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Abstract

Eigenfrequency optimization for 3D continua is formulatedand exemplified by the

geometry and boundary conditions of a thick plate. Numerical finite element models

are based on four node tetrahedra and results from subspace iterations give directly the

basis for the continuum redesign. The 3D modeling with a large number of elements

has the possibility in optimal design to obtain (as found) not only holes but also cavities

in the continuum. Sensitivity analysis is presented on the element level with simple

physical interpretation of the involved terms. This general result has general value for

control of eigenfrequencies. It is found that in the combination of partial differentiation

with the chain rule of differentiation, a specific notation is needed and a suggestion is

presented.

The optimization method is based on a derived optimality criterion, and as such

the maximization problem change to a problem of determininga design with uniform

values of this criterion. Non-linear stiffness interpolation may be a physical reality. A

two parameter interpolation function is incorporated analytical, also in the sensitivity

analysis and the optimality criterion, but without focusing on 1-0 optimal solutions.

Two cases of boundary conditions, two cases of total amount of material, and cases of

linear and non-linear stiffness interpolation are studied.
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1. Introduction

Optimal design or control of eigenfrequencies and eigenmodes in the design pro-

cess has many advantages; either in the passive sense for avoiding resonance by moving

the eigenfrequencies as far away as possible from an external excitation frequency or

e.g. for avoiding the possibility of internal resonance. The active point-of-view is to5

design structures with specific eigenfrequencies to maximize vibrations i.e. by utilizing

the resonance phenomena. Eigenfrequencies can also serve as constraints on optimiza-

tion of e.g. compliance and or strength, by including a lowerbound on the smallest

eigenfrequency the risk of ending in a degenerated structure is reduced.

Optimization can normally be performed either using size, shape or topology op-10

timization. The optimization can be performed on the structural level or directly on

the continua, and the simplest case is to obtain maximum smallest eigenfrequency.

Through half a century, research has been devoted to this subject as listed in the review

[1]. The more recent literature presents eigenfrequency optimizations with focus on

obtaining clear 1 - 0 (solid - void) optimal designs, i.e., designs without intermediate15

(gray) densities. Beams, plates and 3D continua are treatedand different numerical

tools (penalization’s) to obtain 1 - 0 designs are applied. Among these papers are [2],

[3], [4], [5], [6] and [7]. Note, that 1 - 0 optimal designs is not the goal of the here pre-

sented research, that may be classified as traditional size optimization, where stiffness

interpolation should be viewed instead from a physical point of view.20

The aspects of iteratively redesign for control of eigenfrequency include three steps;

analysis, sensitivity analysis and decision of redesign towards a better design. For 3D

continua the numerical approaches in these steps may effectively be finite element (FE)

analysis combined with subspace iterations in step 1. For step 2 the sensitivity analysis

on the system level is simplified as shown by Wittrick [8] and in the present paper it is25

further simplified down to the element level, resulting in physically interpreted factors.

This last point of the sensitivity analysis (gradients) is not well known, but must be of

interest also independently of design optimization.

The design is seen as a material distribution in a limited andfixed volume as design
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space. This space is divided into a large number of elements.With design described30

by the local relative material density in each element, the number of design variables

equals the number of elements, say 100.000 as exemplified with a thick plate model. A

simple recursive, heuristic redesign is based on a derived optimality criterion, closely

related to the analytically obtained derivatives of squared eigenfrequency as a function

of changed local material density.35

For 3D continua the four node tetrahedron finite element has constant strain, stress

and energy density, so an assumption of also constant material density is justified. Then

the FE analysis as well as the sensitivity analysis can be based on explicit formula and

be performed without numerical integration within each element. Although the sensi-

tivity analysis at the system level are presented in [8] withfurther reference to Jacobi40

[9], the involved simplicities are not well known outside the optimization community.

With a thick plate as illustrative example in a 3D formulation it must be noted,

that extensive results for optimal design of plates are available, mostly based on dif-

ferent 2D theories (simple plate theory, Mindlin plate theory and theory for laminated

plates). Stiffness (compliance), strength and eigenfrequency are often taken as objec-45

tives. Among many references to the 2D plate eigenfrequencyoptimizations a few are

listed; an early paper by Olhoff [10], and the eigenfrequency optimization for laminates

by Bert [11], that later are followed up by several extensions. Solid plates with ribs are

of specific interest and complicated to deal with, an initiating paper is by Cheng and

Olhoff [12]. Note, that the plate like example of the presentpaper is optimized for fixed50

boundary conditions and fixed outer geometry with uniform thickness. It is therefore

rather different from the above mentioned references.

The layout of the paper is as follows. In Section 2 a general model is described

as essentially being given by stiffness and mass matrices, and in essence not related

to a specific continuum or structural model. In a time independent formulation focus55

is on elastic energy amplitude and kinetic energy amplitude, both to be accumulated

from the respective element quantities. Section 3 commentson the normalized quanti-

ties directly obtained from the subspace iteration method,and the specific simplicities

for the four node tetrahedron are described in Section 3.1. Section 4 derives the result

of the sensitivity analysis, primarily based on stiffness as well as mass direct propor-60
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tional to the material density for the element. For the element stiffness this is seldom

valid and a more general function of material density is necessary as proportionality

factor. Three different functions are discussed, two one parameter functions and a two

parameter function, applied here. Simplicity, which is a main focus of the present pa-

per, is obtained even in the extended sensitivity analysis with an interpolation function.65

Statement of optimization problem and derivation of necessary optimality criterion is

presented in Section 5 with a short outline of the applied heuristic numerical procedure

for numerical solution in Section 6.

