

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Dec 20, 2017

Plan-Belief Revision in Jason

Jensen, Andreas Schmidt; Villadsen, Jørgen

Published in:
Proceedings of the 7th International Conference on Agents and Artificial Intelligence (ICAART-2015)

Publication date:
2015

Document Version
Peer reviewed version

Link back to DTU Orbit

Citation (APA):
Jensen, A. S., & Villadsen, J. (2015). Plan-Belief Revision in Jason. In Proceedings of the 7th International
Conference on Agents and Artificial Intelligence (ICAART-2015) (pp. 182-189)

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Online Research Database In Technology

https://core.ac.uk/display/43248108?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://orbit.dtu.dk/en/publications/planbelief-revision-in-jason(61e6d017-6cda-4743-83ab-d2b3dcab0c1d).html

Plan-belief Revision in Jason

Andreas Schmidt Jensen and Jørgen Villadsen
DTU Compute - Algorithms, Logic and Graphs Section, Department of Applied Mathematics and Computer Science,

Technical University of Denmark, Richard Petersens Plads, Building 324, DK-2800 Kongens Lyngby, Denmark
{ascje, jovi}@dtu.dk

Keywords: AgentSpeak, Jason, Plan-belief Revision.

Abstract: When information is shared between agents of unknown reliability, it is possible that their belief bases become
inconsistent. In such cases, the belief base must be revised to restore consistency, so that the agent is able to
reason. In some cases the inconsistent information may be due to use of incorrect plans. We extend work by
Alechina et al. to revise belief bases in which plans can be dynamically added and removed. We present an
implementation of the algorithm in the AgentSpeak implementation Jason.

1 INTRODUCTION

Agents receive information from different more or
less reliable sources. This information leads to new
information by the use of so-called declarative rule
plans. When information is shared between many
sources it is likely that some of this information is
inconsistent, which could result in even more incon-
sistent information when plans are executed. Further-
more, plans could be wrong, meaning that derived in-
formation might not hold. In such situations the agent
needs to be able to revise its beliefs to maintain con-
sistency. This process is called belief revision and de-
fines three operators: expansion, contraction and re-
vision. The details of the operators will be explained
later.

There are two main approaches to belief revi-
sion: AGM (short for Alchourron, Gärdenfors and
Makinson) style belief revision (Alchourron et al.,
1985) and reason-maintenance style belief revision
(Doyle, 1977). AGM style belief revision requires
that changes to a belief base is as small as possi-
ble, where as reason-maintenance style belief revision
tracks how beliefs justify each other, using this infor-
mation to render inconsistent beliefs underivable.

In (Nguyen, 2009) the algorithm for literals was
extended to include contraction by rules. Our aim is
to show practical uses of the algorithm. Furthermore,
our focus is on situations where plans are exchanged
or derived.

We consider reason-maintenance belief revision in
the implementation of AgentSpeak called Jason. Re-
vision of literals in Jason has been considered before

(Alechina et al., 2006a). We show how this can be
extended to include revision of plans as well.

The paper is organised as follows. In section 2 we
briefly introduce Jason. We motivate the need for re-
vision of plans and beliefs in section 3. In section 4
we describe belief revision for both beliefs and plans.
Section 5 describes how belief revision can be imple-
mented in Jason. In section 6 we give an example
of how belief revision can maintain consistency in an
agent’s belief base. Finally we conclude our work by
summarising the contribution and introducing direc-
tions of future work.

2 JASON

We provide an overview of the Jason interpreter by
introducing how to program multi-agent system using
it, however we will not go into details with all parts of
the system. The overview should give a basis for un-
derstanding simple systems using Jason. A thorough
description of Jason is found in (Bordini et al., 2007).

The language of Jason, AgentSpeak, is a Prolog-
like logic programming language which allows the
developer to create a plan library for the agent. A
plan in AgentSpeak is basically of the form

+triggering event : context <- body.

