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Abstract—Field Programmable Gate Arrays (FPGAs) based
accelerators are very suitable to implement application-specific
processors using uncommon operations or number systems.

In this work, we design FPGA-based accelerators for two
financial computations with different characteristics and we
compare the accelerator performance and energy consumption
to a software execution of the application.

The experimental results show that significant speed-up and
energy savings, can be obtained for large data sets by using the
accelerator at expenses of a longer development time.

I. INTRODUCTION

Hardware acceleration provides both speed-up and energy
efficiency for computer systems. In recent years, two main
classes of accelerators have emerged as the most relevant:
Graphics Processing Units, or GPUs, and FPGA (Field Pro-
grammable Gate Array) based accelerators.

Modern GPUs are composed of a large array of identical
computation cores to exploit parallelism. As GPUs are now
fundamental components in supercomputers [1], their cores
are designed to support standards to enable general-purpose
computing (e.g., IEEE 756 standard for floating-point).

In contrast, FPGA based accelerators are more suitable to
implement Application-Specific Processors, or ASPs, which
optimize the hardware for the specific operations necessary for
the application. For example, applications requiring a specific
number system, such as the decimal system, or applications
requiring modular operations necessary for cryptography.

The major drawback of FPGA based acceleration is the
long development time compared to a software implementation
of the application: the application is solely run on the CPU.
There are a few solutions and suites of tools to reduce this
development time, but the gap against software development
is still huge [2]. In addition, the vast variety of FPGA board
vendors makes hardware accelerators generally not portable
across different platforms.

To summarize, FPGA based accelerators provide more
hardware flexibility than GPU based accelerators because the
processing cores can be tailored to execute specific operations
in a specific (non-standard) number system. This flexibility is
exploited to obtain better performance (lower latency, higher
throughput, and lower power dissipation). However, the de-
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velopment costs of FPGA accelerators are the highest and the
ASP is generally not portable across different platforms.

In this work, we present the results of the implementation
of FPGA based accelerators for a financial computing appli-
cation. The accelerator is realized by an ASP communicating
to the CPU of the host computer through a standard bus. We
measured the actual energy consumption by monitoring the
current in both the CPU and the FPGA board.

The results demonstrate that significant speed-ups and
power savings are obtained. For future developments, we
propose a solution to shorten the design time and enhance
the portability of ASPs developed for other platforms.

II. APPLICATIONS

We chose two applications with very different characteristics
(number system and communication requirements) for the
hardware acceleration.

The first one is a telephone billing application based on
the decimal number system. Many financial and accounting
applications resort to decimal arithmetic because some decimal
fractions (e.g., 0.1) cannot be represented with a finite number
of bits in binary, and, in some cases, rounding errors arise [3].
These errors are not acceptable in financial and accounting
applications. Only a few processors have hardware support
for decimal operations, and the rest of processors implement
decimal arithmetic in time consuming software routines. Our
accelerator should provide the necessary hardware to execute
decimal operations.

The second application is a Monte Carlo simulation for pric-
ing of European options. An increasing number of stock mar-
ket transactions are made through computer systems exploiting
small variations in the price of the asset and buying/selling in a
few milliseconds (high frequency trading, or HFT). The choice
of buying/selling an asset is made based on the results of batch
simulations which statistically determine the price to make a
profit. These simulations require a lot of computer power and
they can be easily parallelizable.

We give some detail on the algorithms implementing the
selected applications in the following.

A. Telephone Billing

The “TELCO” benchmark was developed by IBM to in-
vestigate the balance between I/O time and calculation time
in a telephone company billing application [4]. The benchmark



Algorithm 1 Pseudo-code for the computations in TELCO
benchmark.

if (calltype = L) then

P = duration X Lrate
else

P = duration X Drate
end if

Pr = RoundtoNearestEven (P)
Pr X Btax

Pr + Trunc (B)

if (calltype = D) then

Pr X Dtax

C + Trunc (D)

Algorithm 2 Monte Carlo European option pricing.

