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We demonstrate that the quasi-one-dimensional (1D) current transport, experimentally observed in graphene
as measured by a collinear four-point probe in two electrode configurations A and B, can be interpreted using
the sensitivity functions of the two electrode configurations (configurations A and B represents different pairs of
electrodes chosen for current sources and potential measurements). The measured sheet resistance in a four-point
probe measurement is averaged over an area determined by the sensitivity function. For a two-dimensional
conductor, the sensitivity functions for electrode configurations A and B are different. But when the current
is forced to flow through a percolation network, e.g., graphene with high density of extended defects, the two
sensitivity functions become identical. This is equivalent to a four-point measurement on a line resistor, hence
quasi-1D transport. The sensitivity analysis presents a formal definition of quasi-1D current transport, which was
recently observed experimentally in chemical-vapor-deposition graphene. Our numerical model for calculating
sensitivity is verified by comparing the model to analytical calculations based on conformal mapping of a single
extended defect.
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I. INTRODUCTION

The analysis and control of defects are ongoing topics
for graphene films produced via chemical vapor deposition
(CVD), which is the preferred method for producing cheap,
high-quality graphene suited for large-scale integration. In
graphene, such defects can be anything from lattice im-
perfections (grain boundaries) [1–3], physi- or chemisorbed
adatoms, cracks [4], folds [5], areas with contamination, holes
due to imperfect transfer from growth substrate, and surface
corrugations responsible for various scattering effects reducing
the carrier mobility and causing unintended variations in the
current flow [6,7].

In a recent study we experimentally observed quasi-one-
dimensional (1D) current transport in large area CVD graphene
by micro-four-point-probe (M4PP) measurements [7]. We
demonstrated how this could be qualitatively reproduced in
a two-dimensional (2D) material with randomly distributed
insulating line defects near the percolation threshold charac-
terized by the filling factor ρ�2, where ρ was the defect density
and � the defect length [8]. This was done by inspecting the
ratio of the two four-point resistances, RA/RB, measured by
the electrode configurations shown in Fig. 1. For a material
with uniform intrinsic transport properties, the resistance ratio
solely depends on the sample geometry including electrode
positions and takes on an ideal value of ln(4)/ln(3) = 1.262 for
a homogeneous 2D conductor, i.e., without any form of defects
[7,9]. This was verified experimentally in a concurrent study
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for graphene without a high density of extended defects [9].
The notion of 1D-like transport or quasi-1D current transport
represents the situation when the resistance ratio approaches
1, i.e., the expected result for a 1D conductor or wire measure-
ment [7,8]. For measurements on an inhomogeneous material,
the sensitivity (or weighting function) of four-point resistance
to small perturbations in the local transport properties has been
studied both numerically[10–13] and analytically [14]. Similar
studies have been conducted for finite point-like perturbations
to include nonlinear effects on the sensitivity [15,16], but the
situation is different for highly nonuniform materials with
extended insulating defects.

In this paper we present a numerical model of current flow
in M4PP measurements in an initially 2D conducting sheet
subjected to a large number of insulating line defects of random
orientation. We show how the numerical model can be verified
for simple situations, involving a single extended defect, using
an analytical expression obtained via conformal mapping. The
results are analyzed by mapping and comparing the sensitivity
of measurements in different probe configurations. Through
this technique, it is shown that the frequently occurring 1D
signature is a result of the different probe configurations
measuring the exact same area on the sample, due to defects
confining the current. The approach can be expanded to a
general framework for analyzing the sensitivity of other types
of defects on electrical measurements.

II. ANALYTICAL MODEL

In a four-point probe measurement, a current I is passed
through the sample, using two of the four electrodes, while
the resulting potential drop over the remaining two electrodes
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FIG. 1. Schematic of four different probe configurations (A, B,
A′ and B′). The probe pins are numbered 1 to 4 and are evenly spaced
by a probe pitch s.

