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Migration of Radionuclides in a Gas Cooled Solid State

Spallation Target

Thomas Jørgensena, Gregory Severina, Mikael Jensena,∗

aHevesy Lab, Nutech, Risoe-DTU,Technical University of Denmark, DK-4000 Roskilde,
Denmark

Abstract

The current design of the ESS (European Spallation Source) program pro-
poses a rotating solid tungsten target cooled by helium gas and a pulsed
beam of protons. For safety reasons any design has to address wether or not
the induced radionuclidic isotopes in the target move.

In this paper we have investigated the diffusion of (primarily) Tritium
in solid tungsten to see, if a pulse driven short-term variation in temper-
ature (temperature peaks separated by one turn of the wheel (2.36 secs))
could possibly give rise to wave-like migration of the radionuclides, possibly
accelerating the overall release.

In order to calculate the diffusion in the solid tungsten target two ap-
proaches have been used. One neglecting the time structure of the beam and
thermal cycling of the target, and one numerical, discrete time step simula-
tion to capture the effects of the thermal cycling on the diffusion behavior.

We found that the time structure of the of the temperature has a negligible
impact on the diffusion, and that the radioactive release at the surface can
be calculated safely by solving the differential equation (Fick’s law) using an
appropriate temperature to calculate the diffusion constant.

Keywords: Spallation Target, Safety, Tritium

1. Introduction

The uses of spallation as a source of neutrons for materials studies, isotope
production, subcritical reactor operation and waste transmutation are well
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known and documented [1]. As proton energy increases, the neutron yield
per incident proton increases, however a practical plateau of neutron yield
per beam power unit delivered to the target is reached in the region 1-2.5
GeV. State of the art and projected future spallation sources all use proton
drivers in this range (ISIS, SNS, JPARC, ESS). As accelerator technology
and capability increases, an obvious improvement to neutron source output
is obtained by increase in beam power.

On the other hand, target integrity and safety are fundamental limits
to the beam power that can be deposited. The main obstacles to higher
power are target cooling and radiation damage, but equally important is
the need to contain and control the induced activity in the target because
of operability, facility safety and environmental concerns. The spectrum of
induced radioactive isotopes depends of course on the target material, but all
spallation sources have a common load of potential dangerous radioisotopes,
which have to be contained.

Liquid metal targets and especially mercury targets have been a viable
technical solution to high power targets in the 1-2 MW range (SNS, JPARC).
The benefit of the liquid metal is the possibility of cooling by circulation and
the self annealing properties of the liquid, preventing build up of radiation
damage. However, early experimental findings [2] and later detailed computa-
tional and experimental analysis [3] have identified the “cavitation pinching”
problem on the stainless steel surfaces exposed to the liquid mercury in the
high power beam.

Prudent material choices, cooling conditions and beam conditioning have
shown to alleviate this problem to the necessary extent at SNS. At time
of target design at ESS, it was however seen as a safer approach to power
levels above 2 MW to use a solid target. In addition, the liquid metals pose
problems to both target material and radioisotope containment because of
the chemical nature of the major radioisotopes induced (polonium isotopes
from bismuth, mercury isotopes from mercury target).

The current ESS design is a compromise between the best obtainable neu-
tron source brilliance (interaction length), pulse duration (energy dispersity)
and radioisotope containment. The compromise is a solid tungsten target
consisting of centimeter to decimeter size slabs in a rotating geometry and
cooled by high velocity stream of helium gas [4].

The ultimate radiological safety and operability of this design depends
on a restriction of mobility of all the important radioisotopes. This again
depends on the mechanical integrity of the target material (tungsten kept well
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below the melting point), but also on the diffusion behavior of the various
radioelements in tungsten as well as the surface behavior in the interface to
the cooling helium. By nature the gas cooling loop is a rapid and highly
efficient transport mechanism for any isotope capable of going into the gas
phase at the target surface.

This paper focuses on the first part of the transport problem, the possible
diffusion in the target. This is only a partially explored field, as normal trace
element diffusion in tungsten might be known or calculable, while the knowl-
edge of radiation damage enhanced diffusion is very limited. As an attempt
to solve the first part of the problem we have investigated two approaches
to the diffusion, one neglecting the time structure of the beam and thermal
cycling of the target, while the other method is an attempt by numerical,
discrete time step simulation to capture the effects of the thermal cycling on
diffusion behavior.

