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Inversion of Auditory Spectrograms, Traditional
Spectrograms, and Other Envelope Representations

Rémi Decorsière, Peter L. Søndergaard, Ewen N. MacDonald, and Torsten Dau

Abstract—Envelope representations such as the auditory or tra-
ditional spectrogram can be defined by the set of envelopes from
the outputs of a filterbank. Common envelope extraction methods
discard information regarding the fast fluctuations, or phase, of the
signal. Thus, it is difficult to invert, or reconstruct a time-domain
signal from, an arbitrary envelope representation. To address this
problem, a general optimization approach in the time domain is
proposed here, which iteratively minimizes the distance between a
target envelope representation and that of a reconstructed time-do-
main signal. Two implementations of this framework are presented
for auditory spectrograms, where the filterbank is based on the be-
havior of the basilarmembrane and envelope extraction ismodeled
on the response of inner hair cells. One implementation is direct
while the other is a two-stage approach that is computationally sim-
pler. While both can accurately invert an auditory spectrogram,
the two-stage approach performs better on time-domain metrics.
The same framework is applied to traditional spectrograms based
on the magnitude of the short-time Fourier transform. Inspired by
human perception of loudness, a modification to the framework is
proposed, which leads to a more accurate inversion of traditional
spectrograms.

Index Terms—Spectrogram inversion, short-time Fourier trans-
form, auditory spectrogram, gradient methods.

I. INTRODUCTION

M ULTI-CHANNEL envelope representations, also
known as spectrograms, form a widely used class of

time-frequency representations. However, due to envelope
extraction, spectrograms do not explicitly retain all of the
characteristics of the signals they represent, such as the very
fast fluctuations known as temporal fine structure. Hence,
recovering (or reconstructing) a time-domain signal from a
given spectrogram representation is a challenging and inter-
esting problem in mathematics and signal processing and has
received significant attention (e.g., [1]–[3]). In this class of
problem, the particular case of inverting what we call in this
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study the “traditional” spectrogram, which is given by the
squared magnitude of the short-time Fourier transform (STFT),
has been studied the most. A fundamental result for that case
is presented in [1]. There, the authors provide a mathematical
proof that representations obtained from the magnitude of the
output coefficients from a linear system (which the STFT is)
were injective, given that the linear system was sufficiently
redundant (i.e., given that the STFT had sufficient overlap
and/or channels). This means that, in principle, a time-domain
signal could be recovered from its traditional spectrogram only.
Many studies have considered this particular case of the tra-

ditional spectrogram, some of them well before the mathemat-
ical validation of [1]. Initially, the problem was the reconstruc-
tion of a time-domain signal given only the magnitude of its
Fourier transform (e.g., [3]). But the landmark study which first
proposed a method for traditional spectrogram inversion is de-
scribed in [4]. In their approach, Griffin & Lim use STFT and
inverse STFT to project the signal back and forth between time
domain and time-frequency domain in an iterative fashion. At
each iteration, the STFT magnitude is constrained to equal the
target spectrogram fromwhich the signal is being reconstructed.
In [4], the authors proved that the mean squared error of the
STFTmagnitude of the generated time-domain signal monoton-
ically decreases with each iteration. This efficient and simple ap-
proach has now become a key reference of most modern studies
and still inspires some state-of-the-art methods, even after three
decades. Examples of such modern studies that extend on the
work of Griffin & Lim (G&L) are [5] and [6]. In [5], the authors
propose two variations on the G&L algorithm, the “real-time
iterative spectrogram inversion” (RTISI) and its improved ver-
sion, the “RTISI with look ahead” (RTISI-LA), which can per-
form real-time spectrogram inversion, and does so faster (i.e., in
fewer iterations) than the original offline algorithm. The RTISI
method processes time frames of the spectrogram one at a time
and uses information from previous overlapping frames to gen-
erate a better initial phase for the current frame, allowing for
faster convergence. In addition, the RTISI-LA method allows
a number of future frames to be also considered, which was
shown to improve accuracy in [5]. Conversely, [6] suggests an
approximation to the G&L iteration process that allows much
faster computation without impairing the accuracy of the in-
version. Other modern methods have also investigated com-
pletely different approaches. For example, in [7], the authors
suggest a frame-by-frame solution to the problem, where each
frame is considered as a root-finding problem. Some mathemat-
ical studies (e.g., [8], [9]) have also considered retrieving the
rank-one matrix associated with the signal. Instead of looking
for the signal , they look for the matrix (i.e., the outer
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product of with itself). This results in a convex problem, which
is easier to solve, but at the cost of squaring the dimensionality.
Thus, this method is limited in practice to signals shorter than
a few hundred samples. A further review of traditional spectro-
gram inversion can be found in [10].
While inversion of a traditional spectrogram is the most

