at time
t = t0 and initiates the desired process. Then, at increasing times
t > t0 , an X-ray probe pulse is scattered off the sample and recorded
on a detector, giving the scattering signal Son(q), at time t. Since
only a minor part of the molecules in the sample are excited by the
pump pulse, the part of the Son(q)-signal that expresses the struc-
tural change will be very small. Therefore, an ’off’ signal of scat-
tering from the unpumped sample, Soff(q), is also recorded. The
signal from everything that is unaffected by the pump, will then can-
cel out in the difference between these two signals, ∆S(q) = Son(q)−
Soff(q). Thus, on the probed time scale, if there is no change in the

1 Scattering signals calculated with this formulation will from here on out be labeled
’Debye-scattering’.

35



36 x ray scattering from purely classical md

solvent part of the system under scrutiny, its contribution to the total
scattering will be cancelled out in the difference scattering signal.

However, a in a major part of the interesting processes of ultrafast
molecular dynamics, the solvent does play a role, as discussed in the in-
troduction. An example of solvent-interactions is the [Fe(bpy)3]2+com-
plex, as described in chapter 2, section 2.3, where average, solvated
solute-geometries simulated using an explicit solvation model within
ab initio MD were readily obtainable, and the results of that study
showing signs of both specific and non-specific solvation dynamics[33].

The objective here was to sample a sufficient amount of solvent con-
figurations around the frozen solute- GS and ES-geometries using clas-
sical MD, and calculate the scattering signal from each step of each tra-
jectory, to get an average solvent-contribution to the total difference
scattering signal. Before delving into the results of using this strat-
egy, and discussing its limits, we must briefly introduce the method
of Molecular Dynamics simulations.

4.2 molecular dynamics

In its most basic form, MD simulations evaluate Newton’s 2nd law of
motion to propagate the particles in the system:

mi
d2ri(t)

dt2
= Fi (27)

where the forces Fi in this section are calculated from parametrised
classical potentials, making up the so-called Molecular Mechanical
force-fields2. The theory behind MD simulations is vast and well-
documented[109, 110, 111, 6], so instead of repeating it here, we limit
this section to briefly describe the potentials used in a classical (MM)
MD simulation.

The solvation-shell sampling was carried out in Desmond[112, 113]
within the Schrödinger package[113], that uses the OPLS2005[114,
115, 116] force-field for the solute. Like most force-fields, it divides up

2 In contrast to the main part of this work (part iii on Direct Dynamics), where the
same differential equation is evaluated, the forces going into it are obtained from po-
tentials calculated ’on-the-fly’, using explicit calculations of the electronic structure
of the relevant parts of the total system.
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the energy EMM in several terms of parametrised pair-wise additive
potentials:

EMM =Ebonds + Eangles + Etorsions︸ ︷︷ ︸
Covalent

+ENon-Covalent (28)

=

bonds∑
b

1

2
Kb(rb − rb,eq)

2 +

angles∑
a

Ka(θa − θa,eq)
2

+

torsions∑
t

 3∑
j=1

Vt,j

2
[(1+ cos ([j− 1]π+ j ·φt)]


+
∑
m

∑
n>m

(
qmqn

rm,n︸ ︷︷ ︸
Coloumb

+4εm,n

[(
σm,n

rm,n

)12
−

(
σm,n

rm,n

)6]
︸ ︷︷ ︸

Lennard-Jones

)
fm,n

The terms are illustrated in figure 17. fm,n is a scaling factor which
is 1.0 except for intramolecular ’1, 4’-interactions between the end
atoms involved in a torsional (dihedral) angle, where it is 0.5. The
Lennard-Jones (LJ)-parameters ε and σ are tabulated for each element,
and in OPLS they are combined using a simple geometric mean, e.g.
εm,n =

√
εmεn.3

Figure 17: An Illustration of the parametrised energy terms of equation 28.
The indices a, b, t, m, and n run over the angles, bonds, tor-
sions and atoms, respectively, and ’eq’ represents the equilibrium
value.

However, since the parameters of this force-field are fitted to ground
state ab initio calculations[115, 116], it would not make sense to use
them in an attempt to predict excited state structures. Furthermore,
since these force fields are often developed with the incentive of mod-
elling large biomolecules, they cannot be assumed to accurately pre-
dict the interatomic distances around coordinated metals of varying
exoticism. Therefore, as already mentioned, all the covalent energy
terms were neglected by keeping the geometries of the complex fixed
under the solvation-configuration sampling. Of course, this method

3 More details about the non-covalent, or non-bonded interactions can be found in
section 5.5.1, chapter 5, where they are tested for the QM/MM MD simulations.
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of using a fixed solute will produce approximate solvent configura-
tions, since the solute is not allowed to respond to collisions with sol-
vent molecules4. Furthermore, and maybe more importantly, this way
of approximating the solvent shell (response) will only include steric
effects from (changes in) the molecular geometry, since the force-field
parameters (partial charges and the LJ parameters) will not reflect the
difference in the electronic structure of any excited states.

4.3 x-ray scattering from md simulations of [fe(bpy)3 ]2+

Figure 18: Test of the modified equilibration scheme of Desmond, which
keeps the solute frozen under all equilibration steps (the red, blue,
and green curves on the left grafs), and also in the production
run. The restraining is done by adding another potential Eres =

Kres(r− rres)
2 to the total energy. For the equilibration, K = 1000

kcal/(mol · Å2), and for the production, K = 500 kcal/(mol · Å2)

For the two production runs of each state of [Fe(bpy)3]2+, the mean
solvated structures[33] were prepared in Desmond, and solvated us-
ing the TIP4P[117] water model, in cubes of 50 Å sides. The sol-
vatisation was done using the built-in solvatisation function, which
tiles up an already equilibrated pure solvent box over the final MD
box, and deleting overlapping solvent molecules. Since the standard
equillibration-scheme of the highly automated program does not take
into account the necessity of having completely frozen solute struc-
tures through all the steps, a new version was made, based on the
original, but kept the solute fixed during the entire equilibration pro-
cedure. A confirmation that the system still properly equilibrates is
shown in figure 18.

The production runs were carried out in the NPT ensemble using the
Martyna-Tobias-Klein barostat[118] and a Nose-Hover thermostat[119,
120], being the ensemble that most closely resemble experimental con-
ditions, and the solvation shells were sampled every ps for 2 ns each,

4 Compare throwing a ball into a brick wall to throwing a ball into a sheet of sus-
pended cloth . . .
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with a 2 fs integrator timestep. The histogram on the right side of
figure 18 represents the distribution of instantaneous temperatures
sampled every ps of the GS run. It can be shown[109], that for a
canonical ensemble the variance σ2T of the average temperature 〈T〉2
should be:

σ2T =
2〈T〉2
3N

(29)

where 3N is the total number of degrees of freedom in the system,
which amounts to 25197, according to the Desmond output, which
automatically takes the restrained atoms into account. In the bulk
limit of 3N→∞, the variance becomes zero as expected for the ther-
modynamic temperature. The red Gaussian curve in the right part
of figure 18 is made by simply plotting a normal distribution with
the variance calculated according to equation 29 and the temperature
of 298.15 K set in the thermostat, meaning that no fitting is involved,
and the system exhibits the expected behaviour for a canonical en-
semble of a finite system.

Figure 19 shows the Fe-N bond lengths of the two states, obtained
by restraining the system, as described in figure 18. This method
maintains the bond stretch induced by the electronic excitation, which
is not describable with standard force fields. However, the thermal
broadening represented by the variance of the bond distributions is
completely controlled by the force constant chosen, and does as such
not necessarily represent the actual physical broadening.

Figure 19: Histograms of each of the 6 Fe-N bonds from the MD simulations
using the 500 kcal/mol restraint on all [Fe(bpy)3]2+distances.
Blue: The GS geometry. Red: ES geometry.

For each 35 ps of the two production runs, the X-ray scattering was
calculated using the Debye equation. Figure 20 shows the results for
each state. The low-q region on the plots the figure reveals spurious
oscillations believed to arise from the finite box size. This dataset was
handed over to the experimental part of our group for inclusion into
the overall experimental analysis, where the non-physical oscillations
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Figure 20: Plots of the calculated scattering from snapshots of the MD trajec-
tories. The black curves represent the averaged signal. Spurious
oscillations with high-frequencies are observed at low q, originat-
ing from the unphysical truncation of the simulation box.

were filtered out using Hann window[121], [I,VI].

Figure 21: Left: The total XDS signal at t = 1 ps, with the fit carried out by
the experimental part of our group[I]. Right: The ’Solute+Cage’
signal, i.e. the calculated average difference signal from the two
trajectories containing ensembles of solvent configurations for
each of the frozen structures (green curve). The dashed grey
curve is calculated difference scattering from the naked solute
structures obtained from [33], showing a dramatic change in the
signal if the solvent is neglected.

The left part of figure 21 is taken from [I], and shows how the simu-
lated signal only fits the data, if the contribution from the change in
solvation-shell (green curve) is included. The right part of the figure
shows the difference between simply calculating the signal from the
structural change in the naked solute (dashed black line), and includ-
ing the solvent shell response (green line). From this, it is evident
that including solvent shell changes is required.
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4.3.1 Improvements on the Calculation

The next steps in improving this method relies on approaching the
following issues:

1. Using the Debye-formula for a system of 5000 particles requires
computing the sine term in the rotational averaging 25 billion
times pr time step.

2. The implementation of the Debye formula does not currently
take into account the periodic boundary conditions of the MD
simulations, but implementing this would increase the compu-
tational time further.

3. The truncation artifacts can have frequencies comparable to real,
physical oscillations in the signal, making the heuristic Fourier
filtering troublesome.

With regards to 1 and 2, methods akin to how long-range interactions
in MD simulations are cut off could decrease the computational cost,
alternative strategies centered around calculating S(q) from the radial
distribution function g(r) is scattered throughout the literature[122,
123, 124, 125, 126]. Since g(r) is ubiquitous in molecular simulations,
methods and programs such as VMD that can calculate it efficiently
are readily available[127, 128]. Therefore, we start the next section by
going back to the theory of X-ray scattering, to derive an equation
which is more suitable for use with MD simulations.
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4.4 an alternative to the debye formulation

∆S(q) = Son(q) − Soff(q), has been shown[129] to be a functional of
the difference in nuclear density distribution of the pumped system,
ρ̃on(R; tp), and the unpumped, ρ̃off(R; tp), and the molecular form
factor F(R,q):

∆S(q) =

∫
[ρ̃on(R; tp) − ρ̃off(R; tp)] |F(R,q)|2 dR (30)

Here, the nuclear density distribution ρ̃(R; tp) is a convolution of the
instantaneous distribution of atomic positions at time t, ρ(R; t), with
the intensity function I(t) of the x-ray probe pulse:

ρ̃(R; tp) =
∫∞
0

I(t)ρ(R; t)dt (31)

so in the approximation of an instantaneous x-ray pulse, given by the
delta function I(t) = δ(t− tp)⇒ ρ̃(R; tp) = ρ(R; t).

The molecular form factor is in principle the expectation value of the
scattering operator on the all electron wavefunction, which can be
shown to give a Fourier transform of the electronic density[129]

|F(R,q)|2 =
∣∣∣∣∫ ρe(r;R)eiq·rdr∣∣∣∣2 (32)

Almost always, the assumption is made that the scattering can be
described as scattering from independent atoms, with spherical elec-
tronic densities. This is called the Independent Atom Model, and it
effectively turns the molecular scattering factor into a sum of atomic
form factors fi(q)

FIAM(R,q) =
∑
j

fj(q)e
iq·R (33)

Even though this approximation ignores chemical bonding, it is in
most cases very accurate for structural determinations[130], except
maybe for liquid water[125], as shall become relevant later. While the
electronic structure is directly available from DFT calculations, using
it directly with an adequate numerical precision within a multidimen-
sional structural-fitting strategy, as employed by the experimental sec-
tion of our group[106], is unnecessarily cumbersome when working
with systems where the Independent Atom Model (IAM) is sufficient.

Since equation 4.4 can easily be divided up in separate terms for
Son(q) and Soff(q), in the following we aim to derive an expression
S(q) usable in the context of molecular dynamics simulations of a
solutes in liquid solvents. -And since the quasi-structure inherent
in liquids are often described via the Radial Distribution Function,
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g(r)5 we aim to acquire an expression of the scattered x-ray intensity
through g(r). The definition of the RDF will also be a result of some
of the steps in the derivation.

We start by assuming an instantaneous x-ray pulse at time t, and the
IAM:

S(q) =

∫
ρ(R)|F(R)|2dR =

∫
ρ(R)

∑
j

fj(q)e
−iq·Rj

∑
k

fk(q)e
iq·RkdR

(34)

In order to be able to do a separation of variables, we first separate
the sums into sums of j 6= k and j = k:

S(q) =

∫
ρ(R)

∑
j6=k

fj(q)fk(q)e
−iq·(Rj−Rk) +

∑
h=j=k

fh(q)
2

dR
(35)

We then focus on the first integral, and go to internal coordinates6,
which means that the nuclear density is expressed as a function of all
pairwise interatomic vectors Rj,k = Rj −Rk, and the center of mass
of the system, and separate the variables:

ρ(R) ≈ ρ(∆R)σ(Rcm) (36)

where all the pairwise interatomic vectors ∆R = (∆R1,∆R2, . . .) is
a vector of 3N-3 coordinates, and ∆Ri = Rki,ji , is the i’th vector be-
tween the ki’th and ji’th atomic pair. ∆R and Rcm thus describes all
positions and angles between the all the atoms in the system.

When integrating over all space, there should also be equal proba-
bility for all possible centers of mass, since this essentially just is a
translation of the entire sample7. In other words, σ is constant, and
over all space, its integral must sum to 1. Now we are left with:∑
j6=k

fj(q)fk(q)

∫
ρ(∆R)e−iq·Rj,kd∆R (37)

We now need to deal with the many-particle nucleic density ρ(∆R).
If we assume that the total potential energy of the N-body system is
pair-wise additive, we can write the distribution into the product for
all pairwise distributions:∑
j6=k

fj(q)fk(q)

∫∞
0

ρ1(∆R1)ρ2(∆R2) · · · e−iq·∆Rj,kd∆R1d∆R2 · · ·

5 Sometimes abbreviated as the Radial Distribution Function (RDF)
6 This coordinate change is different from earlier methods[131], since the goal in this

work is to end up with an expression of pair distributions.
7 From a theoretical viewpoint, and all other things being equal, the scattering is the

same, regardless if it happens at SACLA in Japan or at LCLS in the States. The
author is aware that this statement might be slightly provocative to some of our
experimental collaborators.
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Realising all other terms will integrate to 1, since each pair is depen-
dent only on the Rj,k vector between atom j and k:∑
j6=k

fj(q)fk(q)

∫∞
0

ρj,k(Rj,k)e
−iq·Rj,kdRj,k (38)

Which leaves us with a somewhat more approachable sum of inte-
grals over each atomic pair and its corresponding probability density.
Note that the approximation of pair-wise additivity has already been
assumed within molecular dynamics simulations, since the forces
propagating the system is calculated via the pair-wise additive po-
tentials of the molecular force fields as seen in section 4.2.

Now we make the isotropic assumption, which normally means that
there is equal probability of finding the entire molecule in any orien-
tation. This must mean that there is also equal probability of finding
each Rj,k in any orientation, since a rotation of the molecule must
mean a rotation of all of its pairwise vectors. For ultrafast studies,
the isotropic assumption might not always hold, but since we are
here trying to obtain an expression for the x-ray scattering formu-
lated through the radial distribution function, this expression must
be within the isotropic assumption. Options for including angu-
lar dependence in scattered intensity-expressions have been derived
elsewhere[129, 131]. Evaluating the integral in the isotropic case will
eventually lead to[129, 132]:∑
j6=k

fj(q)fk(q)

∫∞
0

ρj,k(r)
sin(qr)
qr

dr (39)

Remembering the second term where j = k in 35 we get:

S(q) =
∑
j

fj(q)
2 +

∑
j6=k

fj(q)fk(q)

∫∞
0

ρj,k(r)
sin(qr)
qr

dr (40)

We are still summing over all pairs in our system. Distribution func-
tions often collect correlations of the same ’type’ of atoms, which can
be defined as the same element, e.g. as in the pairwise radial dis-
tribution function for the oxygen-oxygen correlation in water. Here,
strictly speaking, one should define ’atom type’ as ’atoms exhibiting
the same scattering behaviour’, which, within the IAM coincidentally
would be the same as equating ’type’ and element8. In other words,
the minimum number of atom types in the system is the number of
elements (ions), but it is possible to separate e.g. the solute and sol-
vent terms by defining the atom types as ’elements belonging to the
solute or the solvent’. Or more succinctly: You can have different
atom types with the same atomic form factor, but you cannot have

8 or ion, since there is tabulated values for form factors for the same element with
differing charges.
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different form factors in the same atom type.

With this definition, we need redistribute the probability terms, such
that all the Nl atoms j are of the same type as l, and all atoms k are
the same type as m:

ρl,m(r) =
1

NlNm

Nl∑
j∈l
j6=k

Nm∑
k∈m
k6=j

ρj,k(r) (41)

Note that l can be equal to m, or else we will miss the terms between
different atoms of the same type, an error which seems to have crept
into some formulations[122]. Since the form factors in equation 40 are
not dependent on r, we can put them into the integral and rewrite the
sum with the definition of atom types:∑
j6=k

fj(q)fk(q)ρj,k(r) =
∑
l

∑
m

Nl∑
j∈l
j6=k

Nm∑
k∈m
k6=j

fj(q)fk(q)ρj,k(r)

where
∑
jfj = Nlfl so:

=
∑
l

∑
m

fl(q)fm(q)

Nl∑
j∈l
j6=k

Nm∑
k∈m
k6=j

ρj,k(r)

and using the definition in eqn. 41:

=
∑
l

∑
m

NlNmfl(q)fm(q)ρl,m(r) (42)

which is then substituted into equation 40, where we also rewrote the
sum of form factors squared for each atom, to the atom-type notation,
which is evidently Nlfl(q)2:

S(q) =
∑
l

Nlfl(q)
2 +

∑
l,m

fl(q)fm(q)NlNm

∫∞
0

ρl,m(r)
sin(qr)
qr

dr

(43)

To finally express the scattering in terms of the more used (pairwise)
radial distribution function g(r), we recall that it is defined via equa-
tion 44, which states that the number of particles (of a certain type B)
dn at r+ dr (from the first type A) can be obtained by:

dn(r) = σ0g(r)4πr
2dr (44)

Where σ0 is the isotropic number density, N/V . Therefore, we can
similarly define

dρl,m = ρ0g(r)4πr
2dr (45)

where then ρ0 is the isotropic probability density, 1/V , and insert that
into equation 43:

S(q) =
∑
l

Nlfl(q)
2+

∑
l,m

fl(q)fm(q)
NlNm

V
4π

∫∞
0

r2gl,m(r)
sin(qr)
qr

dr
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(46)

The volume V normalises the radial distribution function, which
means that the g(r) peak amplitude contains information about the
volume of the box used to calculate g(r) in, so of course, the same
volume must be used for both the g(r) calculation and the following
S(q) calculation.

The integral in the above equation does not converge, but conve-
niently, one can rewrite the integral in equation 46 by adding and
subtracting the distribution in the isotropic limit, g0(r) such that:∫∞

0

(g(r) − g0(r))
sin(qr)
qr

r2dr =∫∞
0

(g(r) − g0(r))
sin(qr)
qr

r2dr+

∫∞
0

g0(r)
sin(qr)
qr

r2dr

The last term has been argued to only contribute at q → 0), which
means we can exclude it[133, 126, 134], since this part of the q-range
is covered in the experimental setup by the beamstop. Thus, we end
up with:

S(q) =
∑
l=m

Nlfl(q)
2 +

∑
l,m

fl(q)fm(q)
NlNm

V
4π

∫∞
0

r2[gl,m(r) − g0,l,m(r)]
sin(qr)
qr

dr

(47)

which can be implemented for numerical calculations of the scatter-
ing based on molecular simulations from which pairwise gij(r) func-
tions can be sampled. Often[123, 122, 125, 124] (but not always[134,
135]), g0(r) is simply written as 1, since g(r) is normalised w.r.t the
isotropic density. However, for the rewriting to work with respect to
making the integral converge, the sampled g(r)’s must then also have
converged to the isotropic limit of 1 at larger r’s. This is rarely the
case for solute-solute g(r)’s from MD simulations with a single solute
in a large box of solvent molecules.

