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Uncertainty-averse TRANSCO planning for accommodating
renewable energy in CO2 reduction environment

Chunyu ZHANG, Yi DING (&), Qi WANG,
Yusheng XUE, Jacob ØSTERGAARD

Abstract The concern of the environment and energy

sustainability requests a crucial target of CO2 abatement and

results in a relatively high penetration of renewable energy

generation in the transmission system. For maintaining

system reliability and security, the transmission company

(TRANSCO) has to make strategic planning to handle the

uncertainty challenges from the intermittent renewable

energy resources. In this paper, a stochastic multi-period

multi-objective transmission planning (MPMOTP) model is

proposed to reduce correlated uncertainties from renewable

energy generation, conventional generation, demand-side

variations, market price volatility, and transmission con-

figuration. Three objectives, i.e. social CO2 reduction ben-

efit, energy purchase and network expansion cost and power

delivery profit, are optimized simultaneously by a developed

two-phase multi-objective particle swarm optimization

(MOPSO) method. The feasibility and effectiveness of the

proposed uncertainty-averse MPMOTP model have been

verified by the IEEE 24-bus test system.

Keywords CO2 reduction, Renewable energy,

Uncertainty, Multi-objective planning, TRANSCO,

MOPSO

1 Introduction

The theme of energy sustainable development and con-

servations is widely recognized around the world, while the

electric power industry is regarded as the major CO2 emis-

sion sector with the traditional fossil-dependent production.

In the deregulated environment, CO2 reduction has already

become the most significant concern involved in the deci-

sion making process within the multi-layer architecture of

electricity generation, trading, transmission and distribu-

tion, even in the retail aspect, respectively dominated by

generation companies (GENCOs), market operator (MO),

transmission companies (TRANSCOs), distribution com-

panies (DISCOs) and retailers.

From the last decade, numerous literatures and projects

have already been carried out to demonstrate the feasible

solutions to reduce CO2 emission, which can be categorized

into three schemes, i.e. technological CO2 abatement, mar-

ket-oriented based CO2 trading and alternative energy pro-

duction. As firstly discussed in [1] and further investigated in

[2], on perspective of GENCOs and power system operation,

CO2 capture and storage (CCS) is addressed as a most

promising technology for CO2 reduction. On basis of the

low-carbon economy analysis in [3], for the conscious of the

economic factors in day-ahead energy market and cap-and-

trade carbon emission market, a flexible operation model is

proposed in [4] to trade off themaximumprofitwith adaptive

carbon emission for a generating unit combining with proper

coordination of generation schedule, CCS schedule and

market bidding strategies. Alternative energy production

could be highly efficient energy resources or more environ-

mental energy conversions, in which renewable energy is

leading this role for CO2 mitigation from the current to the

future, a huge amount of wind and photovoltaic (PV) energy

will widespread in the transmission system to replace the

conventional generation, as reviewed in [5].
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However, the intermittent characteristics of the diverse

renewable energies will derive huge uncertainties to the

transmission system operation. Therefore, a strategic

uncertainty-averse TRANSCO planning is necessary to

ensure the adequacy and reliability of the power system

operation for accommodating renewable energy in CO2

reduction environment.

Various approaches for handling uncertainties in trans-

mission planning process have been summarized in [6]. In

[7], the market uncertainties are identified as possible

future scenarios solved by the mixed integer linear pro-

gramming (MILP) on a flexible transmission planning

model, and assessed with reliability and security criterions

referring to the indices of expected energy not supplied

(EENS), expected cost of interruptions (ECOST), and

interrupted energy assessment rate (IEAR) [8]. Subse-

quently, a stochastic MILP approach complemented with

risk aversion was proposed in [9]. Furthermore, to assess

the robustness of expansion plans, a Brazil test grid is

presented [10] to illustrate the stochastic approach is more

suitable than the traditional deterministic method. Addi-

tionally, a stochastic multi-objective optimization frame-

work is proposed in [11] to take security constrains into

concern for transmission planning. In the other perspec-

tives, a congestion surplus [12] is identified in a multi-

objective transmission planning (MOTP) model for dealing

with the risk of the network congestions. Recently, for

integrating the large-scale wind power, a probabilistic

MOTP model equipped with risk-control strategies is

developed by [13] to avoid transmission overloading.