By the usage of mathematical modeling, we include combined solutions of
the heat and diffusion equations together with the radioactive decay law un-
der conditions of spatial and temporal varying production rate on a tungsten
spallation target.

2. Material and methods

2.1. General aspects of the model

In principal, all the different shapes and position of target blocks should
be modeled. The azimuthal positions of the blocks are completely symmet-
rical, but geometry, heat load and beam profile differ greatly with depth in
the target.

However, it is the front blocks (the outer rim of the wheel) that expe-
rience the highest heat load and the highest radionuclide production and
concentrations. For this reason we have concentrated on the behavior of the
foremost front block in the proposed tungsten target wheel in the work of
this paper.

This block not only serves as a good model system to compare our ana-
lytical and numerical approach, but the results can also be used to provide a
conservative and safe limit to total radionuclide release, if the results from the
front block are scaled by the ratio between the total radionuclide inventory
and front block inventory.
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2.2. Analytical solution

Diffusion of impurities through materials obeys first order kinetics follow-
ing Fick’s law,

∂φ

∂t
= D∇2φ (1)

where φ is the local concentration of the diffusing impurity.
For species with active chemical removal occurring at the material surface,

the boundary condition becomes

φ|boundary = 0 (2)

The solution to Fick’s law with such boundaries on a three dimensional
rectangular block is separable

φ(~x, t, t′) =
∑
l,m,n

Xl,m,n(~x)Tl,m,n(t, t′) (3)

with solutions of the form:

Xl,m,n(~x) = AlBmCn sin
lπx

Lx
sin

mπy

Ly
sin

nπz

Lz
(4)

and

Tl,m,n(t, t′) = e
−Dπ2(t−t′)[ l2

L2
x
+m2

L2
y
+ n2

L2
z
]

(5)

Where Al, Bm, Cn are Fourier coefficients with the form

Al =
2

Lx

∫ Lx

0

f(x) sin(
lπx

Lx
) (6)

derived from the input concentration function, M(~x), defined as

M(~x) = f(x)g(y)h(z) = φ(~x, t′, t′) (7)

Here f, g, h are the one-dimensional input distributions, and n, l,m are in-
dexes for the x, y, and z solutions respectively. L’s are the x, y and z lengths
of the rectangular block, D is the diffusion coefficient, and t′ is the input
time.

For the case of beam-induced particle creation, impurities are generated
at a rate, R, with the distribution φ(~x, t′, t). Integrating this over input
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times, t′ from beam-on, t0, to time t, weighted by radioactive decay, gives
the local impurity concentration as a function of time, Φ(~x, t):

Φ(~x, t) =

∫ t

t0

Rφ(~x, t′, t) e−λ(t−t
′) dt′ (8)

where λ is the radioactive decay constant. Evaluation of this integral gives

Φ(~x, t) =
∑
l,m,n

RXl,m,n(~x)

λ+Dπ2( l
2

L2
x

+ m2

L2
y

+ n2

L2
z
)

(
1− Tl,m,n(t, t0)e

−λ(t−t0)
)

(9)

Further, spatial integration over the entire block gives the total activity
in the block as a function of time, Θ(t, t0),

Θ(t, t0) =
∑
l,m,n

8RLxLyLzAlBmCn
(
1− Tl,m,n(t, t0)e

−λ(t−t0)
)

π3lmn
[
λ+Dπ2( l

2

L2
x

+ m2

L2
y

+ n2

L2
z
)
] (10)

The x, y functional form of M(~x) is defined by the ESS beam-strike,
given in the Baseline Specification. From there, a safe assumption is uniform
isotope production in z. Therefore

f(x) =
3

4∆x

[
1− (x− Lx/2)2

∆2
x

]
(11)

g(y) =
3

4∆y

[
1− (y − Ly/2)2

∆2
y

]
(12)

and
h(z) = 1/Lz (13)

where ∆x and ∆y are parameters determining the beam width.
Evaluation of the Fourier integrals (eg. 6) for these distributions gives

Al =
−6Lx

(lπ∆x)2

[
sin

(
lπ(

1

2
+

∆x

Lx
)

)
+

Lx
∆xlπ

cos

(
lπ(

1

2
+

∆x

Lx
)

)]
(14)

Bm =
−6Ly

(mπ∆y)2

[
sin

(
mπ(

1

2
+

∆y

Ly
)