The remaining part of the paper is related to an example, optimizing the small-

est frequency for a thick plate modeled in 3D. Section 7 with data for geometry and70

material, and with verification of the accuracy of the FE model. General aspects of

optimized results are included in Sections 7.2 and 7.3. Final designs after 15 redesigns

and corresponding distribution of optimality criterion values are presented in Sections

8 and 9

2. Elastic and kinetic energies on system and element level75

Modeling of a 3D continuum/structure is assumed described by a positive definite,

symmetric system stiffness matrixS and a positive definite, symmetric system mass

matrix M. For this model the smallest eigenfrequencyω and the corresponding eigen-

moded is obtained by the amplitude equilibrium

Sd = ω2Md (1)

Simplicity is in focus, so we assume the smallest eigenvalueω2 to be simple, i.e.,

non-multiple. For a given design (givenS andM) numerical solution to this problem

is in a standard setup obtained by the method of subspace iteration, including test of

non-multiplicity.

With localized design parametersρe, the goal is to controlω and specifically to

maximize the smallestω. For this, the information about the sensitivity, i.e., thegra-

dients∂ω2/∂ρe for all elementse are needed. To obtain this, the amplitude of total
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elastic energyU is written on system level as well as on local element level.

U = dTSd =
∑

e

Ue =
∑

e

dT
eSede =

∑

e

ρedT
eSef de (2)

where the local stiffness matrix at first is assumed proportional to the material density

design parameterρe, with Sef independent of design. The system stiffness matrixS

may be of order 100000 and the element stiffness matricesSe are here of order 12. The

proportional dependenceSe = ρeSef is later substituted by a more general function

f(ρe). The fixed matrixSef may describe linear elastic isotropy as well as linear elastic

anisotropy, but it is not changed during design iterations.Similarly, the amplitude of

specific (without factorω2/2) kinetic energyT is written on system level as well as on

element level

T = dTMd =
∑

e

Te =
∑

e

dT
eMede =

∑

e

ρedT
eMef de (3)

whereMef is independent of design.80

The design parametersρe are non-dimensional, positive quantities in the range0 <

ρe ≤ 1 and may be interpreted as relative material volume densities. WithVe being the

reference volume corresponding to the design parameterρe the total amount of a given

material volumeV is taken as a given quantity, the corresponding constraint equation

is

g =
∑

e

ρeVe − V = 0 (4)

The system stiffness matrixS is the sum of element stiffness matricesSe in the sense

of accumulation according to the FE setup; similarly for thesystem mass matrixM and

the element mass matricesMe. We write this symbolically

S =
∑

e

Se, M =
∑

e

Me (5)

The non-dimensional design parameterρe is local and only has influence on the cor-

respondingSe andMe. In order to restrict the complexity we throughout the paper

assume the influence on the element mass matrix to be simple proportionality

Me = ρeMef (6)
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This is also termed linear interpolation. The influence on the element stiffness matrix is

also local and do not change the relations between the individual stiffness components.

However, a non-linear interpolation functionf(ρe) may be the proportionality factor

Se = f(ρe)Sef (7)

The sensitivity analysis may from an initial look seem complicated but it ends up

with a simple formula that contains terms of direct physicalinterpretation. The deriva-

tion involves the need for a specific notation to clarify the partial gradients in connec-

tion with the chain rule of differentiation. Earlier, extended index notation has been

applied, and having not in the literature located a direct mathematical symbol, we in85

the present paper suggest a ”hat” notation.

The problem of maximizing an eigenfrequency is in the present paper exemplified

for a three dimensional (3D) model of a continuum; examples for 2D plane models are

presented in [13]. The basic element for the finite element models is a 4 node tetra-

hedron element, and the accuracy of the FE models are compared to some analytical90

results. There are interesting aspects of eigenfrequency analysis related to the 3D FE

models as compared to 2D plate models. Some comments and verifications are in-

cluded in the paper, but the main goal of the paper is to communicate the simple and

general sensitivity analysis with physical interpretation, and to show specific design

optimizations; resulting designs which may include internal cavities.95

3. Analysis by FE subspace iterations

For a given continuum/structure, analysis by subspace iteration gives a series of

modes, described individually by an eigenvectord, orthogonal to the other determined

eigenvectors and normalized so that the specific kinetic energy T = 1. With this nor-

malization of the eigenvector, the specific elastic energyU is numerically equal to the100

eigenvalueω2, i.e., for the numerical valuesU = ω2 = ω2T , whereT andU are the

time independent amplitudes.