Extensive uncertainty studies are allocated in [14] and [15]

to conduct the distributed energy resources (DERs) impacts

on distribution systems.

Till now, the uncertainties faced by the TRANSCO are

normally considered as independent factors, however,

immersed in the future smart grid surroundings, as a profit

chasing commercial player, an extra pressure for the

TRANSCO is to fully understand the high correlations

among these uncertainty diversities hidden in the trans-

mission planning process to flexibly balance the intermit-

tent recourses and stochastic consumptions.

In this paper, the wind power and PV energy are

selected to represent the renewable energy caused uncer-

tainties. The effort of demand response (DR) is concerned

in the demand side to intensify the consumption behavior.

To assess the circumvent uncertainties in terms of the

output of wind and PV generating units, demand response

related load fluctuation, conventional generation units,

market price volatility, and transmission path deployment,

the correlation coefficient matrix is introduced to handle

the dependency of the uncertainties in the paper. A sto-

chastic MPMOTP model is proposed for this uncertainty-

averse TRANSCO planning, incorporated with the

following objectives: 1) maximize the social benefit via

CO2 reduction, 2) minimize the TRANSCO cost of energy

purchase and network expansion, 3) maximize the profit of

power delivery. A two-phase MOPSO schema is employed

to be the solver. The application of the proposed MPMOTP

model is demonstrated on the IEEE 24-bus testing system

to show its feasibility.

2 Modeling of uncertainties

Aiming to fulfill the critical target of CO2 reduction, in

energy purchase and transmission processes, the TRAN-

SCO has the natural attribute to take reactions to hedge the

uncertainties associated with the government policy and the

huge amount of renewable energy integration. The proper

planning strategy can help the TRANSCO to maintain the

power systems operated in an economic efficient and secure

condition, constrained by various new uncertainty bound-

aries. In this paper, various uncertainties are taken into

concerns, i.e. renewable energy generation (wind and PV),

demand-side variations, conventional units’ production,

market factor, and transmission path configuration. Pre-

cisely, the correlation characteristics of these uncertainties

are taken into account and formulated as follows.

2.1 Correlation of uncertainties

The indication of stochastic variables for wind, PV,

facilities configuration and demand identification can be

seen as uncertain factors according to the forecast devia-

tions, the measurement errors, the unpredictable system

contingencies or the electricity market price volatilities.

Therefore, the probabilistic analysis is the proper approach

to handle the variations of these uncertainties. However,

the uncertainty variables could be dependent to each other,

e.g. the weather conditions can impact wind/PV generation

and household consumption, simultaneously. Hence, in this

work, the correlation coefficient matrix is used to illustrate

the considerable dependency of the uncertainty variables.

To define the degree of the dependence among variables,

each correlation coefficient should be assigned in [−1, 1],
where −1 and 1 indicate the perfect positive and negative

relationship between the related variables.

As described in [16], the correlation coefficient uX;Y

between two uncertainty variables X and Y can be

expressed as

uX;Y ¼ E X � lXð Þ Y � lYð Þ½ �
rXrY

ð1Þ

where E represents the expected value operator; (lX, lY)

and (rX, rY) are the expected value and standard deviations

of X and Y.
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Once the probability density function (PDF) of each

uncertainty variable is addressed, the correlation coefficient

matrix C can be obtained,

C ¼
u11

u21

..

.

un1

u12

u22

..

.

un2

� � �
� � �

� � �

u1n

u2n

..

.

unn

26664
37775 ð2Þ

correspondingly, the refined uncertainty variable can be re-

denoted as Z with the expression

Z ¼ H þ CeX ð3Þ
where eX is the forecasted values of uncertainty variables,

such as wind power or PV output; H represents the initial

value of these variables, which can be achieved from the

historical data.

2.2 Wind energy uncertainty

The wind energy is converted from wind speed and

behaved with the fluctuating and stochastic characteristics.