studied case, there are many other definitions of the spectro-
gram that can be considered as “multi-channel” envelopes.
Among these are auditory representations based on human
perception. In humans, the transduction from mechanical vi-
brations to electrical impulses in neurons occurs in the cochlea.
Mechanical vibrations are transmitted into the cochlea via the
middle ear and cause the basilar membrane to vibrate. The
mechanical properties of the basilar membrane vary along
the length of the cochlea. Conceptually, this can be modeled
using a bank of bandpass filters with center frequencies and
bandwidths that increase logarithmically. Situated atop the
basilar membrane is the organ of Corti which contains inner
hair cells (IHCs). These cells have stereocilia, small hair-like
projections, which deflect in response to displacement of the
basilar membrane. When the stereocilia are deflected in one
(but not the other) direction, the IHCs become depolarized,
leading to action potentials in afferent neurons. Conceptually,
we can model this as a half-wave rectifier. After depolarizing,
the IHC and afferent neurons must re-polarize. This imposes
an upper limit to the frequency at which action potentials can
be generated. This upper limit can be modeled as a low-pass
filter, and, when applied after half-wave rectification, performs
envelope extraction. Thus, as a first approximation, we can
model the transduction in the cochlea as envelope extraction
of the outputs from a filterbank. The result is a multi-channel
envelope, that we call an “auditory spectrogram” (e.g.,[11]).
Previous work has demonstrated that the envelope represen-
tation of a signal plays an important role in perception. For
example, the envelope information from only a handful of
bands can be sufficient for speech intelligibility (e.g., [12],
[13]), and some models for predicting speech intelligibility
rely on information derived from the envelope representations
of the speech and noise signals (e.g., [14], [15]). Furthermore,
a faithful representation of the envelope has been shown to
be crucial for the perception of complex sounds (e.g., [16]).
Hence, there are clear applications for an auditory spectrogram
inversion tool in psycho-acoustic research. Unfortunately, the
methods used for traditional spectrogram reconstruction cannot
be applied to auditory spectrograms. However, a few studies
(e.g.[17]) have examined this problem. In [17], the authors
investigated the reconstruction from an auditory spectrogram
where the filterbank is a bank of cascading low-pass filters and
the IHC behavior is modeled by half-wave rectification only.
They showed how the half-wave rectification in each channel
can be approximately inverted by limiting the bandwidth of
said channels, through iterative projections between time and
spectro-temporal domain.
The present study, which expands the findings of [18], de-

scribes a more general tool for reconstructing a signal from its
envelope representation. Here, we propose to address the spec-
trogram inversion problem as a general optimization problem on
a time-domain signal, and use gradient-based methods to solve

it. This results in a highly dimensional optimization problem
(each sample in the sought signal is a dimension) requiring sig-
nificant computational power to solve, and might explain why
this approach has received little investigation. Here, we demon-
strate how results can be obtained for short signals (e.g., a few
seconds in length) using a standard modern computer. The ap-
plicability of the gradient-based approach relies on the possi-
bility to efficiently compute said gradient. Although an analyt-
ical formula for the gradient might not be available for some
envelope representations, it can be derived and efficiently com-
puted for both auditory and traditional spectrograms. Inversion
of an auditory spectrogram is motivated by the human audi-
tory system, with an envelope extraction model based on IHC
activity. Two implementation approaches for this method are
presented, a straightforward application of the proposed frame-
work, as well as a two-step process where the low-pass filter of
the IHC envelope extraction is inverted and a signal is recon-
structed from the half-wave rectified filterbank output, as sug-
gested in [17] but using the present framework. The second case
is based on the STFT magnitude representation, the term-by-
term square root of the “traditional” spectrogram. By taking ad-
vantage of the flexibility of this new approach, adjustments are
made in order to improve the accuracy of the reconstruction in
this case. Results from both scenarios are evaluated and com-
pared to other methods where possible.

II. GENERAL FRAMEWORK

This section formalizes and suggests a potential solution to
the problem of reconstructing a time-domain signal from a given
envelope representation. Here, the term envelope representation
is used to denote the set of envelopes of narrow-band chan-
nels obtained at the output of a filterbank. This representation
is therefore dependent on the choice of a given filterbank and a
given envelope extraction method. An approach to formalizing
the role of a filterbank is to define a filterbank operator which
is used jointly with a set of analysis windows ,
forming the analysis operator . It operates on an input signal
with a finite duration of samples as follows:

(1)

Here, denotes the kth sample of signal . In practice, with
this definition, the output ( ) is a matrix. Each row, later de-
noted by ( , corresponds to a different frequency channel
output (i.e., a subchannel) and is indexed by , with
. The columns of this matrix span time and are indexed by
, with . The decimation rate of the filterbank is
controlled by the parameter , which represents the hop-size, in
terms of samples of the original signal , between two consec-
utive points in any given subchannel. Given that a suitable set
of synthesis (or dual) windows exists, this rep-
resentation admits an inverse, the synthesis operator :

(2)
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Fig. 1. Block diagram of the processing scheme. At a given iteration , the envelope representation of the signal estimate is extracted. Its distance to the target
envelope and the gradient of this distance provide information to update the signal to a new estimate. This process is then repeated for iterations.

Note that in the following, two different filterbanks will be used,
and will have their own notation for the windows
to avoid confusion.
Now, consider an envelope extractor function that oper-

ates on band-limited signals. The envelope representation is the
set of envelopes of each subchannel . As
for the filterbank output, it is then convenient to adopt a ma-
trix notation for the envelope representation, where each line
represents a different channel, and the columns are for different
samples in time:

... (3)

The matrix is the envelope representation of the signal .
Assuming the envelope extraction does not perform any kind
of decimation, is an matrix of non-negative real
coefficients. As common analysis filterbanks usually provide
band-limited outputs centered at different frequencies, each
line in this matrix representation provides information related
to the frequency content of the input signal. Hence, this matrix
provides a time-frequency representation of the signal . For
example, in the case of the filterbank being the short-time
Fourier transform (STFT), and the envelope extraction being
the squared magnitude function, this matrix would correspond
to the “traditional” spectrogram of the signal .
Given a target envelope representation of a signal , an
matrix of non-negative real coefficients, the reconstruction

problem is then stated as follows: Find a signal such that
, or alternatively, such that . It is then convenient

to define the real-valued function that applies on any signal
with a length of samples as follows:

(4)

The Frobenius norm is a matrix norm; hence is the
square of a norm-induced distance measure between the enve-
lope of signal and the target envelope . Therefore, the func-
tion is positive-valued and equal to zero if, and only if, the ma-
trices and are equal. Hence, reaches a global minimum
when the signal has the required envelope . This suggests an
optimization approach where the problem is restated as follows:

find that minimizes . In this approach, the function is
now referred to as the objective function. Using an iterative op-
timization algorithm, a minimum of this function can be found.
In practice, spectrogram inversion methods are often used on

targets that are not explicitly derived from a time-domain
signal (e.g., spectrograms that were processed in some ways).
Some studies (e.g., [6]) denotes such targets as “inconsistent
spectrograms”, as they were not obtained from (3) but are in-
stead an arbitrary two-dimensional set of coefficients. In such
cases, there is no exact solution to the spectrogram inversion
problem. The approach suggested here will in theory return the
time-domain signal which minimizes , i.e., the signal whose
spectrogram is as close as possible to in terms of the dis-
tance , but may not ever reach .
A block diagram of the general procedure is illustrated in

Fig. 1. The optimization process begins with a random initial
signal estimate. Each iteration starts by calculating the enve-
lope representation of the current signal estimate, . This is
compared to the target using the objective function . The
value of and its gradient are used to update the signal esti-
mate, resulting in a new estimate . Thus, with each iteration,
the optimization procedure generates an updated signal estimate
that is “closer” (with relation to the distance ) to the target en-
velope. The iteration process is terminated after iterations.
From a practical perspective, it is important to note that nu-

merical optimization methods often require knowledge of the
first and sometimes second order derivatives of the minimized
function (particularly when many dimensions are involved and
“brute-force” search of the minimum becomes impractical). Al-
though some algorithms can numerically estimate these deriva-
tives, it is preferable to have an analytical expression to increase
accuracy and reduce computational load. In the context of the
present problem, the analytical expression of will depend on
how the filterbank is constructed and how envelope extraction
is defined. The applicability of the method relies on being able
to efficiently compute the gradient of the function . In the
following sections, we will present how this gradient can be ef-
ficiently computed for two particular cases: an auditory-moti-
vated envelope representation (i.e., auditory filterbank and inner
hair-cell envelope), and the traditional spectrogram (i.e., STFT
squaredmagnitude). As an analytic expression for the derivative
is needed, there may be some filterbank/envelope combinations
that are not compatible with our approach. For example, it might
not be possible to analytically derive a gradient expression for
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envelope definitions that are based on the estimation of the in-
stantaneous frequency of an associated carrier wave, as is done
in some vocoder studies (e.g., in [19]).
To speed up convergence and improve accuracy, information

regarding the second-order derivative is helpful. However, for a
signal with a length of samples, the matrix of the second-order
derivative of , the Hessian matrix, contains elements. Thus,
for typical speech signals, computing and storing all the el-
ements of this matrix is often impractical, if not impossible.
However, this can be overcome using a specific class of opti-
mization algorithms, a limitedmemory Broyden-Fletcher-Gold-
farb-Shanno (l-BFGS) algorithm [20]. This algorithm only ma-
nipulates a sparse representation of the Hessian matrix con-
sisting of a few vectors of size instead of the full matrix.
By taking these practical considerations into account, imple-

menting this optimization approach to reconstructing signals
from their envelope representation becomes reasonable even on
a standard computer, as will be described in Section V.

III. RECONSTRUCTION FROM IHC INSPIRED
ENVELOPE EXTRACTION

At the simplest functional level, two elements are required to
generate envelope representations of a signal: an analysis filter-
bank to generate a time-frequency representation and an enve-
lope extraction operator. In this section, a Gammatone filterbank
is used, as it provides a simplified model of the time-frequency
analysis conducted by the human cochlea [22]. Similarly, an en-
velope extraction operator that is based on inner hair-cell (IHC)
processing is used.

A. Gammatone Filterbank

The Gammatone filterbank provides a simplified, linear
model of basilar membrane motion. Unlike the linear spacing
of frequency bins in the STFT, the center frequencies of the
Gammatone filterbank are equally spaced on an Equivalent
Rectangular Bandwidth (ERB) scale (see [23] for further de-
tails). An individual Gammatone filter with center frequency
, bandwidth , amplitude and order is given by its

impulse response as follows:

(5)

Given a vector of ERB-spaced center frequencies,
, we obtain a set of filters

that forms a Gammatone filterbank and applies to a signal
according to (1).

B. IHC Inspired Envelope Extraction

As described in the introduction, we have based our enve-
lope extractor on a simplified IHC model that consists of a half-
wave rectifier followed by a low-pass filter. While similar enve-
lope extractors are used in electronic circuits, the filter param-
eters that we have used are based on psychoacoustic data (e.g.,
[11]). To generate an envelope representation of a signal, the
half-wave rectification and low-pass filtering are applied to the
output from the Gammatone filterbank. Given the mth channel
at the output of the Gammatone filterbank , the first
step of the envelope extraction is half-wave rectification, which

will be denoted by ( . This consists of setting all negative
valued samples to zero while leaving positive-valued samples
unchanged:

(6)

Alternatively, we can introduce the Heaviside function .
Given an input vector, this function returns a vector of the same
size with values of 1 for indices where the input was positive
and values of 0 for indices where the input was non-positive:

(7)

In (7) and further equations, denotes term-by-term multiplica-
tion of two vectors or matrices with the same number of ele-
ments. The second step of the envelope extraction is low-pass
filtering. Assuming a low-pass filter with an impulse response
, the envelope of the mth channel is given by:

(8)

Here, denotes convolution. Given a target envelope represen-
tation computed according to (8), the reconstruction problem
is to recreate the signal having as envelope representation.