VsqgrtT = a\/T
drift = (r— %2)T
expRT = €T

sum = 0

for i =1ton do

drift + VsqgrtT - Vrnd)

St =S - 6(
if (St — K > 0) then
sum = sum + (St —K) - expRT
end if
end for
S = sum/n

Operation Maximum Average
addition 133 71
division 266 171
multiplication 132 69

decimal64 (16 decimal digits) operations.

TABLE I
CLOCK CYCLE COUNT FOR A SUBSET OF DECIMAL OPERATIONS [5].

provides an example of IEEE 754-2008 compliant set of
decimal floating-point operations (multiplication and addition).
The benchmark is available in C and Java, and it can be
executed in any computer.

The benchmark reads an input file containing a list of
telephone call duration (in seconds). The calls are of two
types (“Local” and “Distance”) and to each type of call a
rate (price) is applied. Once the call price has been computed,
one or two taxes (depending on the type of call) are applied.
The price of the call must be rounded to the nearest cent
(round-to-even in case of a tie), while the tax is computed by
truncating to the cent.

The pseudo-code of the TELCO algorithm is listed in
Algorithm 1. The algorithm is completed by adding the sum
of the costs of the calls.

Because the call cost computation is executed in the decimal
system, each operation (addition, multiplication, and rounding)
is executed by a software routine requiring several cycles.
For example, Table I reports (source [5]) the average number
of clock cycles necessary to implement a subset of decimal
operations in binary floating-point units.

For this reason, we chose the TELCO application as an
excellent case for acceleration in an ASP where arithmetic
operations are implemented by decimal hardware units.

The TELCO benchmark is characterized by having high
traffic from the memory (where the duration of the calls are
stored) to the processor and back to the memory (costs of calls
are stored).

B. Option Pricing

The value of a security at time 7', S(T'), for a European
option can be computed by using a Monte Carlo simulation

to evaluate the Black-Scholes-Merton equation

S(T) = §(0) - el (=7 ) T+oe7] (1)

for several samples and then by computing the mean value
[6]. The Monte Carlo simulation of (1) can be implemented by
Algorithm 2 with the following inputs: Sy initial security price,
K strike price, r risk-free interest rate, o security volatility,
T time to expiration (in years), n number of simulations.
The parameters r and o are constant, and, therefore variables
VsqgrtT, drift and expRT are constant for the simulation.

The algorithm requires to generate random numbers with
normal distribution in (—1.0,1.0).

Differently from the TELCO application, for typical simula-
tion runs (n > 10°), the Monte Carlo Option Pricing (MCOP
in the following) does not require much communication with
the memory and most of the execution time is spent in the
computations.

III. IMPLEMENTATION PLATFORM

The hardware accelerator is implemented in the Xilinx
Virtex-5 LX330T FPGA. This FPGA is embedded in the Alpha
Data ADM-XRC-5T2 board and is connected to the host PC
via the PCI bus. The board is also equipped with DRAM that
can be accessed by the FPGA and by the host PC via Direct
Memory Access (DMA). The CPU of the host PC is the Intel
Core2 Duo processor clocked at 3 GHz.

The implementation of the DMA functions, along with
others, is included in a Software Development Kit (SDK)
provided with the Alpha Data board. The SDK includes
an application-programming interface (API), VHDL functions
and examples.

Fig. 1 sketches the architecture of the accelerator: CPU,
FPGA, and communication. We implemented in the FPGA:
the ASP for the application, a front-end processor (FEP) which
handles the communication ASP-DRAM-CPU, and the DMA
functions (not depicted in Fig. 1).

A. Power Measurements

To be able to evaluate the energy efficiency of the acceler-
ator, we perform a measurement of the current consumption
during the execution of the application in both the CPU and
the FPGA board.
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Fig. 1. Overview of the accelerator platform.

The power dissipated in the CPU is monitored by a Hall’s
effect current sensor which is connected between the power
supply and the motherboard’s CPU power socket. We connect
a digital multimeter to the sensors’ terminals and dump the
readings (voltage drop proportional to current flowing in the
CPU) in a file for batch processing. More detail on the
measurement set-up is described in [7].

The FPGA board power monitoring is done by reading the
voltage drop across a 7.5 mf) shunt resistor in series with
the FPGA board power supply Voc. Also in this case, the
readings V,eqs are done with a digital multimeter and stored
in a file. The instantaneous power dissipation is then computed
by P = FggssVee.

