

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Dec 20, 2017

RTLabOS Feasibility Studies

Heussen, Kai; Thavlov, Anders; Kosek, Anna Magdalena

Publication date:
2014

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Heussen, K., Thavlov, A., & Kosek, A. M. (2014). RTLabOS Feasibility Studies. Technical University of
Denmark, Department of Electrical Engineering.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Online Research Database In Technology

https://core.ac.uk/display/43247775?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://orbit.dtu.dk/en/publications/rtlabos-feasibility-studies(c2929ddc-e501-4b31-9543-df120a289df2).html

RTLabOS D3

Kai Heussen, Anders Thavlov and Anna Magdalena Kosek

November 2014

Report

2014

By Kai Heussen, Anders Thavlov and Anna Magdalena Kosek

Copyright: Reproduction of this publication in whole or in part must include the

customary bibliographic citation, including author attribution, report title,

etc.

Cover illustration: Anna Magdalena Kosek

Published by: Ledelse og Administration, Anker Engelunds Vej 1, Bygning 101 A, 2800

Kgs. Lyngby

Request report from: www.dtu.dk

1.1 Scope and Motivation ... 4

1.2 Overview of executed Feasibility Studies ... 4

1.3 Reporting template ... 5

2.1 Controller Development and Deployment .. 6

2.2 Interface Development for Lab Deployment of Control Software ... 11

2.3 Interfacing Simulators for Control Software Development and Testing .. 16

4 RTLabOS D3

Many of the questions raised and ideas developed in RTLabOS Phase 1 about laboratory work

and lab support software stem from an intuitive desire of simplifying everyday tasks in laboratory

work. Others were blue-sky ideas. With a focus on system testing and anticipation of future

developments some first-hand practice and experience was needed.

Goal of the Feasibility Studies was to generate this experience and record the learnings for

evaluation in RTLabOS context, but also to facilitate future replication of similar experiments.

Whereas ideas for new support software functions were conceived early in the project, many of

the concepts outlined in Deliverable 3 (Use Cases) could only be formulated on the basis of

first-hand experience from Feasibility Studies. Not all feasibility studies were completed and

reached their aims within the project time span, but all generated a learning effect which

elucidated the maturity of the initial ideas and should further help identifying strategic

developments.

The purpose of this report is to provide an overview of the feasibility studies and their results

and learnings, as well as an account of the time structure of each development process.

To create this transparency and overview, the nine individual studies are related to concepts

introduced in the D.2.1 Use cases [1], and clustered into three groups based on commonalities

in the Feasibility Study development process and aims. This clustering should expose the

various development processes and facilitate the identification of development cost drivers,

delays and serve as base cases for identifying bottle-necks and time-saving potentials.

The detailed reports of all feasibility studies are included in the appendix of this document.

In the table below is presented the executed feasibility studies together with their related use

cases, as presented in the deliverable D2.1 [1].

Table 1 Feasibility study overview.

Feasibility Study Cluster Related Use Cases

FS1: BlueFin® in PLDK Lyngby - Controller Development and Deployment

- Interface Development for Lab Deployment

of Control Software

LBP2

FS2: Co-simulation via direct

integration (mosaik, IPSYS,

MasSim)

- Controller Development and Deployment

- Interfacing Simulators for Control Software

Development and Testing

LBP1, SUC1a/b

FS3: Extension of a simulation

tool with an FMI interface

- Interfacing Simulators for Control Software

Development and Testing

LBP1

RTLabOS D3 5

FS4: Deployment of a distributed

MPC controller in SYSLAB

- Controller Development and Deployment LBP9, SUC9

FS5: External controller for grid

topology estimation deployment

in SYSLAB

- Controller Development and Deployment

- Interface Development for Lab Deployment

of Control Software

LBP0, SUC8

FS6: Adding OPC UA interface to

SYSLAB software platform

- Interface Development for Lab Deployment

of Control Software

LPB8, SUC8

FS7: Service-based interface to

SYSLAB components

- Interface Development for Lab Deployment

of Control Software

LBP8, SUC8

FS8: OpenADR support for

SYSLAB

- Interface Development for Lab Deployment

of Control Software

LBP8, SUC8,

FS9: Cross-site data exchange

via public whiteboard server

- Interface Development for Lab Deployment

of Control Software

LBP3, SUC3

After the feasibility studies have been completed, the objectives, process and results have been

reported by the feasibility study leader. A common reporting template was developed which was

structured as follows:

1. Goals

2. Motivation and Challenge

3. Approach

4. Works Steps, including a table with duration of steps (work effort and time duration)

5. Results

6. Lessons learned

The full feasibility study reports are found in the Appendix A.

To facilitate the summarizing, the feasibility studies are grouped by related focus scope, in line

with the related use cases [1]:

1. Controller development and lab deployment

2. Interface development for lab deployment of control software

3. Interfacing between simulators (co-simulation)

In the following, we summarize the feasibility studies with respect to lessons learned and

resulting “estimates” for related work needs.

6 RTLabOS D3

The feasibility studies grouped in this section all went through a sequence of steps associated

with controller development with a goal of eventual lab deployment/demonstration.

Figure 1 Association of Feasibility Studies with controller maturity stages.

As illustrated in Figure 1, the feasibility studies together cover the complete development chain.

However, as each phase in itself is a complete development step, from a given level to passing

a specific stage via a testing environment, so that the individual studies follow a similar pattern

of phases: preparation, development, execution and post-processing.

The following sections summarize the goals, development process and time structure of these

four feasibility studies.

The feasibility study goals are summarized in the table below.

Table 2 Goals of FSs from Controller Development and Deployment group

FS Name Goals

FS1: BlueFin in PLDK Lyngby Demonstrate Spirae BlueFin® control capabilities

 Demonstrate feasibility of system testing in PLDK Lyngby

facilities: combining ICL + EL

 Demonstrate interaction between control software and data-

acquisition through ABB SCADA

 Demonstrate rapid controller (de)deployment at PLDK

FS2: Co-simulation via direct

integration (mosaik, IPSYS,

MasSim)

 design and implement a framework for development of

control software in multi-agent tool Jade (MasSim)

 adapt existing power system simulator (IPSYS) and control

strategy simulator (MasSim)

 run a co-simulation of MasSim and IPSYS with use of mosaic

 compare different co-simulation setups (with MasSim and

Jade-DE) and validate simulation results (against single-

simulator simulation)

FS4: Deployment of a distributed

MPC controller in SYSLAB

 Proof-of-concept of a distributed, MPC-based control

algorithm for limiting the aggregated power flow caused by a

portfolio of DER units in a distribution feeder.

RTLabOS D3 7

 The desired implementation should be deployed in the lab in

a way that allows the independent execution of each part of

the distributed system. In the context of the SYSLAB

laboratory, this means that each distributed entity controls

one DER unit and executes on the SYSLAB node associated

with this unit. In this way, explicit communication between

entities is required.

 Quantitative performance assessment of the implemented

solution, particularly with respect to the scalability of the

solution.

FS5: External controller for grid

topology estimation deployment

in SYSLAB

 Deploy existing control software in the SYSLAB laboratory

 Run an experiment with external software estimating the LV

grid topology in SYSLAB.

It is clear that in FS1 and FS5, the starting point was a working controller that had been

developed and tested in other labs, while in FS2 and FS4 a significant amount of development

would be spent on controller and simulation environments.

The concrete steps from the feasibility studies, are aggregated into four phases:

1. Preparation:

i. gathering information and developing concept of study considering available lab

& software means

ii. Design of interactions, interfaces and integration

iii. Preparation and booking of facilities, licensing, access rights, etc.

iv. scheduling of development milestones

2. Development:

i. Adapting and configuring lab and software components and interfaces

ii. Testing of components

iii. Integration & communication testing

iv. final study/demo/experiment plan; stakeholder coordination

3. Execution of study/test/demonstration in lab or software,

i. Single or multiple experiment runs (incl. logging)

ii. Data-collection (for later processing & reporting)

4. Post-processing & interpretation of study results:

i. Data gathering and processing

ii. Evaluation of data (e.g. for analysis or validation)

iii. Reporting, incl. preparation of scientific papers

The time-ordering of the developments was partly changed, as preparation and development

steps have been interleaved due to other interdependencies or parallel work. The objective here

is to account for the types of tasks associated with the different ‘production level’ stages

illustrated in Figure 1. Since most of the studies were executed in separate locations, the

distinction between on-site, i.e. inside the lab domain, and off-site, i.e. within the lab domain, is

made in the table.

8 RTLabOS D3

Table 3 Summary of steps from FSs from Controller Development and Deployment group

FS1: BlueFin® at

PowerLabDK

FS2: Co-Simulation via

direct with Mosaik

FS4: Distributed

Controller

FS5: External

Controller

Preparation

Off-site:
Plan lab IT configuration;
select lab assets for
coordinated control; plan lab
power network (Labcells)
configuration; plan for
acquisition of real-time data
for control; select control
functionality to demonstrate;
load control software onto
local control PC

On-site:
Obtain lab permissions for
individual assets as well as
system setup; enable remote
access to lab IT; Investigate
lab power system asset
capabilities and control
interfaces;

Off-site:
Design scenario and control
software; plan co-simulation
with a simple orchestrator;
Design interface for each
simulator and for co-simulation
data-exchange

Software sharing agreement

On-site:
Design interfaces between
simulations and co-simulation
orchestrator (mosaik)

Off-site:
Development of
state machines for
message passing
and error handling

Off-site:
Design the experiment and
SYSLAB set-up

Agree on the date of the
experiment with a
technician and local
experiment leader

Reserve experimental
facility SYSLAB with the
lab manager

Development

Off-site:
Configuration file for Spirae
BlueFin® platform; Modbus
mapping between BlueFin
asset interfaces and SYSLAB
node interface; OPC
interface to ABB lab SCADA
system

ABB SCADA system
adaptation (via ABB remote
access).

On-site:
Controls interface for micro
CHP unit; SYSLAB nodes for
all experiment assets;
Mockup SYSLAB node for
off-site testing of BlueFin®
Modbus interface.

Off-site:
Implement co-simulation control
interface (MasSim and IPSYS),
and data exchange interface
(MasSim, IPSYS)

(later:) Software installation on a
machine at DTU

On-site (at OFFIS):
Develop interfaces between
simulations and co-simulation
orchestrator (mosaik)

Adapt MasSim and IPSYS
simulation and add data
exchange interface to
communicate with mosaic, and
add modules to start simulation
programs.

Implement control strategy in
MasSim and Jade-DE

Implement mosaik scenario
descriptions

Off-site:
Implementation of
state machines and
message
marshaling/
unmarshalling

Implementation of
custom GUI to
monitor
performance of
distributed
processes

Porting MPC
algorithms from
Matlab
implementation (this
task could not be
completed due to
time constraints)

Off-site:

Adapt the MAS
configuration to fit the
SYSLAB power system
set-up.

On-site:

Configure MAS to read
SYSLAB measurements
from the planned set-up

Test data flow between the
lab and the controller.

Configure MAS to control
SYSLAB facilities.

Test control signal flow
between lab and controller.