C. Direct Reconstruction

Using the definition of the envelope from (8), the objective
function is given by the following equation:

(9)

It can be seen from (1) that the derivative of the Gammatone
analysis operator with relation to the kth coefficient of the input
can be expressed as follows:

(10)

when there is no decimation in the filterbank (which is the case
for this application). Combining (10) with (7), (8) and (9), and
assuming the low-pass filter has a finite impulse response (i.e.,
an FIR filter), it is possible to express the gradient of analyt-
ically. While typical IHC models do not use FIR filters, trun-
cating the otherwise infinite impulse response is a reasonable
approximation. If for , then the gradient of the
objective function can be expressed as follows:

(11)

Here, denotes the time-shift (translation) operator,

(12)

or similarly,

for any integer (13)

The matrix represents the Heaviside function applied to all
the channels at the output of the filterbank:

(14)
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The gradient in (11) is expressed as a finite sum (of el-
ements) under the assumption of the low-pass filter being an
FIR filter. Each element of the sum is expressed using the fil-
terbank synthesis operator defined in (2) applied with a time-
shifted version of the original filterbank analysis window. Im-
portantly, note that direct knowledge of the synthesis windows

introduced in Section II is not needed. This will
also be the case for the gradient expressions in later sections
where different envelope extraction schemes are used. As can
be seen from (2), the operator can be implemented using the
fast Fourier transform (FFT), hence the gradient in (11) can be
efficiently computed. Using (9) and (11), can beminimized
with an iterative optimization procedure (l-BFGS algorithm).

D. Two-Step Reconstruction

The direct approach detailed above attempts to reconstruct a
signal directly from a target envelope representation. However,
it is also possible to process the envelope representation before
applying the iterative optimization algorithm. Here, we propose
a two-step reconstruction method inspired by [17]. Conceptu-
ally, the approach is straightforward. Recall that the IHC enve-
lope extraction is modeled as half-wave rectification followed
by low-pass filtering. Thus, if the inverse of the low-pass filter
is applied to the target envelope representation, the result is the
half-wave rectified output of the filterbank. The signal can then
be reconstructed from this representation using the iterative op-
timization approach. Under the assumption that each channel
has a narrow bandwidth, it was suggested in [17] that a band-
pass filter should be used to remove harmonics introduced by the
half-wave rectification. However, we propose a more global ap-
proach based on the general framework suggested in Section II
that takes the interactions between channels into account. This
has the advantage of using the information from neighboring
channels to recover the information lost in a given channel by
the half-wave rectification.
Low-Pass Filter Inversion and Regularization: The low-pass

filter impulse response in (8) results in the filter response in
the frequency domain. The low-pass filtering is inverted bymul-
tiplying each channel in the frequency domain with the inverse
filter response . However, by definition, the response of a
low-pass filter at higher frequencies is very small. Thus, a direct
application of the inverse filter response would result in a very
large unbounded gain being applied at high frequencies. This
would introduce instability in the reconstruction, as any errors
at high frequencies (e.g., rounding error) would be unreasonably
amplified. Hence, it is necessary to regularize the inverse filter
response by introducing an upper bound , on the max-
imum gain allowed on the inverse filtering procedure. Given the
mth channel of the target and the classic Fourier transform
operator , the regularized inverse low-pass filtering gener-
ates the new target for this channel as follows:

(15)
Here, the function operates on individual coefficients of
the vector . The phase of the inverse response is maintained
by multiplying with . The outcome of this step is the new
target , where the superscript suggests that this target

corresponds to a half-wave rectified output of the filterbank. The
regularization introduces inaccuracies in the representation, and
in practice there is a tradeoff in the choice of the maximal gain

. Low gain results in good stability of the procedure but
large inaccuracies. Alternatively, a high-gain limits the loss of
information from the regularization, but at the cost of reduced
stability. We have observed that, when increasing , tran-
sients of large amplitude appear at the beginning and end (i.e.,
first and last few milliseconds) of the reconstructed signals. In-
creasing it further will eventually lead to global instability of
the reconstruction scheme. This phenomenon can be used in an
actual blind scenario, i.e., when the original signal is unknown,
to adjust , by increasing its value while monitoring these
onset and offset transients. We have found that dB
is a suitable compromise for speech signals. However,
could be increased further for more stationary signals.
Half-Wave Rectification Inversion: For the two-step ap-

proach, the reconstruction problem is to estimate a signal
whose half-wave rectified output from the filterbank is as close
as possible to the target . Typically, the low-pass filter
inversion described in (15) is not perfect, hence these two
representation can only be close but not strictly equal. This can
be solved using the optimization approach proposed above, by
defining the objective function as follows:

(16)

With this formulation, the gradient is expressed as follows:

(17)

In comparison to (11), the gradient here has a simpler form
and requires approximately times fewer calculations. Thus,
there is a clear advantage of this two-step approach in terms of
implementation.

