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Abstract

In this paper, the problem of configuration selection i.e. sensor/actuator placement for piecewise affine

(PWA) systems subject to both sensor and actuator faults is considered. A method is proposed that pro-

vides a tool for the design phase to decide about the optimal placement of sensor/actuators where the

reconfigurability of the system subject to sensor and actuator faults is also taken into account. Using a

lattice of possible configurations (sensor/actuator placements), the reconfigurability of the system subject

to faults for each configuration is evaluated and based on that one can draw conclusions about the recon-

figurability of the system and the optimal configuration in the architecture design phase. A reconfigurable

control must ensure stability of the reconfigured system and, if possible, a graceful degradation in the

performance. Therefore, in the proposed reconfigurability analysis, we consider both stabilizability and

performance of the system. The efficiency of the proposed method is demonstrated on several numerical

examples.

1 INTRODUCTION

Performance of a modern control system typically relies on a number of strongly interconnected components.

A fault in a component may degrade the performance of the system or even result in the loss of its func-

tionality or stability. In many cases it may even result in hazardous events. Due to increasing demands on

the safety and reliability in modern industrial systems, it is desirable to develop control systems that can

tolerate component malfunctions while preserving the stability and functionality of the system and providing

a desirable performance. Such controllers are called fault tolerant.

Fault tolerant control (FTC) systems are generally divided into two categories:passive (PFTC) and active

(AFTC). In PFTC, the structure of the system is fixed and pre-designed such that it can tolerate a set of
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faults. In this case the fault tolerant controller is a common solution to a set of control problem including

the faulty and the normal plant. In AFTC, a specific controller is designed for each faulty case. The fault

is detected using a fault detection and diagnosis (FDD) scheme. Then, based on the information from

the FDD module, the controller is re-designed such that the overall stability of the system is preserved

and an acceptable performance is provided (see Figure 1). If the set of sensors and actuators used for

control does not change and only the controller parameters are modified the control re-design is called fault-

accommodation. However, in the case of severe faults, when the set of measurements and actuators used for

control as well as the controller parameters and/or structure are changed, then the re-design step is called

control reconfiguration.
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Figure 1: Structure of Active Fault Tolerant Control

In a control reconfiguration problem , the reconfigured controller must be able to recover specific properties

of the nominal closed-loop system such as stability, performance, etc. despite a fault such as loss of an actuator

or a sensor. The exact recovery of the performance is not usually achievable; hence a graceful degradation

is desirable. In the configuration selection problem, sensor and actuators must be placed such that some

given properties and requirement for the closed-loop system are satisfied. When reconfigurability subject to

a set of faults is also considered in the configuration selection, sensor and actuators must be placed such

that the system is reconfigurable despite occurrence of the given set of faults and the reconfigured system

is stable and provides a specified performance. For example, if an actuator is so crucial that its loss would

result in an unsatisfactory performance then it is recommended in the architecture design phase, to add

a redundant actuator so that the system can tolerate loss of this actuator. However, the final decision

depends on many factors including the cost of adding another actuator and the loss due to shut down or

instability because of the fault in that actuator. Obviously, if the system is safety-critical, the latter cost

is substantial. In this paper, we address the problem of configuration selection for piecewise affine systems

where the reconfigurability subject to sensor and actuator faults is also taken into account.

To address the problem, we extend the concept of reconfigurability subject to a fault to PWA systems.
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Reconfigurability is the capability of the system to preserve some properties, e.g. stability or performance,

of the system when a fault has occurred. If the system is reconfigurable subject to a fault, it means that, we

can design a specific controller for the specified fault that can preserve stability and provide an admissible

performance. In the operation when this fault happens the AFTC will reconfigure the controller when

the fault is detected. If the system is not reconfigurable subject to the specified fault, then the specified

fault cannot be tolerated and either the system would be unstable or its performance would degrade to

an unacceptable level. In this case, some other appropriate actions such as system shut-down should be

performed.

Reconfigurability analysis in the configuration selection phase, provides us a helpful insight about the

optimal sensor and actuator placement as well as dependency of the system performance on each sensor or

actuator. This helps us to decide where we should use hardware redundancy and analytical redundancy to

design an efficient reconfigurable controller with a better performance and a lower cost.

Reconfigurability of linear time invariant systems is measured by controllability and observability Gram-

mians in Frei et al. (1999). A measure for control reconfigurability of linear systems is proposed in Wu et al.

(2000). The smallest second-order mode is used as a measure for reconfigurability of the system to preserve

an acceptable performance in the presence of a fault. In Staroswiecki (2002), the fault tolerant property

of a configuration with respect to an actuator fault is investigated. Two cases are considered. In the first

case, only achieving the control objective is considered, but in the second case the control objective must be

achieved and the control energy must be admissible. The method uses a Grammian based approach. This

result is extended to the admissibility of a linear quadratic cost function in Staroswiecki (2003). Khelassi

et al. (2009) defines reconfigurability of the system not only based on the controllability Grammian, but also

based on the system reliability. While in the aforementioned methods, the reconfigurability measures are

computed off-line, an online method for calculation of the controllability Grammian using input/output data

is proposed in Gonzalez-Contreras et al. (2009).