Let us assume an eigenvalue problem described by the symmetric positive definite

stiffness matrixS and the symmetric positive definite mass matrixM. An assumed sim-

ple eigenvector (non-multiple eigenvalue) isd from which the system specific elastic105
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energy (twice the strain energy) isU and this energy may be accumulated from element

energiesUe as stated in (2). Analogously the system specific kinetic energy T may be

accumulated from element specific kinetic energiesTe as stated in (3)

In the sensitivity analysis we use the following results from analysis

ω2, Ue, Te with d normalized such that

U =
∑

Ue = ω2, T =
∑

Te = 1, ω2 = U/T (8)

whereU/T is the Rayleigh quotient. Further we define element Rayleighquotients

Ue/Te, that in a somewhat loose notation are termed element squared frequencies

ω2
e =

Ue

Te

=
dT

eSede

dT
eMede

(9)

3.1. Chosen 3D finite element model

The finite element modeling with an in house program is based on four node tetra-110

hedron elements with constant strain, constant stress and constant energy density, and

then analytical expressions can be used to a large extent, see Pedersen [14]. The mesh

modeling starts with a brick model and each brick is then in a standard formulation

divided into six tetrahedra, as illustrated in Figure 1.

Analysis and design changes are based on the tetrahedron model, but the results

(density design and energy densities) may be presented as mean values for the brick

of the six corresponding tetrahedra. Two resulting quantities of a tetrahedron are of

specific interest for the sensitivity analysis and for the optimality criterion (OC). The

element specific elastic energyUe, in tetrahedrone follows directly from a displace-

ment mode which give a constant elastic energy densityue and thus

Ue = ueρeVe (10)

whereVe is the geometric reference volume of the tetrahedron element e.115

The element specific kinetic energyTe in elemente need to be determined from the

element displacement modede and a consistent mass matrix with no coupling between

x−, y−, z− directions. The specific kinetic energy can then be divided into three terms,
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Figure 1:Eight node hexahedron element divided first into two wedges elements and then into six

tetrahedra elements, numbered in circles. The numbering of the eight nodes of the hexahedron

is also related to the corner nodes of the tetrahedra.

that exemplified for thex− direction is

(Te)x =
me

20
dT

ex




2 1 1 1

1 2 1 1

1 1 2 1

1 1 1 2




dex with me = ρMρeVe (11)

whereme is the mass in elemente. The mass density with physical dimension kg/m3 is

termedρM to distinguish from the non-dimensional material volume densities, that tra-

ditionally has the notationρe. From (11) a rather simple analytical expression follows.

In general the FE model is based on explicit formula and no numerical integration is

needed.120

4. Sensitivity analysis for squared eigenfrequency

The design parametersρe are assumed to be local, positive non-dimensional quan-

tities in the interval0 < ρe ≤ 1. With later interpolation extensions we primarily
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assume both the element stiffness matrixSe and the element mass matrixMe to be

proportional toρe, i.e.,

Se = ρeSef , Me = ρeMef (12)

with bothSef andMef independent of design.

The gradient∂ω2/∂ρe = ∂(U/T )/∂ρe is determined at the element level. To avoid

extended indexing a hat notation is introduced by

∂̂()

∂ρe

=

(
∂()

∂ρe

)

fixed displacement mode

=

(
∂()

∂ρe

)

fixed strains

(13)

and with this short notation the gradient is determined, finally at the element level

∂ω2

∂ρe

=
∂ω2

∂d
∂d
∂ρe

+
∂̂ω2

∂ρe

=
1

T 2

(
∂̂U

∂ρe

T −
∂̂T

∂ρe

U

)
=

1

T

(
∂̂Ue

∂ρe

− ω2 ∂̂Te

∂ρe

)
(14)

because∂ω2/∂d = ∂(U/T )/∂d = 0T. This result, based on the assumption of sym-

metric matricesS and M, is given by Wittrick [8] with further reference to Jacobi

[9]. Inserting the assumptions of linear dependencŷ∂Ue/∂ρe = Ue/ρe and ̂∂Te/∂ρe =

Te/ρe gives the local result where the gradient is expressed by local energies

∂ω2

∂ρe

=
1

Tρe

(
Ue − ω2Te

)
=

Te

Tρe

(
ω2

e − ω2
)

(15)

The gradient is proportional to the difference between the local ratio of energies (lo-

cal Rayleigh quotient or termed local squared frequency)ω2
e and the system squared

eigenfrequencyω2.125

From expression (15) follows directly the sign of the gradient as allTe, T, ρe are

non-negative quantities

∂ω2

∂ρe

> 0 for ω2
e > ω2,

∂ω2

∂ρe

< 0 for ω2
e < ω2,

∂ω2

∂ρe

= 0 for ω2
e = ω2

(16)

To increase the frequency of the continuum/structure we increaseρe for ω2
e > ω2 and

decreaseρe for ω2
e < ω2. A design change may be limited by the volume constraint

(4) and by the fact that sensitivity analysis will change when changing the design. The

solution to these problems is obtained by the heuristic iterative optimization procedure,

shortly described in Section 5.130
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4.1. Modifications from stiffness non-linear interpolation

The assumed linear dependence of the element stiffness matrix on the design pa-

rameterρe (12) may be questioned and an extended analysis is needed andgives the

involved modifications. We do not change the assumption of linear dependence for the

element mass matrix, but modify (12) to

Se = f(ρe)Sef , Me = ρeMef (17)

wheref(ρe) is an interpolation function, still withSef independent of design parame-

ters. From this follows

∂̂Ue

∂ρe

=
df/dρe

f(ρe)
Ue =

f ′(ρe)

f(ρe)
Ue (18)

which for linear interpolationf(ρe) = ρe gives∂Ûe/∂ρe = Ue/ρe as earlier applied.