The power measured in the FPGA board is inclusive of the
FPGA chip itself, the DRAM and all the peripherals on the
board. Although Virtex-5 family FPGAs are equipped with
pins to monitor the FPGA core power dissipation, these pins
are not accessible in the Alpha Data board.

IV. TELCO ACCELERATOR

The architecture of the accelerator for the TELCO appli-
cation is derived from the one presented in [8] with some
important enhancements.

First, the accelerator of [8] could only handle small sets of
data (call duration to process) because data were sent from
the CPU directly to the ASP (FPGA) by using a buffer and
not to the DRAM on the FPGA board. In this version of the
accelerator, we designed the front-end processor, implemented
on the FPGA along the ASP, to handle both the data transfer
(via DMA) with the host PC, and the communication CPU-
ASP (via specific instructions).

Second, we apply some optimization on the ASP to make
the computation more efficient when executed on FPGA plat-
forms, and re-pipelined the unit to work at a clock frequency
of 70 MHz.

Third, we perform a comprehensive performance evaluation
based on actual measurements, including energy consumption.
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Fig. 2.

ASP for TELCO accelerator.

A. Accelerator Set-Up and Operations

To run the application on the FPGA accelerator, we need to
set-up the device (program the FPGA). The following phases
are necessary to run the application on the accelerator:

1) program the FPGA (load the bitstream);

2) activate the DRAM (self-training);

3) execute the application in the FPGA;

4) deactivate the accelerator (FPGA closing).

We discuss in Sec. VI the impact of the different phases on
the overall performance of the accelerator.

During the application execution in the accelerator, phase
3, the following operations occur (refer to Fig. 1):

A) Data are loaded from virtual memory of host PC;

B) Data are written to DRAM of FPGA board;

C) ASP reads data from DRAM, processes data, and write

them back in DRAM;
D) Results are read from DRAM of FPGA in host PC

memory.

B. TELCO ASP

The ASP implementing the TELCO computation is depicted
in Fig. 2. One of the advantages of the FPGA implementation
is that we can tailor the processor to the necessary computa-
tions and deviate from standards.

For the TELCO ASP, we assume that the call duration
(in seconds) is a 6-digit integer decimal number in the
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range [0, 10%) (105s corresponds to 11.5 days), and a 5-digit
decimal fractional number for the call rate and taxes. The call
rate is selected by a multiplexer depending on the type of the
call. The cost of each call and the total cost (C and Cror,
respectively, in Fig. 2) are represented by 8-digit decimal
numbers (6 integer and 2 fractional digits) for values up to
999, 999.99 (e.g., euro). Detail on the blocks in Fig. 2 can be
found in [8].

The ASP is pipelined in 11 stages and clocked at a fre-
quency of 70 MHz for a latency of 10 x 14.3 ns = 143 ns,
and an ideal' throughput of 70 million of calls processed per
second.

V. MCOP ACCELERATOR

Algorithm 2 is mapped in the ASP sketched in Fig. 3. The
algorithm 1is easily parallelizable by unrolling the loop in P
parallel paths, labeled “MCOP PATH X” in Fig. 3. The P = 8
paths are then recombined by an adder tree. The algorithm is
implemented in IEEE compliant binary32 floating-point (FP)
format®.

Instead of performing the multiplication Sy - ¢() in each
cycle of the loop (Algorithm 2), we divide K by Sy as a
pre-computation (in the CPU) and compare e() directly to
k1=K/Sy. Similarly, we remove the multiplication by expRT
out af the loop. The correct value of .S is restored in the last
stage by performing the multiplication by k2= So-eprT-%.

The most critical FP-unit is the accumulator (at the end
of each path). The FP-accumulator is designed to sustain a
throughput of one result (per path) per clock cycle. Detail on
the FP-units implementation can be found in [9].

For the MCOP accelerator the FEP provides the parameters:
n, VsqrtT, drift, k1 and k2. The DRAM is not used.

The ASP is pipelined in 29 stages and clocked at a fre-
quency of 80 MHz for a latency of 29 x 12.5 ns = 363 ns,
and an ideal throughput of 22 M elements processed per
second.

