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WWTmod2014 is the fourth international seminar on wastewater treatment 

(WWT) modelling after successful events in 2008, 2010 and 2012. WWTmod 

provides a platform upon which any relevant aspect of WWT modeling may be 

scrutinized. The main objective of WWTmod is consensus building. The process of 

consensus building is supported by obtaining insights from a diverse group of leading 

professionals: researchers, consultants, utilities, regulators, manufacturers, and 

software developers.  

 

Stricter effluent limits for nutrients and other contaminants, and concerns about 

plant efficiency, climate change, and emerging contaminants are driving new 

model development efforts and more and more sophisticated application of 

modelling.  

 

The widespread use of wastewater treatment models depends on the development of 

widely accepted standards and procedures. The organizers hope this seminar will 

contribute to the further development of “Good Modelling Practice” in this field. 
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FINAL PROGRAMME 

 
 
 

Saturday, March 29
th

 2014 
 

09:00 – 17:00 YWP Workshop 

 
09:00-09:15 Overview 

 
Part I: Data Issues in Process Modeling 

09:15-10:15 Presentations 
10:15-10:30 Coffee Break 
10:30-11:45 Presentations 
11:45-13:00 Lunch 

 
Part II: Identifying Barriers to Innovation in Process Modelling 

13:00-15:00 Presentations and Small Group Discussions 
15:00-15:30 Coffee Break 

 
Part III: Finding Solutions 

15:30-16:00 Summary of small group discussions and of proposed solutions 
16:00-16:45 Panel Discussion: Overcoming barriers to innovation 
16:45- 17:00 Wrap-up, closing summary 

 
 
YWP Workshop Organizing Committee: 
Magnus Arnell, Lund University, Sweden 
Hélène Hauduc, LISBP - INSA de Toulouse, France 
Thomas Maere, Ghent University, Belgium 
Adrienne Menniti, Clean Water Services, USA 
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Sunday, March 30
th

 2014 
 

08:30-08:45 Welcome by Ingmar Nopens (Chair Scientific Committee, Chair B-IWA)   
08:45-09:45 Opening Lecture by Daniel A. Nolasco, Nolasco & Associates: 
                      Waste Water Treatment Plant (WWTP) Modeling from a 
                      consultant point of view.  

 
 

09:45 – 17:15 Parallel full-day workshops 
09:45-10:45 Presentations and Discussion 
10:45-11:15 Coffee break 
11:15-12:45 Presentations and Discussion  
12:45-13:45 Lunch break 
13:45-15:15 Presentations and Discussion  
15:15-15:45 Coffee break 
15:45-16:45 Presentations and Discussion  
16:45-17:15 Wrap-up 

 
Themes: 

1. Where are we and where should we go with MBR modelling? 
Thomas Maere and Joaquim Comas 
 

2. What do we need for “Total” Nitrogen Modelling? 
Peter Dold and José C. Porro 
 

3. How can modelling be effectively used for energy balance optimization? 
Adrienne Menniti, Tom Johnson and Leon Downing 
 

4. Revisiting phosphorus removal: do the models give the answers we want? 
Youri Amerlinck, Albert Guisasola and David Ikumi  
 

5. Linking WWTP modelling with Life Cycle Assessment (LCA) and other  
Holistic models 
Andrew Shaw and Lluis Corominas 
 

6. Wet-weather modelling: Why and how should we tame the beast? 
Lorenzo Benedetti and Peter Vanrolleghem 

 
 

17:15-18:00 Report preparation (workshop chairs)  
18:30  Welcome reception and dinner at Casino of Spa 
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Monday, March 31
st

 2014 
 

08:30-08:45 Opening by IWA president Glen Daigger 
 

08:45-09:15 Report from Saturday YWP workshop and Discussion  
09:15-10:15 Reports and discussion from Sunday workshops 1&2 
Moderator: Peter Vanrolleghem, Co-moderator: Kimberly Solon 

10:15-10:45 Coffee break  
10:45-12:15 Session 1: Influent characterisation for full scale modelling  
Moderator: Bruce Johnson, Co-moderator: Hélène Hauduc 

Characterization and separation of unbiodegradable matter in WRRFs 
Majdala Mansour-Geoffrion, Peter L. Dold, Alain Gadbois, Stéphane Déléris and 
Yves Comeau 
 
Influent generator for probabilistic design of nutrient removal wastewater  
treatment plants 
Mansour Talebizadeh, Evangelia Belia and Peter A. Vanrolleghem 
 
12:15-13:30 Lunch  
13:30-15:00 Session 2: Impact of diffusion 
Moderator: Damien Batstone, Co-moderator: Marina Arnaldos 

Increasing complexity in biofilm reactor models: How far do we need to go? 
George Wells, Thomas Vannecke, Nathalie Hubaux, Eberhard Morgenroth and  
Eveline Volcke (Fusion paper) 
 
The Case of the Ks: Diffusion versus Strategy 
Andrew Shaw, Imre Takacs, Krishna Pagilla, Rumana Riffat , Haydee  
De Clippeleir, Christopher Wilson and Sudhir Murthy 
 
15:00-15:30 Coffee break  
15:30-17:00 Session 3: Nitrogen modeling extended/revisited 
Moderator: Sylvie Gillot, Co-moderator: Magnus Arnell 

Evaluating two concepts for the modelling of biological denitrification 
Pan, Bing-Jie Ni, Huijie Lu, Kartik Chandran, David Richardson and Zhiguo Yuan 
 
Calibration of nitrous oxide production models with continuous long-term  
process data 
Mathieu Spérandio, Mathieu Pocquet, Lisha Guo, Peter A. Vanrolleghem, Bing-Jie 
Ni and Zhiguo Yuan 
 
19:00 Dinner at venue 
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Tuesday, April 1
st

 2014 
 

08:30-09:15 Keynote lecture  
                     Robert Schröder, Policy officer DG Environment 
                     Water policy from a European perspective 
 
09:15-10:15 Reports from Sunday workshops 3&4  
Moderator: Andy Shaw, Co-moderator: Laura Snip 
10:15-10:45 Coffee break   
10:45-12:15 Session 4: WWTP modeling: back to the future 
Moderator: Eberhard Morgenroth, Co-moderator: Sherri Cook 
Towards BSM2-GPS-X: A plant-wide benchmark simulation model not only for  
carbon and nitrogen, but also for greenhouse gases (G), phosphorus (P),  
sulphur (S) and micropollutants (X), all within the fence of WWTPs/WRRFs  
Peter Vanrolleghem, Xavier Flores-Alsina, Lisha Guo, Kimberly Solon, David Ikumi,  
Damien Batstone, Chris Brouckaert, Imre Takács, Paloma Grau, George Ekama,  
Ulf Jeppsson and Krist V. Gernaey 
 
Population Balance Models: A useful complementary modelling framework for  
future WWTP modelling 
Ingmar Nopens, Elena Torfs, Joel Ducoste, Peter A. Vanrolleghem and Krist V.  
Gernaey 
 
12:15-13:30 Lunch  
13:30-15:00 Session 5: Primary/secondary sedimentation 
Moderator: Imre Takacs, Co-moderator: Adrienne Menniti 
Modelling and characterisation of primary settlers in view of whole plant  
and resource recovery modelling 
Giulia Bachis, Thibaud Maruéjouls, Sovanna Tik, Youri Amerlinck, Henryk Melcer  
Ingmar Nopens, Paul Lessard and Peter A. Vanrolleghem 
 
Modelling the impact of filamentous bacteria abundance in a secondary 
settling tank: CFD sub-models optimization using long-term experimental 
data 
Elham Ramin, Dorottya S. Wágner, Lars Yde, Peter Szabo, Michael R. Rasmussen,  
Arnaud Dechesne, Barth F. Smets, Peter Steen Mikkelsen, Benedek Gy. Plósz 
 
15:00-15:30 Coffee break  
15:30-16:30 Reports from Sunday workshops 5&6  
Moderator: Yves Comeau, Co-moderator: Elena Torfs 

 
19:00  Gala dinner at Abbey of Stavelot 
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Wednesday, April 2
nd

 2014 
 

08:30-08:45 Welcome address  
                     WEF represenative 

 
08:45-10:15 Session 6: Models for new processes 
Moderator: Eveline Volcke, Co-moderator: Bing-Jie Ni 

 

Model based evaluation of mechanisms and benefits of nitrogen shortcut  
processes 
Ahmed Al-Omari, Bernhard Wett, Ingmar Nopens, Haydee De Clippeleir, Mofei Han,  
Pusker Regmi, Charles Bott and Sudhir Murthy 

 
Modeling of Organic Substrate Transformation in the High-Rate Activated  
Sludge Process: Why Current Models Don’t Work and a Recommended  
Unified Model Approach 
Thomas Nogaj, Andrew Randall, Jose Jimenez, Imre Takacs, Charles Bott, Mark  
Miller, Sudhir Murthy and Bernhard Wett 
 
10:15-10:45 Coffee break 

 
10:45-11:45 Closing session  

 
11:45-12:00 Summary of WWTmod2014 by Josh Boltz (WWTmod2014 Chair)  

 
12:00-12:15 Incoming Chair: Outlook on WWTmod2016  

 
12:15-13:30 Lunch 
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Poster sessions 
 
Modelling of phosphorous removal 

Towards Calibration of Phosphorus (P) Removal Plant-Wide Models 
David S. Ikumi, Peter A. Vanrolleghem, Christopher J. Brouckaert, Marc B.  
Neumann and George A. Ekama 
 
Modelling the behaviour of Polyphosphate Accumulating Organisms (PAOs)  
In biological nutrient removal processes in the presence of external carbon  
Xiang Hu, Dominika Sobotka, Krzysztof Czerwionka, Qi Zhou, Li Xie, Giulio Munz, 
Jan A Oleszkiewicz and Jacek Makinia 
 
A dynamic model for physicochemical phosphorus removal: validation and 
 integration in ASM2d 
Hélène Hauduc, Imre Takacs, Scott Smith, Anita Szabo, Sudhir Murthy, Glen T. 
Daigger, and Mathieu Sperandio 
 
A control-based approach to achieve efficient biological phosphorus removal  
In WWTPs: design, simulation, optimisation and experimental validation 
Javier Guerrero, Albert Guisasola and Juan A. Baeza 
 
 

Advanced physical-chemical WWTP modeling 
Validation of spontaneous mineral precipitation models  
Christian Kazadi Mbamba, Damien Batstone, Stephan Tait 
 
Incorporating aquatic chemistry into wastewater treatment process models:  
a critical review of different approaches 
Izaro Lizarralde, Christopher J Brouckaert, Peter A. Vanrolleghem, David S. Ikumi, 
George A. Ekama, Eduardo Ayesa and Paloma Grau 
 
Computational Fluid Dynamics as a supportive tool for Wastewater Treatment  
Plant modelling 
Julien Laurent, Randal. W. Samstag, Joel M. Ducoste, Alonso Griborio, Ingmar  
Nopens, Damien J. Batstone, Jim D. Wicks, Stephen Saunders, , Olivier Potier 
 
Dynamic Modelling of Diffused Aeration Systems 
Lu-Man Jiang, Riccardo Gori, Thomas Gocke, Diego Rosso 
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Advanced biological WWTP modelling 

The application of removal coefficients for viruses in different wastewater  
treatment processes calculated using stochastic modelling 
Edgard Dias, James Ebdon and Huw Taylor 
 
Early-stage design of municipal wastewater treatment plants – presentation  
and discussion of an optimisation based concept 
Hande Bozkurt, Alberto Quaglia, Krist V. Gernaey and Gürkan Sin 
 
Empirical vs. knowledge-based modelling of filtration in submerged anaerobic  
MBRs (SAnMBRs) 
Ángel Robles, Gergö Zajzon, Laura Jurecska, María Victoria Ruano, Josep Ribes, 
 Aurora Seco and José Ferrer 
 
Removal of pharmaceuticals in biological wastewater treatment systems:  
model generalisation and implications for environmental risk predictions 
Fabio Polesel, Katherine H. Langford, Stefan Trapp, Kevin V. Thomas, Benedek  
Gy. Plósz 

 
Nutrient removal and recovery modelling 

Modelling aerobic methane oxidation in a municipal WWTP   
Matthijs R.J. Daelman, Tamara Van Eynde, Mark C.M. van Loosdrecht and Eveline  
I.P. Volcke 
 
Innovative Modelling in the Design of the Sacramento Regional Wastewater  
Treatment Plant for Biological Nutrient Removal 
Patrick Dunlap, Andrew Shaw, James Barnard, Heather Phillips, Daniel Wilson and  
Ken Abraham 
 
Modeling bioaugmentation with nitrifiers in membrane bioreactors 
Alberto Mannucci, Giulio Munz, Gualtiero Mori, Jacek Makinia, Claudio Lubello and  
Jan A Oleszkiewicz 
 
A Green Micro-Algal Growth Model developed in the Activated Sludge 
Modelling Framework (ASM-A) 
Borja Valverde-Pérez, Dorottya Sarolta Wágner, Mariann Sæbø, Jonathan Van 
Wagenen, Irini Angelidaki, Barth F. Smets, Benedek Gy. Plósz 
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Anaerobic digestion modelling 

ADM1 implementation with an innovative organic matter characterization  
methodology based on chemical sequential extractions and 3D fluorescence  
spectroscopy: extension to organic micropollutants fate. 
Julie Jimenez, Quentin Aemig, Jean-Philippe Steyer, Dominique Patureau 
 
Establishing design guidelines for anaerobic co-digestion using a novel  
design-oriented analysis and ADM1 
Sherri Cook, Steven Skerlos, Nancy Love 
 
Model based approach to maximize gas production for high-loaded digestion  
Process 
Ryu Suzuki, Sudhir Murthy, Bernhard Wett and Imre Takács 

 
Modeling mixing and mixing models 

A Protocol for Optimization of Activated Sludge Mixing 
Randal W. Samstag and Edward Wicklein 

 
A general three-dimensional extension to ADM1: the importance of an  
integrated fluid flow model 
David L. F. Gaden and Eric L. Bibeau 

 
Modelling bacterial selection during the plug-flow feeding phase of aerobic  
granular sludge biofilm reactors 
David G. Weissbrodt, Christof Holliger, Eberhard Morgenroth 

 
ASM input/output analysis 

Should activated sludge models consider influent seeding of nitrifiers? Field  
characterization of nitrifying bacteria  
Shameem Jauffur, Siavash Isazadeh and Dominic Frigon 
 
Generation of (synthetic) influent data for performing wastewater treatment  
modelling studies 
Xavier Flores-Alsina, Christoph Ort, Cristina Martin, Lorenzo Benedetti, Evangelina  
Belia, Laura Snip, Ramesh Saagi, Mansour Talebizadeh, Peter A. Vanrolleghem,  
Ulf Jeppsson, Krist V. Gernaey 
 
A simple yet efficient colour-based system analysis tool for ASM 
Amerlinck, Y., Cierkens, K., Nopens, I. 
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Greenhouse gas modelling  

Modelling N2O dynamics in the engineered N cycle: Evaluation of alternate  
model structures 
Barth F. Smets, Carles Pellicer-Nàcher, Carlos Domingo-Félez, Marlene Mark 
Jensen, Elham Ramin, Benedek Gy. Plósz, Gürkan Sin, Krist V. Gernaey. 

 
Modelling simultaneous anaerobic methane and ammonium removal in a  
granular sludge reactor 
Mari- Karoliina. H. Winkler, Thomas P.W. Vannecke, Andrew Bogdan and Eveline I.  
P. Volcke 

 
Risk assessment modelling of N2O production in activated sludge systems; a  
knowledge-based approach 
Jose Porro, Costanza Milleri, Joaquim Comas, Ignasi Rodriguez-Roda, Maite  
Pijuan, Lluís Corominas, Lisha Guo, Matthijs Daelman, Eveline Volcke, Mark van  
Loosdrecht, Peter A. Vanrolleghem and Ingmar Nopens 

 
Estimation of dynamic apparent nitrification kinetics as the key for reliable  
greenhouse gas emission prediction 
Haydee De Clippeleir, Imre Takacs, Bernhard Wett, Kartik Chandran and Sudhir  
Murthy 
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Young Water Professional Workshop 
The 2014 YWP workshop will be divided into two parts. We will explore data issues in process modelling 

for the morning session. The afternoon session will be a highly interactive look at barriers to innovation in 

process modelling and how we can overcome them. Our goal is to create a dialog on important topics 

relevant to young water professionals and encourage networking between young and senior water 

professionals. YWPs are invited to submit this questions or experiences on either topic to the LindedIn 

forum: WWTmod 2014 YWP workshop. The contributions will be used as discussion starters in the 

workshop. 
 

Data Issues in Process Modelling 
Any simulation exercise has to rely on data to build, calibrate and validate the model. However, collecting 

data from wastewater treatment processes, lab or full scale, is always tedious and delicate. YWP, whether 

from academia, consultancy or utilities, are confronted with many questions, often without having enough 

experience to address them: 

 Which kind of results are of interest to practitioners? Scientists? Are these results compatible with 

the data collected by utilities? 

 Depending on the usage (knowledge build-up, scenario analysis, control), which data need to be 

collected (sensors, logbooks, dedicated measurement campaign) and at which frequency? 

 How to deal with data storage? How to insure data quality (reconciliation, truncation, time stamps)? 
 

Collecting and preparing a full-plant dataset that is reliable enough for a modelling exercise is a huge effort 

that may have additional value for other purposes. The question of sharing datasets, making them available 

for the whole community, will also be discussed in this morning session.  
 

The workshop will contain 3 presentations from junior and senior experts on data issues and will be followed 

by a group discussion. The expert panel will also elaborate on data issues from the audience, which can be 

proposed through the LinkedIn forum: WWTmod 2014 YWP workshop. 
 

Overcoming Barriers to Innovation in Process Modelling 
Innovations in process modelling, as in any field, are encouraged by interdisciplinary collaboration, open 

exchange of ideas at conferences and in peer-reviewed publications, and freedom to explore without fear of 

failure. The process of transferring new ideas from academia to application relies on innovation by 

academics, consultants and utilities. As funding pressures in all three areas become more intense, the 

activities that foster innovation are reduced in favor of activities that increase the chances of winning 

research funding, improve profitability, or reduce “extraneous” operating expenses. 
 

The three presentations will summarize the barriers to innovation in academia, consulting and utilities. Each 

presentation will be developed by a team of contributors to generate a consensus view that includes junior 

and senior viewpoints as well as male and female and European and north American. Each presentation will 

address the following questions: 

 What are the contributions of each field to innovations in process modeling? 

 What are the barriers to innovation? 

 How do those barriers hinder YWP career development and vice versa? 

 What solutions could address the issues identified? 
 

 

The remainder of the afternoon will be spent in interactive discussion, exploring the topic further and 

brainstorming solutions. 
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Workshop Agenda: 
Time Topic Potential Speaker 

9:00 9:15 Overview 

 Part I: Data Issues in Process Modeling 

9:15 9:45 

Presentation (20 minutes): 

Data issues in process modelling: It all starts 

with sampling Lina Belia, Primodal, Canada 

9:45 10:15 

Presentation (20 minutes): 

Mass balancing and sensor placement for data 

reconciliation and fault detection - Basic 

concepts Kris Villez, Eawag, Switzerland 

10:15 10:30 Break   

10:30 11:00 

Presentation (20 minutes): 

Data validation and model calibration: which 

one needs to be perfect? 

Jeroen Langeveld, TU Delft, the 

Netherlands 

11:00 11:45 Group discussion on issues from the audience  

11:45 13:00 LUNCH   

Part II: Identifying Barriers to Innovation in Process Modelling 

13:00 13:25 

Presentation (20 minutes): 

Barriers to Innovation in Academia Christoph Ort,  Eawag, Switzerland 

13:25 13:50 

Presentation (20 minutes): 

Barriers to Innovation in Consultancy 

Leon Downing, Donohue & 

Associated, USA 

13:50 14:15 

Presentation (20 minutes): 

Barriers to Innovation in Utilities 

Magnus Arnell, Lund University, 

Sweden 

14:15 15:00 

Small Group Discussions:  

Issues and Solutions  

15:00 15:30 Break   

Part III: Finding Solutions 

15:30 16:00 

Discussion Primer: 

Summary of small group discussions 

Summary of solutions proposed by speakers  

16:00 16:45 

Panel Discussion: 

Overcoming barriers to innovation 

 
16:45 17:00 Wrap-up, closing summary 

  

 

 

YWP Workshop Organizing Committee: 

Magnus Arnell   Lund Unversity, Sweden 

Hélène Hauduc   LISBP - INSA de Toulouse, France 

Thomas Maere   Ghent University, Belgium 

Adrienne Menniti  Clean Water Services, USA 
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Workshop: Where are we and where should we go with MBR modelling? 
 

he application of membrane bioreactors (MBR) for wastewater treatment has significantly increased 

over the last decades, despite the inevitable occurrence of membrane fouling which is one of the 

main drawbacks of MBR technology and is associated with high energy expenditures compared to 

conventional activated sludge technologies. Most of the MBR plants are working in a conservative 

way, with quite significant room for optimisation. The use of models for MBRs can be a really 

useful approach to optimise their operation. In this respect, the proposed workshop focuses on the 

current state of the art and the future needs in MBR modelling to move towards a) widely accepted 

MBR models and submodels and b) practically relevant models to describe the biological (aerobic 

and anaerobic) and filtration processes.  

Expected discussions and results 

The workshop consists of a series of invited presentations followed by moderated panel discussions 

in the morning and breakout sessions followed by a group discussion in the afternoon. The series of 

invited presentations focuses on the currently available models applied in MBR technology (where 

are we?). Specifically, the following main topics will be covered: (1) the modelling of the biological 

process, (2) the modelling of the filtration process, (3) current practices in optimisation and control 

of MBR systems. The breakout sessions will focus on future aspects of MBR modelling (where 

should we go?), with mainly 1) new modelling topics and frameworks and 2) full-scale applications.   

The specialist presentation on biological process modelling will address the possibility of adapting 

the current plant-wide models or classical activated sludge models (ASM) and the anaerobic 

digestion model (ADM) for modelling the biological process in both aerobic and anaerobic MBRs, 

respectively. Therefore, this topic will focus on the necessity (or not) of adapting existing models 

based on membrane specificities (e.g. including soluble microbial products) in order to move 

towards an integrated MBR model. The importance to practice will be discussed. 

The specialist presentation on filtration process modelling will focus on the necessity of developing 

feasible filtration process models which facilitate the design, operation and control of membrane 

technology. In particular, the applicability of the currently available deterministic and empirical 

models to different operating conditions, environments (aerobic and anaerobic), and membrane 

types will be discussed. The presentation will address the advantages and disadvantages of using 

integrated models or standalone filtration models as well. The link to practice will also be included. 

The specialist presentation on optimisation and control will give an overview of current practices 

and tools used to optimise the operation and design of MBRs. A clear distinction will be made 

between tools that have been proposed in literature which have not yet been applied or validated, 

lab- and pilot-scale investigations and finally control systems that have been used in full-scale 

practice. 

The breakout sessions are targeting the current needs and promising future paths in MBR 

modelling. Three presentations are planned: (1) new modelling topics (e.g. particle size 

distributions, viscosity, mixing, aeration, energy) and modelling approaches for these topics (e.g. 

computational fluid dynamics, population balance modelling); (2) full-scale applications (in 

response to a lack of full-scale studies in literature); (3) a topic from the audience which will be 

announced and decided upon through Linked-in and mail.  
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Each presentation will be prepared by 2-3 experts. The aim of having multiple people for a talk is to 

make sure that the various aspects of a topic are covered (academic, consultancy, utilities, 

companies). The presentations will be short, refreshing and thought-provoking to stimulate a lively 

discussion afterwards. The workshop is meant to be constructive and consensus-aiming. 

We will sum up the main ideas highlighted by each speaker together with the key points from the 

specific discussions. Then, we will finish with a reflection on the main issues we wanted to cover 

within this workshop: “where we are in MBR modelling and where we need to go”, taking into 

account the practitioners’ point of view and demand from the field. Finally, we want to discuss if a 

review paper on certain topics is needed, or maybe even the formation of a task group focussed on 

crucial MBR modelling issues. 

Workshop set-up 

In the morning, the workshop is structured along a number of keynote presentations on the state of 

the art in biological and filtration modelling and control. The presentations are followed by 

moderated round table discussions to reach consensus. To assure an objective, critical and holistic 

view on the addressed topics, the presentations will be prepared by multiple people.  

In the afternoon, outbreak sessions are planned on a couple of crucial topics, aiming to identify the 

key issues that have to be addressed and possible solutions. The day ends with an overview of the 

topics on which consensus is reached (or not) and future plans (e.g. formation of a task group, 

review paper, etc.).  

In order to promote discussion, a discussion forum will be launched on Linked-in before the start of 

the conference. Important remarks and suggestions for topics will be taken into account in the actual 

workshop. Speakers and attendees will be invited to the forum. 

Chairs / co-chairs 

Chairs: Thomas Maere (Biomath, Ghent University, Belgium), Joaquim Comas (Lequia, 

University of Girona, Spain) 

 

Co-Chairs: Vicky Ruano (Aqualia, Spain), Ángel Robles (University of València, Spain), Ignasi 

Rodriguez-Roda (Catalan Institute for Water Research, Spain), Ingmar Nopens (Biomath, Ghent 

University, Belgium) 

Speakers / collaborators 

From practice: 

- Christoph Brepols (Erftverband, Germany) 

- Murat Sarioglu (MWH global, Turkey) 

- André Lerch (Samsung Cheil Industries, Germany) 

- Marina Arnaldos Orts (Acciona Agua, Spain) 

- Vicky Ruano (aqualia, Spain) 

 

From academia: 

- Ángel Robles (University of Valencia, Spain) 

- Ignasi Rodriguez-Roda (ICRA, Spain) 

- Joaquim Comas (University of Girona, Spain) 

- Wouter Naessens (Ghent University, Belgium) 

- Thomas Maere (Ghent University, Belgium) 
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- Ingmar Nopens (Ghent University, Belgium) 

Target Participants 

This workshop should draw the attention of experts in membrane bioreactor technology both from 

practice and academia, with or without specific modelling expertise, as well as general WWTP 

modelling experts (e.g. ASM, ADM, CFD, control, energy) who want to learn about the 

specificities of MBR modelling. 

Programme 

Time    Topic Presenter/Moderator 

09:45 - 09:55 Introduction: Motivation, scope, and objectives. Present 
workshop structure, participants, etc. 

Chairs & co-chairs 

09:55 - 10:20 Presentation #1: Biological process modelling for aerobic 
and anaerobic MBR 

 Team #1: 
- T. Maere  
- Á. Robles 
- M. Sarioglu 

10:20 - 10:45 Discussion Period Chairs & co-chairs 

10:45 - 11:15 Coffee break 

11:15 - 11:45 Presentation #2: Filtration process modelling for aerobic 
and anaerobic MBR 

Team #2: 
- Á. Robles 
- W. Naessens 

11:45 - 12:15 Presentation #3: Control & optimisation: current practices Team #3: 
- Q. Comas  
- M. Arnaldos Orts 

12:15 - 12:45 Discussion Period Chairs & co-chairs 

12:45 - 13:45 Lunch break 

13:45 - 14:25 Outbreak session 1: New modelling topics and frameworks Team #4: 
- I. Rodriguez-Roda 
- A. Lerch 
- I. Nopens 

14:25 - 15:05 Outbreak session 2: Full-scale applications Team #5: 
- V. Ruano 
- C. Brepols 

15:05 - 15:15 Group discussion Chairs & co-chairs 

15:15 - 15:45 Coffee break 

15:45 - 16:15 Public outbreak session: Topics from the audience Chairs & co-chairs 

16:15 - 16:45 Plenum discussion 

 Future needs 

 Next steps 

Chairs & co-chairs 

16:45 - 17:15 Wrap-up, composing summary, report and presentation  Chairs & co-chairs 
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Workshop: What do we need for “Total” Nitrogen Modelling? 

 

Our community strives to provide models that reflect the behaviour in the many situations in 

wastewater treatment systems. Simulating nitrogen (N) transformations is challenging because there 

are many N states of concern (ammonia, nitrite, nitrate, NO, N2O, N2, organic N) with several 

organism groups involved, and components may be involved in multiple processes simultaneously. 

Nitrogen transformations are implicated in so many issues: GHG emissions, energy reduction (e.g. 

nitrite shunt), alternative external carbon sources, attaining low TN limits, many sidestream 

treatment options, etc. 

The proposed workshop will provide a forum to review, discuss and present ideas on the structure 

of models for nitrification and denitrification (and associated N2O production). For each main topic 

discussed, a discussion on the following will be included: 

 Model structure: How well do existing models reflect the mechanisms? 

 Interactions: How well do models capture the interactions between competing processes? 

 Mechanisms: What mechanisms may be at play that we are overlooking? How do we 

uncover them? 

 Data needs: In what areas, if any, do we need more data for model development and testing? 

 

 Can we unify models to achieve multiple objectives for a more holistic Total Nitrogen 

Modelling? 

Expected discussions and results 

The topic area of Nitrogen Modelling has been viewed as five subtopics (with interest areas in 

parentheses): 

1. Nitrification 

(SND and shortcut nitrite shunt) 

2. Anammox processes 

(model structure) 

3. Heterotrophic denitrification 

(Electron competition; model structure; pathways) 

4. N modelling in practice 

(Achieving Low TN limits) 

5. Nitrous oxide production 

(Mechanisms; model structure/performance; measurements; risk assessment modelling) 

The day, from 9:30 a.m. to 5 p.m., will be mainly divided into series of presentation/discussion 

periods (see Programme) with morning and afternoon 30 minute coffee breaks and a 1 hour lunch 

break.  The final slots in the morning and the afternoon are set aside for longer discussions on the 

topics. 
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Presenters will include a mix of academics and practitioners to ensure well-rounded discussions, 

linking research to practice.    

A workshop report will be compiled upon the completion of the workshop summarizing the key 

points discussed, consensus gained on topics, and action items for the N modelling community to 

fill gaps in knowledge and practice.    

Plans for the workshop subject include a white paper or journal article such as WS&T or WP&T.   

Workshop set-up 

The workshop set up will consist of a series of presentations followed by a discussion period.  A 

larger discussion period will follow the presentation/discussion slots in each the morning and 

afternoon sessions.  This format will generally lead to significantly more discussion time than 

presentation time.  This will be critical for reach consensus on topics and identifying research and 

practice needs for advancing N modelling.   

Chair and Co-chairs 

Chair:  Peter Dold  (EnviroSim Associates Ltd., Hamilton, Ontario, Canada) 

Co-Chair:  José C. Porro  (LEQUiA, University of Girona, Spain) 

Speakers / Discussion Leaders 

Dwight Houweling (CH2M Hill, Canada) 

Weiwei Du (EnviroSim, Canada) 

Zhiguo Yuan (University of Queensland, Australia) 

Eveline Volcke (Ghent University, Belgium) 

Ed Becker (ARCADIS, USA) 

Barth Smets (DTU, Denmark)  

Marlies Kampschreur (Waterboard Aa en Maas, The Netherlands) 

Mathieu Spérandio (University of Toulouse, France)  

Haydee De Clippeleir (Columbia University, USA) 

Maite Pijuan (ICRA, Spain) 

 

Target Participants 

Target participants include researchers active in N modelling, seasoned professionals who can lend 

invaluable insight on approaches, and practitioners interested in applying various N models for 

wastewater treatment plant design and operations.  Target participants will be interested in attending 

as the workshop will create opportunities for research and practice collaboration, building 

consensus on ongoing efforts, and understanding how different data collection/modelling 

approaches can be applied to best meet different objectives. 
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Programme 

Time    Topic Presenter/Moderator 

9:45 - 10:05 Introduction: Motivation, scope, and objectives Present 
workshop structure, participants, etc. 

P. Dold 

10:05 - 10:25 Presentation/Discussion #1: Nitrite Shunt, SND in FS 
plants 

D. Houweling 

10:25 - 10:45 Presentation/Discussion #2: Experimental data and 
denitrification model structure  

W. Du  

 

10:45 - 11:15 Coffee break 

11:15  11:35 Presentation/Discussion #3: Electron Competition in 
denitrification 

Z. Yuan 

11:35  12:00 Presentation/Discussion #4: Anammox Processes and 
Models 

E. Volcke 

12:00 - 12:45 Nitrification / Denitrification / Anammox Discussion  P. Dold  

12:45 - 13:45 Lunch break 

13:45 - 14:05 Presentation/Discussion #5: The state of N models for 
achieving Low TN limits in practice 

E. Becker 

14:05 - 14:45 Presentation/Discussion #6: N2O emission from 
wastewater treatment: formation mechanisms and 

models 

B. Smets, M. 
Kampschreur, E. 
Volcke 

 14:45 - 15:15 Presentation/Discussion #7: N2O Model Calibration and 
parameters 

M. Spérandio, 

H. De Clippeleir 

15:15 - 15:45 Coffee break 

15:45 - 16:10 Presentation/Discussion #8: N2O measurements – new 
methods and guidance 
 

E. Volcke, M. Pijuan 

16:10 - 16:25 Presentation/Discussion #9: N2O knowledge-based 
approach and modelling  

J. Porro 

16:25 - 17:00 Total Nitrogen Modelling Checklist Discussion P. Dold, J. Porro 

17:00 - 17:15 Wrap-up, concluding remarks P. Dold 
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Workshop: How can modelling be effectively used for energy balance 
optimization? 
 
 
The wastewater industry is moving rapidly toward the goal of energy neutrality. As energy costs 

rise, improving the energy footprint for wastewater treatment is not just a sustainability goal but an 

essential  step toward reducing operating costs. The ability to accurately predict energy 

consumption and production is critical to identifying and evaluating opportunities for energy 

balance improvement. The purpose of this workshop is to critically evaluate how modeling (both 

steady state and dynamic) can be effectivley used for estimating a plant energy balance and its 

associated cost implications. 

 

Expected discussions and results 

Achieving the goal of energy neutrality requires a balanced approach of decreasing energy demand, 

increasing energy production, and justifying the capital expense. The workshop will emulate this by 

being organized into three main sections.  We will first examine energy demand and energy 

production, concentrating on the two largest contributors to the plant energy balance – energy 

demand due to aeration and energy production from biogas. Next, the translation of energy 

predictions to costs is explored. Each section will involve brief presentations highlighting the 

approaches and challenges in a given area, followed by a focused discussion in both large and small 

group formats.   

 

The end of the workshop will “bring it all together”, discussing the overall challenges with energy 

modelling in wastewater systems and identifying the key future prospects. The chairs will develop a 

summary of the first three sections during the afternoon break. An inspirational presentation 

followed by summary points from the earlier sessions will be used to stimulate an end of the day 

discussion focused on the workshop’s overriding question:  How can modelling be effectively used 

for energy balance optimization? 

 

The sections will be organized into the following categories: 

 

Part I: Modeling Energy Reduction in Aeration Design and Operation  

 Main question:  How is modelling used for effective design of aeration systems and 

in aeration system control? 

 Discussion format:  guided group discussion focused on the Part I main question  

Part II: Modeling Energy Production 

 Main question:  Where are the gaps in energy production modeling? 

 Discussion format: guided group discussion focused on the Part II main question  

Part III: Modeling the Cost Implications of Energy Reduction and Production 

 Main question:  Can we effectively model the energy balance and energy cost 

components in a wastewater system? 

 Discussion format: small group discussions to address the question – which smaller 

energy uses make sense to model?  
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Part IV: Discussion of the overall challenges and opportunities in wastewater energy 

modeling 

 Main question:  What is the role of energy modeling, and where are the gaps? 

 Presentation: Speaker will give a “motivational” speech on the importance of energy 

in wastewater modeling, with the aim to re-stimulate the workshop attendees 

 Discussion format: the chairs will provide bulleted list of main takeaways from Part 

I, II, and III, and the a group discussion to identify the largest gaps/needs and key 

future prospects in energy modelling 

 

How will you summarize results for larger WWTmod group? 

The workshop results summary will focus on a major takeaway from Parts I, II, and III, and a list of 

the largest gaps/needs and key future prospects in energy modelling. 

 

What are plans for workshop subject after WWTmod? (i.e. white paper, publications, other?) 

The workshop outcomes will be summarized into a position paper: Where are the Knowledge 

Gaps and Future Prospects in Wastewater Energy Modelling?  The paper will be submitted for 

consideration for publication in WS&T. One possible workshop outcome could be the generation of 

a working group to establish best practices for energy modelling. 

 

Workshop set-up 

The workshop will rely on large group discussions and breakout discussions. The discussions will 

be preceded by a collaborative presentation where the speakers highlight key considerations in each 

area of energy modelling.  The group discussions will focus on how modelling is used in energy 

related wastewater applications, and where the gaps in current model structure and/or modelling 

practice exist. 

 

Chairs 

Adrienne Menniti, Clean Water Services (Portland, Oregon, USA) 

Tom Johnson, CH2MHill (Charlotte, North Carolina, USA) 

Leon Downing, Donohue & Associates (Sheboygan, Wisconsin, USA) 

 

Speakers / Moderators 

The speakers are all WWTMod veterans, and represent a cross section of the fields involved in 

wastewater modelling (academic, practitioners, utilities), as well as representatives from the 

Americas and Europe. 

 

Speaker #1 Tom Johnson (CH2MHill, Charlotte, North Carolina, USA) 

Speaker #2 Leon Downing (Donohue & Associates, Sheboygan, Wisconsin, USA) 

Speaker #3 Sylvie Gillot (Irstea, France) 

Speaker #4 Bernhard Wett (ARA Consult, Innsbruck, Austria) 

Speaker #5 Sherri Cook (University of Michigan, Ann Arbor, Michigan, USA) 

Speaker #6 Adrienne Menniti (Clean Water Services, Portland, Oregon, USA) 

Speaker #7 Leiv Rieger (inCTRL Solutions, Oakville, Canada) 

Speaker #8 Lluís Corominas (ICRA, Girona, Spain) 

Speaker #9 Diego Rosso (UC Irvine, Irvine California, USA) 

 



 Menniti, Johnson, and Downing 

 

23 

Programme 
 

Time Topic Speaker 

9:45   9:50 Overview: What are the challenges? Workshop Co-Chairs 

Part I: Modeling Energy Reduction in Aeration Design and Operation 

9:50   10:20 

- Optimizing energy savings through 
aeration control 

- Case Study: Comparison of two 
aeration control strategies and 
associated energy savings 

Leiv Rieger, InCTRL 
Sylvie Gillot, Irstea 

10:20   10:45 

Large Group Discussion: What are the Best 
Practices for Aeration System Modeling for 
Design and Operation? 

 10:45   11:15 Break   

Part II: Modeling Energy Production 

11:15   12:00 

- Predicting CAMBI performance 
- The benefits and limitations of 

modeling co-digestion using ADM1 
- Case Study: Modeling Co-digestion in 

Practice 

Bernhard Wett, ARA Consult 
Sherri Cook, University of 
Michigan 
Adrienne Menniti, Clean 
Water Services 

12:00 
 

12:45 

Large Group Discussion: Where are the 
knowledge gaps and opportunities in AD 
Modeling? 

 12:45   13:45 LUNCH   

Part III: Modeling the Cost Implications of Energy Reduction and Production 

13:45   14:15 

- Modeling vs. Operation: How Closely 
Can We Predict a Plant Energy 
Balance? 

- The "Hidden" Cost: Modeling Energy 
Tariff/Demand Charges 

Tom Johnson, CH2MHill  
Leon Downing, Donohue & 
Associates 
Lluis Corominas, ICRA 

14:15   15:15 
Break Out Group Discussion: Which smaller 
energy uses make sense to model? 

 15:15   15:45 Break   

Part IV: Discussion of the overall challenges with wastewater energy modeling 

15:45   16:00 

The Resource Recovery Facility: What is the 
Role of Energy Modeling, and Where are the 
Gaps? Diego Rosso, UC Irvine 

16:00 
 

17:00 
Large Group Discussion: Where are the gaps 
and where are the key future prospects? 

 
17:00 

 
17:15 Wrap-up, closing summary Workshop Co-Chairs 
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Revisiting phosphorus removal: do the models give the answers we 
want? 
Looking from a whole plant perspective, including biological and chemical processes.  

 

Whole plant modelling gets increasing attention (Grau et al., 2007) and deals with linking the 

different models available for activated sludge, anaerobic digestion and anoxic-aerobic digestion. 

Due to the complexities in modelling P removal, the whole plant models also will have to deal with 

the effect of combining the biological and chemical models and their effect on each other (Barat et 

al., 2008; de Haas et al., 2000; Schonborn et al., 2001). Describing and predicting phosphorus (P) 

removal means looking at both biological and chemical processes. Modelling these processes has 

evolved over the years and result in a different status. 

Modelling of biological phosphorus removal and in particular enhanced biological phosphorus 

removal (EBPR) has gotten a lot of attention during the 1990s resulting in the publication of the 

ASM2d (Henze et al., 1999). In the same period metabolic models (Lopez-Vazquez et al., 2009; 

Schuler and Jenkins, 2003; Smolders et al., 1995) also have shown to be promising for modelling 

the EBPR. More recently, a lot of criticism arose about ASM2d concerning the inability to account 

for several processes and many extensions have been published (García-Usach et al., 2010; Larrea 

et al., 2002; Makinia et al., 2006; Manga et al., 2001).  

Driven by problems of struvite precipitation, phosphate recovery and the need to predict pH, 

modelling chemical P removal has been getting a lot of attention in recent years, which led to the 

start of an IWA task group on a Generalized Physicochemical Framework (Batstone et al., 2012).  

Today, it is clear that for modelling phosphorus removal at wastewater treatment plants a whole 

plant context is required, including both biological and chemical processes. But there are a lot of 

models and extensions of models available. The choice of model leads to a large uncertainty in the 

model outcome and reduces the confidence in its predictions. 

Expected discussions and results 

Questions 

What are the prerequisites of the models to deal with practical questions (in regard to design and 

operation of wastewater treatment plants)? 

- What unit processes (AD, primary sedimentation, secondary sedimentation…) are 

insufficiently modelled to describe the fate of phosphorus in a plant wide modelling 

context? 

- What different populations do we need to consider in the model without including 

unnecessary detail and complexity? 

- What are the missing links/components to truly model physical-chemical processes? 

- What is the impact of EBPR on other biological processes and vice versa? 

- Are the currently known models sufficient? 

Is there a need for a consensus model to make the modelling of phosphorus removal a mature 

methodology? 
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How 

The workshop will be organized using four different session styles.  

The first session style is based on presentations to set the stage for further discussion. Several well-

known researchers will give an overview of the state-of-art on different aspects of whole plant 

modelling for phosphorus removal.  

The second session style is based on repeated breakout sessions. The four topics, guided by a 

moderator, will be discussed twice for half an hour with different groups. Participants can choose 2 

out of the 4 topics: (i) From practical questions to whole plant model prerequisites, (ii) impact of the 

sulfate cycle on P removal, (iii) the impact of biological reactions on chemical conditions and vice-

versa) and (iv) the effect of high temperature on EBPR. At the end of the two sessions, the 

moderators will present the results to the whole group. 

The third session style is based on the ‘Open Space Technology’. This is a method for convening 

groups around a specific question or task of importance and giving them responsibility for creating 

both their own agenda and experience. In first instance the participants are invited to propose topics. 

In a second step the remaining participants choose the topic of their interest and discuss it. One 

fundamental in this process is ‘the law of two feet’. I.e. if at any time during the time together you 

find yourself in any situation where you are neither learning nor contributing, use your two feet, go 

to another discussion. 

The fourth session style is a typical round table discussion around the questions the workshop 

wants to answer. The moderator will be in charge of challenging the audience in the round table and 

wrapping up the main conclusions in the final session 

After 

After the workshop we will work towards a position paper. As a first step we suggest to submit a a 

short report (2-3 pages max.) with the final conclusions of the workshop. The report will be 

distributed to the IWA task group on a Generalized Physicochemical Framework, to the IWA task 

group on Benchmarking of Control Strategies for Wastewater Treatment Plants and it will be 

uploaded into the MIA web (or send to the MIA group). As a second step we will invite the 

participants to contribute to the position paper.  

If the group sees an interest in a consensus model, the position paper can be the starting point for 

setting up an IWA task group with the goal of formulating a successor of ASM2d. 

Chair/Co-chair 

Chair Youri Amerlinck (BIOMATH, Ghent University, Ghent, Belgium) 
 

Co-Chair#1 Albert Guisasola (Universitat Autònoma de Barcelona, Barcelona, Spain) 

Co-Chair#2 Hélène Hauduc (Institut National des Sciences Appliquées de Toulouse, France) 

Co-Chair#3 David Ikumi (University of Cape Town, Cape Town, South Africa) 

Speakers / Moderators 

Moderator #1 Marjoleine Weemaes (Aquafin, Aartselaar, Belgium) 

Moderator #2 Chris Brouckaert (University of KwaZulu-Natal, Durban, South Africa) 

Moderator #3 Hélène Hauduc (Institut National des Sciences Appliquées de Toulouse, France) 
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Moderator #4 Guclu Insel (Istanbul Technical University, Istanbul, Turkey) 

Moderator #5 Albert Guisasola (Universitat Autònoma de Barcelona, Barcelona, Spain) 

Moderator #6 David Ikumi (University of Cape Town, Cape Town, South Africa) 

Moderator #7 Youri Amerlinck (BIOMATH, Ghent University, Ghent, Belgium) 
 

Speaker #1 Yves Comeau (Ecole Polytechnique de Montréal, Montréal, Canada) 

Speaker #2 Damien Batstone (University of Queensland, Brisbane, Australia) 

Speaker #3 Imre Takacs (Dynamita, Nyons, France) 

Speaker #4 George Ekama (University of Cape Town, Cape Town, South Africa) 

Speaker #5 Juan Antonio Baeza (Universitat Autònoma de Barcelona, Barcelona, Spain) 

Target Participants 

Everyone who is dealing with phosphorus removal (either chemical, biological or both) at 

wastewater treatment plants. 

 Plant staff 

 Consultants 

 Researchers 

Programme 
Time    Topic Presenter/Moderator 

09:45 - 10:00 Introduction: Motivation, scope, and objectives. Youri Amerlinck 

10:00 - 10:20 Presentation: Microbiological aspects of EBPR. Yves Comeau 

10:20 - 10:40 Presentation: Chemical phosphorus removal. Damien Batstone 

10:40 - 11:00 Presentation: Overview of the existing models. Imre Takacs 

George Ekama 

11:00 - 11:30 Coffee break 

11:30 - 12:45 Repeated breakout sessions  

(Participants choose 2 out of 4 topics): 

- From practical questions to whole plant model 
prerequisites 

- Modelling struvite precipitation for phosphorus 
recovery 

- The impact of biological reactions on chemical 
conditions and vice-versa 

- The effect of high temperature on EBPR 

 

 

Marjoleine Weemaes 
 

Chris Brouckaert 

Hélène Hauduc 
 

 
Guclu Insel 

12:45 - 13:45 Lunch break 

13:45 - 14:15 Presentation: Control of phosphorus removal processes. Juan Antonio Baeza 

14:15 - 15:15 Open space method: 

- Collection of topics 

- Discussion in small groups 

- Wrap up of results 

 

15:15 - 15:45 Coffee break 

15:45 - 16:15 Round table discussion: the need for an consensus model for 
EBPR 

Albert Guisasola 
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16:15 - 16:45 Round table discussion: modelling phosphorus removal in a whole 
plant context: SWOT 

Hélène Hauduc 

David Ikumi 

16:45 - 17:15 Wrap-up, composing summary, report and presentation. Youri Amerlinck  
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Workshop: Linking WWTP modelling with Life Cycle Assessment (LCA) 
and other Holistic models. 

 

The main goal of this workshop is to provide a forum for experts in wastewater treatment plant 

modelling to think about how current process modelling fits with LCA and how current models 

might be expanded to create more synergies with LCA and other holistic models.  

Expected discussions and results 

Decisions about wastewater treatment have traditionally been driven by considerations of technical 

aspects and cost-benefit analyses. In order to assess sustainability it is essential also to incorporate 

environmental and social aspects. In this line of thinking, several methods for sustainability 

assessment of wastewater treatment technologies have been proposed and evaluated in literature. 

Focusing on environmental performance, Life Cycle Assessment (LCA) (ISO 14040, 2006) is an 

accepted tool that has also been used to evaluate potential environmental impacts from 

environmental processes (Finnveden et al., 2009) including wastewater treatment processes 

throughout their whole life cycle (Guest et al., 2009). The success of this method is demonstrated 

by the large number of published studies which have applied LCA to the wastewater treatment field 

(Corominas et al., 2013). The published studies so far have been applied to estimate the impact of 

different wastewater treatment plants (WWTPs) and to compare conventional and new wastewater 

treatment technologies.  

The organization of this workshop links to current activities of the IWA Working Group for Life 

Cycle Assessment of Water and Wastewater Treatment (LCA-Water WG) which was established in 

September 2012 to facilitate the exchange of ideas, and develop consensual methodologies, to 

promote better use of LCA in urban water systems. One of the main activities is to organize 

workshops to disseminate the use of LCA and to create synergies with other organizations (e.g. 

Task groups or working groups within IWA). WWTmod2014 is a great opportunity to define the 

synergies between that working group and other task forces that the modelling community on 

wastewater systems is running. The outcomes from the workshop might be bidirectional: from one 

side the LCA community can provide the wastewater process modelling community with 

complementary tools that can be coupled to existing models to expand how they are used to include 

environmental impacts and at the same time the LCA community involved in the field of WWT 

may benefit from close collaboration with the wastewater process engineers and managers who 

have extensive firsthand experience, resulting in a clearer modelling of the environmental impacts 

(and associated processes’ variability particularly important for, e.g. GHG air emissions on the 

Global Warming category). On the other side, the wastewater process modelling community can 

learn from the LCA community which are the key issues from an environmental assessment point 

of view that should be addressed in the future (e.g. answering the question on where to put more 

effort: in modelling greenhouse gases emissions or microcontaminants, for example? What is more 

relevant for the environment?). Hence, the key questions from the workshop will be: 

- How can the wastewater process modelling community benefit from environmental 

assessment tools? 
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- Which are the key issues that should be addressed in the future research by the wastewater 

process modelling community to help filling the gaps in the environmental assessment field? 

- What would be key issues in LCA models to address with future research in order to offer 

accurate models to be of use to the WWT process community?  

 

How will the workshop go about answering the posed question?  

In order to answer the questions above posed, some fundamentals on LCA will be introduced first 

and then, several group discussions will be organized where the following points will be addressed 

that cover the different steps of the LCA ISO standard:  

- Goal and scope definition. To identify different types of studies where LCA coupled to 

wastewater treatment models might play an important role.  

- Inventory analysis. To identify which data required in the LCA studies can be obtained from 

wastewater treatment models. 

- Impact assessment. To establish the link between LCA impact assessment methods with 

current simulation platforms. 

- Interpretation. To discuss which wastewater treatment modelling challenges are more 

relevant from an environmental assessment point of view. 

 

In order to have dynamic presentations promoting discussion we will address these issues by 

presenting successful examples of LCA studies and practices.  

 

Who will be presenting in the workshop, and how will they contribute to the discussions? 

Members of the LCA-Water WG will be introducing general concepts and moderate the discussions 

and other invited speakers covering different areas of expertise within the wastewater treatment 

modelling community will be involved to ensure bilateral discussions. (LCA vs wastewater 

treatment modelling). 

 

How will you summarize results for larger WWTmod group? 

A wrap-up session is planned by the end of the meeting where the key points will be identified and 

a PowerPoint presentation will be prepared with the key messages of the workshop.  

 

What are plans for workshop subject after WWTmod? i.e. white paper, publications, other? 

A white paper on linking current wastewater treatment modelling practices with LCA.  
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Workshop set-up 

The workshop will be organized as a round table discussion after some keynote presentations.  

The workshop will briefly define some fundamentals on LCA supported by wastewater treatment 

examples and will present the state-of-the-art of LCA and wastewater treatment. Then, the 

workshop will move to a more interactive stage with brief presentations and examples followed by 

discussion. 

 

Chair/Co-chair 

Andrew Shaw (Black & Veatch and Illinois Institute of Technology, USA) 

Lluís Corominas (ICRA, Spain) 

Speakers / Moderators 

Gonzalo Rodriguez-García  (University of Santiago de Compostela, Spain and Helmholtz-Institute 

Ulm, Germany) 

Eva Risch (ELSA, France) 

Haydee De Clippelier (DC Water, USA) 

Jens Alex (IFAK, Germany) 

Target Participants 

• Process modellers wishing to know more about LCA 

• LCA practitioners wishing to understand how process models might fit with LCA 

• Anyone wishing to increase their understanding of LCA for wastewater treatment 
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Programme 

Time    Topic Presenter/Moderator 

09:00 - 09:10 Introduction: Motivation, scope, and objectives Present 
workshop structure, participants, etc. 

Lluis Corominas 

09:10 - 09:30 Presentation #1: Beyond Carbon Footprinting (Intro to 
LCA) 

Andrew Shaw 

09:30 - 10:00 Case study #1: LCA for WWT 
 

Case study #2: LCA in the Water-Energy Nexus  

Gonzalo Rodriguez-
García   

Eva Risch 

10:00 - 10:30 Coffee break 

10:30 - 10:50 Presentation #2: Current state of the art in LCA Lluis Corominas 

10:50 - 11:20 Case study #3: Strass LCA 

Case study #4: Blue Plains LCA 

Haydee De Clippelier 

Andrew Shaw 

11:20 - 12:00 Discussion Period: Experiences and perceptions of LCA Gonzalo Rodriguez-
García   

 (facilitator) 

12:00 - 13:30 Lunch break 

13:30 - 13:50 Presentation #3: Incorporating LCA into Decision Making Andrew Shaw 

13:50 - 15:00 Group discussion:  Brainstorming on how LCA is/should 
be used for WWT 

Gonzalo Rodriguez-
García (facilitator) 

15:00 - 15:30 Coffee break 

15:30 - 15:50 Presentation #4: Incorporating LCA into Process 
Simulators 

Jens Alex 

15:50 - 16:30 Panel discussion: Should WWTmod step out of its box to 
include LCA, integrated modelling etc? 

Andrew Shaw 
(facilitator) 

16:30 - 17:00 Wrap up and next steps Lluis Corominas 
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Workshop: Wet-weather modelling: Why and how should we tame the 
beast? 

 

Wet-weather (WW) events and periods have a large impact on the Water Resource Recovery 

Facility (WRRF) behaviour and on its capability to comply with regulations. There has been a 

significant increase in interest in this topic in recent years. Publications like “Guide for Municipal 

Wet Weather Strategies” published this year by the Water Environment Federation (WEF) as well 

as “Design and Operational Considerations for the Management of Wet Weather Flows at Water 

Resource Recovery Facilities” (to be published in early 2014 by WEF as well), are meant to provide 

guidance to those involved in solving the unique challenges associated with the management of 

WW events. Both of these publications emphasize the importance dynamic modelling plays in 

providing adequate support in understanding WW phenomena and in evaluating design and 

operation options with regard to their performance during WW events. 

The workshop will tackle the issue by promoting discussion around three main questions: 

 Why is WW modelling important? 

 What is happening in a WRRF during WW and how can we model it? 

 How can we model measures that mitigate the effects of WW? 

Expected discussions and results 

In recent years municipal utilities have been facing the need to provide significant improvements on 

how they manage WW-related flows in their WRRFs as the result of increased regulatory and 

public pressures.  These flows and loads, which result from combined sewer systems or even 

separate systems that have significant amounts of infiltration and inflow, can in many cases exceed 

the treatment capacity of existing facilities. However, the overall approach necessary to identify, 

evaluate, and eventually select the “best” WW flow management scenario for a particular WRRF in 

terms of process units and operational requirements is one that contrasts significantly from that 

normally used by the same utilities in dealing with dry weather (DW) treatment needs.  

It can be argued that one of the most appropriate fields of application of dynamic WRRF modelling 

is indeed the study of WW events and periods, given the extremely time-varying nature of such 

phenomena, with typical time scales ranging from minutes to days. The behaviour of the facility in 

WW is very different from DW, especially with regard to influent flows and loads, primary and 

secondary settling efficiency, mixing, biological treatment performance, oxygen transfer and solids 

inventory transfer between the biological reactors and secondary settling tanks. This requires 

additional modelling efforts compared to DW, to enable decision support regarding design and 

operation alternatives devised to achieve permit compliance of the facility. 

The topics covered by the workshop comprise an introduction to regulatory requirements and 

benefits of WW dynamic modelling, an overview of the main phenomena occurring at WRRFs 

during WW and of modelling of selected design and operation WW strategies. The presenters are 

based in both Europe and North America, and from both academia and consultancy. Plenary open 

discussion (60% of the total time) is allocated after each of the three presentation blocks and at the 
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end of the workshop, with the participation of a panel of invited experts. “On the fly” model runs 

will be performed during the discussion periods to interactively illustrate/test specific aspects. 

A summary of the presentations and of the discussion will be shared with the WWTmod group. 

Expected outcomes: 

 dissemination of current status in WW management and its modelling, with focus on 

implications for WWRF design and operation, leading the way to a deeper understanding of 

the aspects affecting the WRRF’s performance under WW; 

 identification of main challenges, gaps and opportunities, both for model development and 

application; 

 a white paper on the state of the art and challenges related to WW modelling, with 

contributions by the presenters and by interested workshop participants. 

Workshop set-up 

The workshop is organized as follows: 

 one presentation provides an introduction to regulatory requirements related to WW, and a 

summary of dynamic WW modelling benefits; discussion follows 

 two presentations illustrate the modelling (limitations) of the phenomena associated to WW, 

causing the facility’s disturbance by WW (influent flows and loads) and occurring at the 

plant (mixing, settling, oxygen transfer, etc.); discussion follows 

 two presentations introduce design and operation options aimed at dealing with WW, and in 

particular their specific modelling (limitations) issues; discussion follows 

 a last discussion period is dedicated to more clearly identifying and finding consensus on the 

current status, directions, opportunities and gaps in WW knowledge and modelling. 

Chair/Co-chair 

Lorenzo Benedetti (Waterways, Italy) 

Peter Vanrolleghem (Université Laval, Canada)  

Speakers / Moderators 

Lorenzo Benedetti (Waterways, Italy) 

Charles Bott (Chief of Research and Development, HRSD, USA) 

Jose Jimenez (Brown & Caldwell, USA) 

Dave Kinnear (HDR, USA) 

Paul Krauth (Utah Division of Water Quality, USA) 

Cristina Martin Andonegui (DEUSTOTECH, Spain) 

Julian Sandino (CH2M HILL, USA) 

Oliver Schraa (Hydromantis, Canada) 

Peter Vanrolleghem (Université Laval, Canada)  

Stefan Weijers (Waterschap De Dommel, Netherlands) 

Invited panel (confirmed) 

Gerda Hald (Director, Planning & Investments, VandCenter Syd, Denmark) 

Jeroen Langeveld (RHDHV /  Delft University, Netherlands) 
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Target Participants 

 Utilities/operators: stimulate ideas on how to improve the performance of their systems. 

 Consultants: find and show ways to better serve their clients. 

 Academics: opportunity to show current activities and to identify research needs expressed 

by utilities and consultants. 

Programme 

Time    Topic Speaker/Moderator 

09:45 - 09:55 Introduction: Motivation, scope, and objectives. Present 
workshop structure, participants, etc. 

Lorenzo Benedetti 

09:55 - 10:15 Presentation #1: “Why do we have to tame the beast?” 
Regulatory, design and operational aspects of WW; support 
provided by modelling in design and operation. 

Julian Sandino 

Stefan Weijers 

10:15 - 10:45 Discussion Period: regulation Paul Krauth 

10:45 - 11:15 Coffee break 

11:15 - 11:35 Presentation #2: “What is making the beast angry?” 
Modelling WW influent aspects: flows, loads, and variability. 

Cristina Martin 
Andonegui 

10:35 - 11:55 Presentation #3: “What are the aspects of the beast’s anger?” 
Modelling WW impact on plant behaviour: mixing, settling, 
aeration, etc. 

Peter Vanrolleghem 

11:55 - 12:45 Discussion Period: modelling Dave Kinnear 

12:45 - 13:45 Lunch break 

13:45 - 14:05 Presentation #4: “How do we tame the beast? The hard way.” 
Modelling design options for WW mitigation. 

Jose Jimenez 

14:05 - 14:25 Presentation #5: “How do we tame the beast? The soft way.” 
Modelling control options for WW mitigation. 

Oliver Schraa 

14:25 - 15:15 Discussion Period: mitigation Charles Bott 

15:15 - 15:45 Coffee break 

15:45 - 16:45 Discussion Period: general and conclusions 

 Summary 

 State-of-the-art 

 Future 

 Next steps 

Julian Sandino 

16:45 - 17:15 Wrap-up, composing summary, report and presentation  
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Abstract 

The purpose of this paper is to present a critical review on the characterization of influent 

unbiodegradable organic (trash) and inorganic (grit) particulate matter, to propose a fractionation 

of  particulate unbiodegradable matter and to how the fractionation can be used to evaluate trash 

and grit removal efficiencies of physical separation units. 

 

Keywords 
Trash, grit, unbiodegradable organic, inorganic, characterization, fractionation, activated sludge 

 

 

INTRODUCTION 

The modelling of systems with long sludge retention times (membrane bioreactors, extended 

aeration and Cannibal-type systems) is particularly sensitive to the fractionation of wastewater 

unbiodegradable matter. Indeed, unbiodegradable influent particulate organic (trash; XU,INF) and 

inorganic (grit; XIg,INF) matter directly affect predictions of sludge production in water resource 

recovery facilities (WRRFs). The purpose of this paper is to present a critical review of the 

characterization of trash and grit, to propose a fractionation of unbiodegradable organic and 

inorganic material in activated sludge and to show how the fractionation can be used to evaluate 

trash and grit removal efficiencies of physical separation units. 

 

CHARACTERIZATION OF XU,INF 

Trash (XU,Inf) can be defined as unbiodegradable particulate organic material originating from the 

influent. During model calibration, the XU,Inf fraction is sometimes modified so that the simulated 

and observed sludge productions correspond. It has been suggested that the development of 

methods to better represent XU,Inf would help avoid this fine-tuning (Choubert et al., 2013).  

Trash is removed in the screenings at the headworks of WRRFs.  Materials composing trash include 

toilet paper, hair, leaves, rags, sticks, food particles, plastics, bottle caps, tree roots, wood chips, etc. 

(WEF, 2010; Metcalf & Eddy, 2014). The lack of data on trash and screenings is often mentioned in 

the literature and may be attributed to analytical challenges (Clay et al., 1996; Le Hyaric et al., 

2009). Several studies have focused on characterizing the quantity, specific gravity, organic matter 

(volatile fraction), nutrients and biodegradability of these materials (UKWIR, 2000; Le Hyaric et 

al., 2009; Mansour-Geoffrion, 2012). Screenings characteristics can be influenced by the type and 

mailto:stephane.deleris@veoliawater.com
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length of collection system, pumping stations (and whether screening is present at pumping station), 

rainfall, influent screen bar spacing, organic matter content, storage conditions, dewatering, solids 

content (Le Hyaric et al., 2009; WEF, 2010). Short, gently sloping collection systems with low 

turbulence generally produce more screenings than long steep interceptor systems with pumping 

stations because of differing degrees of organic solids disintegration (WEF, 2010). Typically, the 

shorter the sewer network, the greater the amount of screenings removed at the WRRF. This can be 

explained by less dilacerations of suspended solids and the decreased likelihood of pumping 

stations (can favor settling during dry weather and disintegration of solids (Canler & Perret, 2004). 

Combined sewer systems produce several times the coarse screenings compared to separate systems 

(WEF, 2010). Peak wet-weather removal from combined systems may vary by as much as 20:1 on 

an hourly basis from average dry weather conditions (WEF, 2010). 

Quantities and composition of XU,Inf 

Typical reported quantities and characteristics of screenings collected at WRRFs are presented in 

Table 1. The average consumption of toilet paper in the United States is 23 kg capita
-1

 y
-1

 (Haase, 

2010). Assuming most of the toilet paper is flushed in the toilet and ends up in the sewer system, 

almost all of it should end up at the WRRF with the exception of combined sewer overflows. The 

average yearly screenings production at the influent of wastewater treatment plants in the United 

States was 4.5 kg/capita (Table 1), representing 20% of the toilet paper consumed. It can therefore 

be deduced that much of the toilet paper and most likely other materials considered to be trash are 

not entirely intercepted by influent screens and probably end up either in primary sludge, secondary 

sludge or effluents of WRRFs. 

Reported solids content of screenings vary between 10 and 50%, while bulk densities, which 

depend (among other factors) on solids content, are 510 – 1100 kg/m
3
. As expected, screenings are 

mainly organic as evidenced by their high volatile fraction (0.77 – 0.90 g XVSS/g XTSS). 

