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Abstract 

Cu2ZnSnS4 films prepared by pulsed laser deposition at different temperatures are characterized by 

spectroscopic ellipsometry. The focus is on confirming results from direct measurement techniques, by 

finding appropriate models of the surface overlayer for data fitting, and extracting the dielectric 

function of the films. It is found that the surface overlayer changes with film thickness and deposition 

temperature. Adopting different ellipsometry measurement and modeling strategies for each film, 

dielectric functions are extracted and compared. As the deposition temperature is increased, the 

dielectric functions exhibit additional critical points related to optical transitions in the material other 

than absorption across the fundamental band gap. In the case of a thin film < 200 nm thick, surface 

features observed by scanning electron microscopy and atomic force microscopy are accurately 

reproduced by ellipsometry data fitting. 

 

1. Introduction 

Cu2ZnSnS4 (CZTS) is a promising candidate to replace commonly used thin-film solar cell absorbers 

Cu(In,Ga)Se2 (CIGS) and CdTe, which contain expensive or toxic materials. Unlike CIGS- and CdTe-



based solar cells, which have surpassed 20% power-conversion efficiencies on the laboratory scale, the 

current records for CZTS are 8.4% in the case of a sulfur-pure material [1] and 12.6% if S is alloyed 

with Se [2]. In order to improve the efficiency, both technological issues and a still incomplete 

understanding of the material need to be addressed. This includes for example the spectral optical 

properties of CZTS, which can help clarify its band structure and absorption behavior but have seldom 

been reported in the literature. Levcenko et al. [3] showed the dielectric function of bulk CZTS crystals 

using ellipsometry and a two-phase (substrate-layer) model. Li et al. [4] extracted the dielectric 

function of nanocrystalline films from transmittance spectra using a Tauc-Lorentz oscillator. Sun et al. 

[5] derived the absorption coefficient and band-gap energy of CZTS films from ellipsometry 

measurements. Finally, Li et al. [6] obtained the dielectric function of a CZTS film from ellipsometry 

data taken at multiple angles of incidence from both sides of the sample; the data was fitted with a 

dielectric function of arbitrary shape, without underlying physical assumptions. In this study we 

characterize CZTS films by spectroscopic ellipsometry, focusing on cross-checking results from direct 

measurement techniques and on determining the dielectric function in films exhibiting different levels 

of crystallization. 

 

2. Experimental details 

Films of CZTS were deposited on fused silica substrates by pulsed laser deposition (PLD) at different 

temperatures: two samples at 25°C (with different thicknesses, named C-25t and C-25T), one at 350°C 

(C-350) and one at 425°C (C-425). A sintered Cu2ZnSnS4 target was used (PVD Products). The laser 

wavelength, fluence and pulse repetition rate were 248 nm, 3 J/cm2 and 15 Hz respectively. The 

background pressure was 7×10-7 mbar and the target-to-substrate distance was 40 mm. The film surface 

was imaged with a scanning electron microscope (SEM) equipped with a field emission gun and an in-



lens secondary electron detector (FE-SEM, Supra 40VP, Zeiss) by tilting the sample to 45°. Energy 

dispersive X-ray spectroscopy (EDX) was performed in the same instrument using a silicon drift 

detector (X-ManN 50, Oxford Instruments) and a beam voltage of 15 kV. Surface roughness was 

measured by stylus profiling (Dektak 8, Veeco) and atomic force microscopy (AFM, Dimension 3100, 

Bruker AXS) using tapping mode. The root-mean-square surface roughness (Rq) is employed in this 

work. X-ray diffraction (XRD) patterns were collected with a BrukerD8 powder diffractometer in 

Bragg-Brentano configuration using Cu-Kα radiation. Raman spectra were obtained at a laser 

wavelength of 455 nm, laser power of 0.4 mW and spot size of 1 µm2 in the backscattering 

configuration (DXR Raman Microscope, Thermo Scientific). Ellipsometric measurements were 

performed in the spectral range 0.7-5.9 eV on a rotating compensator spectroscopic ellipsometer (M-

2000, J.A. Woollam Co.) using seven angles of incidence (from 45 to 75°) and a collimated beam. 