Equation 46 is actually a generalisation of the Debye-equation, which
we will now show. The radial distribution function from a single pair
of atoms i and j, i.e the probability of finding atom j in the infinites-
imal volume element 4πr2dr at distance rij from atom i must be a
delta function9:

4πr2gij(r)dr

V
dr = δ(r− rij)dr (48)

9 Either atom j is there, or it is not, and the total possibility of finding the atom, i.e.
integrating the distribution over all space, must be 1.
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which we can insert into equation 46:

S(q) =
∑
i=j

Nifi(q)
2 +

∑
i,j

fi(q)fj(q)NiNj

∫∞
0

δ(r− rij)
sin(qr)
qr

dr

S(q) =
∑
i

∑
j

fi(q)fj(q)
sin(qrij)
qrij

(49)

Hence, of course,Ni = Nj = 1 for single atoms, and we have collected
the two sums back into one term, since sin(qr)

qr → 1 for r→ 0.

Two issues arise when the numerical implementation is made:

1. The numerical representation of intramolecular gij(r)’s with
delta-function-like characteristics depend on the numerical pre-
cision in dr ≈ δr, the bin width for the sampled distributions.
See figure 22 for a test of this.

2. The integral in equation 47 goes to infinity, but calculations are
limited by the size of the simulation box.

The second issue introduces spurious truncation oscillations the cal-
culated scattering signal, since the integral is essentially the Fourier
transformation of gij(r). Many methods of varying heuristic nature
has been applied to this problem, often for the reverse version of
obtaining g(r) from S(q)[136, 137, 138, 139, 140, 125, 141]. Some
fit the tail of the data to an analytic function that can be contin-
ued to infinity[137], while others simply apply a dampening win-
dowing function to the Fourier transformation[140, 141], and others
again have developed more involved methods[138, 125, 139]. We
have found it adequate so far to simply employ a window function
sin(πr/R)
πr/R [141] in the transformation:

S(q) =
∑
l=m

Nlfl(q)
2 +

∑
l,m

fl(q)fm(q)
NlNm

V
4π

∫∞
0

r2[gl,m(r) − g0,l,m(r)]
sin(qr)
qr

sin(πrR )
πr
R

dr

(50)

Some authors[141] choose R to be half the size of the simulation box,
while others[140] provide no physical justification for their chosen
value.

4.4.1 Testing the Implementation

Figure 22 shows a comparison of the numerical implementation of
equation 50 made in matlab, with a numerical implementation of
the Debye-formula (eqn. 49), as previously made and used in our
group. The system is very simple, simply two Ir atoms at distance
r = 4.63 Å. For S(q) calculated via equation 50, g(r) was numeri-
cally calculated with δr = 0.01 Å, going from 0 to 100 Å, in a square
box of 100 Å side lengths (see inset on fig. 22), thus numerically



48 x ray scattering from purely classical md

Figure 22: Comparison of numerical implementations of calculated x-ray
scattering, S(q), implemented in Matlab. The scattered intensity
goes to the number of electrons in the sample squared, when
q → 0. The truncation factor R in equation 50 was then opti-
mized to minimize the mean square deviation between the two
calculations, giving here the result of R = 7.676 Å. The estimated
standard error of the calculation using the g(r) with ∆r = 0.001
Å is 2.12 · 10−6. The green curve shows the residual. The blue
dashed curve shows the residual when using ∆r = 0.1 Å, giving
a standard error of 1.37 · 10−4. The inset shows the g(r∆=0.001)-
function used in the calculation.

approximating the delta-function. Based on the observation that for
q → 0, the scattering goes to f(q → 0)2. Remembering that, in prin-
ciple, f(q) =

∫
ρ(r)eiqrdr, where ρ(r) is the electronic density, then

S(q → 0) → n2 where n is the number of electrons in the system10.
This, to avoid defining a volume for the Ir-Ir pair, the scattering was
simply scaled to the Debye-scattering at q = 0.02Å. While this is
the region suspected to be mostly affected by truncation errors, we
force the same scattered intensity in this region, and then minimize
the spurious truncation oscillations by least-squares fitting Sg(r)(q)
to SDebye(q) and minimizing the residual. Thus, it is confirmed that
the two implementations produce the same scattering in the limit of
a single atomic pair, as is seen in figure 22.

The next step involves calculating the scattering of neat water, as
shown in figure 23. Here, an experimentally resolved gOO(r)-curve
[142, 143] has been digitized and used in our numerical implemen-
tation. The two other pairwise radial distribution functions of water
was unfortunately not resolved during that experiment, so instead we
have used curves simulated using the TIP4P-eW force field, which
is made by parts of the same group[144] who authored the experi-
mental publication. The results are displayed with the dashed grey
line on the left graph in the figure. Since the O-O correlations con-
tain the most electrons, this term should make up the major part of

10 The unscaled Debye-scattering in figure 22 at q = 0.02 Å is 2.37 · 104 = (77 · 2)2
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Figure 23: Left: Scattered X-ray intensity from neat water, experimentally
obtained by Hura et al. (blue line)[142, 143]. From that experi-
ment Hura et al. resolved the O-O pairwise RDF, which was then
used in our numerical implementation, to give the dashed black
curve. The dashed green line represents scattering calculated via
pairwise RDFs obtained by Mahoney et al.[145]. This data lacks
the delta-functions from intramolecular O-H and H-H correla-
tions, which causes the errors in low-q. Right: a figure from
Hura et al.[143], comparing calculated scattering within the IAM

(black line) and with a Modified Atomic Form Factor, that takes
chemical bonding into account.

the scattered intensity. Another experiment from the literature[145],
provided a full set of experimentally resolved pairwise radial distri-
bution functions, which is also included in the figure. For larger q,
there is overall a good agreement between the experimental scatter-
ing obtained by Hura and coworkers[142, 143] (blue line), and the
corresponding simulated scattering. The small differences between
the blue and dashed black curves are remarkably similar to the dif-
ferences observed by Hura et al. (fig. 23, right), comparing simulated
scattering within the IAM approximation (black line) with a Modified
Atomic Form Factor[143], that takes redistribution of charge due to
chemical bonding into account. In a pump-probe experiment, how-
ever, the scattering contribution from the (unchanged) bulk solvent
away from the solute is cancelled out, since its contribution to Son(q)

and Soff(q) is identical.

This concludes the benchmark of the new numerical implementation.
This method of calculating scattered X-ray intensity via pairwise ra-
dial distribution functions will hopefully be a valuable addition to
the toolbox of our group, since it can provide a calculation of the ex-
perimental signal from solvation shell changes, as well as change in
the solvent itself, provided molecular simulations of the process of
interest is carried out.
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4.5 returning to [fe(bpy)3 ]2+ & concluding

In the case for [Fe(bpy)3]2+from section 4.3, we compare the scatter-
ing signal calculated with new method to the one used in the article in
figure 24. In the previous simulations, the simulation box volume was
only recorded for the final step of the simulation. The new method
for calculating the signal relies on the simulation box volume to cor-
rectly scale the radial distribution functions, so new MD runs were
made in the NVT ensemble. Also, for the remainder of the projects
presented, ensembles with fixed volumes have been used.

Figure 24: Left: Difference scattering signal calculated from MD simulations
redone in the NVT ensemble, compared to Debye-scattering from
the first MD runs. Right: The full signals.

The black curve represents the total difference signal calculated with
a dampening of 20 Å. Considering the severe truncation effects at
low q for the Debye-scattering (fig. 20), it is possible that the filter-
ing also removed some of the real signal, seeing as the amplitude at
larger q is larger in the g(r)-version in figure 24. However, the two
calculated signals are qualitatively very similar, and both reproduce
the experimental low-q increase in scattering.

At this point it is instructive to further analyse exactly which sol-
vent shell changes we are simulating, since the MM MD approxima-
tion used to obtain a better sampling of the RDFs do not account for
the changes in the electronic structure undergone by the molecule in
the excited state. Figure 25 compares the RDFs from the ab inito MD

study[33] to results from the NVT simulations used in the scattering
comparison. For gFe-O(r), the main loss of the solvent shell peak
around 5 Å is reproduced by the MM model, but the ES gFe-O(r) in-
creases in amplitude at shorter distances, compared to the GS, and
since the minimum after the first peak disappears in the excited state,
the MM model produces a more diffuse first solvent shell around the
excited state structure. The ground state solvent shell minimum dis-
tance is roughly 6 .3 Å in the ab initio model, and around 5 .8 Å in the
MM model.
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Figure 25: Left: the RDFs obtained via an ab initio MD method[33]. Right:
RDFs from the MM MD simulations based on the molecular struc-
tures obtained from [33]. While the two models produce qual-
itatively similar results, the specific solvation dynamics are not
reproduced, since there is effectively no change in coordination
number in the first solvation shell, in the MM model.

The MM gFe-H(r) again shows qualitative similarity, but a more well-
defined solvent shell for the MM case. All in all, at least parts of the
non-specific solvent shell changes are recovered in the MM approxi-
mation, as described in the above.

The dashed lines in figure 25 represent the cumulative coordination
numbers, cn(r). The number n(r) of atoms (of the correct type) in
a spherical shell with borders from r1 to r2 is simply obtained by
integrating both sides of equation 44:

n(r) =

∫r2
r1

σ0g(r)4πr
2dr (51)

- and the coordination number in solvents are often defined by setting
r1 to 0 and r2 to the first minimum in g(r).

The change in Fe-O coordination number from GS to ES for the MM

model 0.1, meaning that within the approximation of only describ-
ing changes in the molecular structure, and not in the electronic, the
specific solvent dynamics are not accounted for. This must again
mean that the specific expulsion of the water molecules from the first
solvation shell upon excitation, observed both in the computer[33]
and in the laboratory[VI,I], must be heavily influenced by changes in
the electronic structure of the excitation, and not only by the changes
in molecular geometry. Obviously, this separation between the elec-
tronic and ’geometric’ structure (i.e. the nuclear coordinates) is an
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artificial one, brought upon the system by the need for a statistically
satisfying sampling of the solvent configurations for the scattering
calculation.

As already alluded to, the chosen strategy for improving on the mod-
els for the transient changes exhibited in molecules like [Fe(bpy)3]2+

has been to employ the Direct Dynamics method of the following
sections of this work. Like the similar ab initio MD method to which
the MM MD results where compared, this method will explicitly in-
clude changes in the electronic structure of the solute, affected by the
solvent charges.



Part III

D I R E C T D Y N A M I C S





5
B A C K G R O U N D

This work is mostly focused on application, which is why this chapter
is intended as a guide for future users, with only a brief theoretical
outline of the methods employed in this part of the project. The
theory behind the GPAW simulations in this chapter is explained in
detail elsewhere[79, 80, 146], and a thorough overview of the QM/MM

implementation can be found in [147]. As GPAW is a DFT-based code,
the basics from chapter 3 are also applicable here.

5.1 the grid-based projector augmented wave method

Figure 26: The basics of GPAW. The pseudo-wave function is described nu-
merically on an uniform grid, and the all electron core states
within the augmentation region are described on a finer, radial
grid, and can be evaluated independently of the neighbouring
environment, before the actual calculation, and saved in a GPAW

’setup’. The PAW method makes sure that the two regions are
smoothly matched.

Most of the computational chemistry programs, like the ones used in
section 3, follow along the same strategy, and solve the Kohn-Sham
equation of a system of non-interacting electrons using a basis set
made from a linear combination of atomic orbitals, often represented
by a(nother) linear combination of Gaussian functions. GPAW takes
a somewhat different approach in dealing with the problem of calcu-
lating electronic structure of a many-body system. The difference is
twofold:

1. GPAW uses a soft valence pseudo-wave function-description while
retaining the cusps and sharp features of electrons in the core
region. The two regions are smoothly connected by the PAW

transformation[77, 78].

55
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2. The pseudo-wave functions are evaluated directly, by discretiz-
ing the Kohn-Sham equations, and solving them numerically us-
ing the Finite Difference (FD) method. The uniform, real-space
grids can be surprisingly coarse due to the smoothness of the
pseudo-wave function ouside the core region (see fig. 26). This
makes the calculations faster, and more parallelisable between
many CPU cores.

5.1.1 PAW

Exactly how the PAW method matches up the two regions is beyond
the scope of this work, but more info can be found in[77, 78, 146,
79, 80]. However, the result is that atomic (core region) variables
can be calculated independently of the neighbouring environment,
and prior to calculations of entire systems. This saves a consider-
able amount computational expense. These so-called ’PAW atomic
setups’ are functional-dependent, since the values like contain core
densities, atomic kinetic energy contributions etc., which depend on
which functional is used to calculate them.Platinum 6s orbital
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Figure 27: An example of how the 6s orbital of Pt is computed within the

PAW formulation. The plot shows the real values of the vari-
ous wave functions as a function of the distance x from origo.
The a superscript demarcates the wave functions within the
atom-specific ’augmentation sphere’, and the tilde-marked are
the pseudo-wave functions. From [148]

Figure 27 shows the resulting 6s orbital of Pt, made as illustrated in
fig. 26:

φ6s = φ̃6s +φ
a
6s − φ̃

a
6s (52)

φ̃ is the all-electron partial pseudo-wave, the φa is the all-electron
wave within the ’augmentation sphere’, and φ̃a is the part of the
pseudo-wave within the augmentation sphere that needs to be sub-
tracted to end up with the overall behaviour of φ6s.
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For spatially large systems, requiring large QM cells, GPAW has an Lin-
ear Combination of Atomic Orbitals (LCAO)-mode[149] option, akin
to more traditional computational chemistry codes. This will make
GPAW use a basis of LCAOs, which speeds up calculations. However,
the grid-based methods are still being used for the density and the
potential.

5.1.2 Finite Difference and Real Space Grids

The FD method is well known and heavily used within the engineer-
ing community as well as in physics, and since the PAW method al-
lows for such coarse grids to be employed in the valence regions that
the FD method is viable, GPAW can take advantage of the already well-
established, efficiency-boosting grid-methods[150, 151, 152]. Here,
we only briefly line up the basic FD principle, which is very much
akin to the discretization of time that takes place in the dynamic inte-
grators for MD.

h

x i− 1 x i+1x i xN x − 1 xN xx0 x1

Figure 28: A one-dimensional grid used as an example for the 3D mesh used
in GPAW.

As an example of where the method can be used, the Kohn-Sham ki-
netic energy operator in equation 19 involves the Laplacian. However,
first, let us just look at the general example of how to numerically ap-
proximate a first order derivative, in one dimension on a grid like the
one in figure 28, before dealing with the second order derivative. If
we make a Taylor expansion of the function we want to numerically
evaluate:

T(xi + h) = T(xi) + h
∂T(x)

∂x

∣∣∣∣
xi

+
h2

2

∂2T(x)

∂x2

∣∣∣∣
xi

+ . . . (53)

Ignoring everything more that first order terms and isolating the first
order derivative gives the forward difference formula:

∂T(x)

∂x

∣∣∣∣
xi

≈ T(xi + h) − T(xi)
h

≈ T(xi+1) − T(xi)
h

(54)

Using the notation T(xi +h) = T(xi+1). Obviously the derivative can
also be approximated from functional values in the point before xi:

∂T(x)

∂x

∣∣∣∣
xi

≈ T(xi) − T(xi−1)
h

(55)
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Finally, the numerical precision can be increased by using a point on
each side of xi to evaluate the value of the derivative at xi

T(xi + h) − T(xi − h) ≈ T(xi) + h
∂T(x)

∂x

∣∣∣∣
xi

− T(Xi) + h
∂T(x)

∂x

∣∣∣∣
xi

⇒
∂T(x)

∂x

∣∣∣∣
xi

≈ T(xi+1) − T(xi−1)
2h

(56)

which is recognised as a basic definition of a derivative, if h→ 0.

Second order derivatives can be approximated by including one more
term of the Taylor expansions of T(xi + h) and T(xi − h), and adding
them up:

T(xi + h) + T(xi − h) ≈

T(xi) + h
∂T(x)

∂x

∣∣∣∣
xi

+
h2

2

∂2T(x)

∂x2

∣∣∣∣
xi

+ T(xi) − h
∂T(x)

∂x

∣∣∣∣
xi

+
h2

2

∂2T(x)

∂x2

∣∣∣∣
xi

⇒
∂2T(x)

∂x2

∣∣∣∣
xi

=
T(xi+1) + T(xi−1) − 2T(xi)

h2
(57)

This can readily be extended to more dimensions, and to an arbitrary
number of neighbouring grid points used:

∂dkT

dxk

∣∣∣∣
xi

≈ 1

hk

∑
j∈Nj

αTj (58)

where the coefficients αj are determined by the Taylor expansion, and
Nj is a list of grid points used in the approximation, termed the sten-
cil. E.g. the 2. order derivative above uses a 3-point stencil of T(xi−1),
T(xi) and T(xi+1).

Using a real space grid method has the added advantage that, when
treating the electrostatic effect of classical point charges on the elec-
tronic density, the density is already represented on a grid.
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Figure 29: A Schematic representation of the main idea behind the hybrid
QM/MM strategy. The total system to be simulated is divided up
in two subsystems: (1) The QM subsystem, where the electronic
structure is calculated using DFT. (2) The MM subsystem which
is described using classical force-field methods. The two subsys-
tems are interacting according to the description in the text.

5.2 the combined quantum mechanical/molecular me-
chanical method

The advent of combining quantum- and molecular mechanical ap-
proaches began with the seminal work by Warshel & Levitt[153] that
recognized the need for a QM treatment of some, but not all regions of
large, biological systems, such as reaction centers in enzymes. Tradi-
tional classical force field methods, as described in section 4, are com-
putationally inexpensive, but cannot make or break bonds, describe
excited states without laborious re-parametrization of the particle in-
teractions, and are overall less general than QM methods. On the
other hand, the increased computational cost of QM methods make
them infeasible for very large systems evolving in time.
Therefore, Warshel & Levitt combined the QM and MM descriptions,
choosing a chemically active region to be quantum mechanically de-
scribed, while the rest of the system (coupled to the QM part) is de-
scribed classically. This idea was quickly built upon, and numer-
ous variations have been developed and implemented[154, 155, 156,
157]. Ultimately, Warshel & Levitt, was together with Martin Karplus
awarded the Nobel prize in chemistry in 2013[158].

Here, we aim to present a general introduction to how interactions
between the two sub-systems can be handled, since a more techni-
cally detailed description of the used implementation has already
been presented[147]. The entire system is sketched in figure 29. The
total energy of the system cannot simply be described as the sum of
the energies of the QM and MM subsystems, since the two regions are
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of course interacting. In this implementation, the total energy of the
system is based on an additive scheme:

Etot = EQM + EQM/MM + EMM (59)

The interaction term between the two subsystems EEQ/MM is com-
prised of the:

1. Electrostatic interactions between the QM electronic density and
the MM point charges, EEL1 .

2. The electrostatic interactions between the QM nuclei and MM

point charges, EEL2 .

3. van der Waals (vdW) interactions between the QM and MM parti-
cles, ELJ.

So, for the electronic density ρ(r), the MM point charges qm with
positions Rm, and the nucleic charges in the QM subsystem Zn with
positions Rn 1:

EQM/MM = EEL1 + EEL2 + ELJ (60)

=

NMM∑
m

qm

∫
ρ(r)

|r − Rm|
dr +

NMM∑
m

NQM∑
n

qmZn

|Rn − Rm|
+ ELJ

where the umbrella-termed vdW interactions from the many-body
effects Pauli repulsion and dispersion are simply modelled with a
generic LJ 12-6 potential, just like the LJ term in equation 28 of section
4.2:

ELJ =

NMM∑
m

NQM∑
n

4εmn

[(
σmn

|Rn − Rm|

)12
−

(
σmn

|Rn − Rm|

)6]
(61)

The electronic density is self-consistently converged under the influ-
ence of an external potential V ′ext = Vext + Vρ−MM, where Vext is
the original potential, and Vρ−MM describes the influence on the MM

point charges on the electronic density:

Vρ−MM(r, Rm) =
∂EQM/MM[Rn, Rm]

∂ρ(r)
=

NMM∑
m

qi
|r − Rm|

(62)

where r is on the grid. Divergences caused by point charges very
close to grid points (termed the charge spillout effect[159]) is treated
by smoothening the potential in equation 62, using an established
method[159], and tested by E. Jónsson, to give consistent potential
minima of a variety of QM/MM interactions[147], when using a smoo-
thening factor of 0.2 Å. The smoothed potential is slightly more in-
volved, but here we aim to explain the basic methodology using the

1 Atomic units are still used here, since carrying around 1/(4πε0) is cumbersome . . .
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Figure 30: Left: Schematic of the periodic boundary conditions. Right:
Schematic of how long-range electrostatics are cut off in the Min-
imum Image Convention (MIC). The highlighted molecule is elec-
trostatically affected by the fully drawn molecules, comprising a
minimum image with the original box dimensions.

simpler, unsmoothed potential.

