

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Dec 20, 2017

MPI Debugging with Handle Introspection

Brock-Nannestad, Laust; DelSignore, John; Squyres, Jeffrey M.; Karlsson, Sven ; Mohror, Kathryn

Publication date:
2014

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Brock-Nannestad, L., DelSignore, J., Squyres, J. M., Karlsson, S., & Mohror, K. (2014). MPI Debugging with
Handle Introspection. Paper presented at Workshop on Exascale MPI (ExaMPI 2014), New Orleans, United
States.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Online Research Database In Technology

https://core.ac.uk/display/43247826?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://orbit.dtu.dk/en/publications/mpi-debugging-with-handle-introspection(e8e05593-529c-4d59-b114-1bcb532480bd).html

MPI Debugging with Handle Introspection
Laust Brock-Nannestad∗, John DelSignore†, Jeffrey M. Squyres‡, Sven Karlsson∗, Kathryn Mohror§

∗Technical University of Denmark
Email: {laub|svea}@dtu.dk
†Rogue Wave Software, Inc.

Email: John.DelSignore@roguewave.com
‡Cisco Systems, Inc.

Email: jsquyres@cisco.com
§Lawrence Livermore National Laboratory

Email: kathryn@llnl.gov

Abstract—The Message Passing Interface, MPI, is the standard
programming model for high performance computing clusters.
However, debugging applications on large scale clusters is diffi-
cult. The widely used Message Queue Dumping interface enables
inspection of message queue state but there is no general
interface for extracting information from MPI objects such as
communicators. A developer can debug the MPI library as if it
was part of the application, but this exposes an unneeded level
of detail.

The Tools Working Group in the MPI Forum has proposed a
specification for MPI Handle Introspection. It defines a standard
interface that lets debuggers extract information from MPI
objects. Extracted information is then presented to the developer,
in a human readable format. The interface is designed to be
independent of MPI implementations and debuggers.

In this paper, we describe our support for introspection in the
TotalView debugger and test it against a reference introspection
implementation in Open MPI. We also describe how the debugger
interfaces with the MPI implementation.

I. INTRODUCTION

Typically, developers possess the domain knowledge re-
quired to understand applications – from the control flow
to the data structures employed. This knowledge is essential
when debugging software errors, as it allows developers to
understand the data presented by the debugger. Using MPI
adds a layer of state that is not accessible through a conven-
tional debugger: Part of the application’s state will be stored
within the MPI implementation, and in data structures specific
to the implementation. This MPI state can be extracted by
debugging the MPI library, but this is beyond the scope of
many application developers.

In general, developers are not interested in internal MPI
implementation details. Instead, they are interested in the MPI
API-level state. This is the state of the application at the level
of the MPI primitives being used. The task of debugging
is simplified, if this abstract MPI state can be presented to
the developer. MPI handle introspection aims to present MPI
object data in an implementation-agnostic way and thereby
simplify the debugging process.

Using the proposal from the Tools Working Group [1], we
add introspection support to a development version of the
TotalView debugger [2]. The necessary modifications to the
MPI library, we implement in Open MPI [3]. We use our

implementation to inspect MPI communicator state through
TotalView and describe our challenges and experiences.

The rest of this paper is organized as follows: Section
II discusses the issues developing a standardized interface
between debuggers and MPI libraries. Section III gives an
evaluation of the implementation in TotalView and Open MPI.
Finally, section IV concludes.

II. THE INTROSPECTION INTERFACE

Fig. 1. The overall concept. The arrows indicate interactions between the
different components. The debugger uses the MPI introspection library to
decode information from the application. To do this, the introspection library
uses the debugger to read raw data from the application. Note: Only one MPI
process is shown.

Extending the capabilities of debuggers with plug-ins or
helper libraries has already proven to be a reliable solution:
The technique has been used for message queue dumping
in MPI for 15 years [4]. Subsequently, a similar approach
has been seen within OpenMP debugging [5], where such
an interface is now being proposed for inclusion into the
standard [6].

