

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Dec 20, 2017

Exposing MPI Objects for Debugging

Brock-Nannestad, Laust; DelSignore, John; Squyres, Jeffrey M.; Karlsson, Sven ; Mohror, Kathryn

Publication date:
2014

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Brock-Nannestad, L., DelSignore, J., Squyres, J. M., Karlsson, S., & Mohror, K. (2014). Exposing MPI Objects
for Debugging. Abstract from International Conference for High Performance Computing, Networking, Storage
and Analysis, SC14, New Orleans, United States.

http://orbit.dtu.dk/en/publications/exposing-mpi-objects-for-debugging(8d38c986-74c1-41f1-93ee-228f278ad4bd).html

Exposing MPI Objects for Debugging
Laust Brock-Nannestad∗, John DelSignore†, Jeffrey M. Squyres‡, Sven Karlsson∗, Kathryn Mohror§

∗Technical University of Denmark
Email: {laub|svea}@dtu.dk
†Rogue Wave Software, Inc.

Email: John.DelSignore@roguewave.com
‡Cisco Systems, Inc.

Email: jsquyres@cisco.com
§Lawrence Livermore National Laboratory

Email: kathryn@llnl.gov

Abstract—Developers rely on debuggers to inspect application
state. In applications that use MPI, the Message Passing In-
terface, the MPI runtime contains an important part of this
state. The MPI Tools Working Group has proposed an interface
for MPI Handle Introspection. It allows debuggers and MPI
implementations to cooperate in extracting information from
MPI objects. Information that can then be presented to the
developer. MPI Handle Introspection provides a more general
interface than previous work, such as Message Queue Dumping.

We add support for introspection to the TotalView debugger
and a development version of Open MPI. We explain the inter-
actions between the debugger and MPI library and demonstrate
how MPI Handle Introspection raises the abstraction level to
simplify debugging of MPI related programming errors.

I. INTRODUCTION

Developers rely on debuggers to determine if their applica-
tions are behaving correctly. The debugger provides the link
between the original source code and the executing code. A
runtime such as MPI adds a new layer of information that
is not inspectable by the developer, but still of interest in
debugging. A developer cannot easily inspect the state of the
MPI runtime with a conventional debugger.

Developers with access to an MPI implementation’s source
code can debug the runtime in a traditional fashion: by
stepping through the code. This is time consuming and be-
yond of the scope of many developers. It also requires an
understanding of the data structures used by a given MPI
implementation.

In most cases developers have no interest in this level of
detail. Instead, they want the MPI API-level state. This is the
state of the application at the level of the MPI specification,
and not the implementation. Debugging is simplified when
this abstract MPI state is presented to the developer. With
MPI handle introspection MPI object data is presented in
an implementation agnostic way, simplifying the debugging
process.

Using the proposal from the MPI Tools Working Group [1],
we successfully add support for introspection to a development
version of the TotalView debugger and to Open MPI. We
implement both the debugger and MPI sides of the interface.

The rest of this abstract and our poster describes the
interface and the benefits of simplified MPI debugging. We

also show queries on MPI objects performed through our
implementation.

II. DEBUGGER SUPPORT FOR INTROSPECTION

Fig. 1. Interactions between the debugger, MPI library, and application

The introspection interface builds on top of the well-
established Message Queue Dumping, or MQD interface [2],
which has been widely supported by MPI implementations for
over a decade. The MQD interface was designed to simplify
the problem of many different MPI implementations interfac-
ing with many different debuggers. It provides a standardized
low level interface between the two.

The interface is based on callback functions provided by
the MPI implementation and the debugger: It defines a set
of functions, that the debugger must provide, to allow ac-
cess to the application being debugged. In turn, the MPI
implementation provides callbacks which allow the debugger
to perform queries on MPI objects and data types. The
MPI implementation is responsible for parsing its own data
structures, hence it performs introspection.

The overall design is outlined in figure 1. The figure shows
a simple use case where a debugger is querying the state of
an MPI communicator. The execution flow passes back and
forth between the debugger and the introspection library, as
indicated on the figure:

1) The debugger queries a communicator, providing a han-
dle (an address) identifying the communicator.

2) In order to provide this information, the library requests
raw data from inside the application process. This will
be the underlying data structure for the communicator
and anything else that is required.

3) The debugger extracts the raw data from the process and
returns it to the library.

4) The library parses the data and returns communicator
information in a standardized format.

5) The debugger presents the information to the developer.

III. BENEFITS OF INTROSPECTION

With introspection, the developer can achieve a deeper
understanding of the application’s MPI behavior without re-
sorting to debugging of the MPI implementation itself. A
couple of use cases are:

• The ability to link processes to ranks in different com-
municators helps the developer decide where to focus
debugging efforts.

• Knowing the size and location of send and receive buffers
can simplify debugging of memory problems such as
buffer overruns.

From the perspective of the debugger vendor, a standardized
interface simplifies support for many different MPI imple-
mentations and a richer experience for the user. For the MPI
vendor, it can expose the MPI state without providing source
code to the MPI library.

