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1 Introduction

While working with the UR-10 robot arm, it has become apparent that some
commands have undesired behaviour when operating the robot arm through a
socket connection, sending one command at a time. This report is a collection
of the results optained when testing the performance of the different commands
available in URScript to control the robot. It will also describe the different
time delays discovered when using the UR-10 robot arm.
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2 Real-time Interface

Glossary for the following sections:
Controller:
The program running on the UR-10’s internal computer, broadcasting robot
arm data, recieving and interpretting commands and controlling the arm
accordingly.
Interfacing program or program:
A program running on an arbitrary computer, connecting (interfacing) with the
controller over a TCP Connection to the controller’s ’real time’- or MATLAB-
Interface port.

2.1 Congestion Control - Nagle’s algorithm?
The first thing that becomes evident when looking at the Matlab interface
output of the UR-10 robot is that it appears to have some sort of anti-congestion
algorithm in place.

Figures 2.1 and 2.2 show a joint angle as a function of time. In each of the
figures, the two series are the same joint-variables plotted as functions of two
different times. The red series is the joint angle as a function of the timestamp
of the package in which it was broadcast. The blue series is the very same joint
angle data series, but this time plotted as a function of the computer localtime
at which the package was recieved by the program communicating with the
UR Matlab interface.

In figure 2.1 the program was run on a remote computer communicating with
the robot arm’s internal computer over Ethernet. In figure 2.2 the program
was run on the robot arm’s internal computer.

Especially in figure 2.2, it is very visible that the packages are not broadcast
at a rate of 125Hz, but rather at some other frequency, in this case 5 packages
at a time at 25Hz, approximately. For this test, the program interfacing with
the Matlab interface was run on the robot arm’s internal computer.
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2.1. Congestion Control - Nagle’s algorithm?
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Figure 2.1: Angle values from data packages plotted as a function of package
timestamp and as a function of package arrival time when the program was
run on a remote computer. It can be seen that the packages arrive at the
computer two at a time.

NB: These plots do not in any way tell us anything about the time delay
between the controller sending a package and the interfacing program recieving
it. The controller timestamp and the program timestamp are on different time
scales, but have been translated to the same range for the sole purpose of being
displayed in one graph. The translation is arbitrary.

The 25Hz, or 40ms, is the standard acknowledge timeout for UNIX based
systems, and Nagle’s algorithm will always wait for acknowledgement before
sending the next package, so this again points towards the Nagle’s algorithm
being the problem.

In both Python and C++, a socket parameter can be set, TCP_QUICKACK,
which will force any pending acknowledgements to be sent immediately. Setting
this flag every time a data package is recieved will make the Nagle’s Algorithm
on the controller socket send the next package when it becomes available. This
solves the problem of packages being bundled for delayed shipment.

This is a work-around of the problem, allowing the Matlab-interface to be
used for real-time control in spite of the Nagle-algorithm. It is noteworthy
that any closed-loop control of the robot arm automatically implements this
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2.1. Congestion Control - Nagle’s algorithm?
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Figure 2.2: Angle values from data packages plotted as a function of package
timestamp and as a function of package arrival time when the program was
run on the robot arm’s internal computer.
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Figure 2.3: Angle values from data packages plotted as a function of package
timestamp and as a function of package arrival time when the program included
forced immediate acknowledgement. The results are similar for the robot arm’s
internal computer and the remote computer.
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2.2. Sample Frequency

work-around since sending a command as a reaction to the last recieved package
will also send the acknowledgement so that the next package will appear on
time.

2.2 Sample Frequency
Now that the recieving frequency has been determined to be 125Hz, it would
be good to know the frequency with which one can send commands to the
robot arm and expect them to be handled on time. To see if this frequency
matched the broadcasting frequency, a sampled sinus curve was sent to the
robot arm, one sample pr. recieved data package from the robot arm. Figure
2.4 displays the result of a test in which a sinusoidal velocity curve for one joint
was sent to the robot arm at the same frequency the robot arm broadcasts
with, achieved by sending each sample as a reaction to a recieved package.
Here the code used was:

starttime = time.now
while time.now < 2*pi+ starttime :

on recieved_new_data :
qd = [0 ,0 ,0 ,0 ,0 ,0]
qd [4] = sin (10* time.now)
speedj (qd ,5 ,0.02)

end

What can be seen on the figure is that the robot arm’s internal target velocity
follows, with some delay, the same trajectory as is sent to it, that is it does
not undersample or drop packages.
Something else to notice is the sometimes serrated nature of the controller
target velocity curve. It seems that commands are lost one sample, but made
up for in the next. This suggests that the controller handles input and output
asynchronously. This serration also shows that, even though these commands
are sent as soon as possible after recieving a package, one cannot be sure that
a reaction will be seen until two samples later.