Execution

Off-site:

Test against Modbus test

harness; test remote data

access to Lab SCADA; ;

Remote deploy BlueFin® to

lab server

On-site (at OFFIS):

Simulation of power system

scenario in a single simulator

(IPSYS), and in the two different

co-simulation setups (IPSYS,

mosaik, MasSim) and (IPSYS,

mosaik, Jade-DE).

On-site:
Testing and
debugging on a
single computer /
two connected
computers

On-site:
Run the experiment in

SYSLAB with automatic

data-logging

RTLabOS D3 9

On-site:

Configure lab; Test OPC

interface to lab SCADA; Test

asset interfaces to meter

boxes, load bank, PV inverter

and micro CHP unit; Deploy

control PC to lab IP network;

Execute controls

demonstration;

Off-site:

Re-runs of simulations

Post-processing & interpretation

Collection: Gather data from

the run.

Presentation: Live

demonstration and

presentation

Documentation: of the goals,

procedures and results

Publish news on
demonstration.

Collection: Gather data from all

simulations (CSV files) and from

mosaik (HD5 database)

Validation: Compare results of

co-simulations with nominal

simulation in IPSYS.

Documentation of the

experiment results including

jointly written scientific paper.

Compare experimental

data with grid

measurements.

Gather design and the

obtained results into a

scientific paper.

With the time spent on each step recorded, we get an overview on how the characteristics of

each problem map to time spent on the respective phases. In addition to the actual work time

(WD: work days), the overall time elapsed in that phase is noted, e.g. due to administrative

delays.

Table 4 FS duration from Controller Development and Deployment group

 FS1 FS2 FS4 FS5

 WD Dur. WD Dur. WD Dur. WD Dur.

Preparation
15+6 3 M 24 + 1

(1a)

1 M.

+1M
(1b)

3 10d 3 1M

Development 20+18 1.5 M 31
(2)

 1 M 14 30d 8 10 d

Execution 10+7 5 d 3-4 3-4 d 5 40d 2 2 d

Post-proc. &

interpretation
5+1 1M 19 1 M. - - 1+15

(3)
 1 M

SUM 50+32
(4)

 5M 99 ~4M 22 40d 14+15 2 1/2M

(1)
a) 21 of 24 days attributed to MasSim development (new simulator); b) software license request after on-site work

delayed project continuation by ca. 1 month.

(2)

accelerated due to parallel development

(3)
 paper writing time is an estimate, not executed during project

(4)
 left numbers: Spirae + right numbers: DTU

10 RTLabOS D3

The learnings reported in the feasibility studies are condensed and summarized here.

Table 5 Lernings from FSs in Controller Development and Deployment group

FS Name Learnings

FS1: BlueFin in PLDK Lyngby Detailed planning and preparation for lab deployment are

possible from a remote
location

 Very rapid (de)deployment of commercial control software to

lab is feasible

 PLDK works as a facility for demonstrating coordinated

control of multiple power system assets.

 Use of ABB SCADA OPC interface only feasible with ABB

support

 SYSLAB nodes facilitate rapid deployment of external

controls by offering a homogenous interface for lab assets,

FS2: Co-simulation via direct

integration (mosaik, IPSYS,

MasSim) *

 If a specification of mosaik interfaces would have been

available before step 3, adaptation in step 10 could

have been avoided.

 Software installation took long time and needed to be

assisted by the software creators. In the new version of

mosaik installation is much simpler.

 Software sharing agreement needed to be agreed

between DTU and OFFIS as the software was not

openly available.

FS4: Deployment of a distributed

MPC controller in SYSLAB

 The main lesson learned from the project is that, if a

distributed system/algorithm/control scheme has only been

tested in "simulated distribution", i.e. as a single process

emulating the members of the distributed system, the effort

required for porting to an actual distributed system can be

very high.

 A second, related lesson is that, if possible, distributed

systems should be developed and tested as such from the

start; the intermediate step via "simulated distribution", while

seemingly reducing complexity for a first test, is inefficient

because almost the entire system has to be redeveloped

afterwards.

FS5: External controller for grid

topology estimation deployment

in SYSLAB

 On-site configuration was quite short as the main

preparations took place in advance

 Testing data flow (on-site) took much longer time than

anticipated as the lab measurements reading were not

configured correctly

 Paper writing has been delayed and not completed in project

RTLabOS D3 11

This section summarizes the results on developing controller/data-exchange interfaces for the

lab environment. All studies that required lab deployment entailed some experience on interface

development. In addition to the deployment studies also several studies were focused directly

on availing new lab protocols. Figure 1 illustrates the focus of this section in context of the Use

Case concepts developed in [1], which primarily refers to LBP0 and LBP8.

Figure 2. Feasibility studies focus on control interface functionality development.

In the following, we primarily focus on those Feasibility Studies where new interfaces were

developed FS6-FS9. However, the experience from actual experiments (FS1 and FS5) will be

employed where helpful in context.

Table 6 Goals of FSs in Interface Development for Lab Deployment of Control Software cluster

FS Name Goals

FS1: BlueFin in PLDK Lyngby

(Modbus/TCP and OPC DA)

 Enable an externally developed control software (Spirae

BlueFin®) to monitor and control devices in the PLDK

Electric Lab;

 Investigate two standards in this context: Modbus/TCP and

OPC DA.

FS5: External controller for grid

topology estimation deployment

in SYSLAB (JavaRMI)

 Deploy externally developed controller in PLDK SYSLAB

 Adapt external controller interfaces to support existing

SYSLAB Java RMI interface

12 RTLabOS D3

An extension of the controller-lab interaction use case is the interaction between a controller

running on an external site that is to control lab-internal assets, as illustrated in Figure 3.

Figure 3 In case of "external site" control, the lab needs to offer an interface safely accessible

through firewalls.

Here basic TCP-layer communication is practically infeasible, whereas common web protocols

are well-suited for this setup. A simple solution for this scenario is outlined in FS9.

With respect to the steps outlined in Section 2.1, the steps of interest here are part of

“preparation” and “development”, and conclude with functional testing of the interfaces.

The common interface development steps then are:

a. Preparation and identification of interface

i. What is the physical layer distribution of software to power system assets,

networking and computation equipment? What communication networks are

available across equipment?

FS6: Adding OPC-UA interface to

SYSLAB software platform

 In context of FS5, but instead, enable PLDK SYSLAB to

support controller’s existing interface OPC-UA (a modern

widely adopted industrial automation standard)

FS7: Service-based interface to

SYSLAB components

 Explore the usability of a service-oriented interfaces to a

DER in an architecture expressed in SoaML

FS8: OpenADR support for

SYSLAB

 Enable support for the OpenADR 2.0 standard in SYSLAB.

 Make SYSLAB OpenADR capable.

 Investigate how OpenADR capabilities match smart grid

needs in Denmark.

FS9: Cross-site data exchange

via public whiteboard server

 Develop a software tool that can facilitate a two-directional

exchange of data, between facilities within the SYSLAB

facility and the Insero Software server over a public Internet

connection.

RTLabOS D3 13

ii. What interfaces are supported by the relevant software components?

(e.g. asset controller, control software, lab control software)

iii. What are the communication requirements between software components?

(data types and information, exchange rates, etc.)

iv. Anticipation of development needs and selection of preferred (and backup)

interfaces.

b. Development and ‘mock-up’ testing

i. Clarification of interface requirements

ii. Data/information modelling of exchanged data

iii. Development according to specifications

iv. Development against ‘mock-up’-interface

c. Functional testing of interfaces

i. Deployment on lab machines

ii. Interface re-configuration for lab context

iii. testing communications in lab context

iv. test of experiment communications

A ‘mock-up’ interface is a simplified communications counterpart (a recipient or sender of data)

mimicking the required protocol, but without the actual control or measurement functionality. For

the interface development, we assume that preparation steps, such as definition of use case,

experimental setup and mapping to infrastructure are completed. Here, only those studies are

listed which went through all three phases during the project time.

Table 7 Summary of steps from FSs in Interface Development for Lab Deployment of Control

Software cluster

FS1: BlueFin® at

PowerLabDK

FS5: External Ctrl.

(RMI)

FS6: ExtCtrl (OPC-UA) FS7: Service-based

interface to SYSLAB

Preparation

Investigate lab power
system asset capabilities
and control interfaces;

Investigate ABB lab
SCADA system
interfaces

Introduction of External
Researcher to SYSLAB
data exchange technology
based on RMI and SYSLAB
node architecture.

Adapt the MAS
configuration to fit the
SYSLAB power system set-
up

Agree on the date of the
experiment with a
technician and local
experiment leader

Reserve experimental
facility SYSLAB with the lab
manager

Design of OPC-UA
client/server architecture for
SYSLAB.

Joint design of OPC-UA server
on a SYSLAB controllable
load; OPC-UA server
consistent existing RMI Server
design: only change transport
technology to OPC UA. The
way that the client is used by
SYSLAB users stays the
same.

Introduction to SYSLAB data
exchange technology based
on RMI and SYSLAB node
architecture.

Adapt design of voltage
control data exchange
mechanism to fit SOA
design.

Design interfaces

Create service description
in SoaML

Compile SoaML models to
XMI format with use of
Modelio SoaML modelling
tool.

Development

Create Modbus mapping
between BlueFin asset
interfaces and SYSLAB
node;

(a*) Configure MAS (control
software) to read SYSLAB
measurements from the
planned setup

External researcher
implements the OPC UA
Server design on a virtual
SYSLAB node.

*Add service oriented
interface to existing
SYSLAB broker.

14 RTLabOS D3

Create OPC mapping
between BlueFin asset
interfaces and ABB lab
SCADA system;

Develop new controls
interface for micro CHP
unit and map to SYSLAB
node;

Map Danfoss solar
inverter interface to
SYSLAB node

(b) Configure MAS (control
software) to control
SYSLAB facilities

OPC-UA server is tested with
the OPC-UA client on the
virtual SYSLAB node; includes
check if RMI and OPC-UA
interfaces return the same
data.

Create consumer agent
which discovers available
interfaces via SYSLAB
DeviceProxy

*Implement service
description exchange
mechanism and XMI
interpretation

Implement SYSLAB
virtual devices for PV
plant and controllable
load.

Test the entire set-up on
two virtual SYSLAB nodes

Functional testing

Test data flow from lab
SCADA (OPC DA) to
BlueFin control software

Test feedback and data
flows to BlueFin from lab
assets planned for
demonstration

Test control signal flow
from BlueFin software to
all lab assets used for
demonstration

(a) Test data flow between
the lab and the controller

(b) Test control signal flow
between the lab and the
controller

Preparation of physical unit
(controllable load)

OPC UA Server is deployed
on a SYSLAB OPC UA server
on the controllable load
SYSLAB node is tested with
an OPC UA client.

Preparation of physical
units (PV plant &
controllable load)

Deployment on two
SYSLAB

Testing of a) service
discovery and
composition, and b) data
exchange of
measurement and control
commands

*) development and (functional) lab testing was executed in two sequences (a) and (b).

The following tables summarizes the durations of the feasibility studies with regard to the steps

summarized above. For a more detailed insight into the feasibility studies, please refer to the

respective appendix sections.

Table 8 FS duration in Interface Development for Lab Deployment of Control Software group

 FS1 FS5 FS6 FS7

 WD Dur. WD Dur. WD Dur. WD Dur.

