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HELMHOLTZ BOUNDARY PROBLEMS
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(Communicated by Richard Rochberg)

ABSTRACT. We relate the domains of analytic continuation of Dirichlet and Neumann
boundary data for Helmholtz problems in two or more independent variables. The domains
are related à priori, locally and explicitly in terms of complex polyrectangular neighbour-
hoods of planar pieces of the boundary. To this end we identify and characterise a special
subspace of the standard pseudodifferential operators with real-analytic symbols. The re-
sult is applicable in the estimation of the domain of analytic continuation of solutions
across planar pieces of the boundary.

1. INTRODUCTION

For a second-order elliptic boundary problem in two or more independent variables,
with only the Dirichlet or the Neumann condition specified, to what subset of the com-
plexified boundary can the missing Cauchy datum be continued analytically? In view of
existence results such as the theorem of Cauchy-Kovalevsky [5, Theorem 9.4.5], or the
propagation of singularities of solutions to the analytic Cauchy problem [24], this question
is central in the à priori estimation of the domain of analytic continuability of solutions
across the boundary. This, in turn, is applicable, e.g., in the stability and convergence anal-
ysis of ’interior source methods’, which is a family of promising numerical methods for
direct and inverse elliptic boundary problems [2, 3, 8, 9, 10, 11].

In Millar [14, 15, 16, 17, 18, 19, 20, 21, 22], boundary integral representations of the
solution are used to relate the Cauchy data, and the domain of analytic continuability of
the missing boundary datum is estimated globally, essentially by analytic continuation of
the integrals to complex space. This is done for general linear, elliptic, second-order, ana-
lytic, exterior boundary problems in two independent variables and with piecewise analytic
boundary in [18], for such interior and exterior problems with analytic boundary in [21],
as well as for exterior three-dimensional Helmholtz problems in a half-space [19] or with
axisymmetric boundary [20]. Another global approach can be found in Section 4 of Sternin
and Shatalov [25], for three-dimensional Helmholtz problems with Neumann datum given
on an algebraic surface; see Sternin and Shatalov [24] for a more general treatment. More
recently, Kangro, Kangro and Nicolaides [23] proposed a local approach to the à priori
analytic continuation of solutions of two-dimensional Dirichlet boundary problems for the
Helmholtz equation across analytic pieces of the boundary. Implicit in the method (see
the comment immediately after Lemma 1 on p. 594 of [23]) is a regularity result regard-
ing the missing Neumann datum, given essentially as follows: if both a parametrisation
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2 M. KARAMEHMEDOVIĆ

of the considered piece of the boundary and the (localised) Dirichlet datum can be an-
alytically continued to a complex rectangle {t+ iη ∈ C, t ∈ [a, b], η ∈ [−c, c]}, then so
can the missing (localised) Neumann datum. Kangro and Kangro [7] suggest a method
analogous to that of [23] to handle locally the analytic continuation of solutions to three-
dimensional Dirichlet problems for the Helmholtz equation across planar pieces of the
boundary. There, they propose that if the Dirichlet datum can be analytically continued to
the complex polyrectangle

{(x+ iξ1, y + iξ2), x ∈ [a1 − 2r, a1 + 2r], y ∈ [a2 − 2r, a2 + 2r], ξ1, ξ2 ∈ [−r, r]}

in C2, then the missing Neumann datum is analytically continuable to the set{
(x+ iξ1, y + iξ2), x ∈ [a1 − r, a1 + r], y ∈ [a2 − r, a2 + r], ξ21 + ξ22 ≤ r2

}
.

The method of [23, 7] is, in principle, extendible to higher dimensions. However, as stated
on p. 592 of [23], ’[. . . ] in more than two dimensions the computations become quite
involved.’

We here estimate the domain of analytic continuation of the missing Cauchy datum
on open planar subsets of the boundary for Dirichlet and Neumann problems for the
Helmholtz equation in n + 1 independent variables, for any n ∈ N. The analysis is à
priori (that is, it does not require a solution of the boundary problem) and local, and in
particular it uses no information about the boundary or about the Cauchy data outside the
planar subset. To prove the main result, we identify and characterise a special subspace
of the standard pseudodifferential operators on Rn × Rn. The standard pseudodifferential
operators are described, e.g., in Chapter XVIII of Hörmander [6]. The remainder of this
section contains some notational conventions, a precise statement of the main result, and
an overview of the rest of the paper.

In the following, n is a fixed positive integer. A function f defined on an open subset
Ω of Rn, or of Cn, is here said to be real-analytic in Ω, respectively analytic in Ω, if for
every point x in Ω there is a nonempty neighbourhood of x (in Rn or Cn, respectively,) in
which the Taylor series of f about x is convergent and agrees with f . Elements z of Cn
are written (z1, . . . , zn), and we adopt the notation z(j) = (z1, . . . , zj−1, zj+1, . . . , zn).
Multiindices are understood to be n-tuples of nonnegative integers. For every multiindex
α, the convention is that |α| =

∑
αj . The operator ∆ is the Laplacian on Rn+1, ∆ =∑n+1

j=1 ∂
2
j , and ∆ + k2 is the Helmholtz operator on Rn+1. The constant k is assumed

positive. Finally, L (A,B) is the vector space of continuous linear maps from A to B.
Now fix n-tuples a, b−, b+ ∈ ]0,∞]n, write τ(a) =

∏n
j=1 ] − aj , aj [, and define the

open complex polyrectangle

T (a, b±) =
{
z ∈ Cn, Re z ∈ τ(a), Im z ∈

n∏
j=1

]− b−j , b
+
j [
}
.

Fix l ∈ {0, 1} and λ > 0, and assume u ∈ C1
(
τ(a)× [0, λ]

)
satisfies

(∆ + k2)u = 0 in τ(a)×]0, λ[;

lim
xj→±aj

∂rju(·, 0) analytically continuable to T (a(j), b
±
(j)) and in C1(T (a(j), b

±
(j)))

for r = 0, 1, j = 1, . . . , n;

lim
xn+1↗λ

∂rn+1u analytically continuable to T (a, b±) and in C1(T (a, b±)), r = 0, 1;
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Ul := lim
xn+1↘0

∂ln+1u analytically continuable to T (a, b±) and in C1(T (a, b±)).

The C1 regularity above is meant as one-sided, from the interior of the domain, and in
the case of traces of the solution u, it is understood w.r.t. the variables Re zj , Im zj . The
function Ul is the given boundary datum on τ(a). The main result here is the following.