All of the aforementioned methods are for linear systems. Many of the complex industrial systems either

exhibit nonlinear behavior or contain both discrete and continuous components. An attractive modeling

framework for such systems is the framework of piecewise affine systems (PWA). This is because PWA

framework proposes an efficient way to describe the dynamic of systems exhibiting switching between a

number of linear systems where switching is state-dependent Johansson (2003); Heemels et al. (2001). In many

nonlinear systems, this switching is because of PWA components such as dead-zone, saturation, hysteresis

etc. These nonlinearities appear in many industrial applications and can be efficiently modeled by a PWA

system. For example, in van de Wouw and Pavlov (2008) it is shown that many practical systems such

as mechanical motion systems with friction can be efficiently modeled as PWA systems. Moreover, PWA

systems can approximate nonlinear systems effectively Richter et al. (2011). Also, system identification

methods such as Tabatabaeipour et al. (2006), Tabatabaeipour et al. (2006), Ferrari-Trecate et al. (2003),

and Ren et al. (2012) can be used to identify a PWA model of a nonlinear system. For PFTC and AFTC

of PWA system see Tabatabaeipour et al. (2012), Richter et al. (2011) and Tabatabaeipour and Bak (2014)

and references therein.
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In Yang (2006) reconfigurability of a class of linear switched systems is considered. Reconfigurability

is defined as the controllability of the system and an algebraic approach for reconfigurability is given. In

Tabatabaeipour et al. (2011), we considered reconfigurability of PWA systems against actuator faults, where

only complete loss of actuator gain is considered. A system subject to a fault is called reconfigurable if it

is not only stabilizable using a state feedback control law, but also the performance cost of the systems is

admissible with any initial condition in a given bounded region. In other words, we have considered both

stability and admissibility of the performance of the system as a criteria for reconfigurability.

In this work we consider the problem of configuration selection for designing a reconfigurable control

architecture for PWA systems. We extend the notion of reconfigurability introduced in Tabatabaeipour et al.

(2011). We consider both actuator and sensor faults. Instead of using state feedback, static output feedback is

used. For the performance, both quadratic cost and H∞ performance are considered. A configuration subject

to a sensor and/or actuator fault is called reconfigurable if there exist a static output feedback that stabilizes

the system and the performance of the system (quadratic cost or the H∞ performance) is admissible. The

problem is cast as the feasibility of a convex optimization problem with LMI constraints. The optimization

problem can be solved efficiently using available softwares such as YALMIP/SeDuMi or LMILAB. Using

the proposed reconfigurability analysis with the lattice of configurations, we can evaluate criticality of each

sensor and actuators and decide about its required hardware redundancy, reliability, maintenance policy etc.

. The proposed method provides a tool that can be used in the design phase to decide about the optimal

placement of sensor/actuators where the reconfigurability of the system subject to sensor and actuator faults

is also taken into account.

The paper is organized as follows. In Section II, the PWA model and actuator and sensor faults are

given. In Section III, reconfigurability with respect to quadratic performance cost is defined and sufficient

conditions for reconfigurability are given. In Section IV reconfigurability with respect to H∞ performance is

defined and sufficient conditions for it are derived. Section IV is dedicated to the simulation results for the

climate control system and two numerical example. The conclusion is presented in the Section V.

2 Piecewise Affine systems and actuator and sensor fault models

2.1 Piecewise Affine Systems

We consider a PWA discrete time system of the following form:

x(k + 1) = Aix(k) +Biu(k) + bi (1)

y(k) = Cix(k) for x(k) ∈ Ri, i ∈ I, (2)

where x(k) ∈ Rn is the state, u(k) ∈ Rm is the control input, and y(k) ∈ Rp is the measured output.

{Ri}si=1 ⊆ Rp denotes a partition of the state space into a number of polyhedral regions Ri, i ∈ I =

{1, · · · , s}. Each polyhedral region is given by:

Ri = {x|Hix ≤ hi}. (3)
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The set I is partitioned to I0 ∪I1, where I0 denotes the index set of subsystems that contain the origin and

I1 is the index set of the subsystems that do not contain the origin. It is assumed that bi = 0 for i ∈ I0.

Each polyhedral region Ri can be over-approximated with a union of `i ellipsoids, i.e:

Ri ⊆
`i⋃
j=1

Eij , (4)

where each ellipsoid is represented by the matrix Eij and the scalar fij such that Eij = {x|‖Eijx+fij‖ ≤ 1},
see Rodrigues and Boyd (2005). This approximation is used in this paper to deal with the affine term for

subsystems with i ∈ I1 which helps us to cast the control problem in terms of LMIs.

All possible switchings from region Ri to Rj are represented by the set S:

S := {(i, j)|x(k) ∈ Ri, x(k + 1) ∈ Rj}. (5)

The set S can be computed using reachability analysis for piecewise affine systems. A conservative approach

is to assume that switching happens between all subspaces i.e S = I × I = {(i, j)|i, j ∈ I}.

3 Configurations and Faults

We consider a system with a set of actuators and sensors given by F0. The cardinality of this set is denoted

by card(F0). A configuration Fi is a subset of F0 meaning that a subset of actuators and sensors are selected

as input and output of the system. The set of all possible configurations generated by F0 is the power set

of F0 denoted by P(F0). If we equip the power set P(F0) with the set-inclusion partial ordering then we

have a lattice that is denoted by L(F0). The lattice is usually represented by a non-directed graph where

configuration are its vertices and and there is an edge between two vertices (two configurations) Fi and Fj

if they differ only in one component i.e. there exist an actuator or a sensor that belongs to Fi but not Fj or

vice versa:

∃σ ∈ F0 : Fi = Fj ∪ {σ} or Fj = Fi ∪ {σ}. (6)

We can organize the graph into levels, li, such that each level contains those configurations with the same

number of components. The full configuration is generally the top level card(F0) and the empty configuration

is the bottom level , see (Staroswiecki et al., 2012).