IV. RECONSTRUCTION FROM STFT MAGNITUDE

A. Direct Application of the Framework

Most studies concerning spectrogram reconstruction have
been conducted on the “traditional” spectrogram, i.e., an en-
velope representation given by the squared magnitude of the
short-time Fourier transform (STFT) coefficients. The STFT
with a window and a hop-size can be implemented as a
filterbank, where individual filters have as impulse response the
original window modulated by a complex-valued exponential
at a given channel frequency:

(18)

The channel frequencies are chosen such that they
span the Nyquist domain and are linearly spaced. The number of
channels, , is related to the length in samples of the window
through . Given these filters, the STFT is applied

to an input signal using (1).
The envelope extraction in this case is the magnitude

function:

(19)



DECORSIÈRE et al.: INVERSION OF AUDITORY SPECTROGRAMS 51

Fig. 2. Spectrogram (in dB) of a quiet, yet audible speech signal (from around 0.05 to 0.35s) embedded between two short bursts (left plot). In a signal re-
constructed from this spectrogram with the standard proposed method ( , center plot), the speech becomes inaudible. However, when using a compressed
objective function ( , right plot), the speech is audible.

We can then define an objective function from the “traditional”
spectrogram, i.e., the squared STFT magnitude:

(20)

With this definition, individual coefficients of the envelope con-
tribute to the objective function with regard to their energy (i.e.,
squared magnitude). A convenient property of this definition is
that the derivative of the squared magnitude function can be ex-
pressed as follows:

(21)

Here, ( is the derivative, the complex conjugate, and
the real part. Hence, by combining (21), (10) and later (2), the
gradient of the objective function can be expressed using the
filterbank synthesis operator, but once again applied using the
original analysis window:

(22)

B. Refining the Objective Function

Optimizing the objective function as written in (20) will
reduce the average error in the envelope representation of the
reconstructed signal. However, we have observed that this ap-
proach would offer poor reconstruction of low-energy regions
of the spectrogram. This can be a problem, as such regionsmight
still be audible. Fig. 2 (left and center panels) provides an ex-
ample of such phenomenon. Left panel shows the spectrogram
of an attenuated speech signal that is embedded between two
short bursts. The speech is relatively quiet, but still audible.
If a signal is reconstructed from this spectrogram using (20),
the speech is no longer audible. The spectrogram of the recon-
structed signal (center panel of Fig. 2) indeed shows that the
speech sample has not been reconstructed.
To account better for low-energy regions of the spectrogram,

a modified objective function is proposed:

(23)

If in (23), the dynamic range of individual contributions
to the objective function is reduced in comparison to (20), which

increases the relative contribution of regions with lower energy.
Because of this compressive behavior, we refer to as the
compressed objective function. For an arbitrary , the gradient
corresponding to this function is given as follows:

(24)
which simplifies to (22) if .
Choosing a value for is a matter of compromise. Ideally,

should be as close to 0 as possible to increase the contribution
of lower-energy regions. However, the smaller is, the more
“flat” the objective function in (23) is, and, therefore, the harder
it becomes to find its minimum. We have found that
was a good compromise as it performed slightly better than

and produced more consistent results than ,
where the method would often fail to find aminimum. Addition-
ally, based on Stevens’ power law for loudness [24],
implies that the contribution to the objective function of in-
dividual time-frequency bins is approximately proportional to
their loudness (e.g., as modeled in [25], [26]). The right panel of
Fig. 2 presents the spectrogram of a signal reconstructed using

in (23). Listening to this reconstructed signal reveals
that the speech sample is now audible and adequately recon-
structed, as can be seen visually on its spectrogram.

V. EVALUATION AND COMPARISON OF TECHNIQUES

A. Implementation, Testing Material and Evaluation of
Convergence

To evaluate the proposed techniques, the framework was
implemented in Matlab. The Matlab implementation of the
l-BFGS optimization algorithm was found in [27] and used
with all default settings, except for one. The termination
tolerance was reduced to avoid the algorithm stopping pre-
maturely. The reconstruction framework was tested using a
speech corpus containing individual recordings of 100 English
words, 50 spoken by a female and 50 by a male. Both were
native English speakers. This corpus was formed from seg-
mented keywords of the NU-6 WIN test [28]. Results depend
on the random initialization of the algorithm. Hence, when
different methods for a same representation are compared in
the following, they will be initialized in the exact same way.
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TABLE I
RESULTS FOR IHC ENVELOPE REPRESENTATIONS

Methods for IHC inspired representations were initialized
using , where is a randomly generated
phase. Similarly, methods for STFT magnitude representations
were initialized by using the same realization of a uniformly
distributed random STFT phase, except for the RTISI-LA
algorithm which involves a particular initialization strategy.
A useful measure to compare algorithms introduced in [10] is

the spectral convergence (a related measure was earlier pro-
posed by [6]). The spectral convergence measures the distance
between target and reconstructed signals, in the time-frequency
(STFT-magnitude) domain. It is the normalized Euclidean dis-
tance between the target spectrogram and the spectrogram of the
reconstructed signal:

(25)

The exact expression of (as well as the way is computed)
depends on the type of spectrogram, and is given either by (8)
or (19). The more accurate the reconstruction (i.e., the closer
the spectrogram of the reconstructed signal is to the target), the
smaller is.

