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Abstract. Controllable rotor-gas bearings are popular offering adaptability, high speed
operation, low friction and clean operation. Rotor-gas bearings are however highly sensitive to
disturbances due to the low friction of the injected gas. These undesirable damping properties
call for controllers, which can be designed from suitable models describing the relation from
actuator input to measured shaft position. Current state of the art models of controllable
gas bearings however do not provide such relation, which calls for alternative strategies. The
present contribution discusses the challenges for feedback controller design using the state of
the art method, and an alternative data driven modelling approach is pursued based on Grey-
Box system identification. The method allows development of models of the rotor-gas bearing
suitable for controller design, which can be identified from data over the range of operation and
are shown to accurately describe the dynamical behaviour of the rotor-gas bearing. Design of a
controller using the identified models is treated and experiments verify the improvement of the
damping properties of the rotor-gas bearing.

1. Introduction
Controllable gas bearings are popular for offering high speed operation at low friction using
clean and abundant air as a lubricant. Design of such rotor-gas bearing systems has been
the topic of a previous PhD project [3] from the Mechanical Engineering department at the
Technical University of Denmark (DTU). A result of the work is a piezo actuated rotor-gas
bearing test rig. A controller is however required to improve the poor damping properties,
and a collaborative PhD has begun between the department of Mechanical Engineering and the
Electrical Engineering control engineering group to further explore the design of such controllers.
This paper provides an overview of the work so far of the collaborative PhD.

State of the art models of rotor-gas bearings [5, 4] rely on solving the Reynolds equation
to model the pressure distribution of the fluid film. Morosi [4] included the effect of the piezo
actuated valves into the Reynolds equation, and used it to develop a model of a short rigid
rotor-gas bearing actuated by piezo valves based on this modified Reynolds equation (MRE).
This model was used to manually tune the parameters of a decentralised controller. Recent
work in print has however shown that alternative models of the flow in the valves are required
to make the model reflect reality. The MRE requires iteratively solving causing an unknown
analytical relation from input to the valves to displacement of the rotating shaft, which leaves
the model unsuitable for design of model based controllers. This PhD project has therefore
investigated development of such suitable models using system identification, e.g. in [8], which
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Figure 1. The experimental bearing setup. A flexible shaft (a) is supported by both a ball
bearing (d) and the controllable gas bearing (b) with four piezo actuated valves. A disc (c) is
mounted in one end to pre-load the journal and displacement sensors (e) measure the lateral
movement of the disc.

showed that linear models identified from experimental data could describe the gas bearing
behaviour. Models were identified over a range of rotational velocities, where the parameters
were found using Grey-Box system identification. The present contribution makes use of the
same bearing model and extends the results by also modelling the actuator dynamics.

The present contribution provides an overview of the progress in developing models and their
usage for feedback controller design of the rotor-gas bearing from experimental data over the
desired operational range determined by rotational velocity and injection pressure. The paper is
structured as follows: A brief overview of the experimental test rig is given in Sec. 2, followed by
an overview of the current state of the art model and its challenges. Section 4 shows formulation
of the Grey-box model and its parameters are identified from experiments. The identified model
is used in Sec. 5 to design a controller capable of increasing the damping properties of the
rotor-gas bearing and experiments in Sec. 6 verify the capabilities of the designed controller.

2. Experimental Setup of Rotor-Gas Bearing
The experimental setup at hand is shown in Fig. 1: a turbine driven flexible shaft (a) is supported
by both a ball bearing (d) and the controllable gas bearing (b), in which pressurised air is injected
through four piezo actuated valves numbered as shown. The manometric injection pressure PI of
the pressurised air is measured by a mechanical gauge before splitting up to the four actuators.
The absolute pressure in the valves Pabs is assumed to be the sum of the measured pressure PI

and the atmospheric pressure Patm. A disc (c) is mounted in one end to pre-load the journal.
The horizontal and vertical shaft deflections (ex, ey) are measured at the disc location using
eddy current sensors (e) in the coordinate frame specified in the figure. The angular position
of the shaft φ is measured by an optical encoder. The pressurised air generates a thin layer
of fluid film in the 25µm thin gap between the shaft and the bearing housing. For a range of
conditions, the fluid film generates restoring forces and thereby keeps the shaft levitating in a
stable equilibrium. A more thorough description of the setup is available in [6].