As discussed in [17], the wind speed is normally followed a

Weibull distribution, the PDF function is adopted to the

wind variations, following

f vð Þ ¼ k

c

v

c

� �k�1

e�
v
cð Þk ð4Þ

where v, k and c are respectively represent the wind speed,

shape factor and scale factor, k[ 0, v[ 0 and c[ 1.

Then, the wind power output can be formulated as

Pw ¼
0 0� v\Vci

Pw Aþ Bvþ Cv2ð Þ Vci � v\Vr

Pw Vr � v\Vco

0 v�Vco

8>><>>: ð5Þ

where the parameters of A, B and C can be defined in [17];

Vci, Vr and Vco are the cut-in wind speed, rated wind speed

and cut-out wind speed, respectively; Pw is the rated power

of a wind unit.

2.3 PV energy uncertainty

The production of PV unit is dominated by the illumi-

nation intensity, a number of investigations have shown the

PDF of solar radiation is following the Beta distribution

[18],

f Rð Þ ¼ C aþ bð Þ
C að ÞC bð Þ

R

Rmax

� �a�1
R

Rmax

� �b�1

ð6Þ

where Γ is the Gamma function; α and β are the shape

parameters; R is the illumination intensity with the maxi-

mum value of Rmax.

The relationship between the illumination intensity and

the output of a PV unit can be described as [18]

Ps ¼ Ps
R
Rr

� �
0�R�Rr

Ps R[Rr

(
ð7Þ

where R is the illumination intensity with the rated value Rr

and Ps is the rated output power of the solar unit.

2.4 Conventional energy uncertainty

For the conventional generation unit, considering the

capacity expansion or withdrawal, the unit output can be

defined as the chance constrained probability distribution,

Pr Pgi � Pgi � 0
� �� ci ð8Þ

where Pgi is the possible value of conventional generation

at ith bus with the maximal capacity limitation Pgi and

quantified by a specified probability γi.

2.5 Market price uncertainty

Since the electricity price could vary in multiple plan-

ning periods, the forecasted locational marginal pricing

(LMP) of ith bus can be adopted to meet the predicted

demand, and denoted as λi. The LMP is assumed to follow

the discrete probability distribution,

Pr CLMP ¼ kið Þ ¼ efi ð9Þ
where CLMP is the value of LMP; fi is the occurrence

probability of λi and ɛ is a random variable represents the

possible volatility of LMP, while ɛ is within the boundary

of [0.9, 1.1], ∑fi = 1, i = (1, 2,…, NLMP).

2.6 Demand-side uncertainty

The fast growth of smart grid and intelligent control

technology will offer a good opportunity to apply DR and

flexible consumption in the demand side. Therefore, the

uncertainty can be decomposed to be two portions, i.e. DR

and load variation.

In this work, the active DR is assumed to be with the

price-driven scheme. A Gaussian distribution is applied to

describe the effect of the elastic demand, which is bounded

by the maximum and minimum credible values [19],

f 1ð Þ ¼
0 1\1min

1ffiffiffiffi
2p

p
rd
e
� 1�ldð Þ= ffiffi2p

rd½ �2
1min � 1� 1max

0 1[ 1max

8><>: ð10Þ

where σd and μd represent the standard deviation and mean

value of the demand elasticity 1, which responds to λi, and
the volume of DR can be formulated as
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Pei ¼ Pei

1 ki � ki
� �

ki
ð11Þ

where Pei is the settled initial value of the elastic demand

and ki is the fixed price on basis of the historical archive.
In addition, according to the predicted demand Pli, the

load variation fPli at i
th bus is imposed to follow the normal

distribution N li; r
2
i

� �
for exhibiting the uncertainty of the

natural load growth. Here, li is the expectation of the

forecast load and ri is the standard deviation.

Eventually, the assembled demand yielded in this paper

can be given by

Pdi ¼ Pli þ fPli � Pei ð12Þ
2.7 Transmission line uncertainty

Typically, the availability of the existing and candidate

transmission lines can utilize the (0–1) distribution to

represent the line uncertainty, where 0 indicates the line is

in failure (or maintenance) status, while 1 shows the line is

in the normal operating state.

