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with possibility for cavities
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Abstract

Eigenfrequency optimization for 3D continua is formulatad exemplified by the
geometry and boundary conditions of a thick plate. Numéfinde element models
are based on four node tetrahedra and results from subgpeateoins give directly the
basis for the continuum redesign. The 3D modeling with adamgmber of elements
has the possibility in optimal design to obtain (as found)ardy holes but also cavities
in the continuum. Sensitivity analysis is presented on theent level with simple
physical interpretation of the involved terms. This gehegault has general value for
control of eigenfrequencies. It is found that in the comboraof partial differentiation
with the chain rule of differentiation, a specific notati@mieeded and a suggestion is
presented.

The optimization method is based on a derived optimalitiedon, and as such
the maximization problem change to a problem of determimimigsign with uniform
values of this criterion. Non-linear stiffness interp@atmay be a physical reality. A
two parameter interpolation function is incorporated gtiedl, also in the sensitivity
analysis and the optimality criterion, but without fociugion 1-0 optimal solutions.
Two cases of boundary conditions, two cases of total amdumiaterial, and cases of
linear and non-linear stiffness interpolation are studied
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1. Introduction

Optimal design or control of eigenfrequencies and eigerenad the design pro-
cess has many advantages; either in the passive senseiftingresonance by moving
the eigenfrequencies as far away as possible from an ektcigation frequency or
e.g. for avoiding the possibility of internal resonance.eEttive point-of-view is to
design structures with specific eigenfrequencies to madmibrations i.e. by utilizing
the resonance phenomena. Eigenfrequencies can also sexwestraints on optimiza-
tion of e.g. compliance and or strength, by including a lolweand on the smallest
eigenfrequency the risk of ending in a degenerated streig$reduced.

Optimization can normally be performed either using sibape or topology op-
timization. The optimization can be performed on the strtadtlevel or directly on
the continua, and the simplest case is to obtain maximumleshaigenfrequency.
Through half a century, research has been devoted to thisctais listed in the review
[1]. The more recent literature presents eigenfrequentiynigations with focus on
obtaining clear 1 - 0 (solid - void) optimal designs, i.e.sigas without intermediate
(gray) densities. Beams, plates and 3D continua are treatédifferent numerical
tools (penalization’s) to obtain 1 - 0 designs are appliethoAg these papers are [2],
[3], [4], [5], [6] and [7]. Note, that 1 - O optimal designs istrthe goal of the here pre-
sented research, that may be classified as traditional ptaaipation, where stiffness
interpolation should be viewed instead from a physical pofview.

The aspects of iteratively redesign for control of eigegfiency include three steps;
analysis, sensitivity analysis and decision of redesigratds a better design. For 3D
continua the numerical approaches in these steps mayiedgdie finite element (FE)
analysis combined with subspace iterations in step 1. Eprathe sensitivity analysis
on the system level is simplified as shown by Wittrick [8] andhe present paper it is
further simplified down to the element level, resulting irygpically interpreted factors.
This last point of the sensitivity analysis (gradients) @ well known, but must be of
interest also independently of design optimization.

The design is seen as a material distribution in a limitedfexed volume as design
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space. This space is divided into a large number of elemé&W¥ith design described
by the local relative material density in each element, tilmer of design variables
equals the number of elements, say 100.000 as exemplifibdaliick plate model. A
simple recursive, heuristic redesign is based on a deripéchality criterion, closely
related to the analytically obtained derivatives of sqdaigenfrequency as a function
of changed local material density.

For 3D continua the four node tetrahedron finite element bastant strain, stress
and energy density, so an assumption of also constant alaterisity is justified. Then
the FE analysis as well as the sensitivity analysis can bedoas explicit formula and
be performed without numerical integration within eachreat. Although the sensi-
tivity analysis at the system level are presented in [8] iiitither reference to Jacobi
[9], the involved simplicities are not well known outsidetbptimization community.

With a thick plate as illustrative example in a 3D formulatiih must be noted,
that extensive results for optimal design of plates arelaivigi, mostly based on dif-
ferent 2D theories (simple plate theory, Mindlin plate ttyeand theory for laminated
plates). Stiffness (compliance), strength and eigenfragy are often taken as objec-
tives. Among many references to the 2D plate eigenfrequeptiynizations a few are
listed; an early paper by Olhoff [10], and the eigenfreqyesptimization for laminates
by Bert [11], that later are followed up by several extensid®olid plates with ribs are
of specific interest and complicated to deal with, an initigatpaper is by Cheng and
Olhoff [12]. Note, that the plate like example of the presgagper is optimized for fixed
boundary conditions and fixed outer geometry with uniforimkhess. It is therefore
rather different from the above mentioned references.

The layout of the paper is as follows. In Section 2 a generalehis described
as essentially being given by stiffness and mass matricesjraessence not related
to a specific continuum or structural model. In a time indejeen formulation focus
is on elastic energy amplitude and kinetic energy amplitiod¢h to be accumulated
from the respective element quantities. Section 3 comnmntke normalized guanti-
ties directly obtained from the subspace iteration methaod,the specific simplicities
for the four node tetrahedron are described in Section 2iti@h 4 derives the result

of the sensitivity analysis, primarily based on stiffnessagell as mass direct propor-
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tional to the material density for the element. For the elanséffness this is seldom
valid and a more general function of material density is ssagy as proportionality
factor. Three different functions are discussed, two omarpater functions and a two
parameter function, applied here. Simplicity, which is amfacus of the present pa-
per, is obtained even in the extended sensitivity analydisam interpolation function.
Statement of optimization problem and derivation of neagseptimality criterion is
presented in Section 5 with a short outline of the appliedib&c numerical procedure
for numerical solution in Section 6.