 

3. Results and discussion 

3.1. Preliminary analysis 

Energy dispersive X-ray spectroscopy (EDX) demonstrated that all films are Cu- and Sn-rich. 

The films deposited at 25°C showed no XRD peaks (Fig. 1) and no crystal grain contrast in the 

scanning electron microscope (SEM) images (Fig. 2(a,b)). However, the peaks associated with CZTS 

were present in their Raman spectra (Fig. 3). Since Raman spectroscopy is more sensitive to the crystal 

short-range order than XRD [7] it can be assumed that these films have very small grains and/or are 

only partially crystallized. At 350°C a nanocrystalline grain structure becomes visible in the SEM and 

is detected by XRD, with an average grain diameter of 50 nm (partially visible in Fig. 2(c)). At 425°C 

the film is crystalline with an average grain diameter of about 200 nm (estimate based on morphology, 

Fig. 2(d)).  



 

3.2. Analysis of surface overlayer 

The surface overlayer is often difficult to model when fitting ellipsometry data [8] so it is helpful to 

gain some knowledge from other techniques. As shown in the SEM images in Fig. 2, the film surface is 

heterogeneous for all our samples. Except for C-425, the films have some localized protrusions, 

typically in the form of nanospheres (inset graph in Fig. 2(a)) on top of a relatively smooth surface. 

Surface roughnesses, measured by a stylus profiler and AFM, are shown in Table 1. The overall surface 

roughness increases with film thickness but appears to be independent of the temperature, i.e. of the 

degree of crystallization and grain size. However, if the roughness is measured over an area without 

nanospheres (denoted film roughness in Table 1), the value increases with temperature until, at 425°C, 

it is impossible to make a distinction between the two definitions. 

To verify if the surface region contains various phases besides being rough, Raman spectroscopy was 

employed. From ellipsometry measurements the absorption coefficient α of our CZTS films at the 

Raman laser wavelength of 455 nm is in the 1.5 - 2.0×105 cm-1 range. The Raman information depth is 

defined as the depth d such that 2dα = 1, i.e. half the optical penetration depth because the optical path 

of backscattered light in the material is doubled. Hence in our CZTS films 60% of the Raman signal 

originates within 25-35 nm below the surface, making the technique very surface sensitive at this 

wavelength. The laser spot size was directed onto one of the bigger nanostructures (the only ones 

clearly visible with an optical microscope) and the focus was adjusted first to the film surface, then to 

the top of the structure. The results are shown in the inset graph of Fig. 3 for the C-25t film, but similar 

results have been obtained for the other films in this study. When the laser is focused on the film 

surface the only visible peaks are the two main CZTS peaks (289 and 334 cm-1) and a small peak at 316 

cm-1 which could be Cu3SnS4 or SnS2. When the focus is moved to the top of the structure, the relative 



intensity of the two CZTS peaks is redistributed, the peak at 316 cm-1 disappears and a broad peak 

centered at 475 cm-1 appears, probably corresponding to a disordered Cu2-xS phase. This is supported 

by EDX spot analysis performed on the larger nanostructures, which consistently show an increase in 

the Cu fraction by 30-50% (relative) with respect to spot analysis on the smooth surface. To conclude, 

the surface overlayer consists both of a complex topography and of a different phase mix with respect 

to the underlying film. 