3 Uncertainty-averse TRANSCO planning

3.1 Uncertainty characterization

For properly addressing the uncertainties mentioned

above in the TRANSCO planning progress, the scenario-

based stochastic programming approach is employed here

to handle the issued uncertain conditions. A scenario is a

sequence of time-based transmission system state, con-

sisted of renewable energy, conventional generation, active

demand, electricity price and transmission network. In this

paper, the Monte Carlo simulation (MCs) method is

applied to generate the set of numerous transmission sys-

tem scenarios.

The repetitive process of the MCs method is built on the

random sampling and statistical analysis. Generally, iden-

tifying the PDF of each uncertainty variable (as explained

in Section 2) is the initial part, then further step is to attain

some random samples via the random number generator

(RNG). Consequently, the output values of these variables

can be calculated in a deterministic model. For shortening

the time consuming computation, a well-known scenario

reduction technique [20] is introduced to eliminate the non-

essential scenarios.

3.2 TRANSCO MPMOTP model

The TRANSCO considered in this model can acquire

electricity from differing types of energy resources,

including wind units, PV units and fossil-oriented con-

ventional generation units. Three objectives are empha-

sized in this proposed MPMOTP model. The maximum

benefit of the social CO2 reduction is pursued as the first

objective, shown as Ocr in (13). In order to minimize the

operation costs, the TRANSCO has to make a decision on

composing the energy volumes purchased from various

resources, as well as the network investment for suiting the

liability of power transmission. This goal is treated as the

second objective and denoted as Opp in (14). The third

objective is to maximize the profit from the demand-side

consumption, which is consisted of the positive electricity

selling revenue and the negative load shedding penalty,

formulated as Ord in (15).

minimize

Ocr ¼ qCO2

X
x

X
t

X
g

Pgtxng�
" X

w

Pwtx þ
X
s

Pstx

 !
nAvse

#
gx

ð13Þ

Opp ¼
X
x

X
t

X
w

kWind
wtx Pwtx þ

X
s

kPVstxPstx

"

þ
X
g

kCGgtxPgtxþ
X
‘

kLine‘tx P‘tx

#
gx

ð14Þ

Ord ¼
X
x

X
t

X
i

kLSitxP
LS
ditx � kitxPditx

� �
gx ð15Þ

s.t.X
w2i

Pwtxþ
X
s2i

Pstxþ
X
g2i

Pgtx�Pditx ¼
X
ij;j6¼i

Pijtx; 8i; t;x

ð16Þ

Pijtx ¼ hitx � hjtx
xij

; 8 i; j; t;x ð17Þ

�Pmin
ijtx �Pijtx �Pmax

ijtx ; 8i; j; t;x ð18Þ
PWind;min
wtx �Pwtx �PWind;max

wtx ; 8w; t;x ð19Þ
PPV ;min
stx �Pstx �PPV;max

stx ; 8s; t;x ð20Þ
PCG;min
gtx �Pgtx �PCG;max

gtx ; 8g; t;x ð21Þ
0�Pditx �Pmax

ditx; 8i; t;x ð22Þ
0�PLS

ditx �Pditx; 8i; t;x ð23Þ
�p� hitx � p; 8i; t;x ð24Þ
where t is the indices of time periods within the set T; ω is

the index of possible scenarios set Ω generated by MCs; ηω
is the occurrence probability of the scenario ω; i, j, w, s, g
are the index or indices of the mapping of the bus set B
with the wind unit set W, the PV unit set S and the con-

ventional power unit set G, i.e. i, j ∊ B, w ∊ W, s ∊ S, g ∊ G,
where {W, S, G} ⊆ B; Pwtω, Pstω, and Pgtω are the
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purchased power from wind units, PV units and conven-

tional generation units corresponding to the individual

marginal price of kWind
wtx , kPVstx and kCGgtx; ξg is the carbon

intensity of each type of the fossil-based generation unit,

while nAvse is the average value of the whole society

involved carbon emission intensity; qCO2 is the carbon

emission tariff; P‘tx is the nominated expansion capacity of

the transmission lines with the marginal price kLine‘tx for each

possible scenario, and the term
P
l

kLine‘tx P‘tx represents the

TRANSCO investment cost, correspondingly; Pditω is the

load at bus i, while PLS
ditx is the potential load shedding with

the penalty price kLSitx; Pijtω is the power flow through the

line i-j; θitω is the voltage phase angle at ith bus.
In this MPMOTP model, the DC optimal power flow