The piezo-electric valves are subject to hysteresis and creep effect [1]. To counteract



the hysteresis, decentralised PD-controllers are deployed, effectively reducing the position
uncertainty by counteracting the hysteresis. The controlled valves are commanded reference
positions rp,i ∈ [0; 10]V , and the corresponding valve positions yp,i ∈ [0; 10]V are measured
ranging from open valve (0V ) to closed valve (10V ). The valves are controlled pairwise
as if there was just a single horizontal and a vertical valve commanded position reference
r(t) , [rx(t), ry(t)]T, which is mapped as a reference to the individual valves according to the
law from r(t) → rp(t), similarly the lumped valve position vector u(t) is defined as a function
of the individual valve positions:

rp(rx(t), ry(t)) =


rp,1(t)
rp,2(t)
rp,3(t)
rp,4(t)

 =


r0 + ry(t)
r0 + rx(t)
r0 − ry(t)
r0 − rx(t)

 , u(t) ,

[
ux(t)
uy(t)

]
=

[
yp,2(t)− yp,4(t)
yp,1(t)− yp,3(t)

]
(1)

This makes the valves cooperate and reduces the system from an over-actuated to a fully
actuated. In addition the constant offset r0 = 5V ensures the largest dynamical range.

3. Rotor-gas Bearing Modelling Using Finite Element Models and the Modified
Reynolds Equation
Current state of the art models of the rotor-gas bearing [5, 4] consist of two sub-models: A
Finite Element model of the flexible shaft and a model of the thin layer of fluid film. This
section provides an overview of these two models and their challenges.

3.1. The Modified Reynolds Equation
The Modified Reynolds equation [4] is used for modelling the behaviour of the thin layer of fluid
film in the rotor-gas bearing. By a set of assumptions, a partial differential equation can be
made, modelling the pressure p as a function of the fluid film thickness h, which varies along
with the shaft position in the bearing and time t can then be set up:

∂
∂y

(
ph3 ∂p

∂y

)
+ ∂

∂z

(
ph3 ∂p

∂z

)
= 6µU

∂(ph)

∂y
+ 12µ

∂(ph)

∂t
+ 12pVI (2)

where the fluid film coordinate frame (x, y, z) chosen is: x the radial coordinate directed towards
the centre of the shaft, y the circumferential coordinate and z being the axial coordinate. µ is
the viscosity of the gas, U is the linear velocity of the rotating shaft at the bearing housing, VI
is the velocity profile of the injected gas assumed to be parabola shaped with a linear pressure
drop along the length of the valves; Work in print however shows this does not model the flow
well. The flow is assumed laminar, which is reasonable given the small thickness of the fluid film.
The MRE has no known analytical solution, but discretisation in a fine grid allows an iterative
solution to be found from a good initial solution guess. This provides the pressure profile, which
upon integration provides the horizontal and vertical forces from the fluid film acting on the
flexible shaft Fbe = [FX,be, FY,be]

T.

3.2. Finite Element Modelling of Flexible Shaft
The flexible shaft can then be modelled using a finite element (FE) method, where the shaft
is divided into ne sections, which can bend and rotate relative to each other around the
nn = ne + 1 nodes connecting the sections giving four degrees of freedom (DOFs) per node.
Given the geometry of the shaft and its material properties, the stiffness of each section can be
approximated, the mass of each section can be calculated and the forces from each section acting
on the other sections can then be expressed as a nn · 4 coupled differential equations with the
linear and angular displacements from a horizontal and a vertical axis qF = [q1, q2, . . . , q4nn ]T



with corresponding time derivatives q̇F . The model is formulated using the mass matrix MF ,
the stiffness matrix KF , the gyroscopic matrix GF and the damping matrix DF :