B. Results from IHC Inspired Envelope Representations

Although there are various models of the IHC envelope ex-
traction documented in the literature, most use a similar struc-
ture and differ only with regards to the low-pass filter order
and cutoff frequency (e.g., [11], [29], [30]). Here, the IHC en-
velope extraction model from [11] was selected. This model
uses half-wave rectification followed by a second order Butter-
worth low-pass filter with cutoff frequency at 1000 Hz. Time-
domain signals were reconstructed from such envelope repre-
sentations, using both the direct and two-step approaches de-
scribed in Section III, and for the corpus of 100 words. Results,
averaged over the whole corpus, are presented in Table I.
For both methods, the maximum number of iterations was

set to 80, but the algorithm often stopped prematurely without
being able to find a better solution (particularly for the two-step
approach). Hence, the average number of iterations and elapsed
time are also presented in Table I, along the averaged spectral
convergence expressed in dB. In terms of spectral conver-
gence, there is a substantial benefit for the two-step approach. In
addition, from a practical point of view, the two-step approach
has a clear advantage with much shorter computation time.
In addition to the spectral convergence, and since we have

knowledge of the original signal, it is possible to measure the
root mean square (RMS) error. The normalized RMS error of
the reconstructed signal with relation to the original signal ,
is expressed with the Euclidean norm as follows:

(26)

This assumes that the signals have the same number of sam-
ples, which is the case here. The RMS measures reconstruction
errors in the signal domain, whereas the spectral convergence
measures an error in the spectrogram domain. The , av-
eraged over the whole corpus, is presented in Table I. In terms
of normalized RMS error, while both perform well, the two-step
approach performs better than the direct approach.

C. Results for STFT Magnitude

As with many studies presenting new or improved methods
for spectrogram inversion (e.g., [5]–[7], [9], [10], [21]), we use
the Griffin and Lim (G&L) algorithm from [4] as one of our
baselines to evaluate our method. In addition, the following re-
sults will also be compared to the more modern “real-time it-
erative spectrogram inversion with look ahead” (RTISI-LA) in-
troduced in [5]. The amount of look-ahead was set to 3 frames,
which is the configuration adopted in most scenarios presented
in [5].
As mentioned earlier, the spectrogram is determined by a

given window , which determines the number of frequency
points, and a hop-size (sometimes given as a percentage of
overlap between neighboring windows). As a thorough investi-
gation of all parameters related to traditional spectrograms is be-
yond the scope of this paper, results from a common parameter
set is presented: a 1024-sample Hann window, with
(i.e., 75% overlap). This set was used in [5].
Fig. 3 compares the spectral convergence measured in dB as

a function of iteration number (left panel) and computation time
(right panel) for our suggested method, using an uncompressed
( ) and compressed ( ) objective function, as well
as for the Griffin and Lim (G&L) and the RTISI-LA methods.
Spectral convergence and computation time were averaged over
the 100 available speech signals. Despite the care taken to force
the l-BFGS algorithm to stop at a requested number of iterations,
the algorithm with a compressed objective function sometimes
failed to find a better solution and stopped prematurely. This
occurred for 15 of the 100 utterances and is a consequence of
choosing a low value in (23). The average spectral conver-
gence in the left plot of Fig. 3 includes these outliers. However,
they were excluded from the average in the right plot, as they
would bias the average computing time towards lower values.
The absence of these outliers in the right plot also explains why
the spectral convergence for l-BFGS ( ) is lower by
about 4 dB in comparison to the left plot. Computation times
reported on the right plot are meant to be compared in a rela-
tive way, as they are strongly influenced by the implementation
(which may not have been optimal) and hardware used. In par-
ticular, our implementation of the RTISI-LA is sub-optimal in
terms of computation time, due to the limitations of the soft-
ware used (Matlab). Its computation times are reported for the
sake of completeness, but should not be compared in absolute,
nor in relation to other methods. However, in [5], the accuracy
of the reconstruction is measured in terms of “signal-to-error
ratio” (SER), which is simply the opposite (when expressed in
dB) of the spectral convergence. Although they were derived
from a different speech material, the accuracy of the signals ob-
tained from our implementation of the RTISI-LA is comparable
with the results presented in [5].
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Fig. 3. Spectral convergence as a function of the number of iterations (left panel) and computation time (right panel), measured for the Griffin and Lim algorithm,
the RTISI-LA algorithm with 3 look-ahead frames, and the proposed algorithm (labeled l-BFGS) when and . These results are averages obtained
over 100 individual word tokens, with the same random initialization for the three methods. The l-BGFS method with terminated early for 15 of the
speech tokens. These early terminations are included in the left plot, but not in the right plot.

Our proposed method with an uncompressed objective func-
tion ( ) exhibits similar spectral convergence to the G&L
algorithm. However, the G&L approach is much less computa-
tionally intensive. Introducing the compressed objective func-
tion (i.e., when ) substantially changes the results. Our
proposed method outperforms G&L from the start and shows a
reduction in spectral convergence of around 10 dB at 50 itera-
tions. Because of the above-mentioned outliers in the average,
this advantage is reduced slowly as more iterations are consid-
ered, down to 5 dB. If the outliers are not considered in the av-
erage, the 10 dB advantage of the proposed method over G&L
is maintained across iteration number (as seen on the right plot
of Fig. 3). The RTISI-LA is slightly better for the first 15 itera-
tions, after which it falls behind our proposed method.
Further analysis was conducted with different degrees of

overlap in the spectrogram. Our method produces very similar
results for both lower and higher overlap. The G&L method
tends to provide more accurate results for lower overlap,
though still less accurate than the optimization approach. The
RTISI-LA performance is strongly influenced by increasing
the amount of overlap while keeping the same number of
look-ahead frames. If the overlap is increased such that more
than frames overlap at a given instant, then the RTISI-LA
performance is impaired and the spectral convergence will not
decrease further after some iteration (details can be found in
[5]). A solution is to increase , but this significantly increases
the computation time.