is measured. The measured resistance is determined by the
ratio of measured voltage to applied current. The four-point
resistances RA, RB, RA′ , and RB′ are measured with the pin
configurations (A, B, A′, and B′) defined in Fig. 1. Due
to reciprocity, RA = RA′ and RB = RB′ in the absence of a
magnetic field. To analytically model an M4PP measurement
on a sample with a line defect, we turn to conformal mapping.
Here a linear defect of finite length is mapped onto an infinite
border, running along the x axis. Thus the problem is reduced
to that of a semi-infinite sheet, for which the electrostatic
potential can be calculated for any probe position in the upper
half-plane. In the mapping process, the probe pin coordinates
are treated as complex numbers, w = u + iv in real space and
z = x + iy in the conformal image plane, here i = √−1 is
the imaginary unit. In the case of a short defect with length
�, and its center at the origin of the coordinate system, the
transformation of the pin coordinates from the w plane to the z

plane and back is given by z = i

√
w−�/2
w+�/2 and w = �

2
1−z2

1+z2 ,

respectively. An example of this mapping procedure for three
different M4PP pin positions around a defect is shown in
Fig. 2.

The electrostatic potential � (r,r+,r−) at position r with
two point current sources ±I , at the positions r+ and r− in
the upper half-plane of the semi-infinite sheet, is found as a
solution to the Laplace equation for an infinite sheet

� (r,r+,r−) = IR0

2π

(
ln

|r − r−|
|r − r+| + ln

|r − r−|
|r − r+|

)
, (1)

where r± = (x±,y±) = (x±,−y±) are the positions of image
current sources in the lower half-plane and R0 is the sheet
resistance. This image technique ensures that the current
density Js across the boundary between two half-planes is zero,
Js · n = 0, where n is the unit vector normal to the boundary,
which is the correct boundary condition for the semi-infinite
system. A detailed derivation of this potential is presented
in Ref. [17]. The resistances are found using Ohm’s law, for
instance, RA = [� (r2,r1,r4) − � (r3,r1,r4)] /I .

v

u

y

x

FIG. 2. (Color online) An example of conformal mapping.
(a) The probe positions around an insulating line defect, which is
indicated by the black line. (b) The corresponding upper half-plane
solution where the x axis is an infinite border. The situation on the
right can be solved analytically as opposed to the left.

III. NUMERICAL MODEL

With more than one defect there is no simple analytical
solution to the electrostatic problem. To calculate the effect
of a large number of randomly positioned defects, we must
turn to the finite element method (FEM). The numerical
simulations were performed using COMSOL Multiphysics
4.4 with LiveLink for Matlab. The sample was modeled as
a two-dimensional square-shaped area and the four probe pins
were introduced as points placed on a straight line in the
center of the square along the x direction and separated by
the probe pitch s. One pin was modeled as a current source
δ function and one as a current drain δ function, and the two
remaining pins were used to monitor the electrostatic potential
difference resulting from the current flow. Using point source
currents in the calculations is a good approximation when
considering the length scale of the probe pitch, which is in
micrometers, compared to the physical contact size of ∼10 nm.
Defects were introduced as straight insulating lines, as were
the boundaries of the sample, so that in both cases Js · n = 0.
Adaptive mesh refinement was used on an initial extra-coarse
mesh with a maximum of two mesh refinement steps. With
these mesh settings the result was within 1% of the fully
converged solution even for the highest defect densities.

For numerical simulations, a side length of 10s was chosen
to reduce computational time for systems with a large number
of defects. Due to the proximity of the sample edges, the
resistance ratio of the down-scaled system, without added
defects, has the value 1.20. To achieve a given defect density,
the corresponding amount of defect center coordinates were
homogeneously distributed in a square grid, across the sample.
Each defect center was then given a random offset in the x and
y directions and the offset amplitudes were at most half the
distance between two grid points. In addition, each defect was
given a random orientation.
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FIG. 3. (Color online) Analytically and numerically calculated
resistance ratios for a probe scanned past a single line defect of
length s, as indicated by the sketch in the top inset. The lower right
inset shows the relative difference between the two models.