Table 1: Summary of quantities and characteristics of screenings collected at WRRFs 

Parameter Units
Literature review 

and field study
Literature review Field study

Survey of 328  

U.S. WRRFs
Literature review (Handbook)

L/capita·year 3.7 - 11.0 1.3 - 18.8 -- 5.6 1.1 - 16.5 --

kg/capita·year -- 1 - 15 1 - 2.5 4.5 -- --

L/m3 wastewater -- -- -- 0.74 - 148 -- 4 - 100

kg/m3 wastewater -- -- -- 0.01 - 0.3 -- --

uncompacted 10 - 20% 10 - 30% 15% 10 - 20% 8%

compacted -- 20-45% 30% -- --

Bulk density kg/m3 600 - 900 600 - 1000 510 - 800 600 - 1100 -- 600 - 1100

Volatile fraction (fVT) g XVSS/g XTSS 0.80 - 0.90 >0.80 0.77 - 0.88 -- 0.86 --

Calorific value kJ/kg 15 X 103 6 - 25 X 103
-- -- -- --

UKWIR (2000) Le Hyaric (2009) 

10 - 50%

Canler & Perret 

(2004)

Metcalf & 

Eddy (2014)

MOP 8 (WEF, 

2010)
Le Hyaric (2009) 

Quantity

% Dry solids

 

 

Typical components of trash were characterized and compared to characteristics of microscreenings 

obtained from experiments conducted on activated sludge from nine full-scale WRRFs in Quebec 

(Canada) and Morongo (California, USA; Table 2)). The Morongo WRRF was the only facility 

tested where a full-scale microscreen was installed on the return activated sludge stream for the 

purpose of trash removal from sludge. The fVT (volatile to total suspended solids ratio), fCV 

(chemical oxygen demand to volatile suspended solids ratio), phosphorus content (TP) and total 

Kjeldahl nitrogen (TN) content of toilet paper, brown paper (for drying hands), Kleenex, live plant 

leaves and dead leaves were measured. Samples were dried (103°C for 24 h), weighed, diluted in 

reverse osmosis water and blended (Ultra-Turrax ® T 25 digital, IKA) prior to XVSS, XTSS, TCOD, TP 
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and TN analyses. TP and TN were measured after digestion using an automated ion analyzer 

(Quickchem® AE model, Lachat Instruments, Inc., Loveland, CO) according to Standard Methods 

(APHA et al., 2005). 

Results showed that paper products were almost entirely volatile (fVT=98-100%) while dead leaves 

contained more inorganic matter (fVT=90%) than live plant leaves (fVT=96%). The fCV values 

obtained for microscreenings from Morongo and Quebec WRRFs were in the same range as the fCV 

values measured on typical components of microscreenings.  

Low fPV and fNV values measured on Morongo microscreenings were characteristic of values 

measured on typical components of microscreenings, with the exception of live plant leaves. Live 

plant leaves contained much more P and N than paper products and even dead leaves, but they are 

probably a minor component of microscreenings as indicated by the low fPV and fNV of 

microscreenings as well as observations.  

 

Table 2. fVT, fCV, fNV and fPV of typical XU,Inf components, Morongo and Quebec sludge  and 

microscreenings samples 

fVT fCV fNV fPV

g XVSS/g XTSS g XCOD/g XVSS g XTKN /g XVSS g XP/g XVSS

Slowly biodegradable WW components 

     Toilet paper 100±1% 1.39 0.04% 0.006%

     Brown paper 98±0% 1.55 0.16% 0.006%

     Kleenex 100±0% 1.51 0.05% 0.003%

     Plant leaves (alive) 96±1% 2.77 3.34% 0.535%

     Dead leaves 90±1% 2.18 1.54% 0.074%

Morongo WRRF (lab-scale tests)

     Mixed liquor 74% 1.46 7.46% 1.8%

     Mixed liquor microscreenings (250 µm) 87% 1.49 0.06% 0.013%

Samples

Quebec WRRFs (lab-scale tests)

     Activated sludge 73±8% 1.46±0.12 na na

     Microscreenings (200-500 µm) 88±4% 1.59±0.72 na na

na: not available  

 

Biodegradability of XU,Inf 

Materials composing XU,Inf are often assumed to be unbiodegradable (Lei et al., 2010), however 

there is evidence in the literature that cellulose (toilet paper) is biodegradable in activated sludge 

systems (Verachtert et al., 1982)  and that activated sludge microscreenings, which have similar 

characteristics to influent screenings, exhibit a 20-day carbonaceous biochemical oxygen demand 

(XcBOD20; Mansour-Geoffrion, 2012). There is no standard procedure for the evaluation of 

screenings biodegradability. Several approaches for evaluating screenings biodegradability, such as 

manual sorting and identification of materials, biochemical oxygen demand and biomethane 

potential (BMP) have been proposed. The purpose of manually sorting screenings materials is to 

evaluate the variability of screenings composition and to identify biodegradable components of 

screenings. Screenings may be sorted into several categories (Table 3) after draining for thirty 

minutes (UKWIR, 2000) or after being partially dried at 80°C for 10 days (Le Hyaric, 2009).  
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Table 3: Categories for manual sorting of screenings materials (biodegradability evaluation) 

UKWIR (2000) Le Hyaric (2009)
Faeces Fines (less than 20 mm)

Sanitary products Sanitary textiles

Fine Paper Vegetation

Leaves Paper-cardboard

Other Material Plastics 

Textiles

Metals, Aluminum

Composites

Combustibles

Incombustibles  

BOD tests have also been used to evaluate screenings and microscreenings biodegradability, but 

procedures in the literature present some major differences. Microscreenings biodegradability was 

evaluated using the fBC index (XcBOD20 to XCOD ratio) as an indicator of organic matter 

biodegradability: the higher the ratio, the more biodegradable the organic matter. Ten 

microscreening experiments were conducted on sludge from Quebec WRRFs and fBC was measured 

on sludge fed to the microscreen (MSF) and on microscreenings (SCR). Results indicated that 

microscreenings were composed of biodegradable matter as they exhibited an XcBOD20 and were 

therefore not unbiodegradable as previously assumed (data not shown; Lei, 2010). Whether 

microscreenings are more or less biodegradable than the sludge they came from was unclear: in six 

runs microscreenings were more biodegradable than microscreen feed sludge (fBC SCR>fBC MSF) 

and in five runs they were less biodegradable (fBC SCR<fBC MSF). Difficulties evaluating the 

biodegradability, or rather “unbiodegradability”, of microscreenings were also encountered during 

the characterization of the Micronair
TM

 system at the Winter Haven (Florida, USA) WRRF which 

included microscreening and hydrocycloning the return activated sludge stream for trash and grit 

removal and claimed “zero-biosolids disposal”. Oxygen uptake rate of activated sludge 

microscreenings was 0.81 mg kg
-1

 h
-1

 at the Winter Haven plant (Bizier, 1999), which would also 

correspond to an fBC in the range of 0.2 to 0.3 g XcBOD20/g XCOD. Another approach to using the 

BOD test to evaluate screenings biodegradability is to rinse a wet, 200 g sample of food-processed 

screenings ten times, to filter the sample (100 μm) while compressing it and to measure the BOD5 

on the filtrate (UKWIR, 2000). This approach assumes that the fraction of the sample greater than 

100 μm does not contribute to BOD, which, considering the evidence in the literature of the 

biodegradability of screenings materials, seems to be unreasonable.  

The slow biodegradability of at least some fraction of screenings and microscreenings is expected 

as cellulose forms one of the major structural components of all plant material such as wood and 

cotton (and hence paper products) and active cellulolysis has been shown to occur in activated 

sludge by enumeration of cellulolytic microorganisms, determination of cellulase activity, by the 

degradation of cellulose contained in Nylon bags suspended in mixed liquor at a WWTP and by the 

determination of cellulose and lignin in activated sludge and anaerobic digestion sludge (Verachtert 

et al., 1982; Ramasamy & Verachtert, 1980; Cheung & Anderson, 1997).  

 

CHARACTERIZATION OF XGRIT 

Typical reported quantities and characteristics of grit (XGRIT) collected at WRRFs are presented in 

Table 4. XGRIT definitions vary but they typically include inorganic particles between 50 and 1000 

µm and a range of densities between 1.1 - 2.65 (Reddy & Pagilla, 2009; WEF, 2010). Sand, gravel, 
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pebbles, ashes and eggshells are considered to be a part of grit. Certain references surprisingly 

claim there is a volatile fraction to “grit” – this is most likely due to XGRIT being wrongly defined as 

suspended solids removed by the grit removal system. Suspended solids removed by the grit 

removal system are not exclusively composed of XGRIT and contain XU,Inf and other organics. XGRIT 

is widely accepted as inorganic suspended solids originating from the influent by definition. The 

quantity, characteristics and particle size distribution of influent grit depend on several factors: type 

of sewer network, sewer condition, season, rainfall, industrial loading and nature of industries, 

maintenance work, construction work, gravel and salt spreading on roads, nature of soils in the area 

and the height of the water table (Reddy & Pagilla, 2009; Rippon et al., 2010). Sampling location 

and methods can also influence the interpretation of grit characteristics due to spatial stratification 

inside pipes and channels (Reddy & Pagilla, 2009). Similarly to XU,Inf, XGRIT is typically removed in 

the headworks and primary clarifiers of WRRFs, but still accumulates in downstream processes. 

Inadequate XGRIT removal at the headworks of WRRFs can damage process equipment (pumps, air 

diffusers) by abrasion. Insufficient grit removal can also lead to decreased capacity of bioreactors if 

XGRIT is allowed to settle and accumulate in bioreactors (reduction of effective volume and 

treatment capacity). Much smaller quantities of XGRIT are removed from WRRFS than XU,Inf as can 

be seen by comparing Tables 1 and 4. XGRIT is more easily dewatered than XU,Inf and its density is 

typically higher than that of XU,Inf.  

 

Table 4: Summary of quantities and characteristics of grit collected at WRRFs 

Parameter Units (Handbook)
Survey of 328  

U.S. WRRFs

WEFTEC 2011 - 

Grit Workshop
Literature review

Quantity (separate sewers) L/m3 wastewater 0.004 - 0.037 0.004 - 0.037

Quantity (combined sewers) L/m3 wastewater 0.004 - 0.2 0.004 - 0.018

% Dry solids dewatered 35 - 87% 35 - 80% -- 80%

Density kg/m3 -- 1100 - 2200 -- 2650

Volatile fraction (fVT) g XVSS/g XTSS 0.01 - 0.56 0.01 - 0.55 -- 0.3 - 0.5

Particle size µm >150* -- 50 - 1000 >200

*in some cases, such as in the southeastern U.S., less than 60% of grit retained on 150 um screen due to presence of fine sand 

("sugar sand")

Metcalf & Eddy 

(2014)

MOP 8 (WEF, 

2010)

0.0037 - 0.148

Borneman & 

Gress (2011)

Canler & Perret 

(2004)

0.1 - 0.3 

 

 

PROPOSED FRACTIONATION OF ACTIVATED SLUDGE 

Activated sludge matter can be fractionated according to size, volatility and biodegradability 

(Figure 1).Total solids (TS) can be fractionated into volatile (VS) and inorganic (IS) solids 

depending on whether they are volatilized at 550°C. VS are assumed to be organic. VS and IS can 

each be fractionated according to size into filtered (FVS and FIS; < 0.45µm) and suspended (VSS 

and ISS; > 1.2 µm) solids. Particles sized between 0.45 and 1.2 µm - too large to be considered 

“filtered” and too small to be considered “suspended” – are in a no man’s land of the solids tests 

and are thus not considered with regards to fractionation. Filtered matter is commonly termed 

“soluble” but since colloidal material (0.08 – 1 µm; Odegaard, 2000) is present in both filtered and 

unfiltered samples, the term filtered rather than soluble is preferred. Total activated sludge organic 

matter (volatile solids, VS) can be classified as biodegradable (TB) and unbiodegradable (TU) 

organic matter. Each of these can be further fractionated according to size into filtered (0.45 μm) 

and particulate (1.2 μm) biodegradable organic matter (XSB), filtered unbiodegradable matter (SU) 

and particulate unbiodegradable matter (XU). XSB includes filtered (SB) and particulate (XB) 
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biodegradable matter that can be used as substrate for biomass growth and heterotrophic biomass 

(XH). Filtered and particulate unbiodegradable organic matter (SU and Xu) can originate in the 

influent (SU,Inf and XU,Inf) or from endogenous respiration (SE and XE). XU,Inf (trash) and XGRIT are 

the main focus of this paper. Salts are an example of filtered inorganic matter (SIg). Particulate 

inorganic matter can be classified as associated to biomass cellular material XIg,Cel such as cell 

membranes or intracellular inorganic compounds of XH (XIg,H) and XE (XIg,E). Inorganic compounds 

associated to XU,Inf (XIg,U,Inf) are also included in XIg,Cel. Grit (XGRIT) and precipitates (XPPT) make 

up the extracellular particulate inorganic compounds (XIg,EC) of activated sludge. Important issues 

with fractionation include recognizing the type of filter used to define “filtered” components (0.45 

vs 1.2 μm) and the categorization of colloidal material. 
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XH XH
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XU,Inf

XE

FIS SIg SIg

XIg,H
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TIg
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INORGANICS
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XIg,Cel
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Figure 1: Activated sludge fractionation.  

 

EVALUATION OF XU,Inf and XGRIT REMOVALS USING PROPOSED FRACTIONATION  

Lab, pilot and full-scale tests were conducted on microscreens for trash removal and hydrocyclones 

for grit removal on activated sludge from nine WRRFs in Quebec (Canada) and Morongo (CA, 

USA). Below are presented the approaches used to  

 

XU,Inf removal by microscreen 

The maximum removal of XU,Inf from microscreen feed sludge (MSF) by microscreening was 

calculated according to equations 1 and 2. 

   (1) 

  (2) 

where:  

MXVSS_SCR = mass of XVSS in microscreenings (g XVSS); 

MXU,Inf_MSF = mass of trash in MSF (g XVSS); 
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fXU,Inf_SRT = mass fraction of trash in MSF at sampling day solids retention time (SRT; g VSS/g 

VSS); and 

MXVSS_MSF = mass of XVSS in MSF (g VSS). 

The fraction of XU,Inf (fXU,Inf_SRT) in the activated sludge samples from each WRRF was determined 

knowing the solids retention time (SRT) at the facility on the sampling day. Three underlying 

assumptions were made: 

- influent wastewater fractionation at the WRRFs was typical for raw influent and primary effluent 

(characterization from Dold, 2007); 

- SRTs calculated by WRRFs were correct; and 

- all XVSS retained by microscreen is trash (hence “maximum”). 

Using this approach to fractionate the activated sludge solids, it was determined that 14% of trash 

contained in activated sludge from WRRFs with no primary clarification could be removed by 

microscreening, while only 3% of trash in activated sludge from WRRFs equipped with primary 

clarifiers could be removed (Figure 2).  
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Figure 2: Maximum amount of XU,Inf removed by the lab-scale microscreen (data from Quebec 

WRRFs). Data grouped according to presence/absence of primary clarifiers (PC). 

XGRIT removal by hydrocyclone 

Concentration factors (CF) for XVSS and XIg (XVSS,underflow/XVSS,feed; XIg,underflow/XIg,feed) were used to 

describe hydrocyclone performance. CFs were also calculated for XIg,Cel (intracellular inorganic 

particulate matter) and XIg,EC (extracellular inorganic particulate matter) by assuming XIg,Cel had the 

same CF as XVSS since XIg,Cel are associated to the organic matter. Another assumption made was 

that the inorganic content of the volatile matter was 0.08 g XIg,Cel/g XTSS (Ramdani et al., 2010). The 

CFXIg,EC (≈ CFGRIT if no precipitates) could then be calculated by mass balance. Results for lab-scale 

hydrocyclone experiments on activated sludge are presented in Figure 3 (data grouped according to 

presence/absence of primary clarifier). Results indicated that the hydrocyclone was more efficient at 
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separating grit (XIg,EC) from activated sludge in WRRFs with no primary clarifiers than from sludge 

from WRRFs with primary clarifiers.  
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Figure 3: Influence of primary treatment on hydrocyclone concentration factors for a 13 mm lab-

scale hydrocyclone and activated sludge samples from Quebec and Morongo WWTPs. UF: 

underflow, PC: primary clarifier, XIg,EC: extracellular inorganic suspended solids, VSS: volatile 

suspended solids. 
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Abstract 

The availability of influent wastewater time series is crucial when using models to assess the 

performance of a wastewater treatment plant (WWTP) under dynamic flow and loading 

conditions. Given the difficulty of collecting sufficient data, synthetic generation could be the only 

option. In this paper a hybrid of statistical and conceptual modeling techniques is proposed for 

synthetic generation of influent time series. The time series of rainfall and influent in DWF 

conditions were generated using two types of statistical models (a periodic-multivariate time series 

model for influent in DWF conditions and a two-state Markov chain-gamma model for rainfall). 

These two time series serve as inputs to a conceptual sewer model for generation of influent time 

series during WWF conditions. The effect of total model uncertainty on the generated outputs is 

taken into account through a Bayesian calibration and is communicated to the user by constructing 

uncertainty bands with a desired level of confidence. The proposed influent generator is a powerful 

tool for realistic generation of the influent time series and is well-suited for risk-based design of 

WWTPs as it considers both the effect of input variability (i.e. variability in rainfall and influent 

during DWF) and total model uncertainty in the generation of the influent. Considering the fact 

that the proposed influent generator only requires readily-available or easy-to-obtain information 

and data on climate and the general characteristics of sewershed, it is an attractive tool for practical 

applications.   

 

Keywords 
Bayesian estimation; uncertainty analysis; urban hydrology; wastewater composition; probabilistic design 

 

 

INTRODUCTION 

One of the major sources of uncertainty/variability that both plant designers and operators must deal 

with is the dynamics of the influent. The recent advances in mathematical modeling and improved 

computational power have enabled researchers to better understand the performance of different 

WWTP design alternatives (Hao et al., 2001; Salem et al., 2002) and/or evaluate control strategies 

under dynamic flow and loading conditions. However, the application of mathematical models used 

for simulating the performance of a WWTP could be misleading unless, among others, models are 

provided with representative influent time series. One of the problems that arise in this regard is the 

scarcity or even lack of long-term influent data. To remedy this problem, some researchers have 

proposed models for synthetic dynamic influent time series scenarios (Bechmann et al., 1999; 

Gernaey et al., 2011). 

One of the simplest approaches in synthetic generation of influent time series is the application of 

empirical stochastic models (Capodaglio et al., 1990; Martin et al., 2007). However, these models 

may have a poor performance especially during wet weather flow conditions as different complex 

processes affect the dynamics of the influent. Indeed, such statistical models do not consider the 

underlying elements and processes that govern the generation and the dynamics of the influent. To 
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consider the underlying phenomena that are involved, some researchers have advocated the use of 

detailed and physically-based models (Hernebring et al., 2002; Temprano et al., 2007). The 

application of these complex models might be useful for certain purposes, (e.g. evaluating the 

performance of different operating strategies in a sewer system). However, in cases in which the 

overall behavior of the influent time series is of interest, they might not be very useful as they 

require detailed information on the sewage system and running them for a large number of times 

could be computationally expensive.  

Some researchers have proposed parsimonious conceptual models as an alternative to the complex 

mathematical models that require detailed information and data (Achleitner et al., 2007; Gernaey et 

al., 2011). In these models a conceptual view of the main phenomena and interactive processes 

contributing to the influent are formulated in terms of mathematical equations. Despite successful 

application of these models (at least in giving an overall view of the system), the performance of 

these models to a great extent depends on the proper choice of model parameters. Since some of the 

parameters may not have a clear physical meaning they are usually estimated through model 

calibration. In cases in which there is no measured data available for model calibration, only a 

rough estimate or a range of values could be inferred from the values reported in literature. Besides, 

it is almost impossible to have a complete similarity between the model output(s) and the observed 

values owing to the inextricable uncertainties (e.g. input data uncertainty and/or model structure 

uncertainty) in any modeling exercise (Belia et al., 2009; Freni and Mannina, 2010). 

Given the importance of the issue of uncertainty, several studies have been conducted to consider its 

effect on both water quality and quantity in urban drainage modeling (Freni et al., 2009; Dotto et 

al., 2012). However, in these studies, only the effect of model uncertainty under a set of historical 

rain events (WWF conditions) has been considered (i.e. the time series of rainfall and also the 

contribution of wastewater in DWF conditions were known a priori). In this study on the contrary 

not only are we interested in considering the effect of model uncertainty, but also in the variability 

of rainfall and influent time series in DWF conditions which significantly affect both the amount 

and the dynamics of the influent. 
 

 

PROPOSED INFLUENT GENERATOR 

In this paper, a hybrid of statistical and conceptual modeling tools is proposed for synthetic 

generation of influent time series considering both the effect of model uncertainty and input 

variability. Given the importance of rainfall time series in the generation of the influent, a two-state 

Markov chain-gamma model (Richardson, 1981) in conjunction with two time series disaggregation 

methods were used  for stochastic generation of rainfall time series with a high temporal resolution 

(i.e. 15-minute). To generate the influent time series in DWF conditions taking into account the 

daily periodic variation, auto-correlation, and cross-correlation in time, a multivariate time series 

models was developed and its parameters were estimated using the methodology proposed by 

Neumaier and Schneider (2001). The proposed stochastic model is superior to previous attempts in 

the generation of influent, as in previous studies the diurnal variation of the influent in DWF 

conditions was modeled using univariate time series models (Martin et al., 2007), or by multiplying 

the daily average influent values to a set of coefficients representing the ratio of influent at different 

times of a day to its average value with or without addition of a noise term to the generated time 

series (Achleitner et al., 2007; Langergraber et al., 2008; Gernaey et al., 2011). The outputs of the 

two statistical models used for the generation of rainfall and influent time series in DWF conditions 

are then input to a conceptual model for modeling the influent time series in WWF conditions. In 

this study the CITYDRAIN model (Achleitner et al., 2007) was selected as the conceptual model 
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owing to its flexibility and parsimony. The CITYDRAIN model of the sewershed is calibrated using 

the measured influent data through a Bayesian calibration procedure to account for the total model 

uncertainty. Finally, different realizations of the influent time series can be generated by running 

the calibrated CITYDRAIN model using an instance of a generated time series of rainfall and an 

instance of influent under DWF conditions (i.e. the two stochastic input time series). Figure  shows 

the schematic of the proposed influent generator. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 Schematic of the proposed influent generator 

The main objective of the proposed influent generator is to produce a dynamic influent time series 

of flow and traditional wastewater component concentrations (TSS, COD, TN, TP, NH4) with 15-

min temporal resolution in order to capture the sub-daily time variations of the influent which could 

affect the operating parameters and the performance of WWTPs. One of the constraints was that the 

generator should only be using limited information on climate and the general characteristics of 

combined sewer systems. Depending on the biological model that would be used for modelling the 

biological processes inside a WWTP system, an influent fractionation block must be added to 

convert the generated traditional wastewater composition into state variables of the adopted 

biological models, e.g. the ASM models. The generated influent time series using the proposed 

tools can be used among others for the design of WWTPs under uncertainty (Martin et al., 2012). 
 

Data and case study  

The Eindhoven WWTP with a design capacity of 750000 population equivalent (PE) is the third 

largest WWTP in the Netherlands. The sewershed served by the Eindhoven WWTP has a total area 

of approximately 600km
2
 and comprises of three main sub-sewersheds called Nuenen/Son, 

Eindhoven Stad, and Riool-Zuid. The influent data used in this study are related to sensor data of 

flow, ammonia (measured using an ion-selective sensor) soluble COD, total COD, and TSS (the 

latter 3 measured using an UV/VIS-based sensor) in the period of September 2011 to September 

2012 at the outlet of the Nuenen/Son, Eindhoven Stad, and Riool-Zuid sub-sewersheds. It should be 

noted that the raw sensor data were cleaned up using visual inspection and a wavelet-based 

denoising strategy (details are not included in this paper).  
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The long-term daily rainfall data and also rainfall data with finer temporal resolution provided by 

KNMI (Royal Netherlands Meteorological Institute) and Waterschap De Dommel were used for 

estimating the parameters of the weather generator proposed in this paper. 
 

 

Weather generator 

Realistic generation of rainfall time series is crucial as it is one of the most important factors that 

affect the dynamics of the influent during WWF conditions. In this study a stochastic model 

proposed by Richardson (1981) was used for the synthetic generation of daily rainfall and air 

temperature time series. According to this method the sequence of dry and wet days is generated 

using a two-state Markov chain model with parameters ( | )P W W  and ( | )P W D  which represent 

the probability of having a wet day at day t  given a wet day at day 1t   and the probability of 

having a wet day at time t  given a dry day at time 1t   respectively (Figure ). 

 

 

 

 

 

 

 

 

Figure 2 Schematic of a two-state Markov chain, i.e. wet (W) or dry (D) 

The other two parameters of the transition matrix needed for generation of dry and wet days 

(i.e. ( | )P D D  the probability of having a dry day at day t  given a dry day at day 1t   and 

 |P D W  the probability of having a dry day at day t  given a wet day at day 1t  ) can be 

calculated using Equation 1 and Equation 2. 

( | ) 1 ( | )P D D P W D   Equation 1 

( | ) 1 ( | )P D W P W W   Equation 2  

Once the sequence of wet and dry days is generated, the amount of rainfall in a wet day is generated 

by sampling from a gamma probability distribution (Equation 3)  

 
   

 

1
/ exp /x x

f x


 

 







 Equation 3 

 

where x  is the depth of daily rainfall,   and   are the two parameters of the distribution, and 

   represents the gamma function evaluated at .  The time series of minimum and maximum 

air temperature are generated conditioned on the state of the day (i.e. wet or dry) using a 

multivariate linear first-order time series model (Matalas, 1967). The above weather generator is 

suited for random generation of daily rainfall and temperature. However, in this study we need to 

generate rainfall time series with a finer temporal resolution than daily resolution (15-min temporal 

resolution, comparable to the temporal resolution of rainfall in the BSM influent model (Gernaey et 

al., 2011)). Some methodologies have been proposed for random generation of hourly rainfall time 
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series based on historical hourly rainfall data. However, long-term hourly rainfall data may not be 

available in every region and using a limited hourly rainfall record for random generation of long-

term hourly rainfall time series may result in misrepresentation of the inter-annual variability in 

rainfall. 

That being said, in this study it is proposed to combine the Richardson-based weather generator (i.e. 

which is used for daily rainfall generation) with two time series disaggregation techniques. In other 

words, daily rainfall time series is first generated using the Richardson (1981) method and then two 

time series disaggregation models, including a daily-to-hourly model (Koutsoyiannis and Onof, 

2001) and an hourly-to-15-minutes model (Ormsbee, 1989) are applied for generation of long-term 

rainfall time series with 15-minute temporal resolution. Moreover, the original Richardson-based 

weather generator is also suited for the generation of daily air temperature. However, in this study 

not the air temperature but the wastewater temperature is of interest as it affects the rate of many 

biological processes taking place in the bioreactors. To estimate the wastewater temperature a 

simple linear regression model was fitted between the daily air temperatures and the corresponding 

wastewater temperature measured during the period of September 2011 to September 2012. The 

fitted regression model was used to calculate the daily wastewater temperature as a function of daily 

air temperature generated using the Richardson-based weather generator.  
 

Influent generation in DWF conditions 

The influent time series in DWF conditions usually shows specific periodic patterns which can be 

mainly attributed to the socio-economic fabric of society and also to the physical characteristics of 

the wastewater collection system. To mimic these variations in time, it is common practice to 

estimate representative values (e.g. multiplying flow per person to the total population for 

estimating flow) for flow and loads and then multiplying them to a set of normalized coefficients 

reflecting diurnal, weekly and seasonal time variation of the influent time series (Jeppsson et al., 

2007; Gernaey et al., 2011; Flores-Alsina et al., 2014). Moreover, Gernaey et al. (2011) proposed to 

add a noise term to the deterministic influent profile in order to avoid generating the same influent 

time series in subsequent days. In this study the application of a multivariate auto-regressive model 

(Neumaier and Schneider, 2001) with periodic components is proposed. 

To estimate the parameters of the proposed time series model, the influent time series during DWF 

conditions were extracted and analyzed for estimating the parameters of the multivariate auto-

regressive model. First, the seasonal (e.g. associated to groundwater infiltration) and diurnal 

periodic components of flow and other wastewater constituents were estimated using different 

Fourier series approximations and removed from the original influent time series to calculate the 

residual time series. The zero-mean residual time series of influent flow and composition were 

furthered standardized to have an influent time series with a zero mean and unit standard deviation. 

The parameters of the multivariate autoregressive model in Equation 4 (i.e. , ,lp A C ) were then 

estimated through a stepwise least square algorithm proposed by Neumaier and Schneider (2001). 

1

p

t l t l t

l

v A v 



    Equation 4 

 

In Equation 4, 
tv  is an m-dimensional vector (i.e. for our application m=5 which corresponds to the 

flow and the four wastewater compositions) containing the generated influent component at time t , 

p  is the order of the auto-regressive model, 1,..., pA A are the coefficient matrices of the auto-

regressive model, and 
t  is a noise term generated from an uncorrelated zero-mean multivariate 

normal distribution with the covariance matrix C  (i.e.  0,t N C ). Different realizations of the 
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residual influent time series can be generated using this time series model and converted to the 

original scale depending on the mean and standard deviation of the original influent time series.  

 
 

Influent generation in WWF conditions 

Synthetic generation of the influent time series during WWF conditions is relatively more 

complicated than the generation of the influent time series during DWF conditions. Difficulties 

arise as various phenomena are occurring during WWF conditions and as the availability of 

measured data is usually scarce for these periods. Hence, using a purely statistical model may result 

in significant discrepancies between simulated and observed time series. Therefore, we used a 

combination of statistical modeling techniques and a conceptual model to generate the time series of 

the influent during WWF conditions. The CITYDRAIN model (Achleitner et al., 2007) was 

selected as the conceptual model as it takes into account the basic phenomena that govern the 

amount and dynamics of the influent and also requires only a small number of parameters whose 

values or ranges of values can be inferred from the basic information of a sewershed. 
 

Flow 

CITYDRAIN calculates the amount of effective rainfall by adopting the concept of virtual basins in 

which effective rainfall is calculated by subtracting the initial loss from rainfall and then 

multiplying it with the runoff coefficient. The height of the effective rainfall is then multiplied by 

the fraction of sewershed area which contributes to the generation of runoff to calculate flow. A 

simplified routing method based on the well-known Muskingum method is then used for routing 

flow and pollutants inside the sewer system. 
 

Composition 

For the generation of pollutant time series in WWF conditions, CITYDRAIN uses a rather 

simplistic approach in which a fixed pollutant concentration is imposed to the system: 

( ) 0

( ) 0 0

e

e

C t C if h

C t if h

 


 
 

 

Equation 5 

 

where, ( )C t  is the generated pollutant concentration in time, C  is a model parameter representing 

the concentration in WWF conditions, and 
eh  is the effective rainfall. Given the importance of the 

influent time series in WWF conditions, a more appropriate conceptual model was used for 

simulating the accumulation-wash off processes corresponding to the particulate concentrations. To 

this aim, a new block was developed and implemented in CITYDRAIN to generate the pollutant 

concentration time series in WWF conditions. Equation 6 shows the mathematical formulation of 

the selected accumulation-wash off model (Kanso et al., 2005).  
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Accumulation model:

Wash off model :
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dt

dM
W I M

dt


  


    


 Equation 6 

where, ( )tM  is the vailable pollutant mass on the sewershed at time t  (kg), 
aK  is the accumulation 

coefficinet (1/day), 
limm  is the maximum accumulated mass (kg/ha), impS  is the impervious area 

(ha), 
 t

I  is the rainfall intensity (mm/hr), 
eW , and w  are calibration parameters.   
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Bayesian model calibration and long-term influent generation 

As explained in the previous section, the dynamics of the influent time series in WWF conditions is 

modeled using the CITYDRAIN model. However, one should be aware of the fact that modeling 

the influent time series in WWF conditions using a conceptual model may not lead to reliable 

results unless the model is calibrated and the effect of different sources of uncertainties on the 

outputs (e.g. flow and other pollutants) are taken into account. To this aim, a Bayesian framework 

was used to update the ranges of values that were initially assigned to the parameters of the 

CITYDRAIN model (i.e. estimating the posterior distribution of parameters using their prior 

distribution and the measured data on flow and pollutant concentrations). In general, the posterior 

distribution of parameters using Bayes’ theorem can be formulated by Equation 7. 

 
   

 

|
|

f Data p
h Data

f Data

 
   Equation 7 

where  |h Data  is the posterior distribution,  p   is the prior distribution,  f Data  is merely 

a proportionality constant so that  | 1h Data  , and  |f Data   constitutes the likelihood 

function which measures the likelihood that the data correspond to the model outputs with 

parameter set θ . Assuming homoscedastic uncorrelated Gaussian error terms the likelihood 

function function can be formulated according Equation 8 (Bates and Campbell, 2001; Marshall et 

al., 2004). 
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θ  Equation 8 

 

where n  is the number of observations, 
2  is the variance of the residual error (i.e. the difference 

between model predictions and observed values), 
tData  is the observed variable at time t , 

tx  is the 

set of inputs at time t , θ  is the set of model parameters and  ;tR x θ  represents the model output as 

a function of 
tx  and θ .  

A specific form of Markov chain Monte Carlo (MCMC) sampler known as differential evolution 

adaptive Metropolis or DREAM (Vrugt et al., 2008) was used to efficiently estimate the posterior 

distribution of the CITYDRAIN model parameters given the time series of flow and influent 

composition of the Eindhoven WWTP. It should be noted that the proposed Bayesian approach is 

not only capable of capturing the effect of model parameter uncertainty, but also of capturing the 

effect of other sources of uncertainties that could result in some discrepancies between the 

simulated influent time series and the observed series.  

Once the uncertainty ranges of the CITYDRAIN model parameters are updated, synthetic influent 

time series for a desired number of years considering the variability in the inputs of the 

CITYDRAIN model (i.e. rainfall and influent time series in DWF conditions) and also the total 

uncertainty can be obtained as follows: 

 

1. Synthetic generation of the 15-minute time series of rainfall for one year 

2. Synthetic generation of the 15-minute time series of the influent in DWF conditions for one 

year 

3. Sampling a point from the posterior distribution of the CITYDRAIN model parameters 
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4. Inputting the generated time series 1) and 2) and the parameters sampled in 3) and running  

the CITYDRAIN model for one year 

5. Repeating  1) to 4) for a desired number of years 
 

 

RESULTS AND DISCUSSION 

This section presents the outputs and some discussion on the results of different components of the 

proposed influent generator. The performance of the weather generator and the influent generator 

under DWF conditions are evaluated by comparing the statistical properties of the generated time 

series with those of the historical time series. The results corresponding to the Bayesian calibration 

of CITYDRAIN model are explained and at the end a 7-day snapshot of generated one year influent 

time series is presented and discussed.  
 

 

Synthetic generation of rainfall 

The parameters of the statistical Markov-gamma model were estimated using the recorded rainfall 

data in the studied Eindhoven catchment. The results indicate that not only are the basic yearly 

statistics (i.e. average and variance) of the generated rainfall time series consistent with the recorded 

rainfall time series, but also the seasonal variations in rainfall intensity and frequency of wet days 

are respected (Figure  and Table 1).  
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Figure 3 Cumulative distribution function of daily rainfall in the studied Eindhoven catchment  

 

Moreover, Table  shows that the hourly time series of rainfall which was generated using the time 

disaggregation method (i.e. disaggregation of daily to hourly time series) has the same statistical 

characteristics as the observed one. Overall, the synthetic generation of rainfall in which the 

statistical properties of the time series is respected across different time scales is a significant 
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improvement compared to the rainfall generation in for instance the BSM influent generator in 

which there is no clear way for extracting and incorporating the statistical properties of available 

recorded rainfall data into synthetic rainfall time series generation. Besides, the flexibility of the 

proposed rainfall generator allows users to define different scenarios reflecting future changes in 

precipitation regime (e.g. due to climate change (Chen et al., 2010)) and its effect on the influent 

time series (e.g. what would happen if the amount of precipitation increases by 20%). 

  
 

Table 1 Average rainfall amount and number of wet days for Eindhoven catchment 

Month Amount of Rainfall (mm) Expected number of Wet Days 

 Observed Generated Observed Generated 

Jan 72.3 67.0 16 14 

Feb 52.0 57.0 12 11 

Mar 63.4 54.4 13 12 

April 44.1 51.9 12 11 

May 58.3 60.9 12 12 

Jun 68.0 68.4 12 11 

Jul 74.7 73.5 12 11 

Aug 64.6 71.0 11 11 

Sep 67.9 62.1 12 10 

Oct 62.0 65.0 12 11 

Nov 71.1 66.4 15 12 

Dec 70.0 74.0 14 14 

Annual 768 772 152 141 

 
Table 2 Basic statistics of hourly rainfall data for Eindhoven catchment 

Statistics Unit Observed Value Simulated Value 

Mean mm 0.08 0.08 

Standard deviation mm 0.60 0.60 

Lag 1 auto-correlation --- 0.33 0.36 

Proportion of dry hours --- 0.92 0.94 

 

Synthetic generation of influent temperature 

As mentioned in the methodology section, the daily temperature of wastewater is estimated through 

a linear regression model which relates the daily average wastewater temperature to the daily 

average air temperature. Figure  illustrates a random generation of air and wastewater temperature 

time series for one year. The linear model in Figure  shows that the average wastewater temperature 

can be estimated reasonably (
2 0.70R  ) as a linear function of air temperature. To further 

disaggregate the daily average wastewater temperature into a time series with 15-minute temporal 

resolution, the average diurnal variation of wastewater temperature which was extracted and 

smoothed using a first order Fourier series estimate (Figure c) was multiplied to the daily average 

wastewater temperature. Despite the fact that the diurnal variation pattern in Figure c clearly shows 

a periodic behavior in time (which corresponds to the diurnal variation of wastewater temperature), 

there is no significant difference between the highest and lowest temperature throughout a day (i.e. 

the highest temperature is only around 1.001 times the daily average wastewater temperature and 
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the lowest temperature is around 0.9985 times the daily average wastewater temperature). 

Therefore, in practical applications (at least for the case study in this research), the diurnal 

temperature variation can be ignored. 
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Figure 4 Random generation of air and wastewater temperature for one year for the Eindhoven WWTP:  

a) Randomly generated average daily air temperature for a year, b) linear regression model for calculating the 

average daily wastewater temperature as a function of average daily air temperature, c) the average and fitted 

normalized coefficients (the normalized coefficients for each day were calculated by dividing the influent 

temperature at different moments of a day by the daily average influent temperature in the same day) for calculating 

the diurnal wastewater temperature variations, and d) randomly generated wastewater temperature time series with 

15-minute temporal resolution. 

 

Multivariate auto-regressive model for DWF generation 

As explained, the parameters of the multivariate auto-regressive model were estimated using a 

specific least square algorithm (Neumaier and Schneider, 2001). Figure  shows a continuous 3-day 

DWF influent time series with the results corresponding to the fitted multivariate auto-regressive 

model. The uncertainty band was generated through random generation of the noise term (i.e. , lp A  

in Equation 4 were fixed and the noise term was generated from  0,t N C ). 

One of the main advantages of the proposed multivariate time series model over univariate time 

series models (Martin et al., 2007) or the DWF generator in the BSM influent generator (Gernaey et 

al., 2005) is that not only are the auto-correlation structures in time respected but also the cross-

correlation structures. Table  shows the correlation matrix for the randomly generated and observed 

influent time series in DWF conditions. 
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Figure 5 Observed and simulated influent time series under DWF conditions 

Table 3 Correlation matrix for the generated and observed influent time series in DWF  
Generated influent time series  Observed influent time series 

 Flow Soluble 

COD 

Total 

COD 

TSS NH4  Flow Soluble 

COD 

Total 

COD 

TSS NH4 

Flow 1.00     Flow 1.00     

Soluble COD -0.11 1.00    Soluble COD -0.12 1.00    

Total COD -0.04 0.77 1.00   Total COD -0.06 0.77 1.00   

TSS 0.06 0.32 0.80 1.00  TSS 0.05 0.33 0.81 1.00  

NH4 -0.43 -0.04 -0.06 -0.04 1.00 NH4 -0.46 0.00 -0.02 -0.03 1.00 

 

CITYDRAIN model calibration and synthetic influent generation 

As explained in the methodology section, the CITYDRAIN model was used for modeling the 

dynamics of the influent time series during WWF conditions. Uniform distributions representing the 

initial knowledge on parameters were selected as prior distributions and their corresponding 

posterior distributions were estimated by sampling from Equation 7 using the DREAM sampler. 

Figure  and Figure  show the posterior distributions of the CITYDRAIN model after calibrating the 

model for flow and TSS time series in WWF conditions (three days of simulations were used as the 

warm-up period to set the initial conditions of the system). 

As indicated in Figure  and Figure , there exists some correlation among the parameters of the 

CITYDRAIN model. For example in Figure , the parameters that affect the generation of effective 

rainfall (i.e. runoff coefficient, initial loss, and permanent loss) are correlated meaning that different 

combinations of these parameters could result in the same amount of effective rainfall given the 

same inputs and values for other parameters. However, given the narrow ranges associated to the 

parameters that affect the amount of rainfall, the uncertainty band for flow relating to the total 

model uncertainty is mainly affected by the standard deviation of the residual error (i.e. Sigma in 

Figure ) and not by the uncertainty of the CITYDRAIN model parameters. 

The parameters that affect the accumulation of pollutant (i.e. m_lim, and Ka) and those that affect 

the wash-off of pollutants are also correlated. Given the different correlation structures that exist 

among some parameters it is very important to sample from the joint distribution of parameters to 

propagate the effect of parameter uncertainties to the outputs.  
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Figure 6 Posterior distribution of parameters for flow calibration where, runoff coeff, init loss, and perm loss are 

respectively the runoff coefficient, initial loss (mm), permanent loss (mm/day) parmeters in the virtual basins model 

that is used in the CITYDRAIN model, K (sec) and X are the routing parameters used in the Muskingum method, 

and Sigma is the standard deviation of the residual error.   
 

 
Figure 7 Posterior distribution of parameters for TSS calibration where Ka is the accumulation coefficient (1/day), 

m_lim is the maximum accumulated mass (kg/ha), We, and w are the calibration parameters (Equation 6).  
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To consider the effect of total model uncertainty on the outputs of CITYDRAIN model, a Monte 

Carlo simulation was performed by sampling from the joint posterior distribution of parameters and 

running the model for 1000 times for a particular rainfall time series. Figure  illustrates the 95% 

uncertainty band for flow and TSS which was constructed by selecting the 2.5 and 97.5 percentiles 

of the cumulative distribution of flow and TSS as the lower and upper limits of uncertainty of 

simulation with the rainfall time series shown in the figure. The figure also presents the observed 

and the best simulated time series. The latter corresponds to the set of parameters that has the 

highest likelihood function value. 
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Figure 8 Uncertainty bands for flow (left) and TSS concentration (right) in a 4-day wet weather period 

To further analyze the statistical properties of the simulated influent time series during both the 

DWF and WWF conditions, the cumulative distribution function (CDF) of the simulated and 

observed influent flow and pollutant load were compared in Figure  and Figure 4. The simulated 

and observed influent time series with 15-minute temporal resolution were aggregated to construct 

the corresponding daily and hourly influent series. Figure  and Figure 4 show that the influent 

generator has excellent performance when it comes to predicting the daily and hourly influent flow 

and pollutant load values.  
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Figure 9 CDFs of daily-aggregated influent flow and load of influent pollutants 
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Figure 4 CDFs of hourly-aggregated influent flow and load of influent pollutants 

 

It can be concluded from Figure  and Figure 4 that the statistical properties of the simulated time 

series are similar to the properties of the observed series once the model is fed with the observed 

rainfall time series. As explained in the methodology section, synthetic generation of a one year 

influent time series with 15-minute temporal resolution is thus possible by sampling from the 

posterior distribution of the CITYDRAIN model parameters and inputting the model with 

synthetically-generated rainfall and influent time series for DWF conditions (both with 15-minute 

temporal resolution). The latter two series are to be generated using the proposed rainfall and DWF 

generators respectively. 

 
Figure 5 A 7-day realization of rainfall and influent time series  
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Figure 5 shows a 7-day snapshot of a generated one year influent time series. During the hours of 

the first day the time series of flow has a descending trend as the runoff produced by rainfall event 

just before the first day (not depicted in Figure 5) exits the sewer system and the flow time series 

reaches its DWF conditions with a typical periodic pattern (the second day in Figure 5). During the 

last hours of the third day another rainfall event occurs and the flow time series increases while the 

time series of soluble COD and ammonia drop due to dilution of wastewater by runoff. However, 

during the same period of time there is a sudden increase in the total COD and TSS concentrations 

due to the wash-off of particulate material. After the wash-off of the particulates during the last 

hours of the fourth day, the dilution effect starts to dominate again and the time series of total COD 

and TSS drop due to the dilution of the wastewater by runoff. 
 

CONCLUSION 

In this paper a combination of statistical and conceptual modeling tools was proposed for synthetic 

generation of dynamic influent time series of flows and pollutant concentrations with 15-miniute 

temporal resolution. The rainfall generator is capable of considering the annual and inter-annual 

rainfall regimes and keeping the consistency of the generated rainfall time series across different 

temporal resolutions. Comparison between observed and simulated influent time series for the 

Eindhoven case study proved the capability of the proposed multivariate auto-regressive model in 

generating realistic influent time series in DWF conditions. Moreover, long-term generation of 

influent time series under dry and wet weather conditions could be achieved by running the 

CITYDRAIN model of the sewershed using the generated stochastic inputs (i.e. rainfall and influent 

time series in DWF condition). Uncertainty could be captured by sampling different vectors of the 

model parameters from the posterior distribution obtained after Bayesian parameter estimation on 

the basis of the case study data.  

Overall, the proposed influent generator provides a clear and coherent method to incorporate the 

general and easy-to-obtain information on the physical characteristics of the sewershed as well as 

climate conditions of the region into the synthetic generation of the influent of a treatment plant. 

The flexibility of the presented influent generator allows the users to define different scenarios 

reflecting the projected change in climate and the characteristics of the sewershed (e.g. population 

growth, change in pervious area) and evaluate their effect on the generated influent time series. 
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Abstract 

A model should be as simple as possible – but not simpler. The appropriate level complexity 

depends both on the type of system and on the intended use of the model. This paper addresses the 

critical question of which purposes justify an increased complexity of biofilm (reactor) models. 

Additional model features considered are (1) of the distinction between flocs and granules in 

putatively granular sludge reactors and (2) the inclusion of microbial diversity, distinguishing 

between different species performing the same function. The impact of these features are assessed 

for a partial nitritation-anammox process and a conventional nitrification process, respectively. It 

was shown that the addition of a small level of flocs (5% of total biomass) can have a significant 

impact on macroscale process performance and on microbial population and activity distributions 

in putatively granular sludge reactors. With a multispecies model considering interspecies 

diversity (10 species of ammonium-oxidizers and 10 species of nitrite-oxidizers), it was 

demonstrated that a constant macroscopic reactor performance not necessary reflects steady state 

conditions on the microscale. The biomass distribution in time and in space could be explained 

through the underlying microbial characteristics. Based on these case studies, we argue that 

increased complexity in biofilm (reactor) models will be likely more useful when the focus is on 

understanding fundamental microscale outputs, particularly under dynamic conditions or in cases 

of microbial cross-feeding and/or balanced aerobic/anoxic conditions. When the focus is on 

macroscale outputs (e.g. substrate removal rates, optimal bulk conditions), this complexity is likely 

not always necessary. However, under specific conditions, additional model features can be 

critically informative for bulk reactor behavior, prediction, or understanding. 

 

Keywords 
Biofilm reactors; population dynamics; anammox; nitrification; microbial coexistence; granules 

and flocs 
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INTRODUCTION 

Mathematical biofilm (reactor) models are excellent tools for both predicting patterns of 

behavior in overall process performance (macroscale outputs) and for understanding fundamental 

phenomena such as microbial interactions, segregation, or competition (microscale outputs). 

Deciding which features to include in biofilm or biofilm reactor models is a critical component of 

model structure selection. Wanner et al. (2006) emphasize the value of identifying model features 

that can be omitted without decreasing the utility of the model for its intended purpose, as 

summarized in their “golden rule” of modeling: “a model should be as simple as possible, and only 

as complex as needed.” In essence, decreasing model complexity via simplifying assumptions can 

greatly ease computational requirements and interpretation of model outputs. The level of 

complexity to include in a model depends in large part on its intended use, but determining this 

level is not always straightforward.  

 One example of the utility of increasing biofilm model complexity in certain circumstances 

is the use of multidimensional (2D, 3D) simulations instead of the simpler, and more common, 1D 

models. Multidimensional models have been shown to be highly useful when the intent of the 

model is to understand the impact of microscale physical heterogeneity in biofilm solid matrix - for 

example, shape or local density variations that lead to microscale multidirectional concentration 

gradients - or when transport processes outside of molecular diffusion (e.g. advection or turbulent 

dispersion) of dissolved components in the biofilm liquid phase are of interest (Morgenroth et al. 

2000a; Picioreanu et al. 2004; Eberl et al. 2006). If average microscale concentration profiles or 

macroscale outputs alone are of interest to the model user and in case vertical gradients are orders 

of magnitude higher than those in the directions parallel to the carrier surface, conventional 1D 

models that are much less computationally intensive can often perform well (Wanner & Gujer 1986; 

Morgenroth et al. 2000a). 

 A range of complexity exists even within numerical 1D biofilm models. We focus our 

efforts here on numerical 1D biofilm models with stratification of biomass, multiple substrates, and 

multiple functional guilds. Two common simplifying assumptions in such biofilm models are: 1) to 

ignore mesoscale heterogeneity in aggregate structure (e.g. size distribution of granules, or variation 

in transport properties of a hybrid mixture of aggregate types, such as flocs and granules), and 2) to 

neglect microbial diversity and resulting internal microbial competition within function guilds. 

However, experimental observations have highlighted routine coexistence of multiple types of 

biomass aggregate types in a single biofilm reactor. Specifically, for granular nitritation-anammox 

reactors, flocs are commonly observed to be present in putative granular sludge reactors and 

reciprocally granules in suspended sludge reactors, suggesting that these two types of biomass 

aggregates coexist more often than a priori supposed (Innerebner et al. 2007; Vlaeminck et al. 

2009; Vlaeminck et al. 2010; Winkler et al. 2012). In addition, experimental observations have 

demonstrated diverse assemblages of microbial populations within individual functional guilds in, 

for example, nitrifying biofilm reactors, where several genetically different populations of 

ammonium-oxidizers (Schramm et al. 2000; Bernet et al. 2004; Lydmark et al. 2006; Volcke et al. 

2008; Terada et al. 2010; Almstrand et al. 2013) or nitrite-oxidizers (Schramm et al. 1998; 

Schramm et al. 2000; Downing & Nerenberg 2008) were observed to coexist in the biofilm.  

Moreover, and of critical importance to this paper, both diversity within functional guilds and 

heterogeneous aggregate characteristics have been proposed to influence macroscale reactor 

performance and process stability (Wittebolle et al. 2005; Siripong & Rittmann 2007; Wett 2007). 

Indeed, the possible role of suspended biomass in influencing performance in biofilm reactors, and 

the general lack of consideration of this fraction in biofilm models, was noted as a possible 

oversimplification by Morgenroth et al. (2000b). Also, mathematical models including microbial 
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community information have proven useful in investigating the link between observed microbial 

community shifts and the macroscopic reactor behavior (Downing & Nerenberg 2008; Volcke et al. 

2008; Ramirez et al. 2009; Nielsen et al. 2010; Wett et al. 2011; Brockmann et al. 2013; Vannecke 

et al. 2014). Taken together, these previous experimental studies suggests that, in at least some 

cases, increasing model complexity by incorporation of these often neglected features of biofilm 

systems (mesoscale heterogeneity in aggregate structure, and microbial diversity) may illuminate 

important aspects of both macroscale and microscale outputs.  

We focus in this paper on the critical question of which purposes increases in complexity in 

standard biofilm or biofilm reactor models may be justified by providing two case studies of 

increases in complexity beyond standard biofilm model formulations that provide new insights at 

both the macroscale and microscale. The two case studies deal with 

1) the influence of small levels of floccular biomass in a granular sludge combined nitritation-

anammox reactor on macroscale N removal efficiency, optimal dissolved oxygen (DO) 

conditions, and microscale microbial population and activity distribution; and  

2) the influence of microbial diversity on biofilm development and microscale microbial 

population dynamics in a nitrifying biofilm, considering competition between 10 

ammonium-oxidizing species and 10 nitrite-oxidizing species. 

 
BIOFILM MODELS 

 

General model features 

Two 1-dimensional multispecies biofilm models were developed in Aquasim (Reichert et al. 

1995). The modelled biofilm reactors were operated under similar conditions (Table ). Both case 

studies concern biological nitrogen removal processes. The first one considers completely 

autotrophic nitrogen removal through partial nitritation and anammox in a granular sludge reactor. 

The second case study concerns conventional ammonium oxidation to nitrate in a flat biofilm. The 

general stoichiometric matrix and kinetics for both case studies are based on Ni et al. (2009), 

Volcke et al. (2010) and on Vannecke et al. (2014), respectively.  

Table 1. Influent characteristics and reactor operating conditions. 

 Case study 1 Case study 2 
Temperature (°C) 30 30 

pH 7.5 7.5 

Nitrogen loading rate  (kg N.m
-3

.d
-1

) 0.5 0.9 

Initial biofilm thickness (µm) 10 1 

Steady state biofilm thickness (µm) 750 1000 

Biofilm porosity 

Influent NH4
+
 (g N.m

-3
) 

Influent sCOD (gCOD.m
-3

) 

Reactor volume (m
3
) 

80% 

300 

10 

400  

80% 

250 

0 

2e-003 

 

Case study 1: Modeling heterogeneity in aggregate structure  

To assess the importance of small levels of flocs in putatively granular sludge combined 

nitritation-anammox reactors, two multispecies biofilm models were developed in Aquasim. The 

first model included only granular biomass in a continuous flow bioreactor, while the second model 

structure included both granular and floccular biomass. Two primary properties differentiated these 

two aggregate fractions: 1) biomass distribution was assumed to be heterogeneous in granules, as is 
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standard in biofilm models, and homogeneous in flocs due to flocculation and deflocculation; and 

2) granules were mass transfer (diffusion) limited, while flocs did not exhibit mass transfer 

limitations. Both models included growth and decay (death-regeneration) of ammonium-oxidizing 

organisms (AOO), nitrite-oxidizing organisms (NOO), ordinary heterotrophic organisms (OHO) 

under both aerobic and denitrifying conditions, and anammox (AMO). OHO grew on organics 

arising from biomass decay or from exogenous organic carbon. In both model structures, granules 

were considered to be symmetrical spherical biofilms with a rigid biofilm matrix and negligible 

external mass transfer limitations. Solids detached from biofilm (granule) surfaces into the bulk 

phase were homogenously distributed and potentially active before being removed proportionally to 

the effluent flow. In the model structure considering both floccular and granular biomass, flocs were 

modeled by implementing a bifurcation from the effluent to the inlet, thus recycling part of the 

biomass detached from the granule surface:  

          

where LoadX,Rec is the loading of particulate (floccular) material in the recycle, Qin the influent flow 

rate, α the recycle ratio (here = 0.1), θH is the hydraulic retention time (0.5d), SRT the sludge 

residence time (40d) and X is the floccular biomass concentration in the reactor. The SRT was held 

constant by wasting a portion of the floccular biomass from the recycle. 

 

Case study 2: Modeling multispecies competition  

To model microbial competition between nitrifying species performing the same function in 

the biofilm, and to verify the importance of various microbial parameters in determining the 

competition outcome, a two-step nitrification biofilm model including the growth and endogenous 

respiration of 10 ammonium-oxidizing species (AOO) and 10 nitrite-oxidizing species (NOO) was 

used. Possible ranges of values for maximum growth rate (µmax), yield (Y), affinity for the nitrogen 

substrate (  and ) and the affinity for oxygen ( and ) were determined based on 

an extensive literature study. For each considered microbial parameter, a normal bimodal 

distribution was constructed as in Ramirez et al. (2009). The eight bimodal distributions were each 

typified by two means ( ) and standard deviations of , 

with k the average value of the range of values found in literature for the corresponding parameter. 

Ten species per type were then constructed by picking 10 random numbers from each bimodal 

distribution. Parameters employed in the final model are given in Table 2. The endogenous 

respiration rate for each species was assumed to be 5% of its corresponding maximum growth rate. 

The initial concentration of each AOO and NOO species was equal for all species of the same type 

(AOO: 7000 g COD.m
-3

 and NOO: 2333 g COD.m
-3

). As heterotrophic growth on biomass decay 

products can be neglected (Mozumder et al. 2013), and the influent did not contain an organic 

carbon source, heterotrophic growth was not considered in this model. The initial concentration of 

ammonium in the bulk liquid was set equal to the influent ammonium concentration (250 g N.m
-3

) 

while the initial concentrations of nitrite and nitrate were negligible (1 g N.m
-3

). The bulk liquid 

oxygen concentration was kept constant at 3 g O2.m
-3 

during the simulations. The simulations were 

run during a sufficient amount of time to assure steady state reactor conditions, both at micro- and 

macroscale. 
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Table 2. Microbial parameters characterizing the AOO and NOO species included in Case study 2. 

  
[d

-1
] 

 
[g N.m

-3
] 

 
[g O2.m

-3
] 

 
[ ] 

  
[d

-1
] 

 
[g N.m

-3
] 

 
[g O2.m

-3
] 

 
[ ] 

AOO1 1.10 2.84 0.95 0.23 NOO1 1.77 4.31 0.99 0.10 

AOO2 2.41 6.51 0.37 0.11 NOO2 0.74 1.91 1.69 0.11 

AOO3 1.91 12.97 0.35 0.07 NOO3 0.74 4.45 0.84 0.10 

AOO4 0.79 4.82 0.47 0.08 NOO4 0.87 3.84 0.66 0.09 

AOO5 2.08 10.54 0.33 0.24 NOO5 0.66 1.98 1.75 0.04 

AOO6 2.22 5.96 0.36 0.10 NOO6 1.67 2.73 1.58 0.09 

AOO7 0.71 4.62 0.82 0.25 NOO7 0.71 5.07 0.67 0.04 

AOO8 1.77 4.71 0.83 0.21 NOO8 0.50 5.16 0.99 0.08 

AOO9 0.59 12.10 0.91 0.08 NOO9 1.54 4.45 2.05 0.06 

AOO10 0.68 12.27 0.27 0.13 NOO10 0.63 4.26 0.73 0.10 

 

RESULTS AND DISCUSSION 
 

Case study 1: Impact of coexistence of flocs and granules: considering multiple aggregate 

fractions  

For both granular sludge combined-nitritation anammox model structures (granules alone, 

and combined granular and floccular biomass), the maximum N removal efficiency achieved was 

about 95% (Fig 1A). In both reactors at DO <0.1mg/l, the low oxygen concentration limited AOO 

activity and thus hampered the N removal process, and for DO >0.5mg/l, the increasing bulk DO 

concentration gradually inhibited AMO and improved the conditions for the NOO growth. 

However, the addition of small levels (~5% of total biomass) of flocs changes the predicted overall 

reactor performance in two critical ways. Firstly, the maximum N removal efficiency was achieved 

at lower DO with flocs. Secondly, the N removal peak was narrower, suggesting that small levels of 

floccular material may decrease process robustness to bulk oxygen changes in granular sludge 

reactors. 

In addition to impacting overall N removal performance, the addition of flocs also exerted a 

substantial influence on microscale segregation of microbial processes and activities, as illustrated 

by NH4
+
, NO2

-
, and NO3

-
 fluxes into granules under a variety of bulk DO conditions in the presence 

and absence of flocs (Fig. 1B-D). The addition of 5% floccular material reduced NH4
+ 

flux into 

granules by half with no impact on overall NH4
+ 

removal, indicating partial conversion of NH4
+ 

to 

NO2
- 

in the bulk liquid (Fig. 1B). NO2
-
 flux to the granules was correspondingly increased (Fig. 

1C). Above DO=0.5mg/L, AMO activity is minimal in the presence and absence of flocs, and all 

NH4
+
 is converted to NO3

-
 (Fig. 1D). These patterns in NH4

+
, NO2

-
, and NO3

-
 fluxes into granules 

indicate that even small levels of flocs can lead to significant task segregation between biomass 

fractions, with AOO activity concentrated in floccular material and Ax activity concentrated in 

granular biofilms.  
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Figure 6. A: Nitrogen removal efficiency at steady state in granular sludge reactors with and without flocs with 

respect to bulk oxygen concentration. B-D: Ammonia, nitrite and nitrate fluxes into granules in a granular 

sludge reactor with and without flocs. N surface load: 0.45 gN/m²/d, COD surface load: 0.015 gCOD/m²/d. 

Flux patterns were paralleled by segregation in microbial population distributions (Fig. 2). AOO 

predominate in flocs, resulting in relatively AMO-rich granules. Similarly, OHO populations are 

concentrated in the floccular fraction under low DO conditions when both biomass fractions are 

included. In the combined granular and floccular sludge reactor, NOO started to grow at 

DO=0.25mg/l in the bulk and accounted up to about 30% of the total biomass in the granules at 

DO=0.3mg/l (Figure 2, right). In the exclusively granular sludge reactor, NOO reached a similar 

fraction only at DO=0.5mg/l (Figure 2, left). These patterns in population and activity segregation 

can be explained in part by the lack of diffusive mass transfer limitation in floccular biomass, such 

that organisms in this fraction were directly exposed to oxygen.  
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 A study focused on organotrophic anammox activity in MBBR and granular sludge 

combined nitritation-anammox reactors by Winkler et al. (2012) offers an initial experimental 

assessment of such activity and population differences between floccular and biofilm aggregate 

fractions. Winkler documented substantially higher aerobic activity (AOO, NOO, and heterotrophs) 

in the floccular compared to biofilm fraction in the MBBR via oxygen uptake rate measurements 

(the granular sludge biomass was not subjected this analysis), in qualitative agreement with our 

model. Furthermore, the Winkler et al. remarked on the dominance in the floccular fraction of both 

reactors of AOO via FISH analyses.  
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Figure 27. Steady state active biomass partitioning between flocs (5% total biomass, above) and granules (below) 

in a granular sludge reactor (left) and in a mixed granules-flocs reactor (right) for different bulk oxygen 

concentrations. N surface load: 0.45 gN/m²/d, COD surface load: 0.015 gCOD/m²/d (COD:N=0.1:3). 

Volcke et al. (2012) assessed the influence of a non-uniform granule size distribution on granular 

nitritation-anammox reactor macroscale and microscale characteristics, and concluded that size 

distribution influences microscale solute transport due to increased relative abundance of AOO in 

smaller granules and AMO in larger granules.  Interestingly, our model indicated a similar 

segregation of microbial populations and activities due to the inclusion of a second biomass fraction 

without mass transport limitations (flocs), with AMO concentrated in (uniform size distribution) 

granules and AOO predominating in floccular biomass.    

Taken together, our results indicate that even small levels of floccular biomass in biofilm 

reactors can have important implications for reactor performance and optimization under certain 

operating conditions and for segregation of linked microbial processes. This suggests that the 
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common practice of neglecting small levels of heterogeneity in aggregate structure (e.g. small levels 

of flocs in granular sludge reactors) in biofilm models may lead to erroneous patterns or results at 

the microscale, and also for macroscale performance in some cases. 

 

Case study 2: Modeling microbial competition in biofilm reactors: considering multiple taxa 

in a single functional group 

Using the two-step nitrification biofilm model implementing the growth and endogenous 

respiration of 10 AOO and 10 NOO species, it was observed that the macroscopic reactor behavior, 

in terms of nitrifying performance, was already at steady state within 10 days after start-up (Fig. 

3A). At first, nitrite accumulated to a maximum concentration of 185 g NO2
-
-N.m

-3
 on day 1, but 

was completely converted after four days. At steady state, ammonium was almost completely 

converted to nitrate, resulting in a nitrate effluent concentration of 241 g NO3
-
-N.m

-3
.  

 

 

Figure 3. Bulk liquid concentration of nitrogen components (A) and the biofilm thickness (B) in function of time. 

Mind the different scale and units (days versus years) of the x-axis in both figures. 

In contrast to the macroscopic reactor behavior, the steady state biofilm thickness of 1 mm 

was only reached after about 2.5 years (Fig. 3B), indicating that constant reactor performance not 

necessarily implies that the steady state biofilm thickness is already reached. The biofilm thickness 

increased linearly due to the formation of active biomass by microbial growth and the formation of 

inert particulate components by endogenous respiration. Inert particulate components made up more 

than 90% of the total particulate mass in the biofilm at steady state. 

The steady state conditions of the microbial community were only reached after about 12 

years (Table 2). A major microbial community shift was even observed after 5 years of operation. 