 

3.3. Ellipsometry analysis 

3.3.1. Optical modeling 

Results from characterization techniques presented in the previous sections have been used as a starting 

point in building the optical layer stacks shown in Fig. 4 for ellipsometry data fitting. Based on the 

magnitude of the x-rays peaks from the substrate, the sampling depth of our EDX experiments is 

roughly estimated as around 500 nm, whereas the sampling depth of the XRD measurements is a few 

µm at all incidence angles. Therefore, EDX and XRD can help identify phases, and hence the dielectric 

function, of the bulk homogeneous film layer defined in the model. We expect to have a dominant 

CZTS component and smaller contributions from SnS and Cu3SnS4 (at least in C-350 and C-425). SEM 

imaging with secondary electrons and Raman spectroscopy both have sampling depths of a few tens 

nm in our experiments. Therefore, SEM images have been used to define the morphology of the surface 

overlayer in the optical model, i.e. a mix of air and a solid phase (Fig. 4). Raman spectroscopy, on the 

other hand, allows to confirm whether the dielectric functions of the surface overlayer and of the near-

surface region are realistic. As previously mentioned, we expect a major contribution from Cu2-xS. 

Raman experiments have also been performed on the cross sections of the two thicker films (C-25T and 

C-425) to complement XRD for bulk phase analysis. The intensity ratios of the peaks in cross-sectional 



spectra are very similar to the ones in the corresponding surface spectra shown in Fig. 3, so it is 

assumed that the phase mix in the bulk of the film is not depth-dependent and hence the bulk film layer 

in the optical model should not be defined as a graded layer. All phases detected by XRD were detected 

by Raman spectroscopy, and the latter provided the additional information that Cu3SnS4 is also present 

in the C-25t sample and possibly in the C-350 sample (Fig. 3). 

Based on the above discussion, the bulk film layer in the optical model should ideally be modeled as a 

mix of all phases expected in the bulk. As a first approximation, it could be a CZTS/SnS mix. 

However, a high correlation error was consistently found in the mixing ratio and dielectric function 

parameters, even when using literature dielectric functions of CZTS and SnS as initial parameters in the 

fitting algorithm. Therefore, it was decided to keep the film layer as a single-phase material in the 

model. It is then clear that the fitted dielectric functions are, to some degree, a mix of the dielectric 

functions of all phases present in the bulk. However, based on XRD and Raman measurements, we 

expect CZTS to be the main component. 

3.3.2. Sample grown at 25°C (thin) 

The C-25t sample is the simplest to analyze due to its lower surface roughness and its lack of long-

range crystal order, which makes its dielectric function simpler to model. The optical model used to fit 

the data consists of: a mixed air-solid phase overlayer (the mix between the two being a fitting 

parameter), a homogeneous film, and a fused silica substrate (Fig. 4(a)). The fused silica substrate is 

fitted in all samples with a Sellmeier model [8]. The optical functions of the film and of the overlayer 

are both parameterized with a Tauc-Lorentz expression, typical of amorphous materials [9], but they 

are kept independent from each other. The overlayer is defined as partially depolarizing, with the 

depolarization fraction being a fitting parameter. It is found that, if only the three higher incidence 

angles (65°, 70°, and 75°) are used, the mean square error (MSE) is more than twice that obtained if 



only the three lower angles are used (45°, 50°, and 55°), and it also results in generally higher 

correlated errors and larger deviation of the known parameters from their expected values. The same 

occurs if all available angles are used. Therefore, only the three lower angles are fitted (Fig. 5). The 

resulting topographic characteristics are shown in Table 1: they are in good agreement with the 

measurements from direct techniques also shown in Table 1. The surface overlayer is 53 nm thick (in 

good agreement with the inset in Fig. 2(a)) and consists of a mix of air (90 %) and a solid phase (10 %). 

This roughly corresponds to what is visible in the SEM image (Fig. 2(a)). The Tauc band gap of the 

CZTS film is 1.527 ± 0.003 eV, consistent with typical values reported in the literature [1,5]. The Tauc 

gap of the overlayer material is 2.07 ± 0.09 eV, which is consistent with a Cu2-xS phase since band gap 

energies between 1.7 eV and 2.7 eV have been reported for amorphous Cu2-xS [10,11]. 

