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Abstract

We consider the propagation of sound through a slowly moving fluid in
a 2-dimensional duct. A detailed description of a flow-acoustic model of
the problem using B-spline based isogeometric analysis is given. The model
couples the non-linear, steady-state, incompressible Navier-Stokes equation
in the laminar regime for the flow field, to a linear, time-harmonic acoustic
equation in the low Mach number regime for the sound signal. B-splines are
used both to represent the duct geometry and to approximate the flow and
sound fields. This facilitates an exact representation of complex duct geome-
tries, as well as high continuity approximations of state variables. Acoustic
boundary conditions on artificial truncation boundaries are treated using a
mode matching formulation. We validate the model against known acoustic
modes for a uniform flow through a straight duct. Improved error conver-
gence rates are found when the acoustic pressure is approximated by higher
order polynomials. Based on the model, we examine how the acoustic signal
varies with sound frequency, flow speed and duct geometry. A combination
of duct geometry and sound frequency is identified for which the acoustic
signal is particularly sensitive to the flow speed.
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1. Introduction

It is well known in physics and engineering applications that wave prop-
agation in ducts is sensitive to the duct geometry [1, 2, 3]. In particular,
spatial resonances exist at certain frequencies [4, 5, 6], and it is anticipated
that disturbances may cause large variations in signal transmission at such
frequencies. While these effects have been explored in quantum mechanics,
solid state physics, and optics, in particular for quasi-periodic and periodic
structures [7, 8, 9, 10, 11], we here investigate the influence of a slow back-
ground flow on acoustic wave propagation in 2-dimensional ducts of varying
height.

Acoustic wave propagation through flows in inhomogeneous ducts has
been studied extensively in the literature, based on both numerical and an-
alytical approaches, see e.g. [12, 13, 14]. Finite element methods represent a
popular numerical approach, based on, e.g., the convected Helmholtz equa-
tion [15, 16], the linearized Euler equations [17], or the so-called Galbrun’s
equation [18, 19, 20]. These methods are often discretized using Lagrange
elements with C0-continuity of the state variable approximations.

The current work contributes to the field of numerical methods for sound
propagation through flow in ducts in two ways. Firstly, we construct a sim-
ple one-way coupled flow-acoustic model, where “one-way coupled” reflects
that the flow field affects the acoustic field, but not vice versa. This is a
good approximation for low-intensity acoustic excitations. The procedure
we follow is first to compute the background flow based on the steady-state,
incompressible Navier-Stokes equations in the laminar regime, i.e., at low
Reynolds numbers, and then adobt a linear, time-harmonic flow-acoustic ap-
proach for the sound wave propagation in the low Mach number regime, using
the output of the flow model as input to the acoustic model. This results in a
single equation in the acoustic pressure, linear in both the flow field itself and
its gradient. The low Mach number assumption corresponds to neglecting
quadratic and higher order terms in the flow for the acoustic analysis.

Secondly, we base our calculations on isogeometric analysis as numerical
methods. This unites the powers of finite element methods to solve par-
tial differential equations with the powers of computer aided design (CAD)
to represent complex shapes [21, 22]. A key feature of this approach is
to use (variations of) B-splines, the building blocks of many CAD models,
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both to represent geometry and to approximate state variables. This allows
for simple descriptions of complex duct geometries without any approxima-
tions, and provides high degrees of smoothness for both flow and acoustic
fields with attractive error convergence properties. Another important fea-
ture of the method is that the acoustic eigenvalues and modes that enter
the boundary conditions on artificial truncation boundaries in the proposed
mode matching formulation, are represented very well with B-splines [23].
Through a consistent choice of B-splines to approximate the acoustic modes
on the boundary and the acoustic field on the interior, a smooth and seamless
model is obtained that requires no specification of parameters like the ab-
sorption coefficient needed in the perfectly matched layer (PML) formulation.
The applicability of isogeometric analysis is well documented for fluid me-
chanics, see, e.g., [24, 25, 26, 27], wave phenomena and structural vibrations
[23, 28, 29], shock hydrodynamics [30], and acoustics based on the boundary
element method [31].

The first aim of the paper is to establish and validate the proposed flow-
acoustic model for time-harmonic sound propagation at low Mach numbers
through a stationary, incompressible background flow at low Reynolds num-
bers in 2-dimensional ducts using B-spline based isogeometric analysis. The
second aim of the paper is to use the model to numerically examine how the
geometry of the duct influences the sound propagation, and in particular its
effect on how the acoustic signal depends on flow speed. The generic prob-
lem is sketched in Fig. 1. We consider a transmitting ultrasonic transducer
mounted on the wall of a narrow duct in which we have a laminar flow of,
say, air, and we examine how the acoustic signal depends on duct geometry,
sound frequency, and flow speed. The exact representation of complex shapes
in few degrees of freedom, and the smooth approximations of state variables
embedded in the isogeometric method, make it ideal in this context.

The outline of the rest of the paper is as follows: Section 2 introduces the
governing equations and approximations leading to the flow-acoustic model.
The isogeometric method is presented in Section 3, after which the method
is validated in Section 4 based on acoustic duct modes. Numerical results
are presented in Section 5, and finally conclusions are summarized in Section
6.
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Figure 1: Sound propagates (black arrows) from acoustic sources (black rings) through a
moving fluid (gray arrows) in a symmetric (dashed lines) 2-dimensional duct (solid lines).

2. Governing Equations and Approximations

We consider the propagation of sound through a moving fluid in a sym-
metric 2-dimensional duct as depicted in Fig. 1. The state of the fluid is
characterised by the velocity u = (u, v), the pressure p, and the density ρ,
assuming the fluid is isothermal, i.e., at constant temperature. These state
variables are governed by the Navier-Stokes and mass continuity equations:

ρ
∂u

∂t
+ ρ(u · ∇)u +∇p−∇ · T = 0, (1a)

∂ρ

∂t
+∇ · (ρu) = 0, (1b)

where t denotes time, and T is the deviatoric stress tensor.
The problem involves two distinct physical phenomena: the flow of the

fluid and the propagation of sound in it. We express this separation through
the state variables:

u = u0 + u′, p = p0 + p′, ρ = ρ0 + ρ′, (2)

where u0, p0, and ρ0 relate to the large scale mean flow, and u′, p′, and ρ′

relate to the small scale acoustic disturbances. For simplicity, we will assume
a one-way coupling of these phenomena, such that flow phenomena (u0, p0,
and ρ0) influence acoustic phenomena (u′, p′, and ρ′), but not the other way
around. Hence, we may treat the flow as independent of the acoustics, and
use the output of the flow model as input to the acoustic model.
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Figure 2: Model domain (light gray) and boundaries (black lines).

In the following, we consider the flow and acoustic equations over a sym-
metric, finite segment of one half of the symmetric, infinite 2-dimensional
duct as depicted in Fig. 2. The four boundaries of the model domain Ω are:
the hard wall boundary Γw, the symmetry boundary Γs, and the two artificial
truncation boundaries γ− and γ+.