Initially, all AOO species made up 7.5% and all NOO species 2.5% of the total particulate matter 

mass (100 g COD) in the biofilm. Due to microbial competition, the initial fraction of each species 

evolved in time to its steady state value. In the AOO community, species AOO1 became dominant. 

In the NOO community, NOO6 remained dominant for about 7 years. However, after 5 years, 

species NOO2, which was virtually absent in the biofilm for 3 years, reappeared in the biofilm. This 

species became dominant after 8 years and remained the dominant NOO species at steady state. At 

steady state, 3 dominant species coexisted in the biofilm: AOO1, NOO6 and NOO2. All the others 

species could be considered absent and not contributing to the microbial conversions. However, it is 

assumed that when the operation conditions change, these species could re-emerge when the new 

conditions are favorable for them, as their concentrations were negligible, but nonzero.  
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Table 3. Evolution of the percentage of the total particulate matter (100 g COD) made up by each species in the 

biofilm through time. Percentages of individual AOO and NOO species are visualized by color codes from 0% 

(white) to 25% (black). 

Time (months) → 

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 

Fraction (%) ↓ 

AOO1 7.5 24.63 13.98 7.83 5.55 5.52 5.51 5.51 5.50 5.48 5.40 5.31 5.26 5.25 5.25 

AOO2 7.5 0.002 0 0 0 0 0 0 0 0 0 0 0 0 0 

AOO3 7.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

AOO4 7.5 0.002 0 0 0 0 0 0 0 0 0 0 0 0 0 

AOO5 7.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

AOO6 7.5 0.029 0 0 0 0 0 0 0 0 0 0 0 0 0 

AOO7 7.5 0.002 0 0 0 0 0 0 0 0 0 0 0 0 0 

AOO8 7.5 0.069 0 0 0 0 0 0 0 0 0 0 0 0 0 

AOO9 7.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

AOO10 7.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Total AOO 75 24.73 13.98 7.82 5.55 5.52 5.51 5.51 5.50 5.48 5.40 5.31 5.26 5.25 5.25 

NOO1 2.5 0.003 0 0 0 0 0 0 0 0 0 0 0 0 0 

NOO2 2.5 0.10 0.002 0 0 0 0.007 0.042 0.17 0.63 1.60 2.69 3.25 3.44 3.49 

NOO3 2.5 0.001 0 0 0 0 0 0 0 0 0 0 0 0 0 

NOO4 2.5 0.005 0 0 0 0 0 0 0 0 0 0 0 0 0 

NOO5 2.5 0.037 0 0 0 0 0 0.001 0.001 0 0 0 0 0 0 

NOO6 2.5 7.06 3.90 2.35 1.85 1.84 1.83 1.82 1.77 1.59 1.19 0.70 0.43 0.34 0.31 

NOO7 2.5 0.001 0 0 0 0 0 0 0 0 0 0 0 0 0 

NOO8 2.5 0.001 0 0 0 0 0 0 0 0 0 0 0 0 0 

NOO9 2.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

NOO10 2.5 0.002 0 0 0 0 0 0 0 0 0 0 0 0 0 

Total NOO 25 7.22 3.90 2.35 1.85 1.84 1.84 1.86 1.94 2.22 2.79 3.38 3.68 3.77 3.80 

Total XI 0 68.05 82.12 89.82 92.61 92.64 92.64 92.63 92.55 92.30 91.80 91.31 91.06 90.98 90.96 

 

The steady state substrate gradients are displayed in Fig. 4. In this study, ammonium and 

nitrite were especially limiting, as the concentrations prevailing in the biofilm of these substrates 

were much lower than the affinity constants considered. Indeed, species with a rather high affinity 

for ammonium (AOO1) and nitrite (NOO2 and NOO6) were selected.  

From the biomass concentration profile (Fig. 4D), it is observed that at steady state, NOO6 

remained present in a small concentration at the surface of the biofilm while NOO2 had the highest 

concentration 83 µm below the surface of the biofilm. The coexistence of two genetically and 

morphologically different populations of  NOO with different distribution patterns in a biofilm was 

already observed experimentally by Schramm et al. (1998). When coexistence of species 

performing the same function is observed, a distinction is typically made between slow growing 

species with a high substrate affinity (K-strategists) and fast growing species with a low substrate 

affinity (r-strategists). The r- and K-selection strategy (Andrews & Harris 1986) was already used 

previously to explain experimentally observed population shifts and microbial coexistence in 

nitrifying biofilms (Schramm et al. 2000; Volcke et al. 2008; Terada et al. 2010; Almstrand et al. 
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2013). In the NOO community considered in this study, NOO6 was an r-strategist with a relatively 

high growth rate ( ) and NOO2 was a K-strategist with a relatively high affinity for 

nitrite (low ). The r-strategist NOO6 was able to survive close to the surface due to the higher 

substrate concentrations prevailing there, in combination with its high maximum growth rate. As a 

K-strategist, NOO2 was able to cope with the limiting substrate concentrations deeper in the 

biofilm. Considering the evolution of the NOO community in time, it was observed that the r-

strategist NOO6 was able to cope rapidly with the prevailing conditions and grew at a high rate due 

to its relatively high maximum growth rate. After 8 years, the slow growing K-strategist NOO2 

became dominant over NOO6 due to its higher affinity for nitrite. It can thus be concluded that the 

r- and K-selection strategy not only can be used here to explain the steady state microbial 

distribution profile but also the development of the microbial community composition over time. 

 

 

Figure 4. Steady state concentration profiles for ammonium (A), nitrite (B), oxygen (C) and particulate matter 

(D) in function of the position of the biofilm (0 µm = bottom, 1000 µm = surface of the biofilm). Mind the 

different scale of the y-axis of the substrate concentration profiles. 

By using a multispecies nitrification biofilm model, the individual role of various microbial 

characteristics on the microbial population dynamics was demonstrated. The coexistence of several 

species of the same type, in this case several types of nitrite-oxidizers, may be explained based on 

their difference in maximum growth rate and affinity for the limiting substrate. It was shown that 

the biomass distribution profiles at steady state of the coexisting NOO reflected the ecological 

niches created by the substrate gradients. Furthermore, it was concluded that constant macroscopic 

reactor performance not necessary reflects steady state conditions on the microscale. Significantly 

more time is needed for the biofilm and the microbial community to reach steady state compared to 

the macroscopic reactor behavior. 
 

CONCLUSIONS & OUTLOOK 

We highlight above two instances in which additional model complexity is included beyond 

the conventional formulation for numerical 1-dimensional biofilm models. In Case study 1, our 

model suggests that even low levels of flocs can have a significant impact on process performance, 

optimal operating ranges, and microbial population and activity distributions in combined 

nitritation-anammox granular sludge reactors. The implication is that a better characterization of 

size distribution, mass transfer properties, and microbial population segregation of microbial 

aggregates – including flocs and granules- could improve operation of these reactors and contribute 

to better understanding of unexpected reactor behaviors. In Case study 2, it was shown that 

multispecies models are a useful tool to investigate the individual influence of various microbial 

characteristics on microbial population dynamics, and that coexistence of several species 

performing the same function is linked to the ecological niches created by the substrate 

concentration gradients in the biofilm. Nitrifying biofilm models including the growth of several 

species performing the same function not only demonstrate that a constant macroscopic reactor 
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behavior may be hiding major microbial community shifts, but can also be used to investigate major 

microbial population shifts resulting in a different nitrifying performance (Vannecke et al. 2014).  

Additional model complexity considered here had a substantial impact on macroscale 

outputs in some specific conditions, and on microscale outputs (namely, spatial distribution of 

dissolved and particulate components) under all conditions. It is likely a general rule that increased 

complexity will be more useful when the focus is on understanding fundamental microscale outputs. 

When the focus is on macroscale outputs (e.g. substrate removal rates, optimal bulk conditions), this 

complexity is clearly not always necessary. However, under specific conditions, additional model 

features can be critically informative for bulk reactor behavior prediction or understanding. Based 

on the results presented here, we suggest that two instances where additional biofilm model 

complexity may be warranted are 1) assessment of performance under dynamic process conditions; 

and 2) characterization of processes with a balance between aerobic and anoxic metabolisms.  

Ample future work is warranted to delineate implications of both heterogeneity in mesoscale 

aggregate structure and of microbial diversity to biofilm models. Regarding the former, evaluating 

the combined influence of granule size distribution with small levels of floccular material in both 

granular nitritation-anammox reactors and in other biofilm systems, particularly those that involve 

cross-feeding between multiple functional groups, is a logical next step. In addition, the model 

presented here evaluated only two aggregate fractions (flocs and granules), whereas in reality there 

appears to be a continuum of structures between the two. For example, granules in some systems 

have been observed embedded in floccular sludge (Innerebner et al. 2007), thus potentially 

increasing locally the connections between a couple of aggregates and leading to more or less active 

flocs. In addition, Arrojo et al. (2006) demonstrated experimentally that aggregate size distribution 

varied over time when the mixing changed in the reactor. This suggests that the relative abundance 

of granules and flocs is probably not constant, and that flocs might become granules at some point 

and vice versa, which supports the presence of different types of flocs in reactors. Future modeling 

efforts are warranted to test the implicit assumption here that we can safely neglect these additional 

structural complexities under all relevant conditions when evaluating macroscale outputs, and to 

assess their influence on microscale microbial distribution and solute exchange.  

From the standpoint of microbial diversity, further simulation studies based on multispecies 

nitrification biofilm models are required to investigate the individual role of various microbial 

characteristics and operation conditions on microbial competition. In the near term, a worthwhile 

future goal would be to assess the influence of both multiple taxa within the same functional group 

and heterogeneity in mesoscale aggregate architecture. In addition, there is increasing interest in 

explicitly incorporating our rapidly expanding understanding of microbial community structure and 

dynamics via molecular tools into predictive process models. Seshan et al. (2014) present an 

excellent example of this via a support vector regression model using microbial community 

diversity indices derived from DNA fingerprinting (T-RFLP) to predict reactor removal 

performance for COD, ammonia, nitrate, and 3-chloroanaline. Wastewater treatment modelers 

would also be well served by adapting emerging techniques in this direction in biogeochemical 

modeling. For example, Reed et al. (2014) provide a gene-based framework for incorporating 

environmental genomics data into a model of nitrogen cycling in the Arabian Sea oxygen minimum 

zone. A similar approach may be possible in bioprocess modeling to refine our understanding of the 

role of microbial diversity and community dynamics on both microscale and macroscale outputs in 

biofilm reactors. 
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Abstract 

Observed (extant) KS is strongly influenced by diffusion.  This paper argues that diffusion can be 

used to describe bacterial kinetic effects that are sometimes attributed to “K-strategists” and in fact 

the physics of the system is the dominant mechanism affecting the apparent (extant) KS; not 

biological selection, in real treatment systems.  The authors use the “porter-diffusion” model to 

make their case. 
 

Keywords 
KS, Monod, diffusion, strategists, half-saturation 

 

 

BACKGROUND 

It is commonly held that populations of bacteria can be subdivided into “µ-strategists” (also termed 

“r-strategists”) that thrive in conditions of high substrate concentrations, and “K-strategists” that 

somehow predominate under low substrate conditions.  This paper offers the opinion – backed by 

measurements and plausible theory – that in some cases, observations attributed to different 

“strategist” populations can, more simply, be attributed to diffusion effects due to a boundary layer 

thickness and/or substrate concentration levels.  In other words, different kinetic rates can be 

described adequately using the physical phenomenon of diffusion without reverting to the 

somewhat subjective approach of selecting different kinetic parameters in order to match different 

observed removal rates for the same biomass types under different substrate conditions. 
 

KS is a function of Maximum Rate 

Over the past several years, several researchers have shown that half-saturation coefficients (KS) in 

many biological treatment systems are not constant but in fact are functions of the maximum 

removal rates. Wilson et al. (2012) showed that the KS for acetic acid in anaerobic systems was a 

linear function of the maximum removal rate. Shaw et al. (2013) showed that the extant KS for 

nitrate in denitrification is a function of the maximum denitrification rate.  Further, they showed 

that the apparent extant KNO3 value can be described by using a diffusion model with a very small 

intrinsic KNO3. 

 

Figure 1 shows data from Shaw et al. (2013), Wilson et al. (2012) and data from two other 

wastewater treatment systems.  Despite the systems being very different and for different substrates, 

all 4 show a strong correlation between KS and the maximum substrate removal rate. 
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Figure 1: KS as a function of rmax for 4 different biological systems: (a) nitrate limit for 

denitrification in an activated sludge system (Shaw 2013); (b) nitrate limit in an MBBR; (c) 

mesophilic anaerobic digestion (Wilson 2012); (d) DO limit for nitrification in activated 

sludge. Note, maximum rates shown with respect to biomass growth in cases (a), (b) and (c) 

but with respect to dissolved oxygen for case (d). 

 

Many researchers have used the concept of “strategists” to explain the apparently different kinetics 

including substrate affinity under different operating conditions.  For example, Wett et al. (2011) 

used the concept of “µ-strategists” to explain different overall rates and growth kinetics that had to 

be used in a model to match overall observed performance when adjusting mixed liquor recycle 

rates (Figure 2).   

 

 
Figure 2: Graph from Wett et al. (2011) showing the Model Fraction of “µ strategists” Based 

on Internal Mixed Liquor Recycle 
 

(a) (b) 

(c) (d) 
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In their discussions of nitrite modelling, Sin et al (2010) used higher KDO values for ammonia 

oxidizing bacteria (AOB) and nitrite oxidizing bacteria (NOB) to model sidestream treatment (non-

substrate limited conditions) than the rest of the plant.  Other researchers have used the µ vs K 

strategist concept to explain observed differences between high rate and low rate systems for 

methylotrophs (e.g. Purtschert and Gujer, 1999) and anaerobic digestion (Wett et al., 2012). Though 

these systems are for different types of biological treatment, they use the common approach of 

shifting kinetic parameters – especially KS – for low substrate conditions from those used for high 

substrate conditions. 
 

EXPLAINING KS USING THE PORTER-DIFFUSION CONCEPT 

The Monod equation that is used to describe biological kinetics is empirical and does not have a 

mechanistic basis. It does have the same form as the Michaelis-Menten equation that is used to 

describe enzyme kinetics and does have a mechanistic basis. Researchers in the field of natural 

aquatic systems have developed a mechanistic model using a “porter-diffusion” concept that 

couples enzyme kinetics (Michaelis-Menten) with a diffusion model for a spherical cell.  A 

conceptual sketch of the model, first presented by Pasciak and Gavis (1974) and refined further by 

several authors (Armstrong, 2008; Aksnes et al., 2011; Fiksen et al., 2013) is shown in Figure 3.  

Substrate in the bulk liquid (S∞) passes through a boundary layer where the transport is governed by 

diffusion until it reaches the cell wall at a concentration S0.  At this point, a porter enzyme 

transports the substrate into the cell using Michaelis-Menten kinetics.  Figure 3 shows a curve in 

blue to represent a high bulk liquid concentration of S and a red curve to show a low concentration 

for S∞, demonstrating that, although the overall rate is higher with a higher bulk liquid 

concentration, diffusion limitations are more pronounced (i.e. greater curvature).  

 

 
Figure 3: Conceptual sketch of the porter-diffusion model for an individual spherical cell with 

radius r0. The blue line shows the decrease in substrate concentration through the boundary 

layer by diffusion from an initially high substrate concentration (S∞) in the bulk liquid, to a 

lower concentration at the cell surface (S0).  At the surface the substrate is then transferred 

into the cell (Si) by a porter enzyme (E).  The red line shows a similar transport but for an 

initially lower substrate concentration (S∞) in the bulk liquid. 

 



 Shaw et al. 

80 

The solution to the porter-diffusion model is a quadratic equation. However, Armstrong (2008), 

Aksnes et al. (2011) and Fiksen et al. (2013) show that it can also be approximated to a Monod (or 

Michaelis-Menten) type of equation such as Equation 1 (nomenclature based on Fiksen et al (2013). 

Equation 9 

 
 

Where:   V is the substrate uptake rate per cell (mols cell
-1

 s
-1

) 

Vmax is the maximum uptake rate per cell (mols cell
-1

 s
-1

) 

S∞ is the bulk liquid concentration (mols m
-3

) 

K0 is the Michealis-Menten half-saturation coefficient with S0 as the reference 

concentration (mol m
-3

) 

r0 is the cell radius (m) 

D is the diffusivity of the substrate (m
2
 s

-1
) 

 

Comparing Equation 1 to the Monod equation, an expression can be given to the extant (observed) 

half-saturation coefficient, KS. 

 

Equation 10 

 
 

In this expression, the extant half-saturation coefficient, KS, is made up of two parts summed.  The 

first part is K0 which is the Michaelis-Menten half-saturation coefficient, or the intrinsic half-

saturation coefficient.  The second part of the expression incorporates the observed effect of 

diffusion on the extant KS and is a function of the maximum substrate removal rate, cell radius and 

diffusivity.  The fact that KS is proportional to the maximum substrate removal rate, matches the 

observations of the four wastewater treatment systems shown in Figure 1. 

 

Armstrong (2008) proposed modifications to Equation 2 to include a shape factor, Φ, to account for 

diffusion to non-spherical cells and a dimensionless Sherwood number, Sh, to account for 

convective mass transport compared to molecular or diffusive mass transport, resulting in Equation 

3 as shown. 

 

Equation 11 

 
 

Finally, the Vmax in Equation 3 is expressed as the rate per cell. In order to use rates based on overall 

cell volume or mass, Vmax has to be multiplied by the cell volume.  Assuming the cell is a sphere 

with volume 4/3πr
3
, equation 3 then becomes Equation 4, where Rmax is a volumetric rate. 

 

Equation 12 
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Equation 4 was fitted to the data for each of the four different systems shown in Figure 1, and the 

results are shown in Figure 4.  In each case, the “cell radius”, r0, was adjusted until the model line 

gave a reasonable fit to the data; K0 was assumed to be 0; diffusivity was selected based on 

substrate; the shape factor was assumed to be 1; Sh was assumed to be 1.0 for cases (a), (b), and (d) 

but was adjusted for case (c).  The final point is discussed further below.  Table 1 is a summary of 

the parameters used for each case. 

 

 

 

 
Figure 4: Porter-diffusion model (dotted) and simple linear regression (solid) for the 4 

different biological systems shown in Figure 1: (a) nitrate limit for denitrification in an 

activated sludge system (Shaw 2013); (b) nitrate limit in an MBBR; (c) mesophilic anaerobic 

digestion (Wilson 2012); (d) DO limit for nitrification in activated sludge. 
 

 

TABLE 1: Porter-diffusion model parameters used in Figure 4 

System 

K0 Φ D Sh r0 

gm-3 - m2d-1 - µm 

(a) Denite AS 0 1 1.47E-04 1.0 400 

(b) Denite MBBR 0 1 1.47E-04 1.0 600 

(c) MAD 0 1 8.64E-05 0.001 1000 

(d) Nitrification 0 1 1.73E-04 1.0 250 

 

 

 

The following observations are made from Figure 4 and Table 1: 

(a) (b) 

(c) (d) 
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1. The porter-diffusion model was developed for individual cells, whereas the systems shown 

in Figure 4 contain most of the biomass within flocs or biofilms. However the logic applied 

to developing the cellular model can be extended to a larger grouping of cells within a floc 

or biofilm, with r0 a representative diffusive distance to give the equivalent effect. 

2. In cases (a), (b), and (d) it was possible to select a value for r0 that is within the realms of a 

plausible dimension for an equivalent floc size or biofilm thickness.  No other parameters 

had to be adjusted. 

3. In case (c), r0 was adjusted up to a maximum of 1000µm but the model line did not match 

the data by several orders of magnitude.  Sh was then adjusted to match the data better.  A 

lower Sh may indicate that diffusion is severely restricted in this system. 

4. In all systems, the linear line fit did not have a positive intercept on the Y-axis which would 

be necessary to provide an estimate for K0.  The inference from this is that K0 is insignificant 

(near zero) in comparison to mass transfer effects for these particular systems. 

 

In the derivation of Equation 1, Fiksen et al. (2013) show that Vmax = nh
-1

, where n is the number of 

porter sites and h is the handling time for each site.  All of the systems analyzed in this paper have a 

relatively high concentration of biomass or low food to microorganism ratio (F/M) and hence the 

number of porter sites is not limiting.  This may explain why K0 (porter effect) is not significant for 

these systems, but diffusion dominates the formulation of KS.  

 

Significance of the Porter-Diffusion Model 

In Equation 4, KS is proportional to r
2
, D

-1
 and Sh

-1
. On first glance, KS being proportional to Sh

-1
 

seems logical because when diffusion controls (over convection), KS will be larger (low affinity). 

Strictly speaking, however, the modification proposed by Armstrong (2008) relating KS to Sh is 

valid only for single cells, and may not hold for flocs because there is little or no convection inside 

the flocs. This is similar to pore diffusion in carbon adsorption where advection is zero. Assuming 

that convection is zero inside the flocs, then diffusion always controls. KS is proportional to D
-1

 and 

therefore at high diffusivity, KS is low and vice versa. When r0 (indicative of diffusion distance) is 

small, the inter-cell tubes are smaller both in diameter and length reducing the impact of diffusion. 

 

In practical terms, Equation 4 can be used to give a reasonable first estimate of KS depending on the 

overall maximum rate (Rmax, measured or modelled), floc size (r0, measured or used as a calibration 

parameter), and diffusivity (D = physical constant, dependent on substrate and temperature).  If this 

estimate does not match observations, Φ (shape factor) and/or Sh can be used as adjustment factors 

to provide a better fit.  This equation can be coupled with the approach outlined in Shaw et al. 

(2013) to provide an estimate for KS that can be incorporated into a process simulator to provide a 

better model fit for a wider range of substrate concentrations than the typical current approach of 

assuming a fixed KS.   

 

A final observation from fitting data to the porter-diffusion model is that K0 was near zero for all of 

the modelled systems in Figure 4.  It is posited that this is due to the systems all having a relatively 

low F/M and hence an abundance of porter sites. It is plausible that high F/M systems would exhibit 

a greater influence from the lower number of porters and hence K0 would be higher for these 

systems.  A practical consequence of this is that KS should not be estimated from high F/M tests and 

then applied to low F/M systems. Ideally, KS should be estimated using tests carried out at a similar 

F/M to that of the modelled or real-world system.  
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A NEW PARADIGM 

As noted in the paper by Shaw et al. (2013) and as explained by the porter-diffusion model 

discussed in this paper, at low substrate concentrations diffusion becomes more important and can 

be used to explain the reduction in observed kinetic rates, rather than adjusting kinetic parameters to 

fit data.  This reduction in rate will cause a shift in biomass populations that appear to be due to “K-

strategists” but in fact may be caused by diffusion and other physical effects.  Another way to view 

this is that the apparent “K-strategists” gain their advantage by somehow exploiting an ability to 

overcome diffusion limitations, such as growing in filamentous form outside of the floc which 

shortens diffusion distances. 

 

Figure 5 shows a comparison of processes types and 

the importance of diffusion effects versus maximum 

rates.  For systems operating at or near maximum rates 

the impact of KS is not significant and diffusion is not 

important.  However, for treatment processes where 

substrate concentrations are low it is important to 

consider shifting to variable extant KS values or 

explicitly modelling the effects of diffusion.  

Additionally it is important to consider diffusion 

effects or variable extant KS for systems where 

biomass is moved from high rate to low rate systems 

such as the case when waste activated sludge from a 

high-rate, sidestream treatment facility is used to 

bioaugment a mainstream system (e.g. Wett, 2011).   

 

Variable KS is an important consideration wherever low substrate concentrations are important such 

as facilities with low effluent limits, systems with competing organisms (e.g. anammox vs NOBs in 

deammonification, Stinson et al. 2013) or models dependent on transitional species (e.g. NO2 for 

models of N2O emissions, Guo et al. 2012). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: Influence of Substrate 

Concentration on Diffusion vs 

Maximum Rates 
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Abstract 
The accumulation of the denitrification intermediates in wastewater treatment can be highly 

undesirable, since both nitrite and NO are known to be toxic to bacteria, and N2O is a potent 

greenhouse gas and an ozone depleting substance. The four steps in denitrification could exert 

influence on each other through electron competition, leading to denitrification intermediates 

accumulation. To date, two distinct concepts for the modelling of the four-step denitrification 

process have been proposed, with one of them adopting the “directly coupling” and the other 

adopting the “indirectly coupling” approach in linking the carbon oxidation and nitrogen oxides 

reduction processes. In this study, these two models are examined and compared based on their 

ability to describe the experimental denitrification dynamics reported in literature. The modelling 

results show that the “indirectly coupling approach” could predict all the data from the three cases 

studied, while the “directly coupling approach” was able to reproduce two of the three datasets. 

The results suggest that separating the kinetics of carbon oxidation from the nitrogen oxides 

reduction is advantageous in modelling the electron competition in denitrification. 

   

 Keywords  
denitrification; modelling; electron competition; nitrous oxide; nitrate; nitrite  

INTRODUCTION  

Denitrification is an important part of the global nitrogen cycle. Nitrate reduction consists of four 

consecutive reduction steps, with nitrite (NO2
-
), nitric oxide (NO) and nitrous oxide (N2O) as three 

obligatory intermediates (Zumft 1997). Each reduction step is catalysed by one or more specific 

reductase enzymes, namely nitrate reductase (Nar), nitrite reductase (Nir), NO reductase (Nor) and 

N2O reductase (Nos). In the wastewater treatment process, denitrification is a key process to remove 

the nitrogen pollutants from wastewater. Tremendous efforts have been made to optimise the 

performance of this process, including avoiding the accumulation of reaction intermediates.  

 

The accumulation of the denitrification intermediates can be highly undesirable. For example, 

nitrite and NO are known to be toxic to bacteria (Schulthess R. V. 1995, Tan et al. 2008), while 

N2O is a potent greenhouse gas with a 300-fold stronger radiative force than carbon dioxide, and is 

also a primary ozone depleting substance in the 21 century (IPCC 2007, Ravishankara et al. 2009). 

Previous work clearly demonstrated that the four denitrification steps could exert influence on each 

other through electron competition, leading to denitrification intermediates accumulation (Pan et al. 

2013a, Schalk-Otte et al. 2000).  The fundamental cell physiology responsible for the electron 

competition phenomenon is that all denitrifying enzymes require electrons from a common source, 

the ubiquinol pool of the respiratory electron transport chain (Richardson et al. 2009).  
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Mathematical modelling has been widely applied to predict nitrogen removal during wastewater 

treatment (Henze et al. 2000). Previous modelling efforts have primarily focussed on the prediction 

of the removal of nitrate, and in some case nitrite as well. However, it is increasingly recognised 

that NO and N2O accumulation should also be modelled, especially due to their potent and vicious 

influence on atmosphere. This can be achieved through modelling denitrification as a four-step 

process that use nitrate, nitrite, nitric oxide, and nitrous oxide, respectively, as the terminal electron 

acceptor (Hiatt and Grady 2008, Schulthess and Gujer 1996, Vonschulthess et al. 1994). With each 

step being modelled with individual, reaction-specific kinetics, the accumulation of nitrite, NO and 

N2O can be, theoretically, predicted.  

 

To date, two distinct concepts have been proposed in the development of multi-step denitrification 

models, with their structure schemes shown in Figure 1.  

 

Model A: the “direct coupling approach”(Hiatt and Grady 2008), with which the carbon oxidation 

and nitrogen reduction processes are directly coupled in the model. This type of model describes 

each of the four steps as a separate and independent oxidation-reduction reaction (Figure 1a), with 

the kinetics of each step modelled according to the reduction reaction kinetics.  

 

Model B: the “indirect coupling approach”(Pan et al. 2013b), with which the carbon oxidation and 

nitrogen reduction processes are indirectly coupled. Electron carriers are introduced as a new 

component in this model to link carbon oxidation to nitrogen oxides reduction (Figure 1b). In this 

way, the reactions can be regulated by both the reduction and the oxidation processes. 

 

  

 

Figure 1. Simplified reaction schemes used in the two 4-step denitrification models evaluated in 

this study: Model A - Using the “direct coupling approach” to model the carbon oxidation and 

nitrogen reduction processes during denitrification; Model B - Using the “indirect coupling 

approach” to model the carbon oxidation and nitrogen reduction processes during denitrification. 

 

It is of importance to know the prediction ability of these two different types of models, by 

conducting parallel comparison with existing data reported for different cultures and under different 

conditions. However, such comparison has not been done to date. Therefore, the aim of this work is 

to reveal how the structures of the two models presented in Figure 1 would affect their ability to 

reproduce experimental data reported in literature. Three distinctive denitrifying cultures were used 
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in this examination, which included one pure culture (Paracoccus denitrijkans (N.C.1.B. 8944)) and 

two mixed denitrifying cultures fed with acetate and methanol, respectively. In particular, their 

ability in predicting electron competition during denitrification is assessed. The findings are 

expected to provide guidance to both future experimental studies and modelling practice aimed to 

get better understanding of denitrification. 

 

MATERIALS AND METHODS 

Mathematical models for denitrification  

The kinetic and stoichiometric matrices describing the nitrogen reduction and the carbon oxidation 

processes for the two mathematical models are presented in Table 1. Nomenclature for all state 

variables used slightly differs from the original publications. We employ the following symbols for 

concentration: heterotrophic biomass (X), nitrate (SNO3), nitrite (SNO2), nitric oxide (SNO), nitrous 

oxide (SN2O), readily biodegradable carbon source (Ss), reduced form of electron carriers (SMred), 

oxidized form of electron carriers (SMox). Other processes involved in denitrification, such as death 

and lysis of heterotrophs, hydrolysis of particulate organic nitrogen are included in both models 

with standard ASM kinetic expressions and parameter values taken from published literature (Hiatt 

and Grady 2008, Ni et al. 2011, Schulthess and Gujer 1996). Table 2 listed the definitions, values 

and units of the parameters used in the two models.  

 

As show in Table 1, in Model A, the reduction of a nitrogen oxide compound (e.g. nitrate) and the 

oxidation of organic carbon are “directly coupled” in a single oxidation-reduction reaction with a 

stoichiometric relationship obtained through electron balance. However, in Model B, the carbon 

oxidation process (R1) is decoupled from the nitrogen reduction processes (R2 to R5). Electron 

carriers (SMred and SMox) are introduced as a new component in this model to link carbon oxidation 

and nitrogen oxides reduction.  

 

Testing the predictive abilities of the models  

Experimental data from three cases (KuČEra et al. 1983, McMurray 2008, Pan et al. 2012) 

concerning denitrification dynamics were used for testing the predictive abilities of the two 

mathematical models.  

 

Case 1: The nitrogen conversion dynamics by a pure denitrifying culture of Paracoccus denitrijkans 

(N.C.1.B. 8944) were measured in two batch tests by KuČEra et al. (1983). In the first batch test, 

nitrate was added to a concentration of 14 mg N/L at the beginning of the tests, followed by nitrite 

addition to around 5 mg N/L at 0.5 hour. In the second batch test, the nitrate reduction rate was 

measured under the following condition: 1) with only NO3
-
 being present; 2) with NO2

-
 being 

present simultaneously with NO3
-
; 3) with N2O being present with NO3

-
; 4) with NO2

-
 & N2O & 

antimycin (an inhibitor for nitrite and N2O reduction) being present with NO3
-
. Glucose was used as 

the carbon source and was in excess throughout all the tests. They found that the extent of electron 

flow to nitrate depends on the activity of electron flows to nitrite and N2O. By quantitatively 

evaluating the extent of electron flows, they revealed that the nitrate, nitrite and N2O reductases 

competed for a constant limited flow of redox equivalents supplied from dehydrogenases, although 

the external carbon source (glucose) was in excess. 

 

Case 2: McMurray (2008) investigated denitrification dynamics by a  full-scale activated sludge fed 

with acetate. In a batch test, nitrate, nitrite were added at the beginning of the test, to initial 
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concentrations around 5.2 mg N/L, 8.9 mg N/L, respectively. Acetate was also added at the same 

time, and was present in excess during the entire experiment. The conversion of nitrate, nitrite and 

acetate was monitored throughout the test, along with the production rate of nitrogen gas (N2).  

 

Case 3:  By studying a enriched denitrifying culture fed with methanol, Pan et al. (2013a) carried 

out extensive investigations to study electron competition during denitrification. Four batch tests 

were chosen in this paper to evaluate the two types of models, which include 1) nitrate being added 

as the sole externally-supplied electron acceptor; 2) nitrite being added as the sole externally-

supplied electron acceptor; 3) N2O being added as the sole externally-supplied electron acceptor; 4) 

nitrate, nitrite and N2O being added simultaneously. The initial concentration of the nitrogen 

compounds were between 30 and 50 mg N/L. Methanol was in excess in all these four tests, with its 

initial concentration at approximately 300 mg N/L.    

 

Parameter estimation were performed with AQUASIM for aquatic systems (Reichert et al. 1995).  

Not all the parameters were identifiable from the experimental data; however, some of the 

parameters have been extensively studied and well established in previous studies (Hiatt and Grady 

2008, Pan et al. 2013b). Therefore, literature values were adopted for these parameters (see Table 

2). Only parameters specific for each model ( 1g , 2g , 4g for Model A and max,CODr , 1,MredK , 

2,MredK and 4,MredK  for Model B) were calibrated in this modelling practice, with their values 

presented in Table 2 as well. 

 

RESULTS  

Evaluation of the Mathematical Models: Case 1 

In the first case, the two denitrification models in Figure 1 were evaluated based on their ability to 

capture the nitrogen conversion by a pure culture of Paracoccus denitrijkans (N.C.1.B. 8944), 

reported in KuČEra et al. (1983).  The influence of nitrite and N2O on nitrate reduction was 

extensively investigated in this study. The experimental data along with the model predictions are 

presented in Figure 2.  

 

In the first batch test, after nitrite was added externally at 0.5 hour, the nitrate reduction rate was 

significantly lowered (Figure 2 (a) & (b), phases 1 & 2). However, when nitrite depleted, the 

activity of nitrate reductase recovered to its original level (Figure 2 (a) & (b), phase 3). Model B 

was able to reproduce both the nitrate and nitrite profiles (Figure 2b). In contrast, Model A failed to 

predict the dynamic nitrate profile although the nitrite profile was correctly reproduced (Figure 2a).  

 

The results from the second batch are shown in Figure 2c and 2d. With the initial nitrate reduction 

rate, measured with nitrate as the sole externally-supplied electron acceptor, being accounted as 

100%, the nitrate reduction rate reduced to 32% after the nitrite addition. The value lowered even 

further to 6% after the addition of N2O. However, when N2O, nitrite and antimycin (a chemical 

which inhibits nitrite and N2O reduction) were added together, the nitrate reduction rate increased to 

233%. Model A completely failed to predict the experimentally observed variations in the nitrate 

reduction rate after the addition of nitrite, N2O and antimycin (Figure 2c). The results clearly 

indicate that Model A is not able to reflect the influence of nitrite and N2O on nitrate reduction. On 

the contrary, as shown in Figure 2d, Model B successfully captured the influence of nitrite, N2O and 

antimycin on nitrate reduction, with 38% of nitrate reduction activity left after nitrite addition (in 

comparison to the 32% experimentally observed), 7% left after N2O addition (in comparison the 

experimental data of 6%). With the inhibition of nitrite and N2O reduction using antimycin, the 
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model also correctly predicted the substantial increase (240% vs. the experimentally observed 

233%) in the nitrate reduction rate (Figure 2d).  
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Figure 2: Experimental results and model predictions for Case 1 (KuČEra et al. 1983). (a) & (c) – 

Evaluation of Model A; (b) & (d) – Evaluation of Model B.  

 

Evaluation of the Mathematical Models: Case 2  

In the second case, the denitrification dynamics by a full-scale activated sludge fed with acetate was 

studied by McMurray (2008). The experimental data along with the model predictions are presented 

in Figure 3. While not shown in the figure, no N2O accumulation was observed during the entire 

experiment. Both models predicted negligible N2O. 
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Figure 3: Experimental results and model predictions in Case 2 (McMurray 2008): (a1), (b1) & 

(c1) - Evaluation of Model A; (a2), (b2) & (c2) - Evaluation of Model B 

 

Nitrite accumulated during nitrate reduction, and declined after the depletion of nitrate (Figure 3 

(a1) & (a2)). COD was consumed during nitrate and nitrite reduction (Figure 3 (b1) & (b2)). The N2 

production was around 22 mg N/hour when both nitrate and nitrite were present, and increased to 

around 28 mg N/hour when only nitrite was present.  

 

Model A roughly captured the trend of nitrate and nitrite reduction (Figure 3 (a1)), and the trend of 

acetate (Figure 3 (b1)). However, the fit between the model predictions and experimental data was 

relatively poor. The consequence of the poor fit can be clearly seen from the incorrect prediction of 

the N2 production rate (Figure 3 (c1)). In comparison, Model B successfully reproduced all the data 

observed including the N2 data (Figure (a2), (b2) & (c2)).  

 

Evaluation of the Mathematical Models: Case 3 

In the third case, the two denitrification models in Figure 1 were evaluated based on their ability to 

capture the nitrogen conversions by an enriched denitrifying culture fed with methanol as the 

carbon source (Pan et al. 2013a). The experimental data points along with the model predictions are 

presented in Figure 4. 
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Figure 4: Experimental results and model predictions Case 3(Pan et al. 2013a): (a1) & (b1) & (c1) 

& (d1) - Evaluation of Model A; (a2) & (b2) & (c2) & (d2) - Evaluation of Model B 

In the tests when only one nitrogen oxide specie was added (Figure 4 (a1) to (c1) and (a2) to (c2)), 

the nitrate, nitrite and N2O reduction rate was 45, 74 and 370 mg N/(gVSS×h), respectively. 

However, when nitrate, nitrite and N2O were added simultaneously, the reduction rate of all the 

nitrogen oxides decreased, valued at 19, 39 and 256 mg N/(gVSS×h), respectively (Figure 4 (d1) 

and (d2)).  

 

Generally, both Model A and Model B were able reproduce the nitrate, nitrite and N2O profiles in 

Figure 4 (a1) to (c1) and Figure 4 (a2) to (c2). However, Model A failed to reproduce the 

experimental results in Figure (d1). The predicted nitrate reduction rate is significantly higher than 

the predicted nitrite reduction rate, which is opposite to the experimental observation. In addition, 

the predicted N2O reduction rate is significantly lower than the experimentally observed N2O 

reduction rate. In comparison, Model B reproduced all experimental data reasonably well despite a 

slight mismatch between the model-predicted and experimentally observed nitrite data (Figure 4 

(d2)).  

 

DISSCUSSION 

In this work, the two types of 4-step denitrification models were evaluated for their ability to predict 

denitrification dynamics in three cases. One common feature for all three cases is that interactions 

between the reduction of two or three nitrogen compounds during denitrification were observed (i.e. 

nitrate & nitrite & N2O in Case 1 and Case 3; nitrate & nitrite in Case 2). Model B was able to 

describe the experimental data in all the three cases, while Model A failed to reproduce the 

experimental data in any of the three cases. 

                                                                                                            

The question arising herein is why the two models performed differently. The answer to this 

question lies in their consideration of the electron competition process during denitrification.  All 
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the denitrifying enzymes derive their electrons from a common electron supply source, the 

ubiquinol pool of the respiratory electron transport chain (Richardson et al. 2009). The electron 

competition among the nitrogen reduction steps could happen if the electron supply rate becoming 

the rate limiting process during denitrification, leading to dynamic changes in the electron 

allocation and hence the nitrogen conversions. A closer examination of the experiment results of the 

three cases studied reveals that the electron competition process played a key role in determining 

the denitrification dynamics in all the cases studied. Below, we will comment on Case 1 in detail to 

illustrate the differences between the two models. Case 2 and Case 3 will be briefly discussed, 

further highlighting the key features of the two models.   

  

For Case 1, electron supply was the rate limiting process in all the batch tests. This is evident from 

the fact the nitrate reduction rate increased by around 233% when both nitrite and N2O reduction 

was inhibited by antimycin (Figure 2d). Herein, the experimental results revealed that nitrate 

reductase did not achieve its maximum turnover rate even when only nitrate was added, due to the 

fact that the reduction of the continuously produced downstream denitrification intermediates 

(nitrite, NO, N2O) were deriving their electrons from the same electron source. Similarly, the reason 

for the decline of the nitrate reduction rate with nitrite or N2O addition (Figure 2d) was due to the 

electron competition between the different denitrification steps. In Model B, by modeling the 

carbon oxidation process (II-R1) and the nitrogen reduction processes (II-R2 to II-R5) separately, the 

model was able to predict both the electron supply rate and the electron consumption rate. The 

electron supply rate was reflected by II-R1, while the electron consumption rate was reflected by II-

R2 to II-R5. The relative ability of each denitrification step to compete for electrons was reflected by 

the calibration of kMred,1 , kMred,2, kMred,3, kMred,4 in Model B. Therefore, the model predicts that the 

electron flow to nitrate reduction (II-R2) was affected by the electron flows to nitrite (II-R3) and 

N2O (II-R5). When nitrite reduction (II-R3) and N2O reduction (II-R5) were stopped, nitrate 

reduction (II-R2) received more electrons and thus a higher reduction rate was achieved. When 

external nitrite or nitrous oxide were added, the overall rate of nitrite reduction (II-R3) or N2O 

reduction (II-R5) increased due to higher substrate concentrations, leading to a smaller electron flow 

to nitrate reduction (II-R2). In comparison, in Model A, the carbon oxidation process is not modeled 

independently, but directly lumped into the four nitrogen reduction steps (I-R1 to I-R4). Therefore, 

the structure of Model A is intrinsically unable to distinguish the electron flow regulation 

between the carbon oxidation and the four-step nitrogen reduction processes. Thus, a constant 

nitrate reduction rate was predicted by Model A when all the tests were used to calibrate the 

relevant parameters. This constant nitrate reduction rate is essentially a compromise of the model to 

simulate the nitrate dynamics observed in all the tests in Case 1. One possible argument might be 

that by adding an inhibition terms to describe nitrite and N2O inhibition on nitrate reduction (e.g. 
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 in I-R1, with 2NOK  and ONK 2 defined as nitrite inhibition and N2O inhibition 

coefficient on nitrate reduction), Model A may be able to predict the nitrate reduction dynamics 

presented in Figure 2. This is proven to be infeasible. Even such terms are added, the 233% nitrate 

reduction rate achieved after the addition of antimycin & nitrite & N2O would still not be predicted.  

 

For Case 2, the nitrogen production rate, which essentially reflected the turnover rate of the nitrite 

reductase since there was no accumulation of NO or N2O, increased after nitrate depletion (Figure 3 

(c1), (c2)). This phenomenon indicates that there was electron competition between nitrate 

reduction and nitrite reduction when both of them were present. The competition was relaxed after 

the depletion of nitrate, resulting in a higher nitrite reduction rate (nitrogen production rate). Again, 

Model B captured the two distinctive nitrite reduction rates through regulating the electron flow to 
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II-R2 to II-R5. Model A failed to do so since the nitrite reduction rate was determined by I-R2, and 

the depletion of nitrate could not exert any influence to the nitrite reduction rate predicted by I-R2. 

 

For Case 3, the decline of the reduction rates of nitrate, nitrite and N2O when all of them were 

added was due to electron competition (Figure 4 (d1) & (d2)). Model B captured this trend through 

calibrating the relatively ability of the three steps to compete for electrons, reflected by kMred,1 , 

kMred,2, kMred,4. The prediction by Model A accelerated the nitrate reduction rate  (I-R1) and reduced 

the N2O reduction rate to give its best fit of all the batches. It is worth to note that, unlike Case 1 in 

which the carbon oxidation process was rate limiting in all the cases, nitrate or nitrite reduction in 

Case 3 was rate limiting by the turnover rate of nitrate reductase or nitrite reductase rather than by 

the electron supply rate (Pan et al. 2013a) (Figure 4 (a1) & (a2), (b1) & (b2)). Thus, the electron 

competition process did not play a key role in determining the denitrification dynamics when only 

nitrate or nitrite was present.  

 

To date, the presentence of denitrification intermediates during wastewater treatment has been 

widely reported. The ability of models to predict electron competition during the denitrification 

process enables the model to predict denitrification intermediates. It has been revealed by this work 

that Model B could give satisfactory prediction of the dynamics of the intermediates during 

denitrification. Further investigation should be made by upgrading the current ASM models widely 

used by wastewater treatment plants by incorporating the concept of the “indirect coupling 

approach”. 

 

CONCLUSIONS 

In this work, two distinct mathematical model structures were compared for their ability to predict 

nitrogen conversion dynamics in one pure culture and two mixed culture studies. It was 

demonstrated that the model based on the indirect coupling of the carbon oxidation and nitrogen 

oxides reduction processes was able to describe the experimental data in all three cases studied, 

while the ASMN model, directly couples the carbon oxidation and nitrogen oxides reduction 

processes, failed to describe the experimental data. The results suggest that the ‘indirect coupling’ 

approach is advantageous over the ‘direct coupling’ approach in describing the electron competition 

between the four steps of denitrification and in predicting the accumulation of denitrification 

intermediates.  
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Table 1: process matrices for the two types of denitrification models evaluated in this study  

 Model components  

Processes SNO3 SNO2 SNO SN2O SS SMox SMred X Kinetic rate expressions 

Model A - the “direct coupling appraoch” adapted from Hiatt and Grady (2008) 
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Model B - the “indirect coupling approach” adapted from Pan et al.(2013b)  
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Table 2: Best-fit parameters of the two models describing denitrification dynamics 

Parameter  Definition  Case 1  Case 2  Case 3  Source 

Model A - the “direct coupling approach” adapted from Hiatt and Grady (2008) 

H  Maximum specific growth rate (hour
-1

) 0.26 0.26 0.26 Hiatt and Grady (2008) 

HY  Heterotrophic yield (g COD/g COD) 0.6
a
 0.6

a
 0.5

b
 a: Hiatt and Grady (2008) 

b: Pan et al. (2013b) 

Y  Anoxic yield factor (dimensionless) 0.9 0.9 0.9 Hiatt and Grady (2008) 

1g  Anoxic growth factor, R1 (dimensionless) 0.029 0.14 0.18 Estimated  

2g  Anoxic growth factor, R2 (dimensionless) 0.024 0.058 0.15 Estimate 

3g  Anoxic growth factor, R3 (dimensionless) 0.35 0.35 0.35 Hiatt and Grady (2008) 

4g  Anoxic growth factor, R4 (dimensionless) 0.35
a
 0.35

a
 0.81

b
 a: Hiatt and Grady (2008) 

b: Estimated 

1SK  Affinity constant for Ss, R1 (mgCOD/L) 20
 
 20 20 Hiatt and Grady (2008) 

2SK  Affinity constant for Ss, R2 (mgCOD/L) 20 20 20 Hiatt and Grady (2008) 

3SK  Affinity constant for Ss, R3 (mgCOD/L) 20 20 20 Hiatt and Grady (2008) 

4SK  Affinity constant  for Ss, R4 (mgCOD/L) 40 40 40 Hiatt and Grady (2008) 
HB
NOK 3  Affinity constant  for nitrate-nitrogen (mg N/L) 0.2 0.2 0.2 Hiatt and Grady (2008) 

HB
NOK 2  Affinity constant  for nitrite-nitrogen (mg N/L) 0.2 0.2 0.2 Hiatt and Grady (2008) 

HB
NOK  Affinity constant  for nitric oxide-nitrogen (mg N/L) 0.05 0.05 0.05 Hiatt and Grady (2008) 

HB
ONK 2  Affinity constant  for  nitrous oxide-nitrogen (mg N/L) 0.05 0.05 0.05 Hiatt and Grady (2008) 

2,NOK  NO inhibition coefficient, R2 (mg N/L) 0.5 0.5 0.5 Hiatt and Grady (2008) 

3,NOK  NO  inhibition coefficient, R3 (mg N/L) 0.3 0.3 0.3 Hiatt and Grady (2008) 

4,NOK  NO inhibition coefficient, R4 (mg N/L) 0.075 0.075 0.075 Hiatt and Grady (2008) 

Type II Model- the “indirect coupling approach” adaped from Pan et al.(2013b)  

max,CODr  Maximum carbon source oxidation rate (mmol COD/(L*hour) 0.064 0.090 0.34 Estimated 

max,3NOr  Maximum nitrate reduction rate (mmol NO3
- 
/mmol biomass*hour) 0.045 0.045 0.045 Pan et al. (2013b) 

max,2NOr  Maximum nitrite reduction rate (mmol NO2
- 
/mmol biomass*hour) 0.059 0.059 0.059 Pan et al. (2013b) 
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max,NOr  Maximum nitric oxide reaction rate (mmol NO /mmol biomass*hour) 0.56 

 

0.56 

 

0.56 

 

Pan et al. (2013b) 

max,2ONr  Maximum nitrous oxide reaction rate (mmol N2O  /mmol 

biomass*hour) 

0.23 0.23 0.23 Pan et al. (2013b) 

SK  Affinity constant  for Ss ( mmol COD/L) 0.1 0.1 0.1 Pan et al. (2013b) 
HB
NOK 3  Affinity constant  for nitrate-nitrogen ( mmol  NO3

- 
/L) 0.018 0.018 0.018 Pan et al. (2013b) 

 
HB
NOK 2  Affinity constant  for nitrite-nitrogen ( mmol  NO2

- 
/L) 0.0041 0.0041 0.0041 Pan et al. (2013b) 

HB
NOK  Affinity constant  for nitric oxide-nitrogen (mmol NO/L) 0.000011 0.000011 0.000011 Pan et al. (2013b) 

HB
ONK 2  Affinity constant  for nitrous oxide-nitrogen (mmol N2O/L) 0.0025 0.0025 0.0025 Pan et al. (2013b) 

MoxK  Affinity constant  for SMox, R1  mmol/( mmol biomass) 0.0001 0.0001 0.0001 Pan et al. (2013b) 

1,MredK  Affinity constant  for SMred, R2 0.0015
a
 0.0068

a
 0.0046

b
 Estimated 

2,MredK  Affinity constant  for SMred, R3 0.00058
a
 0.016

a
 0.00040

b
 Estimated 

3,MredK  Affinity constant  for SMred, R4 0.000010 0.000010 0.000010 Pan et al. (2013b) 

4,MredK  Affinity constant  for SMred, R5 0.00024
a
 0.0032

b
 0.0032

 b
 a: Estimated 

b:  Pan et al. (2013b) 

HY  Heterotrophic yield 0.6
a
 0.6

a
 0.5

b
 a: Hiatt and Grady (2008) 

b: Pan et al. (2013b) 

totC
 Total electron carrier concentration  mmol/mmol biomass 0.01 0.01 0.01 Pan et al. (2013b) 
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Abstract 
In this study five activated sludge models including N2O emission were compared to four 

different long-term process data sets. Different production pathways and kinetics were 

considered for N2O production by ammonium oxidising bacteria (AOB). Satisfying 

calibration could be obtained but none of the models based on a unique pathway of AOB 

were able to describe all the N2O data obtained in the different systems with similar 

parameter set. The dependence of pathways with nitrite (or FNA) concentration is 

confirmed by this confrontation of models and experiences. These results suggest that 

efforts should be deployed to create a model in which the two main N2O pathways active in 

AOBs are represented together. 

 

Keywords 
Calibration, modelling; N2O, NO, nitrification, denitrification, wastewater treatment 

 

INTRODUCTION 

N2O is a powerful greenhouse gas that can be emitted from wastewater treatment plants 

(WWTP). The emission varies with the design and operation of a WWTP. Experimental 

campaigns demonstrated that the fraction of influent nitrogen load emitted as N2O shows high 

temporal and spatial variability in a range 0.01 % to more than 10% (Kampschreur et al., 

2009; Ahn et al., 2010). Both denitrification and nitrification processes can produce N2O. 

However, recent measurement campaigns have conclusively shown that ammonium oxidising 

bacteria (AOB) in most cases contribute significantly more to N2O production than 

heterotrophic denitrification (Daelman et al., 2013; Guo et al., 2013a; Wunderlin et al., 2012), 

whereas heterotrophic denitrification may be important in removal of the produced N2O (Guo 

and Vanrolleghem, 2014a). 

In order to evaluate the influence of process configuration and operation on the N2O emission 

a significant effort in mathematical modelling has been recently developed. For dynamic 

modelling of N2O production, new model components have been proposed to enhance the 

currently commonly used nitrification and denitrification models to include various reaction 

intermediates such as nitrous oxide (N2O), nitric oxide (NO) and hydroxylamine (NH2OH).  

Concerning heterotrophic denitrification N2O and NO are known to be intermediary 

compounds. These compounds were included in the ASMN model proposed by Hiatt and 

Grady (2008) considering four successive steps in denitrification. The accumulation rate of 

NO and N2O depends on the respective ratio between rates of successive steps. More recently 

Pan et al. (2013) also proposed to consider the electron transport and the competition between 

the different electron acceptors.  
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The mechanisms responsible for N2O production by AOB are more controversial. The two 

widely accepted mechanisms are the AOB denitrification pathway, through which AOB 

produce N2O via NO by reducing nitrite (Chandran et al., 2011), and the hydroxylamine-

related pathway. In this second mechanism, incomplete oxidation of hydroxylamine could 

form NO or NOH (nitroxyl radical) as intermediates for N2O production (Stein, 2011; Law et 

al., 2012). Several mathematical models have been proposed based on these hypothesised 

pathways (Ni et al., 2011, Ni et al., 2013a, Ni et al., 2013b; Mampaey et al., 2013). Ni et al. 

(2013a) evaluated four different models by calibrating these models with data reported in 

literature, obtained in batch experiments with activated sludge samples. As none of the 

models tested could reproduce all results, Ni et al., 2013a suggested that a regulation between 

the two main pathways probably occurs, and called for more work to further identify the 

specific conditions under which each of the models would be applicable, and to also develop a 

unified model by integrating various pathways. One issue related to model calibration with 

batch experiments is that the sludge history may impact the physiological state of the sludge, 

potentially leading to transient behaviour due to metabolic regulation, especially after a 

sudden change from biomass cultivation conditions to the batch condition. For this reason 

models confronting to long term operational data measured in situ is necessary.  

In the last years, measurement campaigns have been performed by many research groups 

including the authors’ groups. The objective of this study is to evaluate the calibration of 

different models with the collected continuous long-term data from different systems to reveal 

the performance of these models under various process conditions. This could shed light on 

the conditions under which each of the models would be suitable, and would also facilitate the 

development of a unified model by combining different pathways. 

 

METHODS 

 

Experimental data 

As detailed in Table 1, four different continuous biological systems were considered in this 

study: a UCT process (University of Cape Town), an oxidation ditch, two sequencing batch 

reactors (SBR). Three of them were full-scale processes treating real domestic wastewater, 

whereas one was a lab-scale pilot treating high strength wastewater. The N2O concentration in 

the off-gas was monitored using online continuous Infra-Red spectroscopy for three of these 

systems (UCT and SBRs). In the oxidation ditch dissolved N2O was measured in liquid 

samples using gas chromatography (GC) at different times and in different zones. In addition 

NO concentration in the off-gas was also collected in the SBR(1) by means of an IR analyser.  

In the different systems daily average N2O emission factors varied from 0.12 to 5% (gN-

N2O/gTN removed), the highest emission being obtained with the SBR process working at the 

highest loading rate (0.267 kgN/m
3
/d) with the highest nitrite variation (0-50mgN/L). More 

details concerning each system and measurement campaigns can be found in dedicated 

articles and communications (Ni et al., 2013b; Guo and Vanrolleghem, 2014b; Pocquet et al., 

2013). 

 

 

Mathematical models 

In this study mathematical models based on ASMN framework (Hiatt and Grady, 2008) were 

used with additional modification for considering production of NO and N2O by AOB. As 

nitrification was supposed to be the main contributor to N2O emission and because of the 

different possible pathways involved in, different AOB models were compared. The reaction 

stoichiometry and kinetics of five N2O models related to AOB are summarized in Table 2. 
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Two models were based on the AOB denitrification pathway: namely the Ni et al. (2011) 

model which does include NH2OH as an intermediate in ammonium oxidation (model A), and 

the Mampaey et al. (2013) model, which does not (model B). Another key difference is the 

influence of oxygen: model A includes DO inhibition whereas oxygen is a substrate in the 

model B. The third model was based on the hydroxylamine incomplete oxidation pathway 

(model C). In this last model NO is considered as an intermediary compound during the 

oxidation of NH2OH into nitrite (Ni et al., 2013a, Ni et al., 2013b). N2O is then produced by 

reduction of NO with the same reaction as in model A. Note that a modification has been 

made in model C compared to the initial model of Ni et al. (2013b): as growth was considered 

in two processes originally, here biomass production was removed from process 3 in order to 

use the conventional value for the growth yield (YAOB). Consequently the value of the new 

maximal rate μAOB,HAO,2 is here calculated as μAOB,HAO,1/YAOB. 

Two modifications of the original AOB denitrification models (A and B) have also been 

considered (Pocquet et al., 2013; Guo and Vanrolleghem, 2014b) (model A1 and B1). In the 

model A1 the oxygen inhibition function on AOB reduction pathway was not considered. In 

addition free ammonia (FA) and free nitrous acid (FNA) were considered as the substrate for 

AOB reaction rates, in order to consider the effect of variation of pH. In the model B1, 

oxygen limitation and inhibition was considered as a Haldane function in both the kinetics of 

NO2
-
 reduction and NO reduction (Guo and Vanrolleghem, 2014a, Guo and Vanrolleghem, 

2014b). Inhibition by FNA and FA were also considered in models A1 and B. 

The gas liquid transfers for oxygen, NO and N2O were also included. The transfer coefficients 

(Kla) for both NO and N2O were calculated with measured oxygen transfer coefficient and 

respective diffusivity ratio (Ye et al., 2014). Simulations were performed using AQUASIM 

software (Reichert, 1998) and WEST (Vanhooren et al., 2003). 

 

Parameters calibration 

Calibration was performed in two different steps considering first the major rates and 

components (ammonia, nitrate, nitrite) and secondly the N2O and NO data. Our approach has 

been to use typical parameter values reported in literature (Hiatt and Grady, 2008) for most of 

heterotrophic and autotrophic processes whenever possible. Parameter estimation was first 

realised manually and in a second time, for sensitive parameters, automatic minimisation of 

the mean square root error was used. The results of the sensitivity analysis on N2O and NO 

for parameters involved in the AOB models are presented in the table 3. Parameters 

influencing ammonium, nitrite, nitrate as well as NO and N2O were first calibrated during the 

first step (ex: μAOB,AMO, μAOB, KNH4,AOB). Secondly the parameters influencing only and 

mostly the N2O emission and NO emission were adapted. In this second phase the reduction 

factor ηAOB as well as affinity constants (ex: KNO2,AOB) were focused upon due to their high 

influence (table 3). The NO emission is also very sensitive to the parameter KNO,AOB which 

was estimated with the NO measurements performed on the system SBR(1). 

 

RESULTS 

 

SBR(1) 

The models were examined with the data collected from the SBR(1) operated at a high 

ammonia load (0.25 to 1.10 kgN/m
3
.d) with transient nitrite accumulation. This process was 

operated during more than six months treating wastewater with high ammonium 

concentration (500 mgN.L
-1

). Cycles were composed of five phases: feeding, aerobic period, 

anoxic period with secondary COD feeding, settling, withdraw. The system was controlled for 

nitrification over nitrite by controlling the aerobic period time. Very low nitrate 



 Spérandio et al. 

102 

 

concentrations were observed in the reactor and more than 97% of the ammonia was 

converted to nitrite during the aerobic period. Different volumetric exchange ratios and 

various anoxic times were imposed in order to modify the ammonium concentration as well as 

the nitrite concentration in the reactor. Heterotrophic denitrification was performed during the 

anoxic period with a suitable COD:N ratio by means of organic influent feeding. N2O and NO 

peaks were only observed during the aerobic period whereas no production was observed 

during the anoxic phase. The models were calibrated on a series of data (5 cycles) and model 

predictions were also validated with other cycles collected at different times in contrasted 

conditions. Figure 1 shows examples of simulated and experimental data (NH4
+
, NO2

-
, DO, 

NO and N2O) during the aerobic periods. Oxygen varied from 2 to 6 mg O2 L
-1

, initial 

ammonium from 10 to 40 mg N L
-1

, and final nitrite ranged from 30 to 135 mg N L
-1

.  

For all models the predicted profiles of ammonium, nitrite and DO match the observed 

experimental trends. The four models based on nitrite denitrification (A, A1, B, B1) also 

describe the observed N2O peak well. In contrast, the last model (C) could not predict the 

variation of N2O peaks for the different cycles, with high discrepancies at high nitrite 

concentrations. In those conditions with relatively high DO, simulations indicate that N2O 

was mainly related to AOB processes with an insignificant contribution of heterotrophic 

denitrification.  

The order of magnitude of NO peaks was correctly predicted with the four models based on 

AOB denitrification whereas model C could not predict the NO peaks variations. Based on 

simultaneous monitoring of N2O and NO an accurate calibration of the KNO value was 

possible in this work. However despite this calibration effort model C was unable to predict 

the experimentally observed change in the NO to N2O ratio (table A1). Finally, the best 

predictions for NO and N2O were observed with model A1, B and B1. This could be 

explained by a better description of the pH effect on the kinetics through the use of FA and 

FNA in their formulation. Corrections made on the oxygen effect (inhibition) could also 

impact the simulation. But in the data used the oxygen concentration was relatively high and 

the constant for oxygen inhibition was not really identifiable. It should be pointed out that this 

system has high transient nitrite accumulation and the data indicates a clear correlation 

between FNA and the N2O production rate. It was possible to predict this phenomenon with 

AOB denitrification models but not with the NH2OH/NO model (model C).  

Figure 2 compares the predicted and experimental emission factor (EF) for N2O and NO for 

11 different cycles (calibration and validation). This result confirms that models A1, B and B1 

show the best prediction of N2O and NO emissions, model A also being relatively good. The 

predictions of NO fluctuations are less accurate than for N2O but the ratio between both gases 

is relatively well predicted by the models based on the AOB denitrification pathway (Table 

5). Model C based on NH2OH/NO pathway could not predict the experimental data as it is 

unable to predict the effect of nitrite accumulation on N2O and NO production. This leads to 

an underestimation of N2O at high FNA concentration whereas NO emission is overestimated. 

 

Oxidation ditch 

The AOB denitrification models (Models A and B) and the NH2OH/NO model (Model C) 

were examined with the experimentally observed continuous N2O data from the full-scale 

oxidation ditch (OD) plant with surface aerators. The OD system receives domestic 

wastewater at approximately 4 mega liter (ML) per day. The plant consists of primary clarifier 

and an activated sludge system. After primary sedimentation, wastewater is introduced into 

the activated sludge unit, which is an oxidation ditch with a working volume of 8750 m
3
. The 

average hydraulic retention time (HRT) in the oxidation ditch is approximately 48 h. The 
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mixed liquor from the oxidation ditch flows into a secondary settler. The solids retention time 

(SRT) is approximately 10 d. 

The models were calibrated using the extensive monitoring data from the three-day intensive 

sampling campaigns at the three different locations (OD4, OD5 and OD2) of the ditch. Figure 

3 shows the simulated and experimental data (NH4
+
, NO2

-
, NO3

-
 and N2O) at the three 

locations along the ditch. For the three models the predicted profiles of ammonium, nitrite and 

nitrate match the observed experimental trends. However, the results indicated that Model A 

could not predict the N2O data. Indeed, Model A predicted a dependency of N2O production 

on DO that is opposite to that observed at the OD plant (Figure 3A-F). The kinetic structure of 

Model B ensures that the N2O production rate is dependent on oxygen availability, resulting 

in a N2O dynamic trend similar to that shown by the experimental data (Figure 3G-L). In 

order to reasonably predict the N2O production rate when nitrite accumulation in the OD 

system is very low (<0.67 mg-N/L), a relatively high anoxic reduction factor had to be 

employed due to the fact that the N2O production rate is dependent on nitrite concentrations in 

Model B. In contrast, Model C achieved a good fit between the model-predicted and 

measured N2O data. It is important to note that the OD system has low nitrite accumulation. 

The N2O emissions occurred mainly during aerobic zones (OD4) with high ammonium 

concentrations but low nitrite accumulation. The NH2OH pathway of Model C captures all 

these trends. 

 

SBR(2) 

Models A, B and C were also evaluated with the experimentally observed continuous cycling 

N2O data from the full-scale SBR plant (SBR2). The average daily flow of the plant is 120 

ML. The plant is commissioned with a primary sedimentation tank followed by secondary 

treatment. The biological nutrient removal component of the plant comprises a circular tank 

that is evenly quartered into four basins. Each basin operates as a separate SBR. At the time of 

this study, each SBR cycle consisted of the following phases in sequence: 90 min continuous 

feeding and aeration, 35 min settling and 55 min decanting. The average exchange volume per 

cycle in each SBR was approximately 5 ML. Each SBR had a working volume of 28 ML, and 

hence the average HRT was 17 h. The total airflow to the three SBRs was fixed at 45000 m
3
 

h
-1

 throughout the aeration phase with equal distribution among the three reactors. The SRT 

was maintained at 19 days. 