Theorem 1.1. The missing boundary datum U1−l = limxn+1↘0 ∂
1−l
n+1u is analytically

continuable to each complex polyrectangle T (ã, b̃±) with

ãj ∈ ]0, aj [ and b̃±j ∈ ]0,min
{
aj − ãj , b±j

}
[ , j = 1, . . . , n.

The Helmholtz operator is invariant under translation and rotation in Rn+1. Therefore,
the setup of Theorem 1.1 can, without loss of generality, be understood as the localisation
of a Helmholtz boundary problem about a point of the boundary where the latter is a subset
of a hyperplane. The functions U0 and U1 are localisations of the corresponding Dirichlet
and Neumann boundary datum, respectively.

The rest of this paper is organised as follows. In Section 2, we show a mapping prop-
erty of a subspace of the standard pseudodifferential operators that are specially suited for
a proof of Theorem 1.1. That section is inspired in part by the analysis of Boutet de Mon-
vel [1]. Section 3 contains a proof of Theorem 1.1 and involves the development on pp.
109-110 of Section 18.2 and pp. 232–236 of Section 20.1 in Hörmander [6]. Finally, in
Section 4, we comment on the generalisation of Theorem 1.1.

2. A MAPPING PROPERTY OF
CERTAIN STANDARD PSEUDODIFFERENTIAL OPERATORS

Throughout this section, m is a real.

2.1. The space Sm,εr−a of real-analytic symbols. The pseudodifferential symbols used in
the proof of Theorem 1.1 are functions of only the cotangent variables in T ∗Rn. Recall
that a function p is in the standard symbol space Sm(Rn) if and only if p ∈ C∞(Rn) and
for each multiindex α ∈ Nn0 there is a constant Cα satisfying

(2.1) |∂αp(ξ)| ≤ Cα(1 + |ξ|)m−|α|, ξ ∈ Rn.

In the following, we write Sm for Sm(Rn). Also, S−∞ =
⋂
µ∈R S

µ. With α ∈ Nn0 ,
the map taking each p ∈ Sm to the smallest number Cα that satisfies (2.1) is a semi-
norm on Sm; write ‖ · ‖(m)

α for this seminorm. The space Sm is now equipped with the
corresponding ’natural topology’ Tm: the coarsest topology on Sm in which all the semi-
norms ‖ · ‖(m)

α , α ∈ Nn0 , are continuous, and in which the addition is continuous. Chapter
XVIII of Hörmander [6] contains a treatment of the standard pseudodifferential symbols
and operators.

Fix R ≥ 0 and ε ∈ ]0, 1[, and let

Kε = {ζ ∈ C, |Im ζ| < ε|Re ζ| if |Re ζ| > R, Im ζ = 0 otherwise}.

That a function p is ’analytic on Kn
ε ’ means in the following that for any j ∈ {1, . . . , n}

and any ζ(j) = (ζ1, . . . , ζj−1, ζj+1, . . . , ζn) ∈ Kn−1
ε , the function ζj 7→ p(ζ1, . . . , ζn) is

analytic on the interior K◦ε .

Definition 2.1. A function p is an element of the set Sm,εr−a if p ∈ Sm, p is analytic on Kn
ε ,

there is a nonnegative C such that

(2.2) |p(ζ)| ≤ C(1 + |Re ζ|)m, ζ ∈ Kn
ε ,
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and
∑
α∈Nn0

‖p‖(m)
α ε|α|/α! <∞. Also, S−∞,εr−a =

⋂
µ∈R S

µ,ε
r−a.

Sm,εr−a is a vector subspace of the space Sm of standard pseudodifferential symbols. The
map taking each p ∈ Sm,εr−a to the smallest number C satisfying (2.2) is a norm on Sm,εr−a ;
write ‖ ·‖(m)

∗ for this norm and Tm∗ for the corresponding open ball topology on Sm,εr−a . The
natural topology Tmrel on Sm,εr−a is that induced by Tm, and it is in particular generated by
the sets

{p ∈ Sm,εr−a , ‖p− q‖(m)
α < t}, α ∈ Nn0 , t > 0, q ∈ Sm.

Lemma 2.2. Tmrel is stronger than Tm∗ .

Proof. Fix p ∈ Sm,εr−a and δ > 0. Given ζ ∈ Kn
ε with ζj ∈ [−R,R] for j ∈ I ⊆ {1, . . . , n},

and Re ζj > R for j ∈ J = {1, . . . , n} \ I , Taylor’s formula implies, with ξ = Re ζ and
η = Im ζ,

|p(ζ)| =
∣∣∣ ∑
α∈N|J|0

1

α!
∂αξJp(ξ)(iηJ)α

∣∣∣ ≤ ∑
α∈Nn0

‖p‖(m)
α

α!
(1 + |ξ|)m−|α|ε|α|(1 + |ξ|)|α|.

Since
∑
α∈Nn0

‖p‖(m)
α ε|α|/α! =

∑
|α|≤µ ‖p‖

(m)
α ε|α|/α!+

∑
|α|>µ ‖p‖

(m)
α ε|α|/α! <∞ for

µ ∈ N0, there is a natural µ and a positive t such that the open ball {‖p‖(m)
∗ < δ} ∈ Tm∗

includes the set ⋂
|α|≤µ

{‖p‖(m)
α < t} ∈ Tmrel.

�

2.2. Real-analytic operators. Here we use the symbols in Sm,εr−a to define a family of
operators. The operators are expressed in terms of integrals over certain complex contours
in Cn × Cn, described first.

Let a, a′, b−, b+ and c be n-tuples of elements of ]0,∞] such that a′j < cj < aj and
max{b−j , b

+
j } < ε(cj − a′j) for each j = 1, . . . , n. Let χj be a ’window function’ in

C∞0 (R) satisfying

χj(t) = 1, |t| ≤ cj ,
χj(t) ∈ ]0, 1[ , cj < |t| < aj ,

χj(t) = 0, |t| ≥ aj .
With R a positive constant, let ψ ∈ C∞(R) be an even ’excision function’ satisfying

ψ(t) = 1, |t| ≥ 2R,

ψ(t) ∈ ]0, 1[ , R < |t| < 2R,

ψ(t) = 0, |t| ≤ R.
Also, let for j = 1, . . . , n and for all real t and t′:

sj(t, t
′) = −χj(t)ψ(t′)b− sgn t′

j sgn t′,

ηj(t, t
′) = (χj(t)− 1)ψ(t′)b− sgn t′

j |t′|/(cj − a′j) sgn t.