2.1. Flow Equations

For the flow model, we assume that the fluid is Newtonian and incom-
pressible, and that the flow is stationary. The governing equations (1) over
Ω then simplify to:

ρ0(u0 · ∇)u0 +∇p0 − µ∇2u0 = 0, (3a)

∇ · u0 = 0, (3b)

where µ is the dynamic viscosity of the fluid.
The boundary conditions are:

u0 = 0 on Γw, (4a)

v0 = 0 ∧ ∇u0 · n = 0 on Γs, (4b)

u0 = u∗0 on γ−, (4c)(
µ∇(u0 · ei)− p ei

)
· n = 0 on γ+ for i = 1, 2, (4d)

where n is the outward unit normal, and ei is the ith unit vector. Along the
hard wall boundary Γw, no-slip boundary conditions are assumed, while Eq.
(4b) is the symmetry condition along the symmetry edge Γs. On the flow inlet
boundary γ−, u∗0 prescribes a purely horizontal, parabolic velocity profile,
while Eqs. (4d) prescribes the outflow condition along the outflow boundary
γ+. We shall refer to the hard wall boundary Γw and the inflow boundary γ−,
along which the background flow velocity is explicitly prescribed, commonly
as the Dirichlet boundary.
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We solve the weak, or variational, form of the system (3)-(4) which reads:
given ρ0 and µ, find u0 ∈ H1

u∗0
(Ω), v0 ∈ H1

v∗0
(Ω), and p ∈ H1(Ω) such that

x

Ω

(
Uρ0(u0 · ∇)u0 − p0

∂U
∂x

+ µ∇U · ∇u0

)
dA = 0, (5a)

x

Ω

(
Vρ0(u0 · ∇)v0 − p0

∂V
∂y

+ µ∇V · ∇v0

)
dA = 0, (5b)

x

Ω

P
(
∇ · u0

)
dA = 0, (5c)

for all functions U ∈ H1
0 (Ω), V ∈ H1

0 (Ω) and P ∈ H1(Ω). Here, Hs(Ω)
denotes the Sobolev space Hs(Ω) = {f ∈ L2(Ω) : ∀|α| ≤ s, ∂αx f ∈ L2(Ω)},
where α = (α1, α2), |α| = α1 + α2 and ∂αx f = ∂α1

x1
∂α2
x2
f , and Hs

g(Ω) denotes
the space Hs

g(Ω) = {f ∈ Hs(Ω) : f |ΓD = g}, where ΓD is the part of
the boundary ∂Ω where f is prescribed by g through a Dirichlet boundary
condition.

2.2. Acoustic Equations

Below, we give an outline of the derivation of the governing equation for
the acoustic model. The full derivation is included in Appendix A. The
acoustic model sets out from the Navier-Stokes and mass conservation equa-
tions (1). By neglecting viscous effects, inserting the conventions (2) and
the flow equations (3), linearizing with respect to the acoustic variables, as-
suming the speed-of-sound c in the fluid to be constant, using the relation
Dp
Dt

= c2Dρ
Dt

, where D
Dt

= ∂
∂t

+ (u · ∇) is the convective derivative, and assum-
ing small acoustic disturbances, we arrive at the following linearized acoustic
equations:

∂u′

∂t
+ (u0 · ∇)u′ + (u′ · ∇)u0 +

1

ρ0

∂p′

∂x
= 0, (6a)

∂v′

∂t
+ (u0 · ∇)v′ + (u′ · ∇)v0 +

1

ρ0

∂p′

∂y
= 0, (6b)

∂p′

∂t
+ u0 · ∇p′ + ρ0c

2∇ · u′ = 0. (6c)

Applying separation-of-variables and assuming time-harmonic conditions, we
seek acoustic solutions u′ and p′ to Eqs. (6) of the following form:

u′(t,x) = e−iωtũ(x), p′(t,x) = e−iωtp̃(x). (7)
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where ω denotes the acoustic angular frequency. Using the above assump-
tions, neglecting quadratic or higher order terms in the background flow
u0 and its derivatives, and introducing an acoustic source g, the following
acoustic equation can be derived:

∇2p̃+ k2p̃+
2i

ω

(
k2u0 · ∇p̃−

∂u0

∂x
· ∇∂p̃

∂x
− ∂u0

∂y
· ∇∂p̃

∂y

)
= g, (8)

where k := ω/c is the wave number.
Eq. (8) is a second order partial differential equation in the spatial

part p̃ of the acoustic pressure disturbance, with given angular frequency
ω, speed of sound c, and background flow field u0. It corresponds to the
more general Pridmore-Brown equation [32] in the limit of small Mach num-
bers M := ‖u‖/c � 1. We note that the terms in the parenthesis relate to
the background flow u0 and its gradient ∇u0. When the background flow
vanishes, the equation reduces to the usual inhomogeneous Helmholtz equa-
tion. Among the list of assumptions and approximations mentioned above,
we emphasize in particular that second or higher order effects in the back-
ground flow have been neglected, which limits the equation’s applicability to
low Mach number flows M � 1.

The boundary conditions on the hard wall and the symmetry edge are:

∇p̃ · n = 0 on Γw ∪ Γs. (9)

The treatment of the artificial truncation boundaries γ± is less trivial [33, 15,
16]. Here, waves must be allowed to propagate out of the domain, and, at
the same time, reflections back into the domain must be avoided. We treat
the truncation boundaries using a mode matching formulation [34], based on
a modal decomposition of the acoustic signal on the boundary. The crux
of the mode matching method is to assume that the acoustic pressure on
the truncation boundaries γ± may be approximated as linear combinations
of so-called acoustic duct modes that propagate out of the domain. This
establishes the following relations for the acoustic pressure and its normal
derivative:

p̃(x, y) =

N±m−1∑
n=0

w±n φ
±
n (y) := p̃± on γ±, (10a)

∇p̃(x, y) · n = ±∂p̃
∂x

(x, y) = ±
N±m−1∑
n=0

λnw
±
n φ
±
n (y) on γ±, (10b)
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where φn are the acoustic duct modes, λn are the associated (complex and
signed) wave numbers, wn are the expansion coefficients, and Nm is the finite
(and small) number of modes.

The mode matching method involves two steps. In the first step, the
acoustic duct modes, i.e., the functions φn and the wave numbers λn, are de-
termined. For this, we assume that the truncation boundaries γ± are placed
far away from acoustic sources and geometric ondulations, such that the back-
ground flow is independent of x and normal to γ±, i.e., u0(x, y) = (u0(y), 0).
We then write the weak form of the governing equation (8), evaluated on the
truncation boundaries: given ω, k, and u0, find p̃± ∈ H2(γ±) such that∫
γ±

(
P̃
[∂2p̃±
∂x2

+k2p̃±+
2i

ω

(
k2u0

∂p̃±
∂x
− du0

dy

∂2p̃±
∂x∂y

)]
− ∂P̃
∂y

∂p̃±
∂y

)
dy = 0, (11)

for all functions P̃ ∈ H1(γ±). Here, we have used the homogenous Neumann
boundary conditions in Eq. (9), evaluated on the truncation boundaries. As
we shall see in Section 3.4.1, the modes may then be determined by solving
an eigenvalue problem based on Eq. (11). We emphasize that, as a result
of the assumed symmetry around y = 0, only symmetric modes over the full
duct width are allowed in this model.