The models were calibrated using the monitoring data collected from SBR2 during the three-

cycle continuous intensive sampling campaign. Figure 4 shows the simulated and 

experimental data (effluent NH4
+
, NO2

-
, NO3

-
 and N2O) during the three cycles. Again, for the 

three models the predicted profiles of ammonium, nitrite and nitrate match the observed 

experimental trends. Model A predicted an opposite N2O trend to that observed. Models B 

and C achieved a good fit between the model-predicted and measured N2O data. Similar to the 

OD system, SBR2 also has low nitrite accumulation. In SBR2, N2O emissions occurred 

mainly during aerated periods. The N2O production rate increased with the increase of DO 

concentration during the cycles of SBR2. Model C captures all these trends in general. 

 

UCT process 

The Eindhoven WWTP, in the Netherlands, has a capacity of 750,000 PE. It treats wastewater 

using a University Cape Town (UCT) process which consists of three rings. The inner ring is 

an anaerobic tank, the middle ring is an anoxic tank and the outer ring is a partially aerated 

tank. The outer ring is equipped with two aeration packages. The summer aeration package is 

open all year round, but the winter aeration package is turned on occasionally under certain 

conditions, e.g. under rain events.  
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Model A1, Model B1 and Model C were implemented to this plant and their parameters were 

calibrated based on a 1-month measurement campaign. Figure 5 compares the simulated 

NH4
+
, NO3

-
 and DO concentrations with the on-line sensor data near the outlet of the summer 

aeration package. Figure 6 compares the simulation and the measurement data of N2O 

emissions at three different locations along the summer aeration package. The conclusion is 

that all models can be calibrated to the same level of fit. They have similar performance and 

can follow the dynamic variations in the measurement data.  

There was a rain event encountered on August 25th - 26th. All models showed better 

simulation performance under dry-weather conditions than wet-weather conditions (Figure 5). 

Results show that there was less N2O emission under wet-weather conditions compared to 

dry-weather conditions (Figure 6).  

 

DISCUSSION 

 

Capabilities of the models and comparison of parameter sets 

The data monitored on the four continuous systems considered in this study confirm that the 

N2O emission factors varied very significantly from 0.1 to 5.2% of the nitrogen removed. 

Data and simulations also confirmed that major N2O productions were related to nitrification. 

For instance, N2O emission were negligible in SBR(1) during anoxic period (even if nitrogen 

gas was injected) whereas 0.5 to 5% of nitrogen was converted into N2O during aerobic 

nitrification depending on the FNA concentration (DO from 2 to 6 ppm). In OD the overall 

N2O emission factor over a full month was 0.52% of the nitrogen load to the plant, with over 

90% contribution from the aeration zone (DO of over 5 ppm), 8% contribution from the DO 

zone at 1 ppm, and less than 2% contribution from DO zone at 0.05 ppm. Similarly, the N2O 

emission factor of the SBR2 over the month is around 1.0-1.5 % of the nitrogen load, with 

N2O emissions occurring mainly during aerated periods. In the UCT process the average 

contribution of each species to the N2O production has been quantified with the model B1. 

N2O is produced through the AOB pathway but is consumed by heterotrophic denitrification. 

Finally, the total N2O production by AOB is 291.83% of the net production while the 

heterotrophs contribute by -191.83% (Guo and Vanrolleghem, 2014b). Hence these results 

clearly confirm the need of a good prediction for AOB-related N2O production as well as 

heterotrophic denitrification by N2O.  

The modelling results indicate that all five models can correctly describe the ammonium, 

nitrite and nitrate measurements. However none of these models was able to accurately 

predict all measured N2O data sets. On the one hand this confirms the first conclusion made 

by Ni et al. (2013a) in their previous evaluation with batch data. On the other hand, new 

information (summarized below) is provided by this comparison on long-term data. Table 6 

summarizes the models’ capabilities for the different case-studies. 

Satisfying predictions were observed with AOB denitrification models for the SBR(1) in 

which the nitrite concentration varied significantly, the best results being obtained with 

models based on FNA instead of total nitrite (A1, B, B1). At the contrary it was not possible 

to predict the data with model C based on hydroxylamine incomplete oxidation as the effect 

of nitrite (or FNA) was not considered in this model. In addition, NO emissions were also 

predicted more accurately with the AOB denitrification model. For the UCT and SBR(2) 

processes in which nitrite did not accumulate, the simulations with model C were in 

agreement with the observations whereas a model based on AOB denitrification (model A) 

failed. Finally, for the UCT process models A1, B1 and C gave similar trends after an 

important calibration effort.  
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On figure 7, the FNA influence on simulated NO production rate is represented for two 

models (A1 and B1) calibrated on the SBR(1) and UCT processes. It should be pointed out 

that the N2O production rate is correlated to this rate as NO is the precursor for N2O in these 

models. In the system with low nitrite concentration (UCT), a high value for ηAOB (0.3-0.5) 

and a low value for KHNO2,AOB (10
-5

-10
-6

) are obtained in order to satisfy the observed NO and 

N2O emission data. With these parameter values the N2O production rate is poorly influenced 

by the nitrite concentration except at very low concentrations. In comparison a lower value for 

ηAOB (0.1-0.2) and a higher value for KHNO2,AOB (2.10
-3

) were obtained with the calibration on 

the SBR(1) process. In that case the variation of FNA concentration influences the NO and 

N2O production rates significantly. On the one hand these large variations of parameters from 

one system to another could possibly be explained by adaptation of enzymatic activity (NirK). 

This would mean that the calibration realised at low nitrite concentrations is not valuable in a 

system with high nitrite accumulation (and vice-versa). On the other hand another explanation 

is that the second pathway based on hydroxylamine incomplete oxidation is also present next 

to the denitrification pathway. For this reason a model which would consider both pathways 

would be useful as it would probably be able to predict a larger range of experimental 

conditions with the same parameter set. 

  

Relation between FNA concentration and AOB pathways 

From the models comparison it can be concluded that the AOB denitrification models 

(especially A1, B, B1) were able to describe the process with high nitrite variation whereas 

the NH2OH/NO model (C) fits well with the data collected on low loaded systems with low 

nitrite accumulation. In addition, Models B and C could both predict the trend of the N2O 

production dependency on DO at high DO level. These observations may help the future 

development of a unified model involving both the AOB denitrification and the NH2OH 

pathways. Considering the model structures, only the models based on AOB denitrification 

correlate the N2O production rate to nitrite, whereas the NH2OH oxidation models correlate 

the N2O production to the ammonium uptake rate. 

The maximal nitrite concentration in the OD and SBR(2) are respectively around 0.67 ppm 

and 1.53 ppm, with pH close to 7.1. It corresponds to 0.16 and 0.32 µgN-FNA/L respectively 

at 15°C. It was also observed in SBR(1) that below a concentration around 0.5 µgN-FNA/L 

the production of N2O decreases very significantly. It could be concluded that this value could 

be the limit under which the AOB denitrification processes become less significant compare 

to the hydroxylamine oxidation pathway. On the other hand, in the UCT process the maximal 

nitrite was only 0.11 mgN/L and the model A1, B1 and C were able to predict the observed 

trends.  

These results are in accordance with the results of the quantification of N2O origin during 

nitrification based on isotopes signature (Toyoda et al., 2011; Wunderlin et al., 2013; 

Rathnayake et al., 2013). Wunderlin et al. (2013) demonstrated that the nitrite reduction 

pathway was the major mechanism responsible for N2O production during batch feeding with 

ammonium and nitrite. In contrast the hydroxylamine oxidation pathways became the major 

process as soon as hydroxylamine accumulated or was injected. The contribution of N2O 

reduction was also observed to increase with the nitrite accumulation over time (Wunderlin et 

al., 2013; Rathnayake et al., 2013). 

 

CONCLUSIONS 

The continuous long-term data sets collected from four different full-scale wastewater 

treatment plants and the calibration results obtained for five different model structures 

compiled in this paper lead to the conclusion that neither of the proposed models presented so 
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far in literature were capable to properly describe all observations. More specifically none of 

the models were able to describe with similar parameter set the data obtained in systems with 

high and low nitrite concentration.  

This is consistent with the conclusions drawn from a previous exercise based on short-term 

laboratory scale data and the suggestion is that efforts should be deployed to create a model in 

which the two main N2O pathways active in AOBs are represented and their interaction 

described by their dependence on the reactor conditions. 
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Table 1. Comparison of the experimental systems and operating conditions 

 
Process type AS – UCT SBR(1) AS –Oxidation 

ditch 

SBR(2) 

Country Netherlands France Australia Australia 

Wastewater type Domestic Agro-industry Domestic Domestic 

COD/N (gCOD/gN) 9 5 10 10 

SRT (d) 10 15 10 19 

HRT (h) 19 35 48 17 

DO aerobic (mgO2/L) 0.1-5.4 2–6.0 0.1–8.0 0.1-4.0 

Aerobic fraction (of time or volume) 0.2-0.5 0.55 <0.5
*
 0.5 

Temperature during campaign (°C) 21+/-0.5 28+/-0.5 25+/-0.5 25+/-0.5 

MLSS (g/L) 2.5-3.5 5.3-6.3 2.9-3.7 4-4.5 

Reactor N-NH4
+
 (mgN/L) 0-45 0-45 0-5 0-25 

Reactor N-NO2
-
 (mgN/L) 0-0.1 0-50 0-0.5 0-2.5 

Reactor N-NO3
-
 (mgN/L) 0-6.5 0-10 0-1 0-5 

Nitrogen load (kgN/m
3
/d) 0.070 0.267 0.045 0.074 

N2O emission factor (gN-N2O/gTN) 0.12%- 

3.10% 

1.0%- 

5% 

0.36%- 

0.68% 

1.0%- 

1.5% 
*Not precisely determined 
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Table 5. Processes stoechiometry and kinetics of the models for AOB. 
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Table 6. Sensitivity of state variables NO and N2O (in liquid) to stoichiometric and kinetic 

parameters for the five models. The classification is related to the root mean square of the 

Absolute-Relative function expressed in mgN-N2O/L for N2O and in mg N-NO/L for NO. 

 
   Models 

 A-R function range 

(mgN-NXO/L) 

 A A1 B B1 C 
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Table 7. Parameters of the models A, A1, B, B1, C calibrated with four case studies. 
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Table 8. Comparison between experimental and simulated NO to N2O ratio from SBR(1). 

 

 NO/N2O ratio (gN-NO/gN-N2O) 

Experiment/cycle 1 2 3 4 5 

Data 4.4 % 4.6 % 4.9 % 2.9 % 3.5 % 

Model A 5.3 % 7.5 % 9.2 % 2.9 % 8.6 % 

Model A1 3.6 % 4.2 % 4.9 % 2.5 % 4.6 % 

Model B 3.5 % 4.2 % 4.7 % 2.4 % 2.4 % 

Model B1 4.1 % 4.2 % 5.2 % 2.7 % 4.5 % 

Model C 12.0 % 10.7 % 11.6 % 10.5 % 10.8 % 
 

 

 

Table 6. Comparison of models capabilities on the different case-studies 

 

 System 

Experiment/cycle AS-UCT SBR(1) OD SBR(2)  

Model A  +/- - -  

Model A1 + +    

Model B  + + +  

Model B1 + +    

Model C + - + +  
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Figure 8. Dynamic of nitrification and NO and N2O production for 5 experiment obtained with the SBR. 
Experimental results (in points) are confronted to modelling results (in line) for the five models. The 
dynamic of NO (◊) (secondary axis) and N2O (○) (primary axis) production are presented in the first 
line of each models whereas ammonium (Δ), nitrite (○) (primary axis) and dissolved oxygen (○) 
(secondary axis) are presented in the second line. Duration of experiment 1 to 5 : 1h, 0.4h, 0.4h, 1h, 
0.4h. Experimental N2O emission factor for experiment 1 to 5 (in gN-N2O/gN-NH4

+
 removed): 1.39 %, 

2.58%, 3.86%, 1.83%, 4.52%. 
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Figure 9. Comparison between experimental and predicted N2O and NO emission factors for 

11 cycles obtained with the SBR(1). 
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Model A – AOB denitrification pathway (Ni et al., 2011; Table 2) 

0 12 24 36 48 60 72
0

3

6

9

12

N
 c

o
n

ce
n

tr
at

io
n

 (
m

g
/L

)

Time (h)

 NH4
+
-N

 NO2
-
-N

 NO3
-
-N

OD4(A)

0 12 24 36 48 60 72
0

3

6

9

12

N
 c

o
n

ce
n

tr
at

io
n

 (
m

g
/L

)

Time (h)

 NH4
+
-N

 NO2
-
-N

 NO3
-
-N

OD5(B)

0 12 24 36 48 60 72
0

3

6

9

12

N
 c

o
n

ce
n

tr
at

io
n

s 
(m

g
/L

)

Time (h)

 NH4
+
-N

 NO2
-
-N

 NO3
-
-N

OD2(C)

 

0 12 24 36 48 60 72
0

4

8

12

16

20

L
iq

u
id

 N
2
O

 (


g
/L

)

Time (h)

OD4(D)

N2O

0 12 24 36 48 60 72
0

4

8

12

16

20

L
iq

u
id

 N
2
O

 (


g
/L

)

Time (h)

OD5(E)

N2O

0 12 24 36 48 60 72
0

4

8

12

16

20

L
iq

u
id

 N
2
O

 (


g
/L

)
Time (h)

OD2(F)

N2O

  

Model B – AOB denitrification pathway (Mampaey et al., 2013; Table 2) 
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Model C – NH2OH oxidation pathway (Ni et al., 2013b; Table 2) 
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Figure 3. Model evaluation results of the three-day N2O production data from the Oxidation Ditch 
WWTP (experimental data: symbols; model predictions: lines) with ammonium, nitrite, nitrate, and 
liquid phase N2O profiles at the different sampling locations (OD4, OD5 and OD2): (A-F) Model A; (G-
L) Model B; and (M-R) Model C. 
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Model A – AOB denitrification pathway (Ni et al., 2011; Table 2) 
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Model B – AOB denitrification pathway (Mampaey et al., 2013; Table 2) 
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Model C – NH2OH oxidation pathway (Ni et al., 2013b; Table 2) 
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Figure 4. Model evaluation results of the N2O production data from SBR (2) WWTP 

(experimental data: symbols; model predictions: lines) with ammonium, nitrite, nitrate, and 

N2O emission rate profiles: (A-B) Model A; (C-D) Model B; and (E-F) Model C. 
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Figure 5. Comparison of the measurement results with the simulation results of NH4
+
 (a), 

NO3
-
 (b) and DO (c) near the outlet of the summer aeration package 
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Figure 6. Comparison of simulated and measured N2O emissions at the beginning (BM) (a), 

the middle (MM) (b) and the end section (EM) (c) of the summer aeration package 
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Figure 7. Relation between NO production rate and FNA concentration with AOB 

denitrification models (A1, B1) calibrated on different data (UCT, SBR(1)).  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 Spérandio et al. 

122 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 Spérandio et al. 

123 

 

 

 

 

 

Towards BSM2-GPS-X: A plant-wide benchmark 

simulation model not only for carbon and nitrogen, but also 

for greenhouse gases (G), phosphorus (P), sulphur (S) and 

micropollutants (X), all within the fence of 

WWTPs/WRRFs 
 

Peter Vanrolleghem
1
, Xavier Flores-Alsina

2
, Lisha Guo

1
, Kimberly Solon

3
, David Ikumi

4
, Damien 

Batstone
5
, Chris Brouckaert

6
, Imre Takács

7
, Paloma Grau

8
, George Ekama

4
, Ulf Jeppsson

3
 and Krist 

V. Gernaey
2
 

 
1
modelEAU, Département de génie civil et de génie des eaux, Université Laval, Québec, QC, Canada, G1V 

0A6. 
2
Department of Chemical and Biochemical Engineering, Technical University of Denmark (DTU), 

Building 229, DK-2800 Kgs. Lyngby, Denmark. 
3
Department of Measurement Technology and Industrial Electrical Engineering, Division of Industrial 

Electrical Engineering and Automation (IEA), Lund University, Box 118, SE-221 00 Lund, Sweden. 
4
Water Research Group, Department of Civil Engineering, University of Cape Town, Rodenbosh, South 

Africa. 
5
Advanced Water Management Centre (AWMC), University of Queensland, St Lucia, QLD 4072, 

Australia. 
6
Pollution Research Group, School of Chemical Engineering, University KwaZulu-Natal, Durban, South 

Africa 
7
Dynamita, 7 Lieu-dit Eoupe, F-26110 Nyons, France. 

8
Department of Environmental Engineering, CEIT, Paseo Manuel Lardizábal 15, 20018 Donostia, Spain. 

 

INTRODUCTION 

Benchmarking WWTP/WRRF control strategies has turned out to be a very successful vehicle 

for development of consolidated models of whole facilities (Gernaey et al., 2014). Over the 

last year, a comprehensive think tank of researchers involved in this development has put 

together a wish list of future developments in WWTP/WRRF modelling. They want these 

ideas to be exposed to the modelling community gathered at WWTmod2014. Starting from a 

summary ongoing work on extending the Benchmark Simulation Model No.2 (BSM2) and the 

wish to extend the current BSM2 to include phosphorus aspects, the think tank presents this 

abstract to outline the options lying ahead. The lecture will present arguments for choosing 

among the identified modelling options, in order to get informed feedback from the 

WWTmod2014 audience and define a roadmap for future modelling efforts. It is believed that 

this way of guiding the combined (voluntary) efforts of model development will be beneficial 

to the WWTP/WRRF modelling community at large. 

The developments in the benchmarking area this paper will discuss relate to: 

G. Greenhouse gases (GHG): Next to methane and CO2 that are intrinsically part of the 

plant-wide benchmark simulation model, recent work has focused significantly on 

N2O emissions, leading to considerable extensions to the details of the N-removal sub-

model of the BSM2;  

P. Phosphorus: P-removal has been a focus of WWTP/WRRF design and operation, but 

its inclusion in whole plant models is lagging behind that of N-removal, due to the 

difficulties in modelling the precipitation processes that P is involved in, especially in 

the sludge train. 
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S. Sulphur: This element is receiving increased attention not only because of its role as a 

competitor for P and the related impact on P-complexation and release, but also 

because new processes in seawater-based systems (e.g. the SANI-process) take 

advantage of sulphur as a reactive element. Efforts to control H2S emissions and 

induced corrosion in sewer systems will benefit from such S-focused modelling efforts 

as well. 

X. Micropollutants: Recent interest in micropollutants has led to a diversity of model 

developments that would benefit from consensus-building and inclusion in the 

benchmark simulation platform. The diversity of micropollutants remains a challenge, 

but consensus can probably be found regarding models of the overall fate-determining 

mechanisms (sorption, biodegradation, volatilization, hydrolysis, photolysis …). 

With these four themes combined, the name to be given to this extension of the plant-wide 

Benchmark Simulation Model No.2 coincidentally turns out to be BSM2-GPS-X, a nice wink 

to one of the important WWTP/WRRF simulators. 

To reach this goal, the following topics will have to be addressed: 1) new evaluation criteria; 

2) new chemical and biochemical processes that should be taken into account; 3) new 

components involved in these processes that thus need to be modelled; 4) new influent 

wastewater characteristics; 5) modifications to the original BSM2 physical plant layout and 

new unit process models; 6) model integration; and, 7) new control handles and opportunities. 

These are shortly presented below.  

The intention at the WWTmod2014 seminar is to select a number of the more clear-cut topics 

developed below, and get the opinion from the audience by presenting them with a clear 

choice and a way to directly provide feedback (colored cards or a SurveyMonkey on-line 

voting system). 

DISCUSSION TOPICS 

1. New evaluation criteria 

With the ambition to use benchmark simulation models to evaluate the control and monitoring 

performance of WWTP/WRRFs that go beyond what could be achieved with BSM1/2 

(COD/N-removal) a new set of evaluation criteria needs to be put forth: 

 Is the approach for GHG-emission evaluation appropriate (Flores-Alsina et al., 2014)? 

 P-related criteria should be added, such as its contribution to the effluent quality index.  

 Given the interest in nutrient recovery, should evaluation criteria be developed that 

highlight production of (high quality) recovered nutrients from WWTPs/WRRFs? 

 Should sulphur compounds be considered in performance evaluation and in what way?  

 Do we consider ecotoxicity to evaluate micropollutant removal (Clouzot et al., 2013)?  

2. New chemical and biochemical transformations 

Upgrading the BSM WWTP with the GPS-X related transformations inevitably leads to a 

wide range of processes that need to be added. The level of complexity remains an open 

question though: 

 GHG-modelling has matured significantly over the last two years, but finalization is 

still required (e.g. Ni et al., 2013); 

 In GHG-models temperature dependency of reaction kinetics has been modelled using 

the Ratkowsky equation instead of Arrhenius, enabling to model decreasing rates at 

high temperatures. Is this to be applied to all kinetics? 

 Is ASM2d still adequate for modelling enhanced biological P-removal or do we need 

modifications, e.g. electron acceptor dependent decay, denitrification by specific 
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substrates with special kinetics (methanol, glycerol, methane, …), role of the ions 

Mg
2+

, Ca
2+

, K
+
; 

 Is it important to model the behaviour of PAO’s when they enter the anaerobic 

digester with a consequent P-release, VFA uptake, storage? How must ADM1 be 

upgraded to account for phosphorus and treatment of Bio-P sludge? Is ADM1 the 

proper model (Ikumi et al., 2011)? 

 Is it important to include anoxic-aerobic digestion of Bio-P wastage sludge with lime 

or Mg dosing for P-precipitation (to achieve low N and P dewatering liquors) for 

sludge treatment and how must ASM2/2d be modified to also model this (Vogts and 

Ekama, 2012)? 

 Which precipitation reactions to model and which numerical approach to use?  

 How will the physico-chemical model look like (precipitation, acid-base reactions, pH, 

ion-pairing, ion activity, etc.) in terms of level of detail, equation structure and solver 

requirements, etc. (Batstone et al., 2012); 

 If S-containing components are considered important for P-modelling (e.g. 

competition for iron), which of the (bio)chemical S-related oxido-reduction processes 

need to be included and how is the competition with methanogens to be modelled? 

 Do the traditional micropollutant fate models (volatilization, sorption, photolysis, 

biodegradation) that only require standard chemical properties (Henry coefficients, 

Kow, …) suffice or are dedicated models necessary for each micropollutant (Clouzot 

et al., 2013)? 

3. New components 

If the above list of processes is all considered important, a wide range of new components will 

have to be added to the current set of components considered in the next generation of BSM 

models: 

 Inert inorganic suspended solids need to be added for proper TSS accounting; 

 P-related components (phosphate, PAO’s, poly-P, PHA) and the components related to 

precipitation and PAO hydrolysis (calcium, magnesium, potassium, iron, struvite, K-

struvite, newberyite, calcium phosphate, iron phosphate, iron hydroxide, calcite, 

magnesite); 

 S-related components (sulphate, sulphite, sulphur, H2S, poly-S, iron and other 

sulphides); 

 A multitude of micropollutants (and their transformation products); 

 Components related to GHG emissions (methane, CO2, NO, N2O, NH2OH). 

4. New influent wastewater characteristics 

Evidently, when the set of state variables is extended, the inputs to the system will have to be 

extended too, including methane (G), phosphorus (P), sulphur (S), micropollutants (X). Are 

colloids important for the proposed configuration? Multiple approaches could be proposed: 

 Can we just use correlations with the traditional wastewater components in the influent 

files used so far (using TSS, COD and N-fractions as independent variables to 

correlate with)? 

 Do we need to develop new influent generation models that include, for instance, 

methane formation in the sewer (Guisasola et al., 2009), micropollutant release 

patterns (De Keyser et al., 2010), sulphur conversions, etc.? 

 Do we need to provide detailed information on influent pH-dynamics and acid-base / 

ion composition to support the physico-chemical model that is required? 

5. New physical layout and unit process models 
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The suggested layout of the BSM2-GPS-X WWTP is shown in Figure 1. The activated sludge 

section has been modified by including an anaerobic section for Bio-P removal. The actual 

volumes are still open for discussion and will be obtained through application of standard 

design guidelines, just as for BSM2 (Gernaey et al., 2014). Some proposals have been made 

to extend the layout that this paper will put to the floor for feedback: 

 Should we include a P-recovery unit process in the sludge train and how do we model 

it? Evidently, including such a process in the layout would attract a lot of attention to 

the BSM work, and in principle the physico-chemical model contains the necessary 

processes, but is there a “typical” P-recovery process that industry would accept as 

being representative? 

 Sludge reject water treatment was already tried out in the BSM2 process layout 

(Volcke et al., 2006). Is it time to make this an integral part of a whole plant model? 

 Should we also model the pumping station, screens and grit chamber so as to really 

model all processes within the fence? A storage tank prior to the digester could allow 

for more control options and the addition of external organic material input to the 

system.  

 The primary clarifier is receiving increased attention due to its potential role in 

separating organics for energy recovery by anaerobic digestion (Flores-Alsina et al., 

2014). Should chemical enhancing of primary treatment (CEPT) be added to the 

BSMs (Tik et al., 2013)? 

 Is a “fermenter” that generates VFA’s out of primary sludge a unit process to be 

included in the whole plant configuration to be studied in the future? It certainly 

would provide an interesting possibility for control. 

 Should the secondary settler model be upgraded to include compression and dispersion 

and to make its numerical solution consistent (Bürger et al., 2011)? 

 Is it now time to explicitly consider the reactions in the secondary clarifier, in 

particular denitrification, and how would that best be done (fully reactive settler, 

separate reactor, etc. (Gernaey et al., 2006))? Must the same hold for thickeners and 

storage tanks? 

 Should we add effluent polishing systems for nutrients (denitrifying filters) and TSS 

(disk filters) and can consensus on a representative technology and appropriate models 

be found? 
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Figure 1. Plant layout of the proposed BSM2-GPS-X. Some questions remain to be answered. 

Add a reactor 

between AD & DW 

for P-recovery? 

Add a reactor for 

effluent polishing? 

Add chemical 

addition for CEPT? 

Add sludge reject 

water treatment? 
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6. Model integration 

So far, BSMs have used interfaces to integrate the submodels. As complexity increases, the 

following questions can be asked: 

 Do we stick to the approach with submodels with individual component sets and mass 

continuity interfaces to connect them or do we move towards the plant-wide modelling 

concept or the Supermodel approach (Grau et al., 2009)? 

 If we stick to interfaces, do we extend the existing ad hoc interface or do we 

rigorously apply the continuity-based-interfacing-of-models (CBIM) approach 

(Vanrolleghem et al., 2005)? 

7. New sensors and control handles 

Control of WWTP/WRRFs will require a new set of sensor models to measure, for example, 

phosphate concentrations. Also, more control handles will become available compared to 

BSM2. 

 Models for P-analysers and nitrite measurement devices need to be established; 

 Will off-gas analysis (methane, H2S, O2, N2O, CO2…) break through and how will we 

model these measuring systems with gas sample preparation? 

 Models for actuators needed for CEPT may have to be developed, given their 

particularities; 

 Which sensors and control handles can be modelled for nutrient recovery systems? For 

instance one could imagine on-line particle size distribution measurement combined 

with seeding as a control handle for struvite formation. 

CONCLUSION 

This contribution intends to allow the control benchmarking community to get feedback from 

the wastewater modelling community regarding the requirements for the next generation 

benchmark simulation model. Given the many spin-offs that the benchmark modelling efforts 

have generated for the wastewater modelling community at large (Gernaey et al., 2013), it is 

believed that streamlining the work that is planned to occur in this benchmarking framework 

should be guided by the specialists in the discipline. 

Efforts have and will be deployed to make the interaction with the audience as efficient as 

possible by presenting only a selected number of key topics presented above and providing 

clear choices that can be answered during the time allocated for the presentation.  

ACKNOWLEDGEMENTS 

Peter Vanrolleghem holds the Canada Research Chair in Water Quality Modelling. 

REFERENCES 
Batstone D.J., Amerlinck Y., Ekama G., Goel R., Grau P., Johnson B., Kaya I., Steyer J.-P., Tait S., Takács I., 

Vanrolleghem P.A., Brouckaert C.J. and Volcke E. (2012) Towards a generalized physicochemical 

framework. Wat. Sci. Tech., 66(6), 1147-1161.  

Bürger R., Diehl S. and Nopens I. (2011) A consistent modelling methodology for secondary settling tanks in 

wastewater treatment. Water Res., 45, 2247-2260. 

Clouzot L., Choubert J.-M., Cloutier F., Goel R., Love N.G., Melcer H., Ort C., Patureau D., Plósz B.G., Pomiès 

M. and Vanrolleghem P.A. (2013) Perspectives on modelling micropollutants in wastewater treatment 

plants. Wat. Sci. Tech., 68(2), 448-461. 

De Keyser W., Gevaert V., Verdonck F., De Baets B. and Benedetti L. (2010) An emission time series generator 

for pollutant release modelling in urban areas. Environ. Modell. Softw., 25, 554-561. 

Flores-Alsina X., Arnell M., Amerlinck Y., Corominas Ll., Gernaey K.V., Guo L., Lindblom E., Nopens I., 

Porro J., Shaw A., Snip L., Vanrolleghem P.A. and Jeppsson U. (2014) Balancing effluent quality, 

economic cost and greenhouse gas emissions during the evaluation of (plant-wide) control/operational 

strategies in WWTPs. Sci. Total Environ. 466-467, 616-624. 

Gernaey K.V., Jeppsson U., Batstone D.J. and Ingildsen P. (2006) Impact of reactive settler models on simulated 



 Vanrolleghem et al. 

128 

 

WWTP performance. Wat. Sci. Tech., 53(1), 159-167. 

Gernaey K.V., Jeppsson U., Vanrolleghem P.A. and Copp J.B. (2014) Benchmarking of Control Strategies for 

Wastewater Treatment Plants. IWA Scientific and Technical Report, IWA Publishing, London, UK. 

Gernaey K.V., Copp J.B., Vanrolleghem P.A. and Jeppsson U. (2013) Lessons learned from the WWTP 

benchmarking exercise. In: Proceedings 11
th

 IWA Conference on Instrumentation, Control and 

Automation (ICA2013), Narbonne, France, September 18-20 2013. 

Grau P., Copp J., Vanrolleghem P.A., Takács I. and Ayesa E. (2009) A comparative analysis of different 

approaches for integrated WWTP modelling. Wat. Sci. Tech., 59(1), 141-147.  

Guisasola A., Sharma K.R., de Haas D., Keller J. and Yuan Z. (2009) Development of a model for assessing 

methane formation in rising main sewers. Water Res., 43, 2874-2884. 

 

Ikumi D.S., Brouckaert C.J. and Ekama G.A. (2011) A 3 phase anaerobic digestion model. In: Proceedings 8
th

 

IWA International Symposium on Systems Analysis and Integrated Assessment in Water Management 

(Watermatex2011). San Sebastian, Spain, June 20-22 2011. 

Ni B.-J., Yuan Z., Chandran K., Vanrolleghem P.A. and Murthy S. (2013) Evaluating four mathematical models 

for nitrous oxide production by autotrophic ammonia-oxidizing bacteria. Biotechnol. Bioeng., 110, 153-

163.  

Tik S., Langlois S. and Vanrolleghem P.A. (2013) Establishment of control strategies for chemically enhanced 

primary treatment based on online turbidity data. In: Proceedings 11
th

 IWA Conference on 

Instrumentation, Control and Automation (ICA2013). Narbonne, France, September 18-20 2013.  

Vanrolleghem P.A., Rosen C., Zaher U., Copp J., Benedetti L., Ayesa E. and Jeppsson U. (2005) Continuity-

based interfacing of models for wastewater systems described by Petersen matrices. Wat. Sci. Tech., 52(1-

2), 493-500. 

Vogts M. and Ekama G.A. (2012) Anoxic-aerobic digestion of waste activated sludge from biological nitrogen 

and phosphorus removal systems. In: Proceedings 12
th

 biennial WISA conference and exhibition, Cape 

Town, South Africa, May 7-10 2012. Paper 1154-164. 

Volcke E.I.P., Gernaey K.V., Vrecko D., Jeppsson U., van Loosdrecht M.C.M. and Vanrolleghem P.A. (2006) 

Plant-wide (BSM2) evaluation of reject water treatment with a SHARON-Anammox process. Wat. Sci. 

Tech., 54(8), 93-100. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 Vanrolleghem et al. 

129 

 

 

Population Balance Models: A useful complementary 

modelling framework for future WWTP modelling 
 

 

Ingmar Nopens
1
, Elena Torfs

1
, Joel Ducoste

2
, Peter A. Vanrolleghem

3
 and Krist V. Gernaey

4
 

 
1 
BIOMATH, Department of Mathematical Modelling, Statistics and Bio-informatics, Ghent University, 

Coupure Links 653, 9000 Gent, Belgium (Email: Ingmar.Nopens@UGent.be) 
2 
 NC State University, 208 Mann Hall Raleigh, NC USA (Email: jducoste@ncsu.edu) 

3 
 modelEAU, Département de génie civil et de génie des eaux, Université Laval, 1065 av. de la Médecine, 

Québec, QC, Canada, G1V 0A6 (Email : peter.vanrolleghem@gci.ulaval.ca) 
4
 Department of Chemical and Biochemical Engineering, Technical University of Denmark (DTU), 

Building 229, DK-2800 Lyngby, Denmark (Email: kvg@kt.dtu.dk) 

 

Abstract 

Population Balance Models (PBMs) represent a powerful modelling framework for the 

description of the dynamics of properties that are characterised by statistical distributions. 

This has been demonstrated in many chemical engineering applications. Modelling efforts 

of several current and future unit processes in WWTPs could potentially benefit from this 

framework, especially when distributed dynamics have a significant impact on the overall 

unit process performance. In these cases, current models that rely on average properties 

cannot sufficiently captured the true behaviour. Examples are bubble size, floc size, crystal 

size or granule size,... PBMs can be used to provide new insights that can be embedded in 

our current models to improve their predictive capability. This paper provides an overview 

of current applications and the future potential of PBMs in the field of WWT modelling, 

introducing new insights and knowledge from other scientific disciplines. 

 

Keywords 
bubble size, distributed properties, floc size, granule size, heterogeneity, PBM, product 

specifications, quality by design 

 

 

INTRODUCTION TO POPULATION BALANCE MODELS (PBM) 

Many natural systems consist of populations of individual entities (e.g. flocs, bubbles, 

granules, crystals, bacterial cells) with specific properties (e.g. size, composition, density, 

activity). The individual entities interact with their environment (e.g. dissolved chemical 

precipitation, oxygen transfer from air bubble to liquid phase, shear-induced breakup) or with 

one another (e.g. aggregation, coalescence). Typically, these interactions are a function of one 

or more properties, which may vary within a population of entities. In this context, we can 

refer to this variation as “distributed properties” as they can be represented by a distribution 

instead of a scalar (i.e. one single value). A simple example of the use of a distribution would 

be to characterize the variation in floc size in an activated sludge system. This distributed 

feature implies that the behaviour of distinct entities can be significantly different, and can 

deviate substantially from ‘average’ non-distributed behaviour.  

Current modelling frameworks usually assume non-distributed scalar properties (e.g. using a 

single particle size or bubble size), implying that all individuals behave in exactly the same 

way. In some cases, this is sufficient, but in others this assumption is too strict and will lead to 

predictions that deviate significantly from the real system. The required level of detail is 

clearly governed by the modelling objective. Yet, few researchers and design engineers in 

WWT are aware of alternative modelling approaches that can account for the impact of these 

distributed properties on unit process performance. 

A framework to achieve distributed behaviour by considering distributed population 

properties already exists and is called Population Balance Models (PBMs). PBMs have been 
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extensively used in chemical engineering for a myriad of applications (Ramkrishna, 2000; 

Marchisio, 2012). The governing equation in its most general form is given as 

  ),(),(),(
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        Eq. 1 

where x is the internal coordinate (i.e. the distributed property), f1(x,t) is the number density 

function (i.e. the distribution of the distributed property), ),( txX  is the continuous growth 

term of x and h(x,t) is the PBM reaction term (through discrete events). Table 1 provides some 

examples in regard to wastewater treatment applications. 

 

Table 1 – Some examples of wastewater treatment processes and related internal coordinates 

(x), number density functions (f1(x,t)) and continuous ( ),( txX ) and discrete (h(x,t)) governing 

mechanisms 

Process X f1(x,t) ),( txX  h(x,t) 

(De)flocculation* 

Floc size Floc size distribution Microbial growth Aggregation, breakage 

Size/Density** Size/Density 

distribution 

- Aggregation 

Coalescence Bubble size Bubble size distribution - Coalescence 

Granulation Granule size Granule size 

distribution 

Microbial growth Granulation 

Crystallization Crystal size Crystal size distribution Crystal growth Aggregation, breakup 

Bio P-removal Poly-P Poly-P distribution Poly-P storage, 

release 

Cell division, cell birth 

PHB production PHB PHB distribution PHB storage, 

release 

Cell division, cell birth 

Growth max max distribution Growth rate 

gradient 

Cell division, cell birth 

Affinity Kx Kx distribution Affinity gradient Cell division, cell birth 

*Note that this mechanism is driving the settling processes in primary and secondary sedimentation 

**In this case a 2D PBM is obtained 

 

The first term on the left hand side of Eq. 1 represents the accumulation term. Distribution 

dynamics that can be described are either governed by continuous processes (e.g. biomass 

growth, crystal growth, particle drying – represented by the second term on the left hand side 

of Eq. 1) or discrete processes (e.g. aggregation, breakage, coalescence, granulation – 

represented by the term on the right hand side). The latter term usually consists of a birth and 

a death term, where the birth rate describes the rate at which particles of property x are being 

formed and the death rate describes the rate at which they are being removed. In 

crystallisation, a nucleation term needs to be added in the smallest size class mimicking the 

nucleus that is formed in an oversaturated solution. 

The internal coordinate x can be either a scalar (i.e. a single independent variable) or a vector 

resulting in a 1 dimensional or multi-dimensional PBM, respectively. The use of multi-

dimensional PBMs means that the distribution of one or more material properties can be 

described. It should be noted that formulating and solving multidimensional PBMs is a 

challenging task. 

The nature of the resulting equation depends on the presence of the ),( txX  and h(x,t) terms. 

If only the former is present, a partial differential equation (PDE) is obtained for which 

solution methods are available. The latter term usually contains integral terms expressing the 

interactions between members of the distribution, turning the equation into an integro-partial 

differential equation. Several numerical methods have been reported in the literature to solve 

this type of equations (Ramkrishna, 2000).  
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Applications of PBMs to wastewater treatment processes are rather scarce. The first 

application was introduced by Fukushi et al. (1995), where a PBM model was used for 

modelling the dissolved air flotation process in water and wastewater treatment. The authors 

described the attachment process of bubbles to flocs during the flocculation process in a 

turbulent flow. Gujer (2002) investigated the impact of lumped average cell composition 

versus distributed composition in the context of ASM2 and ASM3 and concluded that this 

indeed had a significant impact. Schuler (2005) demonstrated that lumped state (= averaged) 

assumptions in EBPR system performance models produced large errors due to the difference 

in individual residence times of organisms in different zones. This was found to be related to 

process hydraulics (Schuler, 2006) and to impact the endogenous respiration as the latter was 

found to be more important when distributed models were applied (Schuler and Jassby, 2007). 

Finally, several PBM references can be found in the field of activated sludge flocculation 

ranging from very simple formulations (Parker et al., 1972) to more elaborate ones (Biggs et 

al., 2003; Nopens et al., 2002) and papers focussing on experimental validation (Nopens et al., 

2005) and model structure analysis (Nopens et al., 2007; Torfs et al., 2012). 

 

PBMs can serve the purpose of building process understanding. The result of such a detailed 

modelling exercise can be included in next generation simplified WWTP models that go 

beyond the currently used paradigms (i.e. ASM using averaged biomass behaviour combined 

with residence time distribution models and oversimplified aeration and settling models). 

Hence, PBM models should not be considered as replacement of current WWTP models, but 

as enhancement tools to improve the future quality of their unit process predictions. This 

paper intends to outline the potential of PBMs in the field of wastewater treatment through 

several examples of different WWTP unit processes. 
 

 

APPLICATIONS OF PBMS IN THE FIELD OF WWT 
 

Improved flocculation to better exploit primary and secondary settling 

The current settling models are either based on removal efficiencies or settling velocities 

correlated with particle concentration. Settler models are still receiving attention as there is 

still room for improvement in their use (e.g. storage function during wet weather) and 

operation. This is especially true for primary settlers as they can be an important asset for 

energy recovery through the maximisation of the primary sludge that is sent to the anaerobic 

digester. Their behaviour has not been widely studied thus far (Bachis et al., 2014). Moreover, 

the primary treatment process is often chemically enhanced (CEPT) which creates an optimal 

dosage problem. As particle concentrations are low in primary settlers, the settling regime is 

not hindered but rather discrete, i.e. Stokian, and a function of particle size, shape and density, 

leading to a wide distribution of settling velocities as evidenced by Bachis et al. (2014). The 

discrete settling assumption is also true for the zone just above the sludge blanket of a 

secondary settler. In discrete settling, settling velocities are directly related to size, shape and 

density and, hence, the particle size distribution (PSD). The PSD depends on the original 

flocculation state as well as on actions undertaken to improve the flocculation state (e.g. 

turbulent shear, coagulant). Note that the flocculation state also depends on the particle’s 

history (e.g; a sludge can have the same PSD, but it can react very different if the floc strength 

is different caused by a different flocculation history). 

Flocculation of particles is probably the most straightforward application of PBMs. Since 

biological growth occurs on a much longer time scale compared to aggregation and breakage 
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it can be ignored when studying short-term flocculation behaviour of activated sludge. The 

PBM reaction term is then defined as 

 

breakbreakaggagg xDxBxDxBtxh )()()()(),(        Eq. 2 

in which the birth (B) and death (D) terms occur for both aggregation and breakage as shown 

in Figure 1. Through these different mechanisms flocs of any size can be formed or removed. 

Furthermore, it becomes clear that aggregation is a particle-particle interaction process, 

whereas shear-induced breakage is not. The rates of all these processes are, hence, governed 

by the number of flocs present (N) as well as an aggregation rate (β), an aggregation 

efficiency (α) and a breakage rate (S) and distribution of resulting particles (the so-called 

daughter size distribution). Aggregation and breakage rates are in their turn a function of the 

mechanisms that drive the aggregation or breakup. Traditionally, shear and polymer addition 

are accounted for which is likely sufficient for the application in the context of primary and 

secondary settling. More details on these rates and their dependencies on shear and flocculant 

addition can be found elsewhere (Nopens et al., 2002; Nopens et al., 2005). An example of a 

model prediction along with measured size distribution during a batch sludge flocculation 

process is shown in Fig. 2. 

 

 
Fig. 1 – Illustration of mechanisms involved in flocculation (after Nopens et al., 2002)  

 

 
Fig. 2 – Example of a PBM model prediction of a batch sludge flocculation process (time unit 

= seconds; unit on size axis = m
3
) after Torfs et al., 2012) 
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Flocculation usually takes place in the process units prior to the actual settling tank as well as 

in the settling tanks (if conditions are good). Flocculation models as described above can be 

used for both. Currently, the flocculation process in primary and secondary clarifiers is not 

studied in detail and its effects are incorporated using rules of thumb. However, understanding 

the contribution of flocculation would improve their design and operation which can 

significantly improve the settling performance and control. Indeed, being able to predict and 

control the size distribution of a population of particles arriving to either the primary or 

secondary settler would be a useful input to settler models that can handle a distribution of 

settling velocities, calculated from the size distribution derived with the PBM (Bachis et al., 

2014).  

In a secondary settler, exposure of flocs to elevated shear during transport from the bioreactor 

to the centre well of the settler will induce reflocculation and impact the floc size distribution 

and the floc strength. An appropriate application of PBM for settler induced flocculation 

would specify size as the internal coordinate.  

In primary settler applications, the availability of particle settling velocity distributions as the 

internal coordinate of the suspended solids has generated a more accurate prediction of the 

load to the secondary treatment model, reduced the need for calibration (Bachis et al., 2012, 

2014), and produced more accurate and optimal control of chemical dosage that lead to cost 

savings. In addition to particle size, particle density can be included as a second internal 

coordinate when density varies significantly with floc size. This additional internal coordinate 

can be accomplished using a 2D PBM approach but comes with an increased computational 

and parameter estimation cost since the rate expressions need to be extended to include 

density, which will require a detailed investigation of the process. Another interesting route 

for further research is the coupling of PBMs to computational fluid dynamics models as the 

latter can predict local shear which then serves as input for the PBM model. Research that 

couples PBM with CFD in WWT has been reported already (Griborio et al., 2006; Gong et 

al., 2011), but needs further attention. Here, again, it should be clear that coupling a 1D PBM 

to a CFD model is a challenging task, typically resulting in models which need very long 

simulation times. One strategy to reduce the computational burden is to reduce the PBM 

model before coupling it to a CFD model (Mortier et al., 2013). 
 

More accurate aeration modelling for better design and energy optimisation 

For a long time, kLa-based models have been used to capture mass transfer between the gas 

and adjacent phases during aeration. More recently, models taking air flow rate as input were 

proposed. Despite the inclusion of somewhat more complexity and the resulting improved 

model performance, the variability of the ”fudging factor” in space could still not be 

entirely related to process variables such as sludge concentration and sludge age, i.e. a lot of 

unexplained variance remains. Moreover,  was shown to vary spatially in a reactor (Rosso et 

al., 2011). This spatial variation introduces a significant amount of uncertainty in the model 

prediction when a single  value is used, resulting in locally different dissolved oxygen 

concentrations and, hence, aerobic process rates.  

To date, a key assumption in all aeration models is assigning a single average bubble size. 

This assumption is not very apparent, but resides in the gas-liquid interface surface area (a) of 

KLa and is hidden in the  value in oxygen transfer efficiency (OTE) based models. This 

constant bubble size assumption is unrealistic and can be very restrictive for the model since 

the bubble’s interfacial area drives the oxygen transfer process. In reality, bubble size is 

spatially distributed (Fig. 3, left) from the point of injection to the top of a reactor due to the 

process of coalescence leading to a significantly different bubble size distribution near the 

reactor top. Another factor that plays a role here is the fact that there are pressure differences 
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when moving from the bottom to the top of the reactor, and these will also influence bubble 

size. Increased viscosity (due to the presence of sludge) further promotes coalescence 

compared to clean water (Fig. 4) (Fabiyi and Novak, 2008; Ratkovich et al., 2013). A PBM 

using bubble size as the internal coordinate and including coalescence as a PBM reaction 

process can significantly improve the local prediction of oxygen mass transfer (and hence ) 

as well as improve the design of aeration systems to maximize the oxygen transfer (in 

combination with Computational Fluid Dynamics - CFD). It should be noted that the current 

work in CFD linked to aeration also uses a fixed bubble size (Fayolle et al., 2007). The use of 

PBMs in aeration systems with suspended solids has not been widely studied in WWT. PBMs 

applied to bubble columns are widespread in fermentation systems and the chemical 

engineering literature (Wang, 2011; Dhanasekharan et al., 2005; Sanyal et al., 2005) and can 

serve as a solid examples of improved benefits to these process models.  

 
original image

Image f rom iSpeed camera

BIOMATH

 
Fig. 3 – Illustration of variability in bubble size as measured with a high speed camera  

 

 
Fig.4 - Impact of viscosity on bubble coalescence 
 

Typical mechanisms taking place in bubble breakup and coalescence are shown in Fig. 5. The 

kernels used in a PBM describing bubble breakup and coalescence are very similar as those 

used in a flocculation PBM.  
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Fig. 5 - Bubble breakup and coalescence due to different mechanisms (after Wang, 2011). 
 

Floc and granule size: distributed kinetics 

Despite the fact that the size of agglomerates, be it flocs or granules, can play an important 

role in biological activity (e.g. different microbial consortia at different locations in the 

agglomerate), the simulation of such a microenvironment within a macro-scale fluid transport 

environment has hardly been performed. Recently, Volcke et al. (2012) demonstrated the 

significant impact of granule size distribution on the performance of an Anammox-based 

granular sludge reactor. The authors used a fixed size distribution for this analysis. It is clear 

that size distribution can be impacted by shear and, hence, will further influence the system 

behaviour. The absence of size and size dynamics in the currently used models indicates that 

the activity loss caused by particle size (causing transport limitation due to stratification, e.g. 

Vangsgaard et al., 2012) cannot be predicted by current models. Again, when experimental 

data are confronted with these models, other degrees of freedom (i.e. parameters or input 

variables) will be calibrated for inappropriate reasons.  

Sobremisana et al. (2011) demonstrated that including floc size can result in significantly 

deviating reactor performance since kinetics can be quite different depending on reactor 

location and the size of the biological floc. The authors used an integrated PBM-CFD 

approach to simulate the carbon and nitrogen removal process at both the reactor scale and 

internal floc scale. The effect of size was introduced by means of an effectiveness factor (i.e. 

ratio of rate with and without diffusional resistance) based on floc size for all different 

processes. For a simple baffled reactor the treatment performance deviated by 13% for COD, 

10% for NH4 and 56% for NO3 compared to the same simulation not accounting for influence 

of size. However, further validation is required. 

 

Knowledge arising from this can be useful to (partially) decouple affinity constants in kinetic 

rate expressions and reduce their requirement for calibration. Understanding the interaction 

between size and reaction kinetics can inform researchers and engineers on how to better 

design and operate these processes (e.g. avoid or promote certain shear zones and account for 

imposed shear of mixing and aeration intensities). Moreover, it will reduce the need to adjust 

parameters unnecessarily to improve the model fit.  

 

Apart from size heterogeneity, incomplete mixing can lead to spatial heterogeneous 

concentrations in biomass and substrates that ultimately result in locally different kinetics. 

Integrating the effects of spatial variations in macroscale mixing as well as the biomass and 

substrate concentration is another avenue for further model development. Lencastre Fernandes 

et al. (2013) demonstrated the effect of this heterogeneity for a budding yeast population 

using a multi-scale modelling approach that included PBM. A similar approach could be used 

for WWT modelling, and could be helpful in developing an improved understanding of 
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biomass population dynamics. A complicating factor for the WWT compared to a yeast 

fermentation is that multiple species have to be considered to model the WWT appropriately. 

 

Models including floc size and local heterogeneities could also be helpful in developing 

technologies to select between wanted and unwanted microbial communities, which is a 

recently developing topic in view of mainstream Anammox application. Microbial selection 

can be done on a physical basis (size) or through selection by creating favourable growth 

conditions for the targeted microbial consortium (Al-Omari et al., 2014). 
 

 

Precipitation/crystallisation for better quality marketable products 

WWTPs are transforming into WRRFs (Water Resource Recovery Facilities) leading to new 

modelling challenges (Vanrolleghem, 2013). One important aspect in product recovery, 

driving their market value, will be the specifications of the recovered material. These 

comprise both composition and size. Crystallisation has been extensively modelled in the 

field of chemical engineering and pharmaceutical engineering to produce crystals with tailor-

made specs (e.g. Aamir et al., 2009, Nagy and Braatz, 2012). A PBM with crystal size as an 

internal coordinate and inclusion of nucleation (function of supersaturation) and crystal 

growth can be used as a first approximation. If needed, more internal coordinates can be 

added to deal with composition or crystal shape (e.g. 2-D compared to 1-D, Samad et al., 

2011). Additional phenomena such as agglomeration and breakage can be added. 

Interestingly, describing crystallisation with a PBM also allows describing phenomena such 

as size-dependent crystal growth (Samad et al., 2011).  

The use of a PBM modelling framework is widely accepted when studying crystallization 

processes. However, in a WRRF context the PBM framework has not really been used thus 

far, with the exception of a recent manuscript by Galbraith and Schneider (2014) where a 

discretized PBM was used to describe the chemical precipitation of phosphorus. The most 

important discussion points, when implementing a PBM, are usually related to the model 

assumptions (which phenomena should be included?), and to the selection of the kinetic 

expressions for each phenomenon that is included in the PBM. The main phenomena are 

nucleation, crystal growth and dissolution (= negative growth), agglomeration and breakage. 

However, it happens frequently that the PBM only considers growth and nucleation (Fujiwara 

et al., 2005). Another important variable that needs to be included in these models is the 

super-saturation, which will vary as a function of temperature and is usually represented as a 

polynomial describing the super-saturation curve as a function of temperature.  
 

 

CONCLUSIONS 

Many processes in WWTPs are governed by population dynamics of materials characterised 

by variation in property dynamics. These potential complexities in system behaviour are lost 

or significantly suppressed when only average behaviour is characterized or simulated. 

Population Balance Models can deal with these process complexities and have already 

demonstrated their benefits in the field of (bio)chemical engineering. The majority of the 

models in WWT modelling that need more rigour are physical-chemical processes. Hence, 

more than ever we need to look over the fence and integrate available (bio)chemical 

engineering knowledge into WWTP models. Some examples are described in this paper, but 

potentially many more applications of PBM in WWT exist and can be exploited. The 

intention of this paper is to make WWT modellers aware of this framework and its potential 

applications, challenges, and pitfalls. 
 



 Nopens et al. 

137 

 

 

ACKNOWLEDGEMENT 

Peter Vanrolleghem holds the Canada Research Chair on Water Quality Modelling.  

 

REFERENCES 
Aamir E., Nagy Z.K., Rielly C.D., Kleinert T. and Judat B. (2009). Combined quadrature method of moments 

and method of characteristics approach for efficient solution of Population Balance Models for dynamic 

modeling and crystal size distribution control of crystallization processes. Ind. Eng. Chem. Res., 48, 

8575–8584. 

Al-Omari A., Wett B., Nopens I., De Clippeleir H., Han M., Regmi P., Bott C. and Murthy S. (2014). Model-

based evaluation of mechanisms and benefits of mainstream shortcut nitrogen removal processes. In: 

Proceedings 4th IWA/WEF Wastewater Treatment Modelling Seminar (WWTmod2014). Spa, Belgium, 

March 30 - April 2 2014. 

Bachis G., Vallet B., Maruejouls T., Clouzot L., Lessard P. and Vanrolleghem P.A. (2012). Particle classes-

based model for sedimentation in urban wastewater systems. In: Proceedings IWA Particle Separation 

Conference. Berlin, Germany, June 18-20 2012. 

Bachis G., Maruéjouls T., Tik S., Amerlinck Y., Nopens I., Lessard P. and Vanrolleghem P. (2014) Modelling 

and characterisation of primary settlers in view of whole plant and resource recovery modelling. In: 

Proceedings 4th IWA/WEF Wastewater Treatment Modelling Seminar (WWTmod2014). Spa, Belgium, 

March 30 - April 2 2014. 

Biggs C.A., Lant P.A., Hounslow M.J. (2003). Modelling the effect of shear history on activated sludge 

flocculation. 

Water Sci. Technol., 47(11), 251–257. 

Dhanasekharan K.M., Sanyal J., Jain A. and Haidari A. (2005). A generalized approach to model oxygen transfer 

in bioreactors using population balances and computational fluid dynamics, Chem. Sci. Eng., 60, 213-

218. 

Fabiyi M.E. and Novak R. (2008). Evaluation of the factors that impact successful membrane biological reactor 

operations at high solids concentration. In: Proceedings of the 81
st
 Water Environment Federation Annual 

Conference and Exposition (WEFTEC2008), Chicago, IL, USA, October 18-22, 2008. 503-512. 

Fayolle Y., Cockx A., Gillot S., Roustan M. and Heduit A. (2007). Oxygen transfer prediction in aeration tanks 

using CFD. Chem. Eng. Sci., 62(24), 7163-7171. 

Fujiwara M., Nagy Z.K., Chew, J.W. and Braatz R.D. (2005). First-principles and direct design approaches for 

the control of pharmaceutical crystallization. J. Proc. Control, 15, 493–504. 

Fukushi K., Tambo N. and Matsui Y. (1995). A kinetic model for dissolved air flotation in water and wastewater 

treatment. Water Sci. Technol., 31(3-4), 37-47. 

Galbraith S.C. and Schneider P.A. (2014) Modelling and simulation of inorganic precipitation with nucleation, 

crystal growth and aggregation: A new approach to an old method. Chem. Eng. J., 240, 124-132. 

Griborio A. and McCorquodale J.A., 2006. Optimum design of your center well: .use of a CFD model to 

understand the balance between flocculation and improved hydrodynamics. Proceedings of the 79
th

 Water 

Environment Federation Annual Conference and Exposition (WEFTEC2006), Dallas, TX, USA, October 

21-25, 2006. 5735-5746. 

Gong M., Xanthos S., Ramalingam K., Fillos J., Beckmann K., Deur A. and McCorquodale J.A. (2011). 

Development of a flocculation sub-model for a 3-D CFD model based on rectangular settling tanks. 

Water Sci. Technol., 63(2), 213-219. 

Gujer W. (2002). Microscopic versus macroscopic biomass models in activated sludge systems. Water Sci. 

Technol., 45(6), 1-11. 

Lencastre Fernandes R., Carlquist M., Lundin L., Heins A-L, Dutta A., Sørensen S.J., Jensen A.D., Nopens I., 

Eliasson Lantz A. and Gernaey K.V. (2013). Cell mass and cell cycle dynamics of an asynchronous 

budding yeast population: experimental observations, flow cytometry data analysis and multi-scale 

modeling. Biotechnol. Bioeng., 110(3), 812-826. 

Mortier S.T.F.C., Van Daele T., Gernaey K.V., De Beer T. and Nopens I. (2013). Reduction of a single granule 

drying model: An essential step in preparation of a Population Balance Model with a continuous growth 

term. AIChE J., 59(4), 1127-1138. 

Nagy Z.K. and Braatz R. (2012). Advances and new directions in crystallization control. Annu. Rev. Chem. 

Biomol. Eng., 3, 55-75. 

Nopens I., Biggs C.A., De Clercq B., Govoreanu R., Wilén B.-M., Lant P. and Vanrolleghem P.A. (2002). 

Modelling the activated sludge flocculation process combining laser diffraction particle sizing and 

population balance modelling (PBM). Water Sci. Technol., 45(6), 41-49. 



 Nopens et al. 

138 

 

Nopens I., Koegst T., Mahieu K. and Vanrolleghem P.A. (2005). Population Balance Model and activated sludge 

flocculation: from experimental data to a calibrated model. AIChE J., 51(5), 1548-1557. 

Nopens I., Nere N., Vanrolleghem P.A. and Ramkrishna D. (2007). Solving the inverse problem for aggregation 

in activated sludge flocculation using a population balance framework. Water Sci. Technol., 56(6), 95-

103. 

Parker, D., Kaufman, W. and Jenkins, D. (1972). Floc breakup in turbulent flocculation processes. J. Sanitary 

Div. A.S.C.E., 1, 79–99. 

Ramkrishna, D. (2000). Population Balances: Theory and Applications to Particulate Systems in Engineering. 

Academic Press, London (UK), 355p. 

Ratkovich N., Horn W., Helmus F.P., Rosenberger S., Naessens W., Nopens I. and Bentzen T. (2013). Activated 

sludge rheology: A critical review on data collection and modeling. Water Res., 47(2), 463-482. 

Rosso D., Lothman S.E., Jeung M.K., Pitt P., Gellner W.J., Stone A.L. and Howard D. (2011). Oxygen transfer 

and uptake, nutrient removal, and energy footprint of parallel full-scale IFAS and activated sludge 

processes. Water Res., 45(18), 5987–5996. 

Samad N.A.F.A., Singh R., Sin G., Gernaey K.V. and Gani R. (2011). A generic multi-dimensional model-based 

system for batch cooling crystallization processes. Computers Chem. Eng., 35, 828-843. 

Sanyal J., Marchisio D., Fox R. and Dhanasekharan K. (2005). On the comparison between Population Balance 

Models for CFD simulation of bubble columns. Ind. Eng. Chem. Res., 44 (14), 5063-5072 

Schuler A.J. (2005). Diversity matters: Dynamic simulation of distributed bacterial states in suspended growth 

biological wastewater treatment systems. Biotechnol. Bioeng., 91(1), 62–74. 

Schuler A.J. (2006). Process hydraulics, distributed bacterial states, and biological phosphorus removal from 

wastewater. Biotechnol. Bioeng., 94(5), 909-920. 

Schuler A.J. and Jassby D. (2007). Distributed state simulation of endogenous processes in biological 

wastewater treatment. Biotechnol. Bioeng., 97(5), 1087–1097. 

Sobremisana, A., de los Reyes III F.L. and Ducoste J.J. (2011). Combined CFD, floc aggregation, and microbial 

growth kinetics modeling for carbon and nitrogen removal. In: Proceedings 84
th

 Water Environment 

Federation Annual Conference and Exposition (WEFTEC 2011), Los Angeles, CA, USA, October 15-19, 

2011. 

Torfs E., Dutta A. and Nopens I. (2012). Investigating kernel structures for shear and Ca-induced activated 

sludge aggregation using an inverse problem methodology. Chem. Eng. Sci., 70, 176-187.  

Vangsgaard A.K., Mauricio-Iglesias M., Gernaey K.V., Smets B.F. and Sin G. (2012). Sensitivity analysis of an 

autotrophic granular biofilm process: significance of mass transfer vs. microbial kinetics on nitrogen 

removal. Bioresource Technol., 123, 230-241. 

Vanrolleghem P.A. (2013). Water resource recovery facilities: Modelling and control challenges. Keynote 

lecture at workshop “Emerging Challenges for a sustainable and integrates urban water system 

management”, 10
th

 IWA Leading Edge Technology (LET) conference on water and wastewater 

technologies, Bordeaux, France, 2-6 June. 

Wang, T. (2011). Simulation of bubble column reactors using CFD coupled with a population balance model, 

Chem. Sci. Eng., 5, 162-172. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://pubs.acs.org/action/doSearch?action=search&author=Sanyal%2C+J&qsSearchArea=author
http://pubs.acs.org/action/doSearch?action=search&author=Marchisio%2C+D+L&qsSearchArea=author
http://pubs.acs.org/action/doSearch?action=search&author=Fox%2C+R+O&qsSearchArea=author
http://pubs.acs.org/action/doSearch?action=search&author=Dhanasekharan%2C+K&qsSearchArea=author


 Bachis et al. 

139 

 

Modelling and characterisation of primary settlers in view of 

whole plant and resource recovery modelling 

 
Giulia Bachis

1
, Thibaud Maruéjouls

1
, Sovanna Tik

1
, Youri Amerlinck

2
, Henryk Melcer

3
, Ingmar 

Nopens
2
, Paul Lessard

1
, Peter A. Vanrolleghem

1
 

 
1
Département de génie civil et de génie des eaux, Université Laval, 1065 av. de la Médecine, Québec, QC, 

Canada, G1V 0A6 (Email: peter.vanrolleghem@gci.ulaval.ca) 
2
BIOMATH, Department of Mathematical Modelling, Statistics and Bioinformatics, Ghent University, 

Coupure Links 653, B-9000 Ghent, Belgium 
3
Brown and Caldwell, 999 Third Avenue, Suite 500, Seattle, WA 98104, USA 

 

 

Abstract 

Characterisation and modelling of primary settlers have been neglected pretty much to date. 

However, whole plant and resource recovery modelling require primary settler model 

development, as current models lack detail. This paper focuses on the improved modelling 

and experimental characterisation of primary settlers. First, a new modelling concept based 

on particle settling velocity distribution is proposed which is then applied for the 

development of an improved primary settler model as well as for its characterisation under 

addition of chemicals (Chemically Enhanced Primary Treatment, CEPT). Second, another 

basic primary settler model, developed for control under chemicals addition, is presented. 

Third, the variation of the COD fractionation produced by primary settling is investigated, 

showing that typical wastewater ratios are modified by primary treatment. The latter 

provides a further argument for more detailed primary settler models in view of whole plant 

modelling as they clearly impact the downstream processes. 

 

Keywords 
Primary clarification model, particle settling velocity distribution, CEPT, ASM 

fractionation.  

 

INTRODUCTION  
The role of primary settling in wastewater treatment has often been neglected and very few 

efforts have been made for its optimisation and modelling (Lessard and Beck, 1988; Gernaey 

et al., 2001; Ribes et al., 2002). It has been neglected either because primary settling is not 

considered very influential for modelling purposes, or because the simple models proposed 

earlier were considered sufficiently robust to describe the primary settling tanks (PSTs) 

behaviour (Otterpohl and Freund, 1992). In many modelling case studies, the boundaries of 

the wastewater treatment plant (WWTP) are defined from the primary effluent onwards, i.e. 

using the primary effluent as model input, hereby keeping the primary settler out of the 

modelling scope. However, a better understanding and modelling of the processes taking 

place in PST result in a more accurate description of the primary effluent characterisation and 

sludge wastage. As such, it results in improved operation of the subsequent treatment phases, 

i.e. water and sludge treatment.  