Roughly speaking, if an event matches a trigger, the
context is matched with the current state of the agent.
If the context matches the current state, the body is ex-
ecuted; otherwise the engine continues to match con-
texts of plans with the same trigger. If no plan is ap-
plicable, the event fails.

The fact that AgentSpeak is a logic programming
language allows one to transfer certain specifications
written in logical formulas of a multi-agent system
to an implementation written in Jason. For instance,
part of a plan for a vacuum cleaner agent [9] is shown
below:

+!cleaning : in(X,Y) & dirt(X,Y)
<- do(suck).

The plan is triggered by the goal !cleaning, so if the
vacuum cleaner is in a “cleaning state”, this trigger-
ing event would be applicable. The context specifies
that this plan is relevant if the agent currently is some-
where in the environment which is dirty. If the con-
text can be unified with beliefs from the belief base of
the agent, it will perform the body, which in this case
means that it will perform the action do(suck). How-
ever, as mentioned it is quite possible to have several
plans for the same triggering event if those plans have
different contexts:

+!cleaning : in(X,Y) & dirt(X+1,Y)
<- do(right).

This plan will then be applicable if the agent has per-
ceived dirt in an area to the right of its current area. In
that case, it will perform the action do(right).

3 CASE STUDY

We present a scenario in which inconsistency arise as
a result of both exchange of beliefs and plans. An
agent is on a mission to retrieve a treasure. Its main
goal is achieved by first finding the treasure and then
retrieving it. Finding the treasure can be achieved by
conducting a search or by asking other agents for the
location. The agent knows that it should dig for the
treasure when it has found a plausible location:

+at(X) <- +dig(X).

Consider the following situation (#n refers to the
fact that beliefs are revealed over time). We write
Ag1 � +a[Ag2] when Ag1 learns a from Ag2. ∼a de-
notes strong negation in Jason.

#1 Ag1 broadcasts a request for the treasure location.

#22 Ag1 �+at(a)[Ag2]

#28 Ag1 �+∼at(a)[Ag3]

#45 Ag1 �+∼at(b)[Ag3]

The belief base of Ag1 is now in an inconsistent
state (since it knows both at(a) and ∼at(a)). Fur-
thermore, Ag1 perceives a plausible location for trea-
sure (using its sensors), meaning it both knows at(b)

and ∼at(b)1:
#35 Ag1 �+at(b)[Ag1]

Even though the situations are a bit different (two
communicated beliefs versus a communicated belief
and a percept), we argue that in each pair, one lit-
eral should be removed; the treasure cannot both be
and not be at the same location. Intuitively, the agent
would want to discard ∼at(b)[Ag3] since it may not
know whether Ag3 is deceitful, but it trusts its own
sensors. However, since both beliefs about location a
are communicated, it is harder to decide which one to
keep. We will elaborate on this later in this paper.

Finally, Ag4, who does not know the location of
the treasure, believes that the treasure is found in a
tree, and shares a plan for retrieving it:

#59 Ag1 � { +!get treasure : at(X) <-
+climb tree(X); +∼dig(X) }[Ag4]

Following this plan could lead to a state where
both dig(b) and ∼dig(b) are in the belief base.

Clearly some kind of belief revision is needed. We
describe an approach which can be used to revise be-
liefs in the next sections.

4 BELIEF REVISION

We consider two approaches for belief revision: AGM
(Alchourron, Gärdenfors and Makinson) style be-
lief revision (Alchourron et al., 1985) and reason-
maintenance style belief revision (Doyle, 1977). The
AGM approach requires that a revision of a belief
base removes as little as possible in order to obtain
consistency. This means that even though an agent
gives up believing P, it should not give up believing
things which were solely justified by P; unless they
are inconsistent with the rest of the belief base, in
which case they should be revised as well. In reason-
maintenance style belief revision, the agent must not
only give up P, but ensure that P is no longer deriv-
able from the remaining set of beliefs and rules. This
is realized by keeping track of dependencies between
beliefs, so that the reason for believing P can be traced
back to a set of foundational beliefs. One of these be-
liefs should then be removed, ensuring that P is no
longer derivable from the beliefs in the belief base.