The long range electrostatics are treated according to the Minimum
Image Convention (MIC)[110] (see fig. 30), but since the computa-
tional bottleneck here is the SCF cycles, a point charge simply inter-
acts electrostatically with all other point charges within its minimum
image, as described in the right side of figure 30. If very large MM

cells are to be used in the future, it would be advantageous to imple-
ment a long-range cutoff.

5.3 born-oppenheimer molecular dynamics

The review of Senn et al from 2009 states that ’first-principles QM/MM
MD remains computationally demanding even by today’s standards’ [155].
This is because each time step in the dynamics requires that the elec-
tronic density is re-optimized within the SCF scheme. The efficiency
of GPAW is vital in this regard. This stepwise re-calculation of the
electronic density for each set of nucleic coordinate at time ti is very
much akin to the Born-Oppenheimer approximation, which is already
used in the basic DFT theory to simply treat the nuclei via the station-
ary external potential they create. As such, the resulting QM/MM MD

motion is completely adiabatic. Too large time steps will worsen the
chances of converging the electronic density.

The nuclei in the QM subsystem are still treated classically within
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this method, and therefore also propagated according to the classical
forces they experience. So, in the QM subsystem, for nucleus n:

Fn = Fρn + Fnn + FQM/MMn−MM = −
∂EQM[Rn]

∂Rn
−
∂EQM/MM[Rn, Rm]

∂Rn
(63)

where it is recalled that the first, purely QM energy term is still af-
fected by the MM subsystem through the extra potential term (eq. 62),
and is handled in the original GPAW code, which readily provides
Fρn + Fnn for a QM nucleus n with charge Zn. The second term of
equation 63 is then

−
∂EQM/MM[Rn, Rm]

∂Rn
=Zn

NMM∑
m

qm

|Rn − Rm|2
−
∂ELJ(Rn, Rm)

∂Rn

(64)

which accounts for the forces FQM/MMn−MM = Fcoloumbn−MM + FLJn−MM from
the classical point charges on the nucleus n of the quantum system.

The forces on the classical point charges follow along analogously, but
the derivatives are with respect to the position of the point charges.
So for point charge m:

Fm = Fρm + FQM/MMMM−n + Fmm (65)

The pure MM term is readily handled within ASE, so we focus simply
on the new additions made in this implementation: Fρm + FQM/MMMM−n :

Fρm + FQM/MMMM−n =

− qm

∫
ρ(r)

|r − Rm|2
dr − qm

NQM∑
n

Zn

|Rn − Rm|2
−
∂ELJ(Rn, Rm)

∂Rm
(66)

The numerical integral represents the most computationally expen-
sive step of the QM/MM interfacing, since it runs over all the grid
points for each MM point charge. The purely classical force term Fmm
is handled as in the traditional ASE code, and the LJ forces from the
last terms of both equation 64 and 66 are simply obtained by taking
the derivative of equation 61.

The particles of the system are then propagated according to the
forces evaluated as described above2.

5.3.1 Molecular Dynamics in ASE

The Langevin-type dynamics module of ASE has been modified by E.
Ö Jónsson[147] to work within the QM/MM framework, and an op-
tion of constraining interatomic distances, using RATTLE-type[160]

2 Remembering the added technical complexity of short-range smoothening.
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Figure 31: Plots of the effect of increasing the friction term γ in equation
5.3.1, illustrated by a simple numerical implementation of the
equation, using a harmonic potential. The same integrators as in
ASE is used. γ = [0; 0.001; 0.01; 0.1; 0.5], from top to bottom.

constraints has been added. The Langevin equation of motion solved
numerically in ASE has the following form:

mi
d2ri(t)

dt2
= Fi − γmi

dri(t)

dt
+
√
2kBTγmiR(t) (67)

Fi is the total force on the particle, obtained as described in the pre-
vious section, T is the desired temperature, and R(t) is a stochastic
force term. This term has its physical origin in Brownian motion,
which describes the diffusive behaviour of a particle experiencing
random collisions with its neighbours. γ is called the friction coef-
ficient; increasing this value effectively decreases the strength of the
inertial (deterministic) forces and increases the stochastic forces. The
effect of the friction is illustrated in figure 31, where the motion of
a single particle in a 1D harmonic potential is simulated using the
same type of numerical integrators as in ASE, i.e. the Velocity-Verlet
integrators[161]

x(t+∆t) = x(t) + v(t)∆t+
1

2

F(x)

m
∆t2

v(t+∆t) = v(t) +
1

2

[
F(x(t+∆t)) + F(x(t))

m

]
∆t

Langevin dynamics is of the canonical (NVT) ensemble, and the
Langevin thermostat can be kept on in production runs where only
information about thermodynamic ensemble averages are of interest.
However, running Langevin-type simulations to describe the accurate
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atomic movements on the microscopic scale would be pointless, since
the temperature is kept constant by applying random forces to the
system. Luckily, the microcanonical (NVE) ensemble is easily recov-
ered, simply by setting γ to 0 and obtaining Newton’s equation of
motion:

mi
d2ri(t)

dt2
= Fi (68)

which produces the expected sinusoidal motion for the harmonic os-
cillator, as seen in the top plot of figure 31. The figure further shows
the effect of increasing the friction.

A schematic of the implementation is shown in figure 32. How the
implementation is used is described in the following sections.

5.4 making a qm/mm md simulation

This section goes into detail with the actual steps that has to be taken for
running a simulation, and is meant as a general guide for others interested
in using this implementation. Sample scripts can be found in section B.1 in
the appendix.

ASE uses the Python language to provide modules for manipulation
and visualization of atoms, and provides optimization routines for
functions, or calculations (such as GPAW) that provides energies. The
full documentation, and helpful tutorials can be found at https://

wiki.fysik.dtu.dk/ase/. Here, we line up the main steps of per-
forming a QM/MM MD simulation.

There are four major steps involved in running a QM/MM MD simula-
tion using this (or any other) implementation:

1. Prepare a MM solvent box

2. Analyse optimal QM parameters

3. Embed QM subsystem in MM subsystem, equilibrate

4. Simulate production run

5.4.1 Preparing Solvent Boxes

This is done by preparing a script that spans out a grid in a box of
the desired size, and then puts a solvent molecule on each grid point.
This initial configuration is obviously very far from the thermody-
namic equilibrium of the system. This means that the initial forces
will be very large, which will then require very small time steps of
the numerical integrator to initially propagate the system, in order
to avoid a build-up of numerical errors that will eventually crash the

https://wiki.fysik.dtu.dk/ase/
https://wiki.fysik.dtu.dk/ase/
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Figure 32: Schematic of the QM/MM code; how it operates within ASE, and
together with GPAW. The main interfacing takes place in ase_

qmmm, where the two ASE objects are created from the subsystems,
the PBCs are handled in the presence of the QM cell, and calls
to the calculators are defined. calc_mm is the calculator for the
MM subsystem, and calc_ks for the QM subsystem. So far, the
interfacing works together with the ASE dynamics module, but
could be readily expanded to work with other tasks, such as ge-
ometry relaxation, ∆SCF methods for approximation of excited
states[162, 163], etc. Adapted from [147]

simulation. In the early days of MD simulations, it made sense to
spend time ’pre-randomizing’ the initial configuration, to cut down
on the computational expense of this initial ’thermalization’. With
the computing power presently available, purely classical MD simula-
tions are cheap and fast, so spending more ’human’-time preparing
the system is much more expensive than spending the ’silicon’-time
thermalizing it from a worse starting point. The lesson is well remem-
bered, however, when switching to the hybrid QM/MM MD, where
converging the electronic density is a serious bottleneck, which is
why embedding the QM subsystem in the MM box should be done at
the latest possible point in the procedure.

5.4.2 Analysing Optimal QM Parameters

As with any computational study, it is essential to ascertain a robust
description of the system under investigation. In the GPAW frame-
work, this means considering choice of functional, grid spacing, basis
set size (if LCAO-mode is employed), and the QM cell size. The choice
of all these parameters should then also be judged in relation to the
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computational feasibility of MD simulations. This is essential for ob-
taining a model within feasible limits of computational costs. While
GPAW is fast, QM/MM MD is by no means ’cheap’. As an example, the
simulations in the following section sum up to over 30 CPU years of
computation-time. An example of how these choices can be consid-
ered in detail is given for [Ir2(dimen)4]2+ in section 6.1.

5.4.3 Embedding QM subsystem in the MM box

This step requires reading in the thermalized MM solvent box, the
(previously structurally relaxed) system chosen for the QM descrip-
tion, and adding them up, deleting overlapping solvent molecules.
Another equilibration run is needed to let the two subsystems re-
spond to the sudden presence of each other.
The QM/MM implementation is written such that, in ASE terminology,
the total atoms object should start with the QM subsystem, and then
contain MM subsystem. Lastly, the atomic indexes of all the atoms in
the total system should not change/be changed between steps, and
the sequence of atoms in the solvent part should also be kept (i.e. for
Acetonitrile (ACN): MeCN, MeCN,. . . )

5.4.4 The Production Run

When the previous steps have been taken care of, the following choices
can be addressed:

• How large time steps can be taken without the drift (i.e. the nu-
merical error of the discrete integration) becoming a problem?

• How much can the number of needed SCF cycles be reduced
by tuning the density mixing scheme, that mixes in electronic
density from previous steps in the SCF-cycle, and/or the conver-
gence criteria?

• How small can the QM cell be without truncating the wave func-
tions?

The output files from the equilibration and thermalization runs can
be helpful to analyse for drift and optimization of GPAW parameters to
reduce the number of needed SCF steps before convergence is reached.

A template for an input script for a QM/MM MD simulation can be
found in section B.1 appendix B.

5.5 implementing an acetonitrile force field

Since the predominantly used solvent for [Ir2(dimen)4]2+ is ACN, a
classical, rigid, 3-site interaction potential was adapted from Guardia
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Site ε (kJmol−1) σ (Å) q (e)

Me 0.7825 3.775 0.206

C 0.5440 3.650 0.247

N 0.6276 3.200 −0.453

rMeC = 1.458 Å rCN = 1.157 Å

Table 2: The non-bonded Molecular Mechanics parameters, and intermolec-
ular fixed distances, from Guardia et al.[164] ε is the potential well-
depth and σ the interaction distance.

Figure 33: Left: Histogram of all the forces in the QM/MM simulations of a
single QM ACN in an MM ACN box. The QM-to-MM interfacing is
working properly if there is no average force on the entire system.
The avg. force from the simulation is 4.41 · 10−8 eV/Å. Right:
A histogram of the translational speeds of the center of mass of
each ACN molecule in the purely classical NVT simulation, plot-
ted with the theoretical Maxwell-Boltzmann distribution.

et al.[164], where the non-bonded (LJ) parameters of the methyl group
is collected into a single site. The parameters employed are shown in
table 2, and were derived from ab initio Hartree-Fock calculations on
a gas phase ACN dimer with a 6-31G** basis.

5.5.1 Benchmarking the Acetonitrile Liquid Pseudo-structure

To test whether the implementation of the force field could success-
fully reproduce the liquid pseudostructure of ACN, a simulation box
of 28x28.5x31.5 Å was filled with 290 ACN molecules and thermal-
ized. A MM production run of 0.5 ns was simulated. The simulation
was used to confirm the expected thermodynamic behaviour of the
model, (fig. 33, right), and used to sample the RDFs. The translational
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speeds of the center of mass of each molecule is compared to the
Maxwell-Boltzmann distribution:

f(v) = 4πv2

√(
m

2πkBT

)3
e
− mv2

2kBT (69)

where m is the total mass of an ACN molecule, v is the speed, and kB
is the Boltzmann constant. The result is shown in figure 33, reveal-
ing a good correspondence between the simulation and the expected
distribution. The instantaneous kinetic temperature is calculated via
〈Ekin〉 = 3

2kbT ⇒ T = m
3kb
〈v2〉 = 299.8 K, only 0.2 K from the temper-

ature set in the thermostat.

In order to analyse the QM/MM interfacing, RDFs between a single QM

ACN and the remaining MM ACNs were produced, and compared to
RDFs obtained only using MM MD.

Parallel QM/MM runs with a single QM ACN were branched off the
production MM trajectory, interspaced by 500 fs, to avoid any strong
correlation between the new trajectories (see the velocity autocorre-
lation function inset on fig. 34). The Langevin-type thermostat was
used in both the MM and QM/MM runs, with a friction coefficient of
0.05 and 2 fs timesteps. The hydrogens on the QM were constrained
using the RATTLE scheme[160]. Each QM/MM trajectory was thermal-
ized again, before sampling the RDFs. A total of 0.5 ns and 0.25 ns
of dynamics were sampled for the MM and QM/MM systems, respec-
tively.

The first test of a successful QM/MM interfacing can be found in the
left part of fig. 33, which shows a histogram of all the forces on all the
molecules of the total of 0.25 ns of QM/MM trajectory sampled. The
average force on the entire box should be zero, as it should of course
not ’move’ with time. The average force is 4.41 · 10−8 eV/Å, and the
normal distribution of forces in the Langevin-type ensemble that re-
sult in the Maxwell-Boltzmann distribution of velocities is properly
reproduced.

Figure 34 shows an overall good agreement between the various de-
scriptions. The literature RDFs[164] have been produced in the NPT
ensemble, which might be the cause of some of the small differences.
Another dissimilarity between the simulations is how the LJ parame-
ters are combined for each pair of site types, for the LJ energy term in
equation 61. Guardia et al. uses the Lorentz-Berthelot rules[166, 167]:

σij =
σii + σjj

2
and εij =

√
εiiεjj (70)

- or simply an arithmetic and geometric mean for σ and ε, respec-
tively. The combination-rules employed here are of the Waldman-
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Figure 34: Radial distribution functions (RDFs) of the 6 intermolecular dis-
tances of ACN. The RDFs are calculated every 500th fs in trajec-
tories of 0.5 ns and 0.25 ns for the MM and QM/MM systems, re-
spectively. The QM/MM systems are comprised of a single QM

ACN in a bath of MM ACN. The QM/MM1 systems are made using
methyl-group vdW parameters for the middle carbon [164], while
QM/MM2 uses aliphatic parameters[165]. There is overall a good
agreement between the various descriptions.

Hagler type, which should provide a better overall description of in-
teractions between a broader range of systems[168, 169]:

σij =

[
σ6ii + σ

6
jj

2

]1/6
and εij =

2σ3iiσ
3
jj

σ6ii + σ
6
jj

√
εiiεjj (71)

The difference between using these two combination schemes are
shown in figure 35, where the LJ potential has been plotted for the
interaction between the methyl group and the nitrogen. The differ-
ence in the resulting potential from the combined LJ parameters is
mainly noticeable in the repulsive region, with Methyl-N distances
which would be energetically highly unfavourable in the first place.
At kBT for 300 K, the difference r between the two combined poten-
tials is 4 pm.

A last consideration is that the electronic structure description used
to create the force field is not the same as the one used in the QM/MM

simulations, and the force field is not optimized to work in a QM/MM

framework. This will be discussed further in the following section.

5.5.2 Acetonitrile Dimer Binding Curves

The difference in the QM and MM description is explained through
a study of the binding energy curves for two ACN geometries, as
depicted in fig. 36. The cyclic version has the lowest energy[170, 171,
172, 173], while the colinear version must be oriented along the dipole
moment.
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Figure 35: Lennard-Jones potential for the nonbonded Me-N interactions
in acetonitrile, combined using the Lorentz-Berthelot- and
Waldman-Hagler rules, respectively. The difference is largest in
the very repulsive region.

The binding energy Ubind is simply:

Ubind = Udimer(d) − 2Usingle,QM (72)

Where 2Usingle,QM is the potential energy of a single ACN, andUdimer(d),
is the dimer potential energy at intermolecular distances d.
For the purely QM calculation, both ACNs are described using DFT

with the PBE functional, at a grid spacing of 0.18 Å. In the LCAO-
mode calculations, the tzp basis is used. The QM cell was set to 20 Å.
For the QM/MM calculations, one ACN is QM, while the other is MM.
Here, Ubind = Udimer −Usingle,QM, since the MM ACN has no intramolec-
ular energy terms - all bonds and angles are simply fixed.
For the same reason, the purely MM/MM binding energy is simply
the dimer potential energy. The results are shown in figure 37. The
QM/MM minimum for the linear dimer is slightly lower in energy,
and larger in r, which would result in a slight overbinding. This is
in agreement with the QM/MM gC−N(r) peak in figure 34 being too
well-defined, and peaking at a slightly longer distance than the MM
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Figure 36: Two known ACN dimers, where the cyclic version is believed to
have the lowest energy[170, 171, 172, 173]. The dimer binding
energy is obtained by subtracting 2 times the potential energy of
the single molecule from the total potential energy of the dimer,
at increasing distances d.
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Figure 37: Binding energy curves of ACN. Top: The cyclic dimer. Bottom:
The linear dimer. Since there are two ways of combining the QM

and the MM description, both the ’linear’ and the ’linear reverse’
dimers have been defined as in the graph, and examined. The
insets depict are zoom-ins on the largest differences between the
MM/MM and QM/MM curves. The ’FD’ curves are made in the
pure grid-based finite difference mode, whereas the LCAO-labeled
curves uses basis sets from linear combinations of atomic orbitals
for the initial wave function guesses.

equivalent. Overall, the slight overbinding of both QM/MM dimers is
generally reflected in the less diffuse QM/MM radial distribution func-
tions.

The purely quantum mechanical description of the dimer overbinds
the dimer much more, a well-known effect from another polar (and
popular) solvent: Water[174, 175, 176, 177]. As such, it can be as-
sumed that simply extending the QM subsystem to encompass some
(more, or all) of the solvent does not necessarily increase the preci-
sion of the description, unless long-range corrected functionals are
employed. On the contrary, the solvation shell description might ac-
tually suffer from simply including solvent molecules in a QM subsys-
tem using the Perdew-Burke-Ernzerhof (PBE) functional.

It must be mentioned that the electronic density of a dimer in vac-
uum cannot be assumed to be identical to that of a dimer surrounded
by other solvent molecules. Thus, one should be careful of postulat-
ing too much about the full QM solvent pseudo-structure from the
energetics of a dimer, but since water and acetonitrile share similar
physical properties (hydrogen bonding, high polarity), the conjecture
could be made, that a fully QM description of ACN would suffer from
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being too structured without long-range corrections.

Finally, a generally lower QM/QM binding energy is obtained in LCAO

mode, compared to the pure grid based Finite-Difference mode. This
is attributed to the Basis Set Superposition Error (BSSE)[6, 7] in the
LCAO mode, where, at sufficiently short distances, the (incomplete)
basis set of each ACN overlaps, so the effective basis of each molecule
is larger (less incomplete) than the basis of each molecule at long dis-
tances. Thus, due to the variational principle, the potential energy
of the dimer becomes lower at short distances, compared to what it
would be, without the overlapping wave functions. Since these calcu-
lations only serve to rationalise the RDF-differences, no futher BSSE-
corrections (like the counterpoise correction [7]) has been employed.

Based on these observations, we have chosen to simulate the com-
plexes of interest in a purely classical solvent. This will provide the
best achievable solvation shell behaviour within the boundaries of
the current version of the code. Furthermore, the exclusion of QM

solvent molecules minimizes the scale of the QM subsystem, which is
the computational bottleneck, and we avoid problems raised by QM

solvent molecules diffusing out of the QM cell.

Of course, this choice also rules out studies of phenomena requiring
full QM coupling of solute and solvent states, e.g. solvated electrons,
(the acetonitrile equivalent of) photoaquation, etc . . . - phenomena
of high importance and interest, to simulators and experimentalists
alike. However, the problem of switching the description of a solvent
molecule diffusing out of the QM region is not trivial[178].
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Figure 38: Left: Two of the main dynamic, structural modes of
[Ir2(dimen)4]2+, here shown without hydrogens for clarity, for
the long & eclipsed conformer, as described in chapter 2, pages
10 and on. Right: Sketch of a Franck-Condon diagram, showing
how experimental excitation is approximated in the simulations.

Figure 38 shows two of the main dynamic, structural modes for
[Ir2(dimen)4]2+. As described in chapter 2, the dimen ligand pro-
vides the optimal compromise between flexibility and rigidity for
large, but controllable structural changes e.g. by electronic excita-
tion. Electronically exciting this complex promotes an electron from
the antibonding HOMO to the bonding LUMO, effectively forming a
chemical bond between the Ir atoms [29, 24, 28].

Here, we aim to expand on the pre-existing knowledge about the sys-
tem by simulating an adiabatic version of the vibrational motion in
the single molecule.