The validity of the FEM model was verified by setting up
calculations where a probe was scanned past single defects
in various configurations relative to the probe axis and scan
direction. In all cases the calculated probe response was
compared to the analytical result from conformal mapping.
An example is shown in Fig. 3, where the top inset shows
the probe-defect configuration. The probe was aligned and
scanned along the x direction, while the defect of length s was
aligned along the y direction and displaced the distance s in the
y direction from the probe scan axis. The resulting resistance
ratios from numerical and analytical calculations are compared
in Fig. 3. To numerically reproduce the resistance ratio of the
defect-free semi-infinite sheet, RA/RB = 1.262, we found that
the sample side length had to be at least 450s. For this reason,
the sample used in the numerical model for this verification was
450s × 450s. The difference between the numerical and the
analytical result was below 0.1%, as shown in the lower right
inset in Fig. 3, which is evidence of an excellent agreement
between the FEM model and the analytical result and thus
serves to verify the FEM model.

IV. SENSITIVITY ANALYSIS

In this work it is essential to visualize and clarify the
transition from 2D to 1D-like transport. The signature of 1D
transport appears when resistances measured in two different
pin configurations, A and B, become equal. For measurements
in two different pin configurations the resulting sheet current
densities must differ even when the measured resistances are
identical; thus the sheet current densities alone do not clearly
reveal the transport dimensionality. See Supplemental Material
for sheet current densities of 1D-like transport [18]. The
sensitivity as explained below will, however, clearly illustrate
the dimensionality of the transport.

The sensitivity of an M4PP measurement is a very useful
concept that reveals detailed insight into which part of a
sample contributes to the measured transfer resistance RT .
Here we use a dimensionless sensitivity ST defined [13] as
ST = s2δRT /(δR0 δ�), where δR0 is a small local deviation
in sheet resistance R0 within the incremental area δ�, and
δRT is the resulting change in measured transfer resistance.
In the Appendix we show that the sensitivities of A and B
configuration measurements are

SA = s2 JA · JA′

II′ and SB = s2 JB · JB′

II′ , (2)

respectively [13]. Here JA, JA′ , JB, and JB′ are the local sheet
current densities in the respective measurement configurations,
while I and I ′ are the total measurement currents used in
the measurements. Multiplication by the probe pitch squared
renders the sensitivity dimensionless and eases comparison of
absolute sensitivity values for different samples. Specifically,
the sensitivities in a defective sample can be calculated to
reveal details of how defects alter the measurements. By using
the definition of the sensitivity we have for the resistance
difference RA − RB = ∫

�
R0 (SA − SB) d�/s2, and clearly in

cases of identical sensitivities the resistances become identical.

V. 1D MEASUREMENTS

In recent work we found that the numerical model qual-
itatively reproduces both the 2D and 1D current transport
behaviors [8], which were earlier found experimentally [7].
To investigate the cause of the two dominant measurement
signatures we consider two representative cases and use
sensitivity analysis on their simulated sheet current densities.
Sensitivity plots of SA and SB and their difference SA − SB for
the two typical simulations are shown in Fig. 4, where the white
dots indicate the probe pins and the black lines are insulating
defects. Figures 4(a)–4(c) (left column) are for a system
containing a defect density of 1s−2 with RA/RB = 1.205,
corresponding to that of a sample with the current limited only
by the finite area sample boundary, and thus the figures exhibit
2D-like current transport characteristics. For comparison, the
three inset images show the respective sensitivities for pure
2D current transport.

Figures 4(d)–4(f) (right column) are for a system containing
a defect density of 4.84s−2 and RA/RB= 1, corresponding to
1D-like current transport characteristics. Here a larger fraction
of the sheet area is characterized by having a higher value of
sensitivity than in the left column. This can be explained by the
large number of defects obstructing the path of least resistance,
which forces the current on a longer route.

In the 2D-like case (left column) the difference in sensitivity
between the two configurations is clearly visible in Fig. 4(c).
This explains why different resistances are measured in the
two configurations, yielding RA/RB = 1.205. For the 1D-like
case (right column) the difference in sensitivity is mapped
in Fig. 4(f). The largest values found here are on the order
of 10−3 and thus very small compared to the 2D-like case.
This shows that the areas that contribute to the measured
resistances are essentially identical, and therefore identical
resistances were measured, and RA/RB = 1 results. In this
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FIG. 4. (Color online) Sensitivity maps for typical 2D and 1D
signature measurements where the four white dots represent the probe
pin positions, and the black lines are insulating line defects. (a) and
(b) are the A and B configuration sensitivity maps for a 2D signature
case. (c) is the difference between the values SA and SB from (a) and
(b). The inset images are the corresponding sensitivity maps for the
zero-defect case. (d) and (e) are the A and B configuration sensitivity
maps for the 1D signature case. (f) is the difference between the
values SA and SB from (d) and (e), and is on the order of 10−3, which
is very small compared to (c). The scale bar is 2s (s is the probe
pitch).

case RA − RB = ∫
�

R0 (SA − SB) d�/s2 = 0 and thus iden-
tical resistances are measured.

