
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

General rights 
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners 
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. 
 

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research. 
• You may not further distribute the material or use it for any profit-making activity or commercial gain 
• You may freely distribute the URL identifying the publication in the public portal  

 
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately 
and investigate your claim. 

   

 

Downloaded from orbit.dtu.dk on: Dec 20, 2017

Code Commentary and Automatic Refactorings using Feedback from Multiple
Compilers

Jensen, Nicklas Bo; Probst, Christian W.; Karlsson, Sven

Published in:
Proceedings of the 7th Swedish Workshop on Multicore Computing (MCC'14)

Publication date:
2014

Link back to DTU Orbit

Citation (APA):
Jensen, N. B., Probst, C. W., & Karlsson, S. (2014). Code Commentary and Automatic Refactorings using
Feedback from Multiple Compilers. In Proceedings of the 7th Swedish Workshop on Multicore Computing
(MCC'14)

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Online Research Database In Technology

https://core.ac.uk/display/43247841?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://orbit.dtu.dk/en/publications/code-commentary-and-automatic-refactorings-using-feedback-from-multiple-compilers(47725fbb-1c72-47fa-a167-32ae319d5a0d).html


Code Commentary and Automatic Refactorings using
Feedback from Multiple Compilers

Nicklas Bo Jensen
Technical University of

Denmark
DTU Compute

nboa@dtu.dk

Christian W. Probst
Technical University of

Denmark
DTU Compute
cwpr@dtu.dk

Sven Karlsson
Technical University of

Denmark
DTU Compute
svea@dtu.dk

ABSTRACT
Optimizing compilers are essential to the performance of
parallel programs on multi-core systems. It is attractive
to expose parallelism to the compiler letting it do the heavy
lifting. Unfortunately, it is hard to write code that com-
pilers are able to optimize aggressively and therefore tools
exist that can guide programmers with refactorings allow-
ing the compilers to optimize more aggressively. We target
the problem with many false positives that these tools often
generate, where the amount of feedback can be overwhelm-
ing for the programmer. Our approach is to use a filtering
scheme based on feedback from multiple compilers and show
how we are able to filter out 87.6% of the comments by only
showing the most promising comments.

1. INTRODUCTION
Writing programs that performs well on modern multi-core
systems is a major challenge. Many aspects influence the
performance, especially how well the optimizing compiler
has transformed the code into a faster version. As parallel
programming is hard it is attractive to expose the paral-
lelism to the compiler. With auto-parallelization and auto-
vectorization it can do the heavy lifting. Sadly, it is hard to
write code that compilers can optimize well given the large
complexity of compilers.

We have developed a tool that can assist programmers in
understanding how compilers optimize and even give advice
on source code changes that could allow for more aggressive
optimization. Many such tools exist, but we believe that
one key difference will make our tool more usable, namely
the amount of false positives and true positives. Program-
mers will only use a tool if it is cost effective and a good use
of their time. If only one out of many comments can suc-
cessfully be applied it is not effective. In contrast to other
similar tools, we use input from multiple compilers, allowing
us to produce fewer false positives while still producing many
true positives. We believe this is key for a wider adoption
of optimization advice tools.

Our tool works by parsing the optimization reports from
multiple compilers and use insight that if one compiler suc-
ceeded in optimizing, the others could potentially as well. In
this way, if one compiler succeeds in optimizing, even just
partially, we might be able to modify the original source
code such that more optimizations can be applied. We are
able to filter the number of comments generated by three
compilers with 87.6%, resulting in an amount of comments

that is easier to handle and focus on for the programmer.

Our current implementation supports the optimization re-
ports from three major production compilers ICC [6], GCC [4]
and Clang [13]. Each of these has optimization reports,
which describe the applied optimizations and the missed op-
timization. We analyse these reports in our plugin, built into
the Eclipse Integrated Development Environment. Com-
bined with our own analysis we can suggest automatic source
code refactorings to the programmer. We also visualize how
the different compilers have optimized the code by coloring
the source code, giving a very quick overview of where the
programmer’s time is best spent.