3.0.1 Example

Consider a system with 3 actuators {a1, a2, a3}and two sensors s1, s2. The lattice of system configurations

is shown in Figure 2.

3.1 Fault Model

In this work, we consider both actuator and sensor faults. A fault in an actuator is an event that changes the

input matrix Bi of the system to Bfi . A total loss of an actuator is represented by removing the corresponding
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a1a2a3s1s2

a2a3s1s2 a1a3s1s2 a1a2s1s2 a1a2a3s2 a1a2a3s1

a3s1s2 a2s1s2 a2a3s2 a2a3s1 a1s1s2 a1a3s2 a1a3s1 a1a2s2 a1a2s1 a1a2a3

s1s2 a3s2 a3s1 a2s2 a2s1 a2a3 a1a2 a1s2 a1s1 a1a3

a1 a2 a3 s1 s2

∅

1

Figure 2: Lattice of possible configurations for a system with three actuators a1, a2, a3 and two sensors s1, s2.

Moving from top of the diagram to its bottom represents the loss of components.

column of Bi. Similarly, a fault in a sensor is an event that changes the output matrix of the system Ci to

Cfi . A total loss of a sensor is represented by removing the corresponding row of Ci .

In view of the system configurations graph, a loss of a component (sensor or actuator) changes the

configuration of the system from configuration F to F ′ such that F ′ belongs to one level lower than that of

F i.e. if F belongs to the level lF , then lF ′ = lF − 1. Therefore, moving from top of the diagram of the

lattice of configurations to its bottom represents the loss of components (See Figure 2).

Without loss of generality, it is assumed that Cfi , i = 1, 2, . . . , s is of full column (or row) rank. Then,

there exist nonsingular transformation matrices Tcfi, i = 1, 2, . . . , s, such that

Cfi Tcfi =
[
I 0

]
. (7)

A special solution for Tci can be obtained by

Tcfi =
[
Cf

T

i Cfi C
fT

i Cf
⊥

i

]
. (8)

where (•)⊥ denotes an orthogonal basis for the null space of (•).
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4 Static Output Feedback Design for PWA systems

4.1 Piecewise Quadratic Stability

The problem of static output feedback design is to design a static output feedback of the form:

u(k) = Ky(k) (9)

such that the closed loop PWA system

x(k + 1) = Aix(k) + bi, (10)

where Ai = Ai +BiKCi, is exponentially stable.

4.2 PWL Quadratic Regulator (PWLQR)

The aim of the control design problem is to design a controller of the form (9) such that it stabilizes the

system and provides an upper bound on the following quadratic cost function associated with the system:

J =

∞∑
k=0

xT (k)Qix(k) + uT (k)Riu(k), (11)

where Qi ≥ 0 and Ri ≥ 0 are given weighting matrices of appropriate dimensions. The PWA system subject

to a fault is called reconfigurable if a static output feedback controller can be found that stabilizes the system

and the upper bound on the quadratic cost is less than a pre-specified threshold.

Definition 1. The system (2) subject to fault f is called reconfigurable if there exist a static output feedback

control law of the form (9) which stabilizes the system and the upper bound on the cost function (11) is

admissible i.e. is less than a specified given threshold.

The following, gives sufficient conditions for a PWA systems to be stabilizable by a static output feedback

controller.

Theorem 1. If there exist symmetric matrices Xi = XT
i > 0, matrices U , positive constants µil > 0, and

matrices Gi with the following structure

Gi =

[
G11 0

Gi21 Gi22

]
(12)
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such that: 
Xi − Ḡi − ḠTi ∗ ∗

(AiḠi +Bfi

[
U 0

]
) −Xj − µilbibTi ∗

EilḠi −µilfilbTi −µil(filfTil − 1)

 < 0, (13)

∀(i, j) ∈ S, i ∈ I1, l = 1, . . . , `i,[
Xi − Ḡi − ḠTi ∗

(AiḠi +Bfi

[
U 0

]
)T −Xj

]
< 0, (14)

∀(i, j) ∈ S, i ∈ I0,
(15)

with Ḡi = TcifGi, then there exist a static output feedback control law of the form (9) for the PWA system

such that the closed loop system is exponentially stable. The piecewise linear feedback gains are given by:

K = UG−111 . (16)

Proof. See A.1.

The above theorem only considers stability. In many situations, the system might be stabilizable but the

cost of reaching to the origin from the initial state might not be admissible. To include admissibility of the

upper bound on the cost function we introduce the following theorem.

Theorem 2. If there exist symmetric matrices Xi = XT
i > 0 and matrices Ui, positive constants µil > 0,

and matrices Gi with the following structure

Gi =

[
G11 0

Gi21 Gi22

]
(17)

such that:
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

Xi − Ḡi − ḠTi ∗ ∗ ∗ ∗
(AiḠi +Bfi

[
U 0

]
) −Xj − µilbibTi ∗ ∗ ∗

EilḠi µilfilb
T
i µil(filf

T
il − 1) ∗ ∗[

U 0
]

0 0 R−1i ∗
Ḡi 0 0 0 Q−1i


< 0 (18)

∀(i, j) ∈ S, i ∈ I1, l = 1, . . . , `i,
Xi − Ḡi − ḠTi ∗ ∗ ∗

(AiḠi +Bfi

[
U 0

]
) −Xj 0 0[

U 0
]

0 R−1i ∗
Ḡi 0 0 Q−1i

 < 0, (19)

∀(i, j) ∈ S, i ∈ I0,
(20)

with Ḡi = TcfiGi, then there exist a SOF control law of the form (9) for the PWA system (2) subject to the

fault f such that the closed loop system is exponentially stable. The PWL feedback gains are given by:

K = UG−111 , (21)

and the upper bound on the cost function (11) satisfies:

J ≤ x(0)TX−1i0 x(0), (22)

where i0 is the region index for the initial condition, i.e. y(0) ∈ Ri0 .