 

Improved primary settler models are also essential ingredients of whole WWTP descriptions. 

In this respect, Choubert et al. (2013) stated that based on combined expertise of modellers 

(Phillips et al. 2009) and sensitivity analysis (Petersen et al. 2002) profound effects of 

wastewater characterisation on modelling outputs (Henze et al. 2000) have been shown: 

 Sludge production is influenced by the estimated inert particulate COD. 

 Oxygen demand is influenced by the estimated total biodegradable COD. 

 Anoxic denitrification rate and anaerobic phosphorus release are influenced by the 

estimated readily biodegradable COD. 

mailto:peter.vanrolleghem@gci.ulaval.ca
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 Effluent COD is influenced by the estimated inert soluble COD. 

The importance of providing reliable wastewater characterisation, enabling the link with the 

industry-standard activated sludge models (ASM) (Henze et al., 2000), was also highlighted. 

Hence, the function of PSTs under the ASM framework should be reconsidered since the 

impact of primary treatment on wastewater fractionation may be significant.  

 

In this context, the simulation study of Flores-Alsina et al. (2014) illustrated the considerable 

advantages given by the enhancement of the TSS removal in a PST on final effluent quality 

and operational costs. This enhancement can be obtained by addition of chemicals (combined 

or not with lamellar settling) in the primary treatment, which may increase TSS removal 

efficiency up to 90% (Tchobanoglous et al., 2003).  

 

Chemically enhanced primary treatment (CEPT) by addition of coagulants/flocculants, which 

is often operated under wet weather conditions, may be also pursued for maximising the 

organic material directed to biogas production and other resource recovery. It thus becomes 

directly involved in the design of the energy self-sufficient WWTP. CEPT can be applied to 

achieve many different objectives in wastewater treatment facilities: to increase the TSS 

removal performance of PST in primary only plants; to reduce organic loading rates thereby 

reducing demand on aerobic biological treatment facilities; lastly, it can permit increased 

hydraulic loading rates to existing PST, thus favouring plants that receive high wet weather 

flows. The first most significant application of CEPT was in the 1960s by Canadian and U.S. 

engineers to address eutrophication of the Great Lakes through chemical precipitation of 

phosphorus. Galil and Rebhun (1990) showed that the reduction in organic load using CEPT 

significantly reduced aeration tank volume in the downstream activated sludge process. More 

recently, in the U.S., with increased emphasis on CSO and SSO controls, agencies are seeking 

for inexpensive and compact solutions to manage wet weather flows, other than just 

increasing secondary treatment hydraulics and process capacity. CEPT has been extensively 

evaluated because of the minimal investment in new infrastructure. Indeed, hydraulic 

capacities of existing primary settlers can be increased by a factor of up to three, which is 

often sufficient to manage peak wet weather flows. Bench-scale (Melcer et al., 2005, 2009) 

and pilot-scale (Melcer et al., 2012; Newman et al., 2013) demonstrations of wet weather 

treatment using CEPT have been conducted. These have led to the application of CEPT at full 

scale. 

 

Most of the existing settling models make use of a unique settling velocity for all the 

particles, even though the particles are heterogeneous and the assumption of a single settling 

velocity is a too simplistic approach. Introducing the concept of particle settling velocity 

distribution (PSVD) in the model provides a better description of the behaviour of the 

particles in the PST. Moreover, even though little literature exists on the topic, a few studies 

have highlighted that a link exists between particle physical properties and particle 

biodegradation properties (Chebbo and Bachoc, 1992; Hvitved-Jacobsen et al., 1998; 

Morgenroth et al., 2002), emphasizing the need to focus more on how primary settler models 

and subsequent biological reaction models have to be complementary. Hence, models of an 

adequate complexity need to be developed for a more accurate description of the PST 

behaviour and the chemical/biological phenomena that may affect particles, their settling 

velocity and, as a consequence, their removal. Indeed, the efficiency of the PST directly 

influences the performance of the subsequent treatment units in WWTPs, since during settling 

organic matter and suspended solids of the influent, as well as pollutants associated with 

them, are removed. Not only does this determine the load to the downstream treatment steps, 
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it is also critical in the evaluation of the benefits that the sludge treatment train will be able to 

accomplish (energy and nutrient recovery).  

This work presents different ongoing developments related to the improved modelling and 

experimental characterisation of primary settlers. The paper is organised in four sections: (1) a 

new primary settling model based on particle settling velocity distribution (PSVD) is first 

proposed; (2) it is briefly illustrated how PSVD can also be used to characterise and model a 

CEPT process; (3) a simple primary settling model for CEPT is presented and (4) ASM 

fractionation in primary settlers is discussed. 

 

 

PSVD FOR PRIMARY SETTLER MODEL DEVELOPMENT   

A new dynamic primary settler model, based on the PSVD approach and inspired by the work 

of Maruéjouls et al. (2012) on retention tanks, was initially presented by Bachis et al. (2012). 

This model allows improved predictions in terms of effluent TSS compared to previous 

primary settling models. It was shown that by creating a number of particle classes that cover 

the settling velocity distribution, a vertical gradient of the concentration of each of the particle 

classes and the pollutants associated to them can be calculated.  

 

The ViCAs (Vitesses de Chute en Assainissement) batch settling protocol developed by 

Chebbo and Gromaire (2009) is an excellent method to feed this type of PSVD-model, as it 

allows to experimentally determine the fraction of the different settling velocity classes, each 

characterised by a distinct settling velocity Vs. A ViCAs experiment consists in filling a 

settling column (H=60 cm, Ø=7cm) with a homogenized suspension. Solids settled during 

predefined time intervals are recovered at the bottom of the column and weighed for TSS. 

From the time evolution of the cumulated mass of particles settled since the beginning of the 

experiment one can calculate the distribution of settling velocities.  

 

The PSVD model was implemented on the modelling and simulation environment WEST 

(mikebydhi.com). To describe the vertical gradient of particle class concentrations the settler 

is divided into a number of layers and a mass balance is calculated around each layer for each 

of the classes. Five particle classes with different (constant) settling velocities make up the 

core of the model.  

 

Influent TSS fractionation into particle classes 

Each particle class is assigned a fraction of the influent TSS. Given the dynamics of the 

wastewater composition, this assignment is, however, not constant. To assign the fraction of 

influent TSS to the classes, advantage is taken from the observation from multiple ViCAs 

experiments that the ViCAs curves are located higher for low TSS concentration and lower 

for high TSS. This means that high TSS samples contain a larger fraction of rapidly settling 

particles. Therefore, the assignment is made by interpolating the PSVD curve between two 

boundary curves (continuous lines on Figure 1). These are the boundaries delimiting the zone 

where most of the observed influent PSVD curves for the particular plant under study were 

located (results not shown). The upper limit of this zone is the ViCAs representing low 

influent TSS concentrations, while the lower limit is given for high influent TSS 

concentrations. The assignment for a sample with a certain TSS concentration is performed as 

follows: for a certain settling velocity (on the x-axis), the two corresponding limiting TSS 

fractions are determined (y-axis) and a linear interpolation is made between them from the 

influent TSS-value. Thus, the observed relation between PSVD and TSS concentration is used 

to define the fraction of each class of the influent TSS. The settling velocities characterising 
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each class were calculated as the geometrical mean of the settling velocity boundaries of the 

class.  

 

 
Figure 1 Fractionation of the ViCAs zone into 5 classes and upper and lower limits of the zone where most of 

the PSVD curves observed for the case study were found. Settling velocities characterising each class  

were calculated as the geometrical mean of the settling velocity boundaries of the class 

 

 

Primary settler data 

The performance of the five classes PSVD model was evaluated through the simulation of the 

data from the Eastern wastewater treatment plant of Québec City (Canada). Two series of data 

were available: one was the TSS 24h-evolution of the influent and effluent collected at the 

full-scale primary settlers during a sampling campaign conducted in 2010 (three days under 

dry weather flow conditions); the other data set contained online TSS values measured by 

turbidity sensors on a pilot-scale primary settler (2013) (one day under dry weather flow 

conditions).  

 

The PSTs of the Eastern WWTP of Québec City are lamellar settlers, with a total surface of 

27,000 m
2
, treating a mean flow rate of 236,600 m

3
/d during dry weather conditions. The 5 m

3
 

pilot-scale PST was installed in the same WWTP and it received the influent from the full-

scale PSTs, treating a mean flow rate of 192 m
3
/d. 

 

Evaluation of the model performance 

Model parameters were estimated by fitting the model to the data sets. The goodness-of-fit of 

the model was statistically evaluated through the calculation of the chi-squared criterion 

(weighted least squares). The assumption of independent and normally distributed 

measurement errors is made.  

 

    
2

  

 

where yi is the observed value; ŷi (θ) is the simulated value for the parameter set θ;  is the 

standard measurement error of the observation yi and n represents the number of data points to 

which the model was fitted. The computed χ
2
 is then compared to tabulated values of the chi-
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squared distribution for n-1-nθ degrees of freedom (nθ stands for the number of estimated 

parameters), to decide whether the model is justified by the data or not (Gujer, 2008).  

 

Calibration results 
The parameters estimated during the calibration consisted on the location of the five settling 

velocity class boundaries (see Figure 1, lower limit not visible). During the calibration of the 

model different settling velocities and, consequently, different sets of fractions were tested 

until a good model fit to the measured effluent TSS time series was achieved. Two of the four 

full-day data sets were used for the calibration, visibly resulting in a good fit for the effluent 

TSS concentrations (Figure 2). The calculated χ
2
 for the two events is respectively 11 (Figure 

2a) and 34 (Figure 2b). For 18 degrees of freedom (n=24 and nθ=5) the observed χ
2
 is in 99% 

of the cases smaller than the critical value 34.8. This means that the model is justified by the 

data, especially for the first simulation. The PSVD model’s Vs values and limit TSS fractions 

resulting from the calibration are given in Table 1. 
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Figure 2 Model fit for effluent TSS concentrations during the calibration phase. 

 

 

 
Table 1. Settling velocity (Vs) and boundary TSS fractions (F) associated to each of the 5 classes in the PSVD 

model and settling velocities used in the primary settling model from Lessard and Beck (1988). 

 Class 1 Class 2 Class3  Class 4 Class 5 

Class-characterising Vs (m/h) 0.06 0.70 1.91 5.48  13.36 

F (high TSS-low TSS) (%) 32-51 22-19 20-15 18-11    8-4 

 
Dry  

weather 

Wet  

weather 

Return  

liquors 

Vs Lessard&Beck (1988) (m/h) 1 2 10 

 

 

Validation results 

The remaining two full-day data sets were used to validate the model. One of the data sets 

was collected at the full-scale PST, the other was the data set with on-line turbidity data 

collected at the pilot primary settler treating the same wastewater. 
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Full-scale PST. The TSS concentrations were simulated quite well (Figure 3a). The χ
2
-test 

resulted in an acceptable value (23) since in 90% of the cases the sum of squares is smaller 

than 26.  

 

Pilot-scale PST. The pilot-scale PST was modelled in the same way as the full-scale PST, 

with adjusted dimensions. The PSVD-model was fed with influent TSS data obtained through 

a linear correlation from NTU data provided by the turbidity sensor located at the inlet of the 

pilot-scale PST. The PSVD-model parameters estimated above were applied as such. Figure 

3b confronts the simulated effluent TSS concentrations with the observations from the 

turbidity sensor located at the effluent of the pilot-scale PST. Even if it failed the χ
2
-test, it can 

be stated that, given the difference in configuration of the settler, a remarkably good fit is 

obtained. 
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Figure 3 Model fit for effluent TSS concentrations during the validation phase of the full-scale PST (a)  

and the pilot-scale PST simulated with the same PSVD model and model parameters (b). 

 

Further tests of the model were conducted by applying it to simulate TSS concentrations 

obtained from a 10-day sampling campaign at the Norwich (UK) treatment plant (Lessard and 

Beck, 1988). Supernatant liquors from the sludge treatment were returned to the primary inlet 

two or three times a day. Return of supernatant sludge liquors and storm sewage to the 

influent stream affected the wastewater composition, producing peaks of TSS concentrations 

that were reproduced in the effluent as well. Therefore, Lessard and Beck distinguished in 

their model three different streams: crude sewage, storm sewage and crude sewage with return 

liquors and attributed different settling velocities to them (1, 2 and 10 m/h respectively) 

(Table 1). Hence, in their work the unique settling velocity of their model had to be changed 

each time one of the three mentioned events occurred (Figure 4a). When applying the 

dynamic PSVD model no such changes are needed as it just needs the observed influent TSS 

concentrations. It is not only capable of taking into account these sudden changes, but also 

proves to better simulate the data (Figure 4b), especially with regard to the time delay of the 

peaks. Please note the remarkable finding that the ViCAs curves obtained in Québec City 

could be applied as such to the Norwich treatment plant with excellent predictive capabilities. 

The only calibration performed was the estimation of the class settling velocity boundaries. 

 

In conclusion, a new dynamic primary settler model based on particle classes has been 

developed, showing to be effective in predicting effluent TSS concentration and providing 

increased accuracy in simulating the TSS dynamics at the outlet of a primary settler compared 

to existing dynamic settling models. The approach of taking into account the PSVD of the 
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particles in the influent provides a type of primary settler model with very good prediction 

power for different sewages and weather conditions.  

 
Figure 4 Model fit for effluent TSS concentrations in (a) the Lessard&Beck model and (b) the PSVD model. 

 

 

PSVD FOR CEPT MODELLING 
The effect of CEPT on the PSVD can also be characterised by means of ViCAs tests. To 

illustrate this, samples taken at the inlet of the pilot-scale PST after addition of 

coagulants/flocculants were subjected to the ViCAs test. Figure 5a illustrates that the inlet 

PSVD after chemical addition is shifted towards higher settling velocities and outside the 

typical reference zone of the primary settler influent without CEPT (Maruéjouls et al., 2011). 

The effect is more pronounced for slow settling particles, which is the logical consequence of 

the aggregation of the particles produced by the addition of chemicals, making them grow in 

size and increase in settling velocity. 

 

This experimental approach may thus be very well suited to model the effect of the addition 

of coagulation/flocculation chemicals on primary settling. Indeed, the curve with the 

appropriate PSVD (with or without chemical addition) may be used directly as input to the 

model, fractionating the TSS in the appropriate better settling fractions. Applying the model 

using the PSVD with chemical addition results in a significantly better TSS removal, as 

illustrated with the simulation of CEPT applied to the same influent situation (Figure 5b). 

Further confirmations are under study. 
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Figure 5 (a) Comparison of PSVD observed at the PST inlet during operation without CEPT and with CEPT. 

The reference zone illustrates typical PSVD observed at the PST inlet in Québec City, Canada, without CEPT 

(Maruéjouls et al., 2011). (b) PSVD model fit for effluent TSS concentrations without CEPT and simulation with 

CEPT. 

SIMPLIFIED CEPT MODEL  

As an alternative to the relatively complex PSVD model, a simple model for chemically 

enhanced primary settlers was developed by Tik et al. (2013) with the dedicated objective of 

having a model that can be used for the development of a controller for chemical addition. 

Without the need for ViCAs characterisation, the effect of alum addition was modelled by 

varying two settling characteristics in the settling velocity function: the overall particle 

settling velocity (V0) (Figure 6a) and the fraction of non-settleable suspended solids (fns) 

(Figure 6b). The proposed model allows the primary settlers' outlet concentration of TSS to be 

properly simulated during an experiment of full-scale alum addition with step concentration 

changes (Figure 6c) and seems sufficiently robust to satisfactorily describe dry weather 

conditions as well as wet weather conditions. Further validation on other case studies is 

required to confirm the usefulness of the model for this type of control development and 

tuning studies. 
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Figure 6 Dependency of (a) the non-settleable fraction of TSS (fns) and (b) settling velocity, V0, on alum 

concentration (Calum); (c) experimental (inlet and outlet) and simulated (outlet) TSS concentrations of a full-scale 

experiment in Québec City, Canada, on August 25
th

, 2011. The flow rate was approximately constant at 9,300 

m
3
/h (Tik et al., 2013). 

 

With this model Tik et al. (2013) developed a successful control loop using effluent turbidity 

measurements that could reduce alum addition by 30% compared to a constant alum addition 

and yielding the same performance in terms of maximum TSS concentration in the primary 

effluent.  

 

 

ASM FRACTIONATION IN PRIMARY TREATMENT 

Primary treatment removes particles from the wastewater and as such changes its 

composition. These changes can be expressed in terms of several calculated ratios of 

traditional pollutant characteristics (Table 2). Fractionation of wastewater is thus affected by 

primary settling, thus impacting the subsequent treatment processes (Kristensen et al. 1992, 

Pasztor et al. 2009). 
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For the correct model-based evaluation of a WWTP in which ASMs are used to describe the 

subsequent bioreactor models, a proper prediction of the primary effluent into the ASM input 

fractions is required. However, the effect of the PST on these fractions is frequently 

overlooked or oversimplified (the fractions in the PST are assumed to remain constant under 

all conditions). Note that the models described above only focus on TSS removal prediction 

and do not consider variations in fractionation in the primary settler. 

 

Table 2. Differences in typical ratios of traditional wastewater characteristics of raw influent and primary 

effluent of municipal wastewater treatment (redrafted after Rieger et al., 2012) and comparison with Québec 

City ratios. 

    Ratio Unit n
1)

 mean Std% 
2)

   n Mean  Std% 

R
ef

er
en

ce
 

R
aw

 i
n

fl
u

en
t Ntot/CODtot g N/g COD 12 0.095 17% 

Q
u

éb
ec

  

8 0.089 1% 

N-NHx/TKN g N/g N 13 0.684 8% 8 0.482 13% 

CODtot/BOD5 g COD/g BOD 12 2.060 11% 8 2.062 32% 

TSS/CODtot g TSS/g COD 12 0.503 18% 11 0.573 14% 

BOD5/BOD∞ g BOD/g BOD 7 0.655 7% 8 0.859 6% 

P
ri

m
ar

y
 

ef
fl

u
en

t 

Ntot/CODtot g N/g COD 9 0.134 35% 8 0.123 2% 

N-NHx/TKN g N/g N 11 0.755 4% 8 0.509 9% 

CODtot/BOD5 g COD/g BOD 9 1.874 31% 8 1.931 20% 

TSS/CODtot g TSS/g COD 9 0.380 21% 11 0.426 9% 

BOD5/BOD∞ g BOD/gBOD 6 0.644 10% 8 0.894 4% 
1)

 number of answers; 
2)

 standard deviation in % 

 

Therefore, to better describe the subsequent biological treatment by providing a good 

fractionation, primary settling was also studied from an ASM point of view, taking inlet and 

outlet samples from primary settlers at three different WWTPs (Eindhoven, Roeselare and 

Québec City). The samples were analysed in terms of COD fractions into four components: 

the readily biodegradable COD, SB; the slowly biodegradable COD, XCB; the inert soluble 

COD, SU; the inert particulate COD, XU,Inf (notation from Corominas et al., 2010). For the 

Québec City samples, these fractions were determined by combining a respirometric protocol 

together with total (COD) and soluble (sCOD) COD analysis and ultimate BOD (UBOD) 

measurements (Petersen et al., 2003). SB directly resulted from the respirometric test on the 

wastewater sample, while XCB, SU and XU,Inf were calculated as follows: XCB = UBOD – SB; 

SU = sCOD – SB; XU,Inf = COD – sCOD – XCB. For the WWTPs of Eindhoven and Roeselare 

both a respirometric evaluation and the STOWA method (Roeleveld and van Loosdrecht, 

2002) were applied. The two protocols resulted in different COD fractions for the same 

wastewater sample. Nevertheless, both showed that primary treatment has a significant impact 

on the ASM1 fractions. Primary treatment yielded a significant variation of the particulates 

ratio (XCB/XU,Inf) (on average 1.9 to 1.2 for the Eindhoven, 1.1 to 0.5 for the Roeselare and 

1.5 to 1.8 for the Québec City experiments), while, as expected, the soluble ratio (SU/SB) was 

not affected by the primary settler (Figure 7). 
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Figure 7 Evolution of COD fractions before and after a PST at three WWTPs: Eindhoven (The Netherlands), 

Roeselare (Belgium) (both by the STOWA protocol) and Québec City (respirometric protocol).  

In the Québec WWTP a more detailed analysis was conducted. The wastewater samples could 

be classified into two types: a low loaded one (sampled at nighttime) and a heavily loaded one 

(sampled at daytime). According to this classification, by comparing inlet and outlet samples 

different trends in the aforementioned ratios were noticed: the particulate ratio (XCB/XU,Inf) 

systematically decreases for daytime samples, but increases for wastewaters collected at 

nighttime. Moreover, some work was also conducted on samples collected after addition of 

chemicals. It was found that both the particulate and the soluble ratios tend to increase, i.e. the 

primary effluent contains relatively more biodegradable material than the influent.  

 

These first results, although requiring further investigation, show that primary treatment has a 

significant impact on the ASM1 fractions. Therefore, the influence of the PST on the 

wastewater characterisation cannot be neglected and a proper COD fractionation into model 

variables can significantly improve simulation results. For instance, by applying the PSVD 

model concept to the mass balances of the ASM fractions in the primary settler model, i.e. 

having five classes for each of the ASM fractions, it will be possible to make them settle at 

different velocities, allowing the observed increase in ratios to be predicted properly. This will 

result in an appropriate fractionation at the primary settler effluent.  

 
 

CONCLUSIONS 

All studies presented in this contribution focus on primary settlers. The authors believe that 

PSTs need to be properly modelled and characterised in view of whole plant and resource 

recovery modelling. A new experimental and modelling approach, based on Particle Settling 

Velocity Distributions (PSVD), is proposed, and was shown to successfully predict TSS 

effluent concentrations on the basis of influent TSS time series and a number of ViCAs 

characterisation experiments. Simulation results under calibration and validation of the model 

were presented. It is illustrated that this approach can also be used to characterise primary 

influent under addition of chemicals, representing a potentially useful tool for the modelling 

of PSTs under CEPT. In addition, a simpler settler model, in view of controller development 

for CEPT, was presented as an alternative to the particle classes-based model. Finally, 

wastewater fractionation results obtained for the influent and the effluent of PSTs have 

shown, for the first time, that the primary settler produces a significant change in the 

wastewater composition ratios and, as a consequence, in the ASM fractionation of the 

wastewater. Hence, it can be anticipated that a more detailed primary settler model with 

explicit consideration of ASM fractions may be needed to properly feed the subsequent 

bioreactor models of a whole plant and resource recovery model. 



 Bachis et al. 

149 

 

 

 

ACKNOWLEDGEMENT 

The authors would like to acknowledge the whole primEAU team for its contribution. 

Funding for this work comes from the Natural Sciences and Engineering Research Council of 

Canada (NSERC/CRSNG), John Meunier and Québec City. Peter Vanrolleghem holds the 

Canada Research Chair on Water Quality Modelling. The authors also want to acknowledge 

Aquafin N.V. and Water board the Dommel for giving the opportunity to and assisting in the 

set-up of the sampling, testing and modelling. 

 

 

REFERENCES 
Bachis G., Vallet B., Maruéjouls T., Clouzot L., Lessard P. and Vanrolleghem P.A. (2012) Particle classes-based 

model for sedimentation in urban wastewater systems. In: Proceedings IWA Particle Separation 

Conference. June 18-20, 2012, Berlin, Germany.   

Chebbo G. and Bachoc, A. (1992) Characterization of suspended solids in urban wet weather discharges. Water 

Sci. Technol., 25(8), 171-179. 

Chebbo G. and Gromaire M.-C. (2009) VICAS - An operating protocol to measure the distributions of 

suspended solid settling velocities within urban drainage samples. J. Environ. Eng., 135(9), 768-775. 

Choubert J.M., Rieger L., Shaw A., Copp J., Spérandio M., Sørensen K., Rönner-Holm S., Morgenroth E., 

Melcer H. and Gillot S. (2013) Rethinking wastewater characterisation methods for activated sludge 

systems - a position paper. Water Sci. Technol., 67, 2363-2373. 

Corominas L., Rieger L., Takács I., Ekama G., Hauduc H., Vanrolleghem P.A., Oehmen A., Gernaey K.V., van 

Loosdrecht M.C.M. and Comeau Y. (2010) New framework for standardized notation in wastewater 

treatment modelling. Water Sci. Technol., 61, 841-857. 

Flores-Alsina X., Arnell M., Amerlinck Y., Corominas L., Gernaey K., Guo L., Lindblom E., Nopens I., Porro J., 

Shaw A., Snip L., Vanrolleghem P.A. and Jeppsson U. (2014) Balancing effluent quality, economic cost 

and greenhouse gas emissions during the evaluation of (plant-wide) control/operational strategies in 

WWTPs. Sci. Total Environ. 466–467, 616–624. 

Galil N. and M. Rebhun (1990) Primary chemical treatment minimizing dependence on bioprocesses in small 

treatment plants. Water Sci. Technol., 22 (3-4), 203-210. 

Gernaey K., Vanrolleghem P.A. and Lessard P. (2001) Modeling of a reactive primary clarifier. Water Sci. 

Technol., 43(7), 73-82. 

Gujer W. (2008) Systems Analysis for Water Technology. Springer-Verlag Berlin Heidelberg, Germany. pp. 462. 

Hvitved-Jacobsen T., Vollertsen J. and Tanaka N. (1998) Wastewater quality changes during transport in sewers 

- an integrated aerobic and anaerobic model concept for carbon and sulfur microbial transformations. 
Water Sci. Technol., 38(10), 257–264. 

Henze M., Gujer W., Mino T. and van Loosdrecht M.C.M. (2000) Activated Sludge Models ASM1, ASM2, 

ASM2d and ASM3. Scientific and Technical Report No. 9. IWA Publishing, London, UK. 

Kristensen G.H, Jorgensen P.E. and Henze M (1992) Characterization of functional groups and substrate in 

activated sludge and wastewater by AUR, NUR and OUR. Water Sci. Technol., 25(6), 43-57. 

Lessard P. and Beck M.B. (1988) Dynamic modeling of primary sedimentation. J. Environ. Eng., 114, 753-769. 

Maruéjouls T., Lessard P., Wipliez B., Pelletier G. and Vanrolleghem P.A. (2011) Characterization of the 

potential impact of retention tank emptying on wastewater primary treatment: a new element for CSO 

management. Water Sci. Technol., 64, 1898-1905. 

Maruéjouls T., Vanrolleghem P.A., Pelletier G. and Lessard P. (2012) A phenomenological retention tank model 

using settling velocity distributions. Water Res., 46, 6857-6867. 

Melcer H., Krugel S., Butler R., Carter P. and Land G. (2005) Alternative Operational Strategies to Control 

Pollutants in Peak Wet Weather Flows. In: Proceedings of WEFTEC 2005, Washington DC. Water 

Environment Federation, Alexandria VA. 

Melcer H., Ciolli M., Lilienthal R., Ott G., Land G., Dawson D., Klein A. and Wightman D. (2010) Bringing 

CEPT Technology into the 21st Century. In: Proceedings of WEFTEC 2010, New Orleans, LA. Water 

Environment Federation, Alexandria VA. 

Melcer H., Davis D.P., Xiao S., Shaposka H., Ifft J., Bucurel N. and G. Land (2012). Wet weather flow treatment 

with a difference: Novel ideas for applying Chemically Enhanced Primary Treatment with high rate 

disinfection. In: Proceedings of WEFTEC 2012, Los Angeles, CA. Water Environment Federation, 

Alexandria VA. 

http://www.ncbi.nlm.nih.gov/pubmed/23752367
http://www.ncbi.nlm.nih.gov/pubmed/23752367


 Bachis et al. 

150 

 

Newman D., Melcer H., Davis D.P., Pepe L., Winn R., Nascimento D. and Tyler T. (2013) At the nexus of 

process and design: Optimizing a wet weather treatment system. In: Proceedings of WEFTEC 2013, 

Chicago IL. Water Environment Federation, Alexandria, VA. 

Morgenroth E., Kommedal R. and Harremoës P. (2002) Processes and modeling of hydrolysis of particulate 

organic matter in aerobic wastewater treatment – a review. Water Sci. Technol., 45(6), 25–40. 

Otterpohl R. and Freund M. (1992) Dynamic models for clarifiers of activated sludge plants with dry and wet 

weather flows. Water Sci. Technol., 26(5–6), 1391-1400. 

Pasztor I., Thury P. and Pulai, J. (2009) Chemical oxygen demand fractions of municipal wastewater for 

modeling of wastewater treatment. Int. J. Environ. Sci. Te., 6(1), 51-56. 
Petersen B., Gernaey K., Henze M. and Vanrolleghem, P. A. (2002) Evaluation of an ASM1 model calibration 

procedure on a municipal-industrial wastewater treatment plant. J. Hydroinformatics, 4, 15–38. 

Petersen B., Gernaey K., Henze M. and Vanrolleghem P.A. (2003) Calibration of activated sludge models: a 

critical review of experimental designs. In: Agathos, S.N., Reineke, W. (Eds.), Biotechnology for the 

Environment: Wastewater Treatment and Modeling, Waste Gas Handling. Kluwer Academic 

Publishers, Dordrecht, The Netherlands, pp. 101–186. 

Phillips H.M., Sahlstedt K.E., Frank K., Bratby J., Brennan W., Rogowski S., Pier D., Anderson W., Mulas M., 

Copp J.B. and Shirodkar N. (2009) Wastewater treatment modelling in practice: A collaborative 

discussion of the state of the art. Water Sci. Technol., 59, 695-704. 

Ribes J., Ferrer J., Bouzas A. and Seco A. (2002) Modelling of an activated primary settling tank including the 

fermentation process and VFA elutriation. Environ. Technol., 23, 1147-1156. 

Rieger L., Gillot S., Langergraber G. and Shaw A. (2012) Good Modelling Practice: Guidelines for Use of 

Activated Sludge Models. IWA Publishing, London, UK. 

Roeleveld P. J. and van Loosdrecht M.C.M. (2002) Experience with guidelines for wastewater characterisation 

in The Netherlands. Water Sci. Technol., 45(6), 77–87. 

Tchobanoglous G., Burton F.L. and Stensel H.D. (2003) Wastewater Engineering: Treatment and Reuse. 4th 

edition, Metcalf & Eddy, Inc, US. 

Tik S., Langlois S. and Vanrolleghem P.A. (2013) Establishment of control strategies for chemically enhanced 

primary treatment based on online turbidity data. In: Proceedings 11
th

 IWA Conference on 

Instrumentation, Control and Automation (ICA2013). September 18-20, 2013, Narbonne, France. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 Bachis et al. 

151 

 

 

Modelling the Impact of Filamentous Bacteria Abundance 

in a Secondary Settling Tank: CFD Sub-models 

Optimization Using Long-term Experimental Data 

 

Elham Ramin
1,*

, Dorottya S. Wágner
1,*

, Lars Yde
2
, Peter Szabo

3
, Michael R. Rasmussen

4
, Arnaud 

Dechesne
1
, Barth F. Smets

1
, Peter Steen Mikkelsen

1
, Benedek Gy. Plósz

1 

 

1
 Department of Environmental Engineering (DTU Environment), Technical University of Denmark, 

Miljøvej, Building 113, DK-2800 Kgs. Lyngby, Denmark (E-mail: elhr@env.dtu.dk, dosaw@env.dtu.dk, 

bfsm@env.dtu.dk, psmi@env.dtu.dk, beep@env.dtu.dk). 
2
DHI Water & Environment (S) Pte Ltd, Singapore 637141 (E-mail: lay@dhigroup.com). 

3
Department of Chemical and Biochemical Engineering, Technical University of Denmark, Building 229, 

DK-2800 Kgs. Lyngby (E-mail: ps@kt.dtu.dk) 
4
Department of Civil Engineering, Aalborg University, DK-9000 Aalborg, Denmark (mr@civil.aau.dk) 

 

*
Joint first authors 

 

Abstract 

The objective of this work was to assess the impact of filamentous bacteria on the settling 

velocity and rheological behaviour of activated sludge. We then identified the relevant 

settling and rheological model parameters to account for the impact of filamentous bulking 

on the prediction of sludge mixing and transport in secondary settling tanks by a 

computational fluid dynamics (CFD) model. We identified the relevant settling velocity and 

rheology model parameters influenced by the filamentous bacteria content of activated 

sludge. The hindered, transient, and settling parameters of the settling velocity model 

proposed in our previous study were estimated using measurements from batch settling 

tests with a novel column setup. Additionally, the rheological measurements from 

experiments with a rotational viscometer were used to calibrate the Herschel-Bulkley 

rheology model including the rheology correlations with the sludge concentration obtained 

in our previous study. Both settling and rheological tests were performed with sludge 

samples collected biweekly from the Lundtofte wastewater treatment plant in a four-month 

measurement campaign. Quantitative fluorescent in-situ hybridisation (qFISH) analysis was 

carried out on the sludge samples to quantify the volume fraction of filamentous bacteria. 

Based on the correlations of settling and rheological model parameter values with the 

volume fraction of filamentous bacteria, we identify the significant impact of filamentous 

bacteria on the hindered settling of activated sludge. However, no significant impact on the 

transient and compression settling model parameters was observed. This study also finds 

that microbial filaments residing inside the microbial flocs can significantly alter the 

rheological behaviour of activated sludge. A two-dimensional, axi-symmetrical CFD was 

used to assess the impact of calibration scenarios for settling and rheology under low and 

high abundance of filamentous bacteria on the CFD predictions. Results obtained suggest 

that the influence of filamentous bulking on the settling and rheology of activated sludge 

can affect the solids distribution and transport in the SSTs. 

 
Keywords 

Activated sludge; filamentous bulking; compression settling; computational fluid dynamics; 

rheology; secondary settling tank 

 

INTRODUCTION 

Secondary settling tanks (SSTs) are located after the biological reactors in wastewater 

treatment plants (WWTPs) to separate the treated water from the microbial mass by means of 
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gravity sedimentation. The clarification and thickening performance of SSTs depend on their 

hydraulic features as well as the settleability of activated sludge. A malfunctioning SST with a 

poor quality effluent in terms of suspended solids and insufficiently thickened sludge for 

recycling to the reactors, impacts the sludge retention time (SRT) in the system, and 

potentially deteriorates the performance efficiency of the biological processes. Moreover, 

SSTs are the hydraulic bottlenecks of WWTPs. The efficiency of SSTs can limit the 

maximum flow rate entering the WWTPs under wet-weather conditions.  

A common operational problem in SSTs is the poor settling of activated sludge resulting from 

the excessive growth of filamentous bacteria, which prevents the formation of well-settling 

sludge (Wanner, 1994). Activated sludge flocs have a very heterogeneous structure, which 

consists of a variety of microorganisms as well as organic and inorganic particles and dead 

cells surrounded by extracellular polymeric substances (Wilén et al., 2008). The operational 

and seasonal variations in activated sludge units, such as dissolved oxygen concentration, 

nutrient deficiency and substrate limiting conditions, influence the structure of the growing 

flocs in bioreactors (Comas et al., 2008). However, the exact cause of filamentous bulking can 

be very diverse (Jenkins et al., 1993), and is not fully understood (Mielczarek et al., 2012). A 

common approach to identify filamentous bulking is to detect and quantify the content of 

filamentous bacteria in activated sludge samples by performing quantitative fluorescent in-

situ hybridisation (qFISH) analysis (Nielsen et al., 2009). 

In WWTP modelling, conventionally, the influence of filamentous bulking is accounted for 

by modifying the hindered settling parameters in the settling velocity formulation in the SST 

models (Ekama et al., 1997). Several studies have shown the relation between the morphology 

of bulking sludge and settling parameters (Grijspeerdt and Verstraete, 1997; Jin et al., 2003; 

Wilén et al., 2008). However, the question arises whether filamentous bulking can also affect 

the transient and compression settling as well as the rheology of activated sludge and how 

these effects influence the sludge distribution in the SSTs.  

Computational Fluid Dynamic (CFD) models have been used to predict the internal flow and 

solids transport in SSTs (Deininger et al., 1998; Lakehal et al., 1999; De Clercq, 2003; Weiss 

et al., 2007). CFD models are computationally heavy, and they are thus mainly used for the 

purpose of design of new SSTs, or optimization and trouble shooting of existing SSTs. 

However, validated CFD models can replace expensive field experiments to calibrate and 

validate one-dimensional models (De Clercq, 2003; Plósz et al., 2007). The non-Newtonian 

behaviour of activated sludge as well as its hindered and compression settling behaviour have 

significant impacts on the overall solids transport in the SSTs (Ekama et al., 1997). Thus, the 

accurate CFD prediction of hydrodynamics and solids distribution in the tank requires 

inclusion of optimized setting and rheology models.  

In this study, we used a validated two-dimensional, axi-symmetrical CFD model with settling 

velocity and rheology models developed in our previous study (Ramin et al., 2014) to 

simulate the sludge distribution in the SST at Lundtofte WWTP. Additionally, we used the 

long-term settling and rheological measurements, as well as qFISH analysis performed by 

Wágner et al. (2014) on the sludge samples from Lundtofte WWTP.  

The main objectives of this study are (i) to assess the impact of filamentous bacteria on 

hindered, transient and compression settling as well as the rheological behaviour of activated 

sludge based on the measurements with activated sludge of varying filamentous bacteria 

abundance, (ii) to identify the relevant settling and rheological model parameters, and finally 
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(iii) to investigate how the effect of filamentous bulking on the model parameters can 

influence the prediction of sludge mixing and transport in SSTs by the CFD model.  

MATERIAL AND METHODS 

Laboratory experiments 

In this section, the settling and rheology experiments, as well as qFISH analysis (Fig. 1) 

performed by Wágner et al. (2014) are briefly described. 

Settling Rheology qFISHa b c

 

Figure 1. The laboratory set-ups for the settling (a), rheology (b), and qFISH (c) experiments 

performed by Wágner et al. (2014) . 

 

Sampling. Activated sludge samples were collected biweekly for four months from the 

combined recycle flow at Lundtofte WWTP (Lyngby, Denmark). The samples were used on 

the same day of collection for settling experiments, and some were stored in 4 °C for rheology 

experiments on the next day. The concentration of sampled sludge was determined using 

method 2540 D of Standard Methods (APHA, 1995). Additionally, some sludge was pre-

treated and fixed with 4 % paraformaldehyde to preserve its initial state, and then stored at -20 

°C until the qFISH analysis.  

Settling tests. Settling tests were performed using the newly developed settling column set-up 

(Ramin et al., 2014), consisting of a large settling column (diameter = 20 cm, Height = 80 cm) 

with a total suspended solids (TSS) sensor (Solitax®, Hach Lange, Germany) installed at the 

bottom of the settling column (Fig. 1a). Prior to each settling test, the sludge sample was 

diluted with the SST effluent in the settling column and homogenized with coarse–bubble 

aeration. During each 60-minute settling test, the evolution of sludge blanket height (SBH) 

and the sludge concentration at the bottom (Xb) were recorder. Next, the settled sludge was re-

homogenized and diluted to a lower concentration. Overall, the settling tests were performed 

at sludge concentration in the range 1.5–4.5 g/l.  

Rheology measurements. The rheological experiments were performed using a standard 

rotational rheometer (TA Instruments AR2000, USA) with a conical single-gap cylindrical 

geometry (Fig. 1b). The experiments were performed on sludge samples diluted with SST 

effluent over the concentration range of 5–12.8 g/l under shear-stress controlled conditions to 

obtain shear rates in the range of 0.001–250 s-1. The shear stress was applied from high to 

low values to minimize the sludge settling problem in the sample during the tests.  
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FISH analysis. The qFISH procedure was conducted using 1 μl of fixed sample taken from 

the activated sludge used in the settling and rheological experiments. The total amount of 

bacteria and the specific filamentous bacteria were targeted with two different fluorescently-

labelled probes (MPA mix: MPA 645, MPA 223, MPA 60). A confocal laser scanning 

microscope (LEICA SP5®, Leica, Germany) was used to assess the samples with 20x 

magnification and 2x zoom (Fig. 1c). 15-20 randomly chosen images were taken using the 

confocal microscope (Nielsen et al., 2009). The images were analysed using the daime (digital 

image analysis in microbial ecology) software (Daims et al., 2006). We note that, in the study 

of Wágner et al. (2014), the two dominant microbial species namely Chloroflexi spp. (CFX) 

and Microthrix parvicella (MPA) were identified in the activated sludge samples. In the 

present paper, we only present results obtained on the impact of the MPA volume fraction on 

the settling and rheological behaviour of activated sludge. For further information on the 

study, readers are kindly referred to Wágner et al. (2014). 

 

Numerical modelling 

Description of the SST. The SST under study is part of the Lundtofte WWTP (Lyngby, 

Denmark). It is a circular centre-feed conical tank with a diameter of 24.5 m and an average 

depth of 4 m.  

CFD simulations of the SST. The CFD simulations of the SST was executed in OpenFOAM 

CFD toolbox (OpenCFD, 2012) and using the settlingFoam solver (Brennan, 2001). The 

physics of the solver is based on the average Eulerian two-phase flow combined with the 

modified k-ε model, accounting for density stratification. To predict the distribution of solids, 

a convection-diffusion equation derived from the continuity equation for the solid phase (drift 

flux model) is coupled with the momentum and turbulence equations in the solver.  

To reduce the computation effort, the flow in the SST is assumed to be axi-symmetric, and 

only a radial segment of the tank is considered for CFD modelling. The geometry is 

discretised with around 6000 polyhedral grids in depth and radial directions (Fig. 2). The 

imposed boundary conditions are as follows. The water-surface is modelled as a symmetry-

plane, i.e. normal gradients to the surface are zero. The inclined bottom is considered as a 

frictionless boundary to simulate the effect of an ideal scraper facilitating the sludge flow to 

the hopper by overcoming the wall stress, as proposed by Deininger et al. (1998). The rest of 

the walls were considered as no-slip with standard wall-functions to approximate the mean 

velocity near the wall. 

2 m

Inflow

Overflow

Recycle flow
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Figure 2. The 2-D axi-symmetric mesh with about 6000 polyhedral grids generated in STAR-

CCM+® and implemented in OpenFOAM for CFD simulations of the circular SST at 

Lundtofte WWTP. 

 

 

 

THE SETTLING VELOCITY AND RHEOLOGICAL MODEL 

The settling velocity model 

The settling velocity model developed by Ramin et al. (2014) accounts for hindered, transient 

and compression settling regimes that are typically observed in the activated sludge batch 

settling tests. This model was developed based on an evaluation of state-of-the-art settling 

velocity models with measurements from the simple, novel batch settling experimental set-up 

explained in the previous section.  

The widely used double-exponential hindered settling velocity model developed by Takács et 

al. (1991) and the mechanistic compression settling velocity model based on 

phenomenological sedimentation-consolidation theory (Bürger, 2000; Kinnear, 2002; De 

Clercq, 2006) with the empirical effective solids stress formulation developed by De Clercq et 

al. (2008) were evaluated based on their predictions of the SBH and Xb measurements. To 

evaluate these settling velocity models, the different models were implemented in a dynamic 

1-D model of the settling column, developed based on a modified form of the 1-D SST model 

by Plósz et al. (2007), i.e. using a discretisation level of 60 layers and the numerical fluxes 

treated with the Godunov scheme (Bürger et al., 2011). The differential mass conservation 

equation is 

0
)(
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X s      
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where X is the sludge concentration, t denotes time, vs is the settling velocity model, and z is 

the depth in the column. We note that using the compression formulation in Eq. 1 yields a 

second order partial differential equation.   

Results obtained by Ramin et al. (2014) show that, using Takács hindered settling velocity 

model with the hindered parameter (v0, and rH, Vesilind, 1968) estimated directly from the 

SBH measurements the predictions were shown to diverge from the SBH and Xb 

measurements during the transient and compression regime. Furthermore, including the 

mechanistic compression settling velocity model with the effective solids stress formulation 

of De Clercq et al. (2008) was shown to over-predict the Xb data when it was calibrated to the 

SBH data only. Consequently, a new power formulation for the effective solids stress was 

developed to improve the predictions of Xb. Finally, by applying an exponential transition 

formulation in the compression zone, the best prediction of Xb data could be achieved. The 

formulation of the settling velocity model is  
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where v0 is the maximum settling velocity; rH and rP are the hindered and low concentration 

indices, respectively; v0,t and rt are the transient settling parameters; C1 and C2 are parameters 

in the compression settling model; ρs and ρf are the sludge and water density, respectively; g 

denotes the gravity constant; C1 and C2 are compression parameters; and XC is the threshold 

compression concentration. Fig. 3 illustrates the prediction of the sludge profile in the settling 

column by simultanously calibrating it to the SBH and Xb measurements using the adaptive 

Markov Chain Monte Carlo (MCMC) Bayesian global optimization method DREAM(ZS) 

(Laloy and Vrugt, 2012).  Using the DREAM(ZS) optimization algorithm, the prediction 

uncertainty of the settling velocity model for the estimated parameters can be obtained from 

the posterior parameter distributions. Fig. 4 shows the prediction accuracy of the settling 

velocity model for the measurements with sludge samples taken from two WWTPs in 

Denmark, Lundtofte (PE= 135.000, SRT = 31 d) and Lynetten (PE= 750.000, SRT = 29 d). 
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Figure 3. Prediction of the settling velocity model (Ramin et al., 2014) calibrated to the SBH 

and Xb measurements by implementing it in a 1-D settling column model (with 60 layers 

discretization). The lines correspond to the simulated evolution of sludge concentration in 

each layer. 
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Figure 4. Predictive uncertainty (95% confidence intervals of the model prediction due to 

parameter uncertainty) of the settling velocity model calibrated to the measurements with the 

Lundtofte and Lynetten WWTP sludge using the DREAM(ZS) optimization algorithm. 

The Rheological model 

The rheological measurements can very accurately described with the yield-pseudoplastic 

type Herschel-Bulkley rheology model (e.g., Ratkovich et al., 2013):  

10  nK



  (3) 

where η is the apparent viscosity, τ0 is the yield stress, γ is the shear rate, K is the consistency 

index, and n is the flow behaviour index. Fig. 5 shows the predictions of the Herschel-Bulkley 

model for one set of measurements with different sludge concentrations. A constraint of 

maximum viscosity was set for the Herschel-Bulkley model for the shear rates of below 0.01s
-

1
 to avoid unrealistic prediction of apparent viscosity values at very low shear rate conditions. 
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Figure 5. An example on the prediction of activated sludge apparent viscosity with the 

Herschel-Bulkley model (Eq. 3), shown for one set of the rheological measurements (out of 

eight) with different sludge concentrations. 

The estimated parameters of the Herschel-Bulkley model (τ0, K, and n) were correlated to the 

sludge concentration with the correlations presented in our previous study (Ramin et al., 

2014), e.g. for yield stress, the following power formulation was used: 

BAX0  (4) 

where A and B are the yield stress correlation parameters.  

 

RESULTS 

Impact of filamentous bulking on settling 

Hindered settling. Fig. 6a illustrates the relation between the ratio of hindered settling 

parameters (v0/rH) estimated from the settling measurement sets, and the volume fraction of 

Microthrix parvicella (MPA) filamentous bacteria. The decreasing trend of v0/rH with 

increasing filament volume fraction (i.e. development of filamentous bulking sludge) is in line 

with conventional theory (Ekama et al., 1997).  
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Figure 6. Correlation of the ratio between the hindered settling parameters with the volume 

fraction of MPA filamentous bacteria in the activated sludge (a), and dependency of the 

compression settling parameter on the initial sludge concentration in each settling test (b). 

The hindered parameters were estimated for the eight measurement sets (one outlier), and the 

compression settling parameter were estimated for each settling test (3 to 4 tests for each 

measurement set).  

 

Transient and compression settling. We further assessed the influence of filamentous bacteria 

on the transient and compression settling processes, characterised by parameters rt and C2, 

respectively (Eq. 2). No clear relation between these parameters and the volume fraction of 

filamentous bacteria was observed (data shown by Wágner et al., 2014). The estimated values 

of rt were obtained in a narrow range (0.6–1.0 l/g) regardless of the sludge concentration and 

the filamentous bacteria content. On the other hand, the estimated values of C2 were scattered 

in a wider range (0.1–0.8, dimensionless). The dependency of C2 on the sludge concentration 

is further investigated in Fig. 3b, showing C2 as a function of the initial sludge concentration 

in the settling column tests. 

Based on Fig. 3b, no effective correlation between C2 and X or distinct tendencies under 

bulking and no-bulking conditions (defined based on the MPA volume fraction – cut-off 

value: 1.5%) can be observed. The 95% confidence interval (defined by the dashed lines in 

Fig. 4) shows a relatively high uncertainty in estimating the value of C2 based on the initial 

sludge concentration of the settling tests. For the CFD model (Ramin et al., 2014), the value 

of C2 is determined based on the SST feed concentration (3 g/l). Therefore, later in this paper 

it is investigated if the variability of C2 parameter values (see Fig. 3b) causes any significant 

variation in the CFD simulation results of an SST.  

Impact of filamentous bulking on rheology 

We investigated how the rheological behaviour of activated sludge is influenced by the 

presence of filamentous bacteria. The Herschel-Bulkley rheology model (Eq. 3) was 

calibrated to the eight rheology measurement sets (each set includes measurements with four 

to five different sludge concentrations). The estimated rheology parameters (τ0, K, and n) were 

then correlated to the volume fraction of MPA filamentous bacteria in the sludge. Among the 
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three parameters, only the estimated yield stress values showed a higher degree of association 

with the volume fraction of MPA (see Fig. 7a). No significant influence on the behaviour 

index (n) and consistency index (K) was observed (data not shown). Fig. 7a shows a 

decreasing tendency in the value of yield stress with the increase in MPA volume fraction at 

high sludge concentrations (only the concentration range of 7.5–9.5 g/l is shown here). 
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Figure 7. Dependency of yield stress of activated sludge on (a) the MPA filamentous bacteria 

(MPA) volume fraction for the concentration range of 7.5–9.5 g/l.   

 

The reasoning behind the correlations shown in Fig. 7a can be explained as follows. The 

increase in the content of MPA filament, residing inside the flocs as the backbone of the flocs, 

influences the bulkiness of the flocs. As stated by Eshtiaghi et al. (2013), the increase of 

sludge water content can decrease the sludge viscosity. Since MPA resides in the floc, a high 

abundance of this filament can result in high bound water content, which would explain the 

observed decrease of yield stress. These results suggest that the filaments residing in the flocs 

mixture can impact the rheology of activated sludge.  

Based on Fig. 7b, the estimated yield stress values shows an overall dependency on the sludge 

concentration (solid line in Fig. 7b), which confirms the proposed correlation (Eq. 4) in our 

previous study. However, the values are more scattered with the increase in the sludge 

concentration. Consequently, two power formulations are fitted to the lower and upper data 

points to determine the interval of the estimated yield stress values (the two dash lines in Fig. 

7b). Based on Fig. 7b,  good settling (or no bulking) condition, characterised with low MPA 

filament presence (<1.5 %) can increase the yield stress, which then corresponds to values 

closer to the upper curve (dashed-dotted line in Fig. 7b). On the other hand, bulking 

conditions (MPA volume fraction > 1.5 %) can decrease yield stress, which corresponds to 

values closer to the lower curve (dashed line in Fig. 7b).  

  

CFD simulations 

Based on the above observations, it is investigated here how the influence of filaments 

filamentous organisms can impact on the hindered settling and yield stress of sludge, and thus 

the sludge distribution and hydrodynamics in the SST can influence the using CFD scenario 

simulations. Moreover the influence of uncertainty in estimating the compression parameter 

(C2) on the variation of the CFD simulation results is assessed. Table 1 summarizes the CFD 

simulation cases and includes only the values of the parameters under investigation that were 
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obtained from Figures 6a, 6b and 7b. In the first case, the impact of C2 is assessed by keeping 

the hindered and rheology parameters to the average values, and changing C2 to the minimum 

and maximum values at the feed flow sludge concentration to the SST (XF = 3 g/l) based on 

Fig. 6b. In the second case, the no bulking and bulking conditions are imposed to the CFD 

model by applying the minimum (0.1 % MPA) and maximum (extrapolated to 9% MPA) 

values of the hindered settling velocity parameter values based on Fig. 6a and the correlations 

of τ0 to sludge concentration with the upper and lower curves in Fig. 7b. 

 

Table 1. The CFD simulation cases and the values of the settling and rheological model 

parameters under investigation. 

 CFD simulation cases 

Impact of C2 

(Case I) 

C2

XFeed

Min.

Max.

 

(Fig. 6b) 

No bulking vs. Bulking 

(Case II) 

τ0v0/rH

MPA (%) X

No bulking

Bulking

No bulking

Bulking

 

(Fig. 6a)               (Fig. 7b) 

 

Par. Unit C2,min C2,max No bulking Bulking 

 C2 - 0.07 0.6 0.34 0.34 

Settling 

(Eq. 2) 

rH l/g 0.48 0.48 0.44 0.57 

v0 m/s 0.0013 0.0013 0.0027 0.0029 

Yield stress  

(Eq. 4) 

A Pa 0.0002 0.0002 0.0006 0.0051 

B - 2.75 2.75 2.32 0.62 

 

 

 

Case I. Fig. 8 illustrates the impact of the uncertainty in correlating the compression settling 

parameter C2 with the initial sludge concentration (Fig. 6b) on the CFD simulation results. 

The uncertainty of C2 is shown to result in about 10-30% variation in the pre-diction of sludge 

blanket height (Fig. 8a) and up to 50% in the maximum radial velocity in the density current 

(Fig. 8b). These results imply that the uncertainty in estimating C2 needs to be reduced 

probably by performing additional settling measurements.  
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Figure 8. The variation in the prediction of the vertical profiles of sludge distribution (a), and 

radial velocity (b) by the CFD model due to uncertainty in the compression parameter (C2). 

The profiles with solid lines are predicted with C2, max, and the profiles with dashed lines are 

predicted with C2, min. Profiles are shown with normalized height at four different radial 

distances from the centre of the tank. 

 

Case II. To assess the impact of yield stress and hindered settling on CFD model prediction, 

the value of C2 is set constant to an average value of 0.34. Fig. 9 illustrates the CFD 

simulations based on the impact of filamentous bulking on the hindered settling parameters 

and yield stress. The rise in the sludge blanket height is up to 20% under the bulking 

condition (dashed lines in Fig. 9). Moreover, the slight increase in the flow of thickened 

sludge over the inclined bottom to the hopper can be observed in Fig. 9b due to the reduced 

yield stress under bulking condition. In general, the impact of hindered settling velocity 

parameter values and yield stress under bulking is not straight forward. This is because these 

parameters influence the complex interaction between the sludge distribution and 

hydrodynamics of the tank. 

 

a 

b 
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Figure 9. The predicted sludge distribution (a), and radial velocity (b) with the CFD model  

considering the  influence of bulking (dashed line) and no bulking (solid line) on the 

estimated yield stress and hindered settling parameters. For more information see caption of 

Fig. 8. 

 

CONCLUDING REMARKS  

This study investigated whether the volume fraction of Microthrix parvicella (MPA) 

filamentous bacteria, as quantified with qFISH analysis, can influence the settling and 

rheology of activated sludge as characterized by settling and rheology measurements. The 

activated sludge was sampled biweekly, during a period of four months from Lundtofte 

WWTP. The model parameters were estimated for the settling velocity model (Eq. 2) 

including hindered, transient and compression settling, and rheology (Hershel-Bulkley model, 

Eq. 3). Results obtained suggest that the abundance of MPA – identified as a species residing 

predominantly inside the microbial flocs – associates with hindered settling velocity and yield 

stress parameters. The obtained compression and transient settling parameters show high and 

low variability, respectively, in the four-month period; and, the filamentous bacteria are found 

not to directly relate to any of these parameters. The generality of the observations made in 

this study may be limited by the variability of the abundance of the filamentous bacteria 

during the four-month period. Therefore, future research on the association of microbial 

structure with functional characteristics will require higher filamentous bacteria levels than 

those shown in this contribution. Additionally, the impact of model structure and functionality 

of the events on the estimation of sludge retention time in the system should be evaluated in 

the future. Numerical simulations were performed using a validated CFD model from our 

previous study with full scale profile measurements under normal operational conditions. To 

further improve the prediction of the filamentous bulking effect on the sludge distribution of 

SSTs with the CFD model, full-scale profile measurements on the SST under filamentous 

a 

b 
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bulking conditions could possibly yield more insight into the solids mixing and transport in 

SSTs, and would therefore be desirable to further investigate in the future.  
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   ABSTRACT 

For implementing short cut nitrogen removal processes for mainstream wastewater 

treatment, out-selection of nitrite oxidizing bacteria (NOB) to limit nitrate production is the 

main challenge. A model-based approach was utilized to simulate the impact of individual 

features of process control strategies to achieve the NO2
-
-N shunt via NOB out-selection. 

Simulations were conducted using a two step nitrogen removal model from the literature. 

Nitrogen shortcut removal processes from two case studies were modelled to illustrate the 

contribution of NOB out-selection mechanisms. The paper highlights a comparison 

between two control schemes, i.e. ammonia-based control and the novel AVN [AOB Vs. 

NOB] control, recently described in the literature. Results indicate that the AVN controller 

possesses unique features that promote a better management of incoming organics and 

bicarbonate, which optimizes both NH4
+
-N removal rates as well as NO2

-
-N & NO3

-
-N 

removal. Moreover, it allows for a more efficient NOB out-selection. Finally, the model 

was used in a scenario analysis, simulating hypothetical optimized performance of the pilot 

process. An estimated potential saving of 60% in carbon addition for nitrogen removal by 

implementing full-scale mainstream deammonification was found. 

 
Keywords 

Anammox, AOB seeding, mainstream deammonification, NO2
-
-N shunt, NOB out-

selection, online control, transient anoxia   

 

INTRODUCTION 

Traditional nitrogen removal processes are high energy consumers and not cost-effective 

which is a serious downside of currently used technology where cost and energy reduction are 

pursued. Shortcut nitrogen removal processes provide a superior alternative to conventional 

processes used in municipal wastewater treatment (i.e. nitrification-denitrification) since they 

significantly reduce oxygen demand and external carbon requirements (Vlaeminck et al., 

2012). These processes involve the creation of unique conditions to steer the biological 

conversion of oxidizable nitrogen (i.e. NH4
+
-N and organic nitrogen) to nitrogen gas by taking 

a 2-step pathway shortcut and thus conserve energy. There are two main shortcut nitrogen 

removal processes i.e. nitritation/denitritation and deammonification via anammox. In both 

processes, the first step of the nitrogen shortcut pathway is converting NH4
+
-N via ammonia 

oxidizing bacteria (AOB) to NO2
-
-N only. This requires repressing the NOB population to 

avoid producing NO3
-
-N. The second step can either be converting NO2

-
-N to N2 gas via 

heterotrophic bacteria using organic carbon or via anammox bacteria without the need for 

organic carbon. These processes have already been implemented and controled successfully 

for sidestream (i.e. nitrogen rich warm streams) treatment and the operational savings were 
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reported in the literature (Wett, 2007). In contrast, the potential operational savings using 

shortcut nitrogen removal processes can be significantly higher for mainstream applications 

with 40% savings for nitritation/denitritation process and 84% saving for the 

deammonificaiton process compared to conventional nitrification/denitrification (De 

Clippeleir, 2012). In addition, potential savings in capital costs for new systems and increase 

in capacity for converted systems are anticipated. The savings are associated with low sludge 

production of 0.6 kg/kgN for nitritation/denitritation and 0.1 kg/kgN for deammonification 

compared to 1 kg/kgN for conventional nitrification/denitrification (De Clippeleir, 2012). 

These potential benefits however come with challenges associated with NOB outselection 

under cold and diluted loading conditions. While the operational strategies are well 

documented for sidestream applications (Gut et al., 2005; Hellinga et al., 1998; van de Graaf 

et al., 1996; van Loosdrecht and Salem, 2005; Wett et al., 2007), many recent studies were 

conducted to address these challenges for mainstream applications using 

nitritation/denitritation (Blackburne et al., 2008; Gao et al., 2009, 2014; Peng et al., 2004, 

2012; Regmi et al., 2013) and deammonification (Al-Omari et al., 2012; Hu et al., 2013; Lotti 

et al., 2013; Wett et al., 2013; Winkler et al., 2011) or both (Vlaeminck et al., 2012; Stinson et 

al., 2013). Several mechanisms were identified by which the three autotrophic groups, i.e. 

AOB, NOB & anammox, compete. These mechanisms include (1) operating at low dissolved 

oxygen (DO) concentration, (2) operating at high DO concentration, (3) operating with high 

residual ammonia, (4) transient anoxia where the process reactor is intermittently aerated 

either by turning the air flowrate on and off or by creating a spatial sequence of anoxic and 

oxic zones in the reactor. The use of transient anoxia is a commonly used approach for NOB 

out-selection (Li et al., 2012, Ling, 2009, Pollice et al., 2002, Rosenwinkel et al., 2005, 

Zekker et al., 2012). In the context of controlling the nitrogen process towards out-selection of 

NOB, transient anoxia provides means to control the aerobic SRT, as well as to introduce a 

lag-time for NOB to transition from the anoxic to aerobic environment, either due to NO2
-
-N 

limitation (Knowles et al., 1966; Chandran and Smets, 2000) or by an enzymatic lag 

(Kornaros and Dokianakis, 2010). Aggressive SRT (i.e. near minimum SRT) is applied based 

on target removal rates and is controlled via manipulating wasting rates, aerobic volumes and 

DO setpoints to maximize NOB outselection potential (Regmi et al., 2013; Wett et., 2013). 

For this study two case studies were selected for both shortcut processes using the HRSD 

pilot for nitritation/denitritation (Regmi et al., 2014) and the DC Water pilot for mainstream 

deammonification (Al-Omari et al., 2012). Figure 1 illustrates, using Monod functions of 

utilization rates as a function of DO, NH4
+
-N and NO2

—
N, some of the concepts used in these 

two case studies to maximize the rate differential between AOB and NOB to facilitate NOB 

out-selection.   
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Figure 1. Monod functions describing rate and substrate affinities and competition under pilot 

target operational conditions for NH4
+
-N, NO2

-
-N and DO. Target ranges are those where 

AOB rates are higher than NOB rates 
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MATERIALS AND METHODS 

 

Long term experimental pilot tests 

HRSD Pilot Study – AVN Controller  

This pilot process is part of a larger configuration including a high rate activated sludge A-

stage for COD removal providing the influent for the AVN controlled reactor (Miller et al., 

2012) and a post-anoxic anammox moving bed bioreactor after the AVN controlled reactor 

allowing for a final polishing of the treated sewage. The reader is referred to Regmi et al. 

(2014) for detailed description of the pilot setup and operation. The AVN controlled process 

includes a single 340 L aeration tank operated as a continuously stirred tank reactor (CSTR) 

followed by a clarifier. Return activated sludge (RAS) from the clarifier is returned to the 

AVN reactor at 100% of the influent flow rate. SRT is controlled by wasting solids from the 

bioreactor with a programmable digital peristaltic pump. The reactor is equipped with sensors 

for NO3
-
-N, NO2

-
-N (s::can Spectro::lyser, Austria), DO (Hach LDO, CO, USA), and NH4

+
-N 

(WTW VARiON, Germany). NH4
+
-N, NO3

-
-N, NO2

-
-N signals are used to control aeration 

(Figure 2).    

 

To impose conditions favorable for NOB out-selection and to provide an effluent suitable for 

anaerobic ammonia oxidation (AMX) polishing, an aeration controller was developed which 

uses online in-situ DO, NH4
+
, NO2

-
 and NO3

-
 sensors. The first component of the AVN 

control is the aerobic duration controller with the goal of maintaining equal effluent NH4+-N 

and NOx-N (i.e. NH4
+
-N/NOx-N = 1) in the AVN CSTR at all times. The latter would 

guarantee a treatable effluent for the final polishing step with AMX. The other component of 

the AVN control is the DO controller, which maintains the DO at a desired set-point during 

the aerated period (Figure 2).  

 

Under the AVN strategy, NH4
+
-N was compared to the sum of NO2

-
-N and NO3

-
-N (NOx-N). 

Firstly, the cycle duration (aerobic duration + anoxic duration) had a defined minimum and 

maximum aerobic duration. The cycle duration was kept constant at 12 minutes during the 

entire experiment. As the AVN controller aims at ammonium concentrations equal to NOx, 

aerobic duration is increased up to a predetermined maximum aeration time set-point, while 

maintaining the cycle duration constant at NH4
+
-N over NOx-N ratios greater than 1. When 

NH4
+
-N was less than NOx-N, aerobic duration was decreased until it reached the minimum 

aeration time. When aerated, the proportional-integral-derivative (PID) controller steered a 

mechanically operated valve (MOV) to maintain the target DO set-point of 1.6 mg/L. Figure 3 

shows the effluent quality of the pilot reactor under AVN control in terms of the nitrogen 

species measured in daily grab samples. The chart demonstrates the balance between 

ammonia and NOx as a result of the AVN control strategy. 