The remaining part of the paper is related to an examplemigitig the small-
est frequency for a thick plate modeled in 3D. Section 7 wikador geometry and
material, and with verification of the accuracy of the FE miodgeneral aspects of
optimized results are included in Sections 7.2/and 7.3.|Eiesigns after 15 redesigns
and corresponding distribution of optimality criteriorlwas are presented in Sections
|8 and 9

2. Elastic and kinetic energies on system and element level

Modeling of a 3D continuum/structure is assumed descrilyeal fositive definite,
symmetric system stiffness matr&and a positive definite, symmetric system mass
matrix M. For this model the smallest eigenfrequencgnd the corresponding eigen-

moded is obtained by the amplitude equilibrium
Sd = w?Md @)

Simplicity is in focus, so we assume the smallest eigenvaftiéo be simple, i.e.,
non-multiple. For a given design (givéhandM) numerical solution to this problem
is in a standard setup obtained by the method of subspaegiorerincluding test of
non-multiplicity.

With localized design parameteps, the goal is to controly and specifically to
maximize the smallest. For this, the information about the sensitivity, i.e., tiva-

dientsdw? /dp. for all elements: are needed. To obtain this, the amplitude of total



elastic energy/ is written on system level as well as on local element level.
U=d'sd=)» U.=> diSd. =) p.dlS;d, @)
€ e e

where the local stiffness matrix at first is assumed propoati to the material density
design parametes,, with S,y independent of design. The system stiffness mégrix
may be of order 100000 and the element stiffness mat8case here of order 12. The
proportional dependenc® = p.S.y is later substituted by a more general function
f(pe)- The fixed matrixS, ; may describe linear elastic isotropy as well as linear iglast
anisotropy, but it is not changed during design iteratid®ignilarly, the amplitude of
specific (without factow?/2) kinetic energyl” is written on system level as well as on

element level
T=d'Md=> T.=> dM.d. =) p.dM.sd. (3)

s WhereM .y is independent of design.

The design parameteps are non-dimensional, positive quantities in the rahige
pe < 1 and may be interpreted as relative material volume dessiiéth V. being the
reference volume corresponding to the design parametéie total amount of a given
material voluméy/ is taken as a given quantity, the corresponding constrgumtéon

is
g:ZpeVe*V:() (4)

The system stiffness matr&is the sum of element stiffness matricgsin the sense
of accumulation according to the FE setup; similarly forglistem mass matrid and

the element mass matrichk.. We write this symbolically

S=) S, M=> M, (5)

The non-dimensional design parameggtris local and only has influence on the cor-
respondingS, andM.. In order to restrict the complexity we throughout the paper

assume the influence on the element mass matrix to be singgenionality

Me:peMef (6)
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This is also termed linear interpolation. The influence @dlement stiffness matrix is
also local and do not change the relations between the thdibstiffness components.

However, a non-linear interpolation functigiip. ) may be the proportionality factor

Se = f(pe)sef (7)

The sensitivity analysis may from an initial look seem coicgted but it ends up
with a simple formula that contains terms of direct physintdrpretation. The deriva-
tion involves the need for a specific notation to clarify tlzet@l gradients in connec-
tion with the chain rule of differentiation. Earlier, extied index notation has been
applied, and having not in the literature located a directhematical symbol, we in
the present paper suggest a "hat” notation.

The problem of maximizing an eigenfrequency is in the prepaper exemplified
for a three dimensional (3D) model of a continuum; exampde®D plane models are
presented in [13]. The basic element for the finite elemerdeaiwis a 4 node tetra-
hedron element, and the accuracy of the FE models are cothftasmme analytical
results. There are interesting aspects of eigenfrequamalysis related to the 3D FE
models as compared to 2D plate models. Some comments affitateyns are in-
cluded in the paper, but the main goal of the paper is to contatesthe simple and
general sensitivity analysis with physical interpretatiand to show specific design

optimizations; resulting designs which may include in&icavities.

3. Analysisby FE subspaceiterations

For a given continuum/structure, analysis by subspacatiter gives a series of
modes, described individually by an eigenveatporthogonal to the other determined
eigenvectors and normalized so that the specific kinetieggriE = 1. With this nor-
malization of the eigenvector, the specific elastic enéfgg numerically equal to the
eigenvaluev?, i.e., for the numerical valuds = w? = w?T, whereT andU are the
time independent amplitudes.

Let us assume an eigenvalue problem described by the syiompesitive definite
stiffness matrixS and the symmetric positive definite mass malixAn assumed sim-

ple eigenvector (non-multiple eigenvalue)dgrom which the system specific elastic
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energy (twice the strain energy)isand this energy may be accumulated from element
energied/, as stated in (2). Analogously the system specific kineticggn€ may be
accumulated from element specific kinetic enerdigas stated i (3)

In the sensitivity analysis we use the following resultsriranalysis

w?,U,, T, with d normalized such that

U= U=w? T=Y T.=1, w*=U/T (8)

whereU/T is the Rayleigh quotient. Further we define element Raylejgbtients

U./T., that in a somewhat loose notation are termed element sjfraguencies

, U. dlsd.