3.3.3. Sample grown at 25°C (thick) 

The C-25T sample is modeled with the same layer stack but this time the dielectric function of the 

CZTS film layer is a free parameter to vary without any pre-determined oscillator (Fig. 4(b)). The only 

physical assumptions are Kramers-Kronig consistency and an initial shape before fitting, chosen to be 

the Tauc-Lorentz function of sample C-25t. This gives a large number of fitting parameters, and it is 

found that correlation errors and consistency with thickness and roughness measurements are 

minimized using five incidence angles (45°-65°). The resulting dielectric function is similar to a Tauc-

Lorentz function (comparison between the two gives MSE = 0.13) with a 1.573 eV band-gap energy. 

3.3.4. Sample grown at 350°C 

For the C-350 sample seven incidence angles are used and the fitting dielectric function is a free 

parameter to vary with the same physical assumptions as before. Besides the mixed layer, the optimal 

overlayer structure includes a roughness layer between the mixed layer and the film, which has a strong 

influence on the final MSE (Fig. 4(c)). This could physically represent the small film roughness due to 



nanocrystallinity, as shown in Fig. 2(c) and Table 1. Despite the low MSE, the fitted thickness of the 

roughness layer is larger than expected from AFM and the correlation error is high, possibly because of 

a contribution from the smaller-sized nanospheres to this layer. The Tauc band-gap energy of the film 

is estimated to 1.1 eV. 

3.3.5. Sample grown at 425°C 

Modeling the surface overlayer of the C-425 sample did not give meaningful results. This is probably 

due to the strong depolarization effect of the rough inhomogeneous surface (Fig. 2(d)). To avoid the 

problem, the ellipsometry measurement was performed from the glass side of the sample (Fig. 4(d)), 

only fitting the spectral region above 2.2 eV where light is completely absorbed in the film and 

reflections from the surface overlayer are not contributing to the detected signal. Seven angles of 

incidence are used and the dielectric function is again fitted freely starting from the C-350 dielectric 

function. 

3.3.6. Dielectric functions 

The dielectric functions of the bulk film layer as obtained from the previous analysis are shown in Fig. 

6. Those obtained for the two samples deposited at 25°C have very similar shapes and band gap 

energies. This fact suggests that film thickness does not significantly influence the extracted dielectric 

functions of the material and the initial assumption of a non-graded layer is confirmed. Also, since the 

bulk film layer was accurately modeled by a dielectric function featuring a single Tauc-Lorentz 

oscillator, significant contributions from phases other than CZTS are unlikely. As the deposition 

temperature is increased, the dielectric functions exhibit more complex dispersion due to increased 

crystalline order. Unlike in amorphous materials, the selection rule of wave-vector conservation must 

be applied to optical absorption in crystalline solids, which gives rise to critical point structures at 

photon energies corresponding to singularities in the joint density of states for a specific wave vector. 



Absorption is enhanced in the low- or high-energy neighborhood of a critical point according to its 

classification [12], therefore critical points can in principle be resolved by analysis of the imaginary 

part of the dielectric function ε2(E). The critical point structures we observe are similar to those 

reported in two other ellipsometry studies for a single-phase CZTS film [6] and for a CZTS bulk crystal 

[3], which in turn are in reasonable agreement with theoretical predictions [13]. The C-425 sample 

exhibits a rather sharp M1 critical point [12] just below 3 eV, probably corresponding to a critical point 

of the same type found at 2.92 eV by [6] and at 2.82 eV by [3]. The absorption onset observed in the C-

425 sample just above 4 eV may correspond to the M0 critical point found at 3.92 eV by [6] and at 3.86 

eV by [3]. In the 4.5-6.0 eV spectral region, ε2(E) in the C-425 sample has four inflection points, 

possibly arising from a number of broad excitonic critical points as assumed in [6]. The C-350 sample 

is different from the C-425 sample in the following: 1) broader critical point features, 2) larger values 

of ε2(E) at all photon energies, and 3) red shift (by 0.3-0.5 eV) of the critical point features. The first 

two differences are probably due to the C-350 film being only partially crystallized, which partially 

removes the selection rule of wave-vector conservation in optical transitions. The third difference could 

be due to a global shift of the valence band with respect to the conduction band in the Brillouin zone, 

thereby shifting the characteristic energy of all optical transitions. It is difficult to estimate how much 

the presence of SnS and Cu3SnS4 in the film bulk affects the dielectric functions of the C-350 and C-

425 films. Nevertheless, critical points previously reported for single-phase CZTS have also been 

identified in our samples. Hence, the effect of secondary phases is not believed to be strong enough to 

distort the main features of CZTS dielectric functions. 