To summarize, we make the following contributions:

• We propose a novel compiler driven feedback model
based on input from multiple compilers

• A preliminary implementation supporting optimiza-
tion reports from ICC, GCC and Clang

• Show how we are able to filter 87.6% percent of the
compiler generated comments

The paper is laid out as follows. We discuss related work in
the next section 2. As motivation related compiler optimiza-
tion studies are discussed in section 3. The tool is described
in section 4. Experimental results are analyzed in section 5.
Last section 6 concludes the paper.

2. STATE OF THE ART IN CODE COMMEN-
TARY AND OPTIMIZATION ADVISERS

Numerous systems exist describing how the source code have
been optimized by compilers and give advice on source code
changes that could potentially allow for more aggressive op-
timization using compiler driven feedback.

The Oracle Solaris Studio [12] has a feature called Compiler
Commentary. It textually annotates the source code with
details on which optimizations were applied.

Source code is often written in a way that prohibits some
optimizations like automatic vectorization or parallelization.
However, small changes can make the code more amenable
to aggressive compiler optimization, often without affecting
software engineering principles.



The Intel Performance Guide included in the Intel Composer
XE [6] can give advice for source code modifications allow-
ing the compiler to optimize more aggressively. It can guide
the programmer, by first profiling for hotspots, suggest op-
timization flags and suggest small source code changes. It is
a user-friendly tool, however it only gives suggestions when
it is confident, thus often not showing any advice. Simi-
larly IBM’s XL C/C++ and Fortran compilers can generate
XML reports describing applied optimization, and suggest
modifications to enable more aggressive optimization [3].

Larsen et al. also describes their tool, consisting of a modi-
fied version of GCC, outputting information on why a given
optimization was not applied and displays this information
in the Eclipse IDE [8, 10, 11]. In this way, their tool reuse
existing aggressive compiler optimizations for feedback and
help the programmer understand why a given optimization
was not applied. In a parallelization study, cases with super-
linear speedups of parallel code parts were reported due to
positive side effects of modifications [11].

Jensen et al. has built static analysis into an Eclipse plugin,
which can suggest automatic source code refactorings with-
out depending on any compilers [7]. This allows for quicker
turn-around times and more advanced refactorings.

Last Aguston et al. shows their tool, which uses code skele-
tons for parallelization hints [1]. Using skeletons allows
Aguston et al. to make larger code transformation and leave
the question of whether doing so is safe to the programmer.
Applying their skeletons on a subset of SPEC benchmarks
suggest a speedup of 30%, however whether doing so is safe
is not clarified.

The main difference between these tools and this paper is the
use of feedback from multiple compilers allowing us to have
fewer false negatives while still giving speculative advice.

3. COMPILER OPTIMIZATION STUDIES
This paper’s motivation is to show how we can reduce the
number of false positives using feedback from multiple com-
pilers. Multiple studies have shown how different compilers
optimize different loops, which is the fundamental driver be-
hind our filtering approach.

Callahan et al. studied 100 loops written in Fortran with
the purpose of testing the vectorization effectiveness of 19
compilers [2]. On average the compilers vectorized or partly
vectorized 61% of the loops, the best compiler vectorized
80% of the loops.

A more recent study presented by Maleki et al. looked at
three newer compilers, ICC from Intel, XLC from IBM and
GCC. Maleki et al. complement the loops used by Callahan
et al. with additional loops. The original Fortran loops were
rewritten into C and modified such that the compilers had
as much information as possible for a total of 151 loops.
They found that by applying changes to the source code
level or using vector intrinsics XLC could vectorize 82% and
ICC 84% of the loops such that the loops performed better
than manual vectorization. GCC failed to vectorize many of
these loops, for example GCC could only vectorize 60% of
the loops that XLC and ICC combined could vectorize.