YT T, T dM.d, ©

3.1. Chosen 3D finite element model

The finite element modeling with an in house program is basefdar node tetra-
hedron elements with constant strain, constant stressarslant energy density, and
then analytical expressions can be used to a large extenBextersen [14]. The mesh
modeling starts with a brick model and each brick is then itaadard formulation
divided into six tetrahedra, as illustrated in Figure 1.

Analysis and design changes are based on the tetrahedrogl,rbatithe results
(density design and energy densities) may be presented @s vakues for the brick
of the six corresponding tetrahedra. Two resulting quiagstiof a tetrahedron are of
specific interest for the sensitivity analysis and for th&roglity criterion (OC). The
element specific elastic ener@j, in tetrahedrore follows directly from a displace-

ment mode which give a constant elastic energy densignd thus
Ue = uepeve (10)

whereV/, is the geometric reference volume of the tetrahedron elemen
The element specific kinetic ener@y in element need to be determined from the
element displacement modg and a consistent mass matrix with no coupling between

x—,y—, z— directions. The specific kinetic energy can then be dividéalthree terms,
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Figure 1:Eight node hexahedron element divided first into two wedges elemeathan into six

tetrahedra elements, numbered in circles. The numbering of the eidés md the hexahedron

is also related to the corner nodes of the tetrahedra.

that exemplified for the:— direction is

Me dT

(TS)ZL’ = % ex

e With me = parpeVe (11)

_ = RN
= = N

N = =
N

1

wherem, is the mass in element The mass density with physical dimension kg/fs
termedp,, to distinguish from the non-dimensional material volumesites, that tra-
ditionally has the notatiop.. From (11) a rather simple analytical expression follows.
In general the FE model is based on explicit formula and noerigal integration is

needed.

4. Sensitivity analysisfor squared eigenfrequency

The design parameteps are assumed to be local, positive non-dimensional quan-

tities in the intervald < p. < 1. With later interpolation extensions we primarily
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assume both the element stiffness maBixand the element mass matii&. to be

proportional top,, i.e.,
Se:pesef7 Me:peMef (12)

with both S,y andM.; independent of design.
The gradienbw?/dp. = d(U/T)/dp. is determined at the element level. To avoid

extended indexing a hat notation is introduced by

20 _ (30> _ <30> (13)
ape ap@ fixed displacement mode ap@ fixed strains

and with this short notation the gradient is determined]lfira the element level

T

> g2 5 T or 50, T,
dw? 0w od  de? 1 <8U T > 1<aUe_ 23Te> 14

dp.  od dp. + Ope -T2 Ope B Ope Ope “ Ope

becausé)w?/dd = A(U/T)/dd = 0. This result, based on the assumption of sym-
metric matricesS and M, is given by Wittrick [8] with further reference to Jacobi
[9]. Inserting the assumptions of linear depende&b’\yl//ﬁpe =U./pe andame =
T./p. gives the local result where the gradient is expressed taf &ergies
Ow? _
Ipe  Tpe

(U, —’T,) = TTp (2 —w?) (15)

The gradient is proportional to the difference between tivallratio of energies (lo-
cal Rayleigh quotient or termed local squared frequen¢yand the system squared
eigenfrequency?.
From expression (15) follows directly the sign of the gradias allT,, T, p. are
non-negative quantities
Ow? ow? ow? 9 9

>0 for w?>w?, <0 for w? <w? =0 for =
Ipe YT 0 D, CeSE p, Yo T

(16)

To increase the frequency of the continuum/structure weeasep,. for w? > w? and
decrease,. for w? < w?. A design change may be limited by the volume constraint
and by the fact that sensitivity analysis will change wibanging the design. The
solution to these problems is obtained by the heuristiafitez optimization procedure,
shortly described in Section 5.
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4.1. Modifications from stiffness non-linear interpolatio

The assumed linear dependence of the element stiffnesmatthe design pa-
rameterp, (12) may be questioned and an extended analysis is needegivascthe
involved modifications. We do not change the assumptiomefli dependence for the

element mass matrix, but modify (12) to

S, = f(Pe)Sef» M. = peMcy (17)

wheref(p.) is an interpolation function, still witl$. ; independent of design parame-

ters. From this follows

oU. _df/dp.,. _ f'(pe)
pe  flpe) Ve = fpe) Ve (18)

which for linear interpolatiorf (p.) = pe givesaﬁ;/ape = U, /pe as earlier applied.
With the modification[(17) the gradient of the squared eigamnfency((15) is mod-
ified to

ow? T, - . pef'(pe)
— = =% (A(pe)w? — w?*) with the definition A(p,) = Z55 =5 (19)
Ope  Tpe ( (pe) ) (pe) f(pe)
The conclusions in (16) is modified to
2 2 2
Ow >0 for A(pe)w? > w?, Ow <0 for A(pe)w? < w?, ow” =0 for A(pe)w? = w?
Pe ap@ ape

(20)

and normallyA(p.) > 1 for p. > 0.

The non-linear stiffness interpolation is defined by a fiorctf = f(p.) where
the functionf is the same for all the local density design paramepgrsA simple
polynomial p* is often applied with the single parameter, being the slope of at
pe = 1. If k1 is three, i.e.f = p2, then the interpolation is often termed SIMP. In the
present research a two parameter function is applied, Wwéhwo parametersg, «1
being the slopes of atp. = 0 and 1, respectively.