IV. INTEGRATION INTO TOTALVIEW

Our implementation is integrated into a development version
of TotalView. TotalView interacts with a reference implemen-
tation of the introspection library that we implemented as
part of Open MPI. A screen shot showing initial setup and
loading can be found in figure 2. The aim is to support
TotalView’s graphical user interface, but currently support is
integrated into the command line debugger. A transcript of a
debugging session can be seen in figure 3. With the aid of the
introspection library, information such as rank, name, type,
local, and remote processes can be presented to the developer.

V. CONCLUSIONS AND FUTURE WORK

We present examples where exposing the internal state of
MPI objects is useful for debugging and we successfully
implement the interface for MPI Handle Introspection. Our
implementation allows the TotalView debugger to extract
information concerning MPI communicators from applications
that use Open MPI. This is more efficient than extracting the
same information manually. Our implementation is integrated
into TotalView’s command line environment, but the aim is to
fully integrate it into the graphical user interface. This remains
as future work.

ACKNOWLEDGMENT

The authors would like to thank Adam Moody at Lawrence
Livermore National Laboratory for useful insights on MPI
debugging. This work (LLNL-POST-658417) was performed
under the auspices of the U.S. Department of Energy by

Fig. 2. Loading the introspection library into TotalView and requesting
information on a communicator.

Debugger uses this
handle for further
queries on this
communicator.

Introspection library
allocates work memory
using callbacks in
debugger.

Function callData read or event

 Interaction between Debugger, Introspection library, and Application Process

Repeated for all relevant information about communicator Foo in Process Bar

Fig. 3. Sequence diagram for querying a communicator.

1 d1.<> . mpidbg
Loaded MPI s u p p o r t l i b r a r y / g / g90 / l a u s t b n / l o c a l / l i b /

3 openmpi / l i b o m p i d b g m p i h a n d l e s . so :
Open MPI h a n d l e i n t e r p r e t a t i o n s u p p o r t f o r p a r a l l e l

5 d e b u g g e r s compi l ed on Sep 5 2014

7 F i n i s h e d l o a d i n g MPI i n t r o s p e c t i o n s u p p o r t .

9 d1.<> d f o c u s p2
p2.<

11 p2.<> . mpidbgdump
Name Handle

13 MPI COMM WORLD 0 x6028a0
MPI COMM SELF 0 x2aaaab01aa00

15 MPI COMM PARENT 0 x2aaaab01a9e0
MPI COMM NULL 0 x2aaaab01a3e0

17

p2.<> . mpidbgquery b a s i c 0 x6028a0
19 Query ing communica tor 0 x6028a0 i n p r o c e s s 0 x4878780

Communicator : MPI COMM WORLD
21 Rank : 0

S i z e : 4
23 F l ag Value

MPIDBG COMM INFO PREDEFINED True
25 MPIDBG COMM INFO CARTESIAN F a l s e

MPIDBG COMM INFO GRAPH F a l s e
27 MPIDBG COMM INFO TOPO REORDERED F a l s e

MPIDBG COMM INFO INTERCOMM F a l s e
29 { . . . }

Query was s u c c e s s f u l

Fig. 4. A TotalView command line debugging session. The implementation is
work in progress and can currently fetch and decode MPI_Comm information.

Figure 4 shows a debugging session. It starts by loading
the debug library and then performs two queries. The first
query shows Open MPI’s mapping of internal communicators.
The second query provides basic information on the built-in
MPI_COMM_WORLD communicator.

IV. CONCLUSIONS AND FUTURE WORK

We have successfully implemented the proposed Handle
Introspection interface in TotalView and Open MPI.

The benefit for MPI developers is clear. Introspection
enables high level debugging of MPI applications without
deep knowledge of the MPI library implementation. For MPI
implementation vendors, it decouples the internals from the
debugging and even allows flexible debugging of closed source
MPI implementations. Further work will include integration
into the graphical interface of TotalView and support for
additional MPI handle types.

ACKNOWLEDGMENTS

This work (LLNL-CONF-660001) was performed under
the auspices of the U.S. Department of Energy by Lawrence
Livermore National Laboratory under Contract DE-AC52-
07NA27344.

REFERENCES

[1] “MPI Forum Tools Working Group,” https://svn.mpi-forum.org/trac/mpi-
forum-web/wiki/MPI3Tools, September 2014.

Fig. 3. Transcript of a debug seesion with queries on an MPI Communicator.

Lawrence Livermore National Laboratory under Contract DE-
AC52-07NA27344, and co-funded by the European Artemis
PaPP Project nr. 295440 and COPCAMS project nr. 332913.

REFERENCES

[1] “MPI Tools Working Group,” https://svn.mpi-forum.org/trac/mpi-forum-
web/wiki/MPI3Tools, October 2014.

[2] J. Cownie and W. Gropp, “A Standard Interface for Debugger Access
to Message Queue Information in MPI,” in Recent Advances in Parallel
Virtual Machine and Message Passing Interface. Springer, 1999, pp.
51–58.