Looking at figure 2.5 we see a different behaviour. In this case, the same
sinusoidal curve was sent to the robot arm, but at twice the frequency, that is
both the frequenuncy of the sinusoidal curve and the sample frequency were
doubled. The code used here was:

starttime = time.now
while time.now < 2*pi+ starttime :

qd = [0 ,0 ,0 ,0 ,0 ,0]
qd [4] = sin (11* time.now)
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2.2. Sample Frequency
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Figure 2.4: Sent target, the sinus shaped velocity curve sent to the robot arm
plotted next to the recieved target velocity of the robot arm joint. The sent
target is issued at the same frequency as the controller broadcasts

sleep (0.004)
speedj (qd ,5 ,0.02)

end

Misbehaviour was expected in this test, the hope being that samples would be
dropped and that the robot target velocity would be an undersampled version
of the sent target velocity. This was not the case. Instead, we saw every sample
in the robot, but executed one for each controller sample without regard to
the time at which it was recieved. It was also observed that the robot arm
continued moving after the program was terminated.
From this, it can be deduced that the controller buffers any recieved commands
and executes the oldest command, if any, in the buffer at each controller
iteration. This can be desirable as no control commands are overlooked, but
it does have drawbacks. Doing real-time control on the robot arm, any other
command issued to the arm will cause delay in the real-time control if not
accounted for by skipping one sample of the control.

When viewing results of long tests, it seems that the timescales used by
the robot controller and the computers respectively do not agree on the
length of a second. Plotting dataseries as a function of controller timestamp
and of computer timestamp on top of each other showed that the computer
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2.2. Sample Frequency
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Figure 2.5: Sent target, the sinus shaped velocity curve sent to the robot arm
plotted next to the recieved target velocity of the robot arm joint. The sent
target is issued at approximately twice the frequency of the controller broadcast
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Figure 2.6: Illustration of the timescale difference between the controller time
and the program time. Timescales are offset to zero at sample one.
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2.3. Calculation time and delays

time seemed dialated compared to controller time. This is shown in figure
2.6. Running long tests and comparing last and first package timestamps
in controller- and computertime showed the same. The meassured difference
between the time intervals was: ∆tcontroller = 0.9969 · ∆tcomputer

This is not a big problem, one just has to account for this when creating
controllers and make sure that it is designed for the actual sample time
observed.

2.3 Calculation time and delays
Time delays are to be expected when working across networks. It is desirable to
determine these delays, as they have a major impact on the actual bandwidth
limitations of any controller implementations.
This is adressed in this section.

For a quick estimate of computer-to-computer communication, tests were run
in which packages of sizes similar to the commands and data packages were
pinged back and forth, and these indicated a maximum response time of 1ms.

Through a series of tests in which a command was sent to the controller from
a remote computer and the time was meassured before a reaction could be
seen from the controller (The round trip time). The best-case scenario was
used when the command was sent immediately after recieving a package (no
calculation time). A reaction from the controller, a change in the controller’s
target velocity, was observed either 8ms later (one sample) or 16ms (two
samples).
In all cases, pysical change was meassured by the joint variable encoders in
the next sample after controller target velocities had been set, giving a total
round-trip time for the signal of 24ms.