In the numerical examples we specifically chosge 0.1 andk; = 3. This function
together with the function SIMP is illustrated to the leftiigure 2. The applied func-

tion, termed NLPI (Non Linear Penalization or Interpolabiois analytical presented

10



in [13] with discussions relative to SIMP and also relatiseanother one parameter

interpolation function, termed RAMP. This function f§p) = m, again

with the single parameter being the slopefadt p. = 1.

f(pe)
1 T T T T
— NLPI K1 = 3, Ry = 0.1
08F ___ SIMPk, =3 i
----- RAMP ; = 3
0.6 A
—— Linear /./'/
0.474 + A/
0.4+ 4 .
’° /
/'/ /
- /
0.2 e s —
R 7
/’/ - 7
0.058 A~—= - pe
0 s | =~ 1 1 1
a) 0 0.2 0.4 0.6 0.8
pef (pe)
Alpe) = 5565
4 T T T T
35k = NLPI R1 = 3, Ro = 0.1 N
T T SIMPk; =3
3 _________________
o5k T RAMP ; = 3 G
5L Linear /_,/ |
150 PPt -
1 f=mm T
0.5F B
Pe
0 | | | |
b) 0 0.2 0.4 0.6 0.8

Figure 2: a) The interpolation functions, with the specifitles corresponding @& = 0.25 andp. = 0.75
to be used in Section 7.2. b) The factors for the sensitidiéfined in[(19).
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4.2. Remarks on sensitivities
The gradients (15) and (19) constitute the basis for an d@gion procedure and

different possibilities exist. The gradients are impattan general control of eigen-

frequencies and the simplicity gives a direct physicalrimtetation:

150 ¢ The change in squared eigenfrequenéy when a local material volume den-
sity p. is changed, is determined directly by corresponding loaahtjties from

ordinary analysis.
e The gradient is proportional to the local relative kinetiesgy amplitudel,. /7.
e The gradient is inversely proportional to the actual dgnsit

155 e As stated in/(16) and (20) the gradient is proportional tadifference between a
weighted local squared frequency (local Rayleigh quoYiant system squared
eigenfrequency, i.e., proportional td (p. )w? — w?), with A(p.) = 1 for linear

proportional stiffness interpolation.

5. An optimization problem and its optimality criterion

We study the optimization problem to maximize an eigenvghssumed single
and being the smallest one} for a given total amount of material, specified by the
volumeV. We assume this volume constraint to be active and statertidemn with

non-dimensional densitigs as design variables

Maximize w?  (objective)
for all densitiesO < pmin < pe < pmax < 1 (size limits for design variables)

and g = Z peVe —V =0 (active material constraint) (21)

The OC with only a single, active constraint is proportigyabetween the gradi-

ents of the objective and the gradients of the constraat, i.

Ow? dg 1 Ow?
B A P AV, = A V. o A (22)

12
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with the same valua for all elements (sub-domainghaving an active design param-
eterp. wherepmin < pe < pmax- FOr a given design a number of different values
result, and we want to change the design in order for thesesab become more equal
for the active design elements (resulting in the unknownraage multiplier)). With
linear stiffness interpolation the gradieit?/dp. is given in (15) and the optimality

criterion (OC) is

T. 1
= g Wl W) = (23)

With stiffness interpolation functiorf(p.) the gradienbw?/dp. is given in (19) and
the OC is

T. 1 _ pef' (pe)
e = 7 Ape)w? —w?) = X with A(p,) = 24
7o (et =) (o) = %505 (24)
For illustration a specific function&(p. ) is graphically included to the right in Figure

2.

6. Possible heuristic numerical procedure

The optimization problem (21) is by the OC (24) converted poablem of finding
a continuum of best possible uniformity of the values of theal OC (\.). Size limits
and the active material volume constraint[in (4) normallyndo allow for satisfying
the OC everywhere. Iteratively the active size constraintsfulfilled.

A heuristic procedure is based on the OC, say (24) with (23hasnore simple
case for linear stiffness interpolation. A recursive pohae for optimization based on
(24) is separated according to the sign of the gradienta (#igA (p.)w? — w?)). The

redesign of the,, follows

For positive gradient§ A (p. )w? — w? > 0)
(Pe)new = (Pe)currem(l + 4~0)\e/)\max)0'87)
For negative gradient$A (p, )w? — w? < 0)

(pe)new = (pe)current(l - 0~8)\e/>\min)0'87] (25)

13
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where the values okpmin < 0, Amax > 0 are determined during the evaluation of the
gradients. The specific values n (25) 4.0, 0.8, 0.8 are chiysen experience, acting
as a kind of move-limits and influence the number of recursdgesigns (number of
eigenvalue analysis). The iteratively (without FE anaysietermined volume correc-
tion factorn relate to the fact that the densities at the limits, or pmax are not known

in advance. Factay strictly keep the specified volume by inner iteration whéest,

at the size limits are localized. The value 0.8 of the powso émits the change gf.

in one redesign, and such a power (also with a lower valudjeés @applied for similar
recursive procedures. The procedure is applied in thewallp examples, and have

earlier been applied with success to different other proble

7. Examplewith different cases

The outer geometry (the design domain) of the illustratikemeple is similar to the
thick, rectangular plate shown in Figure 3. Length, width &émickness are 16m, 8m
and 0.2m or 0.4m. Isotropic material (aluminum) is specifigadnodulus of elasticity
E = 0.7-10* N/m?, Poisson’s ratiov = 0.3 and mass density = 2700 kgimThe
eigenmode of our interest is assumed double symmetric arsdvile can with appro-
priate boundary conditions restrict the FE modeling to atguaf the total model. The
chosen part is shown in Figure 3 by the full lines.