Proof. See A.2.

The upper bound found in the theorem (2) is not optimal. We are interested to minimize this cost to

find a controller with the minimum cost. The upper bound of (11), could be minimized in the following way.

The initial condition is considered as a random variable with uniform distribution in a bounded region X .

Then, it is tried to minimize the expected value of the cost function. We have:

E(J) ≤ E(tr(Pi0x(0)xT (0))) ≤
∑
i∈I

σitr(PiLi), (23)

where Li = E(x(0)xT (0)) is the expectation of x(0)xT (0) corresponding to x(0) ∈ Xi, i ∈ I , tr(·) is the trace
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operator and σi is the probability of x(0) ∈ Xi. Then, the optimization problem is:

J∗ = min
Xi,Ui,Vi

∑
i∈I

σitr(X
−1
i Li) (24)

s.t.


(18)

(19)

Xi = XT
i > 0,

The above optimization problem is non-convex. To convert it to a convex optimization problem , we introduce

new variables Yi, i ∈ I, which satisfies: [
Yi I

I Zi

]
≥ 0. (25)

Using Schur complement, the above constraint is equivalent to Z−1i ≤ Yi. Therefore, the objective function in

(24), which is nonlinear in term of Zi, can be converted to
∑
i∈I σitr(YiLi). Consequently, the optimization

problem (24) can be transformed to the following convex form:

J∗ = min
Xi,Ui,Vi,Yiεi

∑
i∈I

σitr(YiLi) (26)

s.t.


(18),

(19),

(25),

Xi = XT
i > 0,

In the following theorem we consider the properties for reconfigurability to be stability and admissibility of

the optimal upper bound on the cost function.

Theorem 3. The system (2) subject to fault f with respect to admissibility threshold J on the cost function

(11) is reconfigurable if:

• (18) and (19) are satisfied,

• J∗ < J .

Proof. Satisfaction of (13) and (14) guarantees that the system is stabilizable with a SOF controller and

satisfying J∗ < J is equal to admissibility of the cost. Therefore, based on definition 1 the system subject to

fault f is reconfigurable.
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4.3 Example 1

In this section we consider the following PWA system:

A1 =

0.1509 0.8600 0.4966

0.6979 0.8537 0.8998

0.3784 0.5936 0.8216

 (27)

A2 =

0.6449 0.3420 0.5341

0.8180 0.2897 0.7271

0.6602 0.3412 0.3093

 ,

A3 =

0.8385 0.7027 0.6946

0.5681 0.5466 0.6213

0.3704 0.4449 0.7948

 ,

B1 =

1

1

1

 , B3 = B2 = B1,

b1 =

0.5

0.5

0.5

 , b3 = b1, b2 =

0

0

0

 .
The system is assumed to be a slab system where switching is based on the first state. i.e:

R1 = {x1| − 6 ≤ x1 ≤ −3},
R2 = {x1| − 3 ≤ x1 ≤ −3},
R3 = {x1|3 ≤ x1 ≤ 6}.

For the quadratic cost performance parameters are chosen as:

Q = 0.2I3×3, R = 0.2

We use reconfigurability analysis to see the effect of actuator and sensor faults on the reconfigurability of the

system and to decide which measurements are more important for designing a fault tolerant control system.

Figure 3 shows the result of reconfigurability analysis on the lattice of systems configurations when only

stabilizability is considered. Since we only have one actuator, in lattice only sensor faults are considered. At

the first level, it is assumed that we can measure all states. At the second level one of the sensors is faulty

and at the third level, two of the sensors are subject to outage faults. A white node means the the system is

stabilizable and a grey node shows that the system is not stabilizable with the corresponding configuration.

Therefore, the analysis of the lattice suggest that to be able reconfigure the system subject to one sensor

fault, we need at least two sensors which must include a measurement of the first state. In other words, if we

have redundancy in sensor 1, the system can be reconfigured when a sensor is lost. In case s2 or s3 fails, the
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system can be reconfigured using analytical redundancy, and if s1 fails, we have to use hardware redundancy.

Table 1 shows the result of the reconfigruability analysis the performance cost of the system is also considered.

s1s2s3

s1s2 s1s3 s2s3

s1 s2 s3

∅

1

Figure 3: Lattice of system configurations for example 1

Only stabilizable configurations are shown in the table. The first row shows when the weighting matrix Qi’s

are chosen as diag{0.2, 0.2, 0.2} and the second row shows when Qi’s are chosen as diag{0.2, 0.1, 0.1}. As can

be seen, even though all of these configurations are stabilizable, but the performance of the system varies a

lot. For example, if the admissible performance cost is 19, then the system with a fault in sensor 3 is not

reconfigurable when Qi’s are chosen as diag{0.2, 0.1, 0.1}. This means that sensors 1 and 3 are of crucial

importance and it is important to ensure hardware redundancy for them, because if we lose sensor 1, then the

system is not stabilizable, and if we lose sensor 3, even thought the system is stabilizable, the performance

of the system is not admissible.