To estimate the effect of calculation time before a reaction to a packate is sent,
another sinus curve velocity is sent to the robot arm. The velocity command
sending is triggered by the arrival of a data package. This time, however, a
delay is induced between the package is recieved and the command is sent. In
the beginning of the sinus curve, the delay is as short as possible, increasing
by 0.000016 per sample until the delay reaches 0.008, a full sample. The code
used was:

while delay < 0.008:
on recieved_new_data :

qd = [0 ,0 ,0 ,0 ,0 ,0]
qd [4] = qd [4] + 0.2* sin (10* time.now)
sleep(delay)

8



2.3. Calculation time and delays

delay += 0.008/500
speedj (qd ,5 ,0.02)

sleep (0.00001)
end

One resulting graph is shown in 2.7. It can be seen that the target velocity
graph is serrated in the beginning of the graph, indicating that the commands
do not consistently take the same amount of samples before reaching the
controller, as was seen when meassuring reaction times for immediate respon-
ses. This serration is caused mainly by network and calculation time, and it
is suspected that the controller interacts with network data and the robot
asynchronious. Upon reaching a certain delay, the commands consistently reach
the target velocity of the controller in two samples. Serration shows again at a
6ms delay, indicating that at a calculation time of less than 6ms will ensure
that a command reaches the controller in maximum 2 samples (16ms), and
that physical change can be seen within 3 samples (24ms).

This gives a total of somewhere between 16ms and 24ms from a command is
issued until a physical change can be observed in the system. This results in a
bandwidth limit of approximately 50Hz induced by the delays in communica-
tion in the best-case scenario where calculation time is less than 6ms and the
robot arm and controlling computer are on the same local wired network.

These results are valid for programs run on a remote computer connected over
ethernet and for the robot arm’s internal computer alike.
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2.3. Calculation time and delays
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Figure 2.7: Target velocity of the robot controller and the velocity sent in
commands as a function of time. For each command sent, the delay until the
next command is increased slightly.
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3 Commands

The UR script provides a series of commands with which to control the robot
arm. Each have their uses and caveats. Some tests of a selection of these
commands have been run, and some of these problems have been documented.
Table 3.1 shows a list of the tested commands, short descriptions of them and
a brief summary of the test results in good/bad form. Extended explanations
of the tests and results follow where they have been deemed worthwhile.
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Command Description Good Bad

movec Move along circular
arc segment from
current pose,
through via pose to
end pose.

Easy way to make
soft motions/curves
in cartesian space, for
example around
obstacles.

Jerks to a halt in final position.
Jerks when interrupted.

movej Simple joint space
move command.

No singularity
problems.

Jerks when interrupted, this
can cause Torque Limit
Violation

movel Simple cartesian
space move
command.

Movement in
cartesian space is
easy to plan.

Singularity problems. Jerks
when interrupted, can cause
Torque limit violation.

servoj Servo to joint
coordinates without
pathplanning.

Same as movej Jerks to a halt in final
position. Jerks when
interrupted, this can cause
Torque Limit Violation.

servoc Servo to cartesian
coordinates without
pathplanning

Same as movel Jerks to a halt in final
position. Jerks when
interruptet, this can cause
Torque Limit Violation.

speedj Set Joint speeds
with desired
acceleration.

Works as expected.
Can be issued at
125Hz. Will not jerk
if interrupted.

Nothing observed.

speedl Set TCP speed in
cartesian space with
desired joint
acceleration.

Possible to set speeds
in cartesian space
rather than joint
space.

Jerks when interrupted, this
can cause Torque Limit
Violation. Jerks occur when
interrupting movement with a
new speed.

stopj Decellerates joint
speeds to zero.

Works as expected. If given close to the end of a
movement, it can result in an
overshoot or an undershoot.

stopl Decellerates TCP
speed to zero.

Works as expected. If given close to the end of a
movement, it can result in an
overshoot or an undershoot.

Tabel 3.1: List of commands and their caveats
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3.1. The movec command

3.1 The movec command
The code for this test:

sleep (0.5)
movec(pvia,pend ,2 ,0.6)
sleep (5)
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Figure 3.1: Target joint velocities during a movec command execution.

In figures 3.1 and 3.2 the behaviour of movec can be seen.
When the movec reaches it’s final pose, the robot arm jerks violently to a halt,
inducing notable vibrations in the robot setup. Looking at the target velocity
curve, one could expect the target accelerations to be off the charts, similar
to when move commands in general are interrupted, but this does not occur
according to figure 3.2. It seems that the controller just abandons the robot to
it’s own devices once the goal position is reached.
The lack of deceleration is an issue, but the lack of effort to break instantly
does save the system from joint torque limit violation.
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3.2. The movej command
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Figure 3.2: Target joint accelerations during a movec command execution.