"When the ASP is not slowed down by the I/O.
%In the 2008 revision on the IEEE standard 754 binary32 replaces the
wording single-precision.
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Fig. 4. Execution time in accelerator (1,000,000 calls).

VI. PERFORMANCE AND POWER MEASUREMENTS

To evaluate the performance and energy consumption of the
accelerators, we compared the execution of the application in
software, run in the CPU of the PC hosting the FPGA board,
and the execution in the accelerator: CPU and FPGA board.

We run several batches of data to derive trends and to see
how the execution in the accelerator scales with the data set.

The Intel Core2 two CPUs are set to the maximum perfor-
mance, corresponding to a frequency of 3 GHz, for both the
software and the accelerator execution.

We performed the measurements by reading timers in the C
executable (both software and accelerator executions), and by
reading the distance between edges in the waveforms logged
by the multimeter.

A. TELCO Benchmark

We run several batches of call data (25,000 to 1,000,000
calls) for the TELCO application.

Fig. 4 shows the plots derived from the actual measurements
performed for the 1,000,000 calls case for the accelerator
(CPU+FPGA average power dissipation).

For all experiments, the FPGA set-up time, labeled (1) and
(2) in Fig. 4, is 1.9 s on the average, while the FPGA closing
time, labeled (4), is 0.5 s on the average. The total overhead
for operating the FPGA is about 2.4 s, independently of the
data-set size.

In Table II, we list the timing measurements for the software
execution (CPU SW) and for the accelerator. For the acceler-
ator, we list separately the latency of the ASP t45p, labeled
(3) in Fig. 4, and the total latency for the run ¢,... We also
list the average time to process one call in the SW execution
tgw, and in the ASP tgs p- Moreover, we report the speed-up
of the execution of the whole run tsw /tacc, and the speed-up
of the calculation per call t§y,, /tGqp.

Table II shows that for 250,000 calls the software and accel-
erator execution have the same latency. For a smaller number
of calls, the FPGA set-up overhead makes the accelerator
execution much slower than the software solution.

By looking at the time per call in the ASP, we notice that for
50,000 calls and above, tGqp settles between 0.72-0.76 us.
Considering that ideally the ASP can process a call per clock
cycle (14.3 ns), the I/O, and not the ASP, sets the throughput



LATENCY per RUN

calls 10,000 25,000 50,000 100,000 250,000 500,000 1,000,000
CPU SW latency tsw [s] 0.120 0280  0.520 1.040 2.600 5.240 10.280

time per call tS; [us] 1200 1120  10.40 10.40 10.40 10.48 10.28

(3) tasp [s] 0.037  0.037  0.038 0.074 0.182 0.362 0.723
Accelerator latency(*) tace [s] 2.447 2.447 2.448 2.484 2.592 2.772 3.133

time per call t§gp [1s] 3.70 1.48 0.76 0.74 0.73 0.72 0.72
Speed-up tsw /tace 0.05 0.11 0.21 0.42 1.00 1.89 3.28
Speed-up t$y- /tG s p 3.24 757 13.68 14.05 14.29 14.48 14.22
() t4ce is the sum of (1), (2), (3) and (4).

ENERGY CONSUMPTION per RUN

calls 10,000 25,000 50,000 100,000 250,000 500,000 1,000,000
CPU SW Esw [J] 1.91 4.68 8.82 17.95 4455 90.51 181.36

Pave [W] 15.95 1672 16.96 17.26 17.14 17.27 17.64
Accelerator FEace [J] 30.08  29.61 29.57 29.90 31.41 34.21 38.92
(CPU+FPGA)  Pgye [W] 1229  12.10  12.08 12.04 12.12 12.34 12.42
Ratio Egyy /FEace 0.064 0158  0.298 0.600 1.418 2.646 4.660
Pa/ue = E’run/trun-

TABLE II

TELCO: LATENCY AND ENERGY CONSUMPTION FOR EXPERIMENTS WITH DIFFERENT DATA SETS (NUMBER OF CALLS).

Accelerator |
(CPU+FPGA)

time [s]

TELCO: energy consumption to process 1,000,000 calls.