With the modification (17) the gradient of the squared eigenfrequency (15) is mod-

ified to

∂ω2

∂ρe

=
Te

Tρe

(
Λ(ρe)ω

2
e − ω2

)
with the definition Λ(ρe) =

ρef
′(ρe)

f(ρe)
(19)

The conclusions in (16) is modified to

∂ω2

∂ρe

> 0 for Λ(ρe)ω
2
e > ω2,

∂ω2

∂ρe

< 0 for Λ(ρe)ω
2
e < ω2,

∂ω2

∂ρe

= 0 for Λ(ρe)ω
2
e = ω2

(20)

and normallyΛ(ρe) ≥ 1 for ρe > 0.

The non-linear stiffness interpolation is defined by a function f = f(ρe) where

the functionf is the same for all the local density design parametersρe. A simple135

polynomialρκ1

e is often applied with the single parameterκ1, being the slope off at

ρe = 1. If κ1 is three, i.e.,f = ρ3
e, then the interpolation is often termed SIMP. In the

present research a two parameter function is applied, with the two parametersκ0, κ1

being the slopes off atρe = 0 and 1, respectively.

In the numerical examples we specifically chooseκ0 = 0.1 andκ1 = 3. This function140

together with the function SIMP is illustrated to the left inFigure 2. The applied func-

tion, termed NLPI (Non Linear Penalization or Interpolation), is analytical presented
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in [13] with discussions relative to SIMP and also relative to another one parameter

interpolation function, termed RAMP. This function isf(ρ) = ρ
1+(κ1−1)(1−ρ) , again

with the single parameter being the slope off atρe = 1.

a)
 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

ρe

f(ρe)

NLPI κ1 = 3, κ0 = 0.1

SIMPκ1 = 3

RAMP κ1 = 3

Linear
0.474

0.058

b)
 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0  0.2  0.4  0.6  0.8  1

ρe

NLPI κ1 = 3, κ0 = 0.1

SIMPκ1 = 3

RAMP κ1 = 3

Linear

Λ(ρe) = ρef ′(ρe)
f(ρe)

Figure 2: a) The interpolation functions, with the specific values corresponding toρe = 0.25 andρe = 0.75

to be used in Section 7.2. b) The factors for the sensitivity,defined in (19).

145
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4.2. Remarks on sensitivities

The gradients (15) and (19) constitute the basis for an optimization procedure and

different possibilities exist. The gradients are important for general control of eigen-

frequencies and the simplicity gives a direct physical interpretation:

• The change in squared eigenfrequencyω2, when a local material volume den-150

sity ρe is changed, is determined directly by corresponding local quantities from

ordinary analysis.

• The gradient is proportional to the local relative kinetic energy amplitudeTe/T .

• The gradient is inversely proportional to the actual density ρe.

• As stated in (16) and (20) the gradient is proportional to thedifference between a155

weighted local squared frequency (local Rayleigh quotient) and system squared

eigenfrequency, i.e., proportional to(Λ(ρe)ω
2
e − ω2), with Λ(ρe) = 1 for linear

proportional stiffness interpolation.

5. An optimization problem and its optimality criterion

We study the optimization problem to maximize an eigenvalue(assumed single

and being the smallest one)ω2 for a given total amount of material, specified by the

volumeV . We assume this volume constraint to be active and state the problem with

non-dimensional densitiesρe as design variables

Maximize ω2 (objective)

for all densities0 < ρmin ≤ ρe ≤ ρmax ≤ 1 (size limits for design variables)

and g =
∑

ρeVe − V = 0 (active material constraint) (21)

The OC with only a single, active constraint is proportionality between the gradi-

ents of the objective and the gradients of the constraint, i.e.,

∂ω2

∂ρe

= λ
∂g

∂ρe

= λVe ⇒ λe =
1

Ve

∂ω2

∂ρe

= λ (22)

12



with the same valueλ for all elements (sub-domains)e having an active design param-

eterρe whereρmin < ρe < ρmax. For a given design a number of different valuesλe

result, and we want to change the design in order for these values to become more equal

for the active design elements (resulting in the unknown Lagrange multiplierλ). With

linear stiffness interpolation the gradient∂ω2/∂ρe is given in (15) and the optimality

criterion (OC) is

λe =
Te

T

1

ρeVe

(ω2
e − ω2) = λ (23)

With stiffness interpolation functionf(ρe) the gradient∂ω2/∂ρe is given in (19) and

the OC is

λe =
Te

T

1

ρeVe

(Λ(ρe)ω
2
e − ω2) = λ with Λ(ρe) =

ρef
′(ρe)

f(ρe)
(24)

For illustration a specific functionsΛ(ρe) is graphically included to the right in Figure160

2.