Dealing with only a quarter of the model a more detailed miodeis possible.
Note, that an obtained optimized design may be tested witkearnodel to make sure
that double symmetric eigenmode is the relevant mode. Asuitipte eigenmodes,
the eigenvalue analysis with the method of subspace iberafive full information,
and mode switching during design iteration is thereforeatly taken care of. For
the treated cases the four smallest eigenfrequenciegspamding to double symmet-
ric modes, are determined and the two smallest eigenfreipeare presented for all

design iterations.

14
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|h=0.4morh =0.2m

X
z E =0.7-10"*N/m?
v =0.3
,,,,,,,,,,,,,,,,,,, pu = 2700kg/m?
isotropic material
,,,,,,,,,,,,,,,,,,, a/2 =8m

b/2 =4m

Figure 3: Continuum model, where only the quarter model folysmaand design is shown in full line.

7.1. Verification of the accuracy of the FE model

In order to get some knowledge about the accuracy of the radalagigenfrequen-
cies, a comparison for a specific plate like continuum isqreneéd. The outer dimen-
sions are shown in Figure 3 and simple supports are choseg #ie center line of the
outer surfaces such that an analytical solution is avai|aidsed on thin plate theory
and homogeneity. With these most simple assumption a f@rwiithe smallest eigen-

frequency with one half wave in the- as well as in the:-direction may be derived

w2h | E / b,
(wi1)ss= e\ =2 pm 1+ (a) (26)

Inserting the applied parametefs= 0.2m or 0.4m)=8m, a=16m, £ = 7-10'°N,
v =0.3 andp,; = 2700 kg/ni gives in Hz

to

for h=0.2m — (wi1)ss= 10.35Hz and with linear dependence

for h=0.4m — (wn)ss: 20.7Hz (27)

A FE model with mesh based on equally spaced nodes-iny—, z—directions

equal to 33, 9(in thickness direction) and 65, respectjviehplying 19305 nodes

15



195

200

205

210

215

(57915 d.o.f.), 16384 brick elements, (98304 tetrahediements) and bandwidth
897. With homogeneous material, simple supports and limgarpolation, the nu-

merical FE results corresponding to (27) are

for h=02m — (wi1)ss=9.4Hz and

for h=04m — (wi1)ss= 19.8Hz (28)

Both results[(27) and (28) are approximations and the diffees are found accept-
able for our optimization study. Both applied thicknessestie classified as rather
thick plates. The FE results for the two cases show that teatidependence in (26)

for thin plates is no longer valid.

7.2. Important optimization parameters and

general aspects of optimized results after 15 redesigns

Three conditions have a major influence on the optimizedydesmnd its response.
Firstly, the assumed boundary conditions for the continuaremplified by simple
supported outer boundaries and by clamped outer bounditespreted in relation to
the treated quarter model.

Secondly, the amount of available material, specified by#reentages relative to
a completely full geometry. This is exemplified by 75% (laegeount of material with
less possibility for design changes) and 25% (less matwithllarge possibilities for
design changes). The total amount of material is not sulyjettt optimization; it is
fixed as specified by the equality constraint (4). A parametiidy might be the tool
to optimize this total amount of material.

Thirdly, how does the local stiffness matrix depend on tlealalesign parameter?
This has a strong influence on the optimized design, andtseard shown for linear
proportional interpolation as well as for non-linear iptgliation by a two parameter
interpolation function. The local mass matrix is alwaysuased linear proportional
depending on the design parameter. The local stiffnessaeatand the local mass
matrices are only changed by a factor.

Table[ 1 shows that with both linear stiffness and linear niEg®endence on ma-

terial density, then the eigenfrequency and the eigennm®dealependent of the total
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Table 1: For the continuum with plate geometry, the resuligetgrequencies in Hz) for all treated spe-
cific cases; listed for initial homogeneous design as wellba®ptimized design, all based dn= 0.4m.

Homogeneous design involves equal densities

Boundary  Total Linear stiffness Non-linear stiffness
condition  material interpolations interpolations

volume homogeneous- optimized homogeneous optimized

Simply 75% 19.8Hz> 25.8Hz 15.7Hz> 23.9Hz
supported 25% 19.8H2 44.4Hz 9.5Hz= 22.5Hz
Clamped 75% 38.7Hz 59.1Hz 30.8Hz 53.4Hz
supported 25% 38.7H2 128.8Hz 18.7Hz 81.5Hz

amount of material for a homogeneous continuum (75% or 2b&tnaturally depend-
ing on the outer support. For these two cases the OC valu@8)mives identical dis-
tributions for total amount of material equal to 75% and 259%bl€ 1 also shows that
for non-linear stiffness interpolation, the eigenfreqties depend on the total amount
of material, also for a homogeneous continuum. From (1pfedl for a homogeneous

continuum (all densitieg., assumed equal)
F(pe)Spd = (wp,)peM 4d (29)

where the system matricess, M ; corresponds to full materiapf =1). Thus, the
eigenmodes are not changed for homogeneous valyes biit the eigenfrequency is
changed according to the different factors in/(29). Witlerehce to the eigenfrequency

for full material (v;) we get

f . I
Wp.(homogeneousy— S)E)Wf i.e. with linear f(/)e) = Pe => Wp, (homogeneousj— Wf

€

(30)

The relation between the homogeneous values in Table W®limm the relation (30)
with the values in Figure 2, i.el5.7 = /0.474/0.75 - 19.8, 9.5 = 1/0.058/0.25 -

19.8, 30.8 =,/0.474/0.75-38.7 and 18.7=,/0.058/0.25 -38.7.