MF q̈F (t) + (DF − ΩGF )q̇F (t) +KF qF (t) = fF (t), qF = [q1, q2, . . . , q4nn ]T (3)

where in the above fF (t) is the external forces acting on each node of the FE model from the
fluid film, external disturbances etc.. Using the linearised stiffness and damping forces from the
MRE bearing model, the FE model predicts the eigenfrequencies within ±5% in the stationary
case over a wide range of injection pressures and rotational velocities.
The requirement of this iteratively solved pressure profile for every configuration however leaves
the model unable to describe the relation from actuator input voltage to shaft displacement
on a form suitable for controller design. The time dependent MRE still remains to be coupled
to the FE shaft model and validated experimentally, before the relation from input voltage to
shaft displacement can be approximated and put on an analytical form. This shows the need for
alternative approaches to develop models for feedback controller design, which do not depend
on the solution of the MRE.

4. A System Identification Approach - Data Driven Modelling
The modelling of rotor gas bearings still represents an open challenge. This section shows
a heuristics based model approach, where basic knowledge from rotor-dynamics provides the
basis for formulation of a model. The model parameters are then identified from experimental
data, where the piezo-valves perturb the rotor-gas bearing. The method allows development of
accurate models able to describe the rotor-gas bearing dynamics.

The measurement of the valve positions allows dividing the modelling in two: an actuator sub-
model to model the valve dynamics from commanded valve reference position to valve position,
and a bearing sub-model to model the relation from valve position to shaft deflection. The
parameters of the identified models allow formulation of a global model.

4.1. Grey-Box Model of Gas Bearing
In a rotational range around the first two eigenfrequencies, the rotor gas bearing system
consisting of the flexible shaft and the gas-bearing can be modelled as a 2 DOF coupled mass-
spring damper system. Let p = [ex, ey]T be the position vector consisting of horizontal and

vertical shaft displacements, and denote time derivatives d
dt(·) = ˙(·). The model then reads

Mp̈(t) + (D − ΩG)ṗ(t) +K p(t) = Bpu(t), p = [ex, ey]T, (4)

in which Ω is the rotation speed, M is the diagonal mass matrix, D is the damping matrix,
G is the antisymmetric gyroscopic matrix, and K is the stiffness matrix, all with dimension
2 × 2. The right hand side should include external forces f(t) acting on the rotor-gas bearing,
which include: forces from mass unbalance, forces from the piezo valves and forces from external
impacts. Section 4.4 shows how the mass unbalance response is filtered out. In [8] it was shown
reasonable to assume the actuator force proportional to the valve position with gain Bp, of
dimension 2 × 2 and the model therefore reduces to Eq. 4. The model is reformulated to state
space form to ease the Grey-Box modelling. A suitable choice of states is the deflection and
velocity of the shaft x , [ex, ey, ėx, ėy]T. The measurement noise and errors from simplified
model are modelled as additive noise d(t) entering both output and states with a disturbance
input gain Bd and the chosen state space formulation of Eq. (4) then reads:

ẋ(t) = Ax(t) + Bu(t) + Bdd(t), x(0) = x0

p(t) = Cx(t) + d(t)
(5)



where the system-, input gain-, and output matrix are

A =

[
0 I
−K −D

]
, B =

[
0
B

]
, Bd =

[
0
Bd

]
, C =

[
I 0

]
, (6)

where D ,M−1(D−ΩG) , K ,M−1K, and B ,M−1Bp are the matrices to be identified along
with disturbance gain Bd, and initial value x0, each with four parameters giving 20 unknowns in
total. The parameters of (6) are identified by recasting the problem to a model parametrized in

θ̂b , {D̂, K̂, B̂, x̂0, B̂d} as Mb(θ)b. Each matrix D̂, K̂, B̂, B̂d has four elements denoted by small
letters and subscripts xx, xy, yx, yy. The model then reads