In AGM belief revision the belief base is closed
under logical consequence. Three operators are de-
fined: expansion, contraction and revision. Expan-
sion, K +A, which adds A to K and closes the result-
ing set under logical consequence. Contraction, K−̇A

1Believing both at(a) and at(b) could also be consid-
ered inconsistent, but that is out of scope for this paper.

(contract by A), removes A from K and changes the
set K so that it no longer entails A. Revision, K+̇A,
modifies K to make it consistent with A before adding
A. If adding A to K is consistent with K, then the
revision operator is equal to the expansion operator.

In general there is no unique maximal set K′ ⊂ K
which does not imply A, so contraction and revision
cannot be defined uniquely. The AGM theory charac-
terises the set of “rational” contraction and revision
operators by a set of postulates (Alchourron et al.,
1985). The postulates for contraction are:

(K−̇1) K−̇A =Cn(K−̇A)
(closure)

(K−̇2) K−̇A⊆ K
(inclusion)

(K−̇3) If A �∈ K, then K−̇A = K
(vacuity)

(K−̇4) If not � A, then A �∈ K−̇A
(success)

(K−̇5) If A ∈ K, then K ⊆ (K−̇A)+A
(recovery)

(K−̇6) If Cn(A) =Cn(B), then K−̇A = K−̇B
(equivalence)

where Cn(K) denotes the closure of K under logical
consequence.

While the definition looks desirable, it seems to
only apply to idealised agents, since it requires that
the belief base is closed under logical consequence.
In order to be able to revise a belief base which
cannot be assumed to be closed under logical con-
sequence, we weaken the logic and language of the
agent, so that it corresponds to a typical rule-based
agent (Alechina et al., 2006b). This approach leads
to a polynomial time algorithm, which satisfies all of
the AGM postulates but K−̇5, the recovery postulate.
The algorithm allows for both AGM and reasoning-
maintenance style belief revision.

In (Alechina et al., 2006b) the weakened logic is
called W . In the corresponding language, LW , a well-
formed formula is either a literal (P or ¬P) or a plan
(P1∧·· ·∧Pn →Q).

The only rule is a generalised modus ponens
(GMP):

δ(P1), . . . ,δ(Pn) P1∧·· ·∧Pn → Q
δ(Q)

δ is a substitution function replacing all free vari-
ables with constants. The agent uses GMP and its
belief base to reason. When the rule is fired, the
derived (ground) literal δ(Q) will be justified by
δ(P1), . . . ,δ(Pn).

4.1 Justifying Plans and Beliefs

A derived belief has in most previous work only been
justified by the beliefs used to derive it, but not the
plan that was fired. A reason for this is that the plans
of an agent is usually a part of a plan library that
is assumed to be correct and unlikely to be modi-
fied. However, as described in (Nguyen, 2009), this
is not always the case. In fact, even if a derived belief
(Q) turns out to be wrong, this should not necessarily
mean that any of the supporting beliefs (P1, . . . ,Pn) are
wrong; it may just be wrong to conclude Q from them
(i.e. the plan is incorrect). In this case it might be
better to remove the plan rather than removing Pi to
make Q underivable. Otherwise, if the agent realizes
that Pi is actually true and the plan was not removed,
Q can again be derived.

Giving up the assumption that plans are part of
a static library and will not be changed, means that
plans are now also beliefs. The belief base of an agent
will therefore consist of both literals and plans.

We can now define justifications. All formulas are
associated with one or more justifications. A justifi-
cation consists of a supported formula and a support
list. The formula is supported by the formulas in the
support list. We write (A, [B C]), when A is supported
by B and C. A formula is independent, if it has a non-
inferential justification (i.e. a percept, mental note or
communicated belief). In that case, the justification
has an empty support list.