17



220

225

230

235

240

245

The distribution of values of OC (24) changes, even with ancjed eigenmode,
but the initial distributions for homogeneous designs afgrinciple similar to the ones
shown for linear interpolation in Figure 4, and thereforé albshown.

Table[1 gives an overview of obtained eigenfrequenciesHerin total eight dif-
ferent cases. Hereafter, each case is presented and éidéndividually with design
history, optimized design and with distributions of OC \esdufor the corresponding

optimized designs.

7.3. More detailed insights from the examples and limitaio

Behind the choice of the specific example are the followingstaerations:

o If for a continuum, the distribution of the values of OC isuadized and shows
non-uniformity, then opportunity to change the eigenfietgy corresponding to
the actual eigenmode is a possibility. This non-uniforniltystrated in Figuré 4

for a homogeneous model with two different support condgio

e The strong influence from the outer boundary conditions éwsh In Section 8
simple supports are assumed at all outer boundaries, whigo® 9 documents

the results with clamped outer boundary conditions at @koioundaries.

e The numerical stability in applying the derived sensit@édtand the OC are seen
by the histories of eigenfrequencies during redesign, asgmted in Figures 5
and 6. The presentations are limited to the two smallesthéigguencies, the
first one to be maximized in full line while the second one idioken line.
Note, that the quarter FE model assumes double symmeténrigdes to be

the physical ones of interest.

e The optimized designs after 15 redesigns are shown with¢baiesponding dis-
tributions of the values of OC that within the possible lisrdire almost uniform
in active design areas, in agreement with the necessarytmndf optimality.
These presentations in terms of nine y planes forz = 0,1,2,3,4,5,6,7 and 8m.
are for simple supports presented in Sedtion 8 and for cldrapgport presented
in Section 9.
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Figure 4: Left the OC values for a homogeneous simple supportete| with linear interpolation. Right the

OC values when the outer supports are changed to clampedarlsoales for the OC values.

Figure 4 shows two distributions, both in nine selected, planesatz=0,1,2,3,4,5,6,7,8m
of OC values for initial homogeneous designs. Negativeasheflects that local ma-
terial should be removed to increase the smallest eigamdrexy, while positive values
reflects that local material should be added to increasentladlesst eigenfrequency. In
the left figure the initial design is based on simple suppartsle the right figure is
based on clamped support, both assuming linear interpaolafistiffnesses and masses.
As expected the actual boundary conditions are of major itapoe. As these two OC
value distributions are rather different, it may be expedtet the optimized designs
are different for these two different boundary conditions.

Figure 5 gives a detailed background for the upper half ofefdbFigure 5 shows
no crossings (mode switching) during the redesigns, buigiarg 5b this might happen
with more redesigns, and the kink of the dotted curve indicabde switching with a
not shown higher order mode. As expected, with less mat@figlres 5b and 5d),
redesign possibilities are larger and larger increaséivelto initial eigenfrequency is
possible.

Figurd 6 gives a detailed background for the lower half ofl@db In Figure 6a it is

seen that the redesigns procedure for this case stops afigegigns, as all sensitivities
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Figure 5: Histories of eigenfrequencies, relative to thellmsieigenfreq
the 2 smallest, double symmetric eigenmodes, during 15 redeslgre

25% material; linear and non-linear interpolation with = 3, ko = 0.1.
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Figure 6: Histories of eigenfrequencies, relative to thellsieigenfrequency for homogeneous design, for
the 2 smallest, double symmetric eigenmodes, during 15 redesigpe cases of clamped supports, 75% and
25% material; linear and non-linear interpolation with = 3, ko = 0.1.
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are negative for the active design variables when 75% nadtenist be used. With
non-linear stiffness interpolation the eigenfrequenaiesgenerally lower as it follows
from the lower stiffnesses. However, the influence from ségles may be stronger and
Figures 6b and|6d shows that this is especially true for tamped supports. Note,
that the drastic improvements seen in Figlires 64 and 6d odee ¢confirmed without
the assumption of double symmetry, as eigenmodes withauhldesymmetry might

then have a smaller value.

8. Design resultsfor simple supports

In relation to the quarter part model of Figure 3, the boupdanditions on the

displacementd,, d, for the assumed double symmetric eigenmodes are

d, = 0 for all nodes of thex — y plane atz =0

d, = 0 for all nodes of they — z plane atz =0 (32)
The additional boundary conditions corresponding to thepk outer supports are

line supportd, = 0 for all nodes of the linex = b/2, 0 <z <a/2,y=h/2

line supportd, = 0 for all nodes of the lined <« <b/2, z=a/2,y =h/2 (32)

22



cp

8m

Figure 7: Simple support, linear interpolation and 75% materieft the optimized density distribution
and right the corresponding distribution of OC values. hinscales for density and OC values; white for
pe < 0.011.