)
+

Ly
∆ymπ

cos

(
mπ(

1

2
+

∆y

Ly
)

)]
(15)

and

Cn =
4

nπLz
(16)
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when n, l,m = odd. Al, Bm, Cn are zero for n, l,m = even respectively.
For the simplified case of ∆x = Lx/2 and ∆y = Ly/2 the expression

Θ(t, t0) becomes

Θ(t, t0) =
∑

l,m,n=odd

73728R
(
1− Tl,m,n(t, t0)e

−λ(t−t0)
)

π10l4m4n2
[
λ+Dπ2( l

2

L2
x

+ m2

L2
y

+ n2

L2
z
)
] (17)

From eq.17, it is clear that the l = m = n = 1 term is dominant, and
roughly 79% of all radioactive impurities populate this state. Additionally,
it is apparent that all states saturate with their respective time constant,
λ∗l,m,n

λ∗l,m,n = λ+ λl,m,n (18)

where

λl,m,n = Dπ2(
l2

L2
x

+
m2

L2
y

+
n2

L2
z

) (19)

The release rate constant from the target due to diffusion, λd is therefore

λd =
∑

l,m,n=odd

0.787

l4m4n2
λl,m,n (20)

for this example, or

λd =
∑

l,m,n=odd

8AlBmCnV

lmnπ3
λl,m,n (21)

for the general case, where V is the volume of the rectangular block. The rate
constant (λd) represents the overall, volume integrated diffusion constant for
a given block. The dimension of λ is time−1 and 1

λ
is the typical time, td for

release of a given species of activity.

2.3. Numerical solution

In order to make the numerical calculations we need a 3D mesh of cubes.
Since the curvature for the outermost blocks of the target is negligible, we
use cartesian geometry. Figure 1 shows the geometry for such a block.

The block is divided into unit cells of 1 mm3, and the net energy flow
rate and the net diffusion flow rate of each cell are then used to calculate the
temperature change and the concentration change in every cell. This is done
in time steps ∆t for a number of pulses.
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Figure 1: The figure shows a sketch of the tungsten block with x,y and z directions denoted.
x = 120 mm, y = 80 mm and z = 13 mm.

2.3.1. Temperature

The numerical approach allows a more detailed description of the small
scale variances in space and time of the instantaneous diffusion coefficient
inside the tungsten blocks. From earlier simulations in the target design
update process [5], the temperatures on the surface of the tungsten block
vary from all most inlet temperature to about 550◦C, depending on position
along beam path and on position relative to beam profile.

The temporal variation reflects revolution of the target wheel, designed
in such a way that only one beam pulse hits a given block per revolution.
(We ignore the rf-microstructure of the beam).

We have used the frontmost tungsten block to calculate the temperature
profiles and time variation, because this block sees the highest power den-
sity. We assume an inlet temperature of the helium of constant 25◦C. We
distribute the total helium mass flow rate of 3 kg/sec over the total flow
cross section surface area of the target, which is 0.17 m2. This gives a mass
velocity, G = 3 kg

s
/0.17 m2 = 17.65 kg/(m2 · s).

The heat transfer coefficient to the He gas can be found from the following
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Figure 2: Unit cells (i, j, k) and (i, j, k + 1). K’s are the thermal conductances connected
to the cell (i, j, k), which will be the same in this case.

relation [6]:
hDe

k
' 0.020 ·Re0.8

where De is the equivalent diameter of the gas flow, k is the heat conduction
coefficient for the He gas and Re is Reynolds number. This gives a heat
transfer coefficient of 484 W/(m2·K).

Using this and a thermal conductivity of tungsten equal to value of 173
W/(m·K) (taken at 20◦C), we can calculate the time course of temperature
of each unit cell inside the front tungsten block. For this we have used the
beam profile that is described by a normalized parabolic expression [4]:

z = C
9

16AB

(
1− x2

A2

)(
1− y2

B2

)
(22)

where C is a normalizing constant chosen in such a way that the peak of the
profile has a value of 3.3 kW/cm3, since the beam power average is 5 MW.
A = 80 mm is half the width and B = 30 mm is half the hight of the beam
footprint.
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The energy flow rate from cell (i, j, k) to cell (i, j, k + 1) is calculated as:

Pi,j,k+ 1
2

= Ki,j,k+ 1
2
(Ti,j,k+1 − Ti,j,k) (23)

where Ki,j,k+ 1
2

is the thermal conductance between the two cells, which can
be found as:

Ki,j,k+ 1
2

=
λi,j,kA

∆zk
=
λi,j,k∆xi∆yj

∆zk
(24)

λi,j,k is the thermal conductivity in cell (i, j, k), which is that of tungsten,
λW = 173 (W/(m·◦C)), A is the area of the facet between cell (i, j, k) and
(i, j, k+1), ∆zk is the distance (m) between the centers of the two cells. Ti,j,k
and Ti,j,k+1 are the temperatures in the two cells.