Fix an odd positive integer N , write

s(y, ξ) = (s1(y1, ξ1), . . . , sn(yn, ξn)) and η(y, ξ) = (η1(y1, ξ1), . . . , ηn(yn, ξn))

for all y and ξ in Rn, introduce the map

σ : [0, 1]× Rn × Rn → C2n
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by
σ(t, y, ξ) =

(
y + itNs(y, ξ), ξ + itNη(y, ξ)

)
,

and define the corresponding family of complex contours by

Ct = σ(t,Rn × Rn), t ∈ [0, 1].

As shown in the proof of Theorem 2.6 below, the mapping Rn ×Rn 3 (y, ξ) 7→ σ(t, y, ξ)
is orientation-preserving for each fixed t ∈ [0, 1]. Every contour Ct is in the following
given the orientation induced by its parametrisation σ(t, ·, ·).

Remark 2.3. We construct the contours Ct such that the function C2n 3 (w, ζ) 7→ |eiζ(z−w)|
is decreasing with respect to |ξj | = |Re ζj | when t ∈ ]0, 1[ , (w, ζ) ∈ Ct, z ∈ T (a′, tNb±)
and |ξj | ≥ 2R. Indeed, we have in this case that (yj − Re zj) sgn yj/(cj − a′j) ≥ 1 when
χj(yj)− 1 6= 0, as well as that ψ(ξj) = 1, so

Re iζj(zj − wj) = (tNsj − Im zj)ξj + (yj − Re zj)tNηj

= −|ξj |(Im zj sgn ξj + tNχjb
− sgn ξj
j ) + tN |ξj |b

− sgn ξj
j (χj − 1)

yj − Re zj
cj − a′j

sgn yj

≤ −|ξj |(Im zj sgn ξj + tNb
− sgn ξj
j ),

and it is readily verified that Im zj sgn ξj + tNb
− sgn ξj
j > 0. Note that, furthermore,

χj(yj) = 1 implies Re iζj(zj − wj) = −|ξj |(Im zj sgn ξj + tNb
− sgn ξj
j ), which is neg-

ative only if Im zj ∈ ] − tNb−j , t
Nb+j [. Finally, if χj(yj) < 1 and Im zj = 0, then

Re iζj(zj − wj) = −|ξj |tNb
− sgn ξj
j (χj + (1 − χj)(yj − zj) sgn yj/(cj − a′j)), which

is negative if and only if zj ∈ ]− cj , cj [.

The real-analytic operators of this section are constructed to map to and from the fol-
lowing spaces of functions.

Definition 2.4. The space O(a′, b±) consists precisely of those functions that are ana-
lytic on T (a′, b±). The elements of the space Õ(a, b±) are functions that are analytic on
T (a, b±), C1 w.r.t. Re zj and Im zj on the closure T (a, b±) and that vanish on Rn \ τ(a).

We equip the space O(a′, b±) with the topology of uniform convergence on compact
subsets of T (a′, b±), and the space Õ(a, b±) with the topology induced by the usual C1,α

norm

‖u‖ =
∑
β∈N2n

0

|β|≤1

(
‖∂βRe z,Im zu‖L∞(T (a,b±))

+ sup
T (a,b±)

|∂βRe z,Im zu(x)− ∂βRe z,Im zu(y)|
|x− y|α

)

for some α ∈]0, 1[. It is well-known that O(a′, b±) is then Fréchet and Õ(a, b±) is Banach.
The spaces

L
(
Õ(a, b±), L∞(τ(c))

)
and L

(
Õ(a, b±),O(a′, b±)

)
of continuous linear mappings are equipped with the corresponding topologies of bounded
convergence and are thus made locally convex (see pp. 131-133 of Köthe [12].) In partic-
ular, the topologies on these spaces are defined by the systems of seminorms

‖Q‖W = sup
u∈W

‖Qu‖L∞(τ(c))
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and
‖Q‖W,κ = sup

u∈W
sup
z∈κ
|Qu(z)|,

respectively, where W is a bounded subset of Õ(a, b±) and κ is a compact subset of
T (a′, b±). Since Õ(a, b±) is normed and L∞(τ(c)) is Banach, L

(
Õ(a, b±), L∞(τ(c))

)
is complete.

Definition 2.5. For every symbol p in Sm,εr−a , OP(p) is the operator on Õ(a, b±) given by
(2.3)

OP(p)u(z) = (2π)−n
∫
(w,ζ)∈C1

eiζ(z−w)p(ζ)u(w), z ∈ T (a′, b±), u ∈ Õ(a, b±).

Theorem 2.6. The maps

OP : Sm,εr−a → L
(
Õ(a, b±), L∞(τ(c))

)
and

OP : Sm,εr−a → L
(
Õ(a, b±),O(a′, b±)

)
are linear and continuous when Sm,εr−a is equipped with the natural topology Tmrel.

Furthermore, if p ∈ S−∞,εr−a , u ∈ Õ(a, b±) and x ∈ τ(a′), then

(2.4) OP(p)u(x) = (2π)−n
∫
(y,ξ)∈C0

eiξ(x−y)p(ξ)u(y).

Proof. Let δKr be the ’Kronecker delta’; that is, for all integers j, l set δKr
j,l = 0 if j 6= l and

δKr
j,l = 1 if j = l. For all j, l = 1, . . . , n and all (t, y, ξ) ∈ ]0, 1]× Rn × Rn, we have

(2.5)

{
∂tσl(t, y, ξ) = −iNtN−1χl(yl)ψ(ξl)b

− sgn ξl
l sgn ξl,

∂tσl+n(t, y, ξ) = iNtN−1(χl(yl)− 1)ψ(ξl)b
− sgn ξl
l |ξl| sgn yl/(cl − a′l),

(2.6)

{
∂yjσl(t, y, ξ) = δKr

j,l

(
1− itNχ′j(yj)ψ(ξj)b

− sgn ξj
j sgn ξj

)
,

∂yjσl+n(t, y, ξ) = itNδKr
j,lχ
′
j(yj)ψ(ξj)b

− sgn ξj
j |ξj | sgn yj/(cj − a′j),

and
(2.7)∂ξjσl(t, y, ξ) = −itNδKr

j,lχj(yj)ψ
′(ξj)b

− sgn ξj
j sgn ξj ,

∂ξjσl+n(t, y, ξ) = δKr
j,l

(
1 + itN (χj(yj)− 1)b

− sgn ξj
j sgn yj

ψ′(ξj)|ξj |+ψ(ξj) sgn ξj
cj−a′j

)
.