In the second step, the weights wn of the modes on γ±, as well as the
acoustic pressure p̃ over the entire domain Ω are determined. For this, we
consider the weak forms of the system (8)-(9) for the acoustic pressure over
the domain Ω, and of the modal relation (10a) on the truncation boundaries
γ±. These read: given ω, k, f , and u0, find p̃± and p̃ ∈ H1(Ω) such that∫

γ±

P̃(∇p̃ · n) ds−
x

Ω

∇P̃ · ∇p̃ dA+
x

Ω

P̃
[
k2p̃− g

+
2i

ω

(
k2u0 · ∇p̃−

∂u0

∂x
· ∇∂p̃

∂x
− ∂u0

∂y
· ∇∂p̃

∂y

)]
dA = 0 (12a)∫

γ±

F̃±
(
p̃− p̃±

)
ds = 0, (12b)

for all test functions F̃± ∈ L2(γ±) and P̃ ∈ H1(Ω). These equations are
then solved using the Neumann boundary conditions (10b) on the truncation
boundaries.
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3. Isogeometric Analysis

We solve the flow-acoustic problem numerically using B-spline based iso-
geometric analysis, building on the Galerkin method. This section gives an
account of the numerical procedure. The reader is referred to, e.g., [35] for
treatment of B-splines, and to, e.g., [22] for an extensive introduction to
isogeometric analysis.

3.1. B-splines

B-splines form the building blocks of the numerical method. For later
reference, we briefly revise the basic concepts of these functions.

Univariate B-splines N q
i : [0, 1] → R are piecewise polynomials defined

recursively from a polynomial degree q ∈ N and a set of non-decreasing
knots Ξ = {ξ1, . . . , ξm} ∈ Rm:

N 0
i (ξ) =

{
1 if ξi ≤ ξ < ξi+1

0 otherwise
(13a)

for q = 0, and

N q
i (ξ) =

ξ − ξi
ξi+q − ξi

N q−1
i (ξ) +

ξi+q+1 − ξ
ξi+q+1 − ξi+1

N q−1
i+1 (ξ) (13b)

for q = 1, 2, . . . with i = 1, . . . ,m− q − 1. Here, we use the unit parametric
domain ξ ∈ [0, 1], and assume open knot vectors, i.e., the boundary knots
have multiplicity q + 1 with ξ1 = ξ2 = . . . = ξq+1 = 0 and ξm = ξm−1 = . . . =
ξm−q = 1.

Bivariate tensor product B-splines Rq,r
i,j : [0, 1]2 → R are defined from the

univariate B-splines above:

Rq,r
i,j (ξ, η) = N q

i (ξ)Mr
j(η), (14)

where N q
i is the ith univariate B-spline with degree q and knot vector Ξ1 =

{ξ1, . . . , ξm} in the parametric dimension ξ, and Mr
j is the jth univariate

B-spline with degree r and knot vector Ξ2 = {η1, . . . , ηn} in the parametric
dimension η.
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Figure 3: Parametrization of the model domain.

3.2. Geometry Parametrization

Using the above functions, a parametrization X : [0, 1]2 → R2 of the
computational domain is constructed, see Fig. 3:

X(ξ, η) =
(
x(ξ, η), y(ξ, η)

)
=

Ng
fun∑
i=1

xiR
g
i (ξ, η), (15)

where Rg
i are tensor product B-splines with given polynomial degrees and

knot vectors, xi are the associated expansion coefficients (known as control
points), and N g

fun is the number of terms in the expansion.
The geometry parametrization serves as foundation for both the flow

model and the acoustic model. Rather than solving the equations over the
physical domain Ω, we pull them back to the parameter domain [0, 1]2 and
solve them there.

For later reference, the gradient ∇ and the Hessian matrix H in physical
space Ω of any scalar quantity h are related to their counterparts ∇, H, and
h in parameter space [0, 1]2 by the following relations:

∇h = JT∇h (16a)

H(h) = JTH(h)J +
2∑

m=1

H(xm)eTm∇h, (16b)
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where J is the Jacobian matrix of the parametrization. These relations are
easily solved for the quantities∇h and H(h) in physical space whose elements
appear in the governing equations, and expressed through the quantities ∇h,
H(h), J, H(x), and H(y) in parameter space where we solve the equations.

3.3. Flow Model

Approximations of the background flow velocity and pressure fields are
constructed in a similar fashion as for the geometry (15):

u =

Nu
dof∑
i=1

uiRu
i +

Nu
fun∑

i=Nu
dof+1

uiRu
i , (17a)

p =

Np
fun∑
i=1

p
i
Rp
i , (17b)

where, for the u-field, the basis functions Ru are tensor product B-splines
with given knot vectors and polynomial degrees, the expansions coefficients u
are the unknown control variables to be determined, and Nu is the number of
terms in the expansion, and similarly for the p-field. Also, for book keeping
purposes, the velocity expansion has been split into terms related to basis
functions with support on the Dirichlet boundary and terms related to basis
function without support on the Dirichlet boundary.

Using suitable functions Ru and Rp as test functions in the weak for-
mulation of the governing equations (5), inserting the discretizations of the
state variables (17) into it, interchanging order of summation and integra-
tion, and rearranging terms, the following system of non-linear equations can
be derived: µK1 + ρ0C1(u) 0 −GT

1

0 µK2 + ρ0C2(u) −GT
2

G1 G2 0

 u1

u2

p


= −

 µK?
1 + ρ0C

?
1(u) 0

0 µK?
2 + ρ0C

?
2(u)

G?
1 G?

2

[ u?1
u?2

]
(18)
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or simply M(U) U = F, with

Ki,j,k =
x

[0,1]2

∇Ruk
i

T
∇Ruk

j det
(
J
)

dΞ, (19a)

Ci,j,k =
x

[0,1]2

Ruk
i uT∇Ruk

j det
(
J
)

dΞ, (19b)

Gi,j,k =
x

[0,1]2

Rp
i e
T
k∇R

uk
j det

(
J
)

dΞ, (19c)

Kk =
[

Kk K?
k

]
, (19d)

Ck =
[

Ck C?
k

]
, (19e)

Gk =
[

Gk G?
k

]
, (19f)

u
T

k =
[

u
T

k u?
T

k

]
, (19g)

where all starred quantities relate directly to the Dirichlet boundary condi-
tions, as described in Section 3.5 below.