We approximate the experimental excitation by instantaneously pro-
moting a comprehensive representation of the GS configuration space
to the ES, neglecting effects from finite pulse-widths and bandwidths
of real excitation sources (the effect of the bandwidth will be exam-
ined in section 6.7. The ultrafast ES dynamics are believed to take
place on S1, but since similar binuclear d8-d8 complexes have previ-
ously been shown to have the same triplet and singlet surface shapes,
only differing in energy[179, 180], it is assumed possible to carry out
T1 simulations mimicking the ES S1 dynamics. Thus, the computa-
tional cost is kept within the feasible range for systems of this size by
staying within the GS DFT framework on T1. This approximation is
implied for all the excitations simulated in this work.

73
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By benchmarking the simulation results against the established ex-
perimental knowledge from chapter 2, we can obtain information not
experimentally distinguishable, such as possible dynamics of spectro-
scopically dark or obscured modes, direct observation of intra- and
intermolecular energy transfer and solvent interactions.

First, however, it is necessary to ascertain the adequacy of the model
description.

6.1 preparatory tests

6.1.1 Cell Size

Figure 39 shows that a simulation box with 4 Å of vacuum padding in
each dimension was enough to fully eliminate effects from truncating
the wave functions, so the cell size for each simulation (both GS and
ES) was chosen thusly.

Figure 39: Ir-Ir distance as a function of cell size. The relaxation does not
converge for cells with 3 Å of vacuum, but for vacuum padding
of 4 Å or more, the Ir-Ir changes are within the accuracy of the
real space method. The calculation with the largest cell did not
converge within the allowed walltime. The calculations were car-
ried out using a grid spacing of 0.18Å and a tzp/dzp basis set for
Ir/the rest of the molecule.

6.1.2 Basis Sets & Grid Spacing

Test geometry calculations were performed in vacuum, and the re-
sults are shown in figure 40. The max Ir-Ir distance difference in
the grid spacing region 0.15 Å 6 h 6 0.21 Å is less than 3.5 % of
the largest distance, so instead of fixing the grid spacing to a defi-
nite value, it was possible to speed up the simulation even further
by keeping the number of grid points to values divisible by eight,
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Figure 40: Convergence of the main structural parameter of the complex -
the Ir-Ir distance - with respect to the real space grid spacing h,
and size of basis set. A stable value for the distance is maintained
when employing values of h < 0.22 Å with basis sets of at least
double-zeta size. The convergence criteria for each individual
relaxation was a maximum force of 0.05 eV / Å on any of the
atoms in the system.

i.e. (112,120,112) for the (x,y,z) dimensions1. Since the overall size of
the molecule varies for each of the initial GS configurations used in
the the ES simulations, so does the QM cell, resulting in grid spacings
0.1571 Å 6 h 6 0.1931 Å, well within the converged region shown in
figure 40. The basis set used was of tzp quality for Ir and dzp for the
rest of the molecule. The chosen PBE vacuum description overshoots
the Ir-Ir distance, when compared to the experimental value of the
solvated complex [27]: 4.3 Å. Crystalline values range from 3.601 Å
to 4.414 Å, depending on the type of counter ion[31].

It has, to the best of our knowledge, not been possible for any elec-
tronic structure method of the same level to more precisely model
the Ir-Ir distance without resolving to mapping out the potential en-
ergy surface in the parameters of the pinch and twist, fixing one while
scanning the other and vice versa (as seen in figure 8, chapter 2, p. 13,
and [32]): An option not available when performing direct dynamics
simulations. Since it is believed that dispersion forces could be the
cause of this problem[181, 10], and many attempts on correcting for
this have proved successful on smaller molecules, using methods of
more[182] or less empirical flavour[183], the preliminary structural
convergence-test was rerun using the more expensive optPBE-vdW
functional[184] (each SCF step takes 6− 7 times longer). The results
are shown in figure 41. The figure shows that employing this dis-
persion corrected exchange-correlation functional does not produce
geometries with shorter Ir-Ir distances. While the result might seem
surprising, it has been shown that similar dispersion-corrected func-

1 This is an internal aspect of the parallelization in GPAW in the LCAO-mode, see https:

//wiki.fysik.dtu.dk/gpaw/documentation/lcao/lcao.html

https://wiki.fysik.dtu.dk/gpaw/documentation/lcao/lcao.html
https://wiki.fysik.dtu.dk/gpaw/documentation/lcao/lcao.html
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Figure 41: Convergence test of the Ir-Ir distance using the optPBE-vdW func-
tional. While the fluctuations in distance are an order of magni-
tude smaller than with the normal PBE, the convergence is not
as convincing as with PBE. Furthermore, the mean distance in
the most stable southeastern quadrant is still overshooting the ex-
perimental value. At last, this functional had many convergence
problems, as can be seen from the plot of the average forces in
the system, where only a few of the calculations reached forces
smaller than the convergence criterium.

tionals produce the correct geometries of other d8-d8 systems due to
dispersion effects in the π-orbital stacking of the metal ligands, and
that the actual metal-metal interactions only represent 10− 15% of the
total dispersion contribution[10].

Since the use of this exchange-correlation functional did not increase
the agreement with experimental value, was more expensive, and
had convergence issues, the PBE functional was used throughout this
project.

6.2 setting up qm [ir2 (dimen)4 ]2+ in mm acetonitrile

The QM region was defined as the [Ir2(dimen)4]2+ complex, which
was placed in the already equilibrated MM box of 28x28 .5x31 .5 Å,
and 290 ACN molecules, giving the density of 0 .786 g/cm3 . The ACN

molecules overlapping the solvent were then removed, resulting in a
total of 237 solvent molecules. Figure 42 shows how the solvent equi-
librates to the temperature set by the thermostat. The right side of
the figure shows how the magnitude of the ACN center-of-mass veloc-
ities are distributed according to the Maxwell-Boltzmann distribution.
The average temperature from the translational speeds is 300.6 K, and
the average force per atom is 2.36 µeV/Å.
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Figure 42: Left: Re-equilibrating the system after adding [Ir2(dimen)4]2+.
In first ∼ 2.5 ps, the complex was also coupled to the Langevin
thermostat. The part of the trajectory after the black stipled line
was used as the production run for the ES simulations. Right: The
center-of-mass speed distribution of all ACNs, sampled from the
start of the production run. The avg. forces on the entire system
is 2.36 µeV/Å per atom.
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6.3 [ir2 (dimen)4 ]2+ in the ground state

Figure 43: Structural modes in [Ir2(dimen)4]2+ plotted for the GS trajectory.
Top: Ir-Ir distance. Middle: Mean dihedral angle. Bottom: Mean
distance between opposite carbon atoms in the ligand rings. This
parameter describes a breathing motion which will play an im-
portant role in the excited state (see section 6.4.3 and on). The
stipled lines indicate the allowed region within kBT of the energy
surfaces from [26] (see fig. 8). The ES runs were started from the
configurations marked with black crosses.

Figure 43 shows the evolution of the main structural parameters in
[Ir2(dimen)4]2+ in the GS. The Ir-Ir distance oscillates reasonably
within the kbT region defined by T.B. van Driel[26] (see fig. 8, p.
13). It could be argued that non-specific solvation can further sta-
bilise the complex, lowering the overall energy, thus allowing for a
somewhat larger oscillation amplitude. Furthermore, in calculating
the energy curves, instead of changing the molecular structure along
a normal mode reaction coordinate, all other intramolecular distances
and angles than the parametrized Ir-Ir distance and dihedral angle
were allowed to fully relax at each sampling point. Thus, what one
could call an ’overly adiabatic’ representation of the energetic land-
scape is obtained, in the sense that the actual motion of the atoms
parametrized to obtain the surface might be too fast for the rest of
the molecular structure to fully relax, when one of the normal modes
of the molecule is activated. This method is now standard in compu-
tational packages like Gaussian, which has also been used to produce
energy surfaces of [Ir2(dimen)4]2+[32].

When simply averaging the time between the peak positions during
the time with the least amount of oscillation pertubations by solvent
collisions (i.e. from 5 ps to 13 ps) a period of 1.2 ps is obtained, with
a standard deviation of 0.2 ps. Averaging over the entire trajectory
gives 1.5 ps. Hartsock et al. assign two GS oscillation modes with
periods of roughly 3 ps and 0.7 ps from the long and short conformer,
respectively.
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The average Ir-Ir distance from the simulation is 4.5 Å.
The difference in GS oscillation frequency, and also in the longer av-
erage Ir-Ir distance is ascribed to vdW-related DFT deficiencies in non-
covalently-bonded interactions, previously discussed in section 6.1.
There is no apparent correlation between the dihedral angle and the
Ir-Ir distance.

The crosses in Fig 43 show where the 40 GS configurations are excited,
to get a total of 140 ps ES trajectories sampled for the ES production
run. The sampling was spaced such as to minimize the correlation
between each of the excited state trajectories, while also allowing for
comparison of excitations from complexes of similar starting geome-
tries, but with different solvent configurations, and excitations from
different starting geometries. The thermostat was turned completely
off for these runs. The ES timestep was 1 fs, to allow better resolution
and minimize the energetic drift, which is analysed in figure 44.

Figure 44: Analysis of energetic drift, defined as the total energy Etot(t) mi-
nus the total energy at t = 0 after excitation, Etot. The main
energy increase is apparent in both un- and -thermostated simu-
lations, which means that the observed increase in energy is due
to the excitation.

To see the effect on the energy stability of turning off the thermostat
completely, 4 ES runs were made with the thermostat still applied to
the solvent, and the average drift of those simulations are compared
to the average drift in the production run of the 40 parallel simula-
tions.

Turning off the thermostat entirely results in an average drift at the
end of the production run of 0.40 kJ/mol pr atom. The maximum
average drift is 0.50 kJ/mol per atom in the system, over the entire
simulation duration. For comparison, the bond dissociation energy
of the first carbon from a methyl group is 439 kJ/mol.

6.4 the excited state population of [ir2 (dimen)4 ]2+

A visual inspection of the orbitals and electronic density from one of
the 40 ES simulations in figure 45 confirms that approximating the
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Figure 45: Visualization of the simulation. The blue and red isosurfaces de-
pict the HOMO in each case, and the grey isosurface is the total
electronic density of the QM subsystem. All isovalues are identi-
cal between the two snapshots. (1): The complex in the ground
state. The GS HOMO does not have any spacial overlap between
the metal atoms. (2): A snapshot of one of the ES trajectories, at
the point in time where the Ir-Ir contraction is largest. Here, we
observe overlap of both the HOMO (the GS LUMO) and the resulting
total electronic density.

experimental excitation on the triplet surface results in the expected
Ir-Ir contraction, at face value. In the following, we analyse the results
of the simulation, first by delving into the structural dynamics of the
complex, then by investigating the coherence of these dynamics, and
finally describe the role of the solvent.

Figure 46 shows three modes: The pinch, twist, and breathing (defini-
tions given in the caption). The mean Ir-Ir distance in the population
when measured over the last ps of the simulation is 2.98 Å, which
is in very good agreement with previous experimental results from
X-ray scattering[27] of 2.90 Å. When the Ir-Ir bond is formed in the ES,
the accuracy of the DFT description no longer suffers as much from
the poorly modelled vdW interactions.

The mean values of the entire population show oscillatory features,
meaning that the motion of each trajectory is in phase with the oth-
ers, thus showing signs of coherent motion, represented here in the
average of the single trajectories.

6.4.1 The Pinching Mode

The excited population loses its mean pinch oscillation amplitude al-
most before completing a full period, but if the first oscillation period
is calculated by doubling the time from the first well to the first top,
the period is ∼480 fs, or ∼70 cm−1. The frequency differs only 7%
from the experimentally observed frequency of 75 cm−1[28]. This
agreement further validates the assumption of very similar S1 and T1
PES shapes.

Figure 47 shows that the pinching motion is limited to the center
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Figure 46: The Ir-Ir pinching (top), twisting (middle), and breathing (bot-
tom) as a function of time after excitation. The twist and the
breathing is defined as the change in mean dihedral angle and
in mean distance between opposite ring-carbons in the ligands,
respectively, from the moment of excitation. The black curves
are the averages, while the shaded backgrounds show the binned
counts of values from all trajectories. The bin sizes are 50 fs by
0.1 Å, 0.05 Å, and 2 degrees for the pinching, breathing and twist-
ing, respectively. This population loses its pinch phase within a
picosecond, while the single trajectory-pinch oscillation dies out
much slower, as can be seen on the top inset. However, the mean
phase of the breathing mode is sustained for almost 1.5 ps. The
pinching- and breathing modes share the same oscillation period.

part of the molecule, affecting the next two atoms adjacent to Ir, but
not the outermost parts of the ligands. The ES bond formed between
the Ir is the main instigator for the activation of this mode, since the
oscillation peak in the neighbouring atom-pairs is systematically de-
layed with increasing distance from the metals. The onset of the N-N
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Figure 47: The change in distance of the atoms oppposite to each other, ad-
jacent to Ir. The two atoms in each ligand closest to Ir are also
pinching, while the next carbon (C1) is almost unaffected.

pinch is delayed about 200 fs, but the phase is maintained for roughly
1.5 ps, longer than the Ir-Ir pinch. This behaviour would not be mod-
elled correctly on the previously discussed type of surfaces where all
other atoms than the parametrised are allowed to fully relax at each
sampling step.

The anharmonicity of the underlying potential is evident in the di-
rect dynamics from the oscillation in the single trajectory (top inset
in fig. 46): It reflects a steeper potential for the short distances, and
gentler slope for the long ones. The oscillation becomes more sinu-
soidal with time, as the trajectory moves closer to the harmonic ap-
proximation limit, deeper in the potential. Similarly, the frequency
increases as the molecule dissipates its excess vibrational energy (also
observed for the single trajectory), which is equivalent to anharmonic
potentials with Morse-like characteristics. Since the experimental fre-
quency is first measured at times t > 0.5 ps after excitation (when
the molecule has already dissipated some of the excess energy), it is
expected that our first simulated oscillation period is longer than the
experimental result.

6.4.2 The Twisting Mode

Also consistent with experimental results[28], little to no coherent
twist oscillation is observed from excitations that start from the long,
eclipsed conformation. However, a delayed twist mechanism is ob-
served for the average motion, with the molecule starting to twist
after roughly 500 fs. The delayed onset of the twisting suggests that
the mode is activated by the pinching of the Ir atoms.
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6.4.3 The Breathing Mode

The ES breathing amplitude in the individual trajectories can be roughly
4 times larger than the amplitude of the GS oscillation shown in figure
43, meaning that this mode is also activated by electronic excitation.
The mode, like the twist, also has a delayed onset. It can also be sug-
gested that it plays a role in extending the experimental coherence
lifetime. The breathing mode is coherent for almost 1.5 ps. Further-
more, the frequency of the pinching and breathing is similar: The
period from the first to the second top is ∼450 fs, or ∼74 cm−1, only
1.3 % slower than the experimental pinch.

Since the breathing mode is localized in parts of the ligands closest to
the solvent, it can be expected to be coupled to the solvent dynamics,
as will be further analysed in section 6.6.

6.5 coherence decay

The causes of coherence decay can be either statistical or dynamical
in nature, i.e. either a result of the difference in initial configura-
tions from which the system is brought up to the excited state or of
(stochastic) energy dissipation in each molecule, either through the
solvent (EVR) or through internal degrees of freedom (IVR). The sin-
gle trajectory in the top inset of fig. 46 reveals that vibrational relax-
ation is much slower than the population mean coherence decay, and
not very stochastic in nature. This observation can be solidified by
selecting energetically narrow, phase-coherent distributions and then
analyse the coherence time of these sub-populations. A meaningful
way to select these sub-populations is evidently through comparisons
to the experimental excitation energy and bandwidth.

6.5.1 Approximating the Experimental Excitation Bandwidth

In principle, an instantaneous excitation corresponds to an infinite
bandwidth. However, a more realistic representation of an experi-
ment can be obtained by including an effective, finite bandwidth[185].
This can be included by estimating the effective bandwidth of our
range of ES simulations in figure 48, and compare the pinch oscilla-
tion from different, relevant subsets with similar sampling statistics
of the entire ES population in figure 49, to elucidate how this affects
the coherence lifetime.

The simplest way to approximate the excitation energy is simply to
subtract a single point energy calculation of the system in T1 from a
single point energy calculation in the S0. This is of course a rough
approximation. Since the T1 surface is believed to have a similar
shape to the S1, but lower in energy[179, 180], utilizing ground state
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Figure 48: Approximation of the effective bandwidth used in creating the
excited state population. The excitation energy is approximated
by subtracting the single point energy of each initial GS configu-
ration from a single point calculation of its ES spin configuration
counterpart. The lower inset shows histogram of these energies,
converted to wavelengths, and how many times they appear in
the ES population. This is extrapolated to the entire GS trajec-
tory, under the (crude) assumption that the excitation energy is
linearly dependent on (and only on) the Ir-Ir distance, shown in
the top inset. This relation is then used for obtaining the results
shown in the main figure.

DFT on T1 can be expected to introduce the error in the energy giv-
ing the largest deviation, and give too low excitation energies. The
bandwidth, obtained from looking at the excitation energies of all the
excitations, should not be as sensitive to this approximation, since the
error introduced should be the same for each of the excitations.

Due to the limits set by the computational costs, an extrapolation to
the excitation energies of each step in the entire GS trajectory is made,
although no clear linear correlation between the Ir-Ir distance and
excitation energy is observed. The complex is known to have an ab-
sorption maximum assigned to the long and eclipsed conformer at
475 nm[28] (see absorption spectrum in figure 6, so it is expected due
to the lower T1 energy that the simulated excitation peak (fig. 48,
left) is located at lower energies. The experimental bandwith is 18.77
nm, and excitation wavelength is 477 nm[28]. The total effective band-
width can be seen from the figure to be at least 100 nm, or 5 times the
experimental bandwidth.
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Figure 49: Splitting up the total ES population with respect to excitation en-
ergies, or by grouping initial configurations. The top two ES pinch
graphs are made from selecting for ES trajectories with excitation
energies assumed close to the experimental value and bandwidth.
The bottom left subset is made from a narrow internal phase
space of initial Ir-Ir distances. The last graph shows the dynamics
of a wide phase space, but with the same statistics as the other
three subsets.
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6.5.2 The Effect of the Bandwidth on Coherence Time

Figure 49 shows the Ir-Ir pinch in four subsets of the entire phase
space of the ES population. The top two are subsets of excitations
with energies corresponding to wavelengths of 477 nm and 494 nm,
respectively. The first having the same value as in the experiment,
and the second is lower in energy to account for the error made in
simulating the excitation energies. The bottom left subset is chosen
to have the most narrow internal phase space possible, with identical
initial Ir-Ir distances, but different solvent configurations. The last
plot shows the pinch in a wide internal phase space, but with similar
sampling statistics, allowing for comparison of the four subsets.

As demonstrated in the lower right graph in 49, it is possible to ob-
tain the same coherence-decay time using 12 trajectories as 40, which
again means that any changes in coherence time in the other subsets
are not simply due to worse statistics. Concentrating on the 477 nm
and 494 nm excitation, the coherent pinch amplitude is observed to
decay slower than for the full population. Thus, the effective band-
width in the simulation has, to some extent, an influence on the result-
ing coherent motion. Therefore, the incoherence in the initial ensem-
ble is the main factor for the coherence decay of the ES population.
This result is underpinned by the lower left graph, where the very
narrow internal phase space greatly increases the coherence lifetime.
This result is not surprising, since the GS pinch oscillation has a simi-
lar amplitude as the ES pinch.

To sum up, we have shown that exciting a narrow, phase coherent
distribution of GS configurations extends the coherence time on the
excited state significantly. The analysis also shows that introduction
of an effective bandwidth in making the ES population, similar to the
one of the experimental excitation source, leads to a somewhat longer
excited-state coherence time, although there is no strong correlation
between the GS metal-metal vibrational amplitude/phase and the ex-
citation energy.

6.6 coherence decay and solvent interactions

In order to further understand the effect of the solvent on the dy-
namics of [Ir2(dimen)4]2+, figure 50 compares the pinch of the single
trajectory from the inset of figure 46 to a group of additional simula-
tions that have progressively more gas-phase character (from bottom
to top in the figure).

The first noticeable feature is the fast quenching of Ir-Ir oscillations in
4, indicating efficient IVR in the pure gas phase simulation, which is
evidently the only possible channel for energy redistribution in that
system. In this case, the excess vibrational energy is efficiently trans-
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Figure 50: Left: Dynamics of the complex of progressively more gas-phase
character (from bottom to top). 1: Pinch of the fully solvated
complex. 2: A simulation where the solvent was removed at the
time of excitation, but keeping the initial geometry influenced by
the solvent, and the velocity of the atoms in the complex. 3: A
simulation where only the geometry is kept, while the initial ve-
locities are set to zero. 4: An excitation started from the gas phase,
zero kelvin structure of the complex. Right: Comparison of the
average distance of the opposing ligands carbons that define the
breathing mode. The average solvated pinch (dashed blue curve)
is overlaid for timing comparisons. The dashed black line is the
mean GS ring carbon distance.

ferred away from the pinch.