Each formula P is associated with a dependency
and justification list. The dependency list for P con-
tains all justifications for P, i.e. all justifications
where P is the supported formula. The justification
list for P contains all justifications where P is a mem-
ber of the support list. If we consider the belief base
to be a graph, each justification then has exactly one
outgoing edge (to the formula it is supporting) and
zero or more incoming edges (from the formulas in
the support list). Non-inferential justifications will
have zero incoming edges.
Example 1. Consider an agent with a plan, P(x)→
Q(x), and the beliefs P(a) and P(b). The dependency
graph in figure 1(a) shows that all formulas in the be-
lief base are non-inferential.

Running the plans of the agent to quiescence (i.e.
applying the only plan to both P(a) and P(b)) yields
two new beliefs, Q(a) and Q(b). This is shown in
figure 1(b). If for instance ¬Q(b) is introduced and
we choose to contract by Q(b), we can use the rela-
tion between formulas to backtrack from Q(b) to the
formulas supporting it.

(P(X)→ Q(x), []) P(x)→Q(x)

(P(a), []) P(a)

(P(b), []) P(b)

(a) Initial formulas and dependencies

(P(X)→Q(x), [])(P(a), [])

P(x)→ Q(x)

(P(b), [])

P(a) P(b)

(Q(a), [P(a),P(x)→ Q(x)]) (Q(b), [P(b),P(x)→ Q(x)])

Q(a) Q(b)

(b) After firing plans to quiescence

Figure 1: Dependency graph of an agent.

4.2 Contracting by Formulas

When contracting by a formula, we need to further re-
vise the belief base such that the formula is no longer
derivable. This requires us to not only remove the
justifications for the formula, but also contract by a
support from each justification. We use the notion
w(s) for the least preferred member of a support list s
(Alechina et al., 2006b). This formula will be the for-
mula that is not preferred to any other formula in the
list, such that we will be prepared to give it up first.

Algorithm 1 is similar to the contraction algo-
rithm given in (Alechina et al., 2006a; Alechina et al.,
2006b), with the main difference that a justification
can have edges to plans as well as literals. This allows
us to track dependencies through plans and thereby
contract by them. The check within the first loop cor-
responds to reason-maintenance style belief-revision.
If AGM style belief-revision is preferred, we do not
contract by C.

Algorithm 1: Contraction by formula A.

for all j = (C,s), where A ∈ s do
remove j from the graph
if C has no justifications then

contract(C)
end if

end for
for all j = (A,s) do

if s = [] then
remove j from the graph

else
contract(w(s))

end if
end for
remove A

The overall complexity of the algorithm given in
(Alechina et al., 2006b) is O(kr + n) where k is the
maximal number of supports in any support list, r is
the maximal number of justifications with non-empty
supports and n is the number of literals in the belief
base.

This does not change when contracting plans as

well. The upper bound for the first loop is r(k+ 2);
one constant time operation for the plan itself, one
for the formula asserted by the plan, and k operations
for the premises of the plan. The second loop has an
upper bound of n. The overall complexity is therefore
O(kr+n).

In (Alechina et al., 2006b) it was shown that
the contraction algorithm satisfies AGM postulates
(K−̇1)–(K−̇4) and (K−̇6). (K−̇5) is not satisfied,
since if B is supported by A and we contract by B,
then both A and B are removed. If we add B again, A
is not added as well.