Figure 8: Simple support, linear interpolation and 25% materieft the optimized density distribution

and right the corresponding distribution of OC values. kinscales for density and OC values; white for
pe < 0.011.
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Figure 9: Simple support, non-linear interpolation with, ko = 3,0.1, and 75% material. Left the opti-
mized density distribution and right the correspondingritistion of OC values. Linear scales for density

and OC values; white fgs. < 0.011.

Figure 10: Simple support, non-linear interpolation with o = 3, 0.1, and 25% material. Left the opti-
mized density distribution and right the correspondingritigtion of OC values. Linear scales for density

and OC values; white fgs. < 0.011.
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The comments to the results for simple supports are as fsllow

o All Figures 7 410 show two distributions in the nine selecied vy, planes for

z=0,1,2,3, 4,5,6,7,8m. The left part of each figure shows fitemized design
after 15 redesigns, shown by its resultimgdistribution. The right part of each
figure shows the OC values for the corresponding design., Noaewith active
size constraintsp. = pmin May give large negative OC values and= pmax

may give large positive OC values.

Figure[ 7 shows the final design with history in Figlre 5a. Fuos tlesign a
cavity is seen for: =0,1,2 and 3m in the upper left corner (middle of the total
plate). Note, that rather uniform values (green) of OC) @re obtained except
for domains with active upper constraint, i.e. domaingof= 1. Positive OC
values (blue) are found in these areas of full material &ctoghe outer support).
The white areas correspondgg = pmin = 0.01, i.e., holes or cavities, where the
values of density as well as OC are not shown either. This cemtis valid for

all resulting figures.

Figure 8 shows the final design with history in Figure 5b. Féj8 is similar to
Figure/ 7 above, except that the total amount of availablesriztis now only
25%. A seen in Figure|5b the redesign is not yet converged irerdésigns, still
a clear result is obtained. Note the extension of the cawityp@ middle of the
total plate, here the upper left corner. The resulting itistion for the values of
OC is uniform, positive and close to zero. The thickness efdtter layers for
the cavity is related to the modeling with nine layers in thiekness direction.
Note, that the scales for the many distributions of value®Gfare specifically

related to the individual figures.

Figure 9 shows the final design with history in Figure 5c¢. Féj@ is similar to

Figure 7, but now the stiffness interpolation is changedftimear to non-linear
with the chosen parametets, ko = 3,0.1. A cavity like in Figure 7, and rather
uniform values of OC that are close to zero and negative {@gin active design

domains and positive (green) in domains of full material.
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e Figure 10 shows the final design with history in Figure 5d.uFég10 is similar
to Figure 9 above, except that the total amount of availalgteral is now only
25%. The cavity is sharp, as expected with non-linear g#ffrinterpolation. The
obtained values of OC distribution rather uniform, close¢oo and negative.
Positive OC values (darker green) found for the areas offialierial. The non-

linear interpolation of stiffness implies more sensitiesults.

9. Design resultsfor clamped supports

In relation to the quarter part model in Figlre 3, the boupdanditions for the as-
sumed double symmetric eigenmodes are unchanged spegifi@d)o The additional

boundary conditions corresponding to the clamped outgratpare

dg,dy,d, =0,0,0 for all nodes of the y-z plane =b/2, 0 <y <h, 0<z<a/2

dg,dy,d, =0,0,0 for all nodes of the x-y plan® < 2 <b/2, 0 <y <h, z=a/2
(33)
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Figure 11: Clamped support, linear interpolation and 75% rizdtd eft the optimized density distribution
and right the corresponding distribution of OC values. kinscales for density and OC values; white for
pe < 0.011.

Figure 12: Clamped support, linear interpolation and 25% risdtd eft the optimized density distribution

and right the corresponding distribution of OC values. kingcales for density and OC values; white for
Pe < 0.011.
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Figure 13: Clamped support, non-linear interpolation with <o = 3, 0.1, and 75% material. Left the op-

timized density distribution and right the correspondinstritoution of OC values. Linear scales for density

and OC values; white fgr. < 0.011.

Figure 14: Clamped support, non-linear interpolation with <o = 3, 0.1, and 25% material. Left the op-

timized density distribution and right the correspondingtritbution of OC values. Linear scales for density

and OC values; white fgs. < 0.011.
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The comments to the results for clamped supports are asvillo

In parallel to the presentations for simple support all Fégldl 1 14 show two
distributions in the nine selectad- y, planes for: =0,1,2,3,4,5,6,7,8m. The left
part of each figure shows the optimized design after 15 rgdesshown by its
resultingp,. distribution. The right part of each figure shows the OC vailioe

the corresponding design.

Figure 11 shows the final design after 6 redesigns with histoFigure/ 6a. A
cavity is seen only for = 0 and 1. For this design the distribution of values of
OC is not completely uniform, but negative for all the actilesign parameters
(0.01 < pe < 1), and therefore stopped after 6 iterations. All this intkcdat

optimization with 75% material is difficult.

Figurel 12 shows the final design with history in Figufre 6b.uFéh12 is similar
to Figuré 11 above, except that the total amount of availataleerial is now only
25%. The extension of the cavity is larger and even a holautitrout the plate
is seen. The resulting values of OC are rather uniformlyidisted and close to

Zero.