Thus, for each t ∈ ]0, 1], the Jacobi determinant of the mapping (y, ξ) 7→ σ(t, y, ξ) is at
most polynomially increasing with respect to |ξ1|, . . . , |ξn|, and, in view of Remark 2.3,
the function (w, ζ) 7→ eiζ(z−w)p(ζ)u(w) is absolutely integrable over the contour Ct when
z ∈ τ(c) or z ∈ T (a′, tNb±), as well as t ∈ ]0, 1], p ∈ Sm,εr−a and u ∈ Õ(a, b±). In
particular, we have for all p ∈ Sm,εr−a and u ∈ Õ(a, b±) that

|OP(p)u(z)| ≤ C(z)‖p‖(m)
∗ ‖u‖, z ∈ τ(c) ∪ T (a′, b±),

where

C(z) =

∫
(y,ξ)∈τ(a)×Rn

(1 + |ξ|)m
∣∣∣eiζ(z−w) det dy,ξσ(1, y, ξ)

∣∣∣ , z ∈ τ(c) ∪ T (a′, b±),
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is a continuous function independent of p and u (see part (a) of Theorem (2.27) on p. 54
in Folland [4]). Thus the linear map OP(p) : Õ(a, b±) → L∞(τ(c)) is continuous when
p ∈ Sm,εr−a . Also, there is a nonnegative constant C such that, for all p ∈ Sm,εr−a and every
bounded subset W of Õ(a, b±),

sup
u∈W

‖OP(p)u‖L∞(τ(c)) ≤ (C sup
u∈W

‖u‖)‖p‖(m)
∗ ,

so the linear map OP : Sm,εr−a → L
(
Õ(a, b±), L∞(τ(c))

)
is continuous w.r.t. the open

ball topology Tm∗ on Sm,εr−a , and hence it is also continuous w.r.t. the stronger topology Tmrel.
For each j = 1, . . . , n and each z ∈ T (a′, b±) we have (see part (b) of Theorem (2.27)

in [4])

(2π)n∂zjOP(p)u(z) = ∂zj

∫
C1

eiζ(z−w)p(ζ)u(w) =

∫
C1

∂zje
iζ(z−w)p(ζ)u(w) = 0.

Furthermore, for every p ∈ Sm,εr−a and every compact subset κ of T (a′, b±), there exists a
positive Cκ, depending only on κ, such that

sup
z∈κ
|OP(p)u(z)| ≤ (Cκ‖p‖(m)

∗ )‖u‖

for all u ∈ Õ(a, b±), and the linear map OP(p) : Õ(a, b±) → O(a′, b±) is continuous.
Finally, for every bounded subset W of Õ(a, b±) and every compact subset κ of T (a′, b±)
we have

sup
u∈W

sup
z∈κ
|OP(p)u(z)| ≤ (Cκ sup

u∈W
‖u‖)‖p‖(m)

∗ , p ∈ Sm,εr−a ,

so the linear map

OP : Sm,εr−a → L
(
Õ(a, b±),O(a′, b±)

)
is continuous w.r.t. the topology Tm∗ , and hence also w.r.t. Tmrel. This finishes the proof of
the first part of Theorem 2.6.

We now prove the validity of (2.4) using Stokes’s theorem. Fix ρ > R and write

Dρ = ]0, 1[×τ(a)× ( ]− ρ, ρ[ n \ [−R,R]n),

as well asMρ = σ(Dρ). The setMρ is included in T (a, b±)×Kn
ε , since for each t ∈ ]0, 1[ ,

j = 1, . . . , n, yj ∈ R and ξj ∈ R we have tNsj(yj , ξj) ∈ [−tNb−j , tNb
+
j ] ⊂ ] − b−j , b

+
j [,

as well as |tNηj(yj , ξj)| ≤ tN |ψ(ξj)| · |ξj |b
− sgn ξj
j /(cj − a′j), with b− sgn ξj

j /(cj − a′j) <
ε. The closure Dρ is a compact, smooth and oriented 2n + 1-manifold with corners,
and the map σ is smooth and injective on an open neighbourhood of Dρ. The injectivity
follows from the fact that the functions s and η are real-valued, and N is odd. Indeed,
if y + itNs(y, ξ) = ỹ + it̃Ns(ỹ, ξ̃) and ξ + itNη(y, ξ) = ξ̃ + it̃Nη(ỹ, ξ̃), then y = ỹ

and ξ = ξ̃, and hence t = t̃. It is here of interest to study the rank of σ and of some of
its restrictions. The matrices (Re ∂yjσl)l,j and (Re ∂ξjσl+n)l,j are the identity matrix, and
the matrices (Re ∂ξjσl)l,j and (Re ∂yjσl+n)l,j are the zero matrix, so for every t in an open
neighbourhood of [0, 1] the Jacobian of the map (y, ξ) 7→ σ(t, y, ξ) has rank 2n, and each
contour Ct,ρ = σ(t, τ(a)× ] − ρ, ρ[ n), t ∈ [0, 1], is a 2n-dimensional immersed smooth
submanifold of C2n. For each (t, y, ξ) in Dρ, the quantity ∂tσ(t, y, ξ) is nonzero and
purely imaginary, since |ξl| > R for some l = 1, . . . , n, and since χl(yl) and χl(yl) − 1
are never both zero. Thus, the Jacobian of the map σ has full rank on Dρ, so σ is an
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injective immersion there and the set Mρ is a smooth, (2n + 1)-dimensional immersed
submanifold of C2n. Similarly, each element of the contour

D±j,ρ = σ
(

]0, 1[×τ(a)×
{
ξl ∈ ]− ρ, ρ[ for l 6= j, ξj = ±ρ

})
, j = 1, . . . , n,

is a 2n-dimensional immersed smooth submanifold of C2n.
The map σ induces an orientation on Mρ, where the ordered basis of TMρ given by

(dσ d
dt , dσ∂y1 , . . . , dσ∂yn , dσ∂ξ1 , . . . , dσ∂ξn) is positively oriented. The restrictions of σ

to the sets σ−1(C1,ρ), σ−1(D+
j,ρ) with j + n even, as well as σ−1(D−j,ρ) with j + n odd,

preserve the Stokes orientation of the corresponding contours C1,ρ, D+
j,ρ (j + n even) and