The original trajectory (1) was excited from a GS phase space area of
already contracting metal atoms, which explains why the first con-
traction of the metal atoms in simulations 1 and 2 is faster than in 3
and 4. The second contraction is fastest in 1, and the amplitude of the
pinching motion is the smallest, consistent with anharmonic oscilla-
tion, damped by the solvent. However, at longer times, the solvent
cage apparently facilitates the oscillatory nature of the pinching mo-
tion in 1, compared to the other trajectories. This is also supported
by the comparison of breathing amplitude in the vacuum trajectory
with the average amplitude from the production run (fig. 50, right.),
which is much larger in the case where no solvent cage is present. The
distance between the dashed black line in the figure and the mean
solvent ring carbon distance indicate an average expansion of the dis-
tances between the opposing ligands of roughly 0.15 Å.

Figure 51 shows that not all solvent configurations block the breath-
ing mode. The figure furthermore analyzes the interplay between IVR

and solvation: In trajectory #1 on figure 51, the pinch energy is re-
distributed almost completely to the breathing mode within 1.5 ps,
where solvent-induced interactions perturb the oscillation. Some of
the remaining energy is then again transferred back into the pinch
before dissipating further. In trajectory #2, the solvent configuration
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Figure 51: Comparison of the breathing mode in the gas phase trajectory
(red) and two trajectories of solvated systems, displaying the
energy transfer mechanisms in the system. The two solvent-
included trajectories are started from similar GS conditions, but 10
ps apart, so the two accompanying solvent configurations are un-
correlated. The breathing mode amplitude is large in gas phase,
compared to the other trajectories, since there is no dampening
from the solvent. The small pertubations in the breathing oscil-
lation is attributed to solute-solvent interactions, governing the
vibrational relaxation through the solvent.

apparently does not allow for IVR to the breathing mode, so the ex-
cess excitation energy is contained in the pinch, which has almost
none of the smaller perturbations originating from interactions with
the solvent.

All in all, this means that vibrational relaxation of [Ir2(dimen)4]2+

at early times is substantially mediated by IVR into the breathing
mode and that, in some instances, the solvent may hinder this motion
which, in turn, extends the coherence time of the pinch compared to
vacuum.

6.6.1 Comparison to Other Systems

That the coherence decay is faster than vibrational cooling is in con-
trast with the findings of van der Veen et al.[179] for the bimetallic
d8-d8 complex [Pt2(P2O5H2)4]4− in various solvents , where the au-
thors observe that coherence decay occurs on the same time scale as
vibrational cooling. While the two complexes are different, and dif-
ferent solvents are used (including protic solvents), they both have
coordination sites along the metal atom axis, which could facilitate
significant electrostatic- and dispersion interactions with the solvent.
Nevertheless, the main difference causing the contrasting results is
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Figure 52: Solvent-related RDFs. Left side: Between the iridium atoms and
each end atom of the solvent molecules. Right side: Between the
dimen ligand carbons and each end of the solvent molecules. The
RDFs are sampled with δr = 0 .2 Å at each time step over all the
ES trajectories, and temporally averaged with a bin size of 50 fs,
and finally smoothed with a 5 point moving average.

most likely due to the different rigidities of the two distinct ligand
types, where the more flexible dimen ligand allows for a wider range
of configurations in the GS ensemble. We emphasize that here, the
variation of the GS metal-metal distance (fig. 43) is comparable to the
amplitude of the excited state vibration (fig. 46).

Both the [Ir2(dimen)4]2+ and [Pt2(P2O5H2)4]4− experiments repre-
sent the formation of a chemical bond in a ’scaffolded diatomic’. Re-
cently, collaborators have investigated the solvent-induced bond for-
mation in a true diatomic molecule: The ground-state recombination
of I2, following photo-induced dissociation[186]. In this system, we
observed the same behaviour as for [Ir2(dimen)4]2+: The coherence
decay is much faster than vibrational cooling. However, since I2 is
bound in the ground state, the original GS distribution is very narrow,
compared to amplitude of the motion following photo excitation, and
it is therefore not a source of decoherence. The cause of I2 decoher-
ence is still statistical: It is due to the direct EVR-interaction with its
solvent cage, which lacks in both the order and rigidity compared to
the molecular scaffold of the bi-metallic complexes.

6.7 the solvent shell response

Due to the amount of sampled QM/MM statistics, it is possible to
generate pairwise RDFs from the Ir metals to the solvent atoms, and
thereby observe how the solvent shell on average responds to the elec-
tronic excitation.
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Figure 52 bins the 40 ES trajectories in 50 fs periods, and samples the
RDF in each time step, resulting in a total of 200 images used for each
ES curve, whereas the GS RDF was sampled over the entire GS trajec-
tory.

In the ground state, the RDF of the ACN methyl groups and the Ir
atoms show a peak around 3.5 Å (fig. 52, top left). Due to the bulky
dimen ligands (The distance from Ir to the end dimen carbons is
between ∼ 4.5 Å and ∼ 7.5 Å), this peak must correspond to a pseudo-
ordering of the methyl ends with respect to the solvent-accessible Ir-
regions of [Ir2(dimen)4]2+, parallel to the Ir-Ir axis, which in this anal-
ysis will subsequently be termed the ’side-regions’ of [Ir2(dimen)4]2+.

There is no analogue to the Ir-Me peak in the Ir-N RDF. In order to
understand this Me-Ir pseudo-ordering, it is necessary to draw in ob-
servations from the RDFs between the dimen carbons and the solvent
(right side of fig. 52). Still focusing on the GS, we also observe a
steeper increase in probability of finding ACN nitrogens than methyl
groups. Altogether, these observations can be explained if the ACN

molecules in the [Ir2(dimen)4]2+ side-regions prefer an orientation
parallel to the complex, with the N ends oriented towards the lig-
ands, and the Me ends towards the metals. This explains the steeper
increase Cligand-N probability. Finally, this explanation is supported
by a Bader analysis[187] of a snapshot of the GS trajectory, which,
naively speaking, integrates the computed electronic density back on
the atomic centers. The analysis assigns roughly half a formal posi-
tive charge to each Ir atom, but over 1 negative formal charge to each
of the ligand nitrogens, which are stabilized by the electro-positive
methyl ACN ends.

It was necessary to employ a 5 point moving average smoothing filter
on the resulting curves, which impedes any precise quantitative anal-
ysis of the results, but a clear change is seen in the ES distributions:
There is a fast (< 1 ps) decay and ∼ 0.7 Å displacement of the gIr−Me(r)

peak, and an equally fast grow-in at r > 9 Å. It is highly unlikely that
it is possible for structural changes to permeate 9 Å within a ps, thus
these features are caused by the metals contracting, seen from the per-
spective of the solvent, and not the solvent itself responding.

The high-r regions are further investigated in figure 53, where the (un-
smoothed) RDFs has been averaged over the regions where changes
take place, and the single RDF values have been plotted against time.
The width of the ligands are approx. 5.5 − 6.5 Å. An oscillation in
probability is seen for both the Ir-Me and Ir-N RDF. The decrease in
probability in the 4− 7 Å region of the Ir-N RDF corresponds to the
metal contraction seen from the ACN Ns, which have the preferred
orientation closer to the dimen ligands, away from the Ir atoms. This
Ir-Ir contraction from the point of view of the solvent can also be visu-
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Figure 53: The development of averaged RDF values over time. The time-
binning has a width of 100 fs, and the r span is: Top: Ir-Me r
from 9− 10.2 Å. Middle Ir-N from 8 to 9 Å. Bottom: Ir-N from 4

to 8 Å.

alised through the coordination numbers, as shown in figure 54. Two
regions are examined: (1) The short-r region, which is defined such
that only coordinating solvents on the metal-ends of the complex are
counted. This is done by choosing a maximum r distance shorter
than the distance to the first solvent molecules coordinating to the di-
men ligands. (2) the long−r region starts from the end of the short-r
region and ends when the running coordination numbers cn(r) for
all times are as numerically close to each other as possible, meaning
that the bulk solvent shadows out the dynamics. Both cn,Ir−Me(r) and
cn,Ir−N(r) (insets in fig. 54) show an increase in slope (albeit the latter
more subtly) that fits with the first RDF peak plus the Ir-Ir distance,
meaning that here, the cn(r) starts also sampling solvent molecules
on the other side of the complex. We can rule out sampling of solvent
molecules coordinated to the ligands since the value of ligand-carbon
RDFs from figure 52 is 0 until 2 Å. The immediate decrease in cn(t)
following excitation at the short-r region corresponds to the increase
in the long-r region. Some of the Ir-N coordination is recovered after
2.5 ps, even though the net coordination has decreased for this choice
of volume.

The proposed model of the (changes in) pseudo-ordering of the sol-
vent, debuted in figure 52, is further underpinned by figure 55. The
figure shows the coordination number ratios of Ir-N:Ir-Me (top), and
Ligand-N:Ligand-Me (bottom). A value of 1 is equivalent to a ran-
dom orientation, since there is an equal amount of nitrogen atoms
and methyl groups in ACN. In the GS, the Ir ratio at shorter distances
is below 1, meaning that the solvent has a preferred orientation of
pointing away from the Ir atoms. This changes significantly in the ex-
cited state trajectories, meaning that the preferred orientation changes
as an effect of the excitation.
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Figure 54: The evolution of Ir-Solvent coordination numbers with time. The
marked areas of the RDFs in the middle graphs demarcate the re-
gions used for the the plots of the temporal evolution of the short-
r and long-r region (left and right plots), respectively. The insets
show the running coordination numbers, cn(r) and the dashed
line shows the end value chosen for the short-r region. The cn(r)
slope increases around 6.1 Å for cn,Ir−Me(r), indicating that the
g(r) is now also sampling coordinating solvent molecules on the
other side of the complex. For the less coordinated nitrogen ends,
the slope change is more subtle, but estimated to 6.5 Å. The right
region starts from the end of the left, and is chosen to end when
all the cn(r)s are as similar as possible, indicating the bulk region
has been reached. The time-bins for averaging is 20 fs.
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Figure 55: Coordination number ratios of Ir-N:Ir-Me (top), and Ligand-
N:Ligand-Me (bottom), averaged in 400 fs bins. For iridium, the
GS ratio is below 1 for short distances, but this ratio significantly
increases after the first 400 fs. For the ligands, no significant
changes are seen, and the ratio always above 1. In the long-
distance limit of the bulk solvent, the ratios converge to 1, which
corresponds to the random orientation. The insets in the bottom
plot depict snapshots of all the full ACN molecules within 4 Å of
the solute.
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Figure 56: 2D plot of the temporal evolution of the RDFs between Ir and each
end of ACN. In the top plot, r for the peak increases with time, in
conjunction with a decreasing g(r)-value. In the bottom plot the
grow-in of a peak at short distances occur after roughly 2 ps.

With time, the ACN-rotation shown in figure 55 settles, resulting in an
Ir-N peak growing in around r ∼ 3 Å (fig. 52). The temporal evolu-
tion is more easily observed in figure 56, which is a surface plot of
cut-outs of the r regions, evolving in time. In the top plot, the Ir-Ir
contraction is again evident. At t > 2 ps, the Ir-N peak starts to grow
in. This corresponds with the electronic charges on [Ir2(dimen)4]2+

having moved into the center between the metal atoms, so the elec-
tronegative N-end can move closer to the Ir atoms, which effectively
changes the solvent configuration according to the excitation.

It must be mentioned that the QM/MM ACN RDFs in figure 34 of sec-
tion 5.5.1 showed potential overbinding features betweem the QM and
the MM ACNs. Even so, this does not necessarily have to carry over to
the interaction of [Ir2(dimen)4]2+complex with the MM solvent.

It is important to remember that the electronic excitation of
[Ir2(dimen)4]2+ does not change the direction of the dipole moment
of the molecule, so it would have been tempting to assume that the
solvent configuration remained completely unchanged, post excita-
tion. As described in the above, the [Ir2(dimen)4]2+ system presents
a situation where such an assumption would be wrong.
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6.8 comparing isomers

Figure 57: The four M2(dimen)2+4 Isomers as described in section 2.2. The
All simulations up until now has been carried out on the 2:2
Trans Isomer.

This section analyses the possible differences of having different lig-
and ring-orientations on the resulting dynamics. Gas-phase dynami-
cal simulations with the same computational parameters as the pure
gas-phase simulation on the 2:2 trans isomer of section 6.6 was car-
ried out, and the results are shown in figure 58.

While the initial Ir-Ir distance of gas phase-relaxed structures can vary
up to 0.3 Å, all isomers show very similar gas-phase dynamical be-
haviour, where the differences are on the same scale as the differences
invoked by solvating a population at 300 K. The 3:1 and 2:2 Cis iso-
mers seem to recover some pinch amplitude after 1.5 ps, whereas for
the others, the mode cools down quicker, and the average Ir-Ir dis-
tance at t > 2 ps varies from 2.99 Å to 3.03 Å.

The twist of the 3:1 isomer seems to have a longer onset and is gener-
ally slower. The other three isomers show weak signs of an overlying
twisting oscillation with an average period of ∼420 fs or 79 cm−1,
close to both the pinching- and the breathing period.

To sum up, re-orienting the ligands in the complex does not seem to
change its internal dynamics more heavily than the solvent, and as
such, comparing experimental data - which will be from a mix of the
isomers - to the simulations purely on the 2:2 trans isomer should be
completely feasible.
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Figure 58: Gas phase dynamics of all four [Ir2(dimen)4]2+ isomers. All
three main modes are expressed in all isomers, and the differ-
ences are at most on the same scale as the changes invoked by
the different solvent configurations of the solvated simulations.
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6.9 conclusions

This section has demonstrated that the QM/MM implementation us-
ing GPAW for the QM description in our multiscale Direct Dynamics
method can produce out-of-equilibrium molecular dynamics in statis-
tical quantities that make it possible to obtain information on the av-
erage dynamics of populations, whereas many similar methods seem
to be limited to produce results from single trajectories, due to com-
putational costs.

With regards to the posed question of which modes channel the dis-
sipation of energy, the experimental Ir-Ir pinch and twist dynamics
have been reproduced, and additionally, we observed a, to our knowl-
edge, not previously discovered breathing mode. This mode stays
coherent for longer time than the pinch, and is apparently the first
recipient of the excess energy transferred out of the pinch mode. We
note that in some configurations, the rigidity of the solvent cage can
block the breathing motion, and thereby sustain the coherence of the
pinch mode.

By looking at the shapes of the individual trajectories, we have argued
that the major electrostatic solute-solvent interaction occurs through
the ligands for this complex, and that the IVR here is delayed, since
the metals need to contract first. At last, the breathing occurs in the
ligands, and is perpendicular to the pinch axis. As such, the (rigidity
of the) ligands play an important role in the complex, both through
defining the width of the GS ensemble, which affects the ES popula-
tion coherence, and as mediators of the solvent interaction.

The investigation of the role of the solvent has shown how the Ir-Ir
contraction is reflected in the correlation to the solvent, and thus note
that any experimental X-ray scattering signal from the system will
have an immediate contribution similar to an Ir-Me expansion, since
the Ir atoms move inwards, away from the solvent. We have also
shown that at later times, a non-specific solvent reorganization takes
place, even though the dipole moment direction does not change.

Lastly we have argued from gas phase simulations of all isomers that
the current simulational dataset will sufficiently describe the dynam-
ics of the experimental mix of isomers. At the time of writing, the
experimental data has just reached a stage where all the challenges
of cleaning up the signal from an XFEL source have been met, and
the future of the overall project looks promising. The next step will
involve employing the signal-simulation techniques from chapter 4 in
conjunction with our experimental collaborators.





7
D I R E C T D Y N A M I C S S I M U L AT I O N S O F T H E R U = C O
C O M P L E X

This section describes the ongoing work on simulating structural- and
solvation changes in the bi-centered Ru=Co complex described in sec-
tion 2.4.

7.1 preparatory tests

Figure 59: Left: Definitions of the relevant geometric parameters for the
Ru=Co complex. The Ru-centre is to the left, and the Co-centre
to the right side of the image. ’Me’ (Metal) is either Ru or Co.
While the bite angles are only depicted for the Co-centre, they
are of course defined likewise for the Ru-centre, and vice versa
for the torsions, bond lengths and butterfly angle. Right: Label-
ing of the three electronic configurations simulated in this work.

Figure 59 contains the various labels for the relevant geometric pa-
rameters under survey to the left, and the definitions of the electronic
configurations to the right. The molecule spans almost 21 Å from
left to right in the figure, and about 9 Å in height, in the depicted
orientation. The Ru=Co 5+ ion contains 592 electrons (24 more than
[Ir2(dimen)4]2+), and its large spatial extent demands a larger QM

cell than in the previous sections, increasing the computational costs.
Three overall electronic states of the system have been studied:

• The electronic ground state: [1RuII=1CoIII], GS

• The proposed intermediate[II] [2RuIII=2CoII], here labelled LS.

• The final excited state: [2RuIII=4CoII], HS

Many articles understandably define the GS as LS, since it does have
the lowest total spin of all states: [1RuII=1CoIII], but here we need to
discern between all three states, so the low spin-label will be used on
the excited state with the lowest spin.

99
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7.1.1 Basis Sets & Grid Spacing

Figure 60: Convergence of the Ru-N distances as a function of grid spacing
h and basis set size. The color bar shows the distance in Å.

For the Ru=Co simulations, the QM cell size was chosen such that
the molecule would be ’vacuum-padded’1 with 5 Å in each direction,
leading to a 25x20x30 Å cell.

Figures 60 and 61 show the convergence of the GS Ru/Co-N distances
with respect to grid spacing and basis set size. In both cases, the
major influence on the structure arises from the choice of basis set,
which converges rapidly when basis sets of size larger than double
zeta are chosen. For all values of 0.15 Å < h < 0.20 Å, the variation
in bond distance is at least 17 times smaller than the changes arising
from changing the basis, meaning that all grid spacings under 0.20 Å
will be acceptable.

Based on this analysis, we chose a grid spacing of h = 0.18 Å and dzp
basis, with tzp basis on the metal atoms for all further simulations.

7.1.2 Vacuum Structural Parameters for the Relevant Electronic States

We obtained the initial geometries from our collaborators M. Pápai
& G. Vankó of the Wigner Research Centre for Physics, Hungarian
Academy of Sciences. Their structure has been relaxed in vacuum,
using the BP86[87, 83] functional, which has the same exchange term

1 Meaning that the cell is 5 Å longer than the complex, in each direction, to avoid
wave function truncation. The MM molecules are can of course still enter the QM cell.



7.1 preparatory tests 101

Figure 61: Convergence of the Co-N distances as a function of h and basis
set size. The color bar shows the distance in Å.

as BLYP, but uses an older correlation term called Perdew86[83], and
is a first generation GGA-type functional, whereas PBE can be called
second-generation[188].

Figures 62 and 63 show the quick convergence of the main structural
parameters, namely the Me-N bonds, and are in principle somewhat
trivial. Their purpose is mostly a contrast to the intramolecular in-
stabilities of the unsolvated excited state structures, shown for the LS

state in figures 64 and 65, and in figures 66 and 67 for the HS state.
The standard convergence criterion of Fmax = 0.05 ev/Å is not

reached within 300 steps. However, the average forces on the en-
tire molecule converges around 0.1 ev/Å, and the bond lengths also
seem to reach a stable value, even though the forces are still large.
Especially the nitrogen atoms experience large forces, both in the LS

and HS states. This indicates that the charge that has been moved
by changing the magnetic moment on the metal atoms to fit the spin
states of the molecules needs stabilization, e.g. from the solvent. The
rest of the relevant structural parameters (torsion, butterfly angle and
bite angle) show the same features, and can be found in appendix A.

Finally, for the spin-polarised calculations, GPAW suffered from signif-
icant SCF-convergence issues, regardless of whichever density-mixing
scheme was attempted. Further attempts to correct this by increasing
the number of empty states to include in the calculation or by ad-
justing the accuracy of the Poisson-solver were unsuccessful. Finally,
convergence of the SCF-optimization could be recovered by ’smear-
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Figure 62: Vacuum relaxed GS Co-N bond lengths (blue lines). The green
graph represents the average force on the molecule, and the red
is the average forces on the nitrogen atoms. For the GS, Conver-
gence is reached within 6 steps, and the bond length changes are
maximum 1 pm.

Figure 63: Vacuum relaxed GS Ru-N bond lengths (blue lines), with the red
and green curve displaying the avg. forces on the nitrogens and
the entire molecule, respectively.
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Figure 64: Vacuum relaxed LS Co-N bond lengths. While there is a constant
strain on the nitrogen atoms, the distances seem to converge to
constant values.
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Figure 65: Vacuum relaxed LS Ru-N bond lengths, where the same trend as
for the Co-N bonds is observed.
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Figure 66: Vacuum relaxed HS Co-N bond lengths, showing the same be-
haviour as the LS state. The Co-NB bonds seem to have reached a
stable distance, as well as the Co-N bonds 3 and 6. 2 and 3 seem
to be close to convergence.