Table 1: Supported compiler versions and compiler flags
Compiler Version Flags

ICC
Intel Composer XE

2015 [6]
-opt-report

GCC GCC 4.9.1 [4] -fopt-info-optall
Clang Clang 3.5.0 [13] -Rpass=.*

Similar to the two previous studies Larsen [9] presented how
four compilers, ICC from Intel, XLC from IBM, PGCC from
Portland Group and SUNCC from Oracle, optimized the
loops in the EEMBC benchmark suite. The motivation was
to show how synergies between compilers can be used for
categorizing missed optimization as resolvable. Out of the
3490 missed optimizations generated by the four compilers,
43% could be categorized as potentially resolvable or un-
profitable. These are all very promising results. We see how
even if a loop is not optimized by one compiler, it will often
be optimized by another due to the strength and weaknesses
of the individual compiler optimizations. We can use this in-
formation to guide the programmer focus on the loops that
we know are possible to optimize more aggressively.

4. MULTI-COMPILER FEEDBACK TOOL
Our tool is based on the optimization reports from produc-
tion quality compilers. These can report applied optimiza-
tions and missed optimization.

We currently support input from three compilers, namely
ICC from Intel and the two production quality open source
compilers GCC and Clang as seen in table 1. The versions
are the newest at the time of writing. The optimization
report feature is new in GCC and Clang and thus has lim-
ited support for the number of optimization passes it can
produce feedback from. Therefore, we focus on automatic
vectorization of loops, an optimization that is very impor-
tant for good performance on modern processors.

There are many limitations to automatic vectorization as it
involves numerous advanced analysis steps. Every compiler
performs roughly the same steps, however as the implemen-
tations vary they each has strengths and weaknesses. Some
of the types of analysis that needs to succeed are: identifica-
tion of loop bounds and stride, induction variable analysis
to determine dependencies between loop iterations and alias
analysis to again to determine dependencies within and be-
tween loop iterations. These three analyses are used as in-
put into the actual data dependency analysis. For each of
these analyses there exists many weaknesses, some of which
can be addressed at the source code level. We propose au-
tomatic refactorings to the programmer to mitigate these
limitations. One example is how we can help alias analysis
by specifying that two memory locations are distinct using
the C99 restrict keyword. We reuse many of the automatic
refactorings shown to be effective in earlier research [7, 11].
The tool process is twofold as seen in figure 1:

1. First the programmer has to manually change the build
system, such that the program is compiled with mul-
tiple programs and with the additional compiler flag
for producing optimization reports. We are working
on automating this step. The flags used for all later



void filter(int input[N][N], int kernel[K][K], 
int output[N][N]) {
  int sum;
  for(int r; r<N; r++) {
    for(int c; c<N; c++) {
      sum = 0;
      for(int i=0; i<K; i++) {
        for(int j=0; j<K; j++) {
          sum += input[i*r][j*c]*kernel[i][j];
        }}

Eclipse X

The arguments input, kernel and 
output may alias.

↳ Apply the restrict keyword

1. Compile and generate optimisation 
reports using multiple compilers

2. Parse reports and generate optimisation 
advice and code refactorings

Terminal

~$ make
icc -opt-report main.c
gcc -fopt-info-optall main.c
clang -Rpass=.* main.c
~$ 

Optimization 
reports

Figure 1: Overview of tool process.

Figure 3: Screenshot of the visualization of how the different
compilers vectorize. By hovering over the source line the
compiler feedback will be displayed.

examples are shown in table 1.

2. Second we parse the optimization reports in our Eclipse
plugin, aggregate all the comments based on loops, fil-
ter them based on how each compiler optimized and
display the overview and proposed automatic refactor-
ings to the programmer.

The plugin is based on Eclipse Kepler 4.3. The first step is to
parse the optimization reports generated by the compilers.
Correlating the comments presents a challenge in itself, for
multiple reasons. Different coding styles must be handled
as seen in figure 2. Comments from different compilers may
refer to same loop, but different source code lines. We handle
this by relating each comment to a loop instead of a source
line. This is based on a simple algorithm that first finds
loops and loop nests, and their corresponding source code
line ranges. This implementation assumes that we only have
one loop per source code line. One last issue handled is how
comments for inlined function calls are handled. Depending
on the compiler, these may be described as corresponding
to the call site or the function itself.