 

Conclusions 



Cu2ZnSnS4 films were deposited by PLD in a range of temperatures and thicknesses. From AFM and 

Raman measurements, it was found that the surface overlayer featured both a complex surface 

topography and a different phase mix than the underlying film, which can complicate ellipsometry data 

interpretation. A satisfactory model was proposed for a thin film deposited at room temperature, which 

was able to accurately reproduce results from topographic measurements and corroborate assumptions 

from phase analysis. Even though the surface overlayer in the other films is too complex to be able to 

identify surface phases, dielectric functions were extracted for all films with the exception of the 

spectral region < 2.2 eV for the film deposited at 425°. The dielectric functions of two films with 

different thicknesses deposited at room temperature were compatible with an amorphous material with 

1.5-1.6 eV band-gap energy and showed no significant thickness dependency. As the deposition 

temperature was increased, the dielectric functions of the films exhibited additional critical points 

related to strong optical transitions at specific points of the Brillouin zone. The inclusion of secondary 

phases in the bulk of the films did not prevent identification of critical points previously reported for 

CZTS. 
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List of tables 
 
 
1 Topographic characteristics of CZTS films, measured with a profiler, AFM, and ellipsometry 
 

sample 
film 

thickness 
 [nm] 

overall 
roughness 

[nm] 

film 
 roughness 

[nm] 

overlayer 
thickness 

[nm] 
MSE 

 profiler ellipsometry AFM profiler AFM ellipsometry ellipsometry 
C-25t 190 195 15 15 0.9 0 53 4.0 
C-25T 750 733 57 60 1.2 0 74 12.2 
C-350 390 379 35 44 2.6 13 180 5.5 
C-425 760 770 96 101 96 n.a. n.a. 2.7 
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List of figure captions 
 
Figure 1: XRD patterns of the four CZTS films. Only one pattern is shown for the C-25t and C-25T 
samples, as their differences are negligible. Phase analysis is performed based on peak position and on 
comparison with Raman spectra. A Cu3SnS4 peak is identified as a shoulder in one of the SnS peaks. 
 
Figure 2: SEM images of CZTS films (beam voltage: 5 kV, magnification: 50000X) with a 45° tilt. 
The scale is the same in all images. a) C-25t, where the inset graph shows an AFM scan of one of the 
smaller nanostructures, about 57 nm in height; b) C-25T; c) C-350, where a nanocrystalline grain 
structure becomes visible; d) C-425, where surface characteristics are completely changed. 
 
Figure 3: Raman spectra of the four CZTS films. Phase analysis is performed based on peak position. 
Inset graph: two Raman spectra taken on the C-25t sample. When the laser is focused on top of a 
nanosphere instead of on the film surface, a Cu3SnS4 peak disappears and a Cu2-xS peak appears. 
 
Figure 4: Layer stacks used as optical models for fitting ellipsometry data. a) C-25t, b) C-25T, c) C-
350, d) C-425. The type of dielectric function used to model each layer is specified in parenthesis. The 
dashed red lines denote incident and reflected light in the measurement. 
 
Figure 5: Spectral magnitude (Ψ) and phase (Δ) of the ratio between p- and s- type polarization 
reflection coefficients, measured by ellipsometry at 45, 50 and 55° on the C-25t sample. Solid colored 
lines: measured spectra. Dashed lines: fitted spectra. The MSE is 4.0. 
 
Figure 6: a) Real part and b) imaginary parts of the dielectric functions ε = ε1 + i ε2 extracted by 
spectroscopic ellipsometry for the four CZTS films. Only the spectral region above 2.2 eV is fitted in 
the C-425 film due to complications arising when the surface overlayer contributes to the spectrum. 
 
 
 