 

DC Water Case Study – Ammonia based control 

The objective of the pilot process at DC Water is to evaluate the mainstream 

deammonification feasibility at the Blue Plains Advanced Wastewater Treatment Plant 

(AWTP) with an emphasis on process controls. This process appears specifically appropriate 

for the existing process configuration with high up-stream carbon removal (primaries 

followed by a high-rate process achieving 85% overall efficiency) and chemical carbon 
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dosing downstream to meet the extremely low total nitrogen limit of 3.9 mgN/L. The 

deammonification pilot consists of a 200L activated sludge tank divided into 10 sequential 

aerobic and anoxic zones (D1 – D10) with dissolved oxygen and ammonia based controls. 

Oxygen level is maintained at 1.5 mg/L in the aerated cells where oxygen is measured using 

an LDO sensor (HACH, Düsseldorf, Germany). NH4
+
-N is measured using an NH4D sc 

ammonium sensor (HACH, Düsseldorf, Germany). NH4
+
-N concentration in the  

 

 

 

B-Stage Inf B-Stage Eff      

WAS

Reactor - AVN

 
 

Figure 2. Photo of the HRSD nitrogen removal pilot, Virginia [left-top], and pilot model 

configuration [left-bottom], schematic diagram of AVN process control elements [right]. 
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Figure 3. HRSD pilot reactor effluent quality when applying AVN control 

 

last cell (D10) is maintained above 2 mg/L. Data acquisition and control is performed using 

Labview (National Instruments, USA). The aerobic SRT is modified by turning downstream 

swing zones into aerobic or anoxic zones and by adjusting wasting rates as needed to maintain 

target NH4
+
-N concentration in cell D10. During the period selected for the simulation runs 
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the aerobic SRT was adjusted by modifying the wasting rates. Anammox seed is added to the 

reactor on a daily basis using sludge from a full-scale sidestream DEMON reactor and AOBs 

are seeded using the waste sludge from a bench-scale sidestream reactor that is proportional to 

the full-scale sidestream DEMON facility. Anammox is selectively retained in the system 

using sieves with mesh size No.70 and No.120 (or 212 micron and 125 micron). Downstream 

of the deammonification cells a polishing step is present which consists of 8 anoxic zones (P1 

– P8). The post anoxic step is not discussed in this paper. Figure 4 shows the pilot reactor and 

the model configuration of the pilot.  

 

Figure 5 shows the effluent quality of the pilot reactor under ammonia based control. One 

interesting observation from the chart is that NO2
-
-N accumulation was observed when NH4

+
-

N and NO3
-
-N (or NOx) were in equilibrium. The figure also shows a profile across the 

reactor from cell D1 until P8. NO2
-
-N is produced in the aerobic cells in the deammonification 

reactor (D2, D5, D8 & D10). However, NOB out-selection is not effective as observed from 

the relative NO3
-
-N produced compared to NH4

+
-N removed (>85%).   
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Figure 4. Aerial view of Blue Plains AWTP, Washington DC [right], pilot-scale mainstream 

deammonification reactor [left], and pilot model configuration [bottom]. 
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Figure 5. DC Water pilot reactor effluent quality [left] and profile [right] 
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Case study pilot influent characteristics 

Average influent characteristics for the pilot reactors are given in Table 1. One major 

difference is the carbon to nitrogen ratios which is much higher in the HRSD pilot reactor. 

Another difference is the aerobic fraction of the reactor volume.  

 

Table 1. Case studies pilots reactors and average influent characteristics 

Parameter 
HRSD 

AVN Control 
DC Water 

Ammonia Control 

Flow, L/d 2,722 1,840 

Total COD, mgCOD/L 303.0 40.3 

Total Kjeldahl Nitrogen, mgN/L 39.0 24.5 

NH4
+, mgN/L 29.3 21.7 

NO3
-, mgN/L 0.0 0.5 

NO2
-, mgN/L 0.0 0.2 

Total P, mgP/L 4.7 1.1 

Alkalinity, mmol/L 3.6 4.5 

Reactor Type CSTR Step Feed-Plug Flow 

Transient Anoxia Time Space 

Total SRT (AVG), day 6.5 8.7 

aerobic fraction (AVG), % 64 22 

 

 

Modelling approach 

The model used for the simulations is based on the two step nitrogen model proposed by 

Jones et al. (2007) (Table 2). The oxygen half saturation concentrations for AOB, NOB and 

anammox were modified using the calibrated values reported by Al-Omari et al. (2012), 

which were based on actual measurements using SBR reactors. 

 

Table 2. Autotrophic Biomass Model Parameters (Default Parameters - Jones et al., 2007).  

Parameter  AOB  NOB  Anammox 

Max. spec. growth rate [1/d]  (0.9) (0.7) (0.1) 

Arrhenius on max. spec. growth rate  (1.072) (1.06) (1.1) 

Substrate (NH4) half sat. [mgN/L] (0.7) - (2) 

Substrate (NO2) half sat. [mgN/L]  -  (0.05) (1) 

Aerobic decay rate [1/d]  (0.17) (0.17) (0.019) 

Anoxic/anaerobic decay rate [1/d]  (0.08) (0.08) (0.0095) 

Nitrous acid inhibition constant [mmol/L]  (0.005) (0.075) - 

NO2
-
-N inhibition constant [mgN/L]  - - (1000) 

NO2
-
-N toxicity constant [L/(d mgN)] 

  

(0.016) 

DO half sat. [mgO2/L]  0.4 (0.25) 0.14 (0.5) 0.05 (0.01) 

bicarbonate switch [mmol/L]  0.75 (0.1) (0.1) (0.1) 

Yield [mgCOD/mgN] (0.15) (0.09) (0.114) 
Notes: values in brackets are default values. Values in bold are modified values. 
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The default inorganic carbon half saturation concentration for all autotrophic biomass 

reported in the Jones model was set at 0.1 mmol/L while for sidestream application the 

recommended parameter was 4 mmol/L for AOB in line with recommendations by Wett et al. 

(2005). The reasoning is to eliminate the impact of inorganic carbon at typical residual 

concentrations observed in nitrogen removal systems. However, in bench-scale shallow 

reactors, CO2 stripping is much greater than full-scale reactors and may become limiting to 

autotrophic bacteria (Wett et al., 2003). In addition, Guisasola et al. (2007) suggested that 

AOB were limited by inorganic carbon availability at concentrations as low as 3mmol/L while 

the NOB were not limited even at concentrations below 0.1 mmol/L. In this modelling 

exercise, a value of 0.75 mmol/L was used based on a calibration using ammonia removal 

profiles in the DC Water deammonification reactor (not shown). It was observed that the 

removals were lower at these conditions than expected by the model using the default 

inorganic carbon half saturation concentration (i.e. 0.1 mmol/L). To model the different 

impact of inorganic carbon on AOB and NOB, new equations describing the growth and 

decay of AOB were introduced to the model in a Gujer matrix format. A user defined 

parameter was used to represent AOB biomass while the growth rate of AOB (Xaob) in the 

global model was set to zero. Table 3 presents the modified AOB growth and decay rate 

equations and stoichiometric expressions. 

 

 

RESULTS AND DISCUSSION 

AVN vs. ammonia based control - Modelling 
 

A simulation of the HRSD pilot reactor operation using average loading conditions to reach 

steady state was used as the starting point for any dynamic simulation. The model was able to 

predict average NH4
+
-N, NO3

-
-N and NO2

-
-N. To allow controller performance comparison, 

the HRSD simulation of the pilot was operated with both strategies (i.e. AVN vs Ammonia-

based control) side by side. Lacking an advanced controller simulator that is able to mimic the 

AVN control strategy for dynamic input, the reactor influent flowrate was modified to reflect 

a step change in influent mass loading [kg/d] by +25% of the average loading rate for 12 

hours and -25% of the mass loading rate for the following 12 hours. In an AVN control mode, 

the aeration time was manually adjusted as the loading changed so that the balance between 

NH4
+
-N and NOx-N was maintained. The aeration time was reduced by 0.49 min during the 

low loading step and increased by 0.65 min during the high loading step. Under the ammonia-

based control, the aeration time was manually adjusted as the load changes so that effluent 

NH4
+
-N concentration was maintained constant. The aeration time was reduced by 1.63 min 

during the low loading step and increased by 3.25 min during the high loading step. Figure 6 

shows the simulation output of the AVN and ammonia control modes.  

 

Comparing the two simulation outputs reveals that nitrogen removal efficiency was increased 

by approximately 17.5% under the AVN control. Also, the stable alkalinity level in the reactor 

for the AVN simulation compared to that for the ammonia-based control is noteworthy. It is 

important to realize that the controller under the AVN strategy controls the NH4
+
-N removal 

rate based on denitrification capacity. I.e. the aerobic SRT is adjusted so that NH4
+
-N is 

nitrified only if the same amount of nitrogen can be removed via denitrification. This 

balancing action allows for more efficient use of the biodegradable carbon for nitrogen 

removal, recovery of alkalinity, and applying SRT pressure on NOB. In the ammonia-based 

control simulation, aeration is increased during high loading conditions to maintain the 

effluent NH4
+
-N level. By increasing aeration time, more COD is 
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aerobically oxidized and more alkalinity is consumed. As alkalinity is consumed, NH4
+
-N 

oxidation rates slowdown due to inorganic carbon limitation. In return, the controller 

increases the aeration time even further, which again will cause further COD oxidation and 

alkalinity suppression. This continues until the NH4
+
-N concentration cannot be reduced any 

further. Table 4 summarises the comparison between AVN and ammonia-based controls with 

regard to nitrogen removal, oxygen demand and NOB levels. The comparison reveals that an 

8.6% reduction in NOB concentration was achieved. This incremental reduction can be 

significant when combined with other incremental reductions due to other mechanisms such 

as AOB seed, which is discussed in the following section.  

 
Aeration time, min 6.01 7.15 6.01 7.15 

 
 

Aeration time, min 4.88 9.75 4.88 9.75 

 
 

Figure 6. Simulation output for AVN (top) and ammonia based (bottom) controls for HRSD 

pilot reactor with 12 min cycle. 

 

Impact of AOB seeding and SRT 

Seeding AOB from a sidestream process that utilizes a shortcut nitrogen removal process can 

be beneficial to enhance NOB repression in mainstream processes with the aim of achieving 

the NO2
-
-N shunt. Figure 7 illustrates the concept of seeding a tank with AOB rich waste from 

a sidestream process where the difference in critical SRT between AOB and NOB increases 

with the AOB seed mass introduced to the mainstream tank.  
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Table 4. Comparison between AVN and ammonia based control strategies in terms of total 

nitrogen removal, oxygen demand and NOB supression for simulated HRSD pilot reactor. 

  
(1) 

AVN 
(2) 

Ammonia  
% 

Change 

  Control Control [(1-2)/2] 

Total Nitrogen Removal, (mgN/L) 28.9 24.6 17.5% 

Oxygen consumed, (mg/L) 936 1024 -8.6% 

NOB Concentration, (mg/L) 39.1 42.8 -8.6% 
 

It is assumed that 20% of the influent load is recycled back and treated in the sidestream 

process. Simulations of the HRSD pilot reactor with (1) 50% seeding activity assuming that 

50% of activity is lost due to the difference in temperature between sidestream and 

mainstream processes (Wett et al., 2011) and (2) 100% seeding activity assuming no loss of 

activity were examined. The system SRT was reduced to maintain the same NH4
+
-N removal 

rate in the system. Figure 8 shows the simulation output for AOB and NOB under both 

seeding conditions. The simulation showed that the gap between AOBs and NOBs widened 

with increased AOB seeding rate as evident by the AOB/NOB ratios. 
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Assumptions: 

SRTSide = SRT side-stream = 10 days 

AOB maximum specific growth rate (µm, AOB) = 0.9 d-1; 

NOB maximum specific growth rate (µm, NOB) = 0.7 d-1 

Decay rate (b) = 0.17 d-1 

Neglect SRT impacts by seeding 

Neglect AOB-activity loss due to Temperature-gap 

Figure 7. Bioaugmentation versus SRT conceptual model 

 

 

Impact of retention efficiency and shallow reactors on NOB outselection  

Simulations of the DC Water pilot reactor are compared to the actual measurement in Figure 

9. The overall profiles of NH4
+

-N, NO2
-
-N, NO3

-
-N were closely predicted by the model. The 

model utilized activity measurement of retained sludge from the sieve mechanisms to assess 

AOB, NOB and anammox retention efficiency. The model predicted minor improvement in 

NOB out-selection with an AOB/NOB ratio of 1.8 compared to 1.6 for fully nitrifying 

systems. One explanation for the low NOB outselection efficiency would be the effect of the 

inorganic carbon limitation switch on AOB growth and the other would be the NOB retention 

by the sieve where NOBs may have attached onto the anammox granules. To address the 

impact of these two factors, the retention of the various organisms was modified in the model 

to reflect an ideal separation of granular anammox bacteria and AOBs and NOBs and the 

depth of the reactors in the model was adjusted to mimic that of full-scale tank depth. Table 5 
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presents a comparison between the pilot reactor performance with and without these 

hypothetical improvements. The model predicted an AOB/NOB ratio of 7.1 when both 

retention and tank depth are optimized. The optimized model was then used to determine the 

potential savings in carbon addition in the form of acetate between conventional 

nitrification/denitrification system and a system with nitrogen shortcut (i.e. repressed NOB). 

The model showed that for nitrogen removal efficiency of approximately 90% and effective 

(i.e. 70%) NOB out-selection, the acetate saving due to nitrogen shortcut was 60% compared 

to conventional nitrification/denitrification. However, a validation of the model will be 

required either with full scale or with modified pilot reactor to confirm the hypotheses 

introduced. 

 

 

 
Figure 8. Simulation of HRSD pilot reactor with AVN control showing 100% and 50% seed 

mass rates and SRT variation 

 

 

0

1

2

3

4

5

0

2

4

6

8

10

12

14

16

18

20

D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 P8

N
it

ri
te

 (m
gN

/L
)

A
m

m
o

n
iu

m
 a

n
d

 n
it

ra
te

 (
m

gN
/L

)

Cell number in Pilot

NH3 (model) NH3 (measured)
NO3 (model) NO3 (measured)
NO2 (model) NO2 (measured)

 
Figure 9. Simulation and measured profile of the DC Water pilot reactor  
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Table 5. Impact of selective retention and tank depth on NOB outselection 

Parameter Pilot Improved Selective Retention

Improved Selective 

Retention+Deep Tankage

Anammox retention Efficiency, % 73 90 90

AOB retention Efficiency, % 35 20 20

NOB retention Efficiency, % 52 20 20

Tank Depth, m 0.3 0.3 9.0

AOB/NOB ratio 1.8 2.9 7.1  
 

 

CONCLUSIONS  

In this paper, a model based approach of the key mechanisms for shortcut nitrogen removal to 

facilitate mainstream deammonification was presented. The modelling served as a useful tool 

to separate the impact of individual mechanisms on NOB out-selection and to identify 

artifacts associated with bench-scale reactors. The model illustrated the benefits of using the 

novel AVN controller over the ammonia-based control by managing carbon removal and 

recovering alkalinity. It also demonstrated the impact of AOB seeding and SRT on NOB 

outselection and showed the importance of applying aggressive SRT for effective NOB 

outselection. In addition, the model was used in a hypothetical scenario analysis to 

demonstrate the potential external carbon savings of 60% that would be realized by 

converting a conventional nitrification-denitrification system to mainstream 

deammonification exemplified by the Blue Plains WWTP case study. 
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Abstract 

This paper describes the development of a modified ASM1 model framework to describe 

the organic substrate transformation in the high-rate activated sludge (HRAS) process. New 

state variables and process rate equations were incorporated. New process mechanims for 

dual soluble substrate, extracellular polymeric substances (EPS) production, production of 

storage polymers, and adsorption of colloidal substrate were included in the modified 

model. Data from two HRAS pilot plants were used to calibrate and to validate the 

proposed model framework for HRAS systems. A dual substrate model for soluble 

biodegradable substrate transformation was adopted since it described the pilot plant data. 

The modified model incorporates EPS production as part of the aerobic growth process on 

the soluble substrate and flocculation of  colloidal COD to particulate COD. The adsorbed 

organics are then converted through hydrolysis to the slow fraction of soluble readily 

biodegradable substrate. The proposed model framework was able to predict the 

performance of the pilot plants and provided better overall results than the ASM1 model.   

 

Keywords 
A-stage, adsorption, ASM, EPS, flocculation, high-rate activated sludge, organic substrate, oxidation, 

process    modeling, storage 

 

INTRODUCTION 

The high-rate activated sludge (HRAS) process for carbon removal uses high food-to-

microorganism ratios and low solids and hydraulic retention times (SRT and HRT) for the 

biological substrate (COD) transformation from wastewater. When a HRAS system is the first 

step in the Adsorption-Bio-oxidation (AB) process (Böhnke et al., 1980), the general 

objectives are to maximize the removal of organics through adsorption rather than oxidation 

and to produce large amounts of waste sludge that can be converted to biogas by anaerobic 

digestion (Schulze-Rettmer et al., 1998). Hence, accurate modelling of this system is of 

importance to design, control, optimization and prediction of the performance of not only 

HRAS systems but of the AB process as a whole. 

 

The modelling of activated sludge processes, particularly the COD transformations, has 

significantly evolved towards fundamental principles in the past decades from simple single-

substrate models to more complex multiple-substrate models involving the processes of 

oxidation, hydrolysis and storage (Dold et al., 1980; Sin et al., 2005). However, these models 

have evolved to describe COD removal in systems operating at long SRT (i.e. 3 days or 

longer) where the biodegradable organic substrate (SB) can be modelled as a single substrate 

with a single kinetic expression. In addition, flocculation and adsorption of colloidal and 

particulate substrate (CB and XB) are assumed to be complete and instantaneous; hence, it can 

be ignored in the models (Haider et al., 2003; Jimenez et al., 2003). However, in high-rate 
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systems such as those employed in the AB process (where the SRT is well below 1 day), these 

assumptions with respect to organic substrate transformation are no longer applicable.  

 

Full-scale and pilot-scale results from high-rate systems (Haider et al., 2000 and 2003; Miller 

et al., 2012; Jimenez et al. 2014) show that very low SRT (i.e. 1 day or less) may result in a 

selection of fast growing bacteria, which can use only part of the influent substrate.  Haider et 

al. (2003) showed that the inert soluble COD fraction (SU) of the wastewater was always 

significantly higher if the wastewater was added to a HRAS with an SRT of 0.5 days in 

comparison to systems with an SRT of 20 days. Hence, they recommended that for modelling, 

the SB fraction of the wastewater should be split into two distinct biodegradable fractions. 

Jimenez et al. (2005) recognized that in effluent from these systems, some of the particulate 

and (especially) colloidal COD may not be removed by flocculation and adsorption resulting 

in incomplete enmeshment and hydrolysis of XB and CB. Jimenez et al. (2005) recommended 

that flocculation kinetics should be considered as an important mechanism from a modelling 

perspective. Hence, for these reasons the existing model’s assumption of organic substrate 

transformation kinetic parameters based on instantaneous flocculation/adsorption becomes 

questionable and should be addressed to properly model low SRT systems. 

 

This paper discusses a modelling approach which evaluates the organic substrate 

transformations as it pertains to HRAS systems.  This approach uses the Activated Sludge 

Model No.1 (ASM1) (Henze et al., 2000) as the initial framework. The original framework 

was modified to describe the proper mechanisms required to accurately describe the 

performance of the HRAS system. 

 

MATERIALS AND METHODS 

Historical operating data from two pilot systems were evaluated to understand the organic 

substrate transformation mechanisms in HRAS and used to calibrate and validate the 

proposed process model. The data used during this study includes operating data from an A-

Stage pilot plant owned and operated by the Hampton Roads Sanitation District (HRSD) 

(Miller et al., 2013) and from a HRAS  pilot plant operated by the University of New Orleans 

(Jimenez et al., 2014). 

 

HRSD’s pilot plant, located at the Chesapeake-Elizabeth Treatment Plant in Virginia Beach, 

Virginia, uses an A-Stage process for carbon removal followed by a B-Stage system for 

nitrogen removal. Currently, the A-Stage includes three reactors in series (170 L per reactor), 

operated at an aggregate 0.2-day SRT and 0.5-hour HRT, and is fed screened and degritted 

raw municipal wastewater at a constant flow rate of 24.5 m
3
/d. 

 

The HRAS pilot plant operated by the University of New Orleans consists of a rotating 

screen, a complete mix aeration tank, and a secondary clarifier. The unit was designed for a 

flow rate of 7.5m3/d and a HRT in the bioreactor of approximately 0.5 hours. The pilot plant 

was operated at a range of SRT conditions, ranging from 0.3 days to 2 days. 

 

MODEL DESCRIPTION 

To describe the behavior of the HRAS pilot plants, the ASM model framework was modified 

to incorporate non-steady state material balance equations for dual soluble substrate (SBf, SBs), 

EPS production (XEPS), production of storage polymers (XSTO), and adsorption of inert and 

biodegradable colloidal substrate (CU and CB,).  A partial list of state variables used in the 

modified model framework is shown in Table 1. 



 Nogaj et al. 

182 

 

 

Table 9  Partial list of state variables 

Symbol Name Units 

SU Soluble non-biodegradable organics g COD.m
-3

 

SBf Readily soluble biodegradable organics g COD.m
-3

 

SBs Slowly soluble biodegradable organics g COD.m
-3

 

CU Colloidal non-biodegradable organics  g COD.m
-3

 

CB Colloidal biodegradable organics g COD.m
-3

 

XU Particulate non-biodegradable organics  g COD.m
-3

 

XB Particulate biodegradable organics g COD.m
-3

 

XOHO,ACT Active ordinary heterotrophic organisms g COD.m
-3

 

XE Particulate non-biodegradable endogenous products g COD.m
-3

 

XEPS Extracellular polymeric substances g COD.m
-3

 

XSTO Intracellular storage polymeric substances  g COD.m
-3

 

 

 

Review of the literature (Jimenez, 2002; Laspidou et al., 2002b; Miller et al., 2013) has led  to 

a modification of the model framework.   Figure 1 illustrates the flow of electrons in the 

modified ASM1 model framework (Nogaj et al., 2013).  Details are discussed in the following 

sections. 

 

 

 

 

Fate of Soluble Substrate 

Results from the pilot plants show a higher effluent soluble COD from the A-stage than the B-

stage (where it is removed at a significantly longer SRT) (Nogaj et al., 2013). Conventionally,  

the method to quantify the non-biodegradable soluble COD is to operate a laboratory or pilot 

scale activated sludge system at an SRT longer than 3 days (Ekama et al., 1986) and use the 

effluent soluble COD as the non-biodegradable fraction.  However, at the low SRT (and low 

HRT) of the HRAS system, there is a fraction of the effluent COD that is biodegradable in the 

higher SRT, B-Stage process but not biodegradable in the conditions in the A-Stage. This has 

led to the establishment of two state variables for SB designated as SBf (SB fast) and SBs (SB 

slow).  SBf corresponds to the soluble COD that is biodegradable in the HRAS system at low 
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Figure 1 Electron flow for soluble substrate 
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SRT by a fast growing population of XOHO,ACT (Haider et al., 2003; Pala-Ozkok et al., 2013). 

SBs is the soluble COD fraction that is non-biodegradable in the HRAS system, but is 

biodegradable in the B-Stage by a slow growing XOHO,ACT. For the modified model two 

frameworks were evaluated. In one framework, SBf is biodegraded first, and it is only when 

SBf is fully utilized that biodegradation of SBs becomes significant. This is analogous to 

diauxic growth in which one substrate is biodegraded immediately by constitutive enzymes, 

and only when it runs out are enzymes induced for metabolism of the second substrate. The 

data does not show, or disprove, this mechanism, but this framework is at least plausible 

mechanistically. This framework is referred to as the Diauxic model.  In the second 

framework SBf and SBs are utilized simultaneously with the growth on SBf occurring at a 

higher maximum specific substrate utilization rate than on SBs. This framework is referred to 

as the Dual Substrate model.  

 

EPS Production 

Extracellular polymeric substances (EPS) production impacts the bioflocculation removal 

efficiency for particulate and colloidal substrate (Jimenez, 2002). Past models assume 

instantaneous enmeshment whereas the data from Jimenez (2005, 2007 and 2014) shows that 

this assumption may not be valid for high rate systems. The EPS data produced by Jimenez et 

al. (2013) was used as calibration data for this study. This dataset shows a linear correlation 

between substrate utilization rate and EPS production and an increase in EPS production with 

SRT (thus decrease with growth) over a range of 0.3 to 2.0 days. In addition, EPS increased 

with the DO concentration over the same range of SRT values. Laspidou et al. (2002a) 

indicated that the net EPS  concentration is a function of the portion of influent soluble 

substrate (substrate electron pool) shunted to EPS formation versus the EPS hydrolysis rate. 

Hence, the modified model incorporates EPS production as part of the aerobic growth process 

on SBf and SBs. The proportionality coefficient kEPS,PC quantifies the portion of influent 

electrons shunted to EPS formation. The portion of substrate electrons that are shunted to EPS 

formations (kEPS,PC) are then subtracted from the biomass yield coefficient YOHO, i.e. 

YOHO*(1- kEPS,PC)), reducing the electrons available for biomass synthesis.  In the Diauxic 

model, EPS formation is first driven by SBf during aerobic growth. EPS formation on SBs does 

not occur until SBf starts to run out. In contrast, the EPS formation in the Dual Substrate 

model occurs simultaneously on both soluble substrate fractions.  In both models EPS 

formation driven by influent SBs does not have to compete with the formation of storage 

products (which only occurs through SBf).  Additional SBs becomes available through 

hydrolysis of XB  (Carucci et al., 2001).  KO,EPS was estimated using a nonlinear regression 

analysis of the EPS production data vs DO concentration data provided by Jimenez et al. 

(2000).  The value kEPS,MAX (maximum EPS production) was determined by developing a 

least square logarithmic fit of the dataset provided by Jimenez et al. (2014) resulting in an 

estimated  kEPS,MAX value of 0.25 (g CODEPS/g VSS) and KO,EPS value of 0.55 (gSO2/m
3
).  

 

        ( 1 ) 

Equation 1 shows how kEPS, PC is calculated. The term iCB (1.48 gCODVSS/gVSS) is a 

stoichiometric conversion factor that converts kEPS,MAX from units of gCODEPS/gVSS to 

gCODEPS/gCODVSS. 

Production of Storage Polymers 
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Review of the literature suggests that systems operated at low DO concentrations (<0.9 mg/L; 

according to Third et al., 2003), typical of a HRAS system, the microbial uptake of readily 

biodegradable COD (SBf) could result in the formation of storage polymers.  Third et al. 

(2003) found using acetate as the substrate for COD, the microbial uptake of acetate and its 

conversion to storage polymers was strictly oxygen dependent. At low DO, the flow of 

electrons is used for acetate uptake and production of storage polymers. Higher DO supply 

rates resulted in higher growth rates with the flow of electrons to biomass production and 

approximately 20% of the substrate is oxidized, independent of the DO concentration.  The 

following expression was added to the modified model framework to simulate the flow of 

electrons to storage as a function of DO concentration. 

 

        ( 2 ) 

Where fSTO represents the fraction of storage products in the active biomass, fShunt,max 

represents the maximum flow electrons as a function of dissolved oxygen concentration and 

KO,STO is the half-saturation coefficient for SO2.  These two values were determined from a 

plot of fSTO vs DO which represented a Monod type curve.  The extrapolated values were 0.15 

for fShunt,max and 0.7 gSO2/m
3
 for KO,STO. 

 

The diversion of substrate electrons to storage in the modified model is represented by the 

proportionality constant kSTO,PC.  The portion of electrons that are shunted to kSTO,PC are also 

subtracted from the biomass yield coefficient YOHO, i.e.  (YOHO*(1- kEPS,PC – kSTO,PC)),  for 

aerobic growth using SBf,  further reducing the electrons available for biomass synthesis.  

 

Adsorption of Colloidal COD 

Typical characteristics for any municipal wastewater include both soluble and particulate 

organics.  Before developing modifications to the mathematical model it is important to 

define the soluble, particulate and colloidal fractions of the influent COD. Total chemical 

oxygen demand (tCOD) can be defined as the sum of particulate COD (pCOD) and soluble 

COD (sCOD) present in the wastewater. For the purpose of this investigation, the pCOD 

consists of organic suspended solids (ssCOD) and organic colloids (cCOD) in the wastewater 

(pCOD = ssCOD + cCOD). The state variable XB represents pCOD in the modified model.  

The dissolved COD excluding colloids is the truly soluble organic material in the wastewater 

and this was quantified by coagulation/flocculation followed by filtration (i.e. ffCOD) 

(Mamais et al., 1993). The truly sCOD is defined in the modified model as the sum of the 

state variables SBf, SBs and SU. The most important aspect is the differentiation of particulate 

and colloidal COD, which has not traditionally been done in most studies nor in the previous 

ASM derived models(Henze et al., 2000). The reason for this is that in higher HRT and SRT 

systems there is plenty of time for both colloidal and particulate COD to flocculate 

completely and to be degraded. However, in low HRT/SRT systems (HRAS) there is not 

always time for this to occur. This also means that effluent CODs in HRAS systems are 

higher than would be predicted by existing models. 

 

 

Modified model Solution 

The ASM models use matrix notation for the presentation of kinetic models. The matrix 

approach summarizes the components (state variables) and the transformation processes 
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which are to be considered in the model.  The stoichiometric coefficients and process rate 

equations are presented in the matrix.  The matrix is often referred to as the Gujer matrix and 

will be referred to as such throughout this paper. Using the ASM1 Gujer matrix as the 

reference model, proposed modifications to the framework for the modified model are defined 

in Figure 10.   

23

SU

SBs

SBf

XEPS

XOHO

XB

Growth

Hydrolysis

Decay

Decay

Adsorption/  

Flocculation

CB

CU

XU
 

 

 The modified stoichiometric matrix is shown in Table  with the associated process rate  

 

The modified stoichiometric matrix is shown in Table  with the associated process rate 

equations shown in Table . In the Diauxic model it must be noted that the pathways 

emanating from SBf and SBs will never both be significant at the same time.  This is due to the 

model kinetic equations being such that SBs transformations will not be significant until SBf 

runs out (i.e. when SBf < KBf;). 

 

The colloidal substrate (CB) is added as a new state variable.  The CB and slowly 

biodegradable particulate COD (XB) are enmeshed which represents the colloidal and 

particulate COD adsorbed through the bioflocculation mechanism. The adsorbed organics are 

then converted through hydrolysis to the slow fraction of soluble readily biodegradable 

substrate SBs.  The modified model framework incorporates two new process components; 

flocculation of CB and flocculation of CU as follows:   

 

   ( 3 )

  

  ( 4 )

  

The kinetic rate expression for each process is a first-order rate expression with respect to the 

colloidal concentration.  The kinetic parameter qADS is the adsorption rate constant and KSL is 

the surface limitation coefficient.  The CB is flocculated onto the XB, becoming part of that 

category of organics. The adsorbed organics are then converted through hydrolysis to SBs 

which can then be oxidized or converted to EPS or biomass by the microorganisms. The CU is 

flocculated onto the XU and removed from the system through wasting. 

 

Figure 10 Proposed Mathematical Model modifications for the HRAS carbon removal model 
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Table 2 Partial Gujer matrix processes and stoichiometric coefficients for the HRAS model 

 Name SBf SBs CB XB XOHO,      ACT XEPS XSTO 

r1 
Aerobic growth of XOHOs – 

Fast 

-1/(Y
OHO,AER

*(1-k
EPS,PC

-

k
STO.PC

))    
1 

k
EPS,PC

/(Y
OHO,AER

*(1-k
EPS,PC

-

k
STO,PC

)) 

k
STO

/(Y
OHO,AER

*(1-

k
EPS,PC

-k
STO,PC

)) 

r2 
Aerobic growth of XOHOs – 

Slow  
-1/(Y

OHO,AER
*(1-k

EPS,PC
)) 

  
1 k

EPS,PC
/(Y

OHO,AER
*(1-k

EPS,PC
)) 

 

r3 Decay of heterotrophs 
   

1-f
U
 -1 

  

r4 
Hydrolysis of entrapped 

organics  
1 

 
-1 

   

r5 
flocculation of colloidal 

substrate   
-1 1 

   

r6 
flocculation of colloidal 

inerts        

r7 
Hydrolysis of storage 

products 
1 

     
-1 

r8 EPS hydrolysis 1 
    

-1 
 

 

Table 3 Partial Gujer matrix process rate equations for the HRAS model 

 
Name Rate expression (r

j
) 

r1 Aerobic growth of heterotrophs - Fast μ
OHO

*(S
Bf

/(K
Bf

+S
Bf

))*(S
O2

/(K
O,OHO

+S
O2

))*(S
NHx

/(K
NHx,nut

+S
NHx

))*X
OHO

 

r2a Aerobic growth of heterotrophs - Slow μ
OHO,SLOW

*(S
Bs

/(K
Bs

+S
Bs

))*(K
Bf

/(K
Bf

+S
Bf

))*(S
O2

/(K
O,OHO

+S
O2

))*(S
NHx

/(K
NHx,nut

+S
NHx

))*X
OHO

 

r2b Aerobic growth of heterotrophs - Slow μ
OHO,SLOW

*(S
Bs

/(K
Bs

+S
Bs

))*(S
O2

/(K
O,OHO

+S
O2

))*(S
NHx

/(K
NHx,nut

+S
NHx

))*X
OHO

 

r3 Decay of heterotrophs b
OHO

*X
OHO,ACT

 

r4 Hydrolysis of entrapped organics 
q

XB,HYD
*((X

B
/X

OHO
)/(K

B,HYD
+X

B
/X

OHO
))*((S

O2
/(K

O,OHO
+S

O2
))+η

HYD
*(K

O,OHO
/(K

O,OHO
+S

O2
))*(S

NOx
/(K

NOx
+S

NOx
)))*X

OHO
 

r5 flocculation of colloidal substrate q
ADS

*C
B
*(X

OHO
+X

ANO
)*(K

SL
/((C

B
/(X

OHO
+X

ANO
))+K

SL
))*(X

EPS
/(K

EPS
+X

EPS
)) 

r6 flocculation of colloidal inerts q
ADS

*C
U

*(X
OHO

+X
ANO

)*(K
SL

/((C
U
/(X

OHO
+X

ANO
))+K

SL
))*(X

EPS
/(K

EPS
+X

EPS
)) 

r7 Hydrolysis of storage products q
STO,HYD

*(X
STO

/X
OHO

/(K
STO,HYD

+X
STO

/X
OHO

))*(K
Bf

/(K
Bf

+S
Bf

))*(K
Bs

/(K
Bs

+S
Bs

))*(S
O2

/(K
O,OHO

+S
O2

))*X
OHO

 

r8 EPS hydrolysis qEPA,HYD*XEPS 

r2a corresponds to the Diauxic model, r2b corresponds to the Dual Substrate model 
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RESULTS AND DISCUSSION 

The modified ASM1 frameworks were analyzed using the process simulator software SUMO 

version 0.9.15.0 developed by Dynamita (Nyons, France). The experimental datasets from 

New Orleans and HRSD were used to calibrate and validate the modified model frameworks. 

 

Model Calibration 

The dataset used to calibrate the modified framework model was  collected by Jimenez et al. 

(2014).  The SRT and DO concentration were varied in order to evaluate the effect of these 

operating parameters on the production of EPS and the removal of organic substrate. The 

average influent concentrations used for the model calibration are summarized in Table .    

 

Table 4 Influent wastewater concentrations  

 

Symbol 

 

Description Value Units 

SI Soluble unbiodegradable organics 10 g COD.m
-3

 

SBf Soluble biodegradable organics 60 g COD.m
-3

 

SBs Slowly biodegradable organics 30 g COD.m
-3

 

CU Colloidal unbiodegradable organics  20 g COD.m
-3

 

CB Colloidal biodegradable organics 40 g COD.m
-3

 

XU Particulate unbiodegradable organics  30 g COD.m
-3

 

XB Particulate biodegradable organics 150 g COD.m
-3

 

XOHO,ACT Active Ordinary heterotrophic organisms 10 g COD.m
-3

 

XEPS Extracellular Polymer Substances 1 g COD.m
-3

 

XSTO Storage Polymer Substances 1 g COD.m
-3

 

 

A partial list of the kinetic parameter values established through model calibration is 

summarized in Table .  The kinetic parameters shown were added to represent the pathways 

incorporated to the modified model framework for soluble substrate, EPS production, 

adsorption/flocculation and the production of storage polymers. 

 

Figure  presents a comparison of the model results as a function of SRT and DO.  These 

predictions are compared to the corresponding experimental data from Jimenez et al., 2014.  

Overall, the model predictions described the experimental trends. 

 

Colloidal substrate removal was calibrated by adjusting the adsorption rate parameter qADS 

(0.08 d
-1

) and the surface limitation parameter KSL (0.002) until the HRAS model results 

trended well with the experimental date.  Future research includes experiments to further 

validate these parameter values. 
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Table 5  Partial list of default parameter values for the mass-balance equations  

Symbol Name Value Unit 

KB,HYD Saturation coefficient for XB/XOHO 0.03 g XB/g XOHO 

μOHO Maximum growth rate of XOHO on SBf 7.0 d
-1

 

KBf Half-saturation coefficient for SBf (XOHO) 2.0 g SBf.m
-3

 

KBs Half-saturation coefficient for SBs(XOHO) 15.0 g SBs.m
-3

 

bOHO Decay rate for XOHO 0.62 d
-1

 

KO,OHO Half-saturation coefficient for SO2(XOHO) 0.1 g SO2.m
-3

 

KNox Half-saturation coefficient for SNOx(XOHO) 0.5 g SNOx.m
-3

 

KNHx,nut Nutrient half-saturation coefficient 0.05 g SNHx.m
-3

 

qADS Rate constant for adsorption 0.08 d
-1

 

KSL Half-saturation coefficient for surface limitation 0.002 - 

qSTO Rate constant for growth on XSTO (XOHO) 2.0 d
-1

 

kEPS,MAX EPS formation coefficient 0.25 g CODEPS.gVSS
-1

 

qEPS,HYD EPS hydrolysis 0.12 d
-1

  

KEPS  Half-saturation coefficient for EPS (XOHO) 100 gXEPS.m
-3

  

qXB,HYD Particulate COD Hydrolysis Rate Constant 2.75 d
-1

   

kSTO,MAX Maximum Production Yield for Storage Polymers 0.58 g XSTO.gSBf
-1

 

fSTO Fraction of XSTO in the Active Biomass 0.15 -  

qSTO,HYD Storage Hydrolysis Rate Constant 3.0 d
-1

   

KSTO,HYD Hydrolysis Half-saturation coefficient for XSTO (XOHO) 0.15 gXSTO.gXOHO
-1

  

KO,EPS Half-saturation coefficient for SO2 0.55 g SO2.m
-3

 

μOHO,SLOW Maximum growth rate of XOHO on SBs 3.0 d
-1
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Figure 3 Model calibration results compared to the University of New Orleans pilot plant 

results 

Modified Model Validation 

The HRSD dataset used in this analysis spanned a five week period where the pilot plant had 

reached steady-state operating condition.  Weakly averages were calculated for that period 

and the data reduced to a format compatible with the model framework.  Influent values for 

select state variables are shown in Table . State variables not shown in Table 5 are generated 

by the model as such, they were not measured. The measured values were input into the 

model representing daily values for each corresponding week resulting in a dynamic analysis 

period of 35 days. Dynamic input data for model validation also included DO profiles, and 

return and waste activated sludge (RAS and WAS) flow. 

 

Table 6 Influent state variables for model validation 

Time 

(week) 

Q 

(m
3
/d) 

SU 

(g/m
3
) 

SBf  

(g/m
3
) 

SBs 

(g/m
3
) 

CB 

(g/m
3
) 

XB 

(g/m
3
) 

XOHO 

(g/m
3
) 

1 24.84 28.00 78.00 43.00 44.45 312 10.00 

2 24.84 19.80 79.00 58.20 40.30 278 10.00 

3 24.84 19.00 113.00 31.00 32.28 355 20.00 

4 24.84 27.00 99.00 26.00 53.03 362 10.00 

5 24.84 26.30 112.00 24.70 57.40 299 18.00 

 

Dynamic simulations were performed in order to compare the predicted effluent values with 

those of the HRSD pilot plant. As previously mentioned, two different framework models 

were developed for this study and Figure 4 presents a model comparison of the effluent 

soluble biodegradable fraction (SBf + SBs). Based on these results, the Dual Substrate model 

predicts better the performance of the HRSD pilot plant. In general, the Dual Substrate model 

provided a better prediction of the HRSD pilot plant results. Figure 5 shows the model 

predicted values for SBf and SBs. Based on the definition of the SBf and SBs fractions discussed 

previously, the model predicts almost full removal of SBf whereas the SBs fraction passes 

through the biological reactor operated at an SRT of approximately 0.2 days.      
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Figure 4 Comparison of the effluent SB concentration from the Diauxic and Dual Substrate 

models 
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Figure 5 Dual Substrate model prediction for SBf and SBs concentrations 

 

A carbon balance performed around the HRSD pilot plant shows a total COD balance 

distribution of approximately 55% of the COD is in the effluent, 30% of the COD is the WAS 

and 15% of COD was allocated to mineralization. The Dual Substrate model predicts (using a 

kSTO,PC in range 0.40 to 0.45)  a COD distribution of 38% of the COD in the effluent, 46% of 

the COD in the WAS and 16% of COD to mineralization. The difference in the COD 

distribution between the HRSD pilot plant and the model predictions can be attributed to 

excess solids carryover in the effluent of the pilot plant which was not predicted by the model. 

Therefore, the model predicted more COD being removed from the liquid and being directed 

to the WAS stream. It is important to note that the percent COD mineralized is well predicted 

by the model. 

 

Figure 6 presents the model predictions and measured values for effluent colloidal COD 

concentration. The adsorption/flocculation model added to the model predicts negligible 

removal of the colloidal COD fraction. In fact, at the conditions that the pilot plant was 

operated, at increase in colloidal COD concentration through the reactor was predicted by the 

model and observed in the HRSD pilot plant data. The model suggests that because of the 

unfavorable flocculation conditions, a major fraction of the EPS being generated through 

biological activity are ending up in the effluent and being recorded as colloidal COD. At the 

conditions simulated, the model predicted approximately 15 mg CODEPS/gXVSS.  
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Figure 6 Comparison of HRSD pilot plant and model predicted effluent colloidal COD 

ASM1 Model 

The ASM1 model was developed to simulate the aerobic and anoxic treatment of domestic 

wastewater based on typical operating conditions, e.g. SRT greater than 3 days. These models 

were not developed to model activated sludge systems with very high organic loads or low 

SRTs (less than 1 day) where bioflocculation/adsorption of particulate and colloidal (slowly 

biodegradable) substrate and storage may become rate limited (Henze et al., 2000). In 

addition, the very short HRT of some HRAS systems may result in differences in predicted 

performance since the implicit assumption that substrate reactions can proceed to completion 

may no longer be valid. These models assume a two-step process for the removal of slowly 

biodegradable substrate (primarily particulate substrate and colloidal substrate): instantaneous 

bioflocculation and complete hydrolysis of particulate and colloidal substrate followed by 

oxidation of soluble biodegradable substrate. However, researchers have overlooked the effect 

of the kinetics of bioflocculation on the overall particulate and colloidal substrate removal 

process and have concentrated their attention on the kinetics of hydrolysis and oxidation when 

modeling carbon removal in activated-sludge systems. 

 

Using the ASM1 framework (Henze et al., 2000) and default parameter values, e.g. 𝜇max = 6.0 

d
-1

 and Ks = 20 mg/L, the ASM1 model generated the results shown in Figure 7. This figure 

shows both the ASM1 model results and the HRSD pilot plant experimental data. These 

results clearly shows that the ASM1 framework when used at low SRT and high F:M ratios as 

those employed in HRAS systems, the model does not properly predicts the removal of 

organic substrate. In addition, it should be noted as previously mentioned, the structure of the 

framework for the ASM1 model does not describe properly the removal of slowly 

biodegradable substrate. It should be noted that the ASM1 model does not include colloidal 

COD as a state variable so no comparison was possible. Overall, the ASM1 model over 

predicts the performance of the HRAS system. 
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Figure 7 Comparison of HRSD pilot plant effluent quality and ASM1 model predictions 

 

CONCLUSIONS 

A new proposed model framework was developed to describe the organic substrate 

transformation in the high-rate activated sludge (HRAS) process. Data from two HRAS pilot 

plants were used to calibrate and to validate the proposed model framework for HRAS 

systems. Two soluble substrate models were evaluated during this study including a Dual 

Substrate and a Diauxic model. Both model frameworks used two state variables for 

biodegradable soluble susbtrate (SBf  and SBs) and two biomass populations (fast growing and 

slow growing XOHO,ACT with maximum growth rates of 7.0 and 3.0 d
-1

, respectively). Overall, 

the Dual Substrate model provided better results than the Diauxic model; and therefore, it was 

adopted during this study. The modified model framework described sucesfully the 

production of EPS at low SRT and variable DO conditions using a kEPS,MAX value of 0.15 g 

CODEPS/g VSS and a KO,EPS value of 0.55 g SO2/m
3
. This provided valuable information to 

relate EPS production and bioflocculation/adsorption of colloidal susbtrate. Colloidal 

substrate removal was calibrated by adjusting the qADS to 0.08 d
-1

 and KSL to 0.002. Finally, 

the proposed model framework accurately predicted substrate utilization and mass balances, 

transformation and redicrection of COD in the HRAS system. 
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INTRODUCTION 

Over the past years, wastewater treatment plant (WWTP) mathematical models have been 

advancing towards their widespread application for sizing and operation of treatment plants to 

minimize energy consumption and cost while maximizing nutrient recovery and effluent 

quality. Effective utilisation of these models requires that they are well calibrated. However, 

difficulties (with important parameters not identified and uncertainties in intepretation of 

model output results) can be experienced in model calibration, especially due to (i) the 

intricate relationships of model output variables with model input factors (where parameters 

are inter-related to various model outputs), resulting in non-linearity, and (ii) the limitations 

(due to expensive and/or time consuming experimental methods) experienced in procuring 

and reconciling data required for determination of the model input factors (especially when 

the model has significantly large numbers of unknown parameters and model components). 

The BIOMATH protocol, developed by Vanrolleghem et al. (2003), provides a systematic 

approach for calibration. The main objective of this paper is to apply the BIOMATH protocol 

in providing a guidance towards calibration of a plant-wide model that includes phosphorus. 

The three phase (aqueous-gas-solid) University of Cape Town plant wide (UCT–PW) model 

(Ikumi et al., 2013) that was calibrated against the experimental layout described below is 

used as a case study for this calibration procedure.  
 

EXPERIMENTAL SYSTEM LAYOUT 

The experimental layout of Ikumi (2011) is used in this study. It replicates at laboratory scale 

three WWTP schemes, comprising (1) a Modified Ludzack – Ettinger (MLE) nitrification–

denitrification (ND) activated sludge (AS) system treating raw sewage (MLE 1) with 

anaerobic digestion (AD) of its waste activated sludge (WAS) in AD system number 1 (i.e., 

AD1), (2) an identical MLE system (MLE 2) treating settled sewage with AD of its WAS in 

AD2 and (3) a membrane (MBR) University of Cape Town (UCT) ND enhanced biological P 

removal (NDEBPR) system treating settled sewage with (i) AD of its WAS in AD3 and (ii) 

anoxic/aerobic digestion (AAD) of its WAS in two intermittently aerated (3hour air on, 3hour 

air off) aerobic digesters, AAD1 fed with concentrated WAS (2x, 20gTSS/l) and AAD2 fed 

with dilute WAS (1/3, 3.3gTSS/l). 

mailto:david.ikumi@uct.ac.za
mailto:george.ekama@uct.ac.za
mailto:peter.vanrolleghem@gci.ulaval.ca
mailto:brouckae@ukzn.ac.za
mailto:marc.neumann@bc3research.org
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MODEL DESCRIPTION 

The UCT three phase plant wide model was developed for simulating the biological processes 

to track and predict the output of materials (COD, carbon (C), hydrogen (H), oxygen (O), 

nitrogen (N), phosphorus (P), magnesium (Mg), potassium (K) and calcium (Ca)) along the 

unit processes of a WWTP. It comprises three sub-models, integrated for simulation of the 

entire WWTP under various configurations (e.g. NDBEPR AS system linked to an AD or an 

anoxic-aerobic digestion (AAD) for WAS stabilisation). These sub-models include: 

1. The ionic speciation model (Brouckaert et al., 2010). This model includes pairing of 

ionic components (the set of model ionic species is given in Table 3) and inter-phase 

transfers of component species. Table 4 gives an example of a set of equilibrium and 

mass balance equations used in the ionic speciation subroutine. 

2. The ASM2-3P model: This is the Activated Sludge Model No. 2 (ASM2, Henze et al., 

1995), modified to include the ionic speciation model (Brouckaert et al., 2010), the 

Inorganic Settleable Solids (ISS) model of Ekama and Wentzel (2004) and including 

multiple mineral precipitation according to Musvoto et al. (2000a,b). 

3. The ADM3P Model: This is the University of Cape Town Anaerobic Digestion Model 

(UCTADM; Sötemann et al., 2005), modified to include the hydrolysis of multiple 

organic sludge types (PS, ND WAS, NDBEPR WAS and PS-WAS blends), the 

Ekama and Wentzel (2004) ISS model, multiple mineral precipitation processes 

according to Musvoto et al. (2000a, b) and the Brouckaert et al. (2010) aqueous 

speciation model which facilitates ionic speciation (Ikumi et al., 2011). 

For their compatibility, the ASM2-3P and ADM3P models have the same comprehensive set 

of model components (supermodel approach, Volcke et al., 2006; model components given in 

Table 1 and applied stoichiometric processes in Table 4), including parameterized 

stoichiometry for the bioprocesses and sharing the same ionic speciation subroutine model 

(1).  
 

 

MODEL EVALUATION PROCESS 
 

1. Model Verification: To initiate the evaluation of the UCT-PW model (Ikumi et al., 2013), 

the systematic method proposed by Hauduc et al. (2010) was applied to verify that material 

(COD, C, H, O N, P, Mg K and Ca) balances were achieved in the determination of all 

stoichiometric processes. 

 

2. Parameter Values: The initial values for suitable kinetic and stoichiometric parameters as 

obtained experimentally or from literature were entered, and given the typical value range, 

determined according to the methods proposed by Brun et al. (2002). 
 

3. Senitivity Analysis: The parameters were subsequently evaluated using two different 

methods of global sensitivity analysis: (1) Standardised Regression Coefficients (SRC) and 

(2) Morris Screening. The results obtained using these methods are used to identify 

important parameters (prioritisation of those with greatest effects), non-influential 

parameters (those that can be ‘fixed’ at any value within their range without effecting 

outputs) and interacting parameters (Neumann, 2012). 

 

4. Model Calibration and Validation: Non-influential parameters were set at their default 

values and random samples were drawn from the remaining subset of parameters. For the 
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sampled parameter sets simulations were conducted and predicted model outputs were 

compared with observed outputs. During this calibration phase, a consistent set of 

parameter values was used to simulate all experimental systems/periods, and detailed 

explanations of observed discrepancies (if any) were reported by Ikumi (2011). The 

sensitivity analysis together with intuitive observation on a steady state stoichiometric 

model was a significant role in selecting the ‘best’ set of parameters. It was noted that 

influent sewage and sludge characterisation, and determination of hydrolysis kinetic rates 

were important requirements prior to any simulation. In AD, the hydrolysis process is the 

slowest one and requires the best possible calibration. The hydrolysis kinetic constants 

were fit to match experimental data by Ikumi et al. (2013), using the non-linear regression. 

The biological reactions following hydrolysis are limited by the hydrolysis rate, hence their 

kinetic parameters are not identifiable from these experimental data, and so were adopted 

without adjustment from literature. Most of the parameterised influent and sludge 

characteristics could be obtained or calculated from directly measured results (Ikumi, 

2011). This is because the unbiodegradable fractions of influent organics and the 

characteristics of the biodegradable feed components have a significant effect on the 

quality of model predictions, but are usually specific to the feed source. 
  

5. Model Performance Results: Below are observations in experimental behaviour of P 

removal systems, replicated by the UCT-PW model as required to promote confidence in 

its application: 

i. Applying the ASM2-3P model to an MLE system with ND does not stimulate EBPR 

(i.e., there is no PAO growth, hence no polyphosphate (PP) storage) and its effluent P 

comprises mainly the OP not utilized by the biomass (mainly OHOs) for growth.   

ii. For MLE systems with little or no nitrification taking place, high quantities of P and 

acetate in the un-aerated (‘anoxic’) zone will result in the growth of phosphorus 

accumulating organisms (PAOs) rather than ordinary heterotrophic organisms (OHOs) 

only as expected in fully aerobic or nitrogen (N) removal systems. The concentration of 

acetate available for this PAO growth (and associated EBPR) depends on the rate of 

fermentation of biodegradable soluble organics (BSO) that occurs and the concentration 

of nitrate that gets recycled to the anaerobic reactor in these systems. Moreover, as 

noted in 3 and 5-stage Bardenpho systems – in winter, when denitrification is lower, the 

nitrates recycled to the anaerobic reactor can be sufficiently high to suppress EBPR. 

The ASM2-3P model predicts this behaviour qualitatively well. 

iii. Applying ASM2-3P for sludge treatment with anoxic-aerobic digestion (AAD), the 

absence of VFA and an anaerobic period renders the PAOs unable to compete with the 

OHOs. Consequently, the PAOs do not grow and undergo endogenous respiration and 

die, releasing their stored PP as magnesium (Mg), calcium (Ca), potassium (K) and 

orthophosphate (OP). Struvite (MgNH4PO4) precipitation occurs when the 

concentration of Mg, ammonia and OP is high enough (i.e., the struvite is 

supersaturated) in the mixed liquor. If the ammonia is low (< 1mg/N/l), due to 

nitrification, K-struvite (MgKPO4) forms.  

iv. In AD, organically bound N is released with the hydrolysis of biodegradable organics in 

the non-ionic NH3 form, which are non-reference species (reference species of a weak 

acid system being one that, when added to pure water, creates a solution state, relative 

to which the alkalinity of the weak acid system is measured) for the ammonia weak 

acid/base system. Therefore, the aqueous alkalinity increases by the concentration of 

NH3 transferred from the organics (the NH3 being an intrinsic alkalinity content of the 

organics) to the aqueous phase. This is the main aqueous H2CO3
*
 alkalinity generation 
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process in an AD treating PS or WAS that is not P-rich. For P-rich systems with PP, the 

aqueous H2CO3* alkalinity increase also depends on PP and cell bound P release 

because PP is released as H2PO4 and biomass P is released as H3PO4, which interact 

with the other weak acid/base systems and influence pH. The ADM3P model predicts 

the pH for both these systems (P- rich or not) really well. 

v. In the dynamic model of the AD, initially, PP release and poly-hydroxy-alkanoate 

(PHA) storage by PAOs takes place with the uptake of acetate, as would happen in the 

anaerobic part of the parent NDEBPR system. This results in increased alkalinity 

because the PP is released as H2PO4
-
. Because the PAOs also require alternating aerobic 

conditions for their growth, they cannot grow in the AD. Therefore, the PAOs are 

modelled to “die” in AD at a rate faster than their endogenous respiration; releasing 

their PHA and the remainder of their stored PP, adding more H2PO4
-
 and alkalinity. 

Depending on the charge/proton balance requirements, some of the H2PO4
-
 species 

become HPO4
2-

 species by reacting with HCO3
- 

to form HPO4
2-

, H2O and CO2. The 

increase in CO2 gas increases the partial pressure of the gas phase, which influences the 

aqueous speciation. The split between the OP species co-dependent on the inorganic 

carbon (IC) system (and any other weak acid/base system that may be present), which 

together establish the AD pH. 

vi. Because H3PO4 is the reference species for the OP weak acid/base system, the total 

alkalinity does not change with the slower release of organically bound P, but the 

species that represent it do.  

vii. The rapid release of PP and associated Mg
2+

 and the slow release of biomass N and P 

generate high concentrations of P, NH4
+
 and Mg

2+
 species in the AD liquor, which 

promotes struvite precipitation. This struvite precipitation decreases the total alkalinity 

and so results in re-speciation of the IC system, which increases the CO2 partial pressure 

and decreases AD pH. 
 

COMPARISON OF EXPERIMENTAL AND PREDICTED RESULTS 

Figures 1a to f show a comparison between the data measured and simulated by the three 

phase AD dynamic model for the AD1 fed with the NDBEPR WAS (i.e. the AD effluent from 

UCT NDBEPR linked to AD in a plant wide setting). Considering the general complexities in 

characterization of the AD influent (i.e. the NDBEPR WAS; Ikumi et al., 2013), the 

simulated results match quite well for COD removal (Fig 1a, which it should because the 

hydrolysis rates were calibrated on to the experimental results), and FSA (Fig1b) and OP (Fig 

1c) release. Because all the AD products, including the H2CO3 and H3PO4 alkalinities and gas 

CO2 partial pressure (pCO2), are entirely dependent on the composition of the biodegradable 

organics (x,y,z,a,b,q,c,d,e in CxHyOzNaPb qMgcKdCaePO3), if the organics’ composition 

entered into the model is not “correct”, then the simulated and measured results will not 

match, even with 100% experimental material balances (which of course were not achieved 

on the UCT and AD systems). Improving the comparison between predicted and measured 

results is a complex exercise because multiple processes act on single compounds. For 

instance under-predicted FSA (Fig 1b) means the determined N content of the biodegradable 

part of the OHO and PAO biomass is too low, but this does not mean that the H2CO3 

alkalinity also has to be under-predicted (through NH3+H2CO3 → NH4
+
 + HCO3

-
, as it would 

for an AD fed with low P organics, Sötemann et al., 2005a,b) because the release of PP also 

produces alkalinity (through MePO3 + H2O → Me
+
 + H2PO4

2-
).  
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Figure 1a                                                        Figure 1b 

        

Figure 1c                                                        Figure 1d 

       

Figure 1e                                                       Figure 1f 

Figure 1: Comparison between simulated and measured results for AD of WAS from the 

laboratory scale UCT NDBEPR system fed with settled WW and added acetate to increase 

BEPR. 

 



 Ikumi et al. 

202 

 

 

CLOSURE 

The BIOMATH protocol was applied for the calibration of the UCT–PW model, for 

promotion of its widespread utilisation in a reproducible way. However, it is noted that the 

effective calibration of this model requires a further step - from modelling the laboratory scale 

systems (under controlled and completely mixed environments) to assessment of model 

predictions for full-scale wastewater treatment plant systems, interlinked to plant-wide 

configurations. This prospective work may be of particular interest to the IWA group on 

benchmarking of control strategies for WWTPs who are including P into an extended BSM 

model. 
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Table 1: Universally selected model components for UCT three phase plant wide model (UCT-PW) 

Name Empirical formula Description Units 

H2O H2O Water m
3
/d 

S_H H
+
 Hydrogen ion gH/m

3
 

S_Na Na
+
 Sodium gNa/m

3
 

S_K K
+
 Potassium gK/m

3
 

S_Ca Ca
2+

 Calcium gCa/m
3
 

S_Mg Mg
2+

 Magnesium gMg/m
3
 

S_NHx NH4
+
 Ammonium gNH4/m

3
 

S_Cl Cl
-
 Chloride gCl/m

3
 

S_VFA CH3COO
-
 Acetate gAc/m

3
 

S_Pr CH3CH2COO
-
 Propionate gPr/m

3
 

S_CO3 CO3
2-

 Carbonate gCO3/m
3
 

S_SO4 SO4
2-

 Sulphate gSO4/m
3
 

S_PO4 PO4
3-

 Phosphate gPO4/m
3
 

S_NOx NO3
-
 Nitrate gNO3/m

3
 

S_H2 H2 Dissolved hydrogen gH2/m
3
 

S_O2 O2 Dissolved oxygen gO2/m
3
 

S_U CHYuOZuNAuPBu Unbiodegradable Soluble Organics g/m
3
 

S_F CHYfOZfNAfPBf 

Fermentable Biodegradable Soluble 

Organics g/m
3
 

S_Glu C6H12O6 Glucose g/m
3
 

X_U_inf CHYupOZupNAupPBup 

Unbiodegradable particulate 

organics g/m
3
 

X_B_Org CHYbpOzbpNAbpPBbp Biodegradable particulate organics g/m
3
 

X_B_Inf CHYbpsOZbpsNAbpsPBbps 

Influent biodegradable particulate 

organics g/m
3
 

X_PAO_PP KkpMgmpCacpPO3 Polyphosphate g/m
3
 

X_PAO_Stor C4H6O2 Poly-hydroxy-alkanoate g/m
3
 

X_Str_NH4 MgNH4PO4.6H2O Struvite g/m
3
 

X_ACP Ca3(PO4)2 Calcium Phosphate g/m
3
 

X_Str_K MgKPO4.6H2O K-struvite g/m
3
 

X_Cal CaCO3 Calcite g/m
3
 

X_Mag MgCO3 Magnesite g/m
3
 

X_Newb MgHPO4 Newberyite g/m
3
 

X_ISS  Influent inorganic settleable solids gISS/m
3
 

X_OHO CHYoOZoNAoPBo Ordinary heterotrophic organisms g/m
3
 

X_PAO CHYoOZoNAoPBo Phosphate accumulating organisms g/m
3
 

X_ANO CHYoOZoNAoPBo Autotrophic nitrifying organisms g/m
3
 

X_ZAD CHYoOZoNAoPBo Acidogens g/m
3
 

X_ZAC CHYoOZoNAoPBo Acetogens g/m
3
 

X_ZAM CHYoOZoNAoPBo Acetoclastic Methanogens g/m
3
 

X_ZHM CHYoOZoNAoPBo Hydrogenotrophic methanogens g/m
3
 

X_U_Org CHyeOzeNaePbe Endogenous residue g/m
3
 

G_CO2 CO2 Carbon dioxide gCO2/m
3
 

G_CH4 CH4 Methane gCH4/m
3
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Table 2: Ionic species selected for the UCT three phase model (UCT-PW) 

 Formula Description   Formula Description 

1 H
+
 

Hydrogen 

ion 
 23 NH4SO4

-
 Ammonium sulphate 

2 Na
+
 Sodium  24 MgPO4

-
 

Magnesium 

phosphate 

3 K
+
 Potassium  25 CaCH3COO

+
 Calcium acetate 

4 Ca
2+

 Calcium  26 CaCH3CH2COO
+
 Calcium propionate 

5 Mg
2+

 Magnesium  27 CaHCO3
+
 Calcium bi-carbonate 

6 NH4
+
 Ammonium  28 NaSO4

-
 Sodium sulphate 

7 Cl
-
 Chloride  29 MgHPO4 

Magnesium 

hydrogen phosphate 

8 CH3COO
-
 Acetate  30 CH3COONa Sodium Acetate 

9 CH3CH2COO
-
 Propionate  31 H2CO3 

Di-hydrogen 

carbonate 

10 CO3
2-

 Carbonate  32 MgSO4 Magnesium sulphate 

11 SO4
2-

 Sulphate  33 HPO4
2-

 Hydrogen phosphate 

12 PO4
3-

 Phosphate  34 NH3 Ammonia 

13 NO3
-
 Nitrate  35 MgCO3 

Magnesium 

carbonate 

14 OH
-
 

Hydroxide 

ion 
 36 ACPO4

-
 Calcium Phosphate 

15 CH3COOH Acetic acid  37 MgHCO3
+
 

Magnesium 

hydrogen carbonate 

16 CH3CH2COOH 
Propionic 

acid 
 38 CaHPO4

-
 

Calcium hydrogen 

phosphate 

17 HCO3
-
 Bi-carbonate  39 NaCO3

-
 Sodium carbonate 

18 CaSO4 
Calcium 

sulphate 
 40 MgH2PO4

+
 

Magnesium di-

hydrogen phosphate 

19 H2PO4
-
 

Di-hydrogen 

phosphate 
 41 NaHCO3 

Sodium hydrogen 

carbonate 

20 MgCH3COO
+
 

Magnesium 

acetate 
 42 NaHPO4

-
 

Sodium hydrogen 

phosphate 

21 MgCH3CH2COO
+
 

Magnesium 

propionate 
 43 CaOH

+
 Calcium hydroxide 

22 CaCO3 
Calcium 

carbonate 
 44 MgOH

+
 

Magnesium 

hydroxide 

 

Table 3: Example for equilibrium and mass balance equations for ionic speciation 

Weak Acid Sub-System 

*Aqueous Phase Equilibrium 

Equations Mass Balance Equation 

Ammonia 

 
 

 



H

NHK
NH

NH 4

3
4

    
44

4

2

4
44

SONHK

NHSO
SONH


          4434 SONHNHNHNH x

 

*Where (H
+
) is the hydrogen ion activity, [X] the molar concentrations of species X and KX’ is the 

thermodynamic equilibrium constant for species X, adjusted for Debye Hückel effects to account for the 

activity of ions in low salinity water (Stumm and Morgan, 1996).  
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Table 4: Processes used in the application of UCT three phase plant wide model 

Name Description 

AerHydrol Aerobic hydrolysis of biodegradable particulate organics (BPO) 

AnHydrol Anoxic hydrolysis of BPO 

AnaerHydrol Anaerobic hydrolysis of BPO 

AerGrowthOnSf Aerobic OHO growth on fermentable soluble organics (FBSO) 

AerGrowthOnSa Aerobic OHO growth on Acetate 

AnGrowthOnSfDenitrif Anoxic OHO growth on FBSO 

AnGrowthOnSaDenitrif Anoxic OHO growth on Acetate 

Fermentation Fermentation of FBSO 

LysisOfAuto Storage of  poly-hydroxy-alkanoate (PHA) by PAOs 

StorageOfXPP Aerobic storage of PP with PHA uptake 

AerGrowthOnXPHA Aerobic growth of PAOs 

LysisOfXPP Release and hydrolysis of polyphosphate (PP) 

LysisOfXPHA Release and hydrolysis of PHA 

GrowthOfAuto Aerobic growth of ANOs with nitrification 

OHO_Lysis Lysis of OHOs in aerobic systems 

LysisOfXPAO Lysis of PAOs in aerobic systems 

LysisOfAuto Lysis of ANOs in AS system 

Aeration Oxygen supply to aerobic reactor 

FSO_Hydrolysis Hydrolysis of FBSO in AD system 

BPO_Hydrolysis Hydrolysis of BPO produced by dead biomass 

BPO_PS_Hydrolysis Hydrolysis of BPO from primary sludge (PS) 

OHO_Lysis_AD Lysis of OHOs in AD system 

PAO_Lysis_AD Lysis of PAOs in AD system 

PP_Release Release of  PP with uptake of PHA in AD system 

PP_Hydrolysis Release  and hydrolysis of PP in AD system 

PHA_Hydrolysis Release and hydrolysis of PHA in AD system 

Acidogenesis_L Low hydrogen partial pressure (pH2) Acidogenesis 

Acidogenesis_H High pH2 Acidogenesis 

AD_decay Lysis of acidogens 

Acetogenesis Growth of acetogens in AD system 

AC_decay Lysis of acetogens 

Acet_methanogenesis Growth of acetoclastic methanogens in AD system 

AM_decay Lysis of acetoclastic methanogens  

Hyd_methanogenesis Growth of hydrogenotrophic methanogens in AD system 

HM_decay Lysis of hydrogenotrophic methanogens 
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Abstract 
The aim of this study was to develop extensions of Activated Sludge Model No. 2d (ASM2d) for 
modelling the behaviour of Polyphosphate Accumulating Organisms (PAOs) in biological nutrient 
removal (BNR) activated sludge systems with addition of an external carbon source. Two significant 
modifications for the expanded ASM2d were included: (1) a switch function for the inhibitory effect 
of dissolved oxygen on storage of poly-β-hydroxyalkanoates (PHA); (2) a new process describing the 
direct growth of PAOs on fermentation products (SA) under aerobic conditions. These modifications 
improved the model predictions of  P release and uptake processes in one- and two-phase batch 
experiments with acetate as an external carbon source.  
 