After aggregating comments, we classify how each compiler
has optimized into three categories: not vectorized, partially
vectorized or fully vectorized. We present this classification
directly in the IDE to the programmer using colored source
code lines. We color the Eclipse marker bar either green,
orange or red depending on how many compilers optimized.
In this way we do not overwhelm the programmer with too
much information and if more information is desired, hover-
ing over a marker bar will present the classification and the
individual compilers comments as seen in figure 3.

5. RESULTS
We have studied the C benchmarks from the SPEC2006
benchmark suite [5] in total 11 benchmarks: 401.bzip2, 403.gcc,

116

648 79

61
67

29

91

GCC

ClangICC

Figure 4: Venn diagram of how many loops the three compil-
ers, ICC, GCC and Clang have vectorized among the loops
in the 11 C benchmarks from SPEC2006.

429.mcf, 433.milc, 445.gobmk, 456.hmmer, 458.sjeng, 462.libquan-
tum, 464.h264ref, 470.lbm and 482.sphinx3. These bench-
marks consist of 494.709 lines of C code and contain 30.370
loops that can potentially be optimized. We use the compil-
ers ICC, GCC and Clang with the versions seen in table 1.
Each compiler target the Intel Haswell platform. Out of the
total 30.370 loops in the benchmarks, only 8829 loops pro-
duce any comments by some compiler. This is mainly due
to the large amount of optimization done in the compilers,
e.g. full loop unrolling will eliminate a loop.

The number of loops each compiler vectorized is shown in
figure 4. We see how ICC from Intel is clearly dominating
with 805 vectorized loops, where GCC and Clang vector-
ized 335 and 260 loops respectively. We also see how GCC
and Clang optimize many loops that ICC does not, it may
be a missed optimization in ICC or that it is actually not
beneficial to do so.

We intend to use this data in a loop ranking mechanism that
ranks all loops based on how likely it is a suggested refac-
toring is going to succeed and improve performance. We use
profiling data to rank hot loops and answer how worthwhile
a closer inspection is. We use compiler reports to rank loops
on how likely it is a refactoring is going to succeed. This
means we can focus the programmers attention on hot loops
that are not optimized fully by his chosen compiler, but by
another compiler. These loops are good candidates for mak-
ing the suggested automatic refactorings cost effective.



1 for ( int i =0; i < N; i++)

(a) No opening brackets

1 for ( int i =0; i < N; i++)
2 {

(b) Brackets on the subsequent lines

LOOP BEGIN at f i l e . c (1 )
remark #15300: LOOP WAS VECTORIZED
LOOP END

(c) IICC comment referring to line 1

f i l e . c : 3 : note : loop v e c t o r i z e d

(d) GCC comment referring to line 3

Figure 2: Issues encountered when correlating compiler comments. In (a) and (b) different coding styles must be handled. In
(c) and (d) comments from different compilers refers to the same loop, but different lines numbers in the source code.

In this way see how for example ICC could have vector-
ized 286 additional loops, GCC could have vectorized 756
additional loops and last Clang could have vectorized 831
additional loops. If the programmer only target one spe-
cific compiler, the amount of compiler feedback is possible
to handle given that these are derived from 11 benchmarks.
For all compilers the loops with feedback have reduced the
number of loops with feedback from 8829 loops to 1091, an
87.6% reduction.

We have previously shown the benefit of automatic refac-
torings that allows the compilers to optimize more aggres-
sively [7]. One result is the speedup achieved by adding
the restrict keyword from C99 to an edge detection kernel
from the UTDSP benchmark suite. This comment is not fil-
tered out by our tool, and can help GCC with an automatic
refactoring allowing it to vectorize one loop giving a 140%
speedup [7]. Multiple related works presents other use cases
with good speedups [8, 9, 11]. These automatic refactorings
combined with our filtering is a promising avenue.