VI. DISCUSSION

A. Advantages of the Proposed Framework

In this study, a framework for reconstructing time-domain
signals from an arbitrary multi-channel envelope representation
(i.e., a spectrogram) was presented. The framework is based on
minimizing a distance measure (the objective function) between
the spectrogram of a signal and a target spectrogram by means
of a numerical optimization algorithm. A necessary condition
for the framework to be applicable to a given representation is
for the gradient of the objective function to be efficiently com-
puted. This was shown to be the case for both “traditional” and
auditory spectrograms. In addition, a fundamental advantage of

this approach is that it does not rely on having a mathematical
inverse for the time-frequency representation. Various methods,
including [4], rely on projecting the signal back and forth be-
tween time and time-frequency domain. This is made possible
for “traditional” spectrogram because an inverse STFT is avail-
able. But there is no such inverse for the combination of Gam-
matone filterbank and IHC envelope, and similar iterative pro-
jection strategies cannot be applied in that case.
The main advantage of this framework over more specific

methods resides in the fact that the objective function can be
tailored to a specific problem. The flexibility of this definition
allows the use of the same method for different problems (e.g.,
both traditional and auditory spectrograms). In theory, other
combinations of filterbank and envelope extraction schemes
could be considered, as long as the gradient of the objective
function can be efficiently computed. Further, the definition of
the objective function can be fine-tuned to a specific problem.
For example, a compressed objective function was shown
to improve substantially the reconstruction accuracy. Other
scenarios involving adjustments to the objective function
could easily be imagined. For example, a frequency-weighted
objective function could be used when accurate reconstruction
is needed only in a given frequency range, or when the target
spectrogram is unknown in some range.

B. Methods Comparison for Traditional Spectrogram
Inversion

Three methods for “traditional” spectrogram inversion were
compared. Although the framework presented here achieved the
lowest overall spectral convergence when using a compressed
objective function, the two other methods would have signifi-
cant advantages in specific scenarios. The Griffin & Lim algo-
rithm [4] was both the fastest and easiest to implement. It is a
safe choice to consider when low computation time and ease
of use is more important than achieving a more accurate recon-
struction. On the other hand, The RTISI-LA method [5] has the
clear advantage that it is compatible with real-time processing.
It was also the most accurate for a low iteration number (below
15 in Fig. 3), the scenario for which it was designed. How-
ever, maintaining its accuracy for representations with higher
overlap involves increasing the number of look-ahead frames,
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Fig. 4. Illustration of the stagnation phenomenon: phase difference between
STFTs of original and reconstructed signal using G&L (left) and when using
the proposed method (right) with a compressed objective function ( ),
both after a very high number of iteration.

which will reflect on the computation time. Overall, our pro-
posed framework is best suited for offline spectrogram inversion
where maximum accuracy is more important than computation
time.

C. Reducing the Intrinsic Limitation of Reconstruction from
STFT Magnitude

A substantial improvement in the accuracy of the reconstruc-
tion was observed when introducing the compressed objective
function (see Fig. 3). We relate this improvement to a release
in the intrinsic limitation faced when reconstructing traditional
spectrograms. This limitation was originally referred to as stag-
nation in [31]: because the magnitude suppresses all informa-
tion about the absolute phase, there can be a phase mismatch
between local regions of the STFT of the original and recon-
structed signals. To improve reconstruction further, this mis-
match must be reduced. Thus, phase shifts must be applied to
large time-frequency regions of the STFT. In terms of our op-
timization approach, this means that a slightly better solution
exists, but it may be very “far” away in the signal domain. Stag-
nation causes waveforms of original and reconstructed signals
to present strong discrepancies in the time domain, even if very
low spectral convergence was achieved. This can limit the utility
of as a performance metric.
To illustrate stagnation, Fig. 4 presents the phase difference

(modulo ) between the STFT of original and reconstructed
signals for two methods. In the left panel, the signal was ob-
tained using G&L with 1000 iterations, which is sufficiently
many to assume no significant further progression of the algo-
rithm. For this specific case, a spectral convergence of dB
was measured. In the right panel, the proposed method with
the compressed objective function was used. It stopped after
467 iterations, leading to a spectral convergence of dB. As
only relative phase is relevant, the color bar was omitted to save
space, but both plots are on the same scale. Although for both
methods the magnitude difference between the STFT of orig-
inal and reconstructed signals would be very small everywhere,
the phase differences are far from uniform across the time-fre-
quency plane. However, the phase difference in the right panel
is smoother than in the left panel, suggesting that the use of the
compressed function leads to signal estimates that are less prone

to stagnation. This could explain the significant improvement in
spectral convergence that can be observed on Fig. 3.
When the compressed objective function is used, the low-

energy regions of the spectrogram contribute more than they
would if either the uncompressed function or the G&L algo-
rithm was used. It appears reasonable that, in order to avoid
stagnation, one needs to have a good estimate of the phase of
the STFT not only in high energy regions, but over the entire
time-frequency plane. By increasing the contribution of lower
energy regions, the proposedmethod provides better reconstruc-
tion of these regions. This, in turn, provides a more consistent
estimate of the phase over the whole time-frequency plane, and
limits stagnation.