D−j,ρ (j + n odd). The restrictions of σ to the sets σ−1(C0,ρ), σ−1(D+
j,ρ) with j + n odd,

as well as σ−1(D−j,ρ) with j + n even, reverse the Stokes orientation of the corresponding
contours C0,ρ, D+

j,ρ (j + n odd) and D−j,ρ (j + n even). Furthermore, there is an open
neighbourhood N of τ(a)× ([−ρ, ρ]n\ ]−R,R[ n) such that, for all j = 1, . . . , n,

dσj = iNtN−1sjdt+ (1 + itN∂yjsj)dyj + itN∂ξjsjdξj and

dσn+j = iNtN−1ηjdt+ itN∂yjηjdyj + (1 + itN∂ξjηj)dξj

when (t, y, ξ) ∈ ]0, 1[×N . The restrictions of the forms dyj and dξj to those subsets of
∂Dρ where yj or ξj is constant, respectively, are identically zero. Since sj(yj , ξj) and
∂ξjsj(yj , ξj) equal zero when |yj | = aj , the restriction of dσj to any subset of ∂Dρ where
t ∈ ]0, 1[ and |yj | = aj is identically zero. Also, since ηj(yj , ξj) and ∂yjηj(yj , ξj) equal
zero when |ξj | = R, the restriction of dσn+j to any subset of ∂Dρ where t ∈ ]0, 1[ and
|ξj | = R is identically zero. Finally, each component of the boundary ∂Dρ where two or
more of the quantities t, y1, . . . , yn, ξ1, . . . , ξn are constant has dimension less than 2n, so
restrictions of differential 2n-forms to such components of ∂Dρ are identically zero.

Now fix p ∈ S−∞,εr−a , u ∈ Õ(a, b±) and x ∈ τ(a′). The function

G(w, ζ) = eiζ(x−w)p(ζ)u(w)

is analytic on T (a, b±)×Kn
ε , so the associated complex 2n-form

µ = Gdw1 ∧ · · · ∧ dwn ∧ dζ1 ∧ · · · ∧ dζn = Gdw ∧ dζ

is closed there:

dµ =

n∑
j=1

(
∂wjGdwj + ∂wjGdwj + ∂ζjGdζj + ∂ζjGdζj

)
dw ∧ dζ = 0.

Also, the form σ∗µ = (G ◦ σ)dσ1 ∧ · · · ∧ dσ2n is C1 on the closure Dρ, so

(2.8)
∫
Mρ

dµ =

∫
Dρ

σ∗dµ =

∫
Dρ

dσ∗µ =

∫
∂Dρ

σ∗µ,

where the last equality follows from Stokes’s theorem on manifolds with corners, given,
e.g., as Theorem 14.20 on p. 367 in Lee [13]. Since C0,ρ and C1,ρ both include the set
τ(a)× [−R,R]n but have mutually opposite Stokes orientation, (2.8) implies
(2.9)∫

C1,ρ

µ−
∫

C0,ρ

µ+
∑

1≤j≤n
j+n even

(∫
D+
j,ρ

µ−
∫

D−j,ρ

µ

)
+

∑
1≤j≤n
j+n odd

(∫
D−j,ρ

µ−
∫

D+
j,ρ

µ

)
= 0.
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For t ∈ {0, 1} we have∫
Ct,ρ

µ =

∫
C0,ρ

σ(t, ·)∗µ =

∫
(y,ξ)∈C0,ρ

G ◦ σ(t, y, ξ) det(dy,ξσ(t, y, ξ))dy ∧ dξ

=

∫
(y,ξ)∈C0,ρ

G ◦ σ(t, y, ξ) det(dy,ξσ(t, y, ξ)) =

∫
Ct,ρ

G.

The function G is absolutely integrable over C0 since C0 = Rn × Rn, p ∈ S−∞, and
u ∈ L∞(Rn) is compactly supported. In view of the discussion near the beginning of
this proof, the function G is thus absolutely integrable over each contour Ct, t ∈ [0, 1].
Therefore, in particular,

lim
ρ→∞

∫
C0,ρ

G =

∫
C0

G and lim
ρ→∞

∫
C1,ρ

G =

∫
C1

G.

It remains to estimate the integrals over the contours D±j,ρ in (2.9). Using repeated integra-
tion by parts, we first note that, for each ν ∈ N0 and ρ > 1,∫ 1

t=0

tN−1+νe−t
Nρb

− sgn ξj
j = O(ρ−N−ν).

As seen from (2.5)–(2.7), the Jacobi determinant of the restriction of σ to σ−1(D±j,ρ) is
a polynomial in the variables t, |ξ1|, . . . , |ξj−1|, |ξj+1|, . . . , |ξn|. The first column of the
Jacobian is proportional to tN−1, so each term of the determinant is of order at least N −1
w.r.t. t. Write M ′ for the maximal order of the Jacobi determinant w.r.t. the variables
(|ξ1|, . . . , |ξj−1|, |ξj+1|, . . . , |ξn|). There are constants

M ∈ N0,

C ′, C ′′ ∈ R, and
Cν,α ∈ R for ν = 0, . . . ,M, α ∈ Nn−10 , |α| ≤M ′,

such that for all ρ > 1∣∣∣∣∣
∫

D±j,ρ

µ

∣∣∣∣∣ ≤
M∑
ν=0

∑
α∈Nn−1

0

|α|≤M ′

Cν,αρ
|α|
∫
σ−1(D±j,ρ)

tN−1+ν |G ◦ σ|

≤ C ′‖p‖(m)
0 ‖u‖ρM

′
(1 + ρ

√
n)|m|

M∑
ν=0

∫ 1

t=0

tN−1+νe−t
Nρb

− sgn ξj
j

×
∏
l 6=j

∫ ρ

ξl=−ρ
e−t

N |ξl|b
− sgn ξl
l ψ(ξl)

≤ C ′′ρM
′+|m|

M∑
ν=0

∫ 1

t=0

tN−1+νe−t
Nρb

− sgn ξj
j · (2ρ)n−1

= O(ρM
′+|m|+n−1−N ),

and, in conclusion, limρ→∞
∫

D±j,ρ
µ = 0 for sufficiently large N . This completes the proof

of the second part of Theorem 2.6. �

For p ∈ S−∞, the operator P(p) is defined on Õ(a, b±) by

P(p)u(x) = (2π)−n
∫∫

(y,ξ)∈Rn×Rn
eiξ(x−y)p(ξ)u(y), x ∈ Rn, u ∈ Õ(a, b±).



10 M. KARAMEHMEDOVIĆ

The mapping P : S−∞,εr−a → L
(
Õ(a, b±), L∞(τ(a′))

)
is linear and continuous. Indeed,

there is a nonnegative C such that

|P(p)u(x)| ≤ ‖p‖(−n−1)0 ‖u‖
∫
y∈τ(a)

∫
ξ∈Rn

(1 + |ξ|)−n−1 ≤ C‖p‖(−n−1)0 ‖u‖

for all p ∈ S−∞,εr−a , u ∈ Õ(a, b±) and x ∈ τ(a′).