3.4. Acoustic Model

The acoustic model involves two steps: The first step determines the
acoustic duct modes on the truncation boundaries γ±, i.e., the functions φn
and the wave numbers λn. The second step determines the weights wn of the
modes on γ±, as well as the acoustic pressure p̃ over the entire domain Ω.

3.4.1. Acoustic Duct Modes

To determine the acoustic duct modes, we approximate the pressure in
the regions far upstream and far downstream by the following expression:

p̃(x, y) =
n∑
`=1

φ
`
(x)M`(y) , (20)

whereM` are univariate B-splines defined over the parameter domain ξ ∈ [0, 1],
M` are their image in physical space, and thus functions of y, φ` are expan-
sion coefficients that are functions of x, and n is the number of terms in the
expansion.

By inserting the approximation (20) into the Eq. (11) on the trunca-
tion boundaries, using Mk(y) as test functions, and pulling the integrals

12



back to parameter domain [0, 1], the following system of ordinary differential
equations is obtained:

R φ̈+
2i

ω
S φ̇+ Tφ = 0 , (21)

where dot denotes differentiation with respect to x, and

Rk,` =

∫ 1

0

MkM` y
′ dξ , (22a)

Sk,` =

∫ 1

0

Mk

(
k2 u0M` −

du0

dy
y′−1M′

`

)
y′ dξ , (22b)

Tk,` =

∫ 1

0

Mk

(
−
(
y′−1 + y′′ y′−2

)
M′

` + k2M`

)
y′ dξ , (22c)

φ =
(
φ

1
(x) . . . φ

n
(x)
)T
, (22d)

for k, ` = 1, . . . , n, where prime denotes differentiation with respect to ξ. The
second order system (21) can be rewritten as the first order system[

I 0
0 R

] [
φ̇

θ̇

]
=

[
0 I
−T −2i

ω
S

] [
φ
θ

]
. (23)

By solving the generalised eigenvalue problem[
0 I
−T −2i

ω
S

] [
φ
θ

]
= λ

[
I 0
0 R

] [
φ
θ

]
(24)

for a fixed value of x, we obtain 2n pairs of eigenvalues, λk, and eigenvectors,
(φ

k
θk)

T . Each eigenvalue represents a (complex and signed) wave number,
and each eigenvector corresponds to a (complex) acoustic duct mode

φk(y) =
n∑
`=1

φ
`,k
M`(y) (25)

on the truncation boundary corresponding to the given value of x. Without
loss of generality, we may require that

∫ R
0
φkφ

∗
k dy = 1 and Im

(
φk(0)

)
= 0.
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3.4.2. Acoustic Pressure

To compute the acoustic pressure p̃ over the entire domain, and the
weights wn of the modes on the truncation boundaries, we will, as for the
geometry and the background flow variables, seek solutions of the following
form:

p̃ =

N p̃
fun∑
i=1

p̃
i
Rp̃
i , (26)

where the basis functions Rp̃ are tensor product B-splines with given knot
vectors and polynomial degrees, the expansions coefficients p̃ are the un-

known control variables to be determined, and N p̃
fun is the number of terms

in the expansion.
We emphasize that the bivariate B-splines Rp̃ in Eq. (26), used to ap-

proximate the pressure in the entire domain, are natural extensions of the
univariate B-splines in Eq. (20)M, used to approximate the pressure on the
truncation boundaries, as expressed through Eq. (14).

As test functions in the weak formulation of the governing equations (12),
we use the basis functions Rp̃ and the (B-spline approximations from above
of the) propagative acoustic duct modes φ±. By inserting the acoustic field
approximation (26) and the acoustic duct mode approximation (25) into these
equations, exploiting the Neumann boundary condition (10b), rearranging
terms and interchanging order of integration and summation, we arrive at
the following system of linear equations:[

−D + k2M + 2i
ω

(
k2L−Q

)
ΨΦΛ

ΦTΨ −ΦTΨΦ

] [
p̃
w

]
=

[
g
0

]
(27)

where

Di,j =
x

[0,1]2

∇Rp̃
i

T

∇Rp̃
j det

(
J
)

dΞ, (28a)

Mi,j =
x

[0,1]2

Rp̃
iR

p̃
j det(J) dΞ, (28b)

Li,j =
x

[0,1]2

Rp̃
iu

T
0∇R

p̃
j det(J) dΞ, (28c)

Qi,j =
x

[0,1]2

Rp̃
i

2∑
m=1

eTmHRp̃
j

T

∇u0 em det(J) dΞ, (28d)
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Ψi,j =

∫
[0,1]

Rp̃
i R

p̃
j‖γ′‖ dξ, (28e)

Φi,k =

{
φ
`,k

if supp(Rp̃
i ) ∩ γ± 6= ∅

0 otherwise
, (28f)

Λk,` = δk,lλk, (28g)

gi =
x

[0,1]2

Rp̃
i g det

(
J
)

dΞ, (28h)

for i, j = 1, . . . , N p̃
fun and k, ` = 0, . . . , Nm − 1, where δk,l is the Kronecker

delta. Here, L is due to the flow field u0 in the interior, Q is due to its
gradient ∇u0 in the interior, Φ and Λ depend on u0 and (the tangential
component of) ∇u0 on the truncation boundaries γ±, while D, M, Ψ, and
g appear independently of the background flow.

3.5. Implementation

The Dirichlet boundary conditions, for which the background flow is ex-
plicitly prescribed, are enforced strongly. This is done by specifying suitable
control variables u∗ corresponding to basis functions with support on the rel-
evant boundary. With C2 quartic basis functions to approximate the velocity
field, the vanishing velocity field on the hard wall Γw and the parabolic veloc-
ity profile on the inflow boundary γ− may be enforced exactly. The Neumann
boundary conditions, for which the normal component of the background
flow velocity gradient or the acoustic pressure gradient are prescribed, are
enforced weakly by equating the corresponding parts of the boundary inte-
grals to their respective values.

The mode matching formulation for the acoustic truncation boundary
conditions yeilds both propagative and evanescent modes, as demonstrated
in section 5 below. Typically, a finite and small number of propagative modes
modes are found, while the number of evanscent modes is bounded only by
the numerical discretization. We base the mode matching formulation on the
propagative modes, while the evanescent modes are neglected. Numerical
tests in which evanescent modes were also included have indicated that these
play an insignificant role on the result compared to the propagative modes.

In the numerical examples in the following sections, we will usually take
Rg
i for the geometry parametrization as bi-quadratic tensor product B-splines.

For the flow approximations, we will take Ru
i and Rv

i as bi-quartic and Rp
i
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as bi-cubic, respectively, all C2 across knots cf. [27]. For the acoustic ap-
proximation, Rp̃

i are taken as bi-quartic, unless otherwise stated.