Preparation 5+2 1 M 6
(1)

 1M. 3+3
(2)

 1M. 20 ~1M

Development 15+9 1 M 6

1M

13 ½ M. 15
(3)

 ~1M

Function.

Testing
5+5 2 w 3 7 1M. 5 ~1M

SUM 25 + 16 2.5 M 15 ~2M 26 2½ M 40 3M

(1)

includes introduction to SYSLAV, as reported in FS6

(2)
 two researchers working together (teach-in)

(3)
 including ca 11 days of one-time effort for SYSLAB extension with new interface; marked with * in steps.

RTLabOS D3 15

Table 9 Learnings from FSs in Interface Development for Lab Deployment of Control Software

cluster

FS Name Learnings

FS1: BlueFin in PLDK Lyngby

(Modbus/TCP and OPC DA)

 Test harnesses (e.g. “mockup” SYSLAB nodes) are an

effective tool for pre-testing the Modbus/TCP interface to

SYSLAB Nodes

 (Temporary) remote access to select lab IT systems can

enable pre-testing of interfaces to lab SCADA, enabling to

perform most of the development off-site

 ABB OPC server implemented via 32-bit library cannot bind

to 64-bit OPC client; SCADA security (Kerberos) adds

limitations for inter-process communications

 Test run based on SYSLAB nodes and duplicate

measurements without using ABB SCADA and LabCell

measurements successful

 Updated ABB OPC interface is well configurable with ABB

cooperation; final demonstration using ABB SCADA OPC DA

interface with LabCell measurements successful

FS5: External controller for grid

topology estimation deployment

in SYSLAB (JavaRMI)

 For control software already written in Java, the SYSLAB

Javari interface is straightforward to implement;

 adapting the control software (lower I/O) to the lab was

preferred to the overhead created by supporting the CS’s

existing OPC-UA interface (see FS6)

FS6: Adding OPC-UA interface to

SYSLAB software platform

 implementation of OPC-UA based on methods is possible,

but both client and server are very much dependent of the

specification of the interface

 OPC-UA has dependency on (commercial) external software

FS7: Service-based interface to

SYSLAB components

 Modelling and the service design have taken the most time of

the preparation process.

 The Modelio tool was easy and intuitive to use; SoaML

documentation and Modelio online tutorial were very helpful.

 Virtual SYSLAB nodes were very useful for initial debugging

and interface tests.

 Usually the main part of the task is implementation. In this

approach the time spend on implementation was shifted to

design and modelling stage, shortening the deployment

tasks.

 The model of the service architecture can be communicated

to other designers and software engineers and is a formal

representation of the ICT part of the investigated voltage

control service.

16 RTLabOS D3

Two of the feasibility studies were focused on co-simulation technology to evaluate its potential

for use in the lab and control software development context. Co-simulation refers to coupling of

two or more independent simulation programs or models which allows studying interactions

across domains using their respective specialized simulation tools. Co-simulation has been

used in other domains, such as automotive industry, military, or aerospace industry and exists

in many variants and is applicable to many purposes; it is often used as a tool to represent

complex multi-domain systems. Relevant to this project are in particular:

 development support, enabling concept development and testing of control software

against simulated components;

 scalability tests by ‘virtual extension’ of the lab environment (sub-domain of hardware-

in-the-loop domain);

 replacing real power system equipment with a simulated component (emulation);

 re-use of models developed in expert tools (e.g. power system models, communication

models) without explicit translations;

 Simulation of a multi-domain system, such as integrating power systems and

communication simulators with control software.

Two fundamentally distinct categories of co-simulation are: accelerated co-simulation and real-

time co-simulation. Real-time co-simulation is fairly established in power systems [2, 3], mostly

as a special case of hardware in the loop simulations with power system real-time simulators

and real power system equipment. Accelerated co-simulation is technically more challenging,

mainly due to synchronization problems, and is an active research in the context of the power

system domain [4]. Especially its application in a continued development process is of interest

as also discussed during RTLabOS workshop II, [5].

FS8: OpenADR support for

SYSLAB

 A profound survey of these existing software libraries and

existing code should be part of the planning phase already.

 The lack of suitable existing components could have been

anticipated because the OpenADR standard had not been

released for a long time at the beginning of the study.

FS9: Cross-site data exchange

via public whiteboard server

 Implementing the whiteboard server, took considerable less

time than expected (less than a day).

 whiteboard server approach recommended as an easy

solution to communicate across lab firewalls;

 note that aspects of cyber security have not been considered

here (not for sensitive data).

RTLabOS D3 17

Figure 4 Overview of simulators and orchestrators (co-simulaton platforms) addressed here.

Figure 4 illustrates the context of co-simulation feasibility studies, in an analogy to the

LabSCADA concept diagram (Figure 2) as introduced in[1], where the co-simulation

orchestrators assume a facilitating and interfacing role, whereas the domain-‘simulators’

assume the component (asset) role.

The software discussed in the respective feasibility studies is:

 two different co-simulation orchestrators investigated:

i. mosaik (by OFFIS [5])

ii. Ptolemy (by Berkeley EECS [6, 7])

 three different simulation programs investigated

i. IPSYS: multi-domain simulator for quasi-static behavior

ii. OMNeT++: communication network simulation framework [13]

iii. MasSim: a discrete event simulator for multi-agent based control software with

interfaces for data exchange and orchestration.

A common basis for the reported feasibility studies is the software “IPSYS” [9, 10], which is a

multi-domain simulator (e.g. heat, power, mechanical domains), especially suited for islanded

systems analysis, which was developed since 2003 and open-source since 2011 [6]. MasSim

(Multi-Agent System simulator) was developed at DTU as part of RTLabOS project.

No real-time communication network simulators were available at PLDK during RTLabOS

project and it is of interest to enhance our experimental capabilities with ICT simulators.

The feasibility studies on co-simulation have investigated following aspects:

1. different co-simulation platforms were investigated;

2. the concept of co-simulation for controller-development;

3. representation of controllers in multi-agent systems and their integration into co-

simulation set-up;

co-simulation of communication network and power systems.

18 RTLabOS D3

Figure 5 Overview of FS2 (mosaik) interactions and platform functionality

The FSs considered in this group are:

 FS2: Co-simulation via direct integration (mosaik, IPSYS, MasSim)

 FS3: Extension of a simulation tool with an FMI interface

FS2 investigated the mosaik orchestration platform, developed by the DTU CEE collaboration

partner OFFIS, together with controller simulation platform MasSim. FS3 investigated the co-

simulation interface standard FMI [10] which is already supported by a wide range of simulation

software.

Goals of FS2 were presented in Table 2. FS3 goals are presented in Table 10.

Table 10 Goals of FS3 from Interfacing Simulators for Control Software Development and Testing

group

FS Name Goals

FS3: Extension of a simulation

tool with an FMI interface

 Develop a simulation platform on the basis of the DTU-

developed tool IPSYS which can be used to simulate smart

grid scenarios that include multi-domain energy systems,

discrete distributed controllers and a communication network

facilitating exchange of information between controllers.

 Do initial work towards the long-term goal of developing a

controller platform which can be used for cross deployment

of different types of controllers and control architectures

between the simulation platform and the laboratory.

 Use the FMI standard for interconnecting the simulators, to

allow later extensions of the platform with other FMI-

compatible simulators.

RTLabOS D3 19

Figure 6 Illustration of FS2 co-simulation setup

Although MasSim is treated by the orchestrator as any other simulator, it has a different role

than other simulators. It is intended as an environment to prototype open- or closed-loop control

software. In analogy with the LabSCADA-control software interactions indicated in Figure 2,

MasSim provides the coupling interfaces and environment to develop agent-based control

software, as illustrated in Figure 6.

The summary of steps in FS2 is presented in Table 3, Table 11 presents summary of steps for

FS3.

Table 11 Summary of steps in FS3 from Interfacing Simulators for Control Software Development

and Testing group

FS3: Extension of a simulation tool with an FMI interface

Preparation

 Design the extension of IPSYS to allow the namespace to be exported to FMI

Development

 Development of a Java interface to FMI for Co-simulation which can be integrated into IPSYS

 Development of a controller container with a FMI interface

 Development of a simple communication simulator based on message queues (to interface with

time series-based IPSYS) which models communication channels as bandwidth, stochastic

latency and stochastic error (message loss) rate

Functional testing

 Test interfacing with Ptolemy II

20 RTLabOS D3

The duration of FS2 is presented in Table 4, Table 12 reports duration of steps in FS3.

Table 12 Duration of FS3 from Interfacing Simulators for Control Software Development and

Testing group

 FS3

 WD Dur.

Preparation 5 7

Development 23 30

Function.

Testing
3 3

SUM 31 40

Learnings from FS2 were presented in Table 5,

All feasibility studies performed within RTLabOS project brought practical experience both in

laboratory and simulation-based testing. It have revealed the importance of well-designed

laboratory software and helped improving laboratory experimental, demonstration and teaching

capabilities.

The demonstration of Spirae’s BlueFin® established a system deployment capability of

PowerLabDK as well as ways of remotely deploying and testing software. It also challenged and

matured the OPC connectivity features of the existing ABB SCADA installation, and it confirmed

feasibility this commercial use case of platform / control software demonstration.

FS Name Learnings

FS3: Extension of a simulation

tool with an FMI interface

 Despite plenty of research work and standardization in the co-

simulation area, there is still no simple way of using time series-

based simulations together with event-based communication and

control simulations without losing generality of the controllers,

i.e. without making assumptions/restrictions on the inner

workings of controllers deployed on the simulator platform.

 Co-simulation deployments are still very specific to the

simulation tools used; there are few "cooking recipes" to follow.

RTLabOS D3 21

Exploring new options and expanding on strengths of PowerLabDK has also been a theme for

the other feasibility studies:

- Identifying bottlenecks and potentials for distributed control systems deployment: FS4 & 5

o For effective deployment of a distributed controller, the development environment

should require “distributed system“ behavior.

- Extending in-house software with co-simulation capabilities and strengthening the network

o follow-up training event on use of co-simulation via mosaic (Oct. 2014)

o Initial support for FMI standard for co-simulation; challenges remain.

- Introduction of several new interfacing options for SYSLAB (and thereby PowerLabDK):

o OPC-UA (up to functional testing) (FS6)

o Service-based interfaces (based on SoaML model) (FS7)

o OpenADR (initial development; FS8); now followed up with an innovation activity to

develop an a simplified API and an implementation to facilitate adoption in Europe

o Enabling off-site remote control via a simple white-board server (FS9)

Further, by recording the time spent on break-downs of these activities an experience-base is

available to estimate future development resources.

Recommendations based on feasibility studies:

FS-Rec1. More system testing and demonstrations in PowerLabDK labs in Lyngby

FS1 [5] clearly proved the capabilities of the lab, but also that the know-how for developing such

a setup was available in SYSLAB. Compared to SYSLAB, however, the Electric lab is closer to

potential audiences; because it is compact, it allows an audience to more easily grasp the

dynamics of an experiment. Further, with the potential of controlling the amplifier, also in closed-

loop with the RTDS, quite advanced scenarios can be envisioned. All these features may be

employed for advanced system testing and demonstrations. Yet, even with simpler setups,

attractive demonstrations and could bring in future customers, colleagues, researchers and

students. At least one ‘reference implementation’ of a system setup should be accessible.