VI. CONCLUSION

We have shown that sensitivity analysis of M4PP measure-
ments on 2D materials with extended defects gives consider-
able insight into the macroscopic transport properties of the
materials. In particular we have shown that the sensitivities
SA and SB in the two M4PP configurations A and B change
dramatically when the defect density is increased. At low
defect densities, SA and SB differ significantly and are localized
to an area in the vicinity of the probe pins. As a result the

measured resistances RA and RB differ, which is characteristic
of 2D transport; the resistance ratio RA/RB then becomes
ln 4/ ln 3 for an infinite sample. In contrast, at high defect
densities SA and SB become essentially identical and localized
to a low dimensional path between the probe pins. As a result,
the measured resistances RA and RB become identical (exactly
the same part of the sample is measured), with the ratio
RA/RB = 1.0, a clear 1D signature. This analysis explains
the similar behavior observed experimentally on defective
graphene in Ref. [7]. The sensitivities were calculated using a
FEM model, which was verified by comparison to an analytical
calculation for the single-defect case, which we solved exactly
by use of conformal mapping.
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APPENDIX

For the derivation of the sensitivities, Eq. (2), we use an
approach similar to that of Paul and Cornils [12]. We now
consider a 2D region � with an insulating boundary ω (shown
in Fig. 5) such that the sheet current density Js · n = 0 on ω,
except at four electrodes (like the four pins in an M4PP) where
a current Ii may flow out of the electrode i ∈ [1,2,3,4] with
the potential Vi . The sheet current densities are considered
divergence free, which means that we can write

∇ · (�J̃s) = ∇� · J̃s + �∇ · J̃s = ∇� · J̃s = −E · J̃s ,

(A1)

where � is the potential in region �, E = − ∇� the electric
field, and J̃s is the sheet current density in another region �̃.
Taking an integral over the region �, and applying Stokes
theorem, we get the following identity:∫

�

∇ · (�J̃s) d� =
∫

ω

�J̃s · n dω = −
∫

�

E · J̃s d�. (A2)

The boundary integral is easily evaluated since the boundary
conditions make the integral vanish except at the electrodes,

Js• n=0

Ω

ω

1

2 3

4

I1

I2 I3

I4V1

V2
V3

V4

FIG. 5. Illustration of a 2D region � with insulating boundary
except for four perfect contacts, Nos. 1–4.
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and thus a sum results:

∫
ω

�J̃s · n dω =
4∑

i=1

ViĨi . (A3)

If we now consider the two regions identical but corresponding
to reciprocal configurations, e.g., A and A′, only two terms
remain in the sum, and from Eqs. (A2) and (A3) we find the
relation

VkĨk + V�Ĩ� = −(Vk − V�)Ĩk� = −
∫

�

E · J̃s d�, (A4)

where i,j,k,� ∈ [1,2,3,4] and i �= j �= k �= �. From this result
the transfer resistance RT = (Vk − V�) /Iij becomes

RT = Vk − V�

Iij

= 1

Iij Ĩk�

∫
�

E · J̃s d�. (A5)

At zero magnetic field the electric field and sheet current
density are related as E = R0Js , where R0 is the sheet
resistance, and thus a general expression for the transfer
resistance as a function of the current densities in the two
configurations becomes

RT = R̃T = 1

I Ĩ

∫
�

R0Js · J̃s d�. (A6)

Now we can define sensitivity as the change in transfer
resistance relative to a change in local direct sheet resistance
(δR0) in a small region δ� as

S = s2 δRT

δR0δ�
= s2 Js · J̃s

I Ĩ
, (A7)

where the sensitivity has been made dimensionless by multi-
plication of s2. This result was also given in Ref. [13] without
proof.
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