Figure 67: Vacuum relaxed HS Ru-N bond lengths.
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Co-Centre Ru-Centre

GS LS HS GS LS HS

Me-Nb1 (Å) 2.000 2.014 2.186 2.098 2.121 2.135

Me-Nb2 (Å) 1.992 2.012 2.201 2.098 2.123 2.147

Me-N3 (Å) 1.966 1.961 2.138 2.108 2.109 2.111

Me-N4 (Å) 1.969 1.970 2.099 2.109 2.099 2.111

Me-N5 (Å) 1.967 1.971 2.105 2.111 2.099 2.097

Me-N6 (Å) 1.967 1.958 2.133 2.110 2.111 2.100

θ (deg.) 88.606 90.094 89.694 87.847 88.887 87.963

γ1 (deg.) 1.476 1.702 7.043 0.427 −0.943 −3.370

γ2 (deg.) 1.407 1.420 11.077 0.222 −0.998 −2.145

βb (deg.) 81.972 82.158 75.253 77.792 78.331 77.048

β1 (deg.) 82.396 82.788 79.228 77.522 78.503 79.007

β2 (deg.) 82.295 82.727 77.688 77.535 78.488 78.322

Table 3: Collected structural parameters for Ru=Co in gas phase. The Co-N
bonds elongate in the HS state, as expected. For the LS state, the
Co-N bonds do not seem to be affected in a systematic manner. The
Ru-N bonds are not significantly effected by the excitation. The HS

torsion angle is also increased.

ing’ of the occupation numbers using a Fermi-Dirac distribution with
a width of 0.1 eV. The smearing does of course not take place in a
real molecular system, but in order to run QM/MM MD simulations, it
is crucial to employ a strategy that ensures convergence of the wave
functions and the corresponding electronic density for each time step.
And due to computational cost, it is also necessary to reduce the num-
ber of SCF-cycle steps as much as possible.

Based on this analysis, we have chosen the values at the last steps of
the geometry optimizations as our ’vacuum values’ for comparison
with the (thermal distribution of) solvated bond lengths discussed in
section 7.3. The values can be found in table 3. The obtained struc-
tural parameters reproduces part of the expected Co-N bond elonga-
tion for the HS, state, which in turn also changes the torsion angles γ,
in the cobalt centre. The Ru-centre remains largely unchanged by the
excitations, apart from a slight increase in torsion in the HS state.

7.2 making the qm/mm system

For simulating Ru=Co the gas-phase geometry optimized GS struc-
ture was placed in a 32x32x44 Å box of pre-equilibrated acetonitrile,
using the same method as with [Ir2(dimen)4]2+. In this simulation,
we opted to simulate two parallel GS trajectories:
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Figure 68: The solvent temperature of the Ru=Co complex in the electronic
ground state, showing the initial equillibration of the tempera-
ture. The first 130 fs are simulated using 0.25 fs steps at 50 K,
with a friction of 0.1 on the entire system. The friction is set to
0.05 on the solvent only, for the production run-part. The left in-
set shows a zoom of the first ps. The right inset shows the actual
vs theoretical temperature distribution of an NVT ensemble of
finite size, as discussed in section 4.3.

• A trajectory with constrained H atoms, as in the previous sec-
tion: Run C .

• A trajectory with unconstrained hydrogens, but with twice the
mass of a normal hydrogen: Run H .

Run H was made to (1) obtain a fully unconstrained thermally av-
eraged structure which can be put into classical MD simulations for
better statistics on solvation shell sampling as proposed in section 4.3,
and (2) to test the effect this has on the other structural parameters
in the complex. Both simulations contain a total of 436 classically
described ACN molecules. The thermostat is kept on the solvent part
of the system during the entire simulation, to avoid drifts over these
long, single trajectories.

Figure 68 confirms the stability and expected thermodynamic be-
haviour of run C after letting the solvent molecules re-equilibrate in
the presence of Ru=Co, which happens within a ps, as is shown on
the left inset. Figure 69 shows the equillibration of the metal-N bond
distances of both run C and H , which takes place within the first
few ps of the simulations.

For run H , the mean solvated structure is sampled at times > 2 ps
from the start of the run. The solvated mean, unconstrained struc-
ture of the run is shown in figure 70, using the 50% thermal ellipsoid
representation. Inspecting the representation reveals that the ellip-
soid volumes (i.e. the nuclear disorders) increase when going away
from the metal centers. Adapting the interpretation from [33], this is
due to the increase in thermal fluctuations with increased exposure to
the solvent. This observation, however, is contrasted with the much
smaller ellipsoids in the bridge -region, underscoring the rigidity of
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Figure 69: Plots of the equillibration of the main structural parameters in
the system, the Metal-N distances. The top two plots show the 6
Co-N distances for run C and H . The bottom two plots are for
Ru-N. The distances have been smoothed with a 0.5 ps moving
average to reveal any possible change on longer time scales. The
Co-N dynamics in the first ps are shown in the inset in the top
two plots, to more clearly reveal the initial equilibration process.

the π-conjugated electronic configuration of the bridge.

The maximum difference of the mean Me-N bond lengths between
runs C and H is 0.01 Å or 0.6% of the bond length itself. Thus, For all
other parts of the Ru=Co analysis, and in all other sections, we define
the start of the production GS run C as after 6 ps, and use this trajec-
tory. The two excited state spin manifolds LS and HS where started 4
ps into the GS C run.

The LS and HS runs were sampled for 10.5 ps and 21 ps, respectively.
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Figure 70: 50% Probability- or thermal ellipsoid representation of the GS av-
erage structure of Ru=Co, made from run H . The representation
is made by aligning the Ru=Co geometry to the first frame, to re-
move rotations and translations of the entire molecule, using the
RMSD Trajectory tool in VMD[127], and then exported to a new
trajectory of aligned frames, from where the covariance matrix
was calculated, exported in the ’anisou’-fields in a pdb file, and
visualised using Chimera[189].
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7.3 thermal distributions

7.3.1 Bond Lengths

Figure 71: Evolution of the Metal-N bonds in Ru=Co. The data has been re-
binned in 10 fs averages, and each distance after the first is raised
with 0.1 Å more than the previous distance, so that the individual
trajectories can be seen. No vibrational cooling is observed for the
LS excitation, but for the HS, the vibrational motion in both metal
centres is seen to cool down in roughly 6 ps.

Figure 71 shows the effect on the Metal-N bonds of changing the spin
manifolds from the GS configuration, to the LS and HS, respectively,
i.e. employing the same approximation for electronic excitation as in
the case of [Ir2(dimen)4]2+. In contrast to the [Ir2(dimen)4]2+ sys-
tem, the different spin configurations do not necessarily share sim-
ilar PES-shapes. Furthermore, it must be remembered that the sim-
ulated GS→HS transition is artificial, which again must mean that
the cooldown-time cannot be expected to be comparable to experi-
mental results. Therefore, we limit ourselves to what one could call
’steady-state’ sampling of thermal distributions of the cooled struc-
tures. Thus, leaving the thermostat on the solvent part of the system
does not pose any problems to the results.

In the LS state, the Co-N bond vibrations seem to increase in ampli-
tude, but no signs of systematic dissipation of vibrational energy is
seen to occur within the 10 ps sampled. Bond lengths b1, b2, 4, and
5 seem to increase, while 3 and 6, the two bonds out of the bridge-
plane, keep the same average length.

For the HS trajectory, we observe a clear increase in all bond lengths,
accompanied by systematic vibrational dissipation of excess energy,
as expressed in the decreasing amplitude in oscillations of both Ru-N
and Co-N bonds, lasting approximately 6 ps. The final state having
an overall on average much smaller vibrational amplitude than the
other two states. For this state, we sample the distributions at times
t > 6 ps. For the LS state, no vibrational cooldown is observed within
the 10 ps simulation, even though the overall structural changes are
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smaller in this case. Therefore, the thermal distributions of the rele-
vant parameters are sampled from t > 2 ps.

B1

4 5 6

B2 3

B1

4 5 6

B2 3

Figure 72: Thermal Distributions of the Ru-N (top row) and Co-N (bottom
row) bonds. The x-axis marks represent the vacuum values in
the same colour code as the thermal distributions. ∆R is the av-
erage bond length change of each Co-N bond, w.r.t the average
GS bond length of each bond. In the Ru-centre, almost no change
in average bond length from GS to the excited states are seen, the
maximum being a 0.03 Å contraction in the HS state, for two of
the bonds. The gas-phase lengths are very similar to the solvated
averages. The six HS distributions are much narrower, with an
average standard deviation of 0.02 Å, compared to 0.09 Å and
0.06 Å for GS and LS, respectively. For the Co-N bonds, an aver-
age lengthening of 0.14 Å is observed in the HS state. In the LS

state, some bond elongation seems to occur, and the thermal dis-
tribution becomes even wider, with indications of double peaks
or shoulders. Finally, the LS solvated average bond lengths are
longer than the vacuum values.



110 direct dynamics simulations of the ru=co complex

The thermal distribution of the Ru-N and Co-B bonds are visualised
in the first and second rows of figure 72, respectively. The first two
plots in each row represent the bonds formed with the nitrogens in
the bridge. The average Ru-N bond lengths are almost unchanged by
the excitations, but the HS distribution becomes almost 5 times as nar-
row as in the GS. This is also the case for the Co-N bonds, in contrast
to the widening of the Fe-N bond distributions of [Fe(bpy)3]2+[33].
The Co-N bonds are elongating in the HS state, with an average of
0.14 Å, 0.06 Å less than the experimental result [II,IV]. The cause for
this discrepancy is analysed in section 7.4, but first we continue with
the thermal distributions.

Figure 73: LS Thermal distributions of a Co-NB1 bond (left), and Co-N3
(right). The distribution of the non-bridge bonds split up, where
one part has bond lengths more comparable to the HS state.

The apparent splitting of the bond length in some cases for the LS

Co-N bonds are further exemplified in figure 73. The splitting is not
evident in the bonds to the bridge-nitrogens, but takes place in vari-
ous amounts in the rest of the bonds, and example of which is shown
in the right plot. For the non-bridge bonds, the distribution is clearly
not equivalent to that of a single gaussian. Since we do not observe
any constantly increasing or decreasing bond lengths in figure 71, we
can rule out that this the splitting is caused by the system not hav-
ing equilibrated fully. The smaller sub-distribution has bond lengths
more comparable to the HS state.

7.3.2 Bite Angles

For the excited state, solvatisation does seem to have an effect on
some of the bite angles, as observed in figure 84: In LS, solvatisation
reduces the angles, whereas in the HS state, one angle is reduced,
one is enlargened, and one does almost not change. The figure also
reveals that all Co-centre bite angles of the HS state are reduced by
approximately 5◦, and the distribution becomes narrower. The bite
angles of the Ru-centre are unaffected within the bin width, and are
thus not shown.
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Figure 74: The Ru=Co bite angles of the Co centre, sampled in bins of 0.5◦

The HS distribution becomes narrower, similar to the bond length
distribution, and all three bite-angles decrease ∼5◦ in the HS state.
The Ru-N centre results are not shown, since the angles remain
largely unchanged. The dashed red lines show the gas phase
results, while the dashed white lines show the average of the
solvated distribution.

Figure 75: The butterfly angles θ of both the Ru- and Co- centre. The angles
remain largely unchanged by both excitation and/or solvation.

7.3.3 Butterfly Angles

Figure 75 shows the θ-angles of both centres. The average values
are generally affected by neither solvation nor excitation, but are in
general ’softer’ (i.e. more widely distributed) than the bites, and no
change of this occurs in the excited states.

7.3.4 Torsions

The Co-centre torsion angles shown in figure 76 are enlargened by
the HS excitation, similar to the [Fe(bpy)3]2+ case[33]. Here, we also
show the Ru-centre results, since we observe that the small change in
the gas-phase HS torsion angle seem to be counteracted by the solvent.
In the Co-centre, the solvent similarly reduces the torsional twists in
the complex.
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Figure 76: The torsion angles for the Co-centre (top) and the Ru-centre (bot-
tom), binned in 0.5◦ bins. The excited state angles for the Co-
centre are slightly larger than for the ground state. For the HS

Ru-centre, the solvation seems to bring the angle back to the GS

values.
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7.4 ru=co orbitals

Figure 77: Overview of the relevent occupied and virtual orbitals for Ru=Co,
in the ground state, and the two ES spin manifolds of LS and
HS. We observe that the GS LUMO is similar to the LS and HS α

spin HOMO. The energy levels are sampled from each time step,
and are seen to be distributed with a variance of 10 kbT . Noth-
ing has been done to improve on the absolute energies of the
virtual orbitals, and as such they are mostly displayed for com-
pleteness. The ES β-spin channels suffer from substantial charge-
smearing, as shown in the lower left inset. This is due to the
finite Fermi-Dirac width which had to be applied for converging
the SCF-optimizations within a feasible amount of steps for the
QM/MM MD simulations.

In order to rationalise the shorter simulated bond elongation com-
pared to the experimental value of 0.20[IV] Å, figure 77 visualises the
orbitals around the HOMO-LUMO levels of each of the simulated elec-
tronic states. In the GS, the LUMO+1 orbital visually resembles the HSα
HOMO, and the GS LUMO+2 is a bridge-localised orbital which could
be speculated to play a role in the real-world excitation relaxation cas-
cade[II]. The LSα HOMO resembles the GS LUMO.
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We now turn our attention to the β-spin channel of the spin-unrestricted
simulations. As already discovered during the gas-phase optimiza-
tions, reaching both structural- but also even just wave-function- con-
vergence was challenging. These problems persisted for the actual
QM/MM MD runs, which ment it was necessary to maintain the Fermi-
Dirac-smearing of occupation numbers, the result of which is seen in
the figure inset. The occupation of the orbitals in the β-channel is
effectively distributed such that the LUMO on average has an occupa-
tion number of almost 0.5, which is why it in the figure is labeled
’HOMO+1’ instead. From the depicted isosurfaces of this orbital, we
see that it is localised on the Ru-centre, meaning that not all charge
has been successfully transferred to the Co-centre localised orbital,
and therefore the resulting Co-N bond elongation is smaller than the
experimental result.

This distribution of occupation in the levels will most likely also affect
the solvent-response, but seeing as how we do indeed model part of
the charge transfer, and the resulting bond-elongation, we now anal-
yse the effects of the excited-state charge transfer in Ru=Co on the
solvent.

7.5 solvent interaction

Figure 78: Pairwise RDFs between each of the metals and each end of the sol-
vent molecules. The dashed lines indicate the chosen solvent shell
definitions. The RDFs are sampled from the equilibrated parts of
the three trajectories, with a ∆r of 0.2 Å and are shown here after
a 3 point moving average smoothing. The N-values are coordina-
tion numbers of each state, and ∆N are the differences from the
GS to the two excited states. The Ru-centre increases its coordina-
tion number in the HS state.
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Figure 78 displays the RDFs between the metal centres and each end
of the ACN solvent2. The dashed lines demarkate the solvent shell
definitions, and we observe that the first N peak is found on average
roughly 2 Å closer to the metal than the CH3-peak, with the ACN-
molecule having a length of 2.62 Å. In the excited states, the N-peak
is slightly shifted towards Ru, which can be attributed to the partially
negatively charged N-ends on ACN responding to the Ru oxidation.
The Co-N peak is dampened by the excitations. The figure also dis-
plays the coordination numbers, which for the Ru-centre is lower than
the literature result for [Ru(bpy)3]2+ [33], which is expected, since the
bridge must sterically hinder the solvent, to a certain extent. Finally,
the changes in coordination numbers when going from the ground
state to the excited states are also shown. In the HS state, the coordi-
nation number increases to the extent of 2-3 ACNs. We note in passing
that this is an example of a specific solvent response, where the Ru-
centre shows the opposite behaviour of what is believed to take place
for [Fe(bpy)3]2+, as described in chapter 4, an effect which could not
be reproduced with the more simple, purely classical MM model.

Returning to Ru, A similar effect has been observed in the case of
water-solvated [Ru(bpy)3]2+, where Ru(III) is shown to accommo-
date one water molecule more than Ru(II)[190]. The Co-centre ex-
periences a 0-1 molecule decrease in the HS state, meaning that the
solvent molecules are not simply transferred from the Co end to the
Ru end. The overall charge of the complex is 5+, so the Co-centre
is still N-coordinating, even after the excited state reduction. At the
time of writing, the LS state suffers from only being sampled for 6.5
ps, which is roughly 1/3 of the GS and under half of the HS sampling
time, and thus giving less reliable distributions.

The plots in figure 79 display the cumulative coordination numbers
cn(r) from the metal centres, to the solvent. The slope is lower in the
regions where the bpy ligands are located, and for the Co-N curve,
there is an overall decrease in coordination for any r < 10Å in the two
excited states, whereas the opposite is the case for the Ru-N curve.

Figure 80 shows the N:CH3 cumulative coordination number-ratio
for each of the metal centres. As expected, the ratios converge to-
wards one as the distance from the solute increases. At closer ranges,
the ratio increases for both centres, indicating an overall preferred ori-
entation of pointing the ACN N-end towards the metals, as expected.
The Co-ratio decreases upon excitation, indicating that, on average,
the N-ends become less oriented towards Co compared to ground
state, while still maintaining some of the preferred N-Co orientation.
This is consistent with the Co-centre being reduced in the excited

2 While the abbreviation ’Me’ was used for the methyl group in the previous sections
where systems had only one type of metal atoms, we here explicitly denominate the
methyl group ’CH3’, to avoid confusion with the umbrella-term ’Me’ here used for
both Ru and Co Metals
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Figure 79: Cumulative coordination numbers, cn(r) of the Metal-Solvent
correlations.

states, which affects the partially negatively charged N-ends of ACN

accordingly. Likewise, but to the opposite effect, the ratio increases
for the Ru-centre.

Even though the full charge transfer is encumbered by the Fermi-
Dirac smearing of the electronic occupations, the solvent responds in
a manner which can be rationalised as done here. The solvent shell
changes observed around the Ru-centre will most likely play a role
in the upcoming analysis of data collected at XFEL beamtimes, since
it will correspond to a local change in the density.

7.6 further discussion and conclusions

For the computationally most demanding of the complexes in this
work, we have so far been able to set the scene for later, more in depth
studies of the electron transfer process. Despite the GPAW issues with
convergence in the excited states, the employed model qualitatively
reproduces the experimental bond-length elongation in the Co-centre
in the HS state, and the quantitative deviations can be explained by
looking into the occupation of the relevant orbitals.

A further study of the geometric changes originating from the Co-
N expansion revealed that the HS bite-angles are reduced, while the
Co-centered torsions of the excited states are slightly enlarged, all
of which is similar to what has been reported for [Fe(bpy)3]2+[33].
The only difference is in how the width of the distributions respond
to the excitation, where we observe that all Metal-N bonds become
much less floppy in the HS state. Since neither this (yet), nor the
[Fe(bpy)3]2+ study has the luxury of basing interpretations on a sta-
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Figure 80: The N:CH3 ratio of the cumulative coordination numbers for Co
(top), and Ru (bottom). The two images depict snapshots of the
GS (top) and HS (bottom) solvent shells, defined by drawing only
the full solvent molecules which are within 8 Å of either Ru (left
on the images) or Co. The ratios converge to 1 at long distances,
as expected.

tistically more sound foundation of configuration sampling3, it is still
too early to comment further on this discrepancy. Recalling the pre-
vious chapter, if individual trajectories were singled out in the study
of [Ir2(dimen)4]2+, both extremes in the conclusions about the flop-
piness of the ES Ir-Ir bond could have been reached.

The findings on both specific- and non-specific solvation dynamics
are interesting in their own right, and in relation to the conclusions
of chapter 4. For Ru=Co, we have observed a specific change in the
solvent-intercalation, akin to how [Ru(bpy)3]2+ is believed to interact
with water[190]. Since we have also seen that the geometry of the
Ru-centre remains largely unchanged by the excitation, the specific
solvation dynamics are in this case mostly caused by the electrostatic
changes experienced by the complex, which again explains why these
processes are not reproduced by the MM MD method of chapter 4,
which only takes the geometric changes into account.

Since the obtainable amount of solvent configuration sampling is com-
putationally limited when employing QM/MM methods, one could
think of a future compromise where better statistics are needed for
the experimental comparisons: By taking the averaged structure(s)
from shorter, equillibrated QM/MM MD runs (e.g. as depicted in fig.
70), and using the associated, averaged partial charges on the atoms
in MM MD simulations with fixed solute geometries, we hope to suffi-
ciently improve the MM approximation to reproduce realistic solvent
shells, without having to resort to the computationally much more

3 e.g. through the initiation of more parallel ES trajectories
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costly parallel/longer QM/MM sampling. The Direct Dynamics can
then be reserved for out-of-equilibrium dynamics, etc.