The total energy flow rate through the 6 facets of the cube cell inside the
block is then described by:

Ptotal(i,j,k) = Ki− 1
2
,j,k(Ti−1,j,k − Ti,j,k) +Ki+ 1

2
,j,k(Ti+1,j,k − Ti,j,k)...

+Ki,j− 1
2
,k(Ti,j−1,k − Ti,j,k) +Ki,j+ 1

2
,k(Ti,j+1,k − Ti,j,k)...

+Ki,j,k− 1
2
(Ti,j,k−1 − Ti,j,k) +Ki,j,k+ 1

2
(Ti,j,k+1 − Ti,j,k) (25)

The cells in the boundary layer of the tungsten block have 1-3 facets
facing the He gas. The energy flow rate through these facets (facing the He
gas) is given by (e.g. for cell (1, j, k)):

P = hA(THe − Ti,j,k) (26)

where h is the heat transfer coefficient at the surface from tungsten to the
He gas (found above), A is the area of the facet, THe is the temperature of
the He gas (which is assumed to be constant) and T1,j,k is the temperature
of the cell. The energy flow rate through the rest of the facets is described
in the same way as in eq. 25.

This causes a change of equation 24 for the boundary cells. Again we
look at cell (1, j, k). The conductance that couples the temperature of the
cell with the boundary temperature (temperature of He gas) is:

K 1
2
,j,k =

∆yj∆zk
∆x1/(2λ1,j,k) + 1/h

(27)

The first term in the denominator is the thermal resistance in the x-direction
for half the cell (1, j, k) and the second term is the resistance in the interface
to the He gas.
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Hence, the total energy flow rate through the unit cell (1, j, k) with only
one facet facing the He gas is:

Ptotal(1,j,k) = K 1
2
,j,k(THe − T1,j,k) +K 3

2
,j,k(T2,j,k − T1,j,k)...

+K1,j− 1
2
,k(T1,j−1,k − T1,j,k) +K1,j+ 1

2
,k(T1,j+1,k − T1,j,k)...

+K1,j,k− 1
2
(T1,j,k−1 − T1,j,k) +K1,j,k+ 1

2
(T1,j,k+1 − T1,j,k) (28)

The above two expressions for the unit cells are used to calculate the
temperature change due to the cooling in time steps ∆t for all cells, where
the time step is limited by the stability criterion [7] in order to make the
simulation stable.

This is obtained by writing equation 25 equivalently as:

P (t) = Keq(Teq − Ti,j,k(t)) (29)

where Keq is the equivalent heat conduction, Teq is the equivalent surrounding
temperature and Ti,j,k(t) is the temperature in the cell of interest.

This gives a differential equation with the solution:

Ti,j,k(t) = Teq + (T0 − Teq)e−
Keq
C0

t
(30)

where T0 is the temperature in the cell of interest at time t = 0 and C0 is
the heat capacity of the cell.

In the numerical approach the heat flow is constant during a time step and
is calculated at the beginning of each time step (here at t = 0). Hence, the
temperature in the cell (i, j, k) follows the tangent of the analytical solution
eq. 30 at t = 0.

It is impossible for the temperature Ti,j,k(t) to be smaller than the sur-
rounding temperature Teq, which gives the following restriction on the time.

Teq = −Keq

C0

(T0 − Teq) · tmax + T0 ⇒ tmax =
C0

Keq

=
C0∑
K

(31)

where∑
K = Ki− 1

2
,j,k +Ki+ 1

2
,j,k +Ki,j− 1

2
,k +Ki,j+ 1

2
,k +Ki,j,k− 1

2
+Ki,j,k+ 1

2
(32)

Hence, the time step must be chosen within the interval 0 ≤ t ≤ tmax to
give a stable numerical calculation. The criterion must be satisfied for all
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cells and the smallest stable time step obtained is used for all cells. In this
simulation tmax = 0.002 sec for all cells inside the block and tmax = 0.005
sec for cells with 3 facets facing the He gas. The time step is chosen to
∆t = 0.0005 sec.