4. Acoustic Duct Modes

In this section we consider the propagation of sound waves in a uniform
flow through a straight duct. The setup is sketched in Fig. 4. We emphasize
that this problem is simpler than the original one described in Fig. 2, due
to the trivial shape of the duct, the simple flow through it, and the lack of
an interior acoustic source. These simplications, however, make the problem
suitable for numerical validation of the proposed method.

γ− γ+

Γw

Γs

Ω

O
•

L

R

Figure 4: The modal problem.

We focus our attention on the acoustic model, and refer the reader to
[27] for a validation of the flow model. Hence, we explicitly prescribe the
background flow based on an artificial uniform flow profile with a given flow
speed U0:

u0 = (u0, v0) = (U0, 0). (29)

Analytical solutions are readily available for this artificial problem, and we
may validate the acoustic model numerically by examining how well the
method is able to reproduce these solutions.

The following represent analytical solutions of Eq. (8) for the acoustic
pressure in a straight duct of height R with the uniform background flow as
given in Eq. (29):

p̃∗n = An cos
(
αny

)
exp

(
iβnx

)
, (30)
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where

An =

{
1 if n = 0,√

2 otherwise,
(31a)

αn = nπ/R, (31b)

βn = −kM ±
√
k2(1 +M2)− (nπ/R)2 , (31c)

for non-negative integers n ∈ N. This corresponds to the normalized acous-
tic duct modes

φn(y) = An cos (αny) (32)

with propagation constants βn, travelling towards ±∞. Modes with n ≤√
1 +M2 k R /π are propagative, while all others are evanescent. Second

order terms in the Mach number M are included here to facilitate comparison
with the exact modes.

Parameter Description Value Unit
µ Dynamic viscosity 2.0 · 10−5 kg/(m s)

ρ Background density 1.2 kg/m3

c Speed-of-sound 3.4 · 102 m/s
R Duct height 2.0 · 10−2 m
L Duct length 0.2 m
f0 Sound frequency 3.0 · 104 Hz
U0 Flow speed 1.0 m/s

Table 1: Parameter values for the numerical validation.

We specify numerical parameter values corresponding to the propagation
of ultrasound in a laminar flow through a straight, narrow duct filled with air.
The values are listed in Table 1. With the duct height as the characteristic
length, these values yield a Reynolds number of Re = ρU0R/µ ' 1 · 103, a
Mach number of M = U0/c ' 3 · 10−3, a Helmholtz number of He = ωR/c '
11, and a Strouhal number of St = ωR/U0 ' 4 · 103. The simple geometry is
represented using linear B-splines.

4.1. Acoustic Modal Decomposition

First, we analyse how well the acoustic duct modes on the truncation
boundary are computed in the first step of the mode matching method. We
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illustrate the structure of the modes computed using a cubic B-spline dis-
cretization, and we compare the quality of the modes computed using cubic
and quartic discretizations based on both B-splines and on Lagrange poly-
nomials. These bases are both polynomial but differ in terms of continuity.
Across knots/elements, the B-spline discretizations are Cq−1, while the La-
grange discretizations are C0. Since only the lowest modes enter the mode
matching formulation, we focus our analysis on these, and note that higher
modes might display even greater differences than those reported here [23].

The structure of the computed modes, based on a cubic univariate B-
spline discretization with 32 degrees of freedom, is shown in Fig. 5. Fig. 5a
shows the propagation constants λ in the complex plane corresponding to
the six lowest modes for a fixed frequency of f = 30 kHz. A given mode can
be categorized as propagative or evanescent, depending on whether λ is on
or off the imaginary axis, indicating whether the mode will propagate or not.
The mode may also be characterized as positive (travelling towards +∞)
or negative (travelling towards −∞), depending on whether Im(λ) > −kM
or Im(λ) < −kM , or, when the imaginary part vanishes, whether λ has a
strictly positive or negative real part. Eight propagative modes are found,
four in each direction, in agreement with the analytical values in Eq. (31).
The number of evanescent modes is bounded only by the number of degrees-
of-freedom of the discretization, and only the first two in each direction
are shown here. In Fig. 5b, the six modal functions φ corresponding to
the six propagation constants in each direction in Fig. 5a are shown, with
propagative modes drawn in solid, and evanescent modes drawn in dashed.
These agree well with the analytical modes as given in Eq. (32). Finally,
Figs. 5c and 5d show the real part and the imaginary part, respectively, of
the propagation constants corresponding to the six lowest positive modes for
frequencies in the range f ∈ [10, 50] kHz. Also shown, in dashed, are the
analytical cutoff frequencies within this range. As the frequency is increased
from 10 kHz to 50 kHz, the number of propagative modes grows from two to
six, in agreement with the analytical expression in Eq. (31). In the following,
we analyse exactly how good this agreement is.

We now analyze the quality of the modes computed by different dis-
cretizations. Fig. 6 depicts the error on the computed propagation constant
for the six lowest positive modes as a function of frequency in the range
f ∈ [10, 50] kHz. The error is evaluated based on the modulus scaled by the
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Figure 5: Computed acoustic duct modes using a cubic B-spline discretization. Propa-
gation constants λ (a) and real part of mode functions φ (b) for f = 30 kHz, and real
part (c) and imaginary part (d) of the positive propagation constants as a function of
frequency for f ∈ [10, 50] kHz.

wave number:

ελn =
|λn − iβn|

k
.

Fig. 6a shows the error for cubic univariate B-spline and Lagrange discretiza-
tions with 32 and 34 degrees of freedom, respectively, and Fig. 6b for quartic
univariate B-spline and Lagrange discretizations with 32 and 37 degrees of
freedom, respectively. To avoid poluting the figure with numerical noise, er-
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Figure 6: Error on the modulus of the computed propagation constants corresponding
to the first six positive modes using cubic (a) and quartic (b) B-spline (solid lines) and
Lagrange (dashed lines) discretizations.

rors smaller than 10−12 are set equal to 10−12. The cutoff frequencies stand
out clearly in the figure, where errors grow by up to an order of magnitude.
This pattern is associated with the vanishing of the propagation constant
βn close to the transition from the evanescent state to the propagative state
of a given mode n. For both discretization types and both polynomial de-
grees, we see that lower modes are better resolved. Focusing first on the two
B-spline discretizations, we note that the first mode is actually determined
exactly (to machine precision) in the cubic case, and the first two to three
in the quartic case. For the two Lagrange discretizations, the first mode is
determined exactly in the cubic case, and the first two in the quartic case.
Comparing the cubic B-spline discretization with the cubic Lagrange dis-
cretizations, we see that the error for the B-spline discretization is around
two orders of magnitude smaller than for the Lagrange discretization. For
the quartic discretizations, this difference grows slightly. Evaluating the dis-
cretization in a per-degree-of-freedom sense, the smooth B-splines are thus
favorable compared to the non-smooth Lagrange polynomials. This result
aligns well with previous findings [23, 29].