6. Possible heuristic numerical procedure

The optimization problem (21) is by the OC (24) converted to aproblem of finding

a continuum of best possible uniformity of the values of the local OC (λe). Size limits

and the active material volume constraint in (4) normally donot allow for satisfying165

the OC everywhere. Iteratively the active size constraintsare fulfilled.

A heuristic procedure is based on the OC, say (24) with (23) asthe more simple

case for linear stiffness interpolation. A recursive procedure for optimization based on

(24) is separated according to the sign of the gradients (sign of (Λ(ρe)ω
2
e − ω2)). The

redesign of theρe follows

For positive gradients(Λ(ρe)ω
2
e − ω2 > 0)

(ρe)new = (ρe)current(1 + 4.0λe/λmax)
0.8η

For negative gradients(Λ(ρe)ω
2
e − ω2 < 0)

(ρe)new = (ρe)current(1 − 0.8λe/λmin)
0.8η (25)

13



where the values ofλmin < 0, λmax > 0 are determined during the evaluation of the

gradients. The specific values in (25) 4.0, 0.8, 0.8 are chosen from experience, acting

as a kind of move-limits and influence the number of recursiveredesigns (number of

eigenvalue analysis). The iteratively (without FE analysis) determined volume correc-170

tion factorη relate to the fact that the densities at the limitsρmin or ρmax are not known

in advance. Factorη strictly keep the specified volume by inner iteration where theρe

at the size limits are localized. The value 0.8 of the power also limits the change ofρe

in one redesign, and such a power (also with a lower value) is often applied for similar

recursive procedures. The procedure is applied in the following examples, and have175

earlier been applied with success to different other problems.

7. Example with different cases

The outer geometry (the design domain) of the illustrative example is similar to the

thick, rectangular plate shown in Figure 3. Length, width and thickness are 16m, 8m

and 0.2m or 0.4m. Isotropic material (aluminum) is specifiedby modulus of elasticity180

E = 0.7 · 1011 N/m2, Poisson’s ratioν = 0.3 and mass density = 2700 kg/m3. The

eigenmode of our interest is assumed double symmetric and thus we can with appro-

priate boundary conditions restrict the FE modeling to a quarter of the total model. The

chosen part is shown in Figure 3 by the full lines.

Dealing with only a quarter of the model a more detailed modeling is possible.185

Note, that an obtained optimized design may be tested with a total model to make sure

that double symmetric eigenmode is the relevant mode. As to multiple eigenmodes,

the eigenvalue analysis with the method of subspace iteration give full information,

and mode switching during design iteration is therefore directly taken care of. For

the treated cases the four smallest eigenfrequencies, corresponding to double symmet-190

ric modes, are determined and the two smallest eigenfrequencies are presented for all

design iterations.
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x

y

z

b/2 = 4m

h = 0.4m orh = 0.2m

a/2 = 8m

E = 0.7 · 1011N/m2

ν = 0.3

ρM = 2700kg/m3

isotropic material

Figure 3: Continuum model, where only the quarter model for analysis and design is shown in full line.

7.1. Verification of the accuracy of the FE model

In order to get some knowledge about the accuracy of the obtained eigenfrequen-

cies, a comparison for a specific plate like continuum is performed. The outer dimen-

sions are shown in Figure 3 and simple supports are chosen along the center line of the

outer surfaces such that an analytical solution is available, based on thin plate theory

and homogeneity. With these most simple assumption a formula of the smallest eigen-

frequency with one half wave in thex- as well as in thez-direction may be derived

to

(ω11)ss =
π2h
√

8b2

√
E

(1 − ν2)ρM

√
1 + (

b

a
)2 (26)

Inserting the applied parameters:h = 0.2m or 0.4m,b= 8m, a =16m, E = 7·1010N,

ν = 0.3 andρM = 2700 kg/m3 gives in Hz

for h = 0.2m → (ω11)ss = 10.35Hz and with linear dependence

for h = 0.4m → (ω11)ss = 20.7Hz (27)

A FE model with mesh based on equally spaced nodes inx−, y−, z−directions

equal to 33, 9(in thickness direction) and 65, respectively, implying 19305 nodes
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(57915 d.o.f.), 16384 brick elements, (98304 tetrahedron elements) and bandwidth

897. With homogeneous material, simple supports and linearinterpolation, the nu-

merical FE results corresponding to (27) are

for h = 0.2m → (ω11)ss = 9.4Hz and

for h = 0.4m → (ω11)ss = 19.8Hz (28)

Both results (27) and (28) are approximations and the differences are found accept-

able for our optimization study. Both applied thicknesses must be classified as rather195

thick plates. The FE results for the two cases show that the linear dependence in (26)

for thin plates is no longer valid.

7.2. Important optimization parameters and

general aspects of optimized results after 15 redesigns

Three conditions have a major influence on the optimized design and its response.200

Firstly, the assumed boundary conditions for the continuum, exemplified by simple

supported outer boundaries and by clamped outer boundaries, interpreted in relation to

the treated quarter model.