The temperature change for every time step is then:

∆Ti,j,k =
Ptotal(i,j,k) ·∆t

m · c
(33)

2.3.2. Diffusion of radionuclides in the tungsten block

The activity concentration inside the tungsten block depends on the pro-
duction rate, the physical decay, the diffusion of the radionuclide and the
transfer rate from surface to gas of the given radioelement. As an impor-
tant example we have in the calculation below focused on hydrogen, or more
specifically, tritium, H-3 because of its high production rate and suspected
quantitative transfer from surface to cooling gas. However, the methodology
developed can equally be utilized for other elements.

As an example we have used a production rate of 4.17·106 Bq/s reference??
for H-3 (total for all of target). An average specific production rate can then
be calculated by dividing this number with the total volume of tungsten
(1 m3). This production rate is spatially distributed as the beam profile used
previously.

Since we only look at activity release from the front block, we do not
model the beam spreading further into the target. Thus the average H-3
production rate is assumed to be distributed in the front block as the beam
profile, but maintaining the average (specific) production rate.

The physical decay of the radioisotopes are included in the finite element
(finite time, finite volume) calculation, where the half-life for Tritium is taken
as 12.3 years (3.88 · 108 s) .

The migration of activity inside the target blocks is calculated on the basis
of Fick’s law acting on the activity concentration, where the concentration
is the driving potential.

J = −D∇φ (34)

Here J is the diffusion flux (through an unit area) (Bq/s), D is the diffusion
coefficient ( m2/s) and φ is the activity concentration of the radioisotope
(Bq/m3).

As boundary condition we have taken the activity concentration to be
zero in the gas phase, and thus assuming all radioelements falling over the
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block surface are lost to the gas phase. The activity concentration in surface
elements are not constantly zero - only in the gas.

No delay is introduced between activity arriving at the surface and its
release to the gas phase. The diffusion coefficient depends strongly on tem-
perature. We apply the Arrhenius equation for this:

D = D0 · exp(
−QD

kT
) (35)

where D0 is the pre-exponential factor (m2/s), QD is the activation energy
(J), k is the Boltzmann constant 1.38 · 10−23 J/K, and T is the absolute
temperature (K).

The D0 and QD values are global constants and do not depend on position
inside the block. Our simulation has been carried out using D0 = 4.0 · 10−7

m2/s and QD = 37650 J/mol (for H-3)[9].
This temperature dependence corresponds to a factor of 2 in variation

of the diffusion constant during one pulse cycle for a central block element.
Thus the instantaneous diffusion speed inside the tungsten is varying by a
factor 1.4 (because the diffusion length depends on

√
D).

The diffusion flux can now be found in the same way, as we calculated
the energy flow rate (25).

Jtotal(i,j,k) = Fi− 1
2
,j,k(ci−1,j,k − ci,j,k) + Fi+ 1

2
,j,k(ci+1,j,k − ci,j,k)...

+ Fi,j− 1
2
,k(ci,j−1,k − ci,j,k) + Fi,j+ 1

2
,k(ci,j+1,k − ci,j,k)...

+ Fi,j,k− 1
2
(ci,j,k+1 − ci,j,k) + Fi,j,k+ 1

2
(ci,j,k+1 − ci,j,k) (36)

where Fi− 1
2
,j,k is the diffusion conductance between the two cells (i, j, k) and

(i− 1, j, k) and is given by:

Fi− 1
2
,j,k =

∆yj∆zk
∆xi/(2Di,j,k) + ∆xi−1/(2Di−1,j,k)

(37)

The first term in the denominator is the diffusion resistance in the x-direction
for half the cell (i, j, k) and the second term is the diffusion resistance for
half the cell (i− 1, j, k).

For boundary cells, this expression is modified, e.g. for cell (1, j, k):

F 1
2
,j,k =

∆yj∆zk
∆x1/(2D1,j,k)

(38)
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Here we made the assumption that there is no resistance for isotopes arriving
at the surface. Everything is removed by the gas and the concentration in
the gas is set to 0.
The total diffusion from cell (1, j, k) in the boundary layer is then:

Jtotal(1,j,k) = F 1
2
,j,k(cHe − c1,j,k) + F 3

2
,j,k(c2,j,k − c1,j,k)...