To give more precise data it would be very relevant to add
more compilers and platforms. This could include XLC from
IBM on the Power architecture. With input from more com-
pilers it would be possible to give extra priority to loops that
are optimized by multiple other compilers.

6. CONCLUSIONS
Many applications rely on optimizing compilers for perfor-
mance. Unfortunately they are often not written in a way
that allows compilers to optimize aggressively. Tools that
help programmers write code in a way that the compilers
can understand are important. However, tools that do this
often have many false positives leading to programmers not
using them, as they are simply not cost effective.

To this end we introduce how the feedback of multiple com-
pilers can be used as a filtering mechanism, reducing the
amount of false positives by only showing the most promis-
ing comments. Using a simple filtering we are able to achieve
an 87.6% reduction in comments. This is a significant step
in the direction of making compiler driven automatic refac-
torings cost effective.

7. ACKNOWLEDGMENTS
The research leading to these results has received funding
from the ARTEMIS Joint Undertaking under grant agree-
ment number 332913 for project COPCAMS.

8. REFERENCES
[1] C. Aguston, Y. Ben Asher, and G. Haber.

Parallelization hints via code skeletonization. In
Symposium on Principles and Practice of Parallel
Programming, PPoPP, 2014.

[2] D. Callahan, J. Dongarra, and D. Levine. Vectorizing
compilers: A test suite and results. In Conference on
Supercomputing, Supercomputing, 1988.

[3] Y. Du, K. Vinayagamoorthy, K. Yuen, and Y. Zhang.
Explore Optimization Opportunities with XML
Transformation Reports in IBM XL C/C++ and XL
Fortran for AIX Compilers. IBM developerWorks,
2015.

[4] Free Software Foundation. GNU Compiler Collection.
http://gnu.gcc.org. Accessed on 24/9/2014.

[5] J. L. Henning. SPEC CPU2006 Benchmark
Descriptions. SIGARCH Computer Architecture News,
2006.

[6] Intel. Intel Composer XE 2015. http:
//software.intel.com/en-us/intel-composer-xe.
Accessed on 24/9/2014.

[7] N. B. Jensen, S. Karlsson, and C. W. Probst.
Compiler feedback using continuous dynamic
compilation during development. In Workshop on
Dynamic Compilation Everywhere, DCE, 2014.

[8] N. B. Jensen, P. Larsen, R. Ladelsky, A. Zaks, and
S. Karlsson. Guiding programmers to higher memory
performance. In Workshop on Programmability Issues
for Heterogeneous, MULTIPROG, 2012.

[9] P. Larsen. Feedback Driven Annotation and
Refactoring of Parallel Programs. PhD Thesis.
Technical University of Denmark, 2011.

[10] P. Larsen, R. Ladelsky, S. Karlsson, and A. Zaks.
Compiler driven code comments and refactoring. In
Workshop on Programmability Issues for
Heterogeneous Multicores, MULTIPROG, 2011.

[11] P. Larsen, R. Ladelsky, J. Lidman, S. A. McKee,
S. Karlsson, and A. Zaks. Parallelizing more loops
with compiler guided refactoring. In International
Conference on Parallel Processing, ICPP, 2012.

[12] Oracle. Oracle Solaris Studio. http:
//www.oracle.com/technetwork/server-storage/

solarisstudio/overview/index.html. Accessed on
17/5/2013.

[13] The LLVM Foundation. clang: a C language family
frontend for LLVM. http://clang.llvm.org.
Accessed on 24/9/2014.

http://gnu.gcc.org
http://software.intel.com/en-us/intel-composer-xe
http://software.intel.com/en-us/intel-composer-xe
http://www.oracle.com/technetwork/server-storage/solarisstudio/overview/index.html
http://www.oracle.com/technetwork/server-storage/solarisstudio/overview/index.html
http://www.oracle.com/technetwork/server-storage/solarisstudio/overview/index.html
http://clang.llvm.org

	Introduction
	State of the Art in Code Commentary and Optimization Advisers
	Compiler Optimization Studies
	Multi-Compiler Feedback Tool
	Results
	Conclusions
	Acknowledgments
	References