Fig. 5.

of the accelerator. As anticipated, the application execution is
“I/O bound”: about 95% of t 45p is spent in I/O.

In Table II, we also list the energy consumption measured
in the experiments. We show a visual comparison in Fig. 5 for
the 1,000,000 calls run. The table and the figure are scaled to
have power P = 0 when the FPGA is idle and the CPU is not
running the application. The idle power for FPGA and CPU
are 9.5 W and 4.0 W, respectively.

Despite the large FPGA set-up overhead, for data sets
of 250,000 calls and above, the accelerator is more energy
efficient.

B. MCOP Simulation

For the Monte Carlo Option Pricing simulation, we run
two batches of data: a small set of n = 100,000 random
values (called elements in the following) and a large set of
n = 256 x 106 (256M) elements.

Fig. 6 shows the plots for the 256M elements simulation.
Differently from the TELCO case, the DRAM on the FPGA
board is not used and the phase labeled (2) is skipped in this
case. Because the ASP is larger than the TELCO case, the

CPU acc.

—————— —_—
15 | . | if i 1
" | ‘ \ \
ol e el e ]
L | \ | ’ |
o | | |
I
ok (S [
T T T T
T T T T
! I
51 : ! - \“ | | FPGA acc. 4
a0 | | | ]
3T | “\ |1 I 1
o I g |1 I -
2 i I ASP I !
1 | | | | 1
L L - — ]
0 1 Vace | i :
0 1 2 3 4

Execution time [s]

Fig. 6. MCOP: execution time and energy consumption to simulate 256M

elements.

programming phase (1) is longer for this processor: 1.6 s on
the average. The closing time (4) is about 0.5 s on the average.

In Table III, we list the timing measurements and the energy
consumption for the software execution (CPU SW) and for the
accelerator. We list the average time to process one element
in the SW execution t§y,, and in the ASP t% ¢p. Moreover,
we report the speed-ups and energy ratios.

Similarly to the TELCO case, for a relatively small number
of elements the MCOP execution in the accelerator is totally
inefficient as the software execution time is very small com-
pared to the FPGA programming time. For a large number
of elements, when millions of floating-point operations must
be executed, the parallelism of the ASP and the throughput
of 8 elements processed per clock cycle make the accelerator
execution significantly faster.

Moreover, as the average power dissipation in the software
execution is similar to that in the accelerator execution, lower
latency results in lower energy.



LATENCY per RUN

The main drawback is the much longer development time
necessary for the accelerator. However, the design of a more
advanced front-end processor can drastically reduce this time.
The FEP should seamlessly interface the accelerator system
with any ASP to realize a design-and-plug ASP paradigm.

We are currently working on the optimization of the FPGA

n 100,000  256M
CPU SW latency tsw [s] 0.028 71.04

time per element ¢y, [145] 0.280  0.277

tasp [S} 1.00 1.50
Accelerator latency ™) tqcc [s] 3.27 3.73

time per element t% ¢, [1s] 10.0  0.006
Speed-up tsw /tace 0.008 19.0
Speed-up t&y, /t% o p 0.028 46.2
) tgec is the sum of (1), (3) and (4).

ENERGY CONSUMPTION per RUN

n 100,000  256M
CPU SW Esw [J] 0.54 1013

Pave [W] 13.58 14.27
Accelerator Eace [J] 43.08 70.31
(CPU+FPGA)  Paye [W] 13.15  18.84
Ratio Egw /FEace 0.013 14.40

Pave = Erun/trun~
TABLE III
MCOP: LATENCY AND ENERGY CONSUMPTION FOR EXPERIMENTS WITH
THE TWO DATA SETS.

VII. CONCLUSIONS AND FUTURE WORK

The experimental results of Table II and Table III show
that for a sufficiently large number of elements to process,
the accelerator execution is faster and more energy efficient.
For the TELCO benchmark, from data sets of 500,000 calls,
both computation speed-up and energy savings increase almost
linearly with the set size.

However, the FPGA set-up and closing time constitute a
large overhead and unless this time is reduced by modifying
some of the SDK functions, the software solution is preferable
for smaller data sets.

set-up and on the design of such front-end processor.
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