+ F1,j− 1
2
,k(c1,j−1,k − c1,j,k) + F1,j+ 1

2
,k(c1,j+1,k − c1,j,k)...

+ F1,j,k− 1
2
(c1,j,k+1 − c1,j,k) + F1,j,k+ 1

2
(c1,j,k+1 − c1,j,k) (39)

Now the change in the concentration for each cell is calculated in time
steps ∆t:

∆ci,j,k =
Jtotal(i,j,k) ·∆t

∆xi ·∆yj ·∆zk
(40)

and added to the previously calculated concentration, which is multiplied
by the exponential factor (of the decay law) in order to take the radioactive
decay of the isotope into account.

The choice of time step for the thermal calculation does not necessarily
coincide with the time step for the diffusion. Once the thermal behavior of
the blocks is found as function of position and time, the diffusion behavior
can be modeled in a coarser time resolution.

For this paper we were interested to see, if the pulse driven short-term
variation in temperature (temperature peaks separated by one turn of the
wheel (2.36 secs)) could possibly give rise to wave-like migration of the ra-
dionuclides, possibly accelerating the overall release.

Initial calculations on the temporal temperature variation allow the cal-
culation of the range of diffusion constants encountered. Due to the limited
temperature variation, the diffusion constants for any relevant radionuclide
species in any block turn out to be almost constant (less than a factor of 2
in variation) during a wheel turn cycle.

The primary changes in diffusion constants happen during initial target
warm-up that takes many tens of of revolutions. After steady state tempera-
ture is achieved, it can be seen that the differences in diffusion constants are
much more dependent on position in the block (distance to surface) than on
the time structure.

The duration of the beam pulse becomes unimportant for the diffusion
simulation, and thus a much longer time step is chosen for diffusion simula-
tion. We have used 10 msecs as time step in the diffusion simulation, which
is far more detailed than necessary to capture the release behavior.
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If a detailed calculation should be done, it can be carried our using the
same formalism as above [7].

3. Results

Figure 4 shows the simulation of temperatures in centre cells of the (x, y),
(y, z), (x, z) plans/facets and the centre cell of the block. The wheel rotation
time structure is clearly shown with an amplitude of about 90◦C at the center
of the block. During the first several rotational cycles, the temperature in
the tungsten builds up, until surface thermal transfer equals deposited beam
power. During this the centre element temperature rises from 25◦C to 525◦C
maximum.

From other calculations [5] we know that no other block sees a higher
temperature or a higher temporal variation in temperature. The tempera-
ture results presented here are obtained based on a simple, first principles
approach based only on beam profile and time structure, block geometry
and the the surface heat transfer equation. Remarkably, we obtain the same
maximum block temperature as a much more detailed full target simulation.

From the graph it is obvious that there are temperature gradients along
the three axises, which give rise to very different diffusion coefficients through-
out the tungsten block.

The fundamental result for a given radionuclide (for example H-3) is local
concentration as a function of space and time. The activity concentrations
as a function of time for typical front block elements are shown in figure 5,
7 and 8.

The total surface arrival rate of the tungsten block, and thus the total
diffusion driven loss, can now be calculated by summing the flux over the
total surface area. This result is seen in figure 9, which shows the cumulated
activity concentration released at the block surface. In order to have the
release in Bq, the values must be multiplied by the volume of the unit cell
(10−9 m3).

Based on this we can summarize the cumulative released activity and
activity concentration (assuming a total gas phase distribution volume of
1m3 ), see figure 9.

The figure clearly shows that H-3 release is a slow process relative to the
wheel revolution, but a very rapid process compared to the target operational
periods of many months. Our time structure does not include simulation of
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activity concentration. All sides of the block are cooled by helium and the foot print
of the beam is indicated on the front surface. The foot print actually covers the total
surface area, but the intensity increases towards the centre of the beam. The diffusion of
H-3 mainly takes place in the z-direction along the hottest paths through the two largest
surfaces.
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Figure 5: Concentrations profiles of H-3 in tungsten along the centre axis through the
(x,y) facet.
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Figure 6: Perhaps this figure should be deleted Zoom of the blue line (block centre)
in figure 5 to see the temporal structure of the activity concentration. Zoom is taken
approximately 6 hours after first beam on.
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Figure 7: Concentrations profiles of H-3 in tungsten along the centre axis through the
(y,z) facet.