4.3 Revision Using Preferred
Contractions

We need to elaborate on how to select candidates for
contraction. Ideally, the quality of a justified formula
should be somehow related to the formulas that sup-
ports it (Alechina et al., 2006b). We say that the pref-
erence of a formula with the justifications j0, . . . , jn
is:

p(P) = max{qual(j0), . . . ,qual(jn)}

Furthermore, the quality of a justification j =
(Q, [P0, . . . ,Pn]) is the preference value of the least
preferred formula in its support list:

qual(j) = min{p(P0), . . . , p(Pn)}

We write j = (Q, [P0, . . . ,Pn],n), when qual(j) = n.
It is now possible to order beliefs using a to-

tal preference order relation, �, on a set of beliefs
(Nguyen, 2009). Given two beliefs, P and Q, we write
P � Q if Q is preferred over P. This is the case if
p(P) < p(Q). Furthermore, if p(P) = p(Q), we can
use other measures to determine a strict preference
relation, such as taking the age of a belief into consid-
eration.

The quality definition only holds for inferential
justifications. It is clear that non-inferential justifi-
cations must have some kind of a priori quality. In
(Nguyen, 2009) the following order of independent

beliefs is suggested:

Percept

> Mental note

> Built-in plan

> Communicated data

As we shall see, choosing different orderings may
lead to very different contraction results.
Example 2. Recall the situation from example 1.
Suppose we choose to contract by Q(b)2. All jus-
tifications which has Q(b) in their support list are
then removed. Q(b) does not support any beliefs,
so nothing happens. All justifications for Q(b)
must then be removed. There happens to be one:
(Q(b), [P(b),P(x)→ Q(x)]).

In order to render Q(b) underivable, one of the
supports must be contracted as well. Depending on
which formula is preferred least, this gives the two
situations shown in figure 2.

We assume that P(a), P(b) are percepts and
P(x)→Q(x) is a built-in plan (i.e. not communicated
from another agent).

In figure 2(a) the literal P(b) has been removed. In
this case, the ordering of independent beliefs is Built-
in plan > Percept.

Figure 2(b) shows a setting where the plan P(x)→
Q(x) has been removed. In this case, the ordering of
independent beliefs is Percept > Built-in plan.

The example shows that different preference re-
lations result in very different contraction results. In
some cases plans might generally be preferred to lit-
erals, while in other cases we might want to prefer
communicated beliefs the most. It is difficult to de-
cide when one preference ordering is better than an-
other, since it depends on many factors such as the
reliability of the agents and correctness of their plans.

Algorithm 2: Revision by A.

add A to belief base
while belief base contains a pair (B,¬B) do

contract(w(B,¬B))
end while

Using the preferred contractions, we can now de-
fine the revision operation (algorithm 2). In (Alechina
et al., 2006b) the revision operator and the basic AGM
postulates for it are described. It is furthermore shown
that the operator satisfies five of the six postulates.
A ∈ K+̇A is not satisfied since if we add A and use
it to derive B, but we already have ¬B in the belief

2We could do this if, for instance, the agent perceives
¬Q(b).

base, then if p(B) < p(¬B) we would contract by B
and finally remove A.

4.4 Belief Revision in Jason

In Jason plans will not always be of the form required
by LW . When considering belief revision, we there-
fore only consider so-called declarative rule plans
(DRP), which are plans of the form

+t : l1 & ... & ln ← g1 & ... & gm

where t is a triggering event, l1 & ... & ln is the con-
text, which must be a conjunction of literals and fi-
nally the plan-body, which contains one or more be-
lief additions, g1 & ... & gm. If the triggering event
is a belief addition event, then it will support each gi
together with the context.

Given a DRP:

+t : l1 & ... & ln ← g1 & ... & gm

where t is a belief addition event, it is straightforward
to show its relation to GMP:

(t ∧ l1∧ . . . ln → g1)∧·· ·∧ (t ∧ l1∧ . . . ln → gm)

If t is not a belief addition event it is not included in
the antecedent of each implication.

When considering plans we allow gi to be the def-
inition of a plan, allowing us to add new plans to the
belief base. gi can then either be the addition of a
literal (+a, +∼a) or the addition of a plan, using the
internal action .add plan.

If a single gi is contracted, all other g j that were
derived in the same plan may very well be contracted
as well, assuming they are not justified by any other
plans. This could lead to situations where having a
single contradiction can lead to a much smaller belief
base after contraction.