FS-Rec2. Standardized interfaces are great, but choose well which to support.

At first sight, several IEC 61850 implementations are available at CEE; on paper, ABB’s

network manager supported OPC-DA; and since RTLabOS, PowerLabDK also supports web

services via SoA-ML (partly), OpenADR, and OPC-UA (both under development).

However, after a closer look at the evidence, many of those standards are only supported in

part. Modern industry standards are complex, and fully supporting a standard means a

continuous development to stay compliant as the standard evolves. In practice for research

software, it is much easier to support and maintain proprietary lab interfaces and low-level

established standards, also for deploying external software (as long as developers are involved

on both ends); FS5 made a case here; FS1 made a case for the simpler/lower-level interface

(Modbus). Adaptability and low complexity have been key in such cases.

Fully implementing a modern standard makes sense only if there are significant use cases,

such as for testing with commercial “black box” equipment. While at SYSLAB that has not

applied so far, the alternative for a research lab is to support a modern standard as early-

adopter, to identify weaknesses and limitation and thus to contribute to the standard’s evolution.

It might be worth focusing on some standards in the smart grid domain, but understanding your

“customers” and research purpose helps picking the right ones.

22 RTLabOS D3

FS-Rec3. Co-simulation is a powerful development tool, but don’t start duplicating all interfaces.

Several smart grid labs already employ co-simulation as a research and development tool.

However, there is no silver bullet: for development it is more important to be practical than

sophisticated. Co-simulation as a development tool requires equipping both control software

and simulators with interfaces adapted to the orchestrator. Whereas loose coupling approaches

are more straightforward to handle at the expense of being less scalable, sophisticated co-

simulation may further require a special formulation of controllers (FS3, [5]). As SYSLAB

supports built-in simulated behaviors (e.g. FlexHouse simulator) and loose coupling (e.g. with

mockup SYSLAB nodes; FS1, FS5), developing a wrapper for including (mockup) SYSLAB

nodes into a co-simulation may be more effective for development purposes than developing

dedicated simulation models for SYSLAB assets. With nodes in simulation-mode, co-simulation

wrappers could then allow network domains (electricity, heat, communication) to be integrated

via simulators. From our experience (FS2 and follow-up), mosaik has been a powerful and

sufficiently easy to use tool for such a purpose.

In this way, the vision of a ‘virtual lab’ could be realized incrementally by developing simulation

models of lab network domains, alongside further improved ‘simulation-modes’ for SYSLAB

nodes. While this approach suits both the use cases of development support and ‘virtual scaling

of experiments’ [3], it is primarily suited for real-time approaches. As noted above, a fully

embedded co-simulation requires architectural modifications to the simulated entities.

RTLabOS D3 23

[1] K. Heussen and A. Thavlov, "D.2.1 - Use Cases for Laboratory Software Infrastructure -

Outline of Smart Grid Lab Software Requirements," Department of Electrical Engineering,

DTU, Kongens Lyngby, 2014.

[2] R. Bottura, D. Babazadeh, K. Zhu, A. Borghetti, L. Nordstrom and C. Nucci, "SITL and HLA

co-simulation platforms: Tools for analysis of the integrated ICT and electric power system,"

in EUROCON, Zagreb, 2013.

[3] H. Morais, P. Vancraeyveld, A. Pedersen, M. Lind, H. Jóhannsson and J. Østergaard,

"SOSPO-SP: Secure Operation of Sustainable Power Systems Simulation Platform for

Real-Time System State Evaluation and Control," IEEE Transactions on Industrial

Informatics, vol. 10, no. 4, pp. 2318-2329, 2014.

[4] . Strasser, . Stifter, F. Andr n and P. Palensky, "Co-Simulation Training Platform for

Smart Grids," IEEE Transactions on Power Systems, vol. 29, no. 4, pp. 1989-1997, 2014.

[5] A. M. Kosek and K. Heussen, "D4.2 - RTLabOS Dissemination Activities," Department of

Electrical Engineering, DTU, Kongens Lyngby, 2014.

[6] "Mosaik," [Online]. Available: http://mosaik.offis.de/.

[7] "The Ptolemy project," [Online]. Available: http://ptolemy.eecs.berkeley.edu/.

[8] C. P. (Editor), System Design, Modeling, and Simulation using Ptolemy II, ptolemy.org,

2014.

[9] H. Bindner, O. Gehrke, P. Lundsager, J. C. Hansen and T. Cronin, "IPSYS - A simulation

tool for performance assessment and controller development of integrated power system

distributed renewable energy generated and storage," in European Wind Energy

Conference and Exhibition, London, 2004.

[10] "IPSYS - Power system simulation tool," [Online]. Available:

http://sourceforge.net/projects/ipsys/.

[11] K. Heussen, A. Thavlov and A. M. Kosek, "D3 - RTLabOS Feasibility Studies," Department

of Electrical Engineering, DTU, Kongens Lyngby, 2014.

[12] K. Heussen, A. Thavlov and A. Kosek, "D2.1 - Use Cases for Laboratory Software

Infrastructure - Outline of Smart Grid Lab Software Requirements," Department of Electrical

Engineering, DTU, Kongens Lyngby, 2014.

[13] MODELISAR consortium, "Functional Mock-up Interface for Co-Simulation," 2010.

24 RTLabOS D3

[14] S. Muller, H. Georg, C. Rehtanz and C. Wietfeld, "Hybrid simulation of power systems and

ICT for real-time applications," in IEEE PES ISGT Europe, Berlin, 2012.

[15] K. Heussen and O. Gehrke, "D1.2 - Lab Survey “State of the Art Smart Grid Laboratories,"

Department of Electrical Engineering, DTU, Kongens Lyngby, 2014.

[16] A. M. Kosek and K. Heussen, "D1.1 - The Requirements Domain for Laboratory Software

Infrastructure," Department of Electrical Engineering, DTU, Kongens Lyngby, 2013.

[17] K. Heussen, "D4.1 - RTLabOS Phase I: Software Infrastructure for Smart Grid Labs,"

Department of Electrical Engineering, Kongens Lyngby, 2014.

[18] J. Hu and K. Heussen, "D2.2 - User Survey and Characterization of User Profiles and User

Requirements," Department of Electrical Engineering, DTU, Kongens Lyngby, 2014.

RTLabOS D3 25

As system administrator of the Networks in Lyngby as well as the SCADA system, we tested

many boundaries of the normal lab operation. Only due to Nils collaboration, the remote access,

PLDK internal deployment of BlueFin® servers and client PCs was possible.

Peter encouraged the project development from an early phase and was a reliable support in

keeping the project and especially FS1 on track.

With his deep insight into the SCADA system and setup in Lyngby, Tormod diagnosed issues

with the OPC connection in FS1 and suggested practical solutions just in time; Kim established

the necessary connections across ABB and facilitated in case of complications.

 their

collaboration and valuable help with setup and integration of mosaik with other simulation tools

(in FS2).

RTLabOS D3 - Feasibility Studies 26

Contents:

FS1 BlueFin® at PowerLabDK .. 27

FS2 Co-simulation via direct integration (mosaik, IPSYS, MasSim) ... 34

FS3 Extension of a simulation tool with an FMI interface .. 38

FS4 Deployment of a distributed MPC controller in SYSLAB .. 40

FS5 External controller for grid topology estimation deployment in SYSLAB .. 42

FS6 Adding OPC-UA interface to SYSLAB software platform .. 45

FS7 Service-based interface to SYSLAB components .. 47

FS8 OpenADR support for SYSLAB .. 50

FS9 Cross-site data exchange via public whiteboard server ... 53

RTLabOS D3 - Feasibility Studies 27

FS1 BlueFin® at PowerLabDK
Author: Holger Kley

Goals

 Demonstrate a portion of the Spirae BlueFin® platform control capabilities

 Demonstrate feasibility of coordinated power system testing in PLDK Lyngby facilities:

combining ICL + EL

 Demonstrate interaction between control software and data-acquisition through the ABB lab

SCADA

 Demonstrate rapid controller (de)deployment at PLDK

o Enable an externally developed control software (Spirae BlueFin®) to monitor and control

devices in the PLDK Electric Lab;

o Investigate two standards in this context: Modbus/TCP and OPC DA.

Motivation and Challenge

Spirae’s BlueFin platform enables a variety of coordinated controls of distributed energy resources

(DER). The PLDK Lyngby facility is a state-of-the-art research space; its strengths include a flexible and

easily reconfigurable grid topology, integrated SCADA-based monitoring and control, and a variety of on-

site DER that can further augmented with portable DER available at the RISØ campus. Further, PLDK is

outfitted with state-of-the art IT infrastructure.

At its headquarters in Fort Collins, Colorado, Spirae and Colorado State University co-own and maintain

the InteGrid Laboratory, where BlueFin is can generally be found in a deployed state. Rather than

duplicate the InteGrid deployment pattern, an interesting possibility emerged: conduct a rapid and

temporary deployment of BlueFin at PLDK, using a cross-section of available DER, and showing

integration with the telemetry available via the lab’s SCADA system. In particular, the challenge

consisted in employing careful planning, interface design, and pre-testing, to reduce on-site time of one

week or less.

Approach

The approach to the study was a collaborative between Spirae and DTU and consisted of a hybrid

between traditional waterfall and agile methodologies.

Works Steps

The task was performed remotely by Spirae staff in Fort Collins and India and on-site by CEE researchers

and staff at PLDK in Lyngby. Only during the week of the demonstration were the teams co-located.

RTLabOS D3 - Feasibility Studies 28

Preparation:

Off-site:

Step 1. Plan lab IT configuration; select lab and RISØ assets for coordinated control (see Figure
1); plan lab power network (Labcell) configuration (see Figure 2); plan for acquisition of real-
time data for control; select control functionality to demonstrate; load control software onto
local control PC;

On-site:

Step 2. Obtain lab permissions for individual assets as well as system setup; enable remote

access to lab IT; Investigate lab power system asset capabilities and control interfaces;

Development:

Off-site:

Step 3. Develop configuration file for BlueFin software; Design Modbus mapping between

BlueFin asset interfaces and SYSLAB node interface; Map OPC interface to ABB lab SCADA

system; (See Figure 3)

Step 4. ABB SCADA system adaptation (via ABB remote access).

On-site:

Step 5. Controls interface for micro CHP unit; SYSLAB nodes for all experiment assets; Mockup

SYSLAB node for off-site testing of BlueFin® Modbus interface.

Execution:

Off-site:

Step 6. Test against Modbus test harness; test remote data access to Lab SCADA; ; Remote

deploy BlueFin® to lab server

On-site:

Step 7. Configure lab; Test OPC interface to lab SCADA; Test asset interfaces to meter boxes,

load bank, PV inverter and micro CHP unit; Deploy control PC to lab IP network; Execute

controls demonstration;

Data gathering and analysis:

Step 8. Collection: Gather data from the run.

Step 9. Presentation: Live demonstration and presentation

Step 10. Documentation: of the goals, procedures and results

Step 11. Publish news on demonstration.