All in all, even while the Ru=Co system seems to be pushing the lim-
its of the GPAW capabilities, the QM/MM MD method is again able to
provide insights into structural changes and the solvent interplay in
the system.
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S U M M A R I S I N G D I S C U S S I O N & O U T L O O K

Investigating transient dynamics in transition metal complexes and
their surroundings through simulations has led to the observations
presented in this thesis. The following is an attempt to condense the
discoveries, and discuss future strategies, and return to the initially
posed questions on how excess excitation energy dissipates in sol-
vated systems.

First, we needed to show that the answers we have produced would
be trustworthy. Thus, the first part of the project was concerned with
ensuring that the theoretical modelling of the transition metal com-
plexes did not suffer from neglecting relativistic bond-length distor-
tions. Therefore, in chapter 3 we benchmarked the most common rel-
ativistic approximations to geometries derived from using the fully
relativistic Dirac-Coloumb Hamiltonian on the [Pt(CN)4]2− complex,
and compared the bond length changes to changes induced by vary-
ing other approximations, such as the exchange-correlation functional
used. By employing the Dirac-Coloumb Hamiltonian, we found a
contraction of the Pt-C bond, ascribed to the relativistic relaxation of
the kinetic repulsion. We observed that the relativistic effects were
sufficiently describable within the GPAW-framework, which possesses
the required computational efficiency for the later Direct Dynamics
simulations.

The next chapter (ch. 4) was concerned with how to calculate an ex-
perimental XDS signal from molecular simulations, for comparison to
experiment. We used simple MM MD simulations to approximate the
signal from the (changes in the) solvent-shell around frozen molec-
ular geometries of [Fe(bpy)3]2+, acquired from studies in literature
using more advanced models. This ’first order approximation’ could
successfully be used in a fit of experimental data.

We then addressed the technical issues with simply employing the
most common Debye-formulation by deriving an expression for the
scattering based on the RDF, and confirming its numerical implemen-
tation. The physical issues of the ’first order approximation’ was then
analysed by comparison of the solute-solvent interactions through
solute-solvent RDFs. We observed how, in this case, classical force-
field MD methods can capture parts of the overall, non-specific fea-
tures of solvation, and can thus be used in experimental fits, but we
also observed how they do not necessarily capture the full solvent re-
sponse, including the possibility of specific solvation dynamics. We
argued that including electronic structure changes in this model can
only be done in a somewhat approximative, heuristic fashion.
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Chapter 5 introduced our solution to these issues, providing back-
ground and benchmarks on the Direct Dynamics method, and how
it functions in our implementation. Since many of the experiments
carried out in our group are conducted in acetonitrile, such a force-
field was implemented, tested, and used in the discussion about the
QM-MM interfacing region. The overall pseudo-structure of the ACN

solvent is well reproduced in the QM/MM model of a single QM ACN

molecule in a MM ACN ’solvent’. There were few discrepancies, which
we demonstrated to originate from the unification of the QM and MM

regions. In the current formulation, the intramolecular charge distri-
bution on the MM particles, represented by the partial charges on the
individual particles, remains fixed.

This journal is c the Owner Societies 2013 Phys. Chem. Chem. Phys., 2013, 15, 16542--16556 16547

and ASP-W458,59 potentials, and ab initio MP2/aug-cc-pVTZ
results. The ASP-W4 and NCC calculations were performed
using Orient 3.2,90 while the Gaussian 9891 package was used
for the ab initio calculations. SCME and ASP-W4 give rather
similar results. The main errors observed for the latter is the
0.06 Å overestimation of the rOO distance (a problem that is also
found on the larger clusters) and the buckling of the hydrogen
bond in the wrong direction. The NCC potential also shows an
overestimation of the O–O distance and a rather large over-
estimation of the wagging angle of the acceptor monomer
(1,2,X). Finally, the largest error shown by SCME occurs for
the (1,2,X) angle which is underestimated by about 91.

Fig. 3–7 show the PECs for the deformation of the water
dimer along five coordinates of special interest. These curves
were obtained by varying a given coordinate while keeping the

rest of the structure fixed at the optimal MP2 values. Fig. 3
shows that, in the long-range regions (rOO > 3.2 Å), these
potentials are essentially equivalent, a consequence of the
similarity between the electrostatic + induction components
used by each of them. Some differences appear for the short-
range interaction region, although in general they are well
within the expected accuracy of the models. The most impor-
tant exceptions to this observation occur for the variation of the
hydrogen bond angle and the acceptor monomer wagging angle
(Fig. 4 and 5).

In the first case (Fig. 4), the NCC and SCME potentials behave
similarly in the minimum region, with the NCC potential showing
the best overall agreement with the ab initio results. The deviation
shown by ASP-W4 is small but significant since the buckling of
the hydrogen bond is in the opposite direction to that predicted
by the ab initio calculations. For larger deformations of the angle,

Fig. 2 Water dimer in its optimal configuration. See Table 4 for structure details.

Table 4 Comparison of the optimal structure of the water dimer obtained with
different methods. See Fig. 2 for a definition of each structure coordinate

Coordinate Atoms MP2 SCME NCC ASP-W4

Distance [Å] (1,2) 2.907 2.906 2.965 2.974
Angle [deg] (1,a,2) 171.57 175.42 179.49 �176.95

(1,2,X) 123.09 113.99 152.77 123.03
Dihedral [deg] (A,1,2,B) 122.96 125.27 109.50 122.98

Fig. 3 Comparison of the potential energy curves for (H2O)2 calculated with our
model potential and several other methods. The O–O distance was varied while
the rest of the structure was kept at its optimal configuration. See Fig. 2 for
structure details.

Fig. 4 Comparison of the potential energy curves for (H2O)2 calculated with our
model potential and several other methods. The hydrogen bond angle was varied
while the rest of the structure was kept at its optimal configuration. See Fig. 2 for
structure details.

Fig. 5 Comparison of the potential energy curves for (H2O)2 calculated with our
model potential and several other methods. The acceptor monomer wagging
angle was varied while the rest of the structure was kept at its optimal
configuration. See Fig. 2 for structure details.

Paper PCCP

Figure 81: The first step of implementing a polarisable force-field in ASE.
Left: O-O Dimer PES, from the ASE-interfacing of the original force
field code. Right: Results from the original force-field paper[191].

This is an issue which we hope to improve upon in the future, through
employing polarisable force fields, which improves on the classical
modelling of partial charges. For a brief outlook on how to achieve
such improvements, we respectfully break the unwritten rule of not
presenting new information in final sections1, to show the very first
steps towards incorporating a polarisable force field for water[191].
The steps were taken during a one-month visit at the University of
Iceland, and are visualised by the reproduction of the potential en-
ergy curve of the water dimer. The left curve is calculated with an
implementation of the polarisable force-field as a calculator object
in ASE, showing that the original Fortran code has been successfully
interfaced to the ASE environment in which our QM/MM implementa-
tion works. There is still much work needed on the actual QM/MM

interfacing, but the first steps towards improving the description in
the interfacing region have already been taken.

Attention was then turned to answering the question of how energy
dissipates from a complex to the solvent. Here, the [Ir2(dimen)4]2+

complex was used in the study of transient dynamic processes behind

1 Which, coincidentally results in this unwritten rule now being. . . written. In any
case, the choice of shying away from labelling this section ’Conclusion’ is deliberate.
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the energy dissipation. By employing our QM/MM implementation
for Direct Dynamics MD simulations, we were able to reproduce the
experimentally observed metal pinching oscillation, thus demonstrat-
ing that the implementation is fully capable of simulating the out-of-
equilibrium IVR and EVR processes. Consequently, we could improve
on the experimentally obtained model by analysing the pinch, twist,
and breathing modes in relation to the solvent, and found that the
rigidity of the ligands defined the spread of the population of GS-
geometries, which again was the main influence for the loss of coher-
ent motion. In this regard, the system of solvated [Ir2(dimen)4]2+ is
an interesting case, where the coherence lifetime is actually increased
by solvation, since the solvent can block the IVR which would cause
decoherence. The role of the solvent was further studied through
the temporal evolution solute-solvent pairwise RDFs, where we could
show that even though the direction of the dipole moment does not
change as a result of the excitation, the solvent still shows signs of
reorganisation to stabilise the new excited state electronic configura-
tion.

The final project employed the Direct Dynamics method to the bi-
centered Ru=Co complex, in some ways an even more intricate sys-
tem. Contrasted to [Ir2(dimen)4]2+, it does not have direct metal-
metal interactions, and it is believed to have a narrower GS thermal
distribution of geometries. However, the structural changes in the
complex due to excitation are more subtle.
The goal here was to study the effect of solvation on an intermediate-
and the final spin-state of the excitation relaxation cascade. Our
method was able to qualitatively reproduce the Co-N bond elon-
gation, and the cause for the quantitative discrepancy could be ex-
plained by the technical necessity of having to apply a finite Fermi-
Dirac distribution of the occupation of orbitals close to the HOMO-
LUMO gap, in order to reach SCF convergence. A future correction of
this problem could involve constrained DFT, a method which employs
an external potential to further constrain the resulting electronic dis-
tribution, which has been used successfully before[192, 193].

Despite this issue, we were able to observe both specific- and non-
specific solvation dynamics of the solvent shell around the complex,
as a consequence of the excited state electron transfer. The Ru-centre
solvent is able to intercalate more solvent molecules when excited,
similar to what has previously been observed for [Ru(bpy)3]2+ in
water[190], and moving the charge from Ru to Co affects the overall
orientation of the ACNs accordingly. Thus, we see that, by using our
QM/MM MD implementation, we recover the processes we could not
describe by employing purely classical force-field methods of chapter
4.

Future scenarios could easily arise, where employing the Direct Dy-
namics strategy for a statistically exhaustive amount of sampling will
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not be justifiable, regarding the amount of information obtainable
from such a non-trivial set of simulations. In this case, we propose to
combine the ’frozen-solute’-approximation from chapter 4 with the
Direct Dynamics method. This would be done by obtaining averaged
molecular geometries and partial charges through a shorter QM/MM

MD simulation. Then these parameters should be used for the frozen
solute, in a longer MM MD solvation sampling simulation. This should
amount to an increase in precision, compared to approximations us-
ing frozen solutes with partial charges obtained from ab initio simula-
tions of complexes in gas-phase.

We are currently limited in the QM description to ground state DFT,
and approximating electronic excitations by changing spin-states. One
option for simulating excited states with the same multiplicity could
be the ∆SCF method[162, 163], which is already implemented in GPAW.
Interfacing the ∆SCF-calculator with the MM calculator could be a pos-
sibly fruitful project in the future.

The current limitations in our Direct Dynamics method is overshad-
owed by its efficacy, and this thesis will hopefully represent itself
as a testimony to its promise. While many QM/MM MD studies are
still confined to interpreting results from single trajectories of few pi-
coseconds, this implementation has proved its capabilities in terms
of efficiency, accuracy, and the power to explore the world of femto-
chemistry.
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R U = C O G A S P H A S E G E O M E T RY O P T I M I Z AT I O N

Here, the rest of the figures used in obtaining the gas-phase structural
parameters for Ru=Co shown in table 3 are collected.

torsions

Figure 82: Vacuum relaxed torsion angles, γ
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butterfly angles

Figure 83: Vacuum relaxed butterfly angles angles, θ
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bite angles

Figure 84: Vacuum relaxed bite angles, β





B
S C R I P T S O F R E L E VA N C Y T O F U T U R E U S E R S

In the hope that some of the developed scripts may find use with people working with
similar problems, the most widely useful are presented below. It should be evident
that each script in no manner represents the only way to solve the posed problem, but
can serve as a template or inspiration, e.g. for future students, which may have diffi-
culties finding help with these problems online or in textbooks, due to the somewhat
unique combination of specificity and generality of day-to-day problems in scientific
computation. While USB sticks, CDs or Dropbox links are convenient, they have a
tendency to vanish, whereas paper can be firmly placed upon a shelf, and be taken
out as a final resort . . .

b.1 ase/gpaw scripts

Listing 1: Solvent box creation script, originally made for water, by E. Ö.
Jónsson

from ase import *
from ase.io import read, write

from ase.visualize import view

from math import pi

import numpy as np

# Original by E. O Jonsson

# I basically just switched water to ACN

# And made the code a bit more "stupid"

# W.R.T pre-randomization of the box since

# ACN is linear so it’s a bit harder to

# randomly orient. And it’s easer just

# to get ASE to do it. /Asmus Dohn 2012

# Make MM aceto

aceto = Atoms( ’C2N’)
pos = np.array([[0, 0, 0], # distances from article

[0, 0, 1.458],

[0, 0, 1.458+1.157]])

for a in [0,1,2]:

aceto[a].set_position(pos[a])

atomno = len(aceto)

write( ’new.xyz ’, aceto)

aceto.set_cell(([32.,0,0],
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[0,32.,0],

[0,0,44.]))

cell = aceto.get_cell()

vol = cell[0,0]*cell[1,1]*cell[2,2]

# Total number of aceto

no_aceto = round(vol*0.01153)

# Number of layers along z-axis

no_l = cell[2,2]/3

# Number of aceto in each layer

no_aceto_l = round(no_aceto)/no_l

# Number of aceto along x and y direction

no_aceto_xy = round(np.sqrt(no_aceto_l))

print "no_l : "+ str(no_l)

print "no_aceto_l : "+ str(no_aceto_l)

print "no_aceto_xy : "+str(no_aceto_xy)

#arr = np.zeros([round(no_aceto_xy)**2,2])

# Create coordinates

arr = []

for i in range(int(no_l)):

for j in range(int(no_aceto_xy)):

for k in range(int(no_aceto_xy)+1):

arr.append([k*cell[0,0]/(no_aceto_xy+1),j*cell[1,1]/no_aceto_xy, i*
cell[2,2]/no_l])

print "no_aceto : "+str(no_aceto)
#print "real number: "+str(np.shape(arr)[0])

l = 0

for k in range(np.shape(arr)[0]):

new = read( ’new.xyz ’)
for i in range(atomno): new[i].x += arr[k][0]

for j in range(atomno): new[j].y += arr[k][1]

for m in range(atomno): new[m].z += arr[k][2]

if k%2==0:

new.rotate( ’x ’, pi/2., center=(new[1].position))

else:

new.rotate( ’x ’, -pi/2., center=(new[1].position))

new.rotate( ’z ’, np.random.rand()*pi/3., center=(new[1].position))

aceto += new

# displace

for j in range(0,len(aceto),6):

aceto[j].x += 0.5

aceto[j+1].x += 0.5

aceto[j+2].x += 0.5
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# displace

for j in range(0,len(aceto),6):

aceto[j].y += 0.2

aceto[j+1].y += 0.2

aceto[j+2].y += 0.2

# displace

for j in range(3,len(aceto),6):

aceto[j].y -= 0.5

aceto[j+1].y -= 0.5

aceto[j+2].y -= 0.5

# Delete the first aceto which is on top of #2

del aceto[0:3]

realno_aceto = len(aceto)/3.

diff = realno_aceto - no_aceto

print "# Of molecules difference from proper density : "+str(diff)

if diff > 0:

delarr = np.zeros(realno_aceto)

interv = round(realno_aceto / diff)

delarr[0::interv] = 1

delarr[1::interv] = 1

delarr[2::interv] = 1

delidx = np.where(delarr == 1)

delidx = list(delidx)

delidx = np.flipud(delidx)

for i in range(len(delidx)):

del aceto[delidx[i]]

print " final # of solvent molecules : "+str(len(aceto)/3)

aceto.center()

# set Methyl masses for Me

masses = aceto.get_masses()

H3mass = sum(Atoms( ’H3’).get_masses())
masses[::3] += H3mass

aceto.set_masses(masses)

test = aceto.get_masses()

print test

write( ’Box_MoreGridish . t ra j ’,aceto)
view(aceto) �
Listing 2: QM/MM MD input script template, based on the ES runs of the

Iridum dimer

### Import modules ###

from ase.io import read, write # for ASE I/O operations

from ase.visualize import view # visualization
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from gpaw.calc_mm_inter import Inter_Pot # QM/MM Calculator

from gpaw import * # GPAW

import numpy as np

from gpaw.langevin_con_general import LangevinC as LC # MD

from ase.io.trajectory import PickleTrajectory as PT # Output module

import ase.units as unit # Units

from gpaw.ase_qmmm_TEST4 import * # QM/MM Interfacer

# Tools

from gpaw.poisson import PoissonSolver as PS

from gpaw.occupations import FermiDirac as FD

from ase import Atoms

### Set I/O paths and names ###

PATH = ’<Path to working directory>’
startno = 9 # Which d(Ir-Ir) exciation starts from

runno = 0 # Which run in the individual excitation

inname = ’IrD_ES_SSw_NF’+str(startno)+ ’_ ’+str(runno)
outname = ’IrD_ES_SSw_NF’+str(startno)+ ’_ ’+str(runno+1)

### Define QM Region ###

qm = read(PATH+ ’ . ./ . ./ IrDimen_0Shell . cube ’)
qmidx = len(qm) # The entire QM subsystem

### Constraining Hydrogens ###

qm_con = # A list containing atomic indexes and distances of all hydrogens and

the atoms they are connected to.

# Format example for a methyl group:

# [[(C1,H1,r1),(C1,H2,r2),(C1,H3,r3), (H1,H2,r4),(H1,H3,r5),(H2,H3,r6)], ... ]

# Where Cx and Hx are the atomic indexes, and r the distances, respectively.

### Read in already equilibrated system ###

qmmm = read(PATH+ ’<AlreadyEquilibratedSystem>.traj@−1’)

### Set Charges ###

charges = np.zeros(len(qmmm))

charges[qmidx::3] = .206

charges[qmidx+1::3] = .247

charges[qmidx+2::3] = .453

qmmm.set_charges(charges)

### Turn off GPAW-style PBCs - they are handled in ase_qmmm ###

qmmm.set_pbc(False)

### Create LJ array for the MM subsystem ###

# Dimensions: [(eps,sigma),atom index]

LJ_mm = np.zeros((2,len(qmmm[qmidx:])))

LJ_mm[0,0::3] += 0.7825 * units.kJ / units.mol

LJ_mm[0,1::3] += 0.544 * units.kJ / units.mol

LJ_mm[0,2::3] += 0.6276 * units.kJ / units.mol

LJ_mm[1,0::3] += 3.775

LJ_mm[1,1::3] += 3.650

LJ_mm[1,2::3] += 3.200
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### LJ array for QM subsystem ###

# Assignment via ASE atoms.symbol string:

LJ_qm = np.zeros((2,qmidx))

for j,k,l in [[ ’H’, 6.81e-4, 1.487],

[ ’N’, 7.37e-3, 3.64],

[ ’C’, 4.74e-3, 1.908],

[ ’ Ir ’, 0.0190, 2.31]]:

for i in range(qmidx):

if qmmm[i].symbol == j:

LJ_qm[0,i] = k

LJ_qm[1,i] = l

### Change the ACN Me mass from C to Me ###

masses = qmmm.get_masses()

me_mass = sum(Atoms( ’H3C’).get_masses())
masses[qmidx::3] = me_mass

qmmm.set_masses(masses)

### Fix magnetic moments to triplet state ###

Mm = np.zeros(len(qmmm))

Mm[0] = 1

Mm[12] = 1

qmmm.set_initial_magnetic_moments(Mm)

### Create friction array ###

# Since production run is NVE, it is just a bunch of zeros

fc = np.zeros((len(qmmm),1))

fc[qmidx::] = 0.0

### Create QM cell ###

pos = qmmm[:qmidx].get_positions()

rcut = 4.0

qmC = np.zeros((3,3))

xmin = pos[:,0].min(); xmax = pos[:,0].max()

qmC[0,0] += xmax - xmin + 2 * rcut

ymin = pos[:,1].min(); ymax = pos[:,1].max()

qmC[1,1] += ymax - ymin + 2 * rcut

zmin = pos[:,2].min(); zmax = pos[:,2].max()

qmC[2,2] += zmax - zmin + 2 * rcut

### Set up GPAW calculator ###

# MixerDif is best for spin-unrestricted calculations:

mixer = MixerDif(beta=.15, nmaxold = 5, weight=10, beta_m=0.15, nmaxold_m=5,

weight_m=10.0)

calc = GPAW(

gpts=(112,120,112),

mode= ’ lcao ’,
basis={None: ’dzp’, ’ Ir ’: ’ tzp ’},
xc = ’PBE’,
txt = PATH+outname+ ’ . out ’,
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poissonsolver=PS(relax= ’GS’, eps=1.0e-7),

stencils=(3,3),

charge=2,

mixer=mixer,

occupations=FD(width=.05, fixmagmom=True),

convergence={ ’density ’:2.5e-4},
maxiter=200,

nbands=-80

### Attach QM/MM calculator ###

# calc_1: Takes the QM-MM interface calculator. Inputs: The MM LJ array, and

number of atoms per solvent molecule (so as to not break up molecules under

PBC operations)

# calc_2: GPAW, the cutoff, LJ arrays, and the QM cell.

qmmm.set_calculator(

ase_qmmm(qmmm, index=qmidx,

calc_1 = Inter_Pot(LJ_mm[:,:3],3),

calc_2 = calc, rcut = rcut, LJ_mm = LJ_mm, LJ_qm = LJ_qm, cell = qmC))

### make a dynamics object ###

# This langevin dynamics version is modified to work with the QM/MM code

dyn = LC(qmmm, 1.0*unit.fs, unit.kB*300., fc, index=qmidx, sol_index=3, list_sub

=qm_con, list_sol=[(0,1,1.458),(0,2,2.615),(1,2,1.157)])

# sol_index: Amount of atoms pr solvent molecule

# list_sub: Constraints of QM subsystem

# list_sol: Constraints in MM subsystem

### Attach trajectory and run ###

traj = PT(PATH+outname+ ’ . t ra j ’, ’w’, qmmm)

dyn.attach(traj.write,interval = 1)

dyn.run(<number of steps to run>) �
Listing 3: Script for getting parameters out of trajectory files.