3.2 The movej command
The code for this test:

sleep (0.5)
movej(q1)
sleep (1.2)
movej(q2)
sleep (1.3)
movej(q3)
sleep (5)

In figures 3.3 and 3.4, some results of testing the movej command are shown.
In this test, three movej commands were sent to the robot arm. The first is
sent at 0.5 sec when the robot arm is standing still. The second command is
sent at 1.7 seconds, just before the first move is finished. The last command is
sent at 3 seconds, midway through the seccond command’s execution.
The result is jerky. In itself, the movej command executes a nice, smooth
trapezoid trajectory in configuration space, but if it is interrupted by a second
movej command before completing, things go wrong.
One likely reason for this would be the controller calculating a new trapezoid
from current position upon recieving the interrupting movej command, but
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3.2. The movej command

0 1 2 3 4 5 6 7 8
−60

−40

−20

0

20

40

60
Target joint accelerations

Time (s)

J
o
in

t 
a
c
c
e
le

ra
ti
o
n
 (

ra
d
/s

2
)

 

 

Joint 1

Joint 2

Joint 3

Joint 4

Joint 5

Joint 6

Figure 3.3: Target joint accelerations during a series of overlapping movej
commands. One movej command is issued at 0.5 seconds, the next at 1.7s, just
before the first finishes, and the third is issued at 3s, way before the second
command has finished. Both interruptions lead to acceleration spikes and the
second leads to joint torque limit violation.

doing so assuming a still-standing robot. Setting target velocity to something
fitting for a still-standing robot when the robot is moving would require great
accelerations, as are observed.
As a consequence of this desired great acceleration, large currents are induced
over the motors, in extreme cases triggering the joint torque violation safety
limit. In this case, a current of over 15A is observed in the shoulder joint motor.
These problems could be solved, it seems, by calculating trajectories for move
commands not using just current position of the robot, but using the full
current robot state including velocities.
Something else of interest observed here is that joint torque limits are not set
on the torque caused by interaction with external objects, but total torque
due to internal and external torques combined. This is of course the most
cost-effective and error robust implementation, but it does force the user to
have to consider the joint torque limits when planning sudden stops.
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3.3. The movel command
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Figure 3.4: Target joint motor currents during a series of overlapping movej
commands. One movej command is issued at 0.5 seconds, the next at 1.7s, just
before the first finishes, and the third is issued at 3s, way before the second
command has finished. Both interruptions lead to acceleration spikes and the
second leads to joint torque limit violation.

3.3 The movel command
The code for this test:

sleep (0.5)
movel(q1)
sleep (1.2)
movel(q2)
sleep (1.3)
movel(q3)
sleep (5)

This command is essentially similar to movej except for including inverse
kinematics and, more importantly, inverse dynamics. This creates the ever-
bothersome problem of singularities in the dynamics. Apart from that, the
same problems exist as when moving with movej.
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3.4. The servoj and servoc commands

3.4 The servoj and servoc commands
The code for this test:

sleep (0.5)
servoj (q ,0 ,0 ,0.8)
sleep (1)

These command seems to be essentially a less useful version of movej and movel.
They do the job of getting from A to B, but the same stopping behaviour as
with movec is exhibited, making the use of this command slightly faster and
massively more jerky.

3.5 The speedj command
This command seems to be the only command useful for control real-time
control of the robot.
The robot accelerates to a set of joint velocities, both velocities and accelerations
provided by the user. No combination of interruptions was found that would
make the robot attempt accelerations exeeding what was sent in the command.

3.6 The speedl command
For figure 3.5, 3.6 and 3.7, two speedl commands were issued, one at t=0.5s,
and then one with a lower speed at t=2s, before the first command finished.

sleep (0.5)
speedl (v1 ,0.4 ,1.5)
sleep (1.5)
speedl (v2 ,0.4 ,1.5)
sleep (1.5)

It can be seen that the target velocity jumps suddently at t=2s, causing target
acceleration to take a proportionally large value. This causes a very large
current which triggers joint torque limit violation.
The acceleration limits provided by the command is not enforced. This can be
because the trajectory is planned with the limit in mind, but without accounting
for current velocity. The reason that the accelerations are heeded in speedj may
be that the same assumptions are made and the path is planned accordingly,
but since the acceleration limits set by the user is in joint acceleration, it is
applied to the joint speeds directly. The same cannot easily be done in the
case of speedl.
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3.6. The speedl command
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Figure 3.5: Target joint velocities during two overlapping speedl commands
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Figure 3.6: Target joint accelerations during two overlapping speedl commands
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3.6. The speedl command
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Figure 3.7: Joint currents during to overlapping speedl commands