RTLabOS D3 - Feasibility Studies 29

Results

Milestone for PowerLabDK: Demonstration of Commercial Smart Grid Control Platform

On Friday Nov. 8th the researchers from CEE and Spirae demonstrated a new milestone capability for

PowerLabDK: Spirae's BlueFin control platform and their multi-asset-controller were tested using a wide

range of PowerLabDK's infrastructure. Spirae is a Colorado-based control solutions provider and known

in Denmark for having implemented the “Cell Controller” in Energinet.dk’s “Cell” project.

DTU CEE and Spirae.dk, the Danish subsidiary of Spirae, have partnered up in the RTLabOS project

developing this demonstration. A wide range of PowerLabDK capabilities were combined into an

ecosystem hosting Spirae’s BlueFin control platform: Electric Lab and local assets (including Danfoss

Solar Cells and EC Power XRGI 15 CHP), SYSLAB software, and Intelligent Control Lab (BladeCenter and

ABB Network Manager SCADA

system).Lab

The RTLabOS project, which

arranged this demo, is aimed at

software integration to facilitate

system integration & multi-asset

control activities across

PowerLabDK. Results from this

demo will be documented and

retained to enable future

commercial tests as well as

research activities based on

PowerLabDK's unique

infrastructure. For the

experiment, software interfaces

to several Electric Lab assets have

been developed and

demonstrated for the first time.

The RTLabOS team expresses gratitude for the collaboration and support received from all colleagues

without whom this achievement would not have been possible.

http://www.cee.elektro.dtu.dk/News/Nyhed?id=0cdf2cb1-84c1-43ce-b96e-d8cb5f1e38b8

http://www.cee.elektro.dtu.dk/News/Nyhed?id=0cdf2cb1-84c1-43ce-b96e-d8cb5f1e38b8

RTLabOS D3 - Feasibility Studies 30

Utility

(400 V)

A

Point of Common Coupling (PCC)

LoadMicro

CHP
Rooftop Solar

Figure 1: Conceptual single-line diagram for RTLabOS PLDK demonstration

RTLabOS D3 - Feasibility Studies 31

1

0
 k

V
 s

u
p

p
ly

0
.4

 k
V

 s
u

p
p

ly

B
u

s
 A

3 x Danfoss TLX 10+

10 kW inverters

6 kW

PV panel

Proposed Single-Line Diagram for RTLabOS BlueFin Feasibility Study

(version 8: 20 October 2013)

Lab Cell 9

Lab Cell 6

Lab Cell 5

A15 kW EC

Power µCHP

2 x 10 kW

PV panels

Lab Cell 10

36 kW thyristor- controlled

dump load (from SYSLAB)

Lab Cell 11

jumper

Lab Cell 8

Lab Cell 7

n.o.

n.o.

n.o.

n.o.

n.o. n.o.

n.o. n.o.n.o.

n.c. n.c.

n.c. n.c.

n.c.

n.c. n.c.

n.c.

n.c.

n.c.

n.c.

n.c.

n.c.

n.c.

n.c.

n.c.

n.c.

n.c.

n.c.

n.o.

n.c.

n.c.

Notes:

For breaker/switches, normally open/closed state refers only to this particular experiment.

Jumper at LC 11 is used to provide current & power measurement for combined assets.

10 kW programmable

DC power source

(from SYSLAB)

n.o.

n.o.

n.o.n.c.

n.c.

n.c.

Figure 2: PLDK Lab Cell configuration for RTLabOS demonstration

RTLabOS D3 - Feasibility Studies 32

BlueFin

Distribution

Network

Manager (DNM)

BlueFin Control

Area Manager

(CAM)

BlueFin Energy

Resource Manager

(ERM)

SAM SAM SAM SAM

BlueFin

Client (UI)

CHP
Power

Meter

Load

Bank
PV

BlueFin Operational Service Bus

PowerLab ABB

SCADA

BlueFin Energy

Resource Manager

(ERM)

SAM Adapter

SYSLAB

Node

SYSLAB

Node

SYSLAB

Node

SYSLAB

Node

BlueFin Data

Concentrator

Modbus/

TCP

OPC

Deployed on Lab-owned blade server

Deployed on Spirae-owned hardened PC

Legend

Figure 3: Communication diagram for RTLabOS PLDK feasibility study

RTLabOS D3 - Feasibility Studies 33

Figure 4: Screenshot of BlueFin client during demonstration of import/export control: the net production (black) of the lab
assets – micro CHP + PV – load bank -- was controlled to a user-supplied setpoint (orange).

Table 1: Duration of steps in full-time working days, formatted as Spirae staff days + DTU staff days

 FS1

 WD Dur.

Preparation 15+6 3 M

Developmen

t
20+18 1.5 M

Execution 10+7 5 d

Post-proc. &

interpretatio

n

5+1 1M

TOTAL 50+32 5M

RTLabOS D3 - Feasibility Studies 34

Lessons learned

 Detailed planning and preparation for lab deployments are possible from a remote location

 Very rapid (de)deployment of commercial control software to lab is feasible.

 PLDK works as a facility for demonstrating coordinated control of multiple power system assets.

 SYSLAB nodes facilitate rapid deployment of external controls by offering a homogenous

interface for lab assets.

 Test harnesses – software applications that provide a testable interface without a controllable

asset – are an effective tool for pre-testing the Modbus/TCP interface from external systems to

SYSLAB Nodes. For example, the fact that BlueFin was using a fixed base Modbus address while

SYSLAB Nodes use absolute Modbus addresses was discovered using such testing. The

corresponding interface adjustments were made prior to deployment.

 Modbus interfaces may be implemented with either a fixed base address or absolute addresses.

 (Temporary) remote access to select lab IT systems can enable pre-testing of interfaces to lab

SCADA, enabling to vendors to perform most of the development off-site.

 The ABB Dais2OPC server is a 32-bit in-process COM server that cannot bind to 64-bit OPC

client. However, the ABB.NM.OpcDaServer -- installed and configured with ABB’s assistance

and cooperation – runs in a separate process and thus works with both 32- and 64-bit clients.

Final demonstration using ABB SCADA OPC DA interface with LabCell measurements successful.

 SCADA security (Kerberos) adds limitations for inter-process communications. In particular,

PLDK IBM servers (on which the Spirae BlueFin client was running) is not on the same windows

domain as the SCADA Host machine which is the original data source. Network authentication

for the BlueFin OPC Client was done using Kerberos protocol and Kerberos credentials are

shared only on a session level while the BlueFin OPC client runs as service. Consequently,

network authentication for the BF OPC client was not functioning properly until the hosting

server was added to the same windows domain as the SCADA host.

 Test run based on SYSLAB nodes and duplicate measurements without using ABB SCADA and

LabCell measurements were successful.

FS2 Co-simulation via direct integration (mosaik, IPSYS, MasSim)

Author: Anna Magdalena Kosek

Goals

Task goals are as follows:

 design and implement a framework for development of control software in multi-agent tool

Jade (MasSim)

 adapt existing power system simulator (IPSYS) and control strategy simulator (MasSim)

 run a co-simulation of MasSim and IPSYS with use of mosaik

RTLabOS D3 - Feasibility Studies 35

Motivation and Challenge

Problem: simulation of smart grid:

 Modeling of smart grid becomes more complex, as it includes knowledge of several domains

 Share of Information and Communication Technology (ICT) increases in the context of smart

grids

 Modeling of smart grid as a system only with electrical models is no longer sufficient

 Control algorithms become more complex (e.g. transactional, distributed)

In this work we present experience of integration simulation tools into a co-simulation set-up. Two

different aspects considering a co-simulation of smart grid scenarios were investigated. First considers

representing the control strategy in a separate discrete event simulation developed in a multi-agent

platform. This study investigates the design and implementation of such a simulator. Special attention is

given to timing issues presenting time variant and time invariant models. The second aspect presented

in this work is the co-simulation composition, investigating how to integrate a control simulation with

other simulators in a co-simulation ecosystem.

Approach

Software tools used in the feasibility study:

 Mosaik is an open-source simulation compositor and a powerful scenario specification

framework developed by OFFIS (mosaik.offis.dk)

 MasSim/JadeSim are two multi-agent control strategy simulators in Jade developed by DTU and

OFFIS.

 IPSYS is an open source multi-domain energy simulator IPSYS (sourceforge.net/projects/ipsys/).

IPSYS is built around a quasi-static, fixed-time step energy system model and is intended as a

simulator for distributed power systems.

This work investigates co-simulation of control strategy with power system simulator executed in

separate tools integrated with use of a co-simulation orchestrator. In this work we have developed

MasSim tool and modified IPSYS to cooperate with use of mosaik: co-simulation orchestrator mosaik.

Works Steps

The task was performed on two sites: the remote site to the experiment was at DTU and the experiment

site was at OFFIS.

The task involved cooperation between two institutions DTU (Department of Electrical Engineering,

Energy System Operation and Management) and OFFIS (Institute for Information Technology, Research

groups: System Analysis and Distributed Optimization, and Simulation and Automation of Complex

Energy Systems). Persons involved in the tasks are: Anna Kosek (DTU), Oliver Gehrke (DTU), Ontje

Lünsdorf (OFFIS), Stefan Scherfke (OFFIS), Steffen Schuette (OFFIS).

RTLabOS D3 - Feasibility Studies 36

Preparation:

The remote preparation was done at DTU before a visit at OFFIS. The goal of the remote preparation

was to enable simulation tools: MasSim and IPSYS to interoperate in a co-simulation set-up. The remote

preparation consisted of the following tasks:

Step 1. Design co-simulation with a simple orchestrator

Step 2. Design MasSim agents, behaviors and interactions

Step 3. Design simulation interface to MasSim for co-simulation control

Step 4. Implement co-simulation control interface for MasSim

Step 5. Implement co-simulation control interface for IPSYS

Step 6. Design simulation interface for co-simulation data exchange

Step 7. Implement co-simulation data exchange interface for MasSim

Step 8. Implement co-simulation data exchange interface for IPSYS

Collaboration:

Step 9. Design and develop interfaces between simulations and co-simulation orchestrator

(mosaik)

Step 10. Adapt MasSim and IPSYS simulation and add data exchange interface to communicate

with mosaik interface

Step 11. Add modules to start simulation programs

Step 12. Implement control strategy in MasSim

Step 13. Implement control strategy in Jade-DE

Step 14. Implement mosaik scenario descriptions

Study:

Step 15. Simulate the power system scenario in a single simulator (IPSYS)

Step 16. Co-simulate a power system scenario (IPSYS, mosaik, MasSim)

Step 17. Co-simulate a power system scenario (IPSYS, mosaik, Jade-DE)

Data gathering and analysis:

Step 18. Request a software sharing agreement between OFFIS and DTU. The data analysis was

done off site, therefore the access to the software was important for reruns of the experiment.

Step 19. Software installation on a remote machine at DTU.

Step 20. Gather data from all simulations (CSV files) and from mosaik (HD5 database)

Step 21. Compare results of co-simulations from experiments in step 16 and 17 to a simulation

results from step 15.

Step 22. Documentation of the experimental results including preparation of the scientific paper

written jointly by DTU and OFFIS.

RTLabOS D3 - Feasibility Studies 37

Results

The results of the feasibility study are presented in paper: Evaluation of smart grid control strategies in

co-simulation - integration of IPSYS and mosaik, by Anna Magdalena Kosek, Ontje Lunsdorf, Stefan

Scherfke, Oliver Gehrke, Sebastian Rohjans, published in Power System Computation Conference

(PSCC2014), August 2014.