A. Responsibility of the Debugger
The purpose of a debugger is to allow safe inspection

and manipulation of the application being debugged. Ideally,

the debugger provides mappings between raw memory and
symbols, or data structures, in the source code.

Support for introspection requires minimal changes to the
debugger. It must allow debugging of the application through
a helper library. TotalView already supports dynamic libraries,
as these are used by the previously mentioned OpenMP and
MPI debugging facilities. An overall architecture diagram can
be seen in figure 1: The debugger and the introspection library
execute as a single process, while the MPI application uses the
MPI runtime normally. The debugger and the introspection
library call each other to request information, while only the
debugger inspects the application.

B. Responsibility of the introspection library

Introspection support is implemented by the MPI vendor
as a dynamic library. The library provides a set of functions
for querying and decoding MPI information in MPI handles.
These functions are called by the debugger. The proposed
specification currently defines query functions for communi-
cators, error handlers, request and status objects.

Figure 2 presents a sequence diagram for loading the
dynamic library and setting up the callback functions, that
the debugger passes on to the library for later use. Initially,
the debugger detects that it is debugging an MPI program
by the existence of a specific symbol in the target process.
This symbol points to a list of locations for the dynamic
library. Once the library is located, the debugger loads it.
If successful, initialization begins. During initialization, the
debugger performs basic sanity checking by ensuring that all
the symbols defined by the interface can be resolved in the
library. It reports an error if this is not the case.

After initial sanity checking, the debugger calls
mpidbg_init_once to perform initialization and to
pass on a set of callback functions. The library is running in
the address space of the debugger and depends on callback
functions in the debugger for resource management, I/O, and
most importantly, access to the target process.

All accesses to the target process are performed by the
debugger. This ensures that reads from invalid addresses are
gracefully handled. Invalid reads are likely to occur if the
library is passed an invalid MPI handle, due to a fault in
the program being debugged. Additionally, this transparently
allows debugging of live and dead processes, e.g. through core
files.

C. Performing queries

Figure 3 shows the debugger querying a communicator
handle. To begin with, the debugger obtains the address
of the MPI_Comm handle in the target address space. It
then calls mpidbg_comm_query() to set up the query.
If the introspection library recognizes the address as a valid
communicator handle, it fetches any relevant information –
through the debugger – from the target process. The debugger
is responsible for reading from the target process on behalf of
the library. Once the library has fetched the required data, it
returns an mpidbg_comm_handle_t. This handle is used

Initialization
complete.
Queries can now
be performed

DLL initialized
and callbacks
are available
from this point

Function callData read

 Loading and setup of the dynamic library

Per image

Per process

Fig. 2. Sequence diagram of TotalView loading the introspection dynamic
library and the initial setup.

by the debugger for additional queries. In the case presented in
figure 3, it calls mpidbg_query_basic(), returning basic
information on the communicator such as rank, name, and
type.

The two step approach lets the introspection library
prefetch data regarding the communicator during
mpidbg_comm_query() and cache it. It is also a
way of allowing the debugger to inspect old state: the
debugger can keep the handle, and perform new queries on
it, even after the application has been resumed.

III. IMPLEMENTATION AND EXPERIENCES

As of today, our implementation is integrated into a develop-
ment version of TotalView and exposed through its command
line interface. The corresponding MPI introspection library,
has been added to Open MPI. TotalView interacts with this
library.

Further implementation is an on going effort in both To-
talView and Open MPI. We can successfully extract infor-
mation from MPI_Comm handles and present it to the user.
The project has also revealed the difficulty of implementing
an interface, for which there is no reference implementation
or existing test suite. The library is implemented “blind”
by one developer. Another developer extends TotalView to
support the library. While this makes different interpretations
of the specification very clear, it is also time consuming. MPI
vendors will need to ensure that they keep their introspection
libraries up to date if their MPI implementations change.

Figure 4 shows a debugging session. It starts by loading
the debug library and then performing two queries. The first

Debugger uses this
handle for further
queries on this
communicator.

Introspection library
allocates work memory
using callbacks in
debugger.