(OPF) is used for the specific intention on various sources

of uncertainty in the transmission level, equations (16)

guarantee the power balance at each bus. Equations (17)

enforce the power flowing through the line i-j, and further

impose the capacity limits in (18). Constraints (19), (20)

and (21) limit the production of the wind power, PV power

and conventional generation unit within the particular

maximum and minimum values, respectively. Likewise,

the constraints (22) ensure the demand of each bus is

bounded in the individual upper limit. Constraints (23)

imply the capacity of the possible load shedding at ith bus is
limited to the actual demand Pditω. Constraints (24) set the

voltage angle bounds for each bus.

4 Methodology

In this section, the well-developed two-phase MOPSO

algorithm is introduced to properly handle the proposed

MPMOTP model, since it is a non-convex nonlinear mixed

integer problem associated with the uncertainties’

penetration.

4.1 PSO algorithm

In general, the particle swarm optimization (PSO)

algorithm [21] is a population-based self-adaptive method

sorted as one of the heuristic methods. Incorporating with

the components of particle and swarm, PSO encourages the

local and global exploration of the problem space to obtain

better convergence, in which a particle denotes the poten-

tial optimal solution and a swarm contains a set of parti-

cles. Each particle moves towards a multiple dimensions

space to seek a possible solution experienced by the deci-

sions of itself and its neighbors. In the searching space, the

searching route of a particle can be recognized as the

velocity (m) and position (n). The updating rule of PSO

will steer the particle swarm to gather in a more promising

area with better objective value.

4.2 Two-phase MOPSO schema

The primary aim of MOPSO is to find an optimal trade-

off between several competing objectives for which usually

no single optimal solution exists that minimizes all

objective function values simultaneously.

To illustrate the MOPSO algorithm served for the pro-

posed TRANSCO MPMOTP model, in each scenario ω of

a specified time period t, the complex cumulative model

can be solved as an independent MOTP problem. The

pseudo-codes of the MOPSO calculation procedures are

shown in Fig. 1, in which archive set A is the vital feature

for storing a better Pareto front approaching the optimal

solution and hanging out the particles with the best global

positions.

Further developed in [22], a two-phase MOPSO schema

is proposed in the optimization process which can notably

balance the convergence speed and solution diversity. In

the first phase, the Sigma method [21] is dedicated to

accelerate the convergence and obtain an approximated

Pareto front, then an ideal optimal particle method [22] is

contributed to facilitate the diversity of the solution in the

second phase. The compiling keynotes of the two-phase

MOPSO method are specifically indicated in Fig. 2.

4.3 MPMOTP planning implementation

In order to indicate the application of the two-phase

MOPSO-based programming for solving the proposed

MPMOTP model, the illustrative flow chart is shown in

Fig. 3. Due to the MOPSO algorithm is essentially a non-

constrained heuristic method, for evading the constraint

violations, the possible calculation risks coupling with the

constraints (16)–(24) are handled by a traditional scheme

[22]. In addition, a mutation operator is performed for

keeping the efficiency of the Pareto front. Considering a

bunch of solutions obtained from the multi-objective

problem, but none of them occupy a priority to the others,

therefore, a fuzzy decision making approach [23] is taken

to select the final solution.

5 Case study

The proposed uncertainty-averse MPMOTP model is

applied to the IEEE 24-bus test system for a long term

planning of continuous 15 years with the interval of

5 years, i.e. three periods. The initial network data can be

found in [24]. 41 candidate lines are occupied for this

28 Chunyu ZHANG et al.
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system, and the new added lines remain the same param-

eters as described in [24]. The active power limit of each

transmission line is set to 170 MW. For each bus, the

expected natural growth rate of the connected generator or

load is assumed to be 25% per 5-year. The parameters of

the two-phase MOPSO are indicated in Table 1, the

physical parameters of wind and PV unit are summarized

in Table 2, and the economic assumptions of carbon

emission tariff and energy purchase price are described in

Table 3.