Table 1: Stabilizable configurations and associated quadratic cost

Weighting matrices sensor configurations

Qi {1, 2, 3} {1, 3} {1, 2}
diag{0.2,0.2,0.2} 6.56 9.09 18.53

diag{0.2,0.1,0.1} 7.6 9.59 19.1
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4.4 Probabilistic Measures

In this section we discuss how we can use the lattice of configurations with the failure rates of components

to drive probabilistic measures for reliability of the system. We assume that the failure rates of each sensor

and actuators are given and they have a exponential distribution with the occurrence rate λai or λsi . It

is also assumed that the failure event for each components are independent. Here, we do not consider the

repair rates, but the framework allows to consider probabilistic repairs with exponential distributions with

given rates. We also assume that the rate of failure of the fault-tolerant control systems (including the

FDI and control reconfiguration module) is sufficiently smaller that rates of failure of sensors or actuators

and therefore it can be neglected in our analysis. Using the failure rates information with the lattice of all

configurations, a continuous time Markov chain is constructed such that the transition rate between two

configurations Fi and Fj is nonzero if there is an edge connecting these two vertices. Then, the transition

rate between between Fi and Fj is determined by the rate of failure of the only component that they differ

which is denoted by λij here. Note that in this way the non-directional graph of the lattice of configurations

becomes a one-directional graph and if we consider repairs it becomes a bi-directional graph. Therefore, one

can construct a continuous-time Markov chain with discrete state X taking values in F = {1, · · · , 2Na+Ns}
with the transition rates satisfying:Pr{X(t+ h) = j|X(t) = i} = λijh+ o(h),

P r{X(t+ h) = i|X(t) = i} = 1− λiih+ o(h)
(28)

where λii =
∑
i 6=j λij .

To obtain the probability of the system being in a specific configuration, we are interested in finding

the probabilities Pij(t) = Pr{X(t) = j |X(0) = i}, t ≥ 0. These probabilities are obtained by solving the

Kolmogorov forward equation given as:

Ṗij = −λiiPij(t) +
∑
y 6=j

Piy(t)λyj (29)

Now, probability of being at configuration j denoted by πj(t) is given by:

πj(t) = Pr{X(t) = j} =
∑
i

Pr{X(t) = j |X(0) = i}Pr{X(0) = i} =
∑
i

PijPr{X(0) = i} (30)

Using the above equation and (29), it is concluded that:

π̇j = −λjjπj +
∑
y 6=j

πyλyj , (31)

or in the matrix form:

π̇(t) = Aπ(t) (32)

where

Aij =

−λii if i = j

λji if i 6= j
. (33)
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Using the lattice of configurations, the set of possible configurations F is divided into three groups: Unstable

configurations where their indices is collected in US , Stable configurations with the index set ST , Admissible

configurations with index set AD. Then, one can define different probabilistic measures based on the solutions

of the equation π̇ = Aπ. Then the probability that the system is in a stable configuration at time t is given

by:

PST (t) = Pr{X(t) ∈ ST} =
∑
j∈ST

πj(t) (34)

and similarly the probability that the system performance is admissible is given by:

PAD(t) = Pr{X(t) ∈ AD} =
∑
j∈AD

πj(t). (35)

Therefore, the mean-time-to failure (MTTF) is calculated as:

MTTF =

∫ ∞
0

PST (t)dt. (36)

Similarly, the mean-time that with admissible performance is given as:

MTAD =

∫ ∞
0

PAD(t)dt. (37)

4.5 Example

We continue with example 1. It is assumed that the mission time that we are interested in is 104 hours and

the actuator failure rate is much smaller than the sensors. The sensor failure rates are identical and given

as λa = λb = λc = 5× 10−5h−1. By solving equations, the probability of being in the stable mode (being in

a stable configuration) or in an unstable mode (being in an unstable configuration) over time is calculated

which is depicted in Figure 5. Now, we assume that a redundant sensor for the first state is added which

is denoted by s′1. This sensor is used when the sensor s1 has failed. Therefore, the lattice of the system

configurations would be as in Figure 4. Using this lattice and equation (32), the probability of being in a

stable state in now computed which is shown in Figure 5. Comparing the results in rows of Figure 5 shows

that the probability of being in a stable situation has now increased. To show the result clearly, we also

consider a case where a redundant sensor for the third state is added. Using the same procedure PST and

PUS are computed. Figure 6 shows probability of being in the stable mode for these three configurations over

time [0, 104]. As can be seen, adding sensor s′1 gives the best result and increases the probability of being in

the stable mode about 50% while adding s′3 increases this probability only by 14%.
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Figure 4: Lattice of system configurations for example 1 with redundant sensor for the first state
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Figure 5: Probability of being in the stable (PST ) and unstable mode PUS with different configurations:

(Top row) one sensor for each state (s1s2s3) , (Middle row) a redundant sensor for the first measurement

(s1s
′
1s2s3) , (Bottom row) a redundant sensor for the third state (s1s2s3s

′
3)
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Figure 6: Probability of being in the stable mode with different configurations: (Top row) one sensor for

each state (s1s2s3) , (Middle row) a redundant sensor for the first measurement (s1s
′
1s2s3) , (Bottom row)

a redundant sensor for the third state (s1s2s3s
′
3).