Function callData read or event

 Interaction between Debugger, Introspection library, and Application Process

Repeated for all relevant information about communicator Foo in Process Bar

Fig. 3. Sequence diagram for querying a communicator.

1 d1.<> . mpidbg
Loaded MPI s u p p o r t l i b r a r y / g / g90 / l a u s t b n / l o c a l / l i b /

3 openmpi / l i b o m p i d b g m p i h a n d l e s . so :
Open MPI h a n d l e i n t e r p r e t a t i o n s u p p o r t f o r p a r a l l e l

5 d e b u g g e r s compi l ed on Sep 5 2014

7 F i n i s h e d l o a d i n g MPI i n t r o s p e c t i o n s u p p o r t .

9 d1.<> d f o c u s p2
p2.<

11 p2.<> . mpidbgdump
Name Handle

13 MPI COMM WORLD 0 x6028a0
MPI COMM SELF 0 x2aaaab01aa00

15 MPI COMM PARENT 0 x2aaaab01a9e0
MPI COMM NULL 0 x2aaaab01a3e0

17

p2.<> . mpidbgquery b a s i c 0 x6028a0
19 Query ing communica tor 0 x6028a0 i n p r o c e s s 0 x4878780

Communicator : MPI COMM WORLD
21 Rank : 0

S i z e : 4
23 Flag Value

MPIDBG COMM INFO PREDEFINED True
25 MPIDBG COMM INFO CARTESIAN F a l s e

MPIDBG COMM INFO GRAPH F a l s e
27 MPIDBG COMM INFO TOPO REORDERED F a l s e

MPIDBG COMM INFO INTERCOMM F a l s e
29 { . . . }

Query was s u c c e s s f u l

Fig. 4. A TotalView command line debugging session. The implementation is
work in progress and can currently fetch and decode MPI_Comm information.

query shows Open MPI’s mapping of internal communicators.
The second query provides basic information on the built-in
MPI_COMM_WORLD communicator.

IV. CONCLUSIONS AND FUTURE WORK

We have successfully implemented the proposed Handle
Introspection specification in TotalView and Open MPI.

The benefit for MPI developers is clear. Introspection
enables high level debugging of MPI applications, without
deep knowledge of the MPI library implementation. For MPI
implementation vendors, it decouples the internals from the de-
bugging, and even allows flexible debugging of closed source
MPI implementations. Further work will include integration
into the graphical interface of TotalView and support for
additional MPI handle types.

ACKNOWLEDGMENTS

This work (LLNL-CONF-660001) was performed under
the auspices of the U.S. Department of Energy by Lawrence
Livermore National Laboratory under Contract DE-AC52-
07NA27344, and co-funded by the Artemis PaPP Project nr.
295440 and COPCAMS project nr. 332913.

REFERENCES

[1] “MPI Forum Tools Working Group,” https://svn.mpi-forum.org/trac/
mpi-forum-web/wiki/MPI3Tools, October 2014.

[2] Rogue Wave Software. Inc., “TotalView Graphical Debugger,” 2014, http:
//www.roguewave.com/products/totalview.aspx, October 2014.

[3] R. L. Graham, T. S. Woodall, and J. M. Squyres, “Open MPI: A
Flexible High Performance MPI,” in Parallel Processing and Applied
Mathematics. Springer, 2006, pp. 228–239.

[4] J. Cownie and W. Gropp, “A Standard Interface for Debugger Access
to Message Queue Information in MPI,” in Recent Advances in Parallel
Virtual Machine and Message Passing Interface. Springer, 1999, pp.
51–58.

[5] J. Cownie, J. DelSignore Jr, B. R. de Supinski, and K. Warren, “DMPL: an
OpenMP DLL Debugging Interface,” in OpenMP Shared Memory Parallel
Programming. Springer, 2003, pp. 137–146.

[6] A. Eichenberger, J. Mellor-Crummey, M. Schulz, N. Copty, J. DelSignore,
R. Dietrich, X. Liu, E. Loh, and D. Lorenz, “OMPT and OMPD: OpenMP
Tools Application Programming Interfaces for Performance Analysis and
Debugging,” Tech. Rep., 2013.