Table 1: Duration of steps in full-time working days.

Step Duration Time Step Duration Time

1 1 Month 1 12 2 in parallel with step 13 Month 3

2 21 13 2 in parallel with step 12

3 <1 14 <1

4 2 in parallel with step 5 Month 2 15 <1

5 2 in parallel with step 4 16 2

6 1 17 <1

7 5 in parallel with step 8 18 1 Month 4

8 5 in parallel with step 7 19 5

9 9 Month 3 20 <1 Month 5

10 2 21 3

11 1 22 15

Lessons learned

 If a specification of mosaik interfaces would have been available before step 3, adaptation in

step 10 could have been avoided.

 Software installation took long time and needed to be assisted by the software creators. In the

new version of mosaik installation is much simpler.

 Software sharing agreement needed to be agreed between DTU and OFFIS as the software was

not openly available.

 Tasks 4 and 5, 7 and 8, 12 and 13 have been executed in parallel with different people assigned

to it.

 Access to software, help from developers

 installation problems

 need direct developer presence

RTLabOS D3 - Feasibility Studies 38

FS3 Extension of a simulation tool with an FMI interface

Author: Oliver Gehrke

Goals

 Develop a simulation platform on the basis of the DTU-developed tool IPSYS which can be used

to simulate smart grid scenarios that include multi-domain energy systems, discrete distributed

controllers and a communication network facilitating exchange of information between

controllers.

 Do initial work towards the long-term goal of developing a controller platform which can be

used for cross deployment of different types of controllers and control architectures between

the simulation platform and the laboratory. This would allow shorter development time and

easier upscaling of lab experiments in simulation.

 Use the FMI standard for interconnecting the simulators, to allow later extensions of the

platform with other FMI-compatible simulators.

Motivation and Challenge

The main challenge in this study is related to the extension of an existing simulation tool (IPSYS) with a

standardized FMI interface:

1. IPSYS was originally developed as an integrated tool, containing its own infrastructure for

modeling controllers. The original target application of IPSYS had been small isolated systems,

and the controller infrastructure was therefore designed to fit smaller systems with a limited

number of individual control units. With the gradual shift of the application area towards smart

grids, this original controller simulation infrastructure proved not to be adequate; one key

motivation for this study was to replace it with external control and communication simulators.

2. Designed to fit the requirements of its original application area, IPSYS is a quasi-static timestep

simulation with configurable but constant time steps. Because of the quasi-static time scale,

simulated DER units may contain implicit control logic which simulates the behaviour of

components on faster time scales than the one simulated (e.g. frequency droop controller for a

generating unit). IPSYS does not place any limitations on the nature of these controllers; they

are implemented as generic Java code. Therefore it cannot be guaranteed that components can

be expressed as a set of differential equations, the basis of the ME (model exchange) variant of

FMI.

3. While IPSYS is based on fixed timesteps, control and communication simulations would be based

on events. A coordination mechanism is needed to enable these to work together.

RTLabOS D3 - Feasibility Studies 39

Approach

The planned approach for this study involved adding a FMI 1.0 (co-simulation variant) interface to the

IPSYS simulation tool. After testing the interface, a very simple controller "container" would be

developed which would allow control algorithms implemented as generic code to be executed against

IPSYS through the FMI interface. These first controllers would need to be aware of the time-stepped

nature of IPSYS.

In a next step, a simple communication emulator based on a "lossy channel" model would be developed

and added. It would then be tried to coordinate the interaction of these three components using the

Ptolemy II framework.

In a last step, the simple communication emulator would be replaced by a suitable full-scale

communication emulator such as Omnet++.

Work Steps

Total duration of the work step (start to end) and effort (net time spent working on work step during

this period) are appended to each work step in the format [duration / effort].

 Extension of IPSYS to allow the namespace to be exported to FMI. [1,5 weeks / 1 week]

 Development of a Java interface to FMI for Co-simulation which can be integrated into IPSYS [3

weeks / 2 weeks]

 Development of a controller container with a FMI interface [1 week / 3 days]

 Development of a simple communication simulator based on message queues (to interface with

time series-based IPSYS) which models communication channels as bandwidth, stochastic

latency and stochastic error (message loss) rate [2 weeks / 2 weeks]

 Test interfacing with Ptolemy II [3 days / 3 days]

Results

The study could not be completed in the available time; work is continuing outside of the RTLabOS

project and will be published. The following intermediate results were obtained:

 The addition of an interface supporting FMI for Cosimulation for IPSYS could be demonstrated.

Before continuing, this interface will likely be ported/adapted to the FMI 2.0 standard which has

been released in the meantime.

 A simple queued communication simulator could be demonstrated to work together with IPSYS.

This does not yet solve the problem of joining event-based and timeseries-based simulations in

the way originally envisioned though, as would be needed to continue with an event-based

communication simulator and controller model as discussed in the goals.

RTLabOS D3 - Feasibility Studies 40

Lessons learned

The main lesson learned from the project is that, despite plenty of research work and standardisation in

the co-simulation area, there is still no simple way of using timeseries-based simulations together with

event-based communication and control simulations without losing generality of the controllers, i.e.

without making assumptions/restrictions on the inner workings of controllers deployed on the simulator

platform. Co-simulation deployments are still very specific to the simulation tools used; there are few

"cooking recipes" to follow.

FS4 Deployment of a distributed MPC controller in SYSLAB

Author: Oliver Gehrke

Goals

 Proof-of-concept of a distributed, MPC-based control algorithm for limiting the aggregated

power flow caused by a portfolio of DER units in a distribution feeder. The algorithm had been

developed and published as part of the iPower project, but the concept had only been proven

through simulation. In the chosen simulation, the most critical aspects of distributed systems -

independent action of the distributed controllers and the details of inter-controller

communication - had to be represented in a simplified way. Therefore only the mathematical

properties of the algorithm had been demonstrated, leaving the distributed systems properties

to be explored in a physical implementation.

 The desired implementation should be deployed in the lab in a way that allows the independent

execution of each part of the distributed system. In the context of the SYSLAB laboratory, this

means that each distributed entity controls one DER unit and executes on the SYSLAB node

associated with this unit. In this way, explicit communication between entities is required.

 Quantitative performance assessment of the implemented solution, particularly with respect to

the scalability of the solution.

Motivation and Challenge

The main challenges in this project were related to the distributed nature of the system and the fact that

the concept had been designed with a distributed implementation in mind, but had never been tested

as a distributed system:

1. Demonstration of implementability of the concept as a distributed system, with potential

changes required

2. Addition of sound message passing sequences and error handling schemes to the existing

implementation

RTLabOS D3 - Feasibility Studies 41

3. Deployment, testing and verification in a distributed system: Development/adaptation of tools

which can be used to monitor/control the components of the system, and analyze distributed

logs after a test.

Approach

The planned approach for this study involved the development of a state-machine for each of the two

types of actors (DER units and blackboard) which would cover message sequencing and error handling.

Two standalone software units would then be developed based on this state machine, together with a

temporary user interface to monitor their performance when deployed as a distributed system. To

simplify testing at this stage, fake data would be used instead of the actual MPC algorithms. The units

would first be tested on a single computer, then deployed to the laboratory. After satisfactory testing of

messaging and error handling, the MPC algorithms from the original Matlab implementation would be

ported to the new implementation and the system tested in the laboratory.

Work Steps

Total duration of the work step (start to end) and effort (net time spent working on work step during

this period) are appended to each work step in the format [duration / effort].

 Development of state machines for message passing and error handling [2 weeks / 3 days]

 Implementation of state machines and message marshaling/unmarshaling [2 weeks / 1.5 weeks]

 Implementation of custom GUI to monitor performance of distributed processes [1 week / 2

days]

 Testing and debugging on a single computer / two connected computers [2 weeks / 1 week]

 Porting MPC algorithms from Matlab implementation (this task could not be completed due to

time constraints) [1 week / 1 week].

Results

The study could not be completed in the available time; work is continuing outside of the RTLabOS

project and will be published (possibly connected to the iPower project). The following intermediate

results were obtained:

 The feasibility of implementing the communication concept behind the proposed distributed

MPC scheme has been demonstrated. With minor modifications, stable execution is possible

even in cases of unit fault, unit disappearance etc.

 The performance of the proposed scheme in a distributed implementation is as expected and

reasonable; this has been tested for up to 10 participating units. Further scalability tests are

needed to establish the performance and stability for a larger number of units.

RTLabOS D3 - Feasibility Studies 42

Lessons learned

The main lesson learned from the project is that, if a distributed system/algorithm/control scheme has

only been tested in "simulated distribution", i.e. as a single process emulating the members of the

distributed system, the effort required for porting to an actual distributed system can be very high. This

is often being underestimated by people without distributed systems experience, and difficult to

convincingly explain. One of the challenges here is that the decoupling of the individual processes also

decouples the failure modes which create a much larger number of possibilities / combinations for

system failure.

A second, related lesson is that, if possible, distributed systems should be developed and tested as such

from the start; the intermediate step via "simulated distribution", while seemingly reducing complexity

for a first test, is inefficient because almost the entire system has to be redeveloped afterwards.

FS5 External controller for grid topology estimation deployment in SYSLAB

Author: Anna Magdalena Kosek

Goals

A guest researcher from the Technical University of Vienna (TU Wien) had developed a Multi-Agent

System (MAS) based control system for voltage control tasks. As precise knowledge of the distribution

grid topology along with electrical parameters is necessary for performing sophisticated control tasks,

the MAS identifies the relevant subset of the grid topology by using available electric measurement

data. The approach had already been tested in another lab facility on in a simple two-bus scenario,

whereas in SYSLAB the algorithm is tested with a larger distribution grid.

The guest research tasks were:

 Deploy existing control software in the SYSLAB laboratory,

 Run an experiment with external software estimating the LV grid topology in SYSLAB.

Motivation and Challenge

SYSLAB research laboratory is mainly used by resident researchers but also by external researchers for

testing their algorithms on a real distribution grid. Controllability and observability of the distribution

grid are the main advantages of SYSLAB. Measurements in SYSLAB are performed by DEIF MIC-2 multi-

instruments which offer readings with one second resolution. SYSLAB also features distributed SCADA

for data acquisition and control of the arbitrarily reconfigurable distribution grid topology. SYSLAB’s

software platform offers Java and MATLAB interfaces to all SYSLAB nodes for control applications.

The approach for topology identification and state estimation at hand was developed at TU Wien and

had already been tested in a two bus, single line topology at AIT SmartEST lab in Vienna, Austria. The

RTLabOS D3 - Feasibility Studies 43

existing implementation uses OPC UA as the low level interface on the agent side to communicate with

the laboratory equipment and OPC DA to communicate with the PowerFactory simulation environment.

The challenge for deploying this controller/state estimator in SYSLAB is to implement a client for the

interfaces existing in SYSLAB, to adjust the control system to the lab set-up, retrieve data and control

power system units.