5 Reconfigurability analysis using H∞ performance

In this section we define reconfigurability of a systems subject to fault based on H∞ performance. Consider

the following discrete time piecewise affine system:

x(k + 1) = Aix(k) +Biu(k) +Diw(k) + bi, (38)

y(k) =Cix(k), (39)

z(k) =Czix(k) +Bziu(k) +Dziw(k), for x(k) ∈ Ri, (40)

where x(k) ∈ Rn is the state, u(k) ∈ Rm is the control input, w(k) ∈ Rr is the disturbance input, z(k) ∈ Rq

is the controlled output, and y(k) ∈ Rp is the measured output. The output space partition and the faults

are defined as before. Therefore, the faulty system is described by:

x(k + 1) = Aix(k) +Bfi u(k) +Diw(k) + bi, (41)

y(k) =Cfi x(k), (42)

z(k) =Czix(k) +Bziu(k) +Dziw(k), for x(k) ∈ Ri (43)
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A system subject to the fault f is called reconfigurable if the faulty system is stabilizable by a static output

feedback of the form:

u(k) = Ky(k), (44)

and the H∞ performance of the system is below a specified threshold γ∗. For a given real number γ, assuming

x(0) = 0, the exogenous signal is attenuated by γ, if for every integer N ≥ 0 and for every w ∈ L2([0, N ], Rr),

the following inequality is satisfied:

N∑
k=0

‖z(k)‖2 < γ2
N∑
k=0

‖w(k)‖2. (45)

Theorem 4. The system (40) subject to fault f with respect to admissibility threshold γ on the H∞ per-

formance (45) is reconfigurable with a PWL static output feedback of the form (44) if there exist symmetric

matrices Xi = XT
i > 0, matrices Ui, positive constants µil, γ, and Gi with the following structure

Gi =

[
G11 0

Gi21 Gi22

]
(46)

such that: 

−I 0 Dzi 0 CziḠi +Bzi

[
Ui 0

]
∗ −Xj + µilb

T
i bi Di −µilbifTil AiḠi +Bfi

[
Ui 0

]
∗ ∗ −γ2I 0 0

∗ ∗ ∗ −µil(filfTil − 1) EilḠi

∗ ∗ ∗ ∗ Xi − Ḡi − ḠTi


< 0 (47)

∀(i, j) ∈ S, i ∈ I1, l = 1, · · · , li,
−I 0 Dzi CziGi +Bzi

[
Ui 0

]
∗ −Xj Di AiGi +Bfi

[
Ui 0

]
∗ ∗ −γ2I 0

∗ ∗ ∗ −Xi

 < 0 ∀(i, j) ∈ S, i ∈ I0, (48)

(49)

and

γ < γ, (50)

, where Ḡi = TcifGi.

Proof. See A.3.
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6 Examples

6.1 Example 2

In this example, we consider the following PWL system:

A1 =

0.4329 0.7604 0.2091

0.2259 0.5298 0.3798

0.5798 0.6405 0.7833

 A2 =

0.6808 0.7942 0.0503

0.4611 0.0592 0.4154

0.5678 0.6029 0.3050

 (51)

B1 = B2 = I3×3, D1 = D2 = 11×3 (52)

C1 = C2 =

[
1 0 0

0 1 0

]
Cz1 = Cz2 = I3×3, Bz1 = B1, Bz2 = B2, Dz1 = Dz2 = 03×1 (53)

We use H∞ performance of the system to analyze its reconfigurability as stated in theorem 4. The result of

the analysis on the lattice of configurations is shown in Figure 7. Each block represents a configuration where

the corresponding component is failed. The graph starts with a situation where all components are healthy,

at level 1 only one of the component is failed and so on. A grey block denotes that the configuration is not

stabilizable (by a SOF). A white block denotes that the configuration is stabilizable. The corresponding γ

for the stabilizable configurations is also given. The results clearly indicates that ,assuming the failure rates

are similar, sensor 2 is of crucial importance. If s2 fails, then the system is not reconfigurable anymore. If

the failure rates for the components are notably different, then the analysis should be augment with the

probabilistic measures to make a better decision about the configuration selection.

7 CONCLUSIONS

We presented an approach for configuration selection for reconfigurable control of discrete time PWA systems.

Reconfigurability is defined as both stability and admissibility of the upper bound on the performance of the

system when it is stabilized using a static output feedback controller. We allow actuator and sensor failures

and for the performance we consider both quadratic cost and H∞ performance associated with the system.

Sufficient conditions for reconfigurability of a system subject to a fault with respect to a given threshold

on the performance of the system are given in terms of LMIs. The upper bound is minimized by solving a

convex optimization problem with LMI constraints. Through numerical examples we demonstrated how the

proposed method can be used in the design phase to to decide about the optimal placement of sensors and

actuators.
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A Proofs

A.1 Proof of Theorem 1

We consider a piecewise Lyapunov candidate function of the form V (x(k) = x(k)TPix(k), Pi > 0 for x(k) ∈
Xi. To prove the stability we must have:

V (x(k + 1))− V (x(k)) < 0, ∀(i, j) ∈ S. (54)

We consider the general case where x(k) ∈ Ri and x(k + 1) ∈ Rj . First, we consider those switchings with

i ∈ I1. To deal with the affine term, we will use the ellipsoidal approximation of regions. Substituting the

state space equations of the closed loop system in (54) we get:

[(Ai +Bfi KC
f
i )x(k) + bi]

TPj [(Ai +Bfi KC
f
i )x(k) + bi]

−x(k)TPix(k) < 0,∀(i, j) ∈ S, (55)

which is equal to: [
x(k)

1

]T [
ATi PjAi − Pi ∗
bTi PjAi bTi Pjbi

][
x(k)

1

]
< 0, (56)

where Ai = Ai +Bfi KC
f
i . The ellipsoidal approximation of Ri can be written as:[

x(k)

1

]T [
ETilEil ∗
fTilEil fTil fil − 1

][
x(k)

1

]
≤ 0, l = 1, . . . , `i, (57)

The condition x(k) ∈ Ri is relaxed to the above approximation. Using the S-procedure, see Boyd et al.