#!/usr/bin/env python

import subprocess as sp

from subprocess import PIPE

#from subprocess import Popen, PIPE

import numpy as np

import os

from sys import argv

from ase.io.trajectory import PickleTrajectory as PT

"""
Script that uses the output functionality of ag to write
parameters from one or more trajectories to output f i l es
with <trajectoryname>.dat filenames .
The last column will contain a cumulative time over al l
trajectories . The input format is as follows :
./GetData .py <trajname>. traj@ :: <timestep>
where <timestep> is the time specified in the input script .
e .g :
./GetData .py traj1 . traj@ : : 0 . 5 traj2 . traj@ : : 2 . . .
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"""

# remove script name from argv, the rest is trajs and props:

del argv[0]

trajs = []

props = []

tsteps = []

for filename in argv:

if " . t ra j " in filename:

if filename[-5:] == " . t ra j ":
n = "1"
trajs.append(filename)

tsteps.append(n)

elif "@" in filename:

n = filename.split(" : ")[-1]
filetrunk = filename.split( ’@: : ’)[0]
trajs.append(filetrunk)

tsteps.append(n)

else:

print "fucked tra j input ! "
break

props = [ ’d(0 ,1) ’, #Distance between atom 0 and 1

’a(56 ,1 ,74) ’,#Angle bewtween atms 56,1,74

’dih(68 ,73 ,79 ,74) ’, #Dihedral

’ fave ’, # Total average force

’fmax’, # Maximum force

’np. sqrt (F[40 ,0]**2+F[40 ,1]**2+F[40 ,2]**2) ’, # Magnitude of

force on atm 40

]

propnames = [] # list of what you want the labels of the props above to be in

the headerline

def getdata(traj,prop):

#print prop

out = sp.Popen(["ag", "−t ", "−g", prop, traj], stdout=PIPE)

out = out.stdout.read()

out = map(float, out.strip().split( ’\n ’)) #remove last \n with strip and

out = np.array(out)

return out

def getrealtime(traj,ts,prevstep):

ts = float(ts)

thistraj = PT(traj)

tl = len(thistraj) #from to numpoints

realtime = np.linspace(prevstep,prevstep+tl*ts,tl,endpoint=False)

print str(realtime)
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return realtime

# define function that gets the trajectories

def gettraj(path):

files = []

dir_list = os.listdir(path)

name_to_check_for = ’ . t ra j ’
for i in range(len(dir_list)):

if dir_list[i].endswith(name_to_check_for):

files.extend([dir_list[i]])

return files

if len(trajs) is 0:

print "no f i l es specified looking for . t ra js in current directory"
path = os.curdir+ ’/’
trajs = gettraj(path)

trajs.sort()

for i in traj:

print i

# get the data

ct = 0

for traj in trajs:

print traj+ ’ , tstep = ’+tsteps[ct]+ ’ . . . ’
data = []

trajtrunk = os.path.splitext(traj)[0]

ofname = trajtrunk+ ’ . dat ’
f = open(ofname, ’w’)
for prop in props:

#print prop

thispath = os.curdir+ ’/’+traj
thisdata = getdata(thispath,prop)

data.append(thisdata)

# Make last vector of realtime

if ct == 0:

prevstep = 0

realtime = getrealtime(traj,float(tsteps[ct]),prevstep)

data.append(realtime)

else:

prevstep = realtime[-1]+float(tsteps[ct])

realtime = getrealtime(traj,float(tsteps[ct]),prevstep)

data.append(realtime)

# Write data to file

f.write( ’ ’.join(format(x, ’ s ’).ljust(16) for x in propnames))

f.write( ’\n ’)
transdata = map(list, zip(*data))

for i in range(len(transdata)):

f.write( ’ ’.join(format(i, ’ 2.8 f ’).ljust(16) for i in transdata[i]))

f.write( ’\n ’)
f.close()
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ct +=1 �
Listing 4: Script for exporting trajectories with the QM solute centered in

the solvent box, in the XYZ format. For e.g. RDF calculations
in VMD. - Or visualization. The centering using the minimum
image convention is based upon how it is done internally in the
QM/MM code.

#!/usr/bin/env python

import subprocess as sp

from subprocess import PIPE

import numpy as np

import os

from sys import argv

from ase.io import read, write

from ase.visualize import view

from ase.io.trajectory import PickleTrajectory as PT

def micwrap(qmmm,qmidx):

mp = 3 #define Particles in solvent Mol

oldcell = qmmm.get_cell()

# Create QM cell

pos = qmmm[:qmidx].get_positions()

oldpos = pos

rcut = 4.0

xmin = pos[:,0].min(); xmax = pos[:,0].max()

ymin = pos[:,1].min(); ymax = pos[:,1].max()

zmin = pos[:,2].min(); zmax = pos[:,2].max()

qmC = np.zeros((3,3))

qmC[0,0] += xmax - xmin + 2 * rcut

qmC[1,1] += ymax - ymin + 2 * rcut

qmC[2,2] += zmax - zmin + 2 * rcut

### Centering IrD in the QM cell and the solvent around it

# for the fixing to work

qm_subsystem = qmmm[:qmidx]

mm_subsystem = qmmm[qmidx:]

qm_subsystem.set_cell(qmC)

qm_subsystem.center()

newpos = qm_subsystem.get_positions()

trans = oldpos - newpos

transvec = trans[0,:]

mm_newpos = mm_subsystem.get_positions()

mm_newpos -= transvec

qmmm.set_cell(qmC)

mm_subsystem.set_positions(mm_newpos)

newqmmm = qm_subsystem + mm_subsystem

## and now MIC

index = qmidx

pos = newqmmm[index:].get_positions()

# Minimum image relative to the center of the qm cell!

n = np.zeros(np.shape(pos))
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c_mid = qm_subsystem.cell.diagonal() * 0.5

n[::mp] = np.rint((c_mid - pos[::mp]) / oldcell.diagonal())

# Grab all atoms of this particular molecule

for i in range(1,mp):

n[i::mp] += n[::mp]

pos += n * oldcell.diagonal()

mm_subsystem = newqmmm[index:]

mm_subsystem.set_positions(pos)

mm_subsystem.set_pbc((1,1,1))

finalqmmm = qm_subsystem+mm_subsystem

finalqmmm.set_cell(oldcell)

finalqmmm.center()

return finalqmmm

def xyzwrite(thistraj):

traj = PT(thistraj)

tl = len(traj)

numatms = len(traj[0])

oname = thistraj[0:-4]

print ’Writing ’+oname+ ’xyz . . . ’
f = open(oname+ ’xyz ’, ’w’)
f.write( ’%d\n’ % numatms)

f.write( ’ Stuff about the simulation . Step 1\n’)
for i in range(tl):

wstep = micwrap(traj[i],130) #wrap it up - remember to change to your

qmidx!!

ThisPos = wstep.get_positions()

ThisSym = wstep.get_chemical_symbols()

if i is not 0:

f.write( ’%d\n’ % numatms)

f.write( ’Step : %d\n’ %(i+1))

for j in range(numatms):

f.write( ’%3s%14.6f%14.6f%14.6f\n’ % (ThisSym[j],ThisPos[j,0],ThisPos

[j,1],ThisPos[j,2]))

f.close()

# Input fixing - specify trajs as with GetData scripts...

del argv[0]

trajs = []

for i in argv:

if i.endswith( ’ . t ra j ’):
trajs.append(i)

for thistraj in trajs:

xyzwrite(thistraj) �
b.2 matlab parsers for ase/gpaw output
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Listing 5: Matlab .out file parser

function [DataCell, Data, Output] = rdGPAWout(DataFile)

fileID = fopen(DataFile, ’ r ’);

InFile = 1;

StepCt = 0;

CoCStepCt = 0;

SCStepCt = 0;

LMMCt = 0;

TotECt = 0;

QMCCt = 0;

PosCt = 0;

cStepIsConverged = 0;

pStepIsConverged = 0;

while InFile

Line=fgetl(fileID);

if Line == -1

InFile = 0;

break

end

if strfind(Line, ’Energy Contributions Relative to Reference Atoms: ’)
Line=fgetl(fileID); % get over the ----

InBlock = 1;

TotECt = TotECt + 1;

while InBlock

Line=fgetl(fileID);

spLine = strsplit(Line, ’ : ’);
if strfind(spLine{1}, ’Entropy ’)

Ene(TotECt).Entropy = str2num(spLine{2});

elseif size(spLine,2) == 2;

Ene(TotECt).(strrep(spLine{1}, ’ ’, ’_ ’)) = str2num(spLine{2});

elseif isempty(Line) % empty line efter Zero Kelvin

InBlock = 0;

break

end

end

cStepIsConverged = 1;

pStepIsConverged = 1;

end

if ~isempty(strfind(Line, ’Unit Cell : ’)) && cStepIsConverged

QMCCt = QMCCt +1;

CellNames=fgetl(fileID); % Periodic X Y Z

Points Spacing

Line=fgetl(fileID);

CellNames = strsplit(CellNames, ’ ’);
for ii = 1:3

Line=fgetl(fileID);

spLine = strsplit(Line, ’ ’);
for jj = 1:size(CellNames,2)

QMCArray{ii,jj} =spLine{jj+2};

end
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end

QMCell{QMCCt} = [CellNames; QMCArray];

cStepIsConverged = 0;

end

if ~isempty(strfind(Line, ’ Positions : ’)) && pStepIsConverged

PosCt = PosCt + 1;

InBlock = 1;

BlockCt = 0;

while InBlock

Line=fgetl(fileID);

if ~isempty(Line)

BlockCt = BlockCt + 1;

spLine = strsplit(Line, ’ ’);
Elements{BlockCt} = spLine{2};

X(BlockCt) = str2num(spLine{3});

Y(BlockCt) = str2num(spLine{4});

Z(BlockCt) = str2num(spLine{5});

else

InBlock = 0;

break

end

end

Output.Pos(:,:,PosCt) = [X’ Y’ Z’];

pStepIsConverged = 0;

end

if strfind(Line, ’Fermi Levels : ’) % get Fermi Levels and check if restricted

or unrestricted

FLLine = strsplit(Line, ’Fermi Levels : ’);
FLLine = FLLine{2};

FLLine = strsplit(FLLine, ’ , ’);
FL1 = str2num(FLLine{1});

FL2 = str2num(FLLine{2});

if FL1-FL2 == 0

SpinRestricted = 1;

else

SpinRestricted = 0;

end

end

if strfind(Line, ’Center of Charge: ’)
CoCStepCt = CoCStepCt +1;

CoC = strsplit(Line, ’Center of Charge: ’);
CoC = strsplit(CoC{2}, ’ ] ’);
CoC = strsplit(CoC{1}, ’ [ ’);
CoC = str2num(CoC{2});

CoCs(CoCStepCt,:) = CoC;

end

if strfind(Line, ’Spin contamination : ’)
SCStepCt = SCStepCt +1;

SC =strsplit(Line, ’Spin contamination : ’);
SC = strsplit(SC{2}, ’ electrons ’);
SCs(SCStepCt) = str2num(SC{1});
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end

if ~isempty(strfind(Line, ’Occupancy’)) && SpinRestricted

StepCt = StepCt + 1;

InBlock = 1;

BlockLineCt = 0;

FL(StepCt) = FL1;

while InBlock

Line = fgetl(fileID);

NumLine = str2num(Line);

if isnumeric(NumLine) && ~isempty(NumLine)

BlockLineCt = BlockLineCt + 1;

DataCell{StepCt}(BlockLineCt,:) = NumLine;

else

InBlock = 0;

break

end

end

if mod(StepCt,100) == 0;

display([ ’Finished Reading SpinRestricted Calc . Step : ’ num2str(

StepCt)])

end

elseif ~isempty(strfind(Line, ’Occupancy’)) && ~SpinRestricted % Go into orb.

energies

StepCt = StepCt + 1;

InBlock = 1;

BlockLineCt = 0;

FL(StepCt,1) = FL1;

FL(StepCt,2) = FL2;

while InBlock % actually works the exact same way lol. Only diff is

having the FL(StepCt,2)

Line = fgetl(fileID);

NumLine = str2num(Line);

if isnumeric(NumLine) && ~isempty(NumLine)

BlockLineCt = BlockLineCt + 1;

DataCell{StepCt}(BlockLineCt,:) = NumLine;

else

InBlock = 0;

break

end

end

if mod(StepCt,100) == 0;

display([ ’Finished Reading SpinUnRestricted Calc . Step : ’ num2str(

StepCt)])

end

elseif ~isempty(strfind(Line, ’Local Magnetic Moments: ’)) && ~SpinRestricted

LMMCt = LMMCt +1;

InBlock = 1;

BlockLineCt = 0;

while InBlock

Line = fgetl(fileID);

NumLine = str2num(Line);

if isnumeric(NumLine) && ~isempty(NumLine)
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BlockLineCt = BlockLineCt + 1;

LMMCell{LMMCt}(BlockLineCt,:) = NumLine;

else

InBlock = 0;

break

end

end

if mod(LMMCt,100) == 0;

display([ ’Finished Reading SpinUnRestricted LMM. Step : ’ num2str(

LMMCt)])

end

end

end

% Make nicer array

StepLengths = zeros(size(DataCell,2),1);

for ii = 1:length(StepLengths)

StepLengths(ii) = size(DataCell{ii},1);

end

MaxLength = max(StepLengths);

Data = NaN(MaxLength,size(DataCell{1},2),size(DataCell,2));

for ii = 1:size(DataCell,2);

Data(1:size(DataCell{ii},1),1:size(DataCell{ii},2),ii) = DataCell{ii};

end

if exist( ’LMMCell’)
StepLengths = zeros(size(LMMCell,2),1);

for ii = 1:length(StepLengths)

StepLengths(ii) = size(LMMCell{ii},1);

end

MaxLength = max(StepLengths);

LMMData = NaN(MaxLength,size(LMMCell{1},2),size(LMMCell,2));

for ii = 1:size(LMMCell,2);

LMMData(1:size(LMMCell{ii},1),1:size(LMMCell{ii},2),ii) = LMMCell{ii};

end

end

Output.Energies = Data;

Output.FermiLevels = FL;

if exist( ’CoC’)
Output.CoCs = CoCs;

end

if exist( ’SCs ’)
Output.SCs = SCs;

end

if exist( ’LMMData’)
Output.LMM = LMMData;

end

Output.E = Ene;

Output.Cell = QMCell;

Output.Elements = Elements;
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end �
b.3 miscellaneous

Listing 6: Script for VMD to calculate an RDF from each frame, which can
then later be re-binned in e.g. Matlab. Made for the Iridium dimer
study. This version calculates the Ir-N pairwise RDF.

cd #<dir with trajectories, here xyz files, since VMD does not read ase .traj>

proc dirlist { dir ext } {

set contents [glob -directory $dir *$ext]

foreach item $contents {

append out $item

append out "\n"
}

return $out

}

set runtypes {Down Top Up Well}

foreach runtype $runtypes {

set xyzs [dirlist RDFs/$runtype/ .xyz]

set ct 0

foreach file $xyzs {

incr ct 1

mol load xyz $file

set trajlen [molinfo top get numframes]

for {set i 0} {$i < $trajlen} {incr i} {

#set rdf $rdfs($i)

#set atm1 $atms1($i)

#set atm2 $atms2($i)

puts "Making RDF for atmselect Ir and solvent −> $fi le\_$i\
.dat "

set outfile1 [open RDFs/DATFILES_IrSolvN/$runtype/$ct/$i\.dat

w]

molinfo top set frame $i

molinfo top set a 28; # Set cell dims, since they are not

saved in the xyz format

molinfo top set b 28.5

molinfo top set c 31.5

molinfo top set alpha 90

molinfo top set beta 90

molinfo top set gamma 90

set sel1 [atomselect top "name Ir "]
set sel2 [atomselect top "name N and not residue 0"]
set gr0 [measure gofr $sel1 $sel2 delta 0.2 rmax 15.0 usepbc 1

selupdate 0 first $i last $i step 1]

set r [lindex $gr0 0]

set gr [lindex $gr0 1]

set igr [lindex $gr0 2]

set isto [lindex $gr0 3]
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foreach j $r k $gr l $igr m $isto {

puts $outfile1 [format "%.4 f\t%.4 f\t%.4 f\t%.4 f " $j $k $l

$m]

}

close $outfile1

}

mol delete top

}

} �
Listing 7: Tcl script for calculating the solute-solvent pairwise RDFs, aver-

aged over frames from tstart to the last frame. The code is easily
changed to produce all pairwise RDFs for e.g. X-ray scattering
simulations, by expanding the atms and ratms-arrays.

cd #<OutputDir>

set tstart 0

set Ru "index 0"
set Co "index 1"
set NSolute "name N and index < 124"
set CSolute "name C and index < 124"
set HSolute "name H and index < 124"
set CSolvent "name C and index > 124"
set NSolvent "name N and index > 124"
set HSolvent "name H and index > 124"
set MeSolvent "name C and index > 124 and (not within 1 .5 of (name N and index >

124) ) "
set CmSolvent "name C and index > 124 and (within 1 .5 of (name N and index >

124) ) "

set rRu "Ru"
set rCo "Co"
set rNSolute "NSolute"
set rCSolute "CSolute"
set rH "HSolute"
set rCSolvent "C"
set rNSolvent "N"
set rHSolvent "HSolvent"
set rMeSolvent "Me"
set rCmSolvent "C"

array set atms1 [list 1 $Ru 2 $Co 3 $NSolvent 4 $MeSolvent 5 $CmSolvent]

array set atms2 [list 1 $Ru 2 $Co 3 $NSolvent 4 $MeSolvent 5 $CmSolvent]

array set ratms1 [list 1 $rRu 2 $rCo 3 $rNSolvent 4 $rMeSolvent 5 $rCmSolvent]

array set ratms2 [list 1 $rRu 2 $rCo 3 $rNSolvent 4 $rMeSolvent 5 $rCmSolvent]

array set runs [list 0 "GS" 1 "LS" 2 "HS"]
for {set ii 0} {$ii < 3} {incr ii} {

set name $runs($ii)

mol top $ii
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pbc set {32.0 32.0 44.0} -all

cd $name

for {set i 1} {$i < 6} {incr i} {

for {set h $i} {$h < 6} {incr h} {

if { $i==1 && $h==1} {

continue

} elseif { $i==2 && $h==2} {

continue

} else {

set rdf $ratms1($i)-$ratms2($h)

set atm1 $atms1($i)

set atm2 $atms2($h)

puts "Making RDF for atmselect $atm1 & $atm2 −> $name\_$rdf\.dat "
set outfile1 [open $name\_$rdf\.dat w]

set sel1 [atomselect top $atm1]

set sel2 [atomselect top $atm2]

set gr0 [measure gofr $sel1 $sel2 delta 0.2 rmax 16.0 usepbc 1

selupdate 0 first $tstart last -1 step 1]

set r [lindex $gr0 0]

set gr [lindex $gr0 1]

set igr [lindex $gr0 2]

set isto [lindex $gr0 3]

foreach j $r k $gr l $igr m $isto {

puts $outfile1 [format "%.4 f\t%.4 f\t%.4 f\t%.4 f " $j $k $l $m]

}

close $outfile1

}

}

}

cd ..

} �
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