Figure| 13 shows the final design with history in Figure 6c. urégl13 is also
similar to Figuré 11, but now the stiffness interpolatioehsnged from linear to
non-linear with the chosen parametgisxy = 3,0.1. Cavities at the plate mid-
dle domain are seen. The resulting values of OC distribugierather uniform

and close to zero with positive values (green) at full materi

Figure 14 shows the final design with history in Figure 6d.uFégl4 is similar
to Figurel 13 above, except that the total amount of availaideerial is now
only 25%. With this less material available, the resultiegidn has an extended
hole throughout the thickness in the middle of the platehRatiniform positive
values of OC results. A seen in Figure 6d the redesign is notezged, and

more redesigns may give even more clear result.
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10. Conclusion

The gradient of eigenfrequency, with respect to a local rietdensity, is derived
for a model in general. The resulting simple formula is a paiaf terms with direct
physical interpretation. To clarify the derivation of tficgmula, a notation for partial
derivation with unchanged eigenmode (unchanged strarg)dgested. The obtained
gradients are valuable for control of eigenfrequenciesimegal. Specifically the prob-
lem of maximizing the smallest eigenfrequency of a 3D cantin is presented. Solu-
tions are obtained by a heuristic procedure based on an Q€cfiterion converts the
problem into an approach for a state of uniform values of Oi¢civare closely related
to the gradients just mentioned.

A thick plate like continuum with fixed uniform thickness ieasen as a numeri-
cal example. With 100.000 design variables the 3D desiggipiifes are extensive.
Holes and cavities in the continuum often result. To limé tomputational require-
ments, the continuum model is described by only a quartéreféctangular domain,
orthogonal to the thickness. The numerical results with thiarter model are based
on an assumption of double symmetry for the optimized deagwell as for the de-
termined eigenmodes. Alternative 3D models might be aealynd redesigned, such
as full plate model (with or without design symmetry) or foetdetailed quarter model
other symmetric/antisymmetric boundary conditions. Hesvethis is not included
in the present paper that focuses on communicating the sisgpisitivity (gradients)
expression, which is not well known.

The influence on sensitivity analysis and on optimalityesidn (OC) from non-
linear stiffness interpolation is included analyticallyamodification. In the examples
the interpolation is most important for the resulting optied design and correspond-
ing eigenfrequency, as seen in Tdble 1 and by comparing &8guwith 9] 8 with 10,
[11 with[13 and 12 with 14.

References

[1] R. Grandhi, Structural optimization with frequency straints - a rewiev, AIAA
Journal 31 (12) (1993) 2296-2303.

30



365

370

375

380

385

(2]

3]

[4]

(5]

(6]

[7]

N. L. Pedersen, Maximization of eigenvalues using toggloptimization, Struct.
Multidisc. Optim. 20 (1) (2000) 2—-11.

J. Du, N. Olhoff, Topology optimization of freely vibriaig continuum structures
for maximum values of simple and multiple eigenfrequenaies$frequency gaps,
Struct. Multidisc. Optim. 34 (2007) 91-101.

X. Huang, Z. H. Zuo, Y. M. Xie, Evolutionary topology optization of vibrating
continuum structures for natural frequencies, ComputedsSaructures 88 (2010)
357-364.

G. H. Yoon, Structural topology optimization for frequey response problem
using model reduction schemes, Computer Methods in Applledhanics and
Engineering 199 (2010) 1744-1763.

L. Shu, M. Y. Wang, Z. Fang, Z. Ma, P. Wei, Level set basedatiral topology
optimization for minimizing frequency response, J. of Sthamd Vibration 330
(2011) 5820-5834.

T. Liu, B. Li, S. Wang, L. Gao, Eigenvalue topology optimation of structures
using a parameterized level set method, Struct. Multidigatim. 50 (2014) 573—
591, note =.

[8] W. H. Wittrick, Rates of change of eigenvalues, with refece to buckling and

9]

(10]

(11]

vibration problems, J. Royal Aeronautical Soc. 66 (1962)-591.

C. G. J. Jacobi, Uber ein leichtes verfahren die in deotigeder sacularstorungen
vorkommenden gleichungen numerichen aufzulosen, Csglernal 30 (1846)
51-95.

N. Olhoff, Optimal design of vibrating rectangular f#a, Int. J. Solids Structures
10 (1974) 93-109.

C. W. Bert, Optimal design of a composite-material @l maximize its funda-

mental frequency, J. Sound and Vibration 50 (1977) 229-239.

31



a0 [12] K. T.Cheng, N. Olhoff, An investigation concerning opal-design of solid elas-
tic plates, Int. J. of Solids and Structures 17 (3) (1981)-323.

[13] P. Pedersen, N. L. Pedersen, A note on eigenfrequentgitisities and struc-
tural eigenfrequency optimization based on local sub-doifinequencies, Struct.
Multidisc. Optim. 49 (4) (2014) 559-568.

ass  [14] P. Pedersen, Analytical stiffness matrices for tethhl elements, Computer

Methods in Applied Mechanics and Engineering 196 (2006)-2G8.

32



	Introduction
	Elastic and kinetic energies on system and element level
	Analysis by FE subspace iterations
	Chosen 3D finite element model

	Sensitivity analysis for squared eigenfrequency
	Modifications from stiffness non-linear interpolation
	Remarks on sensitivities

	An optimization problem and its optimality criterion
	Possible heuristic numerical procedure
	Example with different cases
	Verification of the accuracy of the FE model
	Important optimization parameters and  general aspects of optimized results after 15 redesigns
	More detailed insights from the examples and limitations

	Design results for simple supports
	Design results for clamped supports
	Conclusion