Issuing many commands in rapid succession with small incremental changes
in speed as one would do in a feedback system also induces jerks. Looking at
figures 3.8 and 3.9, where a circular speed pattern was sent to the robot, we
can see something interesting. The code used was:

sleep (0.5)
while t <16:

pd = [0 ,0 ,0 ,0 ,0 ,0]
pd [0] = pd [0] + 0.1* sin(t)
pd [2] = pd [2] - 0.1* cos(t)
speedl (pd ,0.1 ,0.009)
t = t + 0.008
sleep (0.008)

end

It is generally the case that in order to achieve a specific velocity and rotational
velocity in cartesian space, several combinations of joint velocities can be
chosen. In this case, it is very likely that each time the inverse dynamics
are calculated in order to set the speed in cartesian space, the solution is
chosen with some criteria in mind. A sensible criterion would be the lowest
sum of joint speeds. Whichever criteria are used do not, it seems, take into
account the robot’s current dynamic situation. As such, even though the linear
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3.6. The speedl command
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Figure 3.8: Joint velocity targets during an attempted circular motion using
speedl

motion would be smooth if the target velocities were achieved, massive (infinite)
accelerations would be required to do this. In reality, this is not possible, and
the sampling time limits the acceleration so that joint torque limit violation
does not happen.

The speedl command is tested again, this time by moving in one direction
and changing the velocity every 8 ms by a random amount. This is done to
simulate a control input which fluctuates a small amount. The code used was:

sleep (0.5)
xd = [0.1 ,0 ,0 ,0 ,0 ,0]
for 1 to 375:

xd = [0.1+ randominteger ( -1 ,1)/100.0 ,0 ,0 ,0 ,0 ,0]
speedl (xd , 0.4, 0.009)
sleep (0.008)

end
sleep (0.5)

The result is shown in Figures 3.10 and 3.11. Here it can be seen that the speedl
command handles changes in the target velocity poorly, and it is suspected
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3.6. The speedl command
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Figure 3.9: Joint acceleration targets during an attempted circular motion
using speedl

that the poor behaviour occurs when the acceleration is opposite the current
velocity. This behaviour results in the speedl command being unsuitable for
real-time control use.
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3.6. The speedl command
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Figure 3.10: Target joint velocities during speedl command where the speed
set i changed by a random amount every 8 ms

22



3.6. The speedl command
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Figure 3.11: Target joint accelerations during speedl command where the speed
set i changed by a random amount every 8 ms
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3.7. The stopj command

3.7 The stopj command
The stopj command decellerates each joint independently to zero with the
specified acceleration. The code used was:

sleep (0.5)
servoj (q ,0 ,0 ,0.8)
sleep (0.8)
stopj (1.0)
sleep (0.5)

Figures 3.12 and 3.13 illustrate the functionality of the stop commands. It is a
good way to stop motions without causing joint torque limit violation.
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Figure 3.12: Target velocity during execution of servoj command, interrupted
by stopj command
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3.8. The stopl command
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Figure 3.13: Target accelerations during execution of servoj command, inter-
rupted by stopj command

3.8 The stopl command
The stopl command decellerates the TCP to zero with max joint acceleration
specified. The code used was:

movec(pvia,pend ,1 ,0.3)
sleep (2)
stopl (1.0)
sleep (1)

Figures 3.14 and 3.15 illustrates the functionality of the stopl command. This
commands works as expected, and none of the problems with cartesian space
commands seen before is seen when using this command. This points to a
problem in the inverse dynamics solution when calculating new trajectories.
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Figure 3.14: Target velocity during execution of movec command, interrupted
by stopl command
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3.8. The stopl command
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Figure 3.15: Target accelerations during execution of movec command, inter-
rupted by stopl command
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4 Conclusion

From tests we have seen that URScript and the URController is designed
for open-loop point-to-point control. The only command that can handle
interruptions is speedj, all other commands handle interruption poorly. The
bandwidth with which one can expect to control the robot is determined by
the 24ms round-trip time.
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