Keywords 
ASM2d; biological nutrient removal; EBPR; external carbon; PAOs 

 
 

INTRODUCTION 
External carbon sources are readily biodegradable compounds which are usually added to 
enhance the denitrification process and improve the overall nitrogen removal efficiency in 
biological nutrient removal (BNR) processes. In combined N/P removal systems, the external 
carbon sources may also interact with the enhanced biological P removal (EBPR) process 
accomplished  by  Polyphosphate Accumulating  Organisms  (PAOs). However, the 
possibility that PAOs may oxidize the fermentation products (SA) has been ignored in 
activated sludge models (ASMs) because, as noted by Henze et al. (2000), ‘‘it is unlikely that 
such substrates ever become available under aerobic or anoxic conditions in a biological 
nutrient removal (BNR) plant’’. This assumption is likely to fail for systems with external 
carbon addition, as the readily biodegradable compounds may become available for direct 
utilization by PAOs under anoxic and aerobic conditions. Few studies focused specifically on 
modelling the effects of external carbon addition on PAOs with the ASMs so far. Swinarski et 
al. (2012) developed a new model as an expansion of ASM2d to predict the effect of adding a 
readily biodegradable substrate to a combined N/P system.  The aim of this study was to 
further modify the ASM2d with regard to the behaviour of PAOs under aerobic conditions in 
the presence of external carbon (acetate).  
 

MATERIAL AND METHODS 
Model development and simulation platform 
A conceptual model of the expanded ASM2d under aerobic conditions is presented in Figure 
1.The following extensions were considered: (1) the inhibitory effect of dissolved oxygen on 
storage of poly-β-hydroxyalkanoates (XPHA) by PAOs (XPAO) under aerobic conditions, (2) 
direct aerobic growth of XPAO on fermentation products (SA). Therefore, the kinetic 
expressions for storage of XPHA and aerobic growth of XPAO on SA in the expanded ASM2d 

mailto:oleszkie@cc.umanitoba.ca
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become as follows: 
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The stoichiometric matrix for these two processes is presented in Table 1. GPS-X ver. 5.0.2 
(Hydromantis, Canada) was used as a simulator environment for implementing the developed 
models and running simulations. For model calibration, a special utility called “Optimizer” 
was used. Parameters were estimated based on the Nelder-Mead simplex method with the 
maximum likelihood as an objective function. Three different scenarios were conducted for 
optimizing prediction of the external carbon addition (Table 2). 
 
Batch experiments 
In order to examine the effects of external carbon addition and the PO4-P concentration at the 
beginning of aerobic conditions on the PAOs behavior, two-phase (anaerobic/aerobic) and 
one-phase (aerobic) experiments were carried out with fresh mixed liquor withdrawn from the 
aerobic zone of a large BNR activated sludge plant in Gdansk (northern Poland). At the 
beginning of the aerobic phase, sodium acetate (CH3COONa) and  nitrification inhibitor 
(ATU) were added. Samples were filtered and analyzed for PO4-P and COD. In addition, 
oxygen uptake rate (OUR) was measured in a cyclic (3 minutes) mode. 
 
RESULTS AND CONCLUSIONS 
In the two kinds of batch experiments, the external carbon addition at the beginning of aerobic 
condition resulted in a significantly different PAO behavior. In the two-phase experiment, no 
PO4-P release was observed (Figure 2a), which indicated that the addition of external carbon 
had no or a minor effect on P uptake by PAOs. In this case, predictions of ASM2d which 
assume the growth of PAOs on PHA only and ignore the aerobic growth of PAOs on SA, 
could not match the experiment data accurately. Therefore, the ASM2d required appropriate 
extensions to better predict the effect of external carbon addition on PAOs. Model predictions 
for Scenario 1, which considered oxygen inhibition of storage of PHA, appeared to be 
consistent. Results from one-phase experiment showed that PO4-P was released in the initial 
45 min of the experiment (Figure 2b). This confirmed the process of storage of PHA can 
occur under aerobic conditions provided that readily biodegradable substrates are available 
and that PO4-P is not completely released. In this case, P release and uptake data were 
matched accurately by the model predictions of Scenario 2 which considered the direct 
aerobic growth of XPAO on the external carbon. Scenario 3, considering both the aerobic 
inhibition of storage of PHA and aerobic growth of PAOs on SA, can generally predict the 
behaviour of PO4-P, COD and OUR for both experiments (Figure 2a-d). Further extensions of 
ASM2d for better predictions of the aerobic and anoxic behaviors of PAOs in the presence of 
external carbon addition will be presented in the full paper.  
 
ACKNOWLEDGEMENT 
This work was carried out under the project “CARbon BALAncing for nutrient control in 
wastewater treatment (CARBALA)”.  
 
REFERENCES 
Henze  M., Gujer W., Mino  T., van Loosdrecht M. (Eds.) (2000). Activated Sludge Models ASM1, ASM2d and 

ASM3. Scientific and Technical Report No. 9, IWA Publishing: London. 
Swinarski  M., Makinia  J., Stensel H. D. Czerwionka  K., Drewnowski, J. (2012). Modeling external carbon 

addition in biological nutrient removal processes with an extension of the International Water 
Association activated sludge model. Water  Environ. Res., 84(8), 646–655.  



 Hu et al. 

209 

 

                   

XPAO

XPHA

SPO4 XPP

SA

XH

Modified ASM2d process 

Bulk phase

Ordinary 

heterotrophs

Floc phase

PAOs

ASM2d processes 

New process

 
Figure 1 Model Concept in the expanded ASM2d under aerobic conditions 

  

  
Figure 2  Measured data vs. model predictions in the batch experiments in different scenarios of the 

expanded ASM2d: (a) PO4-P in the anaerobic/aerobic experiment, (b) PO4-P in the aerobic experiment, (c) 

COD and OUR in the anaerobic/aerobic experiment (Scenario 3), (d) COD and OUR in the aerobic 

experiment (Scenario 3). 

 

Table 1 Stoichiometric matrix for the expanded ASM2d 

Process                                 

Component 
SO2 SA SNH4 SPO4 SALK XPAO XPP XPHA 

Storage of XPHA by XPAO 
 

-1  
YPO4

 
νALK  -YPO4 1 

Aerobic growth of XPAO on SA 
PAO

PAO

Y

Y


1  

PAOY

1
  

BM,Ni  
BM,Pi  νALK 1   

 

Table 2 Three different scenarios considered and adjusted parameters in the expanded ASM2d 

No. Extensions of the expanded ASM2d Adjusted parameters and their values 

Scenario 1 Aerobic inhibition of storage of XPHA (Eq. 1) KO2, PAO=0.20 g O2/m
3
 

Scenario 2 Aerobic growth of XPAO on SA (Eq. 2)  PAO2=0.21 d
-1

, KSA, PAO=4.12 g COD/m
3
 

Scenario 3 Both scenario 2 and scenario 3 (Eq. 1 & Eq. 

2) 
KO2, PAO=1.11 g O2/m

3
,   PAO2=0.14 d

-1
,  

 KSA, PAO=5.05 g COD/m
3
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INTRODUCTION 

Achieving phosphorus removal from wastewater to very low levels is often performed by 

metal salt addition. The engineering stakes for this process consist of ensuring compliant 

effluent phosphorus concentrations, while at the same time saving chemicals and limiting 

chemical sludge production. Modeling is a commonly used engineering tool to handle such 

issues. However, metal salt precipitation such as iron dosing is not well described in current 

wastewater process models. Existing chemical phosphorus removal models are mainly 

focused on ferric phosphate precipitation (de Haas et al., 2001; Fytianos et al., 1998; 

Luedecke et al., 1989). However, this pathway occurs only at acidic pH (below pH 5) as 

demonstrated by Smith et al. (2008) and based on experiments and literature solubility data 

(NIST 2001). De Haas et al. (2001) published a series of articles presenting a pilot-plant 

operated with different conditions of metal salts dosage, including a study dedicated to the 

application of an ASM2 model combined with an iron phosphate precipitation process similar 

to Luedecke et al. (1989) model on their case study. The authors showed several pitfalls of 

their model: the Fe:P precipitate stoichiometry has to be changed depending on the sludge age 

(the model does not predict storage effects) and the model does not adequately predict 

behavior at low P concentration, high and low iron doses. Furthermore the authors underlined 

the necessity to improve such precipitation model by including chemical equilibria, pH and 

alkalinity prediction. 

 

The combination of very fast (chemical equilibrium) and slow (kinetic 

precipitation/adsorption) reactions, variable molar ratios, multiple dosage points, the effect of 

mixing, colloidal material conversions and multiple precipitates requires a new modeling 

framework. This framework can then be applied to full plant process models to optimize 

doses and dosage locations and increase the safety of effluent compliance. A dynamic 

physicochemical model for chemical phosphorus removal has been developed and calibrated 

based on previous studies and experimental data from Smith et al (2008) and Szabo et al. 

(2008) (Hauduc et al., 2013). The objectives of this study are threefold: first the model is 

extended for a better prediction of batch data at low pH and high metal salt dosing, then it is 

mailto:helene.hauduc@insa-toulouse.fr
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combined with a biokinetic model and finally compare the model with continuous data 

obtained by de Haas et al. (2001) in pilot plant with real wastewater. 

 

MODEL DEVELOPMENT 

Iron dosage leads to rapid hydrous ferric oxide (HFO, including amorphous minerals such as 

2-line ferrihydrite) precipitation. Phosphorus may then be removed from the bulk solution 

through different pathways: 1) adsorption of phosphates onto HFO by sharing an oxygen 

atom with iron; 2) co-precipitation of phosphate molecules into the HFO structure; 3) 

precipitation of ferric phosphate and 4) precipitation of mixed cation phosphates (Smith et al., 

2008). These processes are taken into account in the new model, which predicts kinetically 

the precipitation of hydrous ferric oxides (HFO), the phosphates adsorption, and the co-

precipitation mechanisms. It is combined with chemical equilibrium and physical 

precipitation reactions in order to model observed bulk dynamics in term of pH. The model is 

calibrated based on previous studies and experimental data from Smith et al (2008) and Szabo 

et al. (2008). The simulations results showed that the structure of the model overall describes 

adequately the mechanisms of adsorption and co-precipitation of phosphates onto HFO and 

that the model is robust to experimental conditions: Fe/P dose, time, HFO aging and mixing 

intensity, as illustrated on Figure  for Fe/P dose and mixing effect. 

 
Figure 1. Left: Effect of initial Fe/P molar ratio on residual soluble phosphorus and on final pH of the 

batch: experimental results from Szabo et al. (2008) (batch tests of 11 min, Pini=3.5 mg/L, pHini=6.5, 

Alkini=125 mg CaCO3/L, G=425 s
-1

). Right: Effect of G value (mixing intensity) on residual soluble 

phosphorus: experimental results from Szabo et al. (2008) (batch tests of 11 min, Pini=4.1 mg/L, 

Fe/Pini=1.8 mole/mole). 

 

 

COMBINING FeP MODEL WITH ASM2D 

To combine the FeP model with a biological model, the biological model has first to be 

adapted to insure continuity in charge and carbon of the processes and to the ionic species 
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consumed or released by biomasses. In bio-P models, at least five state variables are involved 

in acid-base systems: acetate, phosphate, carbonate, nitrate and ammonia. These state 

variables comprise all the acid-base species. However, to introduce chemical equilibrium 

processes and to correctly model the pH, a choice has to be made in the species consumed or 

produced by the biological reactions.  

 

According to Sotemann et al. (2005) microorganisms are taken up the non-ionic form of 

acetate, propionic acid, ammonia and phosphate for cell synthesis. In the case of 

polyphosphate storage, phosphate is taken in the form H2PO4
-
 linked to counter ions K

+
 and 

Mg
2+

 (Barat et al., 2005). However at typical pH range of our system (7 to 8.2), the most 

abundant species are NH4
+
 and HPO4

2-
. Consequently we chose to use NH4

+
 and HPO4

2-
 as 

state variables in the biokinetic model and protons are corrected accordingly.  

 

Inorganic carbon uptake and release is considered to be the non-ionic form H2CO3. The 

stoichiometry of H2CO3 is based on the difference in carbon content of substrate and product, 

calculated with their COD/C ratio. 

 

CASE-STUDY APPLICATION 

De Haas et al (2000a) published a series of articles presenting a three-stage Phoredox (Table ) 

operated with different conditions of metal salts dosage: alum or ferric chloride (for this study 

only data on ferric chloride addition are considered), doses of metal salt, sludge age and 

dosage points. The Table  summarized the 9 experimental periods considered in this study and 

their respective conditions. An identical control pilot-plant is operated in parallel without 

metal salt addition. Therefore a new model is required to predict HFO precipitation, pH 

modifications through chemical equilibrium and phosphate adsorption, and co-precipitation 

onto/into HFO. 
 

Table 1. Experimental periods of FeCl3 dosing from de Haas et al. (2000b) with effluent phosphorous 

concentration obtained in the control pilot-plant (R2) and the pilot-plant with metal salt addition (R1). 

The figure represents the pilot-plant configuration. 

   R2 R1 

 

Period 

name 

Nb of 

days 

Sludge 

age (d) 

Pe R2 

(mg/L) 

Dosage 

point 

Fe/ 

PeR2 

Pe R1 

(mg/L) 

1 62 20 26.95 2 0.21 22.73 

2 34 20 26.98 2 0.42 15.05 

3 27 20 28.34 1 0.20 23.8 

4 18 10 21.27 1 0.27 18.88 

5 21 10 25.29 1 0.45 16.03 

6 20 10 21.64 2 0.53 15.94 

7 45 10 0.43 2 13.31 0.45 

8 64 10 0.62 2 9.23 0.62 

9 12 10 11.15 2 0.51 10.42 

 

The ability of the new FeP model to reproduce the behavior of a simple three-stage Phoredox 

pilot plant operated under different conditions will be evaluated and compare to a simple iron 

phosphate precipitation model. The model combined to ASM2d is implemented in Aquasim 

software (version 2.1g, EAWAG, Dübendorf, Switzerland) (Reichert, 1994). The behavior of 

the biological model will first be compared with the control pilot data. The full model will 

then be applied to the different periods of the pilot-plant operation. 
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MOTIVATIONS 

The increasingly stricter legislation for WWTP has raised the need of a more efficient 

management and hence, successful biological P removal has become a short term aim. The 

implementation of enhanced biological phosphorus removal (EBPR) is considered the most 

sustainable approach to meet P discharge levels, and the current knowledge gained on this 

process has raised the opportunity of developing new control structures to specifically control 

P effluent concentration (Guerrero et al., 2011b; Machado et al., 2009; Ostace et al., 2013). 

However, despite EBPR is nowadays a quite known technology, its interaction with biological 

nitrogen removal may still lead to P removal failures in full-scale WWTP (Guerrero et al., 

2011a).  

 

The research presented in this work integrates a modelling-based study of a novel control 

strategy to minimize the existing detrimental interactions between biological N and P removal 

together with its experimental validation in a 170L pilot plant with on-line monitoring of 

nutrients (phosphate, nitrate and ammonium). The model calibrated and validated was an 

extension of ASM2d that also includes nitrite as state variable and corrected settler reactivity 

(Guerrero et al., 2013). This research, thus, embraces the design, implementation, simulation, 

optimization, systematic evaluation and experimental validation of conventional and 

innovative control strategies under normal operation and stress operation (i.e. influent 

disturbances, ammonium, nitrate and nitrite peaks…) for two different WWTP configurations 

with P-removal (A
2
O and Johannesburg). A systematic approach was conducted to assess the 

performance of the control strategy based on classical benchmark indexes related to the 

operational costs and related to the possibility of developing microbial-related problems in the 

settler. 

 

Several studies reported that the presence of VFA in the wastewater is mandatory to obtain a 

high P removal capacity. Unfortunately, an external VFA addition is not usually cost-effective 

and it increases the overall plant carbon footprint. A promising and very attractive alternative 

would be focused on the utilization of waste materials that could be fermented to VFA 

(Guerrero et al., 2012). Glycerol is a good example of such wastes materials since it is a by-

product of biodiesel fuel production: about 1 L of glycerol is generated for every 10 L of 

produced biodiesel fuel produced. Taking into account all these considerations, crude glycerol 

could be a very practical and cost-effective external carbon source to reduce the detrimental 

effect of nitrate under anaerobic conditions since it could be used in both N a P removal 

processes. However, there are not previous studies about crude glycerol utilization as carbon 

source for improving EBPR. 
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RESULTS AND DISCUSSION 

The control strategy presented is based on external carbon addition to mitigate the detrimental 

effect on EBPR of nitrate entering to the anaerobic phase. The procedure used involved four 

steps: 

 

1) Model calibration under open-loop conditions including experimental data when the plant 

is operated with different disturbances (see Figure 1). The effect of these disturbances should 

be minimised once the control strategy is active. The parameters were calibrated following the 

guidelines of GMP and using the FIM approach to define confidence intervals (see example in 

Table 1). Data from a high ammonium disturbance (HAD) were used for calibration and data 

from a high nitrite disturbance (HND) for validation. 
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Figure 1 Model calibration and validation. A

2
/O pilot plant behaviour and model predictions.  represents 

ammonium,  nitrate,  nitrite and  phosphorus. Red colour belongs to R1 (anaerobic reactor) 

concentrations, white colour to R3 (effluent), grey colour to QREXT. Model predictions: blue line indicates 

simulation ammonium results in R3, black line belongs to nitrate in R3, grey line to nitrate in QREXT, green line 

to nitrite in QREXT, red line to phosphate in R1 and black dashed line to phosphate in R3. 

 
Table 1 Parameters obtained in the model calibration by using the experimental data of AD in A2/O configuration. RSF: 

Reduction factor applied to the reactive settler capacity.  

Parameters 
ASM2d value (20oC) Calibrated value 

Confidence interval  Units 

qPHA 3.00 2.76 4.8·10-3 mg XPHA · mg XPAO
-1 · d-1 
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qPP 1.50 1.70 2.4·10-3 mg XPP · mg XPAO
-1 · d-1 

μHET  6.00 4.10 3.6·10-3 d-1 

ŋNO3, OHO 0.80 0.32 5.7·10-3 - 

ŋNO2, OHO* - 0.48 2.5·10-2 - 

RFS* - 0.59 2.6·10-3 - 

* These parameters do not appear in ASM2d model (Henze et al., 2000) 

2) Design the adequate control strategy for the existing problem. This is a theoretical step 

where the know-how of the designers and the previous experimental data is essential. Figure 2 

shows, in this example, the description of the control strategy based on crude glycerol 

addition under anaerobic conditions to reduce the nitrate concentration in the anaerobic 

reactor. The same control strategy was proposed and evaluated for both A
2
O and 

Johannesburg configurations. The parameters of the digital controllers were tuned according 

to ITAE criteria. 

 

 
Figure 2 Scheme of the control structure proposed to reduce nitrate effect on EBPR in an A2/O configuration. 

 

3) Simulation-based assessment of the proposed control strategy under different 

scenarios. Once the control design is implemented, several scenarios (influent variability, 

disturbances, parameter changes, T, pH…) can be tested depending on the model prediction 

capability. In this case, the optimised and tuned control strategy was implemented in A
2
/O 

and JHB pilot plants to prevent EBPR failure for different ammonium and nitrite disturbances 

(see Figure 3). 

 

4) Experimental validation. Once the model simulations are run, the control configuration 

with the optimised tuning is tested in the pilot plant. The maximum number of disturbances 

are applied to get even more insight on the process performance and to verify the simulation-

based results. Figure 3 shows the validation step when the glycerol control strategy was 

applied. The model predicted very well the evolution of the main parameters and the control 

performance. 
 

The results show that simple PI feed-back control for crude glycerol dosage could be very 

useful for easily maintain proper P-removal efficiency in full-scale WWTP, even operating 

under high nitrate anaerobic inlet conditions. However, some limitations on control 

performance could appear when treating influents with sudden changes in N influent 

concentration, because the controlled variable (P effluent concentration) has a slow response 

in front of manipulated variable changes (crude glycerol addition). Two different approaches 

are proposed to solve this behaviour: i) a simple modification of the control strategy by 
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controlling the P concentration in R1 and ii) feed-forward control in combination with feed-

back control. 
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Figure 3 Experimental and model predictions when the control was applied in the JHB scenario.  represents 

ammonium,  nitrate,  nitrite and  phosphorus. Red filled colour belongs to R1 (anaerobic reactor), white 

colour to R3 (effluent) concentrations, grey colour to QREXT (external recycle) concentrations. Model 

predictions: blue line indicates simulation ammonium results in R3, black line belongs to nitrate in R3, green line 

belongs to nitrite in R3, grey line to nitrate in QREXT, grey dashed line to nitrite in QREXT, red line to 

phosphate in R1 and black dashed line to phosphate in R3. 
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Abstract 

Current process models used across the wastewater industry have inherent limitations due to 

limited physico-chemical models, especially with respect to description of mineral precipitation 

reactions. As part of the overall effort towards development of more general and robust 

physicochemical models, this paper uses acid-base titration experiments to examine an 

equilibrium-kinetic modelling approach. The approach was first validated without precipitation 

and was then tested for titration with precipitation of magnesium and calcium phosphate 

minerals. The results suggest that a single-parameter equilibrium-kinetic approach can provide 

good prediction of wastewater pH over a wide range and is generally expandable for inclusion 

of multiple minerals.  

 

Keywords 

Acid-base titration, physico-chemical modelling, precipitation, equilibrium, kinetics 

 

 

INTRODUCTION 
Mathematical models have been successfully used as tools in research, process design, 

training, control and optimization of wastewater treatment. However, to date the emphasis of 

wastewater process models has largely been on biological reactions (Batstone et al. 2002, 

Henze et al. 2000) rather than physico-chemistry which is also highly influential and 

important (Batstone et al. 2012). Consequently, physico-chemistry modelling of wastewater 

has become an important field of research and development during recent times (Musvoto et 

al. 2000a, Tait et al. 2009). To date different modelling approaches have been applied to study 

a particular class of influential physico-chemical reactions, namely chemical precipitation. 

These modelling approaches are typically equilibrium-based (time-independent, 

thermodynamically driven) or kinetic-based (time-dependent, reaction rate dependent).  

 

Briefly, equilibrium-based models assume that sufficient time has passed with each model 

timestep so that precipitation reactions achieve thermodynamic equilibrium and solution 

thermodynamics then determine the final mineral phase composition (Loewenthal et al. 1995, 

Ohlinger et al. 1998). Thus, the equilibrium approach does not give consideration of 

metastability (the occurrence of a significant state of supersaturation without any spontaneous 

precipitation), does not give information on intermediate mineral phases along the way to 

achieving thermodynamic equilibrium, and does not account for precipitation interactions 

between various mineral phases (Valsami-Jones 2001). An equilibrium-based approach can 

however be computationally efficient when compared with a kinetic-based approach and does 

mailto:c.kazadimbamba@awmc.uq.edu.au
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not require calibration of model parameters because these are all pre-defined by well-known 

electrolyte solution thermodynamics.   

On the other hand, a kinetic-based model allows chemical precipitation or dissolution 

reactions to occur with each model timestep to achieve a resulting solution composition which 

may still have a significant super-or-undersaturation state. Kinetic-based modelling 

approaches are helpful to capture mechanistic aspects such as intermediate mineral phases 

(Barat et al. 2011) and inhibition of precipitation (Tait et al. 2009). However, model 

complexity can be an issue with kinetic-based models. As the number of minerals and 

precipitating ions increase, the complexity of the model also increases (Batstone et al. 2012). 

Each kinetic physico-chemical reaction has a dedicated kinetic rate expression with additional 

parameters to determine, and can introduce additional dynamic states for the solid mineral 

phases.  

 

A likely optimum scenario is a combination of equilibrium and kinetic-based model structure 

to increase computational efficiency as well as capture mechanistic information. Such a model 

treats fast physico-chemical reactions (such as aqueous phase reactions) as equilibrium, and 

slow physico-chemical reactions (such as minerals precipitation) as slow dynamic processes. 

Combined equilibrium and kinetics may be a robust modelling approach that could be 

adopted across the wastewater industry as a general approach that would foster collaboration 

and communication and allow streamlined formulation of plant-wide models (Batstone et al. 

2012). The equilibrium-kinetic modelling does however require testing and validation before 

widespread adoption, and towards this end, the present work uses acid-base titration with 

mineral precipitation to evaluate the modelling approach.  

 

Materials and Methods 

Sample materials 
Stock solutions were prepared with analytical grade reagent chemicals dissolved in de-ionised 

water. The ionic strength of the stock solutions was typically adjusted to a desired value by 

adding sodium chloride. No mineral precipitate seed was used in the experiments, so any 

precipitation occurred spontaneously.  

 

Apparatus  

Solution pH was measured with a calibrated DGi115-SC pH probe (Mettler-Toledo, 

Greifensee, Switzerland). Potentiometric titrations were performed with a fully automated 

auto-titrator (T50, Mettler-Toledo, Greifensee, Switzerland). The titrator was equipped with a 

10 mL burette to add titrant to the test solution. Titration vessels used in the experiments were 

(a) 100 mL beakers, with working volumes of 75 mL or b) a 1 L stirred glass crystallizer. 

During a titration, the test sample to which titrant was added was stirred with a 25 mm teflon-

coated magnetic bar stirrer at 150 rpm. The volume of each titrant added, the pH and the 

temperature were recorded over time through a LabX Light Titration Software interface 

(Mettle-Toledo, Greifensee, Switzerland).  

 

Experimental procedure 
Acid-base titration tests were performed with and without precipitation to provide 

experimental data for model testing. All experiments were carried out at room temperature 
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(20 – 25
o
C). The pH probe was calibrated before each titration experiment using standard 

calibration buffers at pH 2, pH 4, pH 7 and pH 10. The pH of a 75-1000 mL aliquot of test 

solution (actual volume known accurately) test solution was adjusted to acidic pH with 

hydrochloric acid. About 10-20 mL of sodium hydroxide (or other titrant) was then 

quantitatively added at a set dosing rate and pH was continuously measured. For each 

experiment, the volume of titrant added over time and the corresponding pH were recorded 

together with the initial volume of the test solution. In some of the experiments a 1 mL 

sample of the crystallizer contents was collected at specified time intervals, immediately 

filtered through 0.2 µm syringe filters (PES) membrane, diluted with deionized water to 

prevent post-precipitation and stored at 4
o
C until further analysis by Inductively Coupled 

Plasma Optical Emission Spectroscopy (ICP-OES) and flow injection analysis (FIA).  

 

Analytical techniques 

The major elements (Ca, Mg) in the synthetic aqueous solution were analysed with ICP-OES 

(Perkin Elmer Optima 7300DV, Waltham, MA, USA). Ionic concentrations ammonical 

nitrogen (NH4-N) and phosphate phosphorus (PO4-P) were quantified with a Lachat 

QuickChem 8500 flow injection analyser (Lachat Instruments, Loveland, CO, USA) as per 

the Lachat QuickChem Method 31-107-06-1-A.  

 

Modelling 
The model structure consisted of two parts, namely, an equilibrium part which described 

aqueous phase reactions such as the acid-base and soluble ion association and a kinetic part 

for the slower chemical precipitation or dissolution reactions.  

 

Modelling of aqueous equilibria  
The equilibrium part consisted of a number of non-linear algebraic equations which were 

formulated by substituting equilibrium relationships (mass action laws) into species 

contribution balances in accordance with the so-called Tableau Method (Morel and Morgan 

1972, Morgan and Stumm 1996). This provides a reduced equation set to solve for a smaller 

subset of selected ingredients (the model “components”) which have been arbitrarily selected 

to account for the total composition of the wastewater. This is a common approach used in the 

formulation of equilibrium models. The selected model components in this work were H
+
, 

Na
+
, NH4

+
, Cl

-
, Ca

2+
, Mg

2+
, CO3

2-
, PO4

3-
 and the selected species (wastewater ingredients that 

were not selected as components) were H2CO3, H2PO4
-
, H3PO4, HCO3

-
, HPO4

-2
, Mg(NH3)2

2+
, 

Mg2CO3
2+

, MgCl
+
, MgCO3, MgHCO3

+
, MgHPO4, MgOH

+
, MgPO4

-
, Na2HPO4, Na2PO4

-
, 

NaCl, NaCO3
-
, NaH2PO4, NaHCO3, NaHPO4

-
, NaOH, NaPO4

2-
, NH3, OH

-
. The effects of 

temperature was corrected for using the constant-enthalpy van’t Hoff approach and ionic 

strength was corrected for with the Davies approximation of activity coefficients also with 

separate temperature correction. In the development of the speciation model, one of the 

mainstream aqueous speciation programs, visual MINTEQ (Allison et al., 1991), was used as 

reference model to validate the simulation outputs of the developed equilibrium model, and 

thermodynamic constants that are in the MINTEQ database were also used in this study. Ionic 

strength and activity coefficient equations were solved with the main tableau equation set 

such that there were 10 implicit unknowns for a like number of equations. The full implicit 

algebraic equation set is given in the supplementary material.   
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The potential for precipitation or dissolution to occur was predicted using the well-known 

parameter termed the saturation index (SI) which is defined as follows 

 
 

(1)  

where IAP is the product of the chemical activities of participating ions in the supersaturated 

solution and as  is the solubility product constant. For a given solution, three states exist, 

depending on the saturation index: 

 If , the solution is undersaturated, and a solid phase can dissolve into solution; 

 If , the solution is said to be saturated or at equilibrium; 

 If , the solution is supersaturated or oversaturated with respect to the mineral in 

solution, and chemical precipitation can occur. 

 

Modelling of precipitation kinetics 

The second equation subset consisted of slow kinetic reactions with corresponding kinetic rate 

laws which in-turn influenced a dynamic state equation set via respective stoichiometric 

coefficients. The rates at which these slow reactions occur are dependent on the 

concentrations of specific ingredients which are modelled in the equilibrium equation set (that 

is, the participating ions for a precipitating mineral). Thus, the kinetic equation set is 

influenced by the model solution of the parallel algebraic equation set. The equation set 

included dynamic state equations for total dissolved species and each mineral phase 

considered and the kinetic rate laws listed in Table 1. Each rate law expression had a lumped 

empirical rate coefficient k, a supersaturation term between brackets which determined the 

thermodynamic driving force for precipitation or dissolution to occur based on the chemical 

activities of the respective ions and a Ksp value which is the solubility product constant. The 

power-exponent values on each of the respective supersaturation terms were set at 3 for 

struvite and 2 for newberyite based on the prior work of Gunn (1976) and Musvoto et al. 

(2000b), respectively. This model structure can be easily expanded to include the precipitation 

of many other minerals.  

 

Table 1: Stoichiometric matrix for the precipitation/dissolution and liquid-gas transfer 

processes 

Precipitation process 

Chemical states 

Precipitation rate equations (ρ) 

      

Struvite (MgNH4PO4) 

precipitation  
 1   1 1   

Newberyite (MgHPO4) 

precipitation  
 1   1 1   

 

 

The Ksp value for Struvite was assumed to be 10
-13.26

 (Kofina and Koutsoukos, 2005) and for 

Newberyite it was assumed to be 10
-18.17

 from the thermodynamic database in Visual Minteq 

(Allison et al. 1991).  The model was implemented in MATLAB/SIMULINK (Version 8.1, 
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MathWorks Inc.) and the code is available from the authors on request, including 

documentation of the code. 

 

RESULTS AND DISCUSSION 

Equilibrium validation 

Figure 1 presents results for measured and modelled pH of preliminary validation experiments 

without any precipitation. The results show that the model reliably predicted pH in the 

absence of precipitation, thus indicating that the equilibrium portion of the model was 

correctly implemented. It is important to note that no parameter adjustment was required to 

achieve these predictions, because the equilibrium is based on well-established electrolyte 

solution thermodynamics.  

 

 

Figure 1: Model and experimental results for titration without precipitation and (a) 0.5M HCl 

added to synthetic aqueous solution with 60mM Na2CO3, 50mM NH4Cl, 2.44mM sodium 

acetate and 5mM NaH2PO4 (initial pH was increased with concentrated NaOH); and (b) 0.1M 

NaOH added to synthetic aqueous solution with 5mM NaH2PO4 (initial pH was decreased 

with concentrated HCl). 

 

Titration with precipitation 

Figure 2 show modelled and measured pH values for experiments with precipitation.  The 

model was able to describe the experimental behaviour well for a value of kStruv=0.7 × 10
-6

 

moles.min
-1

(Figure 2a). To attempt to simulate what would happen if struvite precipitation 

was occurring very fast (and thus the resulting solution would be forced to achieve a constant 

state of thermodynamic equilibrium) The value of kStruv was arbitrarily set at a high value of 

0.1 moles.min
-1

 and the simulation results for this model is presented in Figure 2b. The 

resulting quasi-equilibrium precipitation is clearly shown in Figure 2c by a Saturation Index 

value of 0 (at equilibrium) between a model time of about 100 minutes and 500 minutes. That 

is, a model with rate parameters which are set to be sufficiently rapid theoretically gives 

identical results to an equilibrium-based formulation of the same modelled system (Musvoto 

et al. 2000a). The marked discrepancy between modelled and measured pH shown in the 

(b) (a) 
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quasi-equilibrium simulation (Figure 2b) is clear evidence that precipitation kinetics were 

influential over a titration time-scale of 600 minutes (10 hours). This is also shown in Figures 

2c and 2d by the highly positive Saturation Index values for struvite as calculated from the 

measured concentration of magnesium, ammonical nitrogen and phosphate phosphorus in the 

liquid phase (data points in Figure 2c and 2d).  

 

 

 

Figure 2: Results with precipitation - Measured pH for 2.1M NaOH added at a rate of 5.35 × 

10
-5

 mL/min to a synthetic aqueous solution with 14.27mM NaH2PO4, 29.84mM NH4Cl, 

4.85mM MgCl2 (initial pH was decreased with concentrated HCl), presented with predicted 

pH for (a) k = 0.7× 10
-6

 moles.min
-1

 and (b) k = 0.7 moles.min
-1

. Measured saturation index 

presented with predicted saturation index with (c) k = 0.7× 10
-6

 moles.min
-1

 and (d) k = 0.7 

moles.min
-1

. 

 

The precipitation kinetics only influenced predicted pH over the range of 6-9, which 

suggested that above pH 9, the aqueous phase equilibrium dominated pH predictions. Below 

pH 6 it was known that precipitation had not yet occurred, as observed from a clear test 

solution (no precipitates visually observed) and the negative Saturation Index values.  

 

From the saturation index values in Figure 2 (c), it is clear that newberyite (MgHPO4.3H2O) 

did not show a significant supersaturation state for the particular experimental conditions. 

Accordingly, it was expected that only struvite precipitated in the experiment. In general, 

(b) 

(c) 

(a) 

(d) 
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struvite formation dominates, unless the supersaturation of newberyite is sufficiently greater 

than that of struvite (Abbona et al. 1982).  

 

Figure 3 shows measured and predicted results for the aqueous-phase composition. As can be 

seen there is a good correlation between the experimental results and theoretical model 

predictions. The soluble concentrations of magnesium, total ammonical nitrogen and total 

phosphate phosphorus remain constant when the solution is undersaturated with respect to 

struvite as indicated by a negative Saturation Index value, and decreases when the solution 

becomes supersaturated with respect to struvite as shown by a positive Saturation Index value. 

These observations support the view that the saturation index can provide guidance to the 

modeller about which minerals may be precipitating under which conditions in a wastewater 

as previously suggested by others (Marti et al. 2008). 

 

The model as a whole was considered to be highly identifiable due to the small number of 

fitting parameters (only the k-values for each of the minerals). The changing mineral surface 

area with continuous precipitation of struvite did not need to be considered in the model to 

give good predictions. These results suggested that a single-parameter (k-value) equilibrium-

kinetic model (which is easily expandable to include other minerals) can provide good 

prediction of wastewater pH with precipitation. 

 
Figure 3: Predicted and measured soluble concentration for magnesium (top), ammonia 

(middle) and total phosphate (bottom) pH for 2.1M NaOH added at a rate of 5.4 × 10
-5

  

(a) 

(b) 

(c) 
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mL/min to synthetic aqueous solution with 14.27mM NaH2PO4, 29.84mM NH4Cl, 4.85mM 

MgCl2 with a k=0.7 × 10-6 moles.min
-1

. 

 

Conclusion 
In this paper an equilibrium-kinetic based model is applied to simulate spontaneous mineral 

precipitation in wastewater treatment. In order to avoid computational inefficiency and due to 

timescale differences, in the reactions occurring in the aqueous phase are assumed in the 

model to be at equilibrium relative to reactions between the aqueous phase and a solid phase, 

whereas reactions between the aqueous phase and a solid phase are treated as slow dynamic 

processes, each with a dedicated rate expression. The model was validated both without and 

with precipitation of magnesium phosphate minerals. The model structure can be easily 

expanded to include the precipitation of many other minerals of interest in wastewater 

treatment. The results suggest that a single-parameter equilibrium-kinetic approach can 

provide good prediction of wastewater pH over a wide range and is generally expandable for 

inclusion of multiple minerals. 
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INTRODUCTION 

In recent years the awareness of the effect of abiotic processes in wastewater and sludge 

treatment technologies has increased rapidly (Batstone et al., 2012). In the field of municipal 

wastewater treatment for example, chemical processes play an important role in the 

performance of different technologies present throughout the plant. Besides, pH has an 

important impact on other processes that may take place in wastewater treatment such as 

precipitation or liquid gas transfer. Such processes will be critical in the future of these 

facilities as there are attempts to operate them in a sustainable and environmentally-friendly 

way. For example, there is a general concern about scarcity of some natural resources and the 

recovery processes of these resources often rely on physico-chemical processes 

(Vanrolleghem, 2013). Another example is the need to reduce greenhouse gas emissions that 

originate in the processes occurring at the wastewater treatment plant. Therefore, an 

appropriate description of the abiotic processes is of high importance in the development of 

models for the description of wastewater treatment technologies. 

Traditional mathematical models, widely used for wastewater and sludge treatment, have 

different levels of detail for the calculation of pH. In the models proposed for wastewater 

treatment (ASMs) it is considered that the buffering capacity is sufficient, therefore there is no 

rigorous calculation of pH included (Henze et al., 1987). In the case of models describing 

anaerobic digestion (ADM1) (Batstone et al., 2002), models describing river water quality 

(RWQM1) (Reichert et al., 2001) or the plant wide modelling (PWM) methodology proposed 

by Grau et al., (2007) pH calculation from chemical equilibria is included; however, these 

models do not consider ionic activity in the calculation, which makes the models only valid 

for dilute systems, with low ionic strength (Batstone et al., 2012). In the UCTADM of 

Sötemann et al., (2005a) ion pairing was included but the fast equilibrium and speciation 

processes were included as dynamic processes along with the slow biological and 

precipitation processes, causing slow calculation times and/or numerical instability. In the 

model proposed for biological nutrient removal N2 (BNRM2) by Barat et al., (2013) water 

chemistry is calculated using a commercial software tool MINTEQA2 (Allison et al., 2009). 

Finally, the UCTADMP, upgrade of the anaerobic digestion UCTADM proposed by Ikumi 
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(2011) describes chemical reactions using an algebraic speciation model (Brouckaert et al., 

2010).  

As a result it has been recognised that these traditional models should be updated and 

rewritten in order to include abiotic phenomena. To address this, the IWA Physico-Chemical 

Framework Task Group (IWA PCF TG) has recently been constituted with the goal of 

developing guidelines and procedures to assist modellers to consider all these processes 

(Batstone et al., 2012). One particular aspect is that, from a numerical point of view, the 

inclusion of acid-base equilibrium and the subsequent pH calculation in biochemical models 

can lead to the appearance of some degree of stiffness, caused by the different conversion 

rates considered. This may introduce numerical instabilities and slow down the simulation 

speed. Tackling this problem requires analysis and testing of numerical methods that deal 

with combined algebraic and differential equations. 

Based on these postulates, the work presented in this paper aims to introduce a methodology 

for incorporating aquatic chemistry into models representing wastewater treatment processes, 

based on different approaches found in literature for the description of aquatic chemistry and 

its numerical resolution. A simulation scenario has been defined in order to carry out a 

comparative analysis of the different approaches in terms of the accuracy of the results and 

the simulation time. 

METHODOLOGY TO INCORPORATE WATER CHEMISTRY INTO 

WASTEWATER TREATMENT PROCESS MODELS 

The construction of dynamic mathematical models comprises of: (1) the selection and 

description of the relevant biological and physico-chemical processes in the system under 

study and (2) the definition of water chemistry to predict pH tailored to the model defined in 

the first step (Figure 1).  

 

Figure 1. The selection of the chemical model depends on biological and physico-chemical model 

The following sections focus on (1) the construction of the chemical model to describe 

chemical processes taking place in the system under study with the selected biological and 

physico-chemical processes; and (2) the introduction of different numerical resolution 

procedures to couple chemical models with biological and physico-chemical processes.  

Modelling water chemistry 
In order to describe the water chemistry in the system first the components and species have 

to be defined; as an example the 12 components and 38 species given in Table 1 were 
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collected for the case study presented below. Species are chemical entities taken to be 

physically present in the system, and for the given set of species, components are selected so 

that all species can be expressed as linear combination of components, and no component can 

be written as combination of other components. Chemical equilibrium modelling consists 

basically of formulation of the material balance and mass action law which determine species 

concentrations from a mixture composition specified in terms of component concentrations.  

Table 1. List of species and components selected  
Components Species 

Sh STVA SCa H Mg H2CO3 H2PO4 Hac Hpro CaH2PO4 MgH2PO4 MgCO3 NaHPO4 

SIP STBU SMg Na OH HCO3 HPO4 Ac Pro CaHCO3 MgHCO3 MgPO4 NaOH 

SIN STPRO SNa Ca NH3 CO3 PO4 Hbu Hva CaHPO4 MgHPO4 NaCO3  

SIC STAC SCl Cl NH4 CaCO3 CaOH Bu Va CaPO4 MgOH NaHCO3  

The principles of water chemistry modelling are set out in Stumm and Morgan (1996). The 

equilibrium relationships are formulated in terms of species activities (e.g. Eq1), which are 

related to their concentrations by activity coefficients (e.g. Eq2). Activity coefficients were 

modelled using the Davies equation (Eq3 and Eq4). The mass conservation equation can be 

expressed either to (i) guarantee electroneutrality, i.e. guarantee the sum of cations equals the 

sum of anions (Eq5) or (ii) using the alkalinity-acidity continuity, this is formulating proton 

conservation equations (Eq6). Combining these mass conservation equations and the mass 

action relationships, a set of simultaneous equations is obtained which can be solved for all 

species concentrations.  
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Where,      

 Ka: equilibrium constant 

{S}: activity of species S 

[S]: molality of species S 

γS: activity coefficient of S 

I: Ionic strength 

Mi: molality of species i 

Zi: charge of species i 

A:Debye-Huckel constant 

0SS AC   

 

(Eq5) 
Where, 

     SC+: represents total cation equivalent concentration; and   

     SA- : represents total anion equivalent concentration.      

0TMa

i

jiij 
           

(Eq6) 

Where, 

     aij: stoichiometric relationship of species i and component j;  

     Mi: molality of species i; and  

     Tj: molality of component j given by the process model mass balance. 

Numerical resolution procedure 
When combining biological and chemical reactions, numerical resolution is a critical step, 

because of the stiffness that arises when considering reactions with very different conversion 

rates. In the case of dynamic models, there are two possible resolution procedures:  

(i) All reactions are calculated simultaneously using ordinary differential 

equations (ODE) as in Musvoto et al. (2000a,b) and Sötemann et al. (2005a,b).  

 

Figure 2. Model resolution procedure using the ordinary differential equations (ODE approach)  

(ii) The slower reactions are represented by differential equations and the fast reactions 

are calculated algebraically (DAE) at each iteration step (Figure 3) as in ADM1 (Batstone 
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et al., 2001), Volcke et al., (2005), Rosen et al. (2006) or UCTADMP (Brouckaert et al., 

2010; Ikumi et al., 2011). In the DAE approach, the modeller can choose between having 

a tailored code to solve water chemistry or using an external software tool such as 

PhreeqC+ (Parkhurst and Appelo 2013) or MINTEQA2 (Allison et al., 2009; Barat et al., 

2013) at each iteration step.  

 

Figure 11. Model resolution combining differential and algebraic equations (DAE approach) 

 

COMPARISON OF DIFFERENT RESOLUTION APPROACHES  

The objective of this study was (i) to check the capability of the model presented in the 

previous section to calculate aquatic chemistry equilibrium, and (ii) to carry out a comparison 

of the different approaches in terms of results accuracy and simulation speed. For this 

purpose, the anaerobic reactor in the Benchmark Simulation Model No 2 (BSM2) (Jeppson et 

al., 2007) was selected as the simulation test case.  

Results and discussion 

Using the conditions presented above, a dynamic simulation for a period of 365 days was run 

in order to check the capabilities of the different models. When running the simulations, 

different integrators and kinetic parameters have also been tested. The comparison between 

results obtained with different approaches regarding simulation time, and accuracy of results 

is shown in Table 2. For the ODE approach, the CVODE solver was used, and two values for 

the equilibrium kinetic rate have been compared: 10
12

 and 10
6
. It is seen that when using the 

kinetic rate of 10
12

 the simulated results are more accurate, since the result is closer to 

equilibrium. Nevertheless, higher kinetic rates slow down the simulation speed. The DAE 

approach using a tailored code for equilibrium calculation showed the shortest simulation 

time. Finally, when simulating the scenario with the external software Phreeq C+, the highest 

number of species was considered, but the simulations were the slowest (in designing the 

tailored code, species which had insignificant impact under the conditions found in anaerobic 

digesters were excluded to improve the simulation speed). A more detailed comparison using 

the full BSM2 will be presented in a forthcoming paper. 

Table 2. Simulation of the anaerobic reactor in BSM2 under dynamic conditions for a period of 365 

days  
 Evaluation criteria 

 

 

Evaluation criteria 

Simulation 

time (sec) 
      

2

a AHHA·K  
Simulation 

time (sec) 
      

2

a AHHA·K  

ODE-Kab 

10
12

 
6.25 7.61

-05
 

DAE-

Tailored 
0.96 0 

ODE-Kab 

10
6
 

3.82 7.85
-05

 PhreeqC+ 23.36 0 
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The results show that the optimum resolution procedure depends on the objectives of the 

simulation study. However, this work shows that the methodology proposed using a tailor-

made equilibrium calculation using algebraic equations, and incorporating it into the 

biological ODE system gave the most effective methodology, based on the simulation times 

of the different approaches. 

 

CONCLUSIONS  

Different approaches for calculating chemical equilibrium have been presented and a critical 

review has been undertaken. Based on this comparison a methodology is proposed for 

incorporating water chemistry into biological models.  
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Abstract 

To date, computational fluid dynamics (CFD) models have been primarily used for the 

evaluation of hydraulic problems at wastewater treatment plants (WWTP). A potentially 

more powerful use, however, is to simulate integrated physical, chemical and/or biological 

processes involved in WWTP unit processes on a spatial scale and to use the gathered 

knowledge to accelerate improvement in plant models for everyday use. Evolving 

improvements in computer speed and memory and improved software for implementing 

CFD, as well as for integrated processes, has allowed for broader usage of this tool for 

understanding, troubleshooting, and optimal design of WWTP unit processes. This paper 

proposes a protocol for an alternative use of CFD in process modelling, i.e. as a way to gain 

insight into complex systems leading to improved modeling approaches used in 

combination with the IWA activated sludge models (ASM) and other kinetic models. 

 

Keywords 

CFD, biokinetic models, transport models, multi-phase flow, fluid motion, complex 

systems 

 

 

INTRODUCTION 

Wastewater treatment plants (WWTP) are complex systems with interacting hydraulic, 

biological, and chemical elements. Optimization of design and operation of WWTP unit 

processes is of interest, especially with respect to the challenge of highly dynamic influent 

flows. In this respect, mathematical modeling has proven to be a powerful tool. The main 

focus in the past has been on modeling chemical and biokinetic processes using simplified 

hydraulic assumptions. This approach has resulted in the development of the Activated 

Sludge Model (ASM) family of models (Henze et al., 2000) as well as the Anaerobic 

Digestion Model (ADM) (Batstone et al., 2002). These models typically assume a 

continuously stirred tank reactor (CSTR) or use relatively simplified hydraulic 

conceptualization, i.e. the tanks in series (TIS) approach. The latter was developed in the 

chemical engineering industry as a way to describe the level of macro-scale dispersion within 

the unit process while limiting the model’s state numbers and avoiding use of spatially-

varying partial differential equations as this complicates the numerical solution and slows 

down the simulation speed (Levenspiel, 1972). However, the industry has been well aware of 

mailto:julien.laurent@icube.unistra.fr
mailto:jim.wicks@thefluidgroup.com
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the limitations of these hydraulic simplifications for many years: "If we know precisely what 

is happening within the vessel, thus if we have a complete velocity distribution map for the 

fluid, then we are able to predict the behavior of a vessel as a reactor. Though fine in 

principle, the attendant complexities make it impractical to use this approach.” (Levenspiel, 

1972, p 253). Considering current developments in the theory and practice of computational 

fluid dynamics (CFD) it is time to re-assess this conclusion.  

CFD has become an accepted method for process analysis in a diverse range of industries 

from aeronautics to ocean engineering. It has been used for analysis and design of water and 

wastewater treatment plant process elements since Larsen’s pioneering study presented the 

first CFD model for activated sludge sedimentation incorporating solids transport and settling 

(Larsen, 1977). Use of CFD as a full transport modeling approach for wastewater treatment 

tanks was already visualized over 20 years ago (Samstag et al., 1992), but has not been 

extensively or systematically applied until recently. CFD has evolved into a relatively 

accepted tool by consultants and practitioners for analysis of hydraulic problems in 

wastewater treatment plants, notably for outfalls and flow splitting devices, as well as for 

chemical mixing. With steadily increasing computational power over the past decades, it is no 

longer “impractical” to use CFD for process analysis.  

In addition to CFD use in practice, it also keeps developing in academia. Initially, CFD had 

been used for evaluation of mixing and solids settling in sedimentation tanks and results from 

these models have been informative in improving process performance. Evolving promising 

areas of research include the use of CFD to simulate physical, chemical, and/or biological 

processes in WWTP tanks where fluid flow characteristics are important. This endeavor has 

long been hampered by lack of availability and high cost of CFD software (including pre and 

post-processing), steep learning curves for their use, and limitations in computational power. 

Hence, CFD was not used for integration with these kinetic models. Now that commercial and 

open-source software packages with a choice of turbulence models and graphical user 

interfaces for pre and post processing are available, however, researchers have been able to 

explore the CFD approach to investigate WWTP unit process performance.  

These initial results have so increased confidence in CFD in helping elucidate the impact of 

the spatial variations in velocity profiles on process outcomes that it can now be used for 

prediction of performance of unit processes beyond sedimentation. For example, the insertion 

of bio-kinetic models into CFD simulations of WWTP processes as well as their validation 

(e.g. Le Moullec et al., 2010a; Gresch et al., 2011; Sobremisana et al., 2011) provided 

significant and reliable insights into complex contaminant removal performance in these 

processes.  

As more experience is gained in CFD-based process modeling, researchers and engineers 

will achieve a better understanding of where and when simpler models are adequate and be 

able to suggest potential improvements in the TIS models themselves. Indeed, from these 

insights, simpler representations of these mechanisms can now be developed and used in 

significantly less computationally intensive unit process models. For example, Potier et al., 

(2005) proposed a dynamic TIS model with back-mixing which is able to simulate variations 

of the axial dispersion coefficient with the flowrate by taking into account a maximal fixed 

number of mixing cells and a variable backflow rate. This model derived from correlations 

with a large set of lab-scale and full-scale experiments. In the future, similar approaches could 

be performed using CFD to determine the appropriate number of tanks in a TIS model 
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depending on the influent dynamics. The issue of biokinetic-hydraulic feedback can also be 

incorporated (e.g., gas production, changes in fluid properties) through iterative analysis. 

The present paper aims at proposing a protocol for this alternative use of CFD modeling in 

order to get more insight into unit process description and improve simpler models 

conceptualization, calibration, and validation. 

 

PROTOCOL 

To date, it is not very clear to non-CFD model users what the exact role is that CFD is 

playing or can play in the field of wastewater treatment modeling. It is often perceived as an 

overly complex modeling tool that eats too much computational time and is therefore not 

considered. In this contribution we want to share our views on how this simulation tool can be 

used in the train of thought of wastewater process modeling apart from the current usage as 

stand-alone tool for unit processes design and troubleshooting. In this way, it can contribute to 

the further development of wastewater process models to its full extent.  

Fig. 1 presents a schematic visualization of a protocol for CFD use in improvement of WWTP 

process modelling. The protocol suggests that CFD be used as a supportive tool for 

wastewater process modeling rather than as replacement for simpler modeling approaches. 

Indeed, dynamic simulation of a whole WWTP with CFD may not be feasible for another 

couple of decades. But in the meantime, CFD can still serve the community. 

 

 

Figure 1. Conceptual map for use of CFD as a super-tool for process modeling. 

 

The currently used “simple” WWT models are located at one end of the model spectrum (Fig. 

1 – top), whereas the complex CFD models are at the other end (Fig. 1 – bottom). For certain 

model objectives, the former models are not adequate and slightly more complex models are 

required (“next generation simple WWT models”). In order to develop those, one needs 

improved process knowledge. It is especially in this respect that complex, validated CFD 

models can be of aid. 
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We see this as a 5-step protocol for use of CFD as a tool for improving/developing simpler 

models: 

1. CFD model formulation: Development of CFD models representing detailed features 

of the process tank geometry, as well as other ingredients such as turbulence, a 

coupled ASM biokinetics model, a full-fledged detailed aeration model, viscosity 

models, density couples, temperature gradients, solids gradients due to settling, etc. 

2. Data collection: Lab or field test of appropriate process variables (velocity profiles, 

species concentration profiles, gas hold-up measurement, residence time distribution, 

etc.) to validate results of the CFD model 

3. CFD model validation: Compare the CFD model prediction with the data. If match is 

insufficient, one should return to steps 1&2 and recheck model formulation and data 

quality. 

4. Comparison to simpler model predictions: Detailed comparison to the results of 

simpler models for the same geometry and loading condition. Based on this, 

shortcomings can be pinpointed. 

5. Improved simple model: These shortcomings lead the modeller in developing next 

generation models such as dynamic systemic models, compartmental, or other non-

linear macro-scale mixing models. 

In the remainder of the paper we illustrate this train of thought through an example 

available in the literature that is actually an onset to this protocol, but not originally described 

in that way. 

 

CASE STUDY: MODELING A PILOT-SCALE BIOREACTOR 

The work in several papers of Le Moullec et al. (2008, 2010a, 2010b, 2011) is 

representative of what could be seen as application of the protocol introduced above. While it 

was never presented in the form of a protocol, we feel that the approach is important in 

illustrating how this protocol could be implemented. 

STEP 1: CFD model formulation 

The unit process used for both experiments and modeling purposes was a bench scale 

channel reactor with a total length of 3.6 m with a rectangular cross section of width and 

height, respectively equal to 0.18 and 0.2 m. One side of the walls of the reactor was fitted 

with stainless-steel tubes in which 1mm holes had been drilled every centimeter for air 

sparging. Further description is presented in Le Moullec et al. (2008). 

 

Development of the CFD model utilizing an Euler-Euler approach is described in detail in Le 

Moullec et al. (2008). CFD simulations were carried out with the CFD software FLUENT. 

Two turbulence models were tested: a two-phase k-ε model and a Reynolds Stress Model 

(RSM). Boundary conditions were defined as presented in Table 1. 
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Table 1. Boundary conditions used for CFD computations. 

 Inlet Outlet Top 

Gas Specified velocity inlet 
and phase fraction 

/ Pressure outlet 

Liquid Specified velocity inlet 
and phase fraction 

Specified velocity 
outlet and phase fraction 

Symmetry boundary 
condition 

Turbulen
ce 

Turbulence intensity 
(10%) and inlet 
hydraulic diameter 

Turbulence intensity 
(10%) and outlet 
hydraulic diameter 

Turbulence intensity 
(10%) and outlet 
hydraulic diameter 

A second order discretization scheme (QUICK: Quadrative Upwind Interpolation for 

Convective Kinematics) was selected for the momentum equations, turbulent dissipation rate, 

and void fraction equations. The SIMPLE (Semi-Implicit Method for Pressure-Linked 

Equations) pressure–velocity coupling scheme was also used. 

STEP2: Data collection 

Experiments were carried out to validate the CFD model. Two types of data were gathered. 

First, laser Doppler velocimetry (LDV) allowed the axial (Ux), lateral (Uy) and vertical (Uz) 

time-averaged velocity fields to be measured (Le Moullec et al., 2008). Second, residence 

time distribution (RTD) data was obtained from multiple tracer experiments (Potier et al., 

2005). 

STEP3: CFD model validation 

Mesh sensitivity was examined using different hexahedral cell sizes of 1 cm
3
 (130,000 

cells), 0.125 cm
3
 (1,000,000 cells), and 1 cm

3
 with a refinement near the walls (350,000 

cells). This last grid offered the best compromise between precision and computational effort. 

The results of the CFD model concerning velocity field and RTD simulation (with both 

passive scalar and particle tracking methods) were compared with the experimental values. 

The two simulated velocity fields are compared to experimental data in Fig. 2. Both models 

gave similar results and overall agreement was good. The observed discrepancies, 

respectively near the bubble injection position and near the free surface, were probably due to 

the simplification made for the gas inlet boundary conditions and the simplified representation 

of the surface, which was not planar in the experimental setup. In the RTD tests (Fig. 3), the 

RSM turbulence model coupled with the particle tracking method produced better fit to the 

experimental results than the k-ε model.  
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Figure 2. Overall representation of the experimental and simulated average velocity fields on 

a vertical plane (y,z) for both turbulence models (source: Le Moullec et al., 2008) 

 
Figure 3. Comparison between experimental and simulated RTD data obtained with the RSM 

and the k-ε turbulence models and the particle tracking method for a liquid flow rate of 3.6 

L.min
−1

 and a gas flow rate of 15 L.min
−1

 (source: Le Moullec et al., 2008) 

STEP4: Comparison to simpler model predictions 

TIS and CFD hydrodynamic models were coupled with ASM1 biokinetic equations using 

standard parameters values in order to simulate biological reactions occurring in the pilot 

reactor. Comparison of both models prediction with experimental nitrate concentration 

profiles along reactor length is shown on Fig. 4. Even if biokinetic parameters were not at all 

calibrated in this study, one can observe that the CFD model provided a better prediction than 

the TIS model. 
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STEP5: Improved simple model 
In an effort to correct the shortcomings of the TIS model, a compartmental model was 

developed (Le Moullec et al., 2010a). This latter approach simulates the reactor as a network 

of spatially distributed functional compartments (Fig. 5). Definition of this kind of model 

relies on the results of the steady-state CFD hydrodynamics model (STEP 1-3). The number 

and spatial distribution of compartments are defined according to the homogeneous character 

of selected parameters with a given tolerance (e.g. gas fraction), as well as the exchange 

between them (convective flow rates and turbulent backflow rates). Fig. 4 shows that the fit of 

this somewhat more complex model is much better than the TIS approach and very close to 

the CFD-ASM1 model (STEP 4). This work (Le Moullec et al., 2011) demonstrated the 

possibility to accurately predict pollutant concentrations, not only with a detailed CFD-

biokinetic model (STEP 4), but also with a simpler hydrodynamic model of which the 

structure is derived from the results of a single steady-state CFD simulation without 

biokinetics. 

 

 
Figure 4. Nitrate concentration profile along the reactor for two experiments carried out on 

the pilot-scale bioreactor (source: Le Moullec et al., 2011) 
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Figure 5. Structure of the compartmental model (source: Le Moullec et al., 2011) 

 

COMPARISON OF THE COMPUTATIONAL REQUIREMENTS OF CFD AND 

SIMPLER MODELS 

The compartmental model allowed the prediction of pollutant concentration within a pilot-

scale activated sludge reactor after a few minutes of calculation compared to 1 week of 

calculation for the CFD-biokinetic approach (Le Moullec et al. 2011). Compartmental 

modeling can be used where the incorporation of biokinetics within a CFD model would be 

computationally cost prohibitive and where the TIS model is not able to sufficiently describe 

the macro-scale mixing behavior of the complex system (Alvarado et al., 2012). 

PERSPECTIVES ON FUTURE APPLICATION 

The example illustrates the power of CFD as a supportive tool in developing improved “next 

generation” WWTP models. Further application of this protocol may even lead to certain 

recurrent patterns which exclude the necessity to build a CFD model in certain cases. 

A logical next application for the protocol is in modeling the anaerobic digester process and 

more specifically, the mixing component of the process. Two-phase gas-liquid models have 

been performed of anaerobic digesters using CFD to help improve mixing performance. Yet, 

no CFD transport model of the anaerobic digester had been developed that captured both the 

biological processes and complete complex three phase fluid characteristics, until quite 

recently (Gaden, 2013). This type of model is needed to completely understand the impact of 

digester mixing systems and changes in digester influent characteristics on biogas production, 

or to assess the potential upgrades of digester capacity. TIS modeling is widely used to 

simulate tracer testing (Batstone et al., 2005), which may include feedback and bypass links, 

and it is a straightforward extension to validate these using CFD and to implement improved 
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biokinetics for an assessment of how the hydraulic regime influences process stability. There 

is every reason to believe that this approach will also prove fruitful for evaluation of 

suspended growth treatment tanks. 