Approach

The MAS-based control system identifies the grid topology using both local a-priori knowledge and real-

time measurement data of various properties (admittances, power flows, voltage phase angles). These

properties are subsequently tracked in order to detect topology changes and observe the grid state in a

more detailed way compared to state-of-the-art implementations. Furthermore, this additional level of

detail could be used for further optimization and diagnostic activities. Testing of the control approach

was performed on a three-bus topology to meet the validation requirements. To adapt the control

system for SYSLAB, the low-level part of the agents was extended with SYSLAB’s custom RMI interface in

order to communicate with the physical devices.

Figure 1: Experimental set-up.

Works Steps

Remote preparation:

Step 1. Design the experiment and SYSLAB set-up (based on information about SYSLAB facility

and available equipment)

Step 2. Adapt the MAS configuration to fit the SYSLAB power system set-up

Step 3. Agree on the date of the experiment with a technician and local experiment leader

Step 4. Reserve experimental facility SYSLAB with the lab manager

RTLabOS D3 - Feasibility Studies 44

On site preparation:

Step 5. Configure MAS to read SYSLAB measurements from the planned set-up

Step 6. Test data flow between the lab and the controller

Step 7. Configure MAS to control SYSLAB facilities

Step 8. Test control signal flow between the lab and the controller

Experiment:

Step 9. Run experiment in SYSLAB

Data gathering and analysis:

Step 10. Compare experimental data with grid measurements.

Step 11. Gather design and the obtained results into a scientific paper

Table 1: Duration of steps in full-time work days.

Step Duration Time Step Duration Time

1 2 Month 1 7 <1 Month 2

2 2 8 1

3 <1 9 2 Month 3

4 <1 10 1

5 3 Month 2 11 Planned for 15 Month 4

6 2

Results

Results are yet to be published and therefore no data can be presented at this point. The algorithm was

able to construct the complete topology SYSLAB topology based on local information. Using the various

electrical measurements, the line parameters subsequently could be successfully estimated. This

allowed for calculating precise power flows and also voltage angles, both representing information

about the grid which was generally not available in distribution grids up to this point.

Furthermore, the advantages of the topology identification and parameter estimation are

evident even without any measurement data, as it allowed already during the first test runs to

detect, track down and fix configuration errors in SYSLAB.

Lessons learned

 Step 5 was quite short as the main preparations took place in advance

 Step 6 took much longer time than anticipated as the lab measurements reading were not

configured correctly

 Step 10 have not been executed yet, it is planned to be around 3 weeks of work

RTLabOS D3 - Feasibility Studies 45

FS6 Adding OPC-UA interface to SYSLAB software platform

Author: Anna Magdalena Kosek

Goals

 add a OPC-UA compliant interface to a SYSLAB node

Motivation and Challenge

The SYSLAB experimental facility is required to support many interfaces. Standardised interfaces enable

use of the facility without specific preparation, it can be offered for companies as a test facility or an

experimental lab for external researchers. Implementation of custom interfaces is used to advance

international research and our knowledge in smart grid communication, data format and DER

representation. OPC UA is a well-established industrial standard applied mostly in automation domain.

OPC UA is not widely used for smart grid applications, but DTU can see a potential of researching its

usability for smart grid control and data acquisition.

Approach

In this work we extend SYSLAB software by adding OPC-UA client and server for a single power system

unit: controllable load. We are investigating:

 the usability of OPC UA standard to represent a controllable load in the power system,

 data representation for controllable load in the OPC UA server

 research in OPC-UA clients for SYSLAB:

o specific client to connect to a specific OPC UA server (designed in the first stage of this

work)

o OPC UA generic SYSLAB client, able to connect to all SYSLAB OPC UA servers and search

for the required power system unit (designed in the latter stage of this work)

o test new data retrieval and transport technology for SYSLAB

 Reuse existing SYSLAB components: Application Server and Device Proxy to add OPC UA

interface to a SYSLAB node

Works Steps

The work was performed by external researcher Alex Prostejovski, PhD at TU Wien and DTU researchers:

post-doc Anna Kosek and research assistant Bo Søborg Petersen.

Remote preparation:

Step 1. Design of OPC UA client and server architecture in SYSLAB. In the designed architecture
a SYSLAB node is equipped with an OPC UA server and any software that connects to the node is
required to run OPC UA specific client.

RTLabOS D3 - Feasibility Studies 46

Step 2. Joint design of OPC UA server on a single DER node in SYSLAB – controllable load. Both
internal and external researchers have contributed to the design. The OPC UA server was
consistent with RMI Server design, in order to get or set data a method need to be invoked. The
interface of the server and the client need to be identical. We have decided to keep the data
retrieval mechanism but change the transport technology to OPC UA. The way that the client is
used by SYSLAB users stays the same.

On site preparation:

Step 3. The external researcher was introduced to SYSLAB data exchange technology based on
RMI and SYSLAB node architecture. SYSLAB is designed to use may interfaces in parallel and
allows several implementations of data exchange and node control mechanisms.

Step 4. External researcher implements the OPC UA Server design on a virtual SYSLAB node. Any
SYSLAB node can be run on a local machine for testing purposes. In this case the poll server,
retrieving data from hardware, is run in simulation mode and is producing random or unit
simulation data useful for testing. This step is coordinated by the internal researcher, ensuring
that the implementation is correct and consistent with the SYSLAB design.

Step 5. External researcher implements OPC UA client based in the SYSLAB client design.
Step 6. The OPC UA server is tested with the OPC UA client on the controllable load virtual

SYSLAB node. The test includes test cases checking if RMI and OPC UA interfaces return the
same data.

Step 7. After successful tests on the virtual SYSLAB node, the real SYSLAB node is booked for
experimental tests, the proper operation of the controllable load is first checked to exclude all
hardware errors in the planned tests

Step 8. The OPC UA Server is deployed on the syslab-05 node, representing controllable load.
Step 9. Experimental setup is prepared in SYSLAB with a controllable load connected to the

SYSLAB substation powered from the national grid.

Experiment:

Step 10. The setup is tested with the OPC-UA server on the controllable load in SYSLAB and the
OPC-UA client on a remote machine within the SYSLAB network.

Data gathering and analysis:

Step 11. Compare experimental data with grid measurements, available from metering instruments
at the substation level.

Table1: Duration of steps in full-time man days

Step Duration Time Step Duration Time

1 2 Month 1 7 1 Month 3

2 2 8 3

3 1 Month 2 9 1

4 10 10 2

5 1 11 1

6 2 Month 3

RTLabOS D3 - Feasibility Studies 47

Results

 The obtained results have proven usability of OPC UA in the SYSLAB laboratory.

Lessons learned

The external researcher’s time in the lab was limited, therefore the implementation have only reached

step 4. The task was taken over by internal researcher. The duration of the task 4 includes introduction

to the project, design and implementation of the OPC UA interface.

It was proven that the implementation of OPC UA based on methods is possible, but both client and

server are very much dependent of the specification of the interface.

Future tasks include:

 design of the generic OPC UA SYSLAB client and server

 OPC UA implementation for all SYSLAB nodes

FS7 Service-based interface to SYSLAB components

Author: Anna Magdalena Kosek

Goals

 design and implement service-oriented interface for voltage control to SYSLAB nodes

 add an implementation of the service-based interface to a SYSLAB node

 reuse existing SYSLAB software components (virtual device, device proxy, application server) for

service discovery

Motivation and Challenge

The SYSLAB experimental facility is required to support many interfaces that include standardized

interfaces and custom made research interfaces testing new ways or representing and controlling

distributed energy resources in the smart grid domain. In this work we explore the usability of service-

oriented interfaces to a DER in an architecture expressed in SoaML (SOA modelling language).

Approach

We apply the model-based representation of the DER service, in this case voltage control, in a smart grid

scenario and reuse existing SYSLAB software components (virtual device, device proxy, plication server)

for service discovery.

RTLabOS D3 - Feasibility Studies 48

The voltage control service specification is taken form control algorithm proposed in [1]. In the proposed

architecture an aggregator controls and gathers state data from several DERs, the control objective is to

use active and reactive power to maintain voltage in the LV distribution grid.

Works Steps

Preparation:

Step 1. Adapt design of voltage control data exchange mechanism to fit SOA design. This

included designing consumer, producer and broker actors. There are two services available in

the proposed SOA architecture: active voltage control by active power (VCP) and by reactive

power (VCQ). The aggregator is represented as a consumer of these two services; a DER is a

producer of any number for the presented services. The broker is responsible for service

discover including interface discovery and service description discovery.

Step 2. Design interfaces between consumer, producer and broker

Step 3. Add service oriented interface to existing SYSLAB broker managing all available

interfaces. SYSLAB is designed to use may interfaces in parallel and allows several

implementations of data exchange and node control mechanisms. SYSLAB broker modification

steps were as follows:

Step 3.1. Create new SYSLAB VirtualDevice class to represent a producer

Step 3.2. Create producer class used by SYSLAB VirtualDevice

Step 3.3. Create new interface type in SYSLAB: Service-Oriented Interface

Step 3.4. Add interface configuration to modules.xml file to be executed by SYSLAB

ApplicationServer

Step 4. Create consumer agent discovering all available interfaces by connecting to SYSLAB

DeviceProxy

Step 5. Create service description in SoaML that will be exchanged between consumer and

broker to discover the functionality of the service and enable dynamic service composition.

Step 5.1. Define VCP and VCQ services in the SoaML using modelling language.

Step 5.2. Define service SoaML roles: providers of the VCP and VCQ services: called

ProviderP and ProviderQ; consumer called Aggregator

Step 5.3. Define interfaces between ProviderP, ProviderQ and Aggregator as designed in

step 2.

Step 5.4. Create service SoaML participants model for interactions between roles with

use of interfaces designed in step 5.4

Step 5.5. Create SoaML contract definition describing VCP and VCQ, and association of

ProviderP, ProviderQ and Aggregator and interfaces between these roles

Step 5.6. Create SoaML service messages and data models used to exchange information

between roles

Step 5.7. Create SoaML service choreography defining service protocols

Step 5.8. Create service architecture defining associations between contracts, services

and roles

RTLabOS D3 - Feasibility Studies 49

Step 6. Compile SoaML models to XMI format with use of Modelio SoaML modelling tool. XMI is

a machine readable format that can be used to interpret the service description.

Step 7. Implement service description exchange mechanism and XMI service description

interpretation in the customer. In the implementation done in this step the consumer only

compares the SoaML service architecture name and compares to the SoaML service architecture

supported by the client. The existing aggregator agent is activated by the consumer when the

match is found. The existing aggregator agent is responsible for the service composition and

execution. In the current version of the software the aggregator connects to all the services

found in SYSLAB described in the SoaML description.

Step 8. Implement SYSLAB virtual devices for a PV plant and a controllable load in SYSLAB.

Step 9. Test the entire set-up on two SYSLAB virtual nodes: PV and controllable load jointly. The

consumer and the aggregator is run on a separate machine in SYSLAB, all data exchange is

facilitated with existing SYSLAB ICT network.

Step 10. After successful tests on the virtual SYSLAB nodes, the real SYSLAB nodes are booked for

experimental tests, the proper operation of the controllable load and PV array is first checked to

exclude all hardware errors in the planned tests.

Step 11. The code developed in previous steps is deployed on syslab-05 (controllable load),

syslab-07 (PV) and syslab-ui5 node (consumer).

Step 12. Experimental set-up is prepared in SYSLAB with a controllable load and PV connected to
the SYSLAB substation powered from the national grid.