Referring to [16], the clustered inter-dependency of the

uncertainties Pwtω, Pstω, Pgtω, λitω, Pditω and Pℓtω is

reflected in the coefficient matrix C, and imposed as the

same formula for simplicity at each bus,

Pwtx

Pstx

Pgtx

kitx
Pditx

P‘tx

1 0.021 0.011 0.278 �0.292 0.048

0.021 1 0.019 0.386 �0.352 0.027

0.011 0.019 1 0.576 �0.125 0.133

0.278 0.386 0.576 1 �0.863 0.001

�0.292 �0.352 �0.125 �0.863 1 0.896

0.048 0.027 0.133 0.001 0.896 1

26666664

37777775
To illustrate the effectiveness and adaptability of this

proposed TRANSCO planning model, differing conditions

should be compiled into the test system, therefore, three

case studies are concluded in this section. Case 1 is

assumed that no renewable energy unit is explored in this

system, only conventional units are devoted into expansion

process. In Case 2, for simulating the impacts of the wind

and PV units, a 240 MW wind farm and a 160 MW PV

Fig. 1 Pseudo-codes of the MOPSO calculation procedures for an

independent MOTP

Fig. 2 Keynotes of the two-phase MOPSO method

Initialization

Set the MPMOTP objectives 
min (Ocr, Opp, Ord) and constraints (16)-(24)

Activate two-phase MOPSO algorithm

Obtain MOPSO Pareto front 

Apply fuzzy decision making approach [23]

Output optimal MPMOTP solution

MCs-based ω scenario generation conducted on the 
transmission system, implying t-period uncertainty 

with                                                and,wtP ω ,stP ω ,gtP ω ,itωλ ditP ω tP ω

Fig. 3 Flowchart of the proposed MPMOTP model

Table 1 The parameters of the two-phase MOPSO

MOPSO Parameters

Swarm size Ϟ = 160

Coefficient ϖ = 0.9, c1 = 2.2, c2 = 3.0, r1 = 0.6, r2 = 0.8

Iteration ϒ = 100
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plant are considered to connect with bus 3 and 7 and

increased by 30% per period, respectively. Emphasis on

performing the critical penetration of wind and PV energy,

in Case 3, two-times capacity is assumed to inject into the

same buses with 60% growth rate for each period. The

simulation results are conducted in Table 4, in which Cinv

represents the investment cost of network expansion.

The planning schemes of the Case 1 concentrate on

covering the uncertainty of the conventional generation

growth to meet the demand variety, the significant invest-

ment of network persists in every planning period. The

high fossil reliance inspires a high CO2 charge versus the

social expect of reducing the CO2 emission, also causes an

incremented price burden to the consumer (e.g. 2672.37 k$

in the 3rd period), while the net income of the TRANSCO

is increasing slowly from 60.15 k$ (1st period) to 185.26 k$

(3rd period).

Regarding the same situation for Case 2 and 3, on pre-

liminary planning stages, the striking point is that a higher

expenditure on energy purchase and branch update is vis-

ible to enhance the network more tightly to mitigate the

plenty uncertainties mentioned in Section 2. However,

according to the remarkable amount of wind and PV

energy integration, the goal of social CO2 elimination is

achieved. Highlighted in the 3rd period of Case 3, the

embedding capacity of renewable energy has touched upon

2048.00 MW, approximately dominating half of the energy

supply (4334.49 MW). Comparing with Case 1, the dec-

rement of CO2 reduction relieves a notable social benefit

(15.53 k$), it can be also observed that, starting from the

2nd period, the TRANSCO cost of energy stocking and

network reinforcement is fairly decreased in Case 2 and 3.

Further observation is that, not only as an uncertainty

bearer, but as a beneficiary, accommodating huge quantity

of renewable energy can facilitate the TRANSCO to sta-

bilize the investment expectations and hedge the business

risks, e.g. in the 3rd period of Case 3, the net profit is

growing dramatically to 737.69 k$.