(1994), the equation (56) is satisfied if there exist multipliers λil > 0 such that :

(56)− λil
[
x(k)

1

]T [
ETilEil ∗
fTilEil fTil fil − 1

][
x(k)

1

]
< 0. (58)

This means that the following matrix inequality must be satisfied:[
ATi PjAi − Pi ATi Pjbi
bTi PjAi bTi Pjbi

]
− λil

[
ETilEil ∗
fTilEil fTil fil − 1

]
< 0, (59)

which is equivalent to: [
−Pi − λilETilEil ∗
−λilfTilEil −λil(fTil fil − 1)

]
+

[
ATi
bTi

]
Pj

[
Ai bi

]
< 0. (60)

Applying Schur complement to the above equation we have:−Pi − λilETilEil ∗ ∗
−λilfTilEil −λil(fTil fil − 1) ∗
Ai bi −P−1j

 < 0. (61)
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Pre- and Post-multiplying the above equation with diag{I,
[

0 I

I 0

]
}, we get:

−Pi − λilETilEil ∗ ∗
Ai −P−1j ∗

−λilfTilEil bTi −λil(fTil fil − 1)

 < 0. (62)

Using Schur complement, this is equal to:[
−Pi − λilETilEil ∗

Ai −P−1j

]
+ (63)[

−λilETil fil
bi

]
λ−1il (fTil fil − 1)−1

[
−λilfTilEil bTi

]
< 0, (64)

which is equal to: [
−Pi − λilETilEil ∗

Ai −P−1j

]
+[

λilE
T
il fil(f

T
il fil − 1)−1fTilEil ∗

−bi(fTil fil − 1)−1fTilEil λ−1il bi(f
T
il fil − 1)−1bTi

]
< 0. (65)

Using the matrix inversion Lemma, we have:

(1− fTil fil)−1 = 1 + fTil (1− filfTil )−1fil. (66)

The inequality (65) can be written as:[
−Pi − λilETilEil ∗

Ai −P−1j

]
+

[
λilE

T
ilEil ∗
0 −λ−1il bibTi

]
+ (67)[

ETil
−λ−1il bifTil

]
λil(filf

T
il − I)−1

[
Eil −λ−1il filbTi

]
< 0,

which, by using Schur complement, is equal to:−Pi ∗ ∗
Ai −P−1j − µilbibTi ∗
Eil −µilfilbTi −µil(filfTil − I)

 < 0, (68)

where µil = λ−1il . Replacing Ai by Ai +Bfi KC
f
i , it is equivalent to: −Pi ∗ ∗

(Ai +Bfi KC
f
i ) −P−1j − µilbibTi ∗

Eil −µilfilbTi −µil(filfTil − 1)

 < 0, (69)
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Post- and pre-multiply (69) by diag{TcfiGi, I, I} and its transpose, we get:
−GTi TTcfiPiTcfiGi ∗ ∗

(AiTcfiGi +Bfi K
[
G11 0

]
) −P−1j − µilbibTi ∗

EilTcfiGi −µilfilbTi −µil(filfTil − 1)

 < 0, (70)

Using the fact that GTi T
T
cfiPiGiTcfi ≥ TcfiGi + GTi T

T
cfi − P−1i , and defining U = KG11 we get the

following condition as a sufficient condition for the satisfaction of the above inequality.
P−1i − TcfiGi − TTcfiGTi ∗ ∗
(AiTcfiGi +Bfi

[
U 0

]
) −P−1j − µilbibTi ∗

EilTcfiGi −µilfilbTi −µil(filfTil − 1)

 < 0, (71)

Define Xi = P−1i and Ḡi = TcfiGi we get (13) as a sufficient condition for 54.

For subsystems that contain the origin i.e. i ∈ I0, we have filf
T
il − I < 0 which means that the LMI (13)

is not feasible. For these subsystems the LMI (14) is considered and there is no need to include the region

information. Therefore, the following matrix inequality must be satisfied:

(Ai +Bfi KC
f
i )TPj(Ai +Bfi KC

f
i )− Pi < 0. (72)

Using Schur complement, the above inequality is equivalent to:[
−Pi (Ai +Bfi KC

f
i )T

(Ai +Bfi KC
f
i ) −P−1j

]
< 0. (73)

Post- and pre-multiply (73) by diag{TciGi, I, I} and its transpose, we get:[
−GTi TTcfiPiTcfiGi ∗

(AiTcfiGi +Bfi K
[
G11 0

]
−P−1j

]
< 0, (74)

Using the fact that GTi T
T
cfiPiGiTcfi ≥ TcfiGi +GTi T

T
cfi − P−1i , and defining U = KG11 we get the following

condition as a sufficient condition for the satisfaction of the above inequality.[
P−1i − TcfiGi − TTcfiGTi ∗
(AiTcfiGi +Bfi

[
U 0

]
) −P−1j

]
< 0, (75)

Define Xi = P−1i and Ḡi = TcfiGi we get (13).