4.2. Acoustic Pressure Discretizations

Next, we investigate how well the interior acoustic pressure, computed in
the second step of the mode matching method, is approximated. We examine
how different approximations of the acoustic pressure influence the overall
quality of the method for a fixed frequency. Again, we compare B-splines

20



with Lagrange polynomials for different polynomial degrees. To assess the
quality of the method, we now use the normalised L2-norm of the modulus
of the pressure residual:

ε2p̃ =

s
Ω
|p̃− p̃∗|2 dA

s
Ω
|p̃∗|2 dA

. (33)

To simplify the computational setup, we replace the mode matching
boundary condition (investigated in Section 4.3 below) on the two trunca-
tion boundaries γ± by explicitly prescribing the acoustic pressure on these,
corresponding to the nth positive mode. That is, we set p̃ = p̃∗n on γ± us-
ing Eq. (32). This may be seen as a trivial instance of the mode matching
method, in which we know the acoustic mode and its weight on the boundary
beforehand.
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Figure 7: Error on the modulus of the computed acoustic pressure as a function of number
of basis functions for the acoustic duct mode n = 3 with frequency f = 30 kHz using
different basis function types and polynomial degrees q.

For the tensor-product B-spline and Lagrange discretizations with poly-
nomial degree q ∈ {2, 3, 4, 5}, we solve the problem for a range of meshes
and evaluate the error using Eq. (33). We do this for the highest prop-
agative mode n = 3 at a frequency of f = 30 kHz. The results are shown
in Fig. 7, depicting the error as a function of mesh size (a) and as a func-
tion of the number of basis functions (b). The mesh size is taken to be the
largest knot span in parameter space. We note that for both the B-spline
and the Lagrange discretizations, the error converges with the mesh size to
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the power of polynomial degree plus one. The slope of the error curves for
any given polynomial degree is seen to be practically independent of the dis-
cretization type, both when the error is considered as a function of mesh
size (a), and when the error is considered as a function of number of degrees
of freedom (b). The offset of the error curves, however, is seen to change
appreciably with the discretization type, and this difference increases with
the polynomial degree. For a given degree and mesh size (a), the Lagrange
discretization yields an error that is up to one order of magnitude smaller
than the B-spline discretization. For a given degree and number of degrees
of freedom (b), the B-spline discretization yields an error that is up to one
order of magnitude smaller than the Lagrange discretization. These results
support the appealing properties of the isogeometric method when evaluated
in a per-degree-of-freedom sense as already pointed out in e.g. [23, 28]. All
subsequent results are based on the B-spline-based isogeometric approach
using a polynomial degree of q = 4.

4.3. Acoustic Truncation Boundary Conditions

Finally, we investigate the treatment of acoustic truncation boundary
conditions. We compare the mode matching formulation (MM) to a perfectly
matched layer formulation (PML) in terms quality of the computed solution
for the acoustic pressure, as measured by the normalised L2-norm of the
modulus of the pressure residual (33). We investigate how this error measure
varies as the analysis mesh is refined by uniform knot insertions, and the
number of degrees-of-freedom thereby increases, based on a quartic B-spline
discretization of the acoustic pressure.

We construct a computational setup, in which we explicitly prescribe the
acoustic pressure on the left-most truncation boundary γ−, corresponding to
the nth positive mode as specified in Eq. (32) for a given frequency. On
the right-most truncation boundary γ+, we either use the mode matching
formulation, or we insert a perfectly matched layer [15, 36, 33, 37]. In the
latter case, we attach a PML region of width 25% of the computational
domain, let the absorption coefficient in this PML increase linearly with
the spatial x-coordinate, and manually scale the absorption coefficient to
minimize the artificial reflections.

We compare the mode matching formulation to the perfectly matched
layer formulation, by investigating the error convergence for the four positive
propagative modes n ∈ {0, 1, 2, 3} at the frequency f = 30 kHz. For each
combination of the two boundary conditions and the four modes, we solve the
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problem for a range of meshes, and compute the error using (33). The results
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Figure 8: Error on the modulus of the computed acoustic pressure as a function of number
of basis functions using a quartic B-spline discretization for different acoustic truncation
boundary conditions and modes n.

are shown in Fig. 8. For the mode matching method, practically identical
rates of convergence are found for all four modes. For the PML method,
the convergence curves are quite different: the quality of the approximation
seems to reach a level of saturation when the number of degrees-of-freedom
is above some threshold, and the higher the mode is, the lower this threshold
appears to be. We emphasize, though, that the PML results are sensitive to
the PML size and absorption coefficient; Different results may be obtained
through different choices.

All subsequent results are based on the mode matching formulation. The
method alleviates the need for an artificial PML region, and we avoid hav-
ing to choose a suitable absorption coefficient. Instead, it requires a small
number of additional modal equations and unknowns on the boundary to be
included, that are in general coupled to the interior equations and unknowns.
For non-trivial geometries and background flows, both methods impose re-
strictions on the placement of the acoustic truncation boundaries, such that
the computational domain has to be larger than the actual domain of interest
to the acoustic analysis. For the PML method, this is due to the inclusion
of the additional PML region. For the mode matching method, this is due
to the requirements on the flow on the boundaries.
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5. Numerical Experiment

In this section we use the flow-acoustic model to compute the acoustic
signal for different duct geometries, sound frequencies, and background flow
speeds. Our goal is to look for a combination of duct geometry and sound
frequency for which the acoustic signal is particularly sensitive to the back-
ground flow.

a

b

c
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-
-
-

--
-
-
-
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-
-
-

O

O

O

Figure 9: Design of the numerical experiment: We investigate 3 geometries (a, b, and c),
prescribe a laminar flow at the inlet (arrows), and attach an ultrasound source to the wall
at the center (half circles).

The numerical experiment is sketched in Fig. 9. To assess the geometric
effects, three different geometries are investigated: a straight duct (a), a duct
with two shallow corrugated regions (b), and a duct with two deep bulges
(c). The sound excitation is varied by assuming, for different frequencies f ,
a smooth, compactly supported acoustic source, centered at the point (0, R)
on the wall, of the following form:

g(x, y) = g0 Ψ(x; 0, dx) Ψ(y; r0, dy). (34)

Here, g0 denotes the strength of the source, d = (dx, dy) is its spatial extent,
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and the footprint function Ψ is given by:

Ψ(x; a, b) =

{
e
− 1

1−χ2 for |χ| := |x−a
b
| < 1

0 otherwise
. (35)

The flow is varied by prescribing, for different mean flow speeds U0, a parabolic
velocity profile at the inlet boundary γ−:

u0 =

(
3

2
U0

(
1−

( y
R

)2
)
, 0

)
, (36)

which is just the well-known Hagen–Poiseuille flow profile.
We consider again the propagation of ultrasound in a laminar flow of

air through the three ducts, and use the viscosity, density, speed-of-sound,
duct length, and duct inlet/outlet height summarised in Table 1. The target
frequency of our studies is f = f0 = 30 kHz, and the parameter values for
the acoustic excitation, as well as the range of variations of duct geometry,
sound frequency, and flow speed are summarized in Table 2.