19



0 0.5 1 1.5 2 2.5 3 3.5

x 10
4

0

1

2

3

4

5

6
x 10

5

time/sec

c
o
n
c
/B

q
 ⋅
 m

−
3

 

 
c

(100,40,7)

c
(100,36,7)

c
(100,24,7)

c
(100,12,7)

c
(100,1,7)

Figure 8: Concentrations profiles of H-3 in tungsten along the centre axis through the
(x,z) facet.
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Figure 9: Cumulated H-3 removal from the overall surface of the tungsten block. The
removal in Bq is found by multiplying all values (ordinates) by the volume of a unit cell
(10−9 m3). td is found to be 1.0 · 104 secs, but since steady state has not occurred, the
actual value of td is a little higher.
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beam off periods, but the main outcomes are that the H-3 release is total,
but happens with a delay in the order of hours.

As the production rate in the target is constant during beam on, the
released activity over time asymptotically approaches the total production,
and that is linear increase over time. Extending this asymptotic line to zero
crossing gives the time at which 1/e of the produced activity has escaped,
and that is the same as td. The value of td is in this case 1.0 · 104 secs,
but since steady state is not achieved, the actual td is a little higher. This
value is important, as it allows for comparison with the rate calculated by
the analytical solution.

Figure 10 shows the relationship between the temperature of the block
and td (from the analytical solution), and it is seen from the graph that
td = 1.0 · 104 secs gives a temperature of 525◦C, which agrees with the
maximum temperature of the core cells in the numerical calculation.

Hence, this substantiates the equivalence between the analytical and the
numerical solution.

4. Discussion

The results of the thermal simulation are only of importance to set the
framework for the diffusion calculation. For this we needed to understand
something that is not contained in the present baseline calculations, that is
the detailed time structure of the temperature inside a given block.

However, our calculation shows that the pulse variation is always lower
than 100 degrees. Of course this has a different impact depending on the
diffusing element in question. However, even for the most mobile species
considered (Hydrogen/Tritium) this gives an insignificant variation in the
diffusion length encountered during a rotation period.

Thus it is only the spatial variation in temperature that needs to be
considered in the release calculation. The detailed time structure of the
diffusion can be ignored safely, and the overall release rate can be analyzed
in the terms of the steady state temperature spatial distribution.

As the heat up of the wheel after beam on is fast compared to the average
diffusion time (for all radionuclides considered), our results prove that the
release calculation can even be reduced to a calculation of an average, steady
state diffusion delay (or activity hold-up time) that only depends on the
spatial variation of temperature inside the block.
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Figure 10: The graph shows the typical time, td for release of a given species of activity
as a function of temperature (analytical solution).
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Said more precisely, we have found that there is a typical temperature Td
for a given block showing a core temperature Tmax and a surface temperature
Tmin with Tmin < Td < Tmax that can be used for insertion into the Arrhenius
equation to calculate the diffusion constant.

Due to the highly anisotropic geometry of the tungsten blocks, and most
importantly the release dominating front blocks, the spatial variation of the
temperature is almost independent of the position in the beam direction -
should be moved up in the text (the z-direction, as demonstrated in figure 4).
The z-direction is however also by far the nearest route to the surface from
the block centre, and the total diffusion rate will be completely dominated
by the temperature along this route.

The variation here is small, and thus these results lead to the conclusion
that the analytical solution to the activity transport and release can be used
safely for a given block by applying a diffusion constant derived from the
maximum temperature, that is the core temperature Tmax of the block.

Furthermore, we can safely apply the time averaged temperature of this
core element in the calculations. In the end we conclude that:

1. The radioactive release rate for a given radioactive species is governed
by the production rate reduced by a decay loss in the order of td/t1/2.

2. This behavior is well described by the analytical solution that is based
on the Fourier expansion.

3. The diffusion constant to be used is safely calculated by using the
Arrhenius equation with T = Tmax.

5. Conclusion

The above conclusions may seem simple and intuitive once stated. How-
ever, we have derived the approximation based on detailed numerical simu-
lations. It has guided us to the conclusion that the overall target release can
be based on considerations of a single dominating block (the foremost) with
a production rate equal to the overall target production rate. The warm-up
period of the target wheel is insignificant compared to the release delay, and
thus it is only the steady state diffusion that needs consideration.
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