Secondly, the amount of available material, specified by thepercentages relative to

a completely full geometry. This is exemplified by 75% (largeamount of material with205

less possibility for design changes) and 25% (less materialwith large possibilities for

design changes). The total amount of material is not subjected to optimization; it is

fixed as specified by the equality constraint (4). A parametric study might be the tool

to optimize this total amount of material.

Thirdly, how does the local stiffness matrix depend on the local design parameter?210

This has a strong influence on the optimized design, and results are shown for linear

proportional interpolation as well as for non-linear interpolation by a two parameter

interpolation function. The local mass matrix is always assumed linear proportional

depending on the design parameter. The local stiffness matrices and the local mass

matrices are only changed by a factor.215

Table 1 shows that with both linear stiffness and linear massdependence on ma-

terial density, then the eigenfrequency and the eigenmode is independent of the total

16



Table 1: For the continuum with plate geometry, the results (eigenfrequencies in Hz) for all treated spe-

cific cases; listed for initial homogeneous design as well as for optimized design, all based onh = 0.4m.

Homogeneous design involves equal densitiesρe

Boundary Total Linear stiffness Non-linear stiffness

condition material interpolations interpolations

volume homogeneous⇒ optimized homogeneous⇒ optimized

Simply 75% 19.8Hz⇒ 25.8Hz 15.7Hz⇒ 23.9Hz

supported 25% 19.8Hz⇒ 44.4Hz 9.5Hz⇒ 22.5Hz

Clamped 75% 38.7Hz⇒ 59.1Hz 30.8Hz⇒ 53.4Hz

supported 25% 38.7Hz⇒ 128.8Hz 18.7Hz⇒ 81.5Hz

amount of material for a homogeneous continuum (75% or 25%),but naturally depend-

ing on the outer support. For these two cases the OC values in (23) gives identical dis-

tributions for total amount of material equal to 75% and 25%.Table 1 also shows that

for non-linear stiffness interpolation, the eigenfrequencies depend on the total amount

of material, also for a homogeneous continuum. From (1) follows for a homogeneous

continuum (all densitiesρe assumed equal)

f(ρe)Sf d = (ω2
ρe

)ρeMf d (29)

where the system matricesSf , Mf corresponds to full material (ρe =1). Thus, the

eigenmodes are not changed for homogeneous values ofρe, but the eigenfrequency is

changed according to the different factors in (29). With reference to the eigenfrequency

for full material (ωf ) we get

ωρe(homogeneous)=

√
f(ρe)

ρe

ωf i.e. with linear f(ρe) = ρe ⇒ ωρe(homogeneous)= ωf

(30)

The relation between the homogeneous values in Table 1 follows from the relation (30)

with the values in Figure 2, i.e.,15.7 =
√

0.474/0.75 · 19.8, 9.5 =
√

0.058/0.25 ·

19.8, 30.8 =
√

0.474/0.75 · 38.7 and 18.7 =
√

0.058/0.25 · 38.7.
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The distribution of values of OC (24) changes, even with unchanged eigenmode,

but the initial distributions for homogeneous designs are in principle similar to the ones220

shown for linear interpolation in Figure 4, and therefore not all shown.

Table 1 gives an overview of obtained eigenfrequencies for the in total eight dif-

ferent cases. Hereafter, each case is presented and discussed individually with design

history, optimized design and with distributions of OC values for the corresponding

optimized designs.225

7.3. More detailed insights from the examples and limitations

Behind the choice of the specific example are the following considerations:

• If for a continuum, the distribution of the values of OC is visualized and shows

non-uniformity, then opportunity to change the eigenfrequency corresponding to

the actual eigenmode is a possibility. This non-uniformityillustrated in Figure 4230

for a homogeneous model with two different support conditions.

• The strong influence from the outer boundary conditions is shown. In Section 8

simple supports are assumed at all outer boundaries, while Section 9 documents

the results with clamped outer boundary conditions at all outer boundaries.

• The numerical stability in applying the derived sensitivities and the OC are seen235

by the histories of eigenfrequencies during redesign, as presented in Figures 5

and 6. The presentations are limited to the two smallest eigenfrequencies, the

first one to be maximized in full line while the second one is inbroken line.

Note, that the quarter FE model assumes double symmetric eigenmodes to be

the physical ones of interest.240

• The optimized designs after 15 redesigns are shown with their corresponding dis-

tributions of the values of OC that within the possible limits are almost uniform

in active design areas, in agreement with the necessary condition of optimality.

These presentations in terms of ninex− y planes forz = 0,1,2,3,4,5,6,7 and 8m.

are for simple supports presented in Section 8 and for clamped support presented245

in Section 9.
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Figure 4: Left the OC values for a homogeneous simple supportedmodel with linear interpolation. Right the

OC values when the outer supports are changed to clamped. Linear scales for the OC values.

Figure 4 shows two distributions, both in nine selectedx−y planes at z = 0,1,2,3,4,5,6,7,8m

of OC values for initial homogeneous designs. Negative values reflects that local ma-

terial should be removed to increase the smallest eigenfrequency, while positive values

reflects that local material should be added to increase the smallest eigenfrequency. In250

the left figure the initial design is based on simple supports, while the right figure is

based on clamped support, both assuming linear interpolation of stiffnesses and masses.