Mb(θb) :

{
ẋ(t) = A(θb)x(t) + B(θb)u(t) + Bd(θb)d(t), x(0) = x0(θb)

p(t) = Cx(t) + d(t)
(7)

4.2. Grey-Box Model of Lumped Actuators
This section formulates a similar model of the lumped PD-controlled piezo valves. The closed
loop horizontal and vertical lumped valve can each be modelled as a second order low-pass filter.
The valve dynamics can be seen as transfer functions with two poles p1,j , and p2,j , where j refers
to the horizontal valve x or vertical valve y and gain κa,j . Considering only the commanded
reference position as input, the dynamics then read:[

ux(s)
uy(s)

]
=

[
Ha,x(s) 0

0 Ha,y(s)

] [
rx(s)
ry(s)

]
, Ha,j(s) =

κa,j(
1

p1,j
s+ 1

)(
1

p2,j
s+ 1

) (8)

in which Ha,j(s) is the second order filter of the specified form. The model can
be formulated in the same structure as Eq. 7, exploiting that cross coupling terms
kxy, kyx, dyx, dxy, byx, bxy, bp,yx, bp,xy are zero. Reformulating this to a Grey-box model and
estimating the initial valve states xa and a similar disturbance gain da, the model then reads

Ma(θa) :

{
ẋa(t) = A(θa)xa(t) + B(θa)r(t) + Bd,a(θa)da(t), xa(0) = xa0(θa)

u(t) = Caxa(t) + da(t)
(9)

Estimating the gains, poles, initial state and disturbance gain, the actuator model thus only
has 12 parameters being:

θa , [ka,xx, ka,yy, ba,xx, ba,yy, da,xx, da,yy︸ ︷︷ ︸
valve coefficients

, bda,xx, bda,yy︸ ︷︷ ︸
disturbance gains

, xa1,x0, xa2,x0, xa3,x0, xa4,x0︸ ︷︷ ︸
initial state

]T,
(10)

and a similar actuator model Ma(θa) has been formulated.

4.3. Description of Experiments
The model should represent the rotor-gas bearing over the range of operational conditions, which
are defined by two main characteristics: rotational speed Ω and injection pressure PI , which can
vary within Ω ∈ [0; 6]krpm and PI ∈ [3; 7]bar respectively. This identification over the whole
operational range will be available in [7], where the coefficients are estimated from data sets
collected from a grid of injection pressures and rotational velocities representing the range of
interest. Here a selected example is chosen Ω̄ = 0rpm and P̄I = 4.0bar. During data collection
all variables were sampled at fs=5kHz. A pseudo random binary sequence commanded as
reference for the lumped valves r(t) ensured excitation of the system and hence identifiability
of the parameters. The input stepped from −1 to 1 at random sampling instants. The lumped
valve references r(t) and measured lumped valve positions u(t) were logged as input and output
for the actuator sub-model and the lumped valve positions u(t) and the shaft displacement p(t)
as input and outputs for the bearing model.
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Figure 2. Example of an identification of data set collected at PI = 4bar,Ω = 0rpm. The valve
positions [ux, uy] exciting the bearing shown in c) excite the bearing dynamics causing deflection
of the shaft. a) and b) show this measured deflection pmeas = [ex, ey] and the predicted using
the identified model pid = [êx, êy] subject to valve excitation. d) shows the residual between
identified and measured response ε = pmeas − pid. Subplots e, f, g and h show corresponding
time zooms.

4.4. Prefiltering
Before identification, the data sets are prefiltered using a run-out filter Fr, which filters out the
response from surface unsmoothness and mass unbalance response. This is calculated from a
data set collected at each operational condition, where the shaft is not excited, which allows
generation of the response as function of encoder angle Fr(φ). The offset of both inputs and
outputs estimated as mean of the first 2000 samples are subtracted from the data sets. A median
filter of size 3 is used to smooth out noise from the shaft position measurements.