If we contract by gi, gi is no longer re-derivable
from the set of plans used so far. This means that the
agent could have a plan +t : l1 & ... & ln ← gi that
will not be removed, even though it could be used to
derive gi. This is a drawback of using belief revision
in a non-quiescent setting.

5 IMPLEMENTATION IN JASON

We implement belief revision in Jason by extending
the buf (belief update function) and brf (belief revi-
sion function) methods of the agent (Alechina et al.,
2006a). The belief update function updates the be-
lief base with everything that is currently perceived
in the environment and removes anything in the be-
lief base that is no longer perceived. In other words,

(P(X)→Q(x), [])(P(a), [])

P(x)→ Q(x)P(a)

(Q(a), [P(a),P(x)→ Q(x)])

Q(a)

(a) Removing a literal

(P(a), []) (P(b), [])

P(a) P(b)

(b) Removing a plan

Figure 2: Contracting by Q(b) with different w(s).

it ensures that anything the agent can perceive in the
environment can be found in the agents belief base.
Since percepts are independent beliefs, we extend the
buf method to create a non-inferential justification for
each percept. The standard implementation of the be-
lief revision function adds and removes beliefs from
the belief base. We extend it to revise beliefs using
the revision and contraction algorithms when plans
marked for revision are executed.

Beliefs and plans are annotated with their depen-
dency and justification lists. Plans that are part of the
agents plan library a priori are independent and will
have non-inferential justifications. The belief at(a),
with a non-inferential justification of quality 3 is an-
notated as follows:

at(a)[dep([j(at(a),[],3)]),just([])]

This allows the programmer to create plans that only
applies to independent literals, or to literals with a cer-
tain preference. For instance

+!goal : at(a)[dep(L)]
& .member(j(_,[],2), L)

<- ...

is only applicable if at(a) is an independent belief
with p(at(a)) = 2.

Communicated plans are – along with communi-
cated beliefs – also independent but have a lower pref-
erence. Using the internal action .add plan the agent
can add plans dynamically to its plan library. We cap-
ture this by extending the PlanLibrary so that all plans
that are added will be added with appropriate justifi-
cations.

Adding a plan does not lead to an iteration of be-
lief revision. Remember that Jason does not run in a
quiescent setting, so the plan is not immediately fired.
Therefore the plan could lead to inconsistency, but
this will only be discovered whenever it is actually
fired.

We annotate plans that should be considered for
belief revision with drp (i.e. declarative rule plans).

@plan[drp] +!goal : p & q & r <- +s.

When this plan is chosen, s will be added to the belief
base. The revision algorithm will then be executed to
revise any inconsistent pairs of literals.

The justification holds a support-list of type Lit-
eral, which in our case can be either LiteralImpl (be-
liefs) or Plan (declarative rule plans). Each justifi-
cation has a quality – either assigned a priori (using
a preference ordering as described above) or when
propagating the quality.

Given the contraction and revision algorithms
above, the Jason agent can now revise its belief base
on-the-fly. Whenever a relevant plan is chosen which
adds a belief A to the belief base, the brf method is
executed3, and it is checked whether an inconsistent
pair (B,¬B) exists and should be revised.

The Jason platform also allows us to implement
the revision algorithm directly in the agent architec-
ture. We can then revise the belief base when a rea-
soning cycle is starting instead of revising during the
addition or deletion of a belief, meaning that incon-
sistent information will never exist at the beginning
of a reasoning cycle. Since we require belief-revised
plans to be annotated with DRP, this solution could
be relevant in a setting where it is difficult to decide
exactly which plans could lead to inconsistency.

6 CASE STUDY — CONTINUED

We now consider the case study again. We choose the
following preference ordering of independent beliefs
and plans:

Percept

> Mental note

> Built-in plan

> Communicated data

3Note that in Jason the brf method is always executed
when beliefs are added, but we ensure that the actual be-
lief revision only occurs when the executed plan is in fact a
DRP.