As expected the actual boundary conditions are of major importance. As these two OC

value distributions are rather different, it may be expected that the optimized designs

are different for these two different boundary conditions.255

Figure 5 gives a detailed background for the upper half of Table 1. Figure 5 shows

no crossings (mode switching) during the redesigns, but in Figure 5b this might happen

with more redesigns, and the kink of the dotted curve indicate mode switching with a

not shown higher order mode. As expected, with less material(Figures 5b and 5d),

redesign possibilities are larger and larger increase relative to initial eigenfrequency is260

possible.

Figure 6 gives a detailed background for the lower half of Table 1. In Figure 6a it is

seen that the redesigns procedure for this case stops after 6redesigns, as all sensitivities
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Figure 5: Histories of eigenfrequencies, relative to the smallest eigenfrequency for homogeneous design, for

the 2 smallest, double symmetric eigenmodes, during 15 redesigns. The cases of simple supports, 75% and

25% material; linear and non-linear interpolation withκ1 = 3, κ0 = 0.1.
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Figure 6: Histories of eigenfrequencies, relative to the smallest eigenfrequency for homogeneous design, for

the 2 smallest, double symmetric eigenmodes, during 15 redesigns. The cases of clamped supports, 75% and

25% material; linear and non-linear interpolation withκ1 = 3, κ0 = 0.1.
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are negative for the active design variables when 75% material must be used. With

non-linear stiffness interpolation the eigenfrequenciesare generally lower as it follows265

from the lower stiffnesses. However, the influence from redesigns may be stronger and

Figures 6b and 6d shows that this is especially true for the clamped supports. Note,

that the drastic improvements seen in Figures 6b and 6d need to be confirmed without

the assumption of double symmetry, as eigenmodes without double symmetry might

then have a smaller value.270

8. Design results for simple supports

In relation to the quarter part model of Figure 3, the boundary conditions on the

displacementsdz, dx for the assumed double symmetric eigenmodes are

dz = 0 for all nodes of thex − y plane atz = 0

dx = 0 for all nodes of they − z plane atx = 0 (31)

The additional boundary conditions corresponding to the simple outer supports are

line supportdy = 0 for all nodes of the linex = b/2, 0 ≤ z ≤ a/2, y = h/2

line supportdy = 0 for all nodes of the line0 ≤ x ≤ b/2, z = a/2, y = h/2 (32)
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Figure 7: Simple support, linear interpolation and 75% material. Left the optimized density distribution

and right the corresponding distribution of OC values. Linear scales for density and OC values; white for

ρe < 0.011.
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Figure 8: Simple support, linear interpolation and 25% material. Left the optimized density distribution

and right the corresponding distribution of OC values. Linear scales for density and OC values; white for

ρe < 0.011.
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Figure 9: Simple support, non-linear interpolation withκ1, κ0 = 3, 0.1, and 75% material. Left the opti-

mized density distribution and right the corresponding distribution of OC values. Linear scales for density

and OC values; white forρe < 0.011.
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Figure 10: Simple support, non-linear interpolation withκ1, κ0 = 3, 0.1, and 25% material. Left the opti-

mized density distribution and right the corresponding distribution of OC values. Linear scales for density

and OC values; white forρe < 0.011.
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The comments to the results for simple supports are as follows:

• All Figures 7 - 10 show two distributions in the nine selectedx − y, planes for

z =0,1,2,3, 4,5,6,7,8m. The left part of each figure shows the optimized design

after 15 redesigns, shown by its resultingρe distribution. The right part of each275

figure shows the OC values for the corresponding design. Note, that with active

size constraints:ρe = ρmin may give large negative OC values andρe = ρmax

may give large positive OC values.

• Figure 7 shows the final design with history in Figure 5a. For this design a

cavity is seen forz =0,1,2 and 3m in the upper left corner (middle of the total280

plate). Note, that rather uniform values (green) of OC (λe) are obtained except

for domains with active upper constraint, i.e. domains ofρe = 1. Positive OC

values (blue) are found in these areas of full material (close to the outer support).

The white areas correspond toρe = ρmin = 0.01, i.e., holes or cavities, where the

values of density as well as OC are not shown either. This comment is valid for285

all resulting figures.

• Figure 8 shows the final design with history in Figure 5b. Figure 8 is similar to

Figure 7 above, except that the total amount of available material is now only

25%. A seen in Figure 5b the redesign is not yet converged in 15redesigns, still

a clear result is obtained. Note the extension of the cavity in the middle of the290

total plate, here the upper left corner. The resulting distribution for the values of

OC is uniform, positive and close to zero. The thickness of the outer layers for

the cavity is related to the modeling with nine layers in the thickness direction.

Note, that the scales for the many distributions of values ofOC are specifically

related to the individual figures.295

• Figure 9 shows the final design with history in Figure 5c. Figure 9 is similar to

Figure 7, but now the stiffness interpolation is changed from linear to non-linear

with the chosen parametersκ1, κ0 = 3, 0.1. A cavity like in Figure 7, and rather

uniform values of OC that are close to zero and negative (orange) in active design

domains and positive (green) in domains of full material.300
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• Figure 10 shows the final design with history in Figure 5d. Figure 10 is similar

to Figure 9 above, except that the total amount of available material is now only

25%. The cavity is sharp, as expected with non-linear stiffness interpolation. The

obtained values of OC distribution rather uniform, close tozero and negative.