A.2 Proof of Theorem 3

We consider a piecewise Lyapunov candidate function of the form V (x(k) = x(k)TPix(k), Pi > 0 for x(k) ∈
Xi. The condition to be satisfied is:

V (x(k + 1))− V (x(k)) + x(k)TQix(k)+ (76)

x(k)TCTi K
T
i RiKiCix(k) < 0,∀(i, j) ∈ S.
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The proof of stability is very similar to the previous theorem except that to deal with the term x(k)TQix(k)+

x(k)TKT
i RiKix(k) we use the Schur complement two more times at the end of the proof. To prove that (22)

is satisfied we sum up (76) from k = 0 to k =∞, which results in:

V (x(∞))− V (x(0)) + Σ∞0 (xT (k)Qix(k) + uT (k)Riu(k)) < 0 (77)

Because Qi and Ri are positive, hence x(k)TQix(k) + x(k)TCTi K
T
i RKiCix(k) ≥ 0. Therefore, if (76) is

satisfied the system is stable which means V (x(∞)) = 0. As V (x(0)) = x(0)TPi0x(0). Therefore we have:

∞∑
k=0

(xT (k)Qix(k) + uT (k)Riu(k)) < xT (0)Pi0x(0).

A.3 Proof of Theorem 4

The equations for the closed loop system are:

x(k + 1) = Aix(k) +Diw(k) + bi, (78)

z(k) = Czix(k) +Dziw(k), (79)

where Ai = Ai +Bi∆
fKiΛ

fCi and Czi = Czi +BziKiΛ
fCi. We consider the following peicewise Lyapunov

function:

V (x(k)) = x(k)TPix(k), y(k) ∈ Ri (80)

To prove that the induced l2 norm of w to the controlled output z is less than γ, one must show that the

following inequality holds:

V (x(k + 1))− V (x(k)) + zT (k)z(k)− γ2w(k)Tw(k) < 0. (81)

Substituting (80) and the system equations (78) in the above equations we get:x(k)

w(k)

1


T

{

ATiDT
i

bTi

Pj(∗) +

 CTiDT
zi

0

 (∗) +

−Pi 0 0

0 −γ2 0

0 0 0

}
x(k)

w(k)

1

 < 0, ∀(i, j) ∈ S. (82)

Using the regional information and the S-procedure we have:

−λil

0 0 0

0 ETilEil ∗
0 fTilEil (fTil fil − 1)

 +

DT
i

ATi
bTi

Pj(∗) +

DT
zi

CTi
0

 (∗) +

−γ2 0 0

0 −Pi 0

0 0 0

 < 0 ∀(i, j) ∈ S. (83)

Using Schur complement, the following inequality implies the above inequality:
−I 0 Dzi Ci 0

∗ −Pj Di Ai bi

∗ ∗ γ2I 0 0

∗ ∗ ∗ −Pi − λilETilEil −λilETil fil
∗ ∗ ∗ ∗ −λil(fTil fil − 1)

 < 0. (84)
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This is equal to
−I 0 Dzi Ci 0

∗ −P−1j Di Ai
∗ ∗ γ2I 0

∗ ∗ ∗ −Pi − λilETilEil

 +


0

bi

0

−λilETil fil

 [λil(f
T
il fil − 1)]−1


0

bi

0

−λilETil fil


T

< 0 ∀(i, j) ∈ S.

(85)

Using the matrix inversion lemma as before, one can show that this is equal to:
−I 0 Dzi Ci 0

∗ −P−1j − µilbTi bi Di Ai −µilbifTil
∗ ∗ −γ2I 0 0

∗ ∗ ∗ −Pi ETil
∗ ∗ ∗ ∗ −µil(filfTil − 1)

 < 0 ∀(i, j) ∈ S, (86)

where µil = λ−1il . We post- and pre-multiply the above equation with diag{I, I, I,
[

0 TciGi

1 0

]
} and its

transpose respectively. Then we have:
−I 0 Dzi 0 CiTciGi
∗ −P−1j − µilbTi bi Di −µilbifTil AiTciGi
∗ ∗ −γ2I 0 0

∗ ∗ ∗ −µil(filfTil − 1) EilTciGi

∗ ∗ ∗ ∗ −GTi TTciPiTciGi

 < 0 ∀(i, j) ∈ S. (87)

Notice that:

AiTcfiGi = (Ai +Bfi KiC
f
i )TcfiGi = AiTcfiGi +Bfi KiC

f
i TcfiGi = AiTcfiGi +Bfi Ki

[
I 0

]
Gi =

AiTcfiGi +Bfi

[
U 0

]
, (88)

where U = KG11. Also, using a similar method we have:

CziTcfiGi = CziTcfiGi +Bzi

[
U 0

]
, (89)

Using the fact that GTi T
T
cfiPiTcfiGi ≥ GTi TTcfi + TcfiGi − Pi and defining Ḡi = TcfiGi, then we have:

−I 0 Dzi 0 CziḠi +Bzi

[
U 0

]
∗ −P−1j − µilbTi bi Di −µilbifTil AiḠi +Bfi

[
U 0

]
∗ ∗ −γ2I 0 0

∗ ∗ ∗ −µil(filfTil − 1) EilḠi

∗ ∗ ∗ ∗ P−1i − Ḡi − ḠTi


< 0 ∀(i, j) ∈ S, (90)
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as a sufficient condition for (86). Define Xi = P−1i , we get (47). Proof of (48) is very similar except that

there is no need to take into account the regional information. Once (47) and (48) are satisfied, there exist a

PWL static output feedback that stabilizes the PWA faulty system and if γ < γ, then the H∞ performance

is admissible which means that the system subject to the fault f is reconfigurable.
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