For simplicity we give each inferential justifica-
tion a numerical value representing their quality cor-
responding to the above ordering: 0 for communi-
cated data, 1 for built-in plans, 2 for mental notes and
3 for percepts.

The agent first receives at(a)[Ag2] and
applies +at(X) <- +dig(X), resulting in
dig(a). At this point the belief base is
consistent. The justification for dig(a) is
(dig(a), [at(a),+at(X) <- +dig(X)],0), since the
least preferred literal is at(a) (p(at(a)) = 0).

It then receives ∼at(a)[Ag3], which is added to
the belief base, but no plans apply. The agent now has
the following information:

Age Belief
R1 0 +at(X) <- +dig(X).
B1 22 at(a)[Ag2]

B2 22 dig(a)[Ag1]

B3 28 ∼at(a)[Ag3]

This means that when B3 is added to the belief
base, the revision algorithm finds both at(a)[Ag2]
and ∼at(a)[Ag3]. The preference ordering is B1 �
B3 even though p(B1) = p(B3) since B3 was
added after B1. Therefore the agent contracts by
at(a)[Ag2], resulting in the removal of dig(a) as
well, since it depends on at(a).

The agent perceives a plausible location, b, and
adds at(b)[Ag1] to its belief base. By applying R1 it
also adds dig(b)[Ag1]. It then receives ∼at(b)[Ag3]
rendering the belief base inconsistent again:

Age Belief
R1 0 +at(X) <- +dig(X).
B3 28 ∼at(a)[Ag3]

B4 35 at(b)[Ag1]

B5 35 dig(b)[Ag1]

B6 44 ∼at(b)[Ag3]

We have B6 � B4 since p(B6) < p(B4) so the
agent will contract by ∼at(b)[Ag3].

The agent now receives a plan for retrieving a trea-
sure located in a tree. It chooses to pursue this plan
immediately, adding the following information:

Age Belief
R2 49 (+!get treasure : at(X) <-

+climb tree(X);
+∼dig(X))[Ag4]

B7 52 climb tree(b)[Ag1]

B8 52 ∼dig(b)[Ag1]

Figure 3 shows the relation between the current
formulas in the agents belief base. We see that

p(B8) < p(B4), which means the agent will choose
to contract by ∼dig(b)[Ag1]. The agent will remove
B7, B8 and R2 and then has the following informa-
tion:

Age Belief
R1 0 +at(X) <- +dig(X).
B3 28 ∼at(a)[Ag3]

B4 35 at(b)[Ag1]

B5 35 dig(b)[Ag1]

The agents belief base is again consistent.
The example shows how a belief base can become

inconsistent at any time and that it is relevant to con-
sider plans as well when revising. The algorithms we
have described can detect and remove inconsistency
in the belief base, and it should be evident by the
examples that the choice of preference ordering has
great impact on the contents of the belief base after a
revision has occurred.

7 CONCLUSIONS

We have successfully implemented revision of plans
and beliefs in the AgentSpeak implementation Jason.
The algorithm works in polynomial time, making it
useful in practice. Furthermore we have given an ex-
ample which shows the usefulness of revising both
plans and beliefs in an agent’s belief base.

We have built on the work presented in (Alechina
et al., 2006a; Alechina et al., 2006b; Nguyen, 2009)
by focusing on how plans can be added dynamically
(either by being exchanged or derived) and has shown
that this has practical use in Jason, because of its ex-
tensible nature.

We have shown that the choice of beliefs that
should be removed has great influence on the result
of a contraction, since reason-maintenance recurses
through the dependency-graph.

An interesting extension to the contraction algo-
rithm could be to allow non-inferential justifications
to have a dynamic quality, meaning that percepts or
built-in plans do not always have the same quality.

Furthermore, this paper has only looked at incon-
sistent pairs of the form (A,¬A), but it would be in-
teresting to include means for discovering other types
of inconsistency, such as (dead(A),alive(A)).