One question that remains is when exactly one considers the CFD model to be sufficiently 

validated. What deviations are acceptable? Tools for evaluating this question need to be 

developed. Where the validation is determined to be inadequate, one needs to reiterate Steps 1 

and 2. With regard to model formulation, recent work on process tank mixing (Samstag et al., 

2012) has suggested an explanation for past failures to adequately size mixing devices 

resulting from ignoring density effects in the CFD analysis. In the future, this approach should 

be incorporated into CFD models and will, hence, be included in evaluation of simpler 

models.  

Another major challenge that exists in biologically driven wastewater unit processes is due to 

the complex intersection between potential macro- and micro-scale reactions that occur 

outside and inside biological floc particles. These two-scale processes can be difficult to 

model and computationally expensive. Yet, the lack of modeling these two-scale processes 

can reduce the effectiveness of CFD in simulating specific phenomena in activated sludge 

systems such as the occurrence of simultaneous nitrification-denitrification processes, etc. 

Next to these examples, several other submodels can be added to the plain CFD models to 

further validate them and build even better process knowledge. This further knowledge 

development runs in parallel with the application of already gathered knowledge to build the 

next generation of practical models.  

CONCLUSION 

Direct use of CFD approaches that allow substantial expansion to include complex 

biokinetics or other behavior is currently challenging for practical use due to computing and 

numerical issues. However, CFD studies in the field of wastewater treatment can, next to their 

current application as design and troubleshooting tool, be used to develop the next generation 

of more practical, everyday models. A 5-step protocol was outlined describing how this can 

be done and was illustrated using an example from the literature. This shows the power of this 

approach and how it can lead to more reliable everyday models. Further perspectives were 

given as well as how current CFD model development fits into this train of thought. 
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Abstract 

Due to the elevated energy intensity inherent of fine-pore diffuser aeration within 

wastewater treatment, it is important to describe the real nature of aeration systems for 

improved design and optimization. We compiled two experimental datasets and developed 

a dynamic model to predict air flow for fine-pore diffuser aeration systems. The model was 

applied to two water reclamation plants, calibrated and validated with a time-sensitive 

database. Our model improves both prediction and description of field data with the 

introduction of an improved aeration model structure based on the organic load. Our results 

are a quantitative tool for prediction of energy wastage, and for minimizing aeration design 

uncertainty. 

Keywords - Activated sludge; aeration; alpha factor; fine-pore diffusers; oxygen transfer 

 

 

INTRODUCTION  
Aeration is an essential and energy-intensive process for most wastewater treatment plants, 

and contributes 45 to 75% of process energy demand (Reardon, 1995). Fine-pore diffusers are 

preferred in the aeration of municipal wastewater treatment plants for their generally higher 

oxygen transfer efficiency (OTE, %). OTE tested in clean water is corrected to standard 

conditions (i.e., zero dissolved oxygen, 1 atm, 20
o
C, zero salinity) to produce the standard 

OTE, or SOTE (%). OTE in process water is lower compared to clean water due to the effects 

of contamination, quantified by an  factor, which is the ratio of the oxygen transfer 

coefficients in process to clean water (Stenstrom and Gilbert, 1981). Thereby SOTE (%) is 

used to define standard oxygen transfer efficiency in process water. Evidence of the dynamic 

nature of  ranging from 0.25 to 0.55 was presented by Leu et al. (2009) with 48 off-gas tests 

over a 24h cycle. Blower power is dependent on air flow rate (AFR), hence on SOTE. 

Hence, a dynamic estimation of  and SOTE is key to curbing the uncertainty in modelling 

aeration energy and in aeration design. The goal of this research is to present a dynamic 

model to predict air flow from for diffused aeration accounting for the variation of SOTE 

with plant load.  
 

 

METHODS 

Process conditions. Both plants selected to test our model are located in California in areas 

characterized by a two-season climate with temperature oscillating between 19
o
C and 27

o
C. 

The summary conditions for both plants are reported in the Table 1. Water reclamation plant 1 

(WRP1) uses an activated sludge process that nitrifies and denitrifies using the modified 

Ludzack-Ettinger (MLE) configuration. WRP2 is a fully denitrifying water reclamation plant, 

operating biological nutrient removal in MLE configuration with tertiary operations. 
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Table 1. Summary of average process conditions at the two plants studied. 

 Q (MLD) MCRT (days) Diffuser Type Diffuser Area (m
2
) 

WRP1 37 7.0 Polyurethane membrane strip 0.61 

WRP2 57 8.5 EPDM membrane disc 0.041 

 

Field measurements. In order to estimate the specific SOTE, i.e. SOTE/Z or SSOTE (%/m), 

of new diffusers clean water, tests were performed beforehand following the American 

Society of Civil Engineers standard procedure (ASCE, 2007). The measurements of SOTE 

and SOTE/Z were performed according to the ASCE off-gas protocol (ASCE, 1996), which 

uses the same saturation depth correction as the ASCE clean water. Measurements at WRP1 

were taken every 30 minutes for 24 hours. The ratio of the results from the off-gas tests and 

the clean water tests were used to calculate  factors. 

Model characteristics. This model used the WRP1’s  vs. COD set for calibration (Fig. 1). 

The calibration set of time-dependent data for versus plant load (oxygen demand and flow 

rate) were previously presented by Leu et al. (2009). In short, instead of predicting the oxygen 

transfer rate OTR from the air flow multiplied by a constant , the model uses an  that is 

variable as a function of the COD. Thus, after selecting a reasonable initial guess value for 

AFR, the model iterates the re-calculation of AFR using  and SOTE as power fits functions 

of COD and AFR, respectively, until the DO target is met. This model is not aimed at 

substituting the ASMs, but is an extension of their structure to include dynamic modelling of 

O2 transfer. 

 

0.20 

0.25 

0.30 

0.35 

0.40 

0.45 

0.50 

0.55 

0.60 

15.0  

20.0  

25.0  

30.0  

35.0  

40.0  

45.0  

200.00 250.00 300.00 350.00 400.00 450.00 500.00 

A
lp

h
a
 

A
ir

 F
lo

w
 R

a
te

 (
1

0
0

0
 m

3
/h

) 

COD (mg/ l) 
 

Figure 1. Case of WRP1, used as calibration set for alpha vs. COD. 

 
 

RESULTS AND DISCUSSION  

The model applied to WRP2 for validation. As showed in Fig. 2(a), the model on average 

describes well the actual trends of AFR. A comparative analysis of our dynamic  modelling 

vs. the traditional static modelling that is currently state-of-the-practice is also presented in 

Fig. 2. Due to the unavailability of a dynamic  model, aeration modelling is performed by 

selecting constant  values (typically based on one or a combination of recommendations 

from: diffuser manufacturers; modeller experience; design/process engineers) and using a 

dynamic function to compensate SOTE with different air flux. In Fig. 2b, the results from 
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dynamic modelling (grey cross symbols) are compared with static modelling results, 

calculated with constant  values (blue trend lines). The linear trend that describes the data 

points is not plotted here as it has a slope of 0.961, and for clarity of plotting we use the 

diagonal instead. The coloured trend lines show the result of predicting air flux using static 

modelling: the region where the regression lines encounter the diagonal describes where (in 

terms of air flux) it is appropriate to use that  value. It appears evident that the range of alpha 

values to be employed in modelling is wide (0.4-0.8) depending on the air flux, as reported 

from previous field observations (inter alia, Rosso et al, 2005; Gillot and Héduit, 2008). 

One should discuss here the implications of operating the plant at constant DO set point. 

Currently, new technologies in process control are gaining wider distribution, such as variable 

set point DO/NH4
+
 control systems. These allow an adaptive variation of DO controls based 

on the effluent ammonia levels, so to adjust the DO set point to the actually required value to 

meet effluent limit, thus curbing excess aeration and energy wastage. Neither plant modelled 

here had such system installed, but a next research step would be to model processes so 

equipped. 

 

 

    
(a)     

 (b) 

 

Figure 2. Predictive use of the dynamic model: simulation of WRP2. (a) Actual vs. predicted 

air flux for 1 month with dynamic and with a constant  of 0.35 and 0.80; (b) Comparative 

results of 2 years of air flow rate (AFR) prediction using a dynamic  calculation from 

process parameters (described for plotting clarity by the diagonal in lieu of the actual linear fit 

with slope 0.961) versus using the classical approach of constant  (curves): the point where 

each curve meets the diagonal is the air flux point where the use of the curve’s corresponding 

 factor is appropriate.  

 

 

 

 

Some uncertainty is still evident in the data scatter of Fig. 2b. This may largely be attributed 

to the use of COD instead of its fraction rbCOD, which is expected to be descriptive of the 

surfactants present in municipal wastewater. These have been associated with the alteration of 

α	

α	

α	
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diffuser performance from clean water (i.e., factors) since the 1980s (Zlokarnik, 1980). 

Future steps should include the model recalibration using fractionated COD, to test the 

hypothesis that rbCOD is indeed the variable needed for aeration modelling. 

Also, the present model version does not include the effects of diffuser fouling. Therefore, the 

model extension presented here should be used by design engineers to reduce the design 

uncertainty. Current work is undergoing to include the effects of diffuser fouling on alpha. 

When these effects are embedded in future revisions of the model structure, the unified model 

can be applied also to predict future aeration performance.  
 

CONCLUSIONS 

A dynamic model to describe the load dependence of  factors in activated sludge diffused 

aeration is introduced. This is an extension to the ASM structure to include the dynamic re-

calculation of air flow using a dynamic  (i.e., as a function of COD). The results show the 

model adequacy to describe the true dynamic nature of the  factor and oxygen transfer. The 

calibration using a 24h set of data from WRP1 allowed the validation on a 2-year data set 

from WRP2. We present here the discrepancy between the static alpha modelling practiced 

hitherto and our dynamic results. The results from current static modelling efforts are valid in 

a restricted domain of air flow, whereas our dynamic results transition smoothly from 

different regions of air flow.  
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Abstract 

The current study proposes the calculation and interpretation of removal coefficients (K20) for 

bacteriophages in activated sludge (AS) and trickling filter (TF) systems using stochastic 

modelling. Initial results have demonstrated that the removal of somatic coliphages is higher than 

that of F-RNA coliphages in both AS and TF systems and that AS more effectively removes both 

phage groups than TF. The results also suggest that the obtained removal coefficient (K20) values 

may be used to estimate the quality of final effluents in AS and TS systems using simplified 

models. Future work will include enumeration and modelling of specific enteric viral pathogens 

in order to develop practical predictive tools and to support integrated water and sanitation safety 

planning approaches to human health risk management. 

 

Keywords 

bacteriophages, viral particles, wastewater treatment, sanitation safety planning 

 

 

INTRODUCTION 

 

Human enteric viruses are commonly found in municipal wastewaters and many of them are 

capable of causing illnesses in humans (Bosch, 1998; Metcalf and Eddy, 2003). Viruses have 

been shown to be more resistant to wastewater treatment processes than other 

microorganisms. Furthermore, the limitations of traditional bacterial water quality indicators 

(e.g., faecal coliforms and E. coli), such as differences in their occurrence and persistence 

compared with enteric pathogenic microorganisms both in engineered and natural 

environments, have led to research into numerous novel viral indicators (Jofre et al., 1995; 

Purnell et al., 2011; Ebdon et al., 2012). 

 

Emerging potential indicators include bacteriophages, or simply phages, which are a group of 

viruses capable of infecting prokaryotic organisms that are, as are all viruses, obligate 

intracellular parasites (Metcalf and Eddy, 2003; Withey et al., 2005). The phages used in 

water and wastewater quality monitoring fall into three main groups: (i) somatic coliphages – 

phages that infect E. coli strains; (ii) phages infecting Bacteroides spp. – strict anaerobic 

bacteria comprising the major part of the human gastrointestinal microbiota; and (iii) male-

specific F-RNA coliphages – phages commonly used as indicators of human enteric viruses 

(Grabow, 2001). 

 

In order to estimate the concentration of physico-chemical or microbiological parameters in 

treated effluent from wastewater treatment plants (WWTP), different models are required, 

depending on the nature of the treatment hydraulics (e.g., plug-flow vs. mixed reactors) and 

the kinetics of such reactions (e.g., first or second order). Uncertainties around specific 

parameters can also be factored in using a ‘stochastic modelling’ approach, which assigns the 
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input variables to value ranges according to their specific frequency or probability 

distributions (Morgan and Herion, 2007; Vose, 2008). 

 

Therefore, this initial study (part of a larger evolving investigation that also considers enteric 

viruses and faecal indicator bacteria) demonstrates the potential application of stochastic 

modelling to improve our understanding of the removal of phages in activated sludge (AS) 

and trickling filter (TF) treatment systems, using data collected from four WWTPs situated in 

southern England. As such, it supports an effective multiple barrier approach to disease 

control, as part of a Sanitation Safety Plan (SSP). 

 

 

MATERIAL & METHODS 

 

Samples of settled wastewater and post-secondary sedimentation wastewater were collected 

every two weeks from May to November 2013, from four WWTP situated in southern 

England, including two Activated Sludge (AS) and two Trickling Filter (TF) systems. The 

WWTP can be regarded as small to medium-scale, having population equivalents of 14,554 

and 44,930 (for the AS systems) and 5,084 and 33,229 (for the TF systems). For all samples, 

somatic coliphage (WG-5) and F-specific coliphages (WG-49) were enumerated using 

standardised double-layer techniques (BSI, 2001; 2002) and expressed in terms of Plaque 

Forming Units (PFU) per 100mL. 

 

To calculate the removal coefficients (KT), a completely-mixed model, based on hydraulic 

retention time (t), was used for AS systems (Eq. 1), while for TF, a plug-flow model, based on 

hydraulic loading rate (HLR), was adopted (Eq. 2). However, in order to be able to compare 

the removal coefficients obtained from both AS and TF systems, certain mathematical 

adjustments were made, from Eq. 3 to 5, to obtain Eq. 6. In this case, the unit for removal 

coefficient in TF systems is d
-1
, as with AS. What’s more to standardise the removal 

coefficients according to an ambient temperature of 20ºC, the Arrhenius equation was used 

(Eq. 7). The final models used to calculate removal coefficients at 20ºC (K20) for AS (as d
-1

) 

and TF (as d
-1

 and m
3
.m

-2
.d

-1
) systems are presented in Eq. 8, 9 and 10, respectively. All 

equations are presented in Table 1. 

 

Table 1 – Equations used for the estimation of removal coefficients. 

 
Eq. 1  Eq.6 

 Eq. 2  Eq.7 

 Eq.3 
 

Eq.8 

 Eq.4 
 

Eq.9 

 Eq.5 
 

Eq.10 

Where: N = final conc. (PFU.100mL
-1

); N0 = initial conc. (PFU.100mL
-1

); t = hydraulic retention time (d); HLR = 

hydraulic loading rate (m
3
.m

-2
.d

-1
); Q = flow (m

3
.d

-1
); Vol = volume (m

3
); Q = flow (m

3
.d

-1
); A = surface area (m

2
); h 

= height (m); n = empty space; KT = removal coefficient at temp T (d
-1

 or m
3
.m

-2
.d

-1
); K20 = removal coefficient at 
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20ºC (d
-1

 for AS; m
3
.m

-2
.d

-1
 for TF); θ = temp coefficient; T = temperature (ºC). 

 

Probability density functions (PDF) were fitted for the database using the adherence test 

option present in the statistical software @Risk version 5.5.0. The removal coefficients were 

then estimated by stochastic simulation (Eq. 8, 9 & 10) with Latin Hypercube sampling and 

100,000 iterations, again using the software @Risk version 5.5.0. 

 

 

RESULTS & DISCUSSION 

 

Figure 1 presents the concentrations of somatic and F-specific coliphages in the settled 

wastewater (No) and post-secondary sedimentation wastewater (Nf) of both AS and TF 

systems. The initial and final concentrations of somatic coliphages were approximately 2 log10 

higher than those of F-specific coliphages in the systems monitored. Furthermore, it is 

apparent that, in general, the concentrations of somatic coliphages varied more than those of 

F-specific coliphages. With regard to the geometric mean values of initial and final 

concentrations, the removal of somatic coliphages in the AS systems was of the order 

1.86 log10, while for F-specific coliphages it was 1.41 log10. In the TF systems, the removal of 

somatic and F-specific coliphages was of the order 0.44 and 0.46 log10, respectively. These 

results demonstrate that the removal rate of somatic coliphages was higher than those of F-

specific coliphages in AS systems, whilst for TF the removal rate of both phage groups was 

very similar. Furthermore, AS systems appear to remove both phage groups more effectively 

than TF systems. Similar removal rates of somatic and F-specific coliphages in AS systems 

are presented in the literature (Zhang & Farahbakhsh, 2007; De Luca et al, 2013). No study 

involving the removal of bacteriophages in TF systems has been found to date. 
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Figure 1 – Box-plot of the concentration of somatic and F-specific coliphages in the settled 

wastewater (No) and post-secondary sedimentation wastewater (Nf) of the Activated Sludge 

(AS) and Trickling Filter (TF) systems monitored. 

 

Probability distribution functions (PDF) were adjusted for the initial and final concentrations 

(N0 and N) and temperature (T) data collected using adherence tests. Hydraulic retention time 

(t) (uniform PDF: min=0.25; max=0.33 d), hydraulic loading rate (HLR) (uniform PDF: 

min=1; max=4 m
3
.m

-2
.d

-1
), temperature coefficient (θ) (triangular PDF: min=1.00; max=1.19; 

mean=1.07), height (h) (uniform PDF: min=1.8; max=2.5 m) an empty space (n) (uniform 
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PDF: min=0.5; max=0.6) were assumed in accordance with the literature (Marais, 1974; 

Castagnino, 1977; Thomann and Mueller, 1987; Yanes, 1993; Metcalf and Eddy, 2003; von 

Sperling, 2007a; von Sperling, 2007c). Table 2 summarises the PDF fitted for each input 

variable of the model. The removal coefficients were then estimated by stochastic simulation 

(Eq. 8, 9 & 10) with Latin Hypercube sampling and 100,000 iterations using the software 

@Risk version 5.5.0. 

 

Table 2 – Probability density functions
(a)

 of the input variables of the models (Eq. 8, 9 & 10) to 

estimate the removal coefficient at 20ºC (K20) for somatic and F-specific coliphages in activated 

sludge (AS) and Trickling Filter (TF) systems. 

  Microorganisms 

System Input Variable Somatic Coliphages F-Specific Coliphages 

Activated 

Sludge 

N LogN(1.29x10
4
;9.78x10

3
) Exp(1.74x10

2
) 

No Gamma(1.78;5.75x10
5
) Gamma(0.35;5.56x10

4
) 

θ Triang(1.00;1.07;1.19) Triang(1.00;1.07;1.19) 

T Weibull(6.86;18.70) Weibull(6.86;18.70) 

t Uniform(0.25;0.33) Uniform(0.25;0.33) 

Trickling Filter 

N Gamma(1.81;3.31x10
5
) Weibull(0.77;6.90x10

3
) 

No Exp(1.91x10
6
) LogN(2.52x10

4
;6.19x10

4
) 

θ Triang(1.00;1.07;1.19) Triang(1.00;1.07;1.19) 

T Weibull(6.88;17.69) Weibull(6.88;17.69) 

HLR Uniform(1.0;4.0) Uniform(1.0;4.0) 

h Uniform(1.8;2.5) Uniform(1.8;2.5) 

n Uniform(0.5;0.6) Uniform(0.5;0.6) 
(a)

 Weibull(α;β) = Weibull distribution with shape parameter α and scale parameter β; Gamma(α;β) Gamma 

distribution with shape parameter α and scale parameter β; LogN(μ;σ) lognormal distribution with specific mean μ 

and standard deviation σ; Exp(λ) = exponential distribution with decay constant λ; Uniform(min;max) = uniform 

distribution between minimum and maximum; Triang(min;most likely;max) = triangular distribution with defined 

minimum, most likely and maximum values. 

 

Table 3 presents descriptive statistics whilst Figure 2 presents the histograms and cumulative 

frequency curves for the removal coefficients at 20ºC, for somatic and F-RNA coliphages in 

activated sludge (AS) and trickling filters (TF). 

 

Table 3 – Descriptive statistics of the removal coefficient at 20ºC (K20) for somatic and F-specific 

coliphages in activated sludge (AS) and Trickling Filter (TF) systems. 

 
Somatic Coliphages  F-Specific Coliphages 

Variable AS K20 
(a)

 TF K20 
(a)

 TF K20 
(b)

  AS K20 
(a)

 TF K20 
(a)

 TF K20 
(b)

 

Minimum -5.48 -56.29 -69.70  -22.29 -73.01 -72.31 

5% 39.94 -5.14 -6.00  -3.64 -6.58 -7.73 

10% 67.86 -2.78 -3.28  -2.20 -4.20 -4.91 

25% 148.62 -0.02 -0.02  22.43 -0.98 -1.17 

50% 324.44 2.33 2.76  215.30 2.18 2.58 

75% 667.64 5.14 6.04  1077.18 6.32 7.43 

90% 1241.95 8.64 10.06  4032.01 11.74 13.71 

95% 1787.17 11.34 13.22  9085.31 16.04 18.78 

Maximum 3.56x10
4
 90.41 89.42  5.42x10

7
 130.48 155.02 

Mean 549.93 2.65 3.10  5822.11 3.18 3.71 

Std.Dev 751.10 5.40 6.26  2.36x10
5
 7.50 8.71 

(a)
 Values in d

-1
; 

(b)
 values in m

3
.m

-2
.d

-1
. 
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Figure 2 – Histogram and cumulative frequency curve of removal coefficients at 20ºC (K20) 

for somatic coliphages and F-RNA coliphages, based on the hydraulic retention time (t) in AS 

systems (2.A & 2.B, respectively) and in TF systems (2.C & 2.D, respectively), and based on 

the hydraulic loading rate (HLR) in TF systems (2.E & 2.F, respectively). 

 

Stochastic modelling revealed that the K20 values for the AS systems were an order of 

magnitude higher than those of the TF systems, possibly as a result of the different models 

used for each system. Median K20 values for AS were 324.4 d
-1

 for somatic coliphages and 

215.3 d
-1

 for F-specific coliphages (Figures 2.A & 2.B; Table 3), while median K20 values for 

TF were 2.33 and 2.18  d
-1

 for somatic and F-specific coliphages, respectively (Figures 2.C & 

2.D; Table 3). With regard to the mean values of K20, the numbers were higher for both 

systems: 549.9 and 2.65 d
-1

 for somatic and F-specific coliphages, respectively, in AS systems 

(Figures 2.A & 2.B; Table 3); 5822.1 and 3.18 d
-1

 for somatic and F-specific coliphages, 

respectively, in AS systems (Figures 2.C & 2.D; Table 3). 

 

The differences between K20 values obtained here for each system, and more specifically the 

considerably higher K20 values observed for TF systems compared with AS systems, could be 

explained by the inadequacy of the idealised models. As mentioned by von Sperling (2007b), 

even for the same conditions (initial and final concentrations, hydraulic retention time), the 

equations representing the plug-flow and complete-mix reactors would result in different 
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removal coefficient (K) values. This is because, in theory, the ideal complete-mix reactors are 

the least efficient reactors for first-order removal kinetics. In other words, the lower efficiency 

is compensated by a higher K value (von Sperling, 2007b). Conversely, ideal plug-flow 

reactors are the most efficient reactors, and the K value necessary to produce the same 

effluent quality is reduced (von Sperling, 2007b). 

 

The K20 values for TF systems previously discussed, given as d
-1

, were obtained from Eq. 9 

for comparison with the K20 of AS systems (Eq. 8). However, the parameter that is normally 

used for the design of biofilters is the hydraulic loading rate (HLR). Thus, Eq. 10 was also 

used to calculate K20 values for TF systems, given as m
3
.m

-2
.d

-1
. Using both Eq. 9 & 10, 

median K20 values were very similar for each microorganism: 2.33 and 2.18 d
-1

 for somatic 

and F-specific coliphages, respectively, from Eq. 9; and 2.76 and 2.58 m
3
.m

-2
.d

-1
 for somatic 

and F-specific coliphages, respectively, from Eq. 10 (Figures 2.C to 2.F; Table 3). Again, 

mean values of K20 were higher than median values, but were similar for each microorganism: 

2.65 and 2.3.18 d
-1

 for somatic and F-specific coliphages, respectively, from Eq. 9; and 3.10 

and 3.71 m
3
.m

-2
.d

-1
 for somatic and F-specific coliphages, respectively, from Eq. 10 (Figures 

2.C to 2.F; Table 3). The reason for similar values of K obtained from Eq. 9 & 10 results from 

the PDF assumed for the input variables height (h) (uniform PDF: min=1.8; max=2.5 m) and 

empty space (n) (uniform PDF: min=0.5; max=0.6) in Eq. 10. 

 

Interestingly, the cumulative frequency curves for both AS and TF were markedly different in 

their appearance, as the output data are skewed towards the left side of the distribution for 

both phage groups in the AS systems (Figures 2.A & 2.B), while in the TF systems, the data 

seem to follow a normal distribution (Figures 2.C to 2.F). With regards to the variation around 

the mean/median values, the standard deviation was higher for F-specific coliphages than for 

somatic coliphages, in both the AS and TF systems (Figure 2). Finally, comparison of the 

findings dicussed in this paper with the scientific literature are limited due to the paucity of 

data currently available in this area. 

 

 

CONCLUSION 

 

The work to date has demonstrated that appropriate forms of stochastic modelling may 

elucidate the behaviour of enteric bacteriophages in traditional biological wastewater 

treatment processes. Furthermore, using this approach it may be possible to export the results 

obtained from the monitored systems to other systems and predict final concentrations of 

coliphages using simple models. 

 

Future work will compare the behaviour of these indices with the behaviour of specific enteric 

viral pathogens of human health significance. It is envisaged that the research will contribute 

new knowledge to inform better design and operation of wastewater treatment systems. At a 

time when greater emphasis is being placed on human health protection by minimising the 

transmission of pathogens at several points within the water cycle, this work will support 

more integrated water and sanitation safety planning approaches to human health risk 

management. 
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Abstract 

The number of alternative WWT technologies has grown steadily to meet increasingly 

stringent performance demands which increased the importance and complexity of early-

stage decision making in WWTP design and retrofitting problems. Currently the conceptual 

design task is handled based on expert decisions and previous experiences. In this 

contribution, we propose a new approach based on mathematical programming to manage 

the complexity of the problem and generate novel and optimal WWTP network designs for 

domestic WWT. Within this context, a superstructure concept is used to represent the 

alternative WWT technologies described as a series of reaction and separation tasks at 

different treatment levels. Each process alternative is described by a generic model and the 

required data for both performance and economics of each alternative are collected and 

sorted in a multi-dimensional database. This database is embedded within the mixed integer 

nonlinear programming problem formulated and solved in GAMS for different objective 

functions (e.g. total annualized costs, etc.) and constraint definitions (e.g. effluent discharge 

limits). The developed framework is highlighted using the benchmark plant as a case study 

to generate and screen optimal concepts for retrofitting options under different scenarios.             

 

Keywords 
Design; Modelling; Superstructure optimization; Uncertainty; Wastewater treatment 

 

 

INTRODUCTION AND MOTIVATION 

Recently, the WWTP process selection and network design problem has evolved from being a 

simple technical design problem to a complex integrated decision making task, and this is 

mainly because of the numerous aspects that are being considered in the early decision 

making stage (Hamouda, 2009). Currently, the early stage decision making for WWTP design 

– i.e. which technology and treatment concept to employ – is mainly based on expert 

decisions and experiences accumulated internally in an engineering company from solving 

previous problems. This approach takes values like environmental issues, water reuse, by-

product recovery (if possible) and public impacts into account and identifies the alternatives 

based on experience, similar existing solutions and brainstorming to come up with the most 

viable WWTP network (Daigger, 2005). This study on the other hand, proposes a 

superstructure based optimization methodology which represents different aspects considered 

during the early stage decision making with the help of mathematical programming, and 

designs/retrofits the domestic WWTP network in a novel and optimal manner.   

 

FRAMEWORK FOR SYNTHESIS AND DESIGN OF WWTP NETWORKS 

The mathematical programming based optimization theory developed for chemical process 

synthesis and design by Quaglia et al. (2012) was modified and adapted in the context of the 

WWT design problem. The framework is seen in Figure 1 (Bozkurt et al., 2014). After 

defining the wastewater characterization, sink limitations and the objective function in the 

mailto:gsi@kt.dtu.dk
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first step of the framework, one can define a superstructure where the treatment plant is 

defined as a sequence of treatment tasks (columns) and alternative technologies are placed in 

the rows, as seen in Figure 2. The superstructure is then formulated by defining connection 

streams between treatment tasks. Each process interval in the superstructure is structured 

using a generic model, which describes the treatment alternatives by input-output mass 

balances, as also illustrated in Figure 2. 

 

      

   

 

 

 

 

 

 

 
Figure 1. The superstructure based optimization methodology 

adapted for design of optimal WWT systems 

Figure 2. A representative superstructure for WWT 

networks and the generic process interval structure 

The intervals are composed of a number of phenomena, namely: mixing the flows and the 

utilities added, reaction, separation of flow for internal recycle and sludge wastage, waste 

separation, flow separation for external recycle and sending the flow to the process intervals 

of the next column. The mathematical equations defining the intervals can be seen in Table 1. 

A database lies behind the superstructure which contains the data to define the parameters of 

the generic model, e.g. process performances, utility consumptions, volumes, sludge 

production for each treatment alternative. To this end, a systematic data collection procedure 

was developed by integrating the procedures given by ATV design standards, Tchobanoglous 

(2003), WEF (2010) and Henze et al. (2008). The details of the procedure can be found 

elsewhere (Bozkurt et al., 2013). The optimal wastewater network problem is then formulated 

as a Mixed Integer (Non)Linear Programming (MI(N)LP) problem in GAMS and solved for 

different scenarios. The optimization model in GAMS consists of an objective function 

covering both operational and capital cost, logical constraints defining the topology of the 

solution and process constraints describing the process models of each treatment technology 

in the superstructure. The problem is also solved under uncertainty in order to identify the 

sensitivity of the optimal solutions to the data used in the optimization.    
Table 1. Mathematical equations representing the process model in each interval 
 
Phenomena Equation Explanations 

Mixing 
, , ,i kk i k kk

k

Fin F  

, , , ,*i kk i k i kk i kkFmix Fin R   

i,ii: Component index 
k,kk: Process interval index 

Fini,kk: Inflow to the process interval 

Fi,k,kk: Inflow of component i to process kk coming from k 
Fmixi,kk: Flow of component i after mixing 

Ri,kk: Utility flow 

αi,kk: Fraction of utility consumed 
μi,kk: Specific consumption of utility 

Freaci,kk: Flow after reaction 

γi,kk,rr : Matrix representing reaction stoichiometry  
θreact,kk,rr : Conversion efficiency of the 

key reactant react 
Fwi,kk: Flow after waste separation 

Wi,kk : Waste split factor 

Fout1i,kk,Fout2i,kk,Fout3i,kk: Outlet streams from interval kk  
Spliti,kk: Flow split factor 

SWkk: Sludge wastage flow rate ratio 

Utility  

addition 
 , , , ,*i kk i ii kk ii kk

ii

R F
 

Reaction  , , , , , , ,

,

* *i kk i kk i kk rr react kk rr react kk

rr react

Freac Fmix F   
 

Waste 

separation 
 , , ,* 1i kk i kk i kkFw Freac W   

Flow  

separation 

, , ,1 *i kk i kk i kkFout Fw Split  

, , , ,2 1i kk i kk i kk i kkFout Fw Fout Frec    

, ,3 *i kk i kk kkFout Freac SW  

 , , ,1 *i kk i kk i kk kkFrec Fw Fout rec   

, , , ,*i k kk i k k kkFX FoutX S  



 Bozkurt et al. 

256 

 

Activation 
* *LO UP

kk k k kk ky x x y x   Freci,kk: External recycle flow 

reckk: External recycle ratio 

X: 1,2,3 (representing three different outlet flow streams) 
Sk,kk: Parameter containing superstructure information 

ykk: Binary variable describing the process interval 

xk: Variable bounded by LO

kx and UP

kx  

Logical cuts 
1kk

kk

y   

 

CASE STUDY 

The problem is defined as treatment of domestic wastewater comprising mainly COD, 

nitrogen and solids as pollutants. The objective is to design the WWTP network with the 

minimum operational and capital cost possible while satisfying the effluent limitations for 

organics and nitrogen. The superstructure is defined as shown in Figure 3. It consists of 

wastewater source (I-1) and sinks for water (VI-1) and sludge (VI-2), primary sedimentation 

(II-1), pre-denitrification with different SRTs (III-1 and III-2), anaerobic treatment (III-3), 

different innovative nitrogen removal technologies (IV-1 and IV-2), disinfection options by 

means of UV, ozone and chloride (V-1, V-2 and V-3) together with by-pass intervals (II-2, 

III-4, IV-3 and V-4). The database has been developed by following the systematic procedure 

and the optimization problem was solved.  

I-1 II-1

II-2 III-2

III-3

IV-1
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VI-2

Wastewater 

source

Primary 

Treatment

Secondary 

Treatment

Tertiary 

Treatment
Sinks

III-1

III-4

V-2

V-3

V-1

V-4

Disinfection

IV-3

 
Figure 3. An example superstructure for the case study 

 

The problem was solved under three different scenarios: the first scenario takes only 

operational cost into account, while the second one considers total annualized cost. The third 

scenario imposes a stricter effluent limit on the nitrogen concentration. All the scenarios by-

passed the primary and tertiary treatment steps together with disinfection. The secondary 

treatment selection was the high SRT pre-denitrification technology for the first and third 

scenario and short SRT pre-denitrification for the second scenario. The fact that the short SRT 

system has a lower capital cost promoted its selection in the second scenario and the high 

SRT system was favoured due to its ability to remove nitrogen with higher efficiency. Apart 

from the topology information, the tool also enables the user to track the concentration of the 

pollutants throughout the treatment line. Moreover, cost breakdown information can also be 

obtained in the final report.  

 

CONCLUSIONS 

A mathematical programming concept has been introduced in this study to support the early 

stage decisions on WWTP network selection. By casting the problem as an optimization 

problem, the decision on which technology to employ is rendered on quantitative metrics 

which complements the experience based approach used today. Hence the tool is expected to 

support and facilitate generation and evaluation of ideas for identifying optimal solutions to 

design new or retrofit existing WWTPs. We also hope that this contribution will open the 

debate on how we identify novel processes and technologies for WWTPs (be it treatment or 

resource recovery as the final purpose). This activity is arguably more an art than a science 

the way it is carried out today.  
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Abstract 

The main objective of this study was to compare the capability of empirical and 

knowledge-based theory to model the filtration process in submerged anaerobic MBRs 

(SAnMBRs). To this aim, the following three models were developed and validated using 

data obtained from a SAnMBR system fitted with industrial-scale hollow-fibre membranes: 

(1) an empirical model; (2) a neural-network based model; and (3) a fuzzy-logic based 

model. The proposed models represented adequately the filtration process in SAnMBRs, 

resulting all in a Pearson Product-Moment correlation coefficient (r) above 0.9.  

 

Keywords 
Industrial-scale hollow-fibre membranes; knowledge-based modelling; submerged 

anaerobic MBR 

 

 

INTRODUCTION 

Further studies are needed in submerged anaerobic MBR (SAnMBR) technology in order to 

gain more insight into the optimisation of their efficiency, mainly regarding membrane 

fouling phenomenon. In this respect, mathematical modelling of filtration in SAnMBR 

technology may help in gaining insights about the aspects that play a key role in membrane 

fouling (Mannina et al., 2011), and are valuable for the design, prediction, and control of this 

technology (Ng and Kim, 2007). Models focused on filtration in MBR technology usually 

rely on parameters that are not measurable, neither on-line, nor with standard laboratory 

equipment (e.g. soluble microbial products). Moreover, some of them are not able to 

reproduce the effect of the different stages that form the operating mode of the membrane 

modules (relaxation, back-flushing…), or cannot be easily coupled to a given biological 

model. In this respect, some authors (see e.g. Sarioglu et al., 2012) currently tend to develop 

new simple empirical models that try to reproduce the effect of the most critical variables 

taking place in the membrane fouling phenomenon: mixed liquor total solids (MLTS) 

concentration and shear intensity in the membrane tank. However, due to the strongly non-

linear relationships existing between the process inputs and outputs, empirical models could 

only result in proper results when the process dynamics are bounded by a defined linear zone. 

In this respect, knowledge-based theory (e.g. neural networks or fuzzy logic) may represent a 
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powerful tool for modelling filtration in SAnMBRs since they allow applying the valuable 

expert knowledge and allows developing multiple-input-multiple-output process schemes.  

 

The main objective of this study was to compare the capability of empirical and knowledge-

based theory to model the filtration process in SAnMBR systems not only in the short term 

but also in the long term. Since the effect of the main operating conditions on membrane 

fouling cannot be properly evaluated at the lab scale because they depend heavily on the 

membrane size (particularly in hollow-fibre (HF) membranes the HF length is a critical 

parameter), the proposed models were validated in a SAnMBR system fitted with industrial-

scale HF membrane units. This semi-industrial SAnMBR plant was operated using real 

wastewater from the pre-treatment of the Carraixet WWTP (Valencia, Spain). Thus, the main 

disturbances that take place in full-scale plants were reproduced.  

 

MATERIAL AND METHODS 

Semi-industrial SAnMBR plant description 
This study was carried out in a semi-industrial SAnMBR plant fed with the effluent of a full-

scale WWTP pre-treatment. It consists of an anaerobic reactor with a total volume of 1.3 m
3
 

connected to two membrane tanks each one with a total volume of 0.8 m
3
. Each membrane 

tank includes one ultrafiltration HF membrane commercial system (PURON
®
, Koch 

Membrane Systems, 0.05 µm pore size, 30 m
2
 total filtering area, and outside-in filtration). 

The membrane system was operated according to a specific schedule involving a combination 

of different individual stages (back-fluxing, ventilation and degasification) taken from a basic 

filtration-relaxation cycle. Further details on this SAnMBR system can be found in Robles et 

al. (2013a). 

 

Filtration process modelling 
Empirical modelling 

The proposed empirical filtration model (resistance-in-series based model, Robles et al., 

2013b) considers the following four kinetically governed physical processes: (1) cake layer 

formation during filtration due to solids deposition; (2) cake layer removal due to membrane 

scouring by gas sparging; (3) cake layer removal during back-flushing; and (4) irreversible 

fouling consolidation. 
 

Knowledge-based modelling 

In this study, the following two knowledge-based theories are proposed for modelling 

filtration in SAnMBRs: (1) neural networks; and (2) fuzzy logic (data not shown). The 

proposed knowledge-based models calculate the change in the transmembrane pressure 

(TMP) over time on the basis of the following inputs: 20 ºC-standardised transmembrane flux 

(J20), MLTS, specific gas demand per square metre of membrane area (SGDm), and total 

volume of treated water (VT).  

 

RESULTS AND DISCUSSION 

Figure 1 provides an example of the results obtained from the short-term validation of both 

the empirical and neural-network based model proposed in this study. This validation was 

carried out using experimental data obtained by applying different J20 and SGDm values. The 

results shown in Figure 1a (corresponding to the empirical model) were obtained when 

operating with a MLTS concentration of 21 g L
-1

, SGDm from approx. 0.13 to 0.4 m
3
 h

-1
 m

-2
, 

and gross J20 from approx. 4 to 12 LMH. The results shown in Figure 1b (corresponding to 

the neural-network based model) were obtained when operating with a MLTS concentration 
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of 17 g L
-1

, SGDm from approx. 0.17 to 0.3 m
3
 h

-1
 m

-2
, and gross J20 from approx. 12 to 26 

LMH.  

 

As Figure 1a shows, the results indicate that the empirical model predictions (TMPSIM) 

accurately reproduce the experimental data (TMPEXP): an adequate Pearson Product-Moment 

correlation coefficient (r) of 0.925 was obtained. On the other hand, Figure 1a shows that the 

empirical model is capable of reproducing the reduction in TMP caused by ventilation (V) or 

back-flushing (BF) (see, for example, minutes 285 and 615, respectively). Results of the 

neural-network based model are shown in Figure 1b. It can be seen that the neural network is 

also capable to reproduce the change in TMP over time when the flux changes. Also in this 

case, the correlation between experimental data (dTMPexp/dt) and model predictions 

(dTMPsim/dt) was characterised by a high r value (r = 0.989). 

  

 
 (a) (b) 
Figure 1. Example of the results obtained from the short-term validation of (a) the empirical 

model and (b) the neural-network based model proposed in this study.  

 

Once the models were calibrated, their generalising capability was evaluated by simulating 

different operating periods. The performance of the models was evaluated and compared each 

other. 

 

CONCLUSIONS 

Three models aimed to represent filtration in SAnMBRs were developed and validated: (1) an 

empirical model; (2) a neural-network based model; and (3) a fuzzy-logic based model. All 

these models were capable to adequately reproduce the filtration process in SAnMBR 

technology, resulting in adequate Pearson correlation coefficients (above 0.9). 
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Abstract 

An Activated Sludge Modelling framework for Xenobiotics (ASM-X) was recently 

developed to mechanistically predict the fate of pharmaceuticals in a full-scale treatment 

plant. In this study, we generalized ASM-X to international literature data. Through the 

generalization, we assessed the influence on the biological removal efficiency of specific 

factors, namely influent loading dynamics, SRT and retransformation processes (from e.g., 

human metabolites back to parent chemicals). With regard to the latter, we show that the 

estimation of removal efficiency based only on parent chemical (a predominant practice in 

literature) can lead to an underestimation of the environmental risk.  

 

Keywords 
Pharmaceuticals elimination; ASM-X; model validation; retransformation; hospital WWTP  

 

INTRODUCTION 

Dynamic fate models can represent a cost-saving option to investigate the elimination of 

xenobiotic trace chemicals in biological wastewater treatment plants (WWTPs). An Activated 

Sludge Modelling framework for Xenobiotics (ASM-X) was developed and validated in the 

fate prediction of pharmaceuticals in a full-scale WWTP (Plósz et al., 2010, 2012). These 

studies highlighted the potential impact of human conjugated metabolites or other commercial 

chemicals to retransform back to parent forms, leading to a distinction between the 

concentration of parent (CLI) and retransformable fractions (CCJ) of pharmaceuticals. In this 

study, we validated ASM-X by comparing predicted removal efficiencies of three 

pharmaceuticals (sulfamethoxazole, ciprofloxacin and tetracycline) in Bekkelaget WWTP 

(Oslo, Norway), with published international data whereby sound sampling techniques were 

used. The validation with literature data, also referred to as generalization (Plósz et al., 2012), 

aimed at: (i) assessing the underestimation of removal by considering only the parent fraction; 

(ii) estimating the significance of this underestimation in terms of risk predictions; and (iii) 

evaluating factors known to affect pharmaceuticals removal. With regard to (iii), we focused 

on dynamics of influent load of the substances, WWTP operation (e.g., solid retention time—

SRT) and retransformation occurring in upstream sewer systems.    
 

MATERIALS AND METHODS 

The full-scale implementation of ASM-X in WEST 2012®, calibrated with the results of 

batch experiments as presented by Plósz et al. (2010), was used to estimate the elimination of 

sulfamethoxazole, ciprofloxacin and tetracycline in Bekkelaget WWTP. We distinguished 

between removal efficiency [-], in the biological treatment, referred to parent fraction (Eq.1) 

and to both parent and retransformable fraction (Eq. 2) 

inLIeffLIinLILI CCC ,,, )(                     [1] 

)()( ,,,,,, inCJinLIeffCJeffLIinCJinLITOT CCCCCC                  [2] 

mailto:fabp@env.dtu.dk
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where Cin and Ceff [ng L
-1

] were concentrations in secondary influent and effluent, 

respectively. Estimated removal efficiencies were plotted as a function of the normalized 

influent load of the chemicals [mg h
-1

 1000PE
-1

], calculated from the design population 

equivalent of the WWTP. A literature review was performed for the generalization of ASM-X 

predictions, with the collection of international data on the full-scale removal of 

pharmaceuticals. Only data derived from flow-proportional sampling campaigns were 

included. Additionally, literature studies on the separate treatment of hospital wastewater 

were selected to characterize a “zero-catchment” scenario, describing the removal of 

pharmaceuticals in WWTPs with negligible upstream sewer transport.  

A preliminary environmental risk assessment of the pharmaceuticals was performed. 

Predicted environmental concentrations (PECs) were estimated from the effluent 

concentrations from Bekkelaget WWTP (assuming 10-fold dilution). We distinguished 

between PECs accounting for only effluent CLI, and for both effluent CLI and CCJ. PECs were 

then compared to predicted non-effect concentrations (PNECs) reported in literature to assess 

risk dynamics.  
 

RESULTS AND DISCUSSION (the case of sulfamethoxazole) 

Scenario simulations, considering increased influent loads compared to measurements in 

Bekkelaget WWTP, were used to generalise ASM-X predictions of sulfamethoxazole removal 

with literature data. In Fig. 1a, we compared model predictions (5-fold increased influent 

loading) with removal efficiencies of sulfamethoxazole in municipal WWTPs. Predicted ηLI 

and ηTOT were consistent with data reported by Göbel et al. (2005, 2007), including a 

comparable underestimation of the efficiency when the retransformable metabolite (N4-acetyl 

sulfamethoxazole) was not considered. A similar underestimation error was shown by Yang et 

al. (2011). Values of ηLI reported by Radjenovic et al. (2009) were significantly higher than 

our estimations and any other literature data at comparable influent loads, suggesting a 

possible enhancement of biotransformation (due to e.g., operation at high SRT). With regard 

to the zero-catchment scenario (Fig. 1b), predicted ηLI and ηTOT at a 25-fold increased load are 

in close agreement with values reported by Kovalova et al. (2012). 
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Figure 1. Generalization of ASM-X predicted removal of sulfamethoxazole (SMX) with literature data for 

municipal WWTPs (a) and for the hospital wastewater treatment—zero-catchment scenario (b). ASM-X 

predictions of removal efficiency accounted for only parent SMX (grey diamonds) and for parent and 

retransformable fractions of SMX (black circles). 5-fold and a 25-fold increased influent load, as compared to 

Plósz et al. (2010), were used for the validation in (a) and (b), respectively. Error bars refer to standard 

deviations in influent loads and removal efficiencies.  
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In Fig. 2, values of the PECs in the recipient water body of the Bekkelaget WWTP were 

shown. Results obtained in this preliminary assessment suggest that tetracycline (Fig. 2a) 

and—significantly—ciprofloxacin (Fig. 2b) can represent a considerable chemical risk. The 

predicted effluent CCJ of tetracycline can pose a substantial additional risk (up to 130% 

increase as compared to parent-based PEC), whereas the parent-based tetracycline results 

suggested a marginal violation of the no-effect limit. Estimated as 131–397 times higher than 

the respective PNEC value, PECs of ciprofloxacin exhibited a marked temporal variability (3-

fold increase at the peaks).  
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Figure 2. PEC values of tetracycline (a) and ciprofloxacin (b) calculated from ASM-X predictions. For PNEC 

values used, please refer to Grung et al. (2008). Quasi MECs (measured environmental concentrations) identify 

effluent measured environmental concentrations divided by a dilution factor. 

 

Overall, these results suggest the importance of using dynamic models for and the necessity 

of considering retransformable chemical fractions in assessing pharmaceuticals removal in 

biological WWTPs. Additionally, we show that environmental risk assessments should 

account for (i) concentrations of retransformable chemicals released in WWTP effluents, 

potentially representing an additional source of hazard; and (ii) temporal variations in effluent 

concentrations. 
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Abstract 

Methane is an potent greenhouse gas and its emission from municipal wastewater treatment plants 

should be prevented. One way to do this, would be to promote the biological conversion of methane 

over stripping in the aeration tanks. In this study we extended Activated Sludge Model n° 1with 

biological methane oxidation to verify the effect of aeration rate, solids retention time and influent 

methane concentration on the balance between conversion and stripping. This knowledge helps to 

stimulate the methane oxidizing capacity of activated sludge to abate methane emissions to the 

atmosphere. 
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INTRODUCTION 

Municipal wastewater  treatment of gives rise to the emission of the greenhouse gases carbon 

dioxide, nitrous oxide and methane. Methane is a potent greenhouse gas with a global 

warming potential of 25 CO2-equivalents (IPCC, 2007). In an long-term study on a municipal 

wastewater treatment plant (WWTP) methane was found to make up 13.5 % of the plants 

greenhouse gas footprint, exceeding the amount of emitted carbon dioxide related to the 

plant’s electricity and natural gas consumption (Daelman et al., 2013). Globally, sewage 

treatment accounts for 4 % of the total methane emission (Conrad, 2009). 
 

Basically, the methane that is emitted from a WWTP can be traced back to two sources. 

Either it is stripped from the incoming wastewater after it has been produced in the sewer 

(Guisasola et al., 2008), or it is produced during the storage and manipulation of sludge 

(Daelman et al., 2012). Dissolved methane can be biologically converted, besides being 

stripped. It was recently discovered that about 80 % of the dissolved methane entering an 

aerated activated sludge tank was converted with the remainder being stripped (Daelman et 

al., 2012). Aerobic conversion of methane is performed by methanotrophic bacteria (Ho et al., 

2013). Harnessing this methane oxidizing capacity of activated sludge could be a way to 

avoid the emission of methane. In the end, this could lead to more sustainable wastewater 

treatment. 
 

The objective of this study was to investigate the effect of a number of operational process 

conditions on the fate of dissolved methane in an activated sludge plant. To this end, the 

Activated Sludge Model n° 1 (ASM1) was extended with aerobic methanotrophic growth. 

The resulting model, called ASM1m, was implemented in Benchmark Simulation Model n° 1 

(BSM1) (Copp, 2001) and termed BSM1m Taking into account biological oxidation and 

stripping of methane, BSM1m is the first model describing dynamic emissions of methane 

mailto:m.r.j.daelman@tudelft.nl
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during wastewater treatment. As such, it complements existing models for the emission of 

nitrous oxide in estimating greenhouse gas emissions from WWTPs. 

 

MATERIALS AND METHODS 

ASM1m adds two processes to ASM1: aerobic growth and decay of methanotrophs. The two 

additional state variables are methane as substrate (SCH4) and methane oxidizing bacteria 

(XMOB). 

To describe the behaviour of the overall WWTP, ASM1m was implemented in BSM1m, 

which consists of two anoxic tanks followed by three aerated tanks and a settler and a 

secondary settling tank (Copp, 2001). BSM1m was used to investigate the effect of the 

following three operating variables on methane conversion rate and methane stripping: 

aeration rate (in reactor 3 and 4), influent methane concentration and solids retention time. 

Table 1 gives an overview of the relevant parameters as well as their default values and the 

range over which they were varied. Besides the percentage of incoming methane that is 

stripped, also the conventional BSM1 criteria Effluent Quality (EQ) and Operational Cost 

Index (OCI) were calculated. 

 

Table 1. Overview of the operating conditions applied in the scenario analysis. 

Operating condition Parameter Default value Range 

Aeration rate in reactor 3 and 4  240 d
-1

 0 - 400 d
-1

 

Influent methane concentration  10 g COD.m
-3 (*)

 0 - 50 g COD.m
-3

 

Solids retention time SRT 9.18 d
(**)

 2 – 12 d 
(*)

 Daelman et al. (2012) 
(**)

 Calculated from solids balance 
   

 

RESULTS AND DISCUSSION 

Figure  shows the influence of the operating conditions on the percentage of incoming 

methane that is emitted and on the plant’s performance in terms of effluent quality and 

operational costs. 
 

At very low aeration rates (kLa < 52 d
-1

), methanotrophs are outcompeted by ordinary 

heterotrophs (data not shown), while methane stripping increases with increasing kLa, 

resulting in higher methane emissions. At higher, but still low aeration rates (kLa =  52-126 d
-

1
) the increasing methanotrophic growth is reflected in decreasing methane emissions. Beyond 

the optimum of 126 d
-1

, stripping takes over from methanotrophic growth and the methane 

emission increases again. The optimal aeration rate to curb the emission does not coincide 

with the best effluent quality (lowest EQ) or the lowest operating costs (lowest OCI). 
 

At low influent methane concentrations, most of the methane is converted in the anoxic tank 

using the oxygen entering with the recycle sludge. As the influent concentration increases, 

more methane passes through the anoxic tanks to the aeration tanks where it is stripped. Upon 

a further increase in the influent methane concentration, the conversion in the aeration tanks 

takes over from the stripping. The impact on the plant’s effluent quality and operational cost 

is negligible. 
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The percentage of incoming methane that is emitted decreases with increasing SRT, at least 

for SRT-values lower than 6 d. When the SRT increases beyond 6 d, the emission first 

increases and then decreases gradually. This is explained by the growth of methanotrophic 

biomass (data not shown). For SRT-values increasing up to 6 days, the amount of 

methanotrophic biomass increases, which is reflected in a decrease of the methane emissions. 

From an SRT of 6 d onwards, the biomass increase slows down. The optimal SRT to 

minimize the emission does not coincide with the best effluent quality (lowest EQ) or the 

lowest operating costs (lowest OCI). 

 

   

   

Figure 1. Top: emission of methane as percentage of incoming methane vs. aeration rate (A), 

influent methane concentration (B) and SRT (C). Bottom: Effluent Quality and Operational Cost 

Index (for both: the lower the better) vs. aeration rate (D), influent methane concentration (E) 

and SRT (F). 

 

CONCLUSIONS AND PERSPECTIVES 

 Aerobic methane oxidation during biological wastewater treatment was modelled 

(ASM1m) and its interaction with methane stripping was assessed in a simulation study for 

a municipal WWTP. 

 Aeration rate, influent methane concentration and solids retention time affect methane 

emission and could therefore be used for mitigating methane emissions from WWTPs. 

 The model will be used to elucidate how the methane emission relates to the plant 

performance in terms of effluent quality and operational cost, resulting in a multi-criteria 

analysis. 
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Background 

The Sacramento Regional County Sanitation District (SRCSD) in California, USA has 

embarked upon the EchoWater Project to upgrade the Sacramento Regional Wastewater 

Treatment Plant (SRWTP) to include biological nutrient removal (BNR) in order to meet new 

standards for discharge and reuse. The permit limits require SRWTP to meet instantaneous 

daily composite ammonia limit of 3.3/2.0 mgN/L (summer/winter), a monthly average 

ammonia limit of 2.4/1.5 mgN/L (summer/winter), a monthly average nitrate limit of 10 

mgN/L, and to mitigate the effluent total phosphorus to achieve an annual average target of 

2.2 mgP/L.   

Design Approach 

The process design of the new BNR facility made extensive use of process modelling 

including several innovative and distinct aspects which are described below. Raw wastewater 

flows, loads, and characteristics were determined using historical data and special samplings.  

This data was then used to produce a design case which was a single 6-month influent 

“itinerary” that included the maximum month, week, and day loadings for flow and COD/N/P 

loads, and associates the most adverse temperature conditions with these maximum loading 

periods. Additionally the influent itinerary includes periods which are more representative of 

typical conditions, and periods which represent minimum loading periods.  Diurnal patterns 

derived from special samplings were applied to these flows and loads to produce an hourly 

dynamic itinerary.  One of the lower loading periods takes place immediately before the 

maximum month period.  The critical period for design is goverened by the ability of the 

biological process to respond to the extreme swings in loading when transitioning from the 

lowest load period to the maximum month. Examples of the influent itinerary for COD and 

TKN can be found in Figure  and Figure  below. 

 

The inclusion of maximum month, week, and day loadings after a relatively low loading 

period and along with the high variability of influent flows and loads leads to a design case 

which is more realistic and stringent than typically used in design. Because of this approach 

engineering adjustments typically applied to address influent variability were not applied 

allowing for a more aggressive and economical design. Indeed other failure scenarios which 

are hard to quantify with design approaches that do not use dynamic models and therefore 

require the application of additional engineering adjustments can be more accurately 

estimated using this dynamic approach. 
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Figure 1 – Influent COD Load itinerary used in modelling (1 lb=0.45 kg & 1 mgd=3800 m
3
/day) 

 

 

Figure 2 – Influent TKN Load itinerary used in modelling (1 lb=0.45 kg & 1 mgd=3800 m
3
/day) 
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Design SRT Selection 

Selecting an appropriate aerobic solids retention time (SRT) to meet the stringent ammonia 

requirement of the permit was a primary objective for the dynamic modelling.  This was 

accomplished with a sensitivity analysis on the preliminary design performed only varying 

SRT in which the impact to peak effluent ammonia and peak solids loading rate (SLR) were 

monitored, the results of which can be seen in Figure  below.  Here the peak effluent ammonia 

crosses the line of the daily composite permit limit when operating below a 4 day SRT 

aerobic.  A 6 day SRT was chosen as it is near the peak SLR for the preliminary design 

volume and provides a safety factor of about 2 days which allows for some operational 

problems and plant upsets; one of which will be discussed below. This is significantly below 

the aerobic SRT which was initially suggested of 7.5 days for a minimum daily average 

temperature of 16°C.  As the selected SRT and the limiting SLR sets the volume requirement 

of the basin; the aggressive selection of an aerobic SRT of 6.0 days was able to substantially 

reduce the required volume from what would be required with a 7.5 day aerobic SRT which a 

more traditional nitrifying SRT selection criteria would have required. 

 

Figure 3 – Sensitivity of Effluent Ammonia and Solids Loading Rate to Aerobic SRT (1 lb/ft
2
=4.88 

kg/m
2
) 

Ammonia Control Modelling  
Swing zones are included in the design to minimize the total volume and energy requirements 

for nitrification while achieving the maximum amount of nitrate removal; a concept which 

was modelled with the dynamic itinerary and included in the sensitivity analysis discussed 

previously. Swing zones were controlled in modelling by a feed forward ammonia control 

system which activated when ammonia in the last dedicated aerobic pass was raised above a 

set concentration. In modelling the chosen concentrations were 2.0 mg-N/L which would 

cause the first 4 (of 7) swing zones to aerate and 3.5 mg-N/L which caused the remaining 3 

swing zones to aerate. This dynamic modelling of swing zone control allows for realistic 

testing of plant performance given an aggressive design and SRT selection.  Figure  shows the 

model output ammonia concentration in aeration zone 4, one of the last dedicated aeration 

zones and the location where ammonia concentration was monitored for feed forward 

ammonia control in the model.  As you can see the model predicts that aeration of the first 4 

swing zones is only needed during higher loading months while aeration of all swing zones 

will only be needed for sporadically for short durations like weeks. 
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Figure 4 – Ammonia monitoring for feed forward ammonia based control of the swing zones 

(crossing blue band triggers aeration in first swing zones while red band activates all swing 

zones) 

Given that swing zones were included in the definition of aerobic SRT, reliable operation of 

the swing zones is important in assuring that the target aerobic SRT is achieved and so failure 

of the swing zones to aerate when needed was considered a major risk. The risk of 

noncompliance associated with the chosen SRT due to failure of the swing zones was 

analyzed by plotting hourly effluent ammonia concentrations as probability distributions 

under various failure scenarios. In Figure  below these probability distributions are given for a 

scenario in which the ammonia probes which control swing zone aeration have drifted out of 

calibration by 1 mg-N/L, and in which the swing zones are not engaged at all due to a 

complete failure of the control system. The former was modelled by adjusting the set points in 

the controller from 2.0 and 3.5 mg-N/L to 3.0 and 4.5 mg-N/L and the latter was modelled by 

turning off the swing zone aeration controls entirely causing these zones to operate anoxically 

throughout the entire itinerary. Here we can see that only in the most extreme events when the 

swing zones were not aerated at all did the effluent ammonia exceed the design limit, and in 

that event only for a few hours at a time. 

 

Figure 5 – Probabilty Distribution of effluent ammonia under normal operation and two failure 

scenarios of ammonia based swing zone control 
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Dynamic Aeration Design 

A novel approach to aeration design was used in which the dynamic oxygen uptake rates 

(OURs) produced by the model for different periods, years, and operating conditions were 

exported to the aeration model developed by Johnson (1993) to determine the required airflow 

and number of diffusers at both start up and design conditions.  In this method hourly OURs 

for each zone were exported from the model for the entire itinerary.  As can be seen in Figure  

OURs in individual zones varied significantly over time and maximums/minimums of 

different zones were not necessarily concurrent, for example the maximum OUR in the first 

aeration zone is associated with periods of high COD loading while the maximum OUR in the 

last aeration zone is associated with periods of high TKN loading.  Maximum and minimum 

hour, day, and month values were determined for each zone individually and input to the 

aeration model to determine the range of airflows to each zone and the appropriate number of 

diffusers.  Additionally the peak oxygen demand or oxygen transfer rate (OTR) across all 

zones was used to determine the maximum and minimum periods of air demand overall for 

blower sizing.   

 

 

Figure 6 – Example of Dynamic OUR output from two zones. 

There were several benefits to dynamic modelling for aeration design.  Firstly due to the lack 

of concurrence of carbonaceous and nitrogenous loads in the provided dynamic itinerary the 

design airflow was able to be reduced from what would be determined if considering 

concurrent maximum COD and TKN loads.  Secondly modelling the full range of conditions 

provided data about the variability of airflow demand to each zone which allowed a 

distribution of airflow demands at each zone to be considered when selecting the number of 

diffusers per zone. 

Chemical Feed Design 

Additionally dynamic control in activated sludge modelling allows carbon feed requirements 

to be more accurately predicted and has helped in chemical feed system design and chemical 

feed point selection.  Carbon in the form of acetate was fed to the swing zones; controlled by 

a proportional gain controller which activated in the event of effluent nitrate exceeding a set 

value with the goal of keeping the monthly average effluent nitrate below 8.0 mg/L.  If the 

swing zone was being aerated at the time another controller was used which override the 

acetate feed controller.  The performance of the acetate feed system can be found in Figure  

below.  Here we see that regular feeding of acetate from day 80 onward is required for the 

removal of nitrate below 8 mg-N/L.  Here modelling was used to validate the design 

maximum acetate feed rate determined separately, and the cumulative acetate feed volume 
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was tracked to determine the required 7 day storage volume.  It is worth noting here that the 

system is very carbon limited in the provided itinerary due to a high phosphorus 

concentrtaion.  The itinerary influent phosphorus may be revised to a lower concentration 

upon further investigation. 

 

Figure 7 – Effluent Nitrate (top) and Acetate Feed for Nitrate Control (bottom) (1 gallon = 3.78 litres) 

Mixed Liquor Fermentation 

Provision of a MLF is a promising option for carbon supplementation for enhanced biological 

phosphorus removal and is described by Houweling (2010). The first purpose-built MLF in 

the world was utilized at the Cedar Creek Wastewater Treatment Plant (CCWTP) in Olathe 

KS (Kobylinski, 2013). Ongoing operational activities, biological process modelling, and 

bench scale testing at CCWTP are being used to better predict the VFA production capacity of 

the MLF. The information from this modelling and test work is being used to provide 

guidance for modelling the MLF proposed for the Sacramento plant. 

 

To calibrate the mixed liquor fermenter; batch tests were performed on Cedar Creek WAS at 

4 different Mixed Liquor Suspended Solids (MLSS) concentrations over 6 days with the 

filtered COD (fCOD) being measured over the duration of the test. A process model was 

developed using the BioWin simulator platform to generate appropriate WAS characteristics 

and to simulate the batch fermentation tests of the WAS. The simulation fCOD concentrations 

were compared to the measured values and the hydrolysis rate was adjusted to match these 

observations as can be seen in Figure . The adjustment that was made was to increase the 

hydrolysis factor for anaerobic zones by a factor of 5 (from 0.04 to 0.20 in the simulator 

defaults).  This higher factor matches the hydrolysis factor used as a default in the simulator 

for anaerobic digesters. This adjustment would seem to take account for the lower ORP which 

is achieved in the mixed liquor fermenter which is closer to the conditions observed in 

anaerobic digesters than activated sludge anaerobic zones. Inspection of Figure  shows that 

the current model matches data well for the lower MLSS concentrations but under-predicts 

fCOD production at higher sludge concentrations. This suggests that the structure of the 

model for hydrolysis is not correct (second order kinetics with respect to biomass may be 

more appropriate and will be investigated further).  Other research has shown the difficulty of 
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accurately predicting hydrolysis rates (Morgenroth, Kommedal, & Harremoes, 2002).  Clearly 

more investigation of mixed liquor fermentation is needed and currently the authors are 

partnering with others to do more research on this topic through the Water Environment 

Research Foundation (WERF).   

 

 

Figure 8 – Production of fCOD through WAS fermentation; experimental and modelling results 

To model a continuous MLF, an unaerated activated sludge element and a clarifier were used 

and the hydrolysis factor for anaerobic zones was adjusted locally in the activated sludge 

element as described above. SRT in the MLF was set to 1 day while MLF solids were 

controlled at 9500 mg/L by adjusting the feed rate of mixed liquor to the MLF. The benefit of 

the MLF was estimated using the model by tracking the change in VFA and PHA 

concentration across the fermenter. This showed that with the MLF approximately 30% more 

VFA was produced which leads to an improved reduction in N and P compared to not using a 

mixed liquor fermenter.  The positive benefit of utilizing a mixed liquor fermenter can be seen 