D. Reconstruction from Auditory Spectrograms

While stagnation is a problem that is intrinsic to the way the
“traditional” spectrogram is defined, it might not affect other
types of spectrograms. We believe that, despite their higher re-
dundancy in relation to “traditional” spectrograms which are
decimated in time, this is the main reason why reconstruction
of auditory spectrograms was shown to be more accurate (par-
ticularly in terms of a time-domain metric such as ). Un-
like the magnitude function that removes the absolute phase of
a signal, the half-wave rectification step in the IHC envelope
extraction sets negative portions of channel outputs to zero, and
therefore still maintains basic information regarding the abso-
lute phase of the signal. This means that there is no sign inde-
terminacy and thus no stagnation. Although the reconstruction
from IHC envelope provides signals with spectral convergence
that is comparable to the one obtained when reconstructing from
STFTmagnitude, a close match between the waveforms of orig-
inal and reconstructed signals can still be reached (as seen in the

values in Table I).
When comparing the one- vs. two-step approaches, there is

a clear advantage of the two-step approach in terms of recon-
structed waveform accuracy (i.e., ). For the direct ap-
proach, errors presumably consist of a misestimation of both
magnitude and phase, due to inaccuracies or round-off errors
in the estimation of the gradient. However, for the two-step
approach, the regularized low-pass filter inversion introduced
some magnitude errors at very high frequencies but preserved
the phase. As the RMS error is more sensitive to errors in phase
than in magnitude, this could explain why the RMS error in the
two-step approach was much lower than in the direct approach.
The lower value, along with a significantly reduced com-
putational load, favors the two-step approach over the direct
approach. However, the direct approach has the advantage that
it does not require any tuning of parameters, such as in
(15). This may be advantageous when the original signal is un-
known and highly non-stationary, such that the stability of the
reconstruction cannot be easily assessed. In addition, there is
a monotonic relationship between spectral convergence, (25),
and the objective function for the direct approach, (9). Since
the two-step approach achieves a lower spectral convergence
than the direct approach, this means that it finds a lower min-
imum than that found by the direct approach objective function.
Hence, in optimization terms, the two-step approach appears to
be better conditioned.
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In [17], the authors presented a technique to recover a time-
domain signal from the half-wave rectified output of a filter-
bank. This is quite similar to what the two-step approach of
the present algorithm does after inversion of the low-pass fil-
tering. Interestingly, when the low-pass filtering inversion was
bypassed and a “perfect” half-wave rectified filterbank output
was used as a target in (16), the original time-domain signal
could be recreated perfectly (i.e., with a on the order of
the quantization error). This suggests that the main limiting step
in the framework we present is the low-pass filter inversion.

E. Application to Inconsistent Spectrograms

Most spectrogram inversion methods, in practice, are used
on inconsistent spectrograms, i.e., two-dimensional representa-
tions that were not directly obtained from (3). These could be
the results of processing applied to spectrograms, spectrograms
resulting from a binary mask (e.g., for source separation),
a grayscale image, or an arbitrary two-dimensional set of
coefficients. In such cases, the performance of any algorithm
will be very case dependent and, to our knowledge, there is
no standard test for the performance of inconsistent spectro-
gram inversion. Thus, we will limit ourselves to a qualitative
discussion. From our experience, the method proposed here
achieves similar results as the Griffin & Lim algorithm [4] for
processed traditional spectrograms. A more interesting result is
observed for inconsistent auditory spectrograms, which appear
to be particularly resilient to modification. We have observed
that inverting an auditory spectrogram that had been modified
in a “naive” way would often yield a signal whose spectrogram
would be close to the unmodified, original spectrogram. We
believe this to be caused by the very high degree of redundancy
in auditory spectrograms, more than a flaw in our method. As
opposed to “traditional” spectrograms, auditory spectrograms
retain fine-structure information in low frequency channels
where the center frequency is below the cutoff frequency of
the low-pass filter involved in the envelope extraction. This
results in auditory spectrograms having a complex, intricate
structure, particularly in low-frequency regions. Any naive
modification, even if very subtle, will yield a “very” inconsis-
tent spectrogram for which the closest consistent spectrogram
will be the original, unmodified one. Therefore, much more
care must be taken when processing an auditory spectrogram.
Its particular redundancy has to be taken into account in order
for the processing to be successful.

F. Implications for Current IHC Models

The method based on IHC envelope representation was ca-
pable of reconstructing a time domain signal with high accu-
racy. This has implications with regard to modeling human au-
ditory processing. While the details vary across current models
of auditory processing, they all involve envelope extraction ap-
plied to the output of a filterbank. Because of this envelope ex-
traction, it is often assumed that, for high-frequency channels,
information regarding the temporal fine structure (i.e., the high
frequency carrier fluctuations that are amplitude modulated by
the envelope) is lost. However, the reconstruction method pre-
sented here suggests that this information could be recovered by

processing envelopes across frequency channels. This interpre-
tation is consistent with results from [32]. In [32], the authors
provided a theoretical framework for evaluating the neural basis
for the perceptual salience of acoustic temporal fine structure
and envelope cues. In their framework, temporal fine structure
(carrier) information could be retrieved from (across-frequency)
envelope information.

VII. CONCLUSION

An optimization-based approach using gradient based
methods in the time domain to reconstruct signals from
multi-channel envelope representations was suggested. This
approach offers two main advantages over traditional methods:
it can be applied to a wider range of spectrogram classes and it
offers more control to improve reconstruction accuracy. Suc-
cessful implementations to invert both auditory and traditional
spectrograms were presented. Successful recovery of time-do-
main information for auditory spectrograms suggests that
temporal fine structure information assumed to be lost during
IHC transduction can be recovered through across channel
processing. For STFT magnitude envelope representations,
the proposed method outperformed the algorithm of Griffin
and Lim [4] in a standard STFT configuration. An analysis of
the results suggested that this approach reduced the intrinsic
limitations usually encountered when performing traditional
spectrogram inversion.
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