Other recent work on approaches to inconsistency
handling in Jason and related systems should also be
considered (Alechina et al., 2008; Klapiscak and Bor-
dini, 2009; Villadsen, 2005; Fuzitaki et al., 2010;
Mascardi et al., 2011; Jensen and Villadsen, 2012;
Spurkeland et al., 2013).

(R1, [],3) (B4, [],3) (R2, [],0)

R1 B4 R2

(B5, [R1,B4],3)

B5

(B7, [R2,B4],0)

B7

(B8, [R2,B4],0)

B8

Figure 3: The relation between the agents beliefs after receiving a new plan for retrieving the treasure.

REFERENCES
Alchourron, C. E., Gärdenfors, P., and Makinson, D.

(1985). On the logic of theory change: Partial meet
contraction and revision functions. Journal of Sym-
bolic Logic, 50(2):510–530.

Alechina, N., Bordini, R. H., Hübner, J. F., Jago, M.,
and Logan, B. (2006a). Automating belief revision
for AgentSpeak. In Proceedings of the 4th Interna-
tional Conference on Declarative Agent Languages
and Technologies, DALT’06, pages 61–77. Springer.

Alechina, N., Jago, M., and Logan, B. (2006b). Resource-
bounded belief revision and contraction. In Proceed-
ings of the Third International Conference on Declar-
ative Agent Languages and Technologies, DALT’05,
pages 141–154. Springer.

Alechina, N., Jago, M., and Logan, B. (2008). Preference-
based belief revision for rule-based agents. Synthese,
165(1):159–177.

Bordini, R. H., Wooldridge, M., and Hübner, J. F. (2007).
Programming Multi-Agent Systems in AgentSpeak us-
ing Jason. John Wiley & Sons.

Doyle, J. (1977). Truth maintenance systems for prob-
lem solving. In Proceedings of the Fifth International
Joint Conference on Artificial Intelligence, IJCAI 77,
page 247.

Fuzitaki, C., Moreira, l., and Vieira, R. (2010). Onto-
logy reasoning in agent-oriented programming. In
da Rocha Costa, A., Vicari, R., and Tonidandel, F., ed-
itors, Advances in Artificial Intelligence - SBIA 2010,
volume 6404 of Lecture Notes in Computer Science,
pages 21–30. Springer.

Jensen, A. S. and Villadsen, J. (2012). Paraconsistent com-
putational logic. In Blackburn, P., Jørgensen, K. F.,
Jones, N., and Palmgren, E., editors, 8th Scandinavian
Logic Symposium, pages 59–61. Scandinavian Logic
Society.

Klapiscak, T. and Bordini, R. H. (2009). JASDL: A prac-
tical programming approach combining agent and se-
mantic web technologies. In Baldoni, M., Son, T. C.,
Riemsdijk, M. B., and Winikoff, M., editors, Declara-
tive Agent Languages and Technologies VI, pages 91–
110. Springer.

Mascardi, V., Ancona, D., Bordini, R. H., and Ricci, A.
(2011). CooL-AgentSpeak: Enhancing AgentSpeak-
DL agents with plan exchange and ontology services.
IEEE/WIC/ACM International Conference on Web In-
telligence and Intelligent Agent Technology, 2:109–
116.

Nguyen, H. H. (2009). Belief revision in a fact-rule agent’s
belief base. In Proceedings of the Third KES Inter-
national Symposium on Agent and Multi-Agent Sys-
tems: Technologies and Applications, KES-AMSTA
’09, pages 120–130. Springer.

Spurkeland, J., Jensen, A., and Villadsen, J. (2013). Belief
revision in the GOAL agent programming language.
ISRN Artificial Intelligence, 2013.

Villadsen, J. (2005). Supra-logic: Using transfinite type the-
ory with type variables for paraconsistency. Journal of
Applied Non-Classical Logics, 15(1):45–58.