Lemma 2.7. OP is the unique extension of P that is linear and continuous as a map

OP : Sm,εr−a → L
(
Õ(a, b±), L∞(τ(a′))

)
for every fixed real m.

Proof. We first show the uniqueness of the extension. Pick p ∈ Sµ,εr−a for some real µ,
and consider the family of functions fλ(ζ) = e−(λζ)

2

, ζ ∈ Kn
ε , with λ ≥ 0. Each fλ

is analytic on Kn
ε . Also, |fλ(ζ)| ≤ exp(−λ2(1 − ε2)|Re ζ|2) on Kn

ε , so, for λ > 0, we
have fλ ∈ S−∞,εr−a and fλp ∈ S−∞,εr−a . Since f1 ∈ S0, it follows from Proposition 18.1.2
on page 66 of Hörmander [6] that limλ↘0 fλ = f0 = 1 in St for every positive t, so
limλ↘0 fλp = p in Sµ+t for t > 0. Now if P′1 and P′2 are extensions of P as described
above, then (P′1 − P′2)p = (P′1 − P′2) limλ↘0 fλp = limλ↘0(P′1 − P′2)fλp = 0, where
limλ↘0 fλp is understood w.r.t. the topology Tµ+trel .

Next, τ(a′) ⊂ τ(c), so the first part of Theorem 2.6 implies that OP maps Sm,εr−a contin-

uously to L
(
Õ(a, b±), L∞(τ(a′))

)
for each realm. Finally, the second part of that theo-

rem implies that P(p)u = OP(p)u in L∞(τ(a′)) when p ∈ S−∞,εr−a and u ∈ Õ(a, b±). �

Write OPS(p) for the standard pseudodifferential operator with symbol p, as defined in
Section 18.1 of Hörmander [6]. Lemma 2.7 implies the following.

Corollary 2.8. If p ∈ Sm,εr−a and u ∈ Õ(a, b±), then OPS(p)u is the restriction to τ(a′) of
a function in O(a′, b±).

Proof. The mapping OPS is by definition the unique linear continuous extension of the
mapping P : S−∞,εr−a → L

(
Õ(a, b±), L∞(τ(a′))

)
to Sm,εr−a . Thus, by Lemma 2.7, we have

for all p ∈ Sm,εr−a and all u ∈ Õ(a, b±) that supx∈τ(a′) |OPS(p)u(x) − OP(p)u(x)| = 0.
Finally, as shown in the first part of Theorem 2.6, OP(p)u ∈ O(a′, b±). �

Now follows the main result of this section. Let f , g− and g+ be n-tuples of elements
of ]0,∞], and assume p ∈ Sm,εr−a .

Theorem 2.9. If u ∈ Õ(f, g±), then OPS(p)u is analytically continuable to each com-
plex polyrectangle T (ã, b̃±) with ãj ∈ ]0, fj [ and b̃±j ∈

]
0, εmin

{
fj − ãj , g±j

}[
, j =

1, . . . , n.

Proof. The result follows by Corollary 2.8 and the fact that, in the definition of OP(p)u,
each cj < fj can be chosen arbitrarily close to fj . �

Remark 2.10. If mj is real and pj ∈ Smj ,εr−a for j = 1, 2, then the symbol of the compound
OPS(p1)OPS(p2) is in Sm1+m2,ε

r−a . Indeed, the symbols pj only depend on the cotangent
variable ξ ∈ Rn, so the symbol of the compound OPS(p1)OPS(p2) is the function p1p2.
By the standard calculus of pseudodifferential operators, p1p2 ∈ Sm1+m2 . The func-
tion p1p2 is analytic on Kn

ε , and finally we have |(p1p2)(ζ)| ≤ ‖p1‖(m1)
∗ ‖p2‖(m2)

∗ (1 +
|Re ζ|)m1+m2 for ζ ∈ Kn

ε .
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3. PROOF OF THEOREM 1.1

To prove Theorem 1.1, we first relate the Cauchy data

U0 = lim
xn+1↘0

u and U1 = lim
xn+1↘0

∂n+1u

in terms of the action of the components of the associated Calderón projector. This part of
the analysis results in the set of equations (3.3), and it is an adaptation of the development
in Hörmander [6, pp. 234–236]. Theorem 2.9 is then used to estimate the domain of
analytic continuation of some of the terms in (3.3). We use the notation of Section 1. Also,
δ is the Dirac measure and δ′ is its derivative. Finally, γ+0 v is the trace limxn+1↘0 v.

Let u◦ be the extension by zero of u from τ(a)×[0, λ] to Rn+1, and write U0 = u◦(·, 0)
and U1 = (∂n+1u

◦)(·, 0). Fix R > 2k/(1 − ε2), and let χ be an element of C∞(Rn+1)
satisfying

χ(ξ) =

{
0, |ξ| ≤

√
1− ε2R/2,

1, |ξ| ≥
√

1− ε2R,
ξ ∈ Rn+1.

The function χ− 1 is an element of the space S−∞(Rn+1) of rapidly decreasing symbols.
We readily find by iteration that, for each α ∈ Nn+1

0 , ∂α(k2 − |ξ|2)−1 = O(|ξ|−2−|α|) as
|ξ| → ∞, so the function q, defined by

q(ξ) =
χ(ξ)

k2 − |ξ|2
, ξ ∈ Rn+1,

is an element of the space S−2(Rn+1). The corresponding pseudodifferential operator
Q = OPS(q) is a left parametrix of the Helmholtz operator on Rn+1, in that the symbol
of the compound Q(∆ + k2) is the function χ (the symbol of the compound actually is
χ and is not merely asymptotically equivalent to χ, since the symbol k2 − |ξ|2 of the
Helmholtz operator depends only on the cotangent variables ξ1, . . . , ξn+1.) In the sense of
distributions in D ′(Rn+1), we have

(∆ + k2)u◦ =

n∑
j=1

(
u◦|xj=−aj ⊗ δ′(xj + aj) + u◦|xj=aj ⊗ δ′(xj − aj)

)
+

n∑
j=1

(
(∂ju

◦)|xj=−aj ⊗ δ(xj + aj) + (∂ju
◦)|xj=aj ⊗ δ(xj − aj)

)
(3.1)

+ U0 ⊗ δ′(xn+1) + u◦|xn+1=λ ⊗ δ′(xn+1 − λ)

+ U1 ⊗ δ(xn+1) + (∂n+1u
◦)|xn+1=λ ⊗ δ(xn+1 − λ).