Experiment:

Step 13. The operation of the voltage control service is tested in SYSLAB with use of PV array,
controllable load and aggregator. This test checks the service discovery, composition and
operation, including data exchange and delivery of control commands.

Data gathering and analysis:

Step 14. Gather data from the experiment, analyze data and prepare a scientific paper.

Table1. Duration of steps in full-time man days

Step Duration Elapsed time Step Duration Elapsed time

1 3 Month 1 8 2 Month 3

2 1 9 1

3 10 10 2

4 1 11 2 Month 4

5 15 Month 2 12 3

6 1 13 4

7 1 Month 3 14 15

RTLabOS D3 - Feasibility Studies 50

Results

The results have been published as a conference paper:

Anna Magdalena Kosek and Oliver Gehrke, “Model-driven development of smart grid services

using SoaML”, The 40th Annual Conference of the IEEE Industrial Electronics Society, October

2014

Lessons learned

 Modelling and the service design have taken the most time of the preparation process.

 The Modelio tool was easy and intuitive to use, SoaML documentation and Modelio

online tutorial were very helpful.

 Virtual SYSLAB nodes were very useful for initial debugging and interface tests.

 The experiment itself does not take much time, only functional properties of the imple-

mentation have been tested.

 When designing and implementing interfaces, usually the main part of the task is

implementation. In this approach the time spend on implementation was shifted to

design and modelling stage, shortening the deployment tasks. The model of the

architecture can be communicated to other designers and software engineers and is a

formal representation of the ICT part of the investigated voltage control service.

[1] X. Han, A. Kosek, O. Gehrke, H. Bindner, and D. Kullmann from “Hierarchical Control

Architecture to Activate Distributed Energy Resources Services: Voltage Control as an

Application”, published in 2014 IEEE PES Transmission & Distribution Conference & Exposition

FS8 OpenADR support for SYSLAB

Author: Oliver Gehrke

Goals

 Enable support for the OpenADR 2.0 standard in SYSLAB. OpenADR has gained significant

traction as a communication standard for demand response (DR) applications, particularly in

North America. The second version of the standard (OpenADR 2.0, especially the 2.0b profile),

released in the beginning of 2014, provides a wider scope and much extended functionality

which makes OpenADR interesting for applications in the Danish (European) context as well.

RTLabOS D3 - Feasibility Studies 51

Integration into SYSLAB would allow the lab to serve as a test bed for future applications of

OpenADR in Denmark.

 Make FlexHouses OpenADR capable. Demand response services from buildings are the core

application of the OpenADR standard, although the potential exists for a broader range of

applications. The smart buildings ("FlexHouses") at the SYSLAB facility should therefore be the

first components to be interfaced.

 Investigate how OpenADR capabilities match smart grid needs in Denmark. OpenADR 1.0 was

originally developed to serve the specific needs of demand response in the context of the

Californian energy system. Since OpenADR 2.0 has received a much broader scope, it needs to

be clarified which applications are relevant in the Danish context.

Motivation and Challenge

The two key challenges to be considered for a SYSLAB integration - except for the actual implementation

work - are related to information modelling and protocol abstraction.

1. Mapping of information models. All DER components SYSLAB have an internal information

model which is strongly linked to that used in the (proprietary) SCADA communication within

the lab. One challenge is to find a seamless mapping of this information model to the one used

by OpenADR.

2. Mapping of control flow and data exchange patterns. OpenADR 2.0 supports both a push and a

pull pattern for each communication act ("service"). The 2.0b profile includes publish-subscribe

data exchange as an option for both parties, and has an explicit mechanism supporting the

registration of devices with their communication partners. The communication interfaces

implemented in SYSLAB at the time of the feasibility study were all using poll-based

communication (similar to the "pull" pattern) as opposed to event-based communication

(similar to the "push" pattern). While SYSLAB has a multi-protocol plugin framework for device

communication and a discovery mechanism ("Device proxy"), registration/discovery and device

communication are strictly separated mechanisms.

Approach

The planned approach for this study involved using or re-using as much of existing OpenADR code

(publicly available implementations / libraries) as possible, then developing a wrapper around these

existing components in order to adapt the information model and exchange patterns to those used in

SYSLAB/FlexHouses.

After integration with the FlexHouses, the implementation could then be used to test and/or

demonstrate the use of OpenADR in various scenarios / for various types of grid service investigated by

other Danish smart grid projects.

RTLabOS D3 - Feasibility Studies 52

Work Steps

Total duration of the work step (start to end) and effort (net time spent working on work step during

this period) are appended to each work step in the format [duration / effort].

 Use case definition: Screening of Danish smart grid projects with DTU involvement for demand

response use cases and implementations which could be relevant as test cases for this study. [2

days / 1 day]

 Screening of existing OpenADR libraries/implementations which are open-source and suitable

for the planned task. [2 days / 1 day]

 Trying to adapt existing libraries. The screening focused on implementations by EPRI and

EnerNOC, both of which were not optimal for the planned task: The EPRI implementation

consisted of a VEN client written in .NET (lack of platform-independence / difficult to deploy on

Linux platform used in SYSLAB) and a VTN server developed for large webserver deployment

(difficult to embed). The EnerNOC VEN and VTN only supported the OpenADR 2.0a profile

whereas the 2.0b profile is of most interest for applications in Denmark, and had been

developed as a mix of several languages. An attempt was made to port the EPRI VEN to Java but

was given up due to other disadvantages of that codebase (the EPRI VEN only implements the

mandatory HTTP transport; due to lack of separation in the code, a later addition of XMPP

transport would be difficult). [1 week / 1 week]

 Analysis of OpenADR standard for a clean implementation. It was decided to develop a new

implementation of OpenADR without the disadvantages of the existing ones: low dependencies,

embeddable, single language, cross-platform, designed to include HTTP as well as XMPP

transport, support for 2.0a and 2.0b profiles. The standard was analyzed and an architecture

developed. [1.5 weeks / 1 week]

 Two-layer API: As part of the analysis, it was noted that the existing libraries used the internal

data structures of OpenADR also for the external API. The OpenADR information model is

reasonably built but not particularly easy to use due to its complexity (deep data structures with

many items which are specific to some special cases), part of which is owed to the legacy of the

EnergyInterop standard on which it is built. It was decided to develop a wrapper API ("Simple

API for OpenADR") which would cover the majority of use cases with a simplified data model [2

weeks / 2 weeks]

 Implementation of OpenADR standard as a library [3 weeks / 3 weeks]

Results

The study yielded the following intermediate results:

 Despite the relative simplicity of the OpenADR standard, the threshold for the implementation

and use of OpenADR 2.0 is relatively high - there is a need for an easy-to-use, embeddable

library that could be integrated into existing infrastructures.

 There is significant potential for simplifying the use of OpenADR for most application cases by

mapping to an easier data model for the outside API.

RTLabOS D3 - Feasibility Studies 53

Lessons learned

The main lesson learned from this study is related to "open-source optimism": In a project like this

which is planning to make use of existing code and/or libraries, a survey of these existing components

should be part of the planning phase already. The lack of suitable existing components which surfaced

during the study could have been anticipated to some degree because the 2.0 version of the OpenADR

standard had not been released for a long time at the beginning of the study.

FS9 Cross-site data exchange via public whiteboard server

Author: Anders Thavlov

Goals

In a demonstration project Insero Software, an external collaboration partner to DTU, wanted to collect

active power measurements of an intelligent office building, i.e. PowerFlexHouse, which is acting as a

flexible load in the SYSLAB research facility. The measurements should be used to present the power

consumption of an aggregated portfolio of heat loads, using an aggregation infrastructure developed by

Insero Software themselves. Potentially, in the future, Insero Software also wanted to be able to control

the power consumption for heating and cooling in PowerFlexHouse. However, at time of

implementation, Insero Software did not wanted to control appliances in PowerFlexHouse, but only

collect power measurements. Thus, the set-up only includes a one-directional exchange of data, i.e.

from within the laboratory to the Insero Software server, which is running the aggregator; however, we

wanted to enable possible two-directional communication with the aggregator. Consequently, the goal

is to:

Develop a software tool that can facilitate a two-directional exchange of data, between facilities within

the SYSLAB facility and the Insero Software server over a public Internet connection.

Motivation and Challenge

The key challenge in this feasibility study was to enable communication of data from inside the SYSLAB

lab network to the Insero Software aggregator software, which was acting in the public Internet domain.

All communication from the outside into the SYSLAB network is blocked by multiple firewalls, thus

making a simple solution for direct communication with the aggregator impossible, if ignoring advanced

solutions like VPN or other tunneling technologies, e.g. SSH. Instead, we wanted to develop a software

infrastructure that can convey, i.e. push, data out of SYSLAB and store the data on a public accessible

server, denoted a whiteboard server in the following. Furthermore, we wanted to develop a solution

that can handle two-directional data transfer, which was a future ambition of the collaboration with

Insero Software.

RTLabOS D3 - Feasibility Studies 54

Approach

Typically, controlling software is running within the lab domain and hence will be able to communicate

directly with all lab entities. However, for controlling software running outside the lab, this is not the

case. To bypass the firewalls, which are blocking data transfer into the SYSLAB communication network,

we will develop a small software program that will run inside the lab and push data out to a public

accessible server. The program will retrieve power measurements from an electricity meter and write

the data to the whiteboard server.

The whiteboard server was implemented as two simple PHP scripts, which are executed on the

whiteboard server. Data to be pushed to the server is simply added as a query string, which is containing

a key value pair, to the URL of the PHP script (setter-method). The key value pair is stored on the server

and can be retrieved again by calling another PHP script (getter-method). Moreover, a time stamp and

an identifier of who wrote the last reading are stored with the key value pair. Using this approach,

implementation of clients that are communicating with the server, is language non-specific and could be

carried out in virtually any scripting or programming language.

Works Steps

Following work steps have been identified for this feasibility study:

 Together with the external partner, develop a list of parameters to be exchanged via the

whiteboard server comprising,

o Unique identifiers, i.e. keys.

o Units of values.

o Update frequency for parameters.

 Obtain access to a public accessible PHP server.

 Develop PHP scripts for getter- and setter-methods.

 Deploy scripts on the server.

 Extend existing lab software or SCADA system to push data to the whiteboard server.

Finally, the external partner should develop a whiteboard client that reads data from the whiteboard

server.

All in all, the workload of implementing the whiteboard server, including the SCADA extension but

excluding the client implementation, took less than five workdays.

Results

The PHP scripts on the whiteboard server have been successfully implemented and have shown to be an

efficient, stable and simple solution to communicate data across the firewalls of a lab network.

Furthermore, it has been demonstrated that data can be pushed to the whiteboard server at a

frequency down to the one second range; however, depending on the application of interest, data

should ideally be pushed to the server at a lower frequency.

RTLabOS D3 - Feasibility Studies 55

Lessons learned

Implementing the whiteboard server, as proposed in this study, took considerable less time compared

to what was expected; all things considered, the implementation of the two PHP scripts took less than a

day. Consequently, a whiteboard server approach is recommended as an easy implementable solution

to communicate across lab firewalls; however, it should be noted that aspects of cyber security have not

been considered in this project, why sensitive data should not be exchanged via a whiteboard server.