4.5. Identification
The parameters of both the actuator sub-model and the bearing sub-model are identified using
the prediction error method [2], and initial guesses of the parameters are obtained from previous
identified models. The model update iterations were stopped when the relative improvement
norm was less than 10−4 indicating convergence.

Both the actuator model Ma and the bearing model Mb are then identified from the respective



data sets. The actuator sub-models are found to be fairly constant over the investigated range of
interest, and a nominal actuator model Gact is chosen. The bearing model parameters however
vary with both injection pressure and rotational velocity as expected from [3]. The model
residuals are expected to be white noise, which is not the case as shown in Fig. 2 (d) and (h).
The norm of the residual however is small indicating low importance of the residual dynamics.

Cascading of the bearing model and the actuator model provides the total rotor-gas bearing
model: Gp(s) = Gbear(s)Gact(s).

5. H∞ Control
A suitable control strategy such as the mixed sensitivity-approach can improve the poor damping
characteristics of the rotor-gas bearing. The identified model is used for design of such a
controller.

The H∞ controller K∞(s) has been designed using the stacked requirements ||N ||∞ =
maxω σ̄(N(jω)) < 1;, where N = [WpS,WuK∞S]T. The controller is designed for a model
identified at PI = 7bar,Ω = 4000rpm. The chosen weights Wp and Wu shown in Fig. 3 ensure
an increase in damping without counteracting low frequency disturbances such as changes in
equilibrium position due to changing operational condition. The controller obtained using the
specified weights is reduced from 24 states to a fourth order controller K∞(s) using Gramian-
based input/output balancing. The reduction factor in sensitivity towards disturbances is
determined from the output sensitivity calculated as:

So(s) , (I2 +Gp(s)K∞(s))−1 (11)

The reassembled bearing model [7] is used to assess performance of the controller over the range
of operation. This model is developed from identified models from data collected over a range
of injection pressures (PI ∈ [3; 7]bar) and rotational speeds (Ω ∈ [0; 6]krpm) and describes the
rotor-gas bearing behaviour over the wide range of operational conditions. Figure 4 shows the
output sensitivity of the closed loop system for different randomly chosen operational points
models within the operational range. The sensitivity is reduced in the desired frequency range
from [70 : 190]Hz by a factor three to nine, though at the cost of an increased sensitivity of
a factor 1.2 at low frequencies, and a peak sensitivity around 280Hz of a factor 1.8, which is
affordable.
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Discretisation of the controller to K∞(z) using a Tustin-approximation allows implementation
on the rotor-gas bearing test-rig, and the frequency response in Fig. 5 shows the desirable
capabilities of the controller: at low frequencies and DC the controller is not active, only in an
interval around the critical frequencies is the controller active.

6. Experimental Results
The controller is implemented on the rotor-gas bearing system, and impacts are applied to
the rotor-gas bearing both with the controller on and off. Figure 6 shows a horizontal impact
response at P̄I = 4bar, Ω̄ = 0rpm: using the robust controller, the horizontal damping is
found increased from 0.0567 to 0.173 - a factor three. A vertical impact in Fig. 7 shows similar
increase in damping. Horizontal and vertical impacts at higher pressure P̄I = 7bar show a
damping increase by a factor six from 0.0282 to 0.1668, which is within the expected range of
damping increase predicted by the sensitivity function. Equivalent results can be obtained for
non zero rotational velocities.
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Figure 6. Horizontal impact response without and with the designed controller atP̄I = 4bar,
Ω̄ = 0rpm. Impact occurs close to time t = 0.01s. a and c show measured deflections, b and d
show commanded valve positions and e shows the measured impact force.

7. Conclusion
Two Grey-box models were developed modelling the actuators and bearing dynamics for a
rotor-gas bearing, and successfully used to identify model parameters describing the relation
from commanded to measured valve position, and from valve position to shaft displacement of
the rotor-gas bearing. A mixed sensitivity controller was designed to stabilise the rotor-gas, and
its increase in damping was validated experimentally for chosen conditions.
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