Applying the compound γ+0 Q to both sides of (3.1) gives

(3.2) (I −Π+
00)U0 + γ+0 OPS(χ− 1)u◦ = Π+

01U1 + S1 + S2,

where the operators

Π+
00 = γ+0 Q((·)⊗ δ′(xn+1)) and Π+

01 = γ+0 Q((·)⊗ δ(xn+1))

are components of the Calderón projector associated with the setup of Theorem 1.1, and
where

S1 =

n∑
j=1

[
γ+0 Q

(
u◦|xj=−aj ⊗ δ′(xj + aj)

)
+ γ+0 Q

(
(∂ju

◦)|xj=−aj ⊗ δ(xj + aj)
)]
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as well as

S2 =

n∑
j=1

[
γ+0 Q

(
u◦|xj=aj ⊗ δ′(xj − aj)

)
+ γ+0 Q

(
(∂ju

◦)|xj=aj ⊗ δ(xj − aj)
)]

+ γ+0 Q
(
u◦|xn+1=λ ⊗ δ′(xn+1 − λ)

)
+ γ+0 Q

(
(∂ju

◦)|xn+1=λ ⊗ δ(xn+1 − λ)
)
.

If I −Π+
00 and Π+

01 have inverses, then (3.2) implies

(3.3)


U0 = (I −Π+

00)−1Π+
01U1

+ (I −Π+
00)−1(S1 + S2) + (I −Π+

00)−1γ+0 OPS(1− χ)u◦,

U1 = (Π+
01)−1(I −Π+

00)U0

− (Π+
01)−1(S1 + S2) + (Π+

01)−1γ+0 OPS(χ− 1)u◦.

We shall use (3.3) to relate the domains of analytic continuability of the Dirichlet datum U0

and the Neumann datum U1. To this end, we first show that the inverses (I − Π+
00)−1 and

(Π+
01)−1 exist and have suitable real-analytic symbols. Fix j ∈ {1, . . . , n+ 1}, l ∈ {0, 1}

and C ∈ R.

Lemma 3.1. For each fixed xj ∈ R, the operator Q((·) ⊗ δ(l)(xj − C)) has a symbol
πl,j(·, xj − C) ∈ Sl−1,εr−a . The function πl,j(ξ(j), s) is analytically continuable in s to the
domain {s ∈ C, Re s 6= 0}.

Proof. Following Hörmander [6, p. 109], we will consider a function φ ∈ C∞0 (] − 1, 1[)
satisfying

∫
t∈R φ(t) = 1. If V ∈ C∞0 (Rn), then

Q(V ⊗ δ(l)(xj − C))(x) = lim
κ→0

Q(V κ−1φ(l)((xj − C)/κ))(x)

= (2π)−n
∫
ξ(j)∈Rn

eiξ(j)x(j) V̂ (ξ(j))πl,j(ξ(j), xj − C),

with the one-parameter family of symbols πl,j(·, s) given by

πl,j(ξ(j), s) =
1

2π
lim
κ→0

∫
t∈R

(it)lq(ξ(j), t)e
itsφ̂(κt), ξ(j) ∈ Rn, s ∈ R.

Writing ρ =
√

1− ε2R and q̃(ξ(j), t) = (k2 − |ξ(j)|2 − t2)−1, we get, for s 6= 0,∫
t∈R

tlq(ξ(j), t)e
itsφ̂(κt) =

∫
|t|>ρ̃
q(ξ(j), t)t

leitsφ̂(κt) +

∫
|t|≤ρ
tlq(ξ(j), t)e

itsφ̂(κt).

(Recall that χ(ξ(j), t) = 1 and thus q(ξ(j), t) = q̃(ξ(j), t) when |ξ(j)|2 + t2 > ρ2.) The
function C 3 t 7→ tlq̃(ξ(j), t)e

it(xj−d)φ̂(κt) is analytic in {t ∈ C, |t| > ρ} and exponen-
tially decreasing w.r.t. |t| when sgn Im t = sgn s, so∫
|t|>ρ

q̃(ξ(j), t)t
leitsφ̂(κt) = −

∫ 0

φ=π sgn s
q̃(ξ(j), ρe

iφ)i(ρeiφ)l+1eiρ exp(iφ)sφ̂(κρeiφ),

and consequently

2πi−lπl,j(ξ(j), s) =

∫
|t|≤ρ

tlq(ξ(j), t)e
its +

∫ π sgn s

φ=0

q̃(ξ(j), ρe
iφ)i(ρeiφ)l+1eiρ exp(iφ)s.
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In particular, the mapping R \ {0} 3 s 7→ πl,j(ξ(j), s) is analytically continuable to the
complex plane without the imaginary axis. Also, for |ξ(j)| > ρ and s ∈ R \ {0} we have

(3.4)

2πi−lπl,j(ξ(j), s) = 2πi( sgn s)
∑

sgn s
t Res q̃(ξ(j), t)tleits

= −
π(( sgn s)i

√
|ξ(j)|2 − k2)le−|s|

√
|ξ(j)|2−k2√

|ξ(j)|2 − k2
,

where
∑+
t Res and

∑−
t Res signify the sum of residues w.r.t. t in the upper and in the

lower complex half-plane, respectively. Thus, for nonzero real s, the symbol πl,j(·, s) is
in S−∞. There is a jump discontinuity in (3.4) across s = 0, but we readily find that both
lims↗0 πl,j(·, s) and lims↘0 πl,j(·, s) are in Sl−1. Also, if the real part of a component of
ζ(j) ∈ Kn

ε is greater than R, then |Re ζ(j)| > R and

Re
[
(ζ(j))

2
]
− k2 > (1− ε2)|Re ζ(j)|2 − k2 > (1− ε2)R2 − k2 > 0,

so the right-hand side in (3.4) is analytic on Kn
ε . Finally, for such ζ(j), we have∣∣∣[(ζ(j))2 − k2]1/2∣∣∣ =

√∣∣|Re ζ(j)|2 − |Im ζ(j)|2 − k2 + 2iRe ζ(j).Im ζ(j)
∣∣

≥
√
|Re ζ(j)|2(1− ε2)− k2 ≥ C(1 + |Re ζ(j)|)

when

C ≤
k
√

3(1− ε2)

2k +
√

1− ε2
,

so πl,j(·, s) ∈ Sl−1,εr−a for every real s. �

Corollary 3.2. The symbol of the operator γ+0 Q((·) ⊗ δ(l)(xn+1 − C)) is the function
limxn+1↘0 πl,n+1(·, xn+1 − C) ∈ Sl−1,εr−a . In particular, I −Π+

00 and Π+
01 have symbols

1− lim
xn+1↘0

π1,n+1(·, xn+1) ∈ S0,ε
r−a and lim

xn+1↘0
π0,n+1(·, xn+1) ∈ S−1,εr−a ,

respectively.