Positive OC values (darker green) found for the areas of fullmaterial. The non-305

linear interpolation of stiffness implies more sensitive results.

9. Design results for clamped supports

In relation to the quarter part model in Figure 3, the boundary conditions for the as-

sumed double symmetric eigenmodes are unchanged specified by (31). The additional

boundary conditions corresponding to the clamped outer supports are

dx, dy, dz = 0, 0, 0 for all nodes of the y-z planex = b/2, 0 ≤ y ≤ h, 0 ≤ z ≤ a/2

dx, dy, dz = 0, 0, 0 for all nodes of the x-y plane0 ≤ x ≤ b/2, 0 ≤ y ≤ h, z = a/2

(33)
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Figure 11: Clamped support, linear interpolation and 75% material. Left the optimized density distribution

and right the corresponding distribution of OC values. Linear scales for density and OC values; white for

ρe < 0.011.
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Figure 12: Clamped support, linear interpolation and 25% material. Left the optimized density distribution

and right the corresponding distribution of OC values. Linear scales for density and OC values; white for

ρe < 0.011.
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Figure 13: Clamped support, non-linear interpolation withκ1, κ0 = 3, 0.1, and 75% material. Left the op-

timized density distribution and right the corresponding distribution of OC values. Linear scales for density

and OC values; white forρe < 0.011.
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Figure 14: Clamped support, non-linear interpolation withκ1, κ0 = 3, 0.1, and 25% material. Left the op-

timized density distribution and right the corresponding distribution of OC values. Linear scales for density

and OC values; white forρe < 0.011.
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The comments to the results for clamped supports are as follows:

• In parallel to the presentations for simple support all Figures 11 - 14 show two

distributions in the nine selectedx−y, planes forz =0,1,2,3,4,5,6,7,8m. The left310

part of each figure shows the optimized design after 15 redesigns, shown by its

resultingρe distribution. The right part of each figure shows the OC values for

the corresponding design.

• Figure 11 shows the final design after 6 redesigns with history in Figure 6a. A

cavity is seen only forz = 0 and 1. For this design the distribution of values of315

OC is not completely uniform, but negative for all the activedesign parameters

(0.01 < ρe < 1), and therefore stopped after 6 iterations. All this indicate that

optimization with 75% material is difficult.

• Figure 12 shows the final design with history in Figure 6b. Figure 12 is similar

to Figure 11 above, except that the total amount of availablematerial is now only320

25%. The extension of the cavity is larger and even a hole throughout the plate

is seen. The resulting values of OC are rather uniformly distributed and close to

zero.

• Figure 13 shows the final design with history in Figure 6c. Figure 13 is also

similar to Figure 11, but now the stiffness interpolation ischanged from linear to325

non-linear with the chosen parametersκ1, κ0 = 3, 0.1. Cavities at the plate mid-

dle domain are seen. The resulting values of OC distributionare rather uniform

and close to zero with positive values (green) at full material.

• Figure 14 shows the final design with history in Figure 6d. Figure 14 is similar

to Figure 13 above, except that the total amount of availablematerial is now330

only 25%. With this less material available, the resulting design has an extended

hole throughout the thickness in the middle of the plate. Rather uniform positive

values of OC results. A seen in Figure 6d the redesign is not converged, and

more redesigns may give even more clear result.
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10. Conclusion335

The gradient of eigenfrequency, with respect to a local material density, is derived

for a model in general. The resulting simple formula is a product of terms with direct

physical interpretation. To clarify the derivation of thisformula, a notation for partial

derivation with unchanged eigenmode (unchanged strains) is suggested. The obtained

gradients are valuable for control of eigenfrequencies in general. Specifically the prob-340

lem of maximizing the smallest eigenfrequency of a 3D continuum is presented. Solu-

tions are obtained by a heuristic procedure based on an OC. This criterion converts the

problem into an approach for a state of uniform values of OC, which are closely related

to the gradients just mentioned.

A thick plate like continuum with fixed uniform thickness is chosen as a numeri-345

cal example. With 100.000 design variables the 3D design possibilities are extensive.

Holes and cavities in the continuum often result. To limit the computational require-

ments, the continuum model is described by only a quarter of the rectangular domain,

orthogonal to the thickness. The numerical results with this quarter model are based

on an assumption of double symmetry for the optimized designas well as for the de-350

termined eigenmodes. Alternative 3D models might be analyzed and redesigned, such

as full plate model (with or without design symmetry) or for the detailed quarter model

other symmetric/antisymmetric boundary conditions. However, this is not included

in the present paper that focuses on communicating the simple sensitivity (gradients)

expression, which is not well known.355

The influence on sensitivity analysis and on optimality criterion (OC) from non-

linear stiffness interpolation is included analytically as a modification. In the examples

the interpolation is most important for the resulting optimized design and correspond-

ing eigenfrequency, as seen in Table 1 and by comparing Figures 7 with 9, 8 with 10,

11 with 13 and 12 with 14.360
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