Parameter Description Value Unit
g0 Source strength 1.0 · 106

d Source size (4.0, 4.0) · 10−3 m
Ω Duct geometry {a, b, c}
f Sound frequency [2.75, 3.25] · 104 Hz
U0 Mean flow speed [0.0, 1.0] m/s

Table 2: Additional parameter values for the numerical experiment. See also Table 1.

The duct geometries are represented as a bi-quadratic spline with 26× 3
control points that are adjusted from one duct to the other. The discretiza-
tions of the state variables are derived from the geometry parametrization,
by increasing the polynomial degree and inserting additional knots. The
number of control coefficients ranges from 291 × 31 (a) to 315 × 51 (c) for
each of the background flow velocity components, 147× 17 (a) and 159× 27
(c) for the background flow pressure, and 292×32 (a) and 316×52 (c) for the
acoustic pressure. The control net and the computational meshes for both
the background flow pressure and the acoustic pressure are shown in Fig. 10
for each of the three ducts.
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a

b

c

Figure 10: Control net (top), computational mesh for the background flow pressure (mid-
dle), and computational mesh for the acoustic pressure (bottom) for the straight duct (a),
the corrugated duct (b), and the bulged duct (c).
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We firstly investigate the background flow. Fig. 11 depicts the flow fields
in the three different ducts for the maximal flow speed U0 = 1 m/s. In

a

b

c

[m/s]

[m/s]

[m/s]

Figure 11: Flow speeds (shading) and stream lines (lines) for the mean speed U0 = 1 m/s
in the straight duct (a), the corrugated duct (b), and the bulged duct (c).

the straight duct (a), the parabolic velocity profile is naturally conserved
down the duct. In the corrugated duct (b) and the bulged duct (c), the flow
profile is perturbed in the vicinity of ondulations, where recirculating flows
of different size and strength are observed.

Next, we consider the acoustic response. To this end, we note that all
three duct geometries as well as the acoustic excitation are symmetric around
x = 0. Hence, asymmetries in the acoustic field around x = 0 can arise only
due to asymmetries in the background flow (acoustic reciprocity in the ab-
sence of flow). Therefore, we quantify the acoustic response for a given com-
bination of duct geometry, sound frequency, and flow speed, by the relative
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modulus of the symmetry deviation of the acoustic pressure:

〈δp̃〉 =

s
|p̃(x)− p̃(−x)| dAs
|p̃(x)| dA

. (37)

Since acoustic asymmetries are caused only by background flows, this mea-
sure of asymmetry in the acoustic field is also a measure of how strongly the
flow field affects the acoustic field. For reference, we also examine the mean
modulus of the acoustic pressure:

〈p̃〉 =

s
Ω
|p̃(x)| dA
s

Ω
dA

. (38)

To investigate how the acoustic response depends on the frequency for a
given flow speed, we compute the relative symmetry deviation of the acoustic
pressure 〈δp̃〉, as well as the mean acoustic pressure 〈p̃〉, for frequencies in
the range f ∈ [27.5, 32.5] kHz and flow speed U0 = 1 m/s. The results
are shown in Fig. 12 for each of the three duct geometries. On the top,
no significant changes in 〈δp̃〉 are found for the straight duct (a), while the
corrugated duct (b) shows some changes with frequency. For the bulged
duct (c), however, several peaks are observed, and the strongest one occurs
for f = 30 kHz, where the signal experiences an increase by a factor of
∼ 10 compared to the two other ducts. On the bottom, 〈p̃〉 shows little
change in the investigated frequency range for the straight duct (a), whereas
several resonance peaks are observed both for the corrugated duct (b) and
the bulged duct (c). For f = 30 kHz, the bulged duct (c) displays a local
maximum.

To further illustrate the phenomenon observed in the frequency sweeps
above, Fig. 13 depicts the real part of the acoustic pressure field for the
frequency f = 30 kHz and the flow speed U0 = 1 m/s in each of the three
ducts. Both the straight duct (a) and the corrugated duct (b) exhibit high
degrees of symmetry in the acoustic pressure field. In the bulged duct (c),
however, the acoustic field is clearly asymmetric.

Finally, to investigate how the acoustic response depends on the flow
speed for a given frequency, we compute the relative symmetry deviation of
the acoustic pressure 〈δp̃〉, as well as the mean acoustic pressure 〈p̃〉, for flow
speeds in the range U0 ∈ [0, 1] m/s and frequency f = 30 kHz. The
results are shown in Fig. 14 for each of the three ducts. On the top, linear
dependencies of 〈δp̃〉 upon U0 are observed for the straight duct (a) and the
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Figure 12: Relative symmetry deviation of the acoustic pressure 〈δp̃〉 (top) and mean
acoustic pressure 〈p̃〉 (bottom) as a function of frequency f for the flow speed U0 = 1 m/s
in the three duct geometries.

corrugated duct (b). The bulged duct (c), however, exhibits a weakly nonlin-
ear response, in which the slope of the curve increases for U0 . 0.6 m/s, and
decreases for U0 & 0.6 m/s. For flow speeds U0 ' 0.6 m/s, the slope of the
curve for the bulged duct (c) is larger than that of the straight duct (a) and
the corrugated duct (b) by a factor of ∼ 17. On the bottom, constant re-
sponses in 〈p̃〉 are observed for the straight duct (a) and the corrugated duct
(b), whereas a significant increase is observed for the bulged duct (c). These
results clearly show that we have identified a combination of duct geometry
and sound frequency, for which the sound signal is particularly sensitive to
the background flow.

We conclude by noting that if more (evanescent) modes are used in the
mode matching formulation for the acoustic truncation boundary conditions,
by increasing Nm, practically identical results are found. If the mode match-
ing formulation is replaced by the PML formulation described in Section
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Figure 13: Real part of the acoustic pressure field p̃ for the frequency f = 30 kHz and
flow speed U0 = 1 m/s in the straight duct (a), the corrugated duct (b), and the bulged
duct (c).

4.3, equivalent results are found to within ∼ 1%. If different footprints of
the acoustic source are used, by changing d, qualitatively similar results
are found. In addition, unpublished numerical investigations by the authors
based on Stevenson’s method [38] have also shown that strong resonance cou-
plings between flow speed and duct radius variations can occur. We empha-
size, though, that the phenomenon so far only exists in numerical models and
lacks experimental validation. Nevertheless, it points towards the potential
importance of the geometry on flow sensitivity for acoustic wave propaga-
tion through even very slow flows. From a modeling point-of-view, future
studies should include analysis and shape optimization in three dimensions
to investigate and enhance the effect.
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Figure 14: Relative symmetry deviation of the acoustic pressure 〈δp̃〉 (top) and mean
acoustic pressure 〈p̃〉 (bottom) as a function of flow speed U0 for the frequency f = 30 kHz
in the three duct geometries.