Lemma 3.3. I −Π+
00 and Π+

01 have inverses with symbols in S0,ε
r−a and S1,ε

r−a, respectively.

Proof. For ξ′ ∈ Rn with |ξ′| >
√

1− ε2R, we have

1− lim
xn+1↘0

π1,n+1(ξ′, xn+1) =
1

2
and lim

xn+1↘0
π0,n+1(ξ′, xn+1) = − 1

2
√
|ξ′|2 − k2

.

Thus, the symbols Rn 3 ξ′ 7→ 2χ(ξ′, 0) and Rn 3 ξ′ 7→ −2
√
|ξ′|2 − k2χ(ξ′, 0) define

inverses (I − Π+
00)−1 and (Π+

01)−1, respectively. Trivially, the symbol of (I − Π+
00)−1 is

in S0,ε
r−a. Also, if the real part of a component of ζ ′ ∈ Kn

ε is greater than R, then∣∣∣((ζ ′)2 − k2)1/2∣∣∣ =
√
||Re ζ ′|2 − |Im ζ ′|2 − k2 + 2iRe ζ ′.Im ζ ′|

≤
√
||Re ζ ′|2 + 2iRe ζ ′.Im ζ ′| ≤

√
|1 + 2iε||Re ζ| < 51/4(1 + |Re ζ|),

and in conclusion the symbol of (Π+
01)−1 is in S1,ε

r−a. �

We next estimate the analytic continuability of terms of the forms
(3.5)
(I −Π+

00)−1γ+0 Q(u◦|xj=C ⊗ δ(l)(xj − C)), (Π+
01)−1γ+0 Q(u◦|xj=C ⊗ δ(l)(xj − C))
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occurring in (3.3). First assume j = n + 1. Remark 2.10, Corollary 3.2 and Lemma 3.3
imply that the compounds (I −Π+

00)−1γ+0 Q((·)⊗ δ(l)(xj − C)) and (Π+
01)−1γ+0 Q((·)⊗

δ(l)(xj − C)) have symbols in Sl−1,εr−a and Sl,εr−a, respectively. Thus, by Theorem 2.9, the
functions in (3.5) are analytically continuable to each complex polyrectangle T (ã, b̃±) with
ãj ∈ ]0, aj [ and b̃±j ∈ ]0, εmin{aj − ãj , b±j }[ , j = 1, . . . , n.

Now assume j 6= n+1 and let d be the symbol of (I−Π+
00)−1 or of (Π+

01)−1. Abbreviate
ξ′ = ξ(n+1), ξ′′ = ξ(j), ξ′′′ = ξ(j,n+1), and similarly for other vectors. For x′ = x(n+1) ∈
Rn we have

(2π)2nOPS(d)γ+0 Q(u◦|xj=C ⊗ δ(l)(xj − C))(x′)

=

∫∫∫∫
w′,η′,y′′,ξ′′∈Rn

eiη
′(x′−w′)+iξ′′′w′′′−iξ′′y′′d(η′)πl,j(ξ

′′, xj − C)u◦|yj=C(y′′)

= 2π

∫∫∫∫
η′,y′′,ξ′′∈Rn, wj∈R

eiηj(xj−wj)+iη
′′′x′′′−iξ′′y′′d(η′)πl,j(ξ

′′, xj − C)u◦|yj=C(y′′)δ(ξ′′′ − η′′′)

= (2π)2
∫∫∫

y′′,ξ′′∈Rn, ηj∈R
eiηjxj+iξ

′′′x′′′−iξ′′y′′d(ξ′′′, ηj)πl,j(ξ
′′, xj − C)u◦|yj=C(y′′)δ(ηj)

= (2π)n+2
[
γ+0 OPS

(
d(ξ′′′, 0)πl,j(ξ

′′, xj − C)
)
u◦|xj=C

]
(x′).

By Remark 2.10, Lemma 3.1 and Lemma 3.3, for each fixed xj the symbol Rn 3 ξ′′ 7→
d(ξ′′′, 0)πl,j(ξ

′′, xj−C) is in Sl,εr−a, and it is analytically continuable to {xj ∈ C, Rexj 6= C}.
Finally, using Theorem 2.9, we obtain at least the same estimates on the analytic continu-
ability of the terms (3.5) as in the case j = n+ 1.

It remains to estimate the analytic continuability of the terms

(3.6) (I −Π+
00)−1γ+0 OPS(1− χ)u◦ and (Π+

01)−1γ+0 OPS(χ− 1)u◦

occurring in (3.3). Again write d for the symbol of (I − Π+
00)−1 or of (Π+

01)−1. We
readily find that OPS(d)γ+0 OPS(χ − 1)u◦ = γ+0 OPS(d(ξ′)(χ(ξ) − 1))u◦. The symbol
d(ξ′)(χ(ξ)−1) is in C∞0 (Rn+1), and the function u◦ is bounded and compactly supported
in Rn+1. The Fourier transform û◦ of u◦ is in C∞(Rn+1), so the function d · (χ− 1) · û◦
is smooth and compactly supported. The Fourier-Laplace transform v of d · (χ− 1) · û◦ is
then an entire function on Cn+1. But for every x in Rn+1,

(2π)n+1OPS(d(ξ′)(χ(ξ)− 1))u◦(x) =

∫
Rn+1

eixξd(ξ′)(χ(ξ)− 1)û◦(ξ)dξ = v(−x),

so the function OPS(d(ξ′)(χ(ξ) − 1))u◦ is analytically continuable to the whole com-
plex space Cn+1. In particular, its restriction γ+0 OPS(d(ξ′)(χ(ξ) − 1))u◦ is analytically
continuable to the ’polystrip’ T (a′,±∞).

Theorem 1.1 now follows from (3.3) and the fact that the constant ε can be chosen
arbitrarily close to 1 in the analysis in this section.

4. OUTLOOK

We expect that the method of proof of Theorem 1.1 presented here can be extended to
handle general linear, second-order, analytic, elliptic differential operators in two or more
independent variables, as well as general analytic pieces of the boundary. This requires an
analysis similar to that of Section 2, but done on a subset of standard pseudodifferential
operators with symbols that are real-analytic and dependent on the full variable set (x, ξ).
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