Technical University of Denmark

3D Neutron Diffraction

Cereser, Alberto; Strobl, M.; Hall, S.; Steuwer, A.; Tremsin, A.; Bergbäck Knudsen, Erik; Willendrup, Peter Kjær; Kiyanagi, R.; Shinohara, T.; Schmidt, Søren

Publication date: 2015

Document Version Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):

Cereser, A., Strobl, M., Hall, S., Steuwer, A., Tremsin, A., Bergbäck Knudsen, E., ... Schmidt, S. (2015). 3D Neutron Diffraction. Poster session presented at World Conference on Neutron Radiography, Grindewald, Switzerland.

DTU Library Technical Information Center of Denmark

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

3D Neutron Diffraction

A Cereser^{1,2}, M Strobl², S Hall^{2,3}, A Steuwer⁴, A Tremsin⁵, EB Knudsen¹, P Willendrup¹, R Kiyanagi⁶, T Shinohara⁶ and S Schmidt¹

¹Technical University of Denmark - ²ESS-AB - ³Lund University - ⁴Business Region Skåne -⁵University of California at Berkeley - ⁶J-PARC

3D Neutron Diffraction (3DND) is a new technique to study shape and orientation of the individual grains composing polycrystalline samples. 3DND enables non-destructive 3D grain mapping of mm- to cm-sized samples that is not possible using other techniques.

Technique	Sample size
TEM	<100nm
X-ray techniques like 3D X-ray Diff. [1]	100nm to 1mm
3DND	1mm to 1cm

We are developing the algorithms for the 3D reconstruction based on datasets collected at BL18 (J-PARC), ENGIN-X (ISIS), ICON (PSI), and virtual experiments done using McStas [2].

Data acquired simultaneously by NF and FF detectors

Time-of-flight 3DND

In June 2014 at BL18 we analysed an Armco Iron sample (99.8% purity), prepared to contain mmsized grains. The sample was scanned over 180deg in 3deg steps, acquisition time per projection: \sim 1h.

Setup used at BL18. Data were acquired simultaneously by near- (indicated by red arrow) and far-field detectors.

Near- field detector	MCP detector, $28x28mm^2$ 1200 fr/s, pixel size $55\mu m$ Use: shape of the grains
Far-field detectors	36 det, each 256x256 mm^2 Pixel size 4 mm, Q: 0.6-30.7 Use: orientation of the grains

[5] W Ludwig et al (2008)

Alberto Cereser - PhD student at the Technical University of Denmark. alcer@fysik.dtu.dk