6. Conclusions

We have presented a flow-acoustic model of the propagation of sound
through a slowly moving fluid in 2-dimensional ducts based on isogeomet-
ric analysis. The model couples the non-linear, steady state, incompress-
ible Navier-Stokes equation in the laminar regime to a linear, time-harmonic
acoustic equation in the low Mach number regime, using the solution of the
former as input to the latter. B-splines are used both to model the geometry
and to approximate the flow and acoustic fields. Acoustic boundary condi-
tions along artificial truncation boundaries are treated by matching acoustic
modes. The model has been validated against known acoustic modes for
a uniform flow through a straight duct. These tests clearly supported the
applicability of the method, and in particular demonstrated desireable er-
ror convergence properties for higher order polynomial approximations of
the acoustic pressure, that are embedded in isogeometric analysis. Using
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the model, acoustic signal changes vs. duct geometry have been examined
as a function of frequency and background flow, facilitated by the geomet-
ric flexibility of isogometric analysis. A combination of duct geometry and
sound frequency was identified for which the acoustic signal is particularly
sensitive to the background flow. This enhanced sensitivity deserves closer
examination in future studies.

Appendix A. Derivation of the Acoustic Equation

In this section, we derive Eq. (8). To shorten the notation, we let ∂t :=
∂/∂t denote differentiation with respect to time, and ∂x := ∂/∂x and ∂y :=
∂/∂y differentiation with respect to spatial coordinates.

We set out from the Navier-Stokes and mass conservation equations (1),
and start by assuming that we may neglect viscous effects for the acoustic
signal (isentropic sound propagation). The governing equations (1) then
read:

ρ ∂tu + ρ (u · ∇)u +∇p = 0, (A.1a)

∂tρ+∇ · (ρu) = 0. (A.1b)

Next, we assume that the background flow (u0, p0, ρ0) fulfills the mass
conservation equation and Navier-Stokes equations including viscous effects,
that it is incompressible, i.e., ∂tρ0 = ∂xρ0 = ∂yρ0 = 0, and hence ∇ · u0 = 0
by Eq. (A.1b), and that it is stationary, i.e. ∂tu0 = 0, as in the flow model in
Section 3.3 above. Inserting the conventions (2) into the governing equations
(A.1), while using the above, neglecting second orders terms in the acoustic
disturbances (u′, p′, ρ′) first-order terms in u′ multiplied by small second-
order terms in the background flow, we find:

ρ0∂tu
′ + ρ0(u0 · ∇)u′ + ρ0(u′ · ∇)u0 +∇p′ = 0, (A.2a)

∂tρ
′ + u0 · ∇ρ′ + ρ0∇ · u′ = 0. (A.2b)

Dividing Eq. (A.2a) by ρ0, multiplying Eq. (A.2b) by c2, and utilizing the
acoustic relation Dp′

Dt
= c2Dρ′

Dt
, where c is the speed of sound in the fluid, we

obtain:

∂tu
′ + (u0 · ∇)u′ + (u′ · ∇)u0 +

1

ρ0

∇p′ = 0, (A.3a)

∂tp
′ + u0 · ∇p′ + ρ0c

2∇ · u′ = 0. (A.3b)
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Next, we apply separation-of-variables and assume time-harmonic condi-
tions. We seek acoustic solutions u′ and p′ to Eqs. (A.3) of the following
form:

u′(t, x, y) = e−iωtũ(x, y), p′(t, x, y) = e−iωtp̃(x, y). (A.4)

where ω denotes the acoustic angular frequency. Inserting these relations
into Eqs. (A.3), ignoring the second order term in the background flow u0

in Eq. (A.3a), and dividing by the common temporal part e−iωt, we obtain
the following equations in the spatial parts of the acoustic fields:

−iωũ + (u0 · ∇)ũ + (ũ · ∇)u0 +
1

ρ0

∇p̃ = 0, (A.5a)

−iωp̃+ u0 · ∇p̃+ ρ0c
2∇ · ũ = 0. (A.5b)

To reduce this system, Eq. (A.5a) gives us:

ũ = − i
ω

(
1

ρ0

∇p̃+ (ũ · ∇)u0 + (u0 · ∇)ũ

)
= − i

ωρ0

∇p̃+O(u0), (A.6)

and by inserting this into Eq. (A.5b), we find:

−iωp̃+ u0 · ∇p̃−
iρ0c

2

ω
∇ ·
(

1

ρ0

∇p̃+ (ũ · ∇)u0 + (u0 · ∇)ũ

)
= 0. (A.7)

Next, we neglect all terms quadratic or of higher order in the background
flow u0 and its derivatives, assuming low Mach numbers, i.e. ‖u0‖ � c. Ex-
ploiting again Eq. (A.6) in the above, we then obtain the following equation
in the spatial part of acoustic pressure only:

−iωp̃+ u0 · ∇p̃−
ic2

ω
∇2p̃− c2

ω2
∇ ·
(

(∇p̃ · ∇)u0 + (u0 · ∇)∇p̃
)

= 0. (A.8)

To simplify Eq. (A.8), we use the following identity for two arbitrary
vector functions a = (a1, a2) and b = (b1, b2):

∇ ·
(

(b · ∇)a + (a · ∇)b
)

=

2
(
∂xa · ∇b1 + ∂ya · ∇b2

)
+ (a · ∇)(∇ · b) + (b · ∇)(∇ · a), (A.9)

which may be verified by straightforward calculations. Taking a = u0 and
b = ∇p̃ in the above yields:

∇ ·
(

(∇p̃ · ∇)u0 + (u0 · ∇)∇p̃
)

=

2
(
∂xu0 · ∇∂xp̃+ ∂yu0 · ∇∂yp̃

)
+ (u0 · ∇)(∇2p̃) + (∇p̃ · ∇)(∇ · u0). (A.10)
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Now, taking the divergence of (A.6), and inserting this into (A.5b), we find:

∇2p̃ = −w
2

c2
p+O(u0). (A.11)

Next, we may insert Eq. (A.10) into Eq. (A.8), using the above relation,
neglecting again quadratic or higher order terms in the background flow u0

and its derivatives, and exploiting the incompressibility of the background
flow ∇ · u0 = 0. After some manipulations we find:

∇2p̃+
ω2

c2
p̃+

2i

ω

( ω2

c2
u0 · ∇p̃− ∂xu0 · ∇∂xp̃− ∂yu0 · ∇∂yp̃

)
= 0. (A.12)

Finally, we may define the wave number k := ω/c, and introduce an acoustic
source g on the right hand side. This gives us:

∇2p̃+ k2p̃+
2i

ω

(
k2u0 · ∇p̃−

∂u0

∂x
· ∇∂p̃

∂x
− ∂u0

∂y
· ∇∂p̃

∂y

)
= g. (A.13)
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