Moreover, results from the deterministic investment

minimization transmission planning (IMTP) model without

considering uncertainties are presented in Table 5. The

single objective is to minimize Cinv, while the load, wind

and PV output, conventional generation, as well as the

LMPs are assumed to be fixed according to the predicted

value. Comparing with the MPMOTP schemes (shown in

Table 4), for each case, the TRANSCO investment

increases significantly period by period, new lines are

Table 2 The physical parameters of wind and PV unit

Type Parameters

Wind unit Vci = 4 m/s, Vr = 15 m/s, Vco = 22 m/s

k = 2, c = 5.5

PV unit Rr = 1 kW/m2

α = 1.8, β = 4.5

Table 3 The economic parameters of energy and CO2 emission

Factors Parameters

CO2 emission ng ¼ 0:85 Ton/MW, nAvse ¼ 0:38Ton/MW,

qCO2 = 20 $/Ton

Load

shedding
kLSitx = 900 $/MW

Energy

purchase
kWind
wtx = 150 $/MW, kPVstx = 200 $/MW,

kCGgtx = 350 $/MW, kLineltx = 450 $/MW

Table 4 The MPMOTP planning schemes for various cases

Planning 1st 5-year 2nd 5-year 3rd 5-year

Case 1 Schemes 1–5(1), 14–16(1) 6–10(1), 12–23(1), 15–21(1) 6–7(1), 7–8(1), 6–10(1), 15–24(1)

Ocr(k$) 56.28 77.13 89.61

Opp(k$) 1325.27 1864.53 2487.11

Ord(k$) 1385.42 1977.45 2672.37

Cinv(k$) 208.52 595.47 1072.01

Case 2 Schemes 1–5(1), 7–8(1), 14–16(1) 3–11(1), 6–7(1), 10–12(1) 3–8(1), 5–10(1), 6–10(1)

Ocr(k$) 51.58 71.34 83.51

Opp(k$) 1372.98 1527.58 1895.42

Ord(k$) 1391.56 1803.17 2366.72

Cinv(k$) 539.64 613.74 658.14

Case 3 Schemes 1–5(1), 3–11(1), 7–8(1), 14–16(1) 3–8(1), 6–7(1), 16–17(1) 4–5(1), 6–10(1), 17–18(1)

Ocr(k$) 49.87 68.34 74.08

Opp(k$) 1401.95 1378.56 1458.16

Ord(k$) 1417.82 1751.38 2195.85

Cinv(k$) 945.73 635.27 647.52
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added to cope with overload lines, but can not clearly

perform the effects of the variability in production of wind

and PV units.

Particularly in Case 1, ignoring the wind and PV pen-

etration, the periodical investment is much lesser than

MPMOTP plan, respectively declined 23.44, 36.27, and

144.90 k$ for each 5-year. That means the extra amounts

are requested as the uncertainty-averse expenses on con-

ventional generation, LMP volatility, demand response,

and line availability.

For Case 2 and 3, the TRANSCO investment could not

exhibit a specific trend as for three periods. However,

concluded from the results of both MPMOTP model and

IMTP model, the further observation shows that, the total

15-year investment tends to be an equivalent amount. In

Case 2, the MPMOTP 15-year investment is 1811.52 k$,

while that is 1861.93 k$ in IMTP. Accordingly, the value is

228.52 and 2203.30 k$, respectively in Case 3. That means,

for a long term perspective, if a precise total amount

control of investment is allocated, the proposed MPMOTP

model can not only handle the heterogeneous uncertainties,

but also ensure the robustness of phased investment in the

strategic TRANSCO planning process.

6 Conclusion

Incorporating the ambition of the CO2 reduction, an

uncertainty-averse MPMOTP planning model is proposed

to handle the multiple uncertainties from renewable

energy, conventional generation, market price, load devi-

ation and network deployment. In this paper, the virtue of

uncertainty codependency is evaluated by the correlation

coefficient matrix and contributed to optimize three

TRANSCO concerned objectives. Associated with an

introduced two-phase MOPSO solving algorithm, the pro-

posed model is implemented and applied on the IEEE

24-bus test system. The results show that, considering a

variety of uncertain conditions, the released planning

schemes can be feasibly and effectively put forward to

issue the transmission network with high stable and reliable

intention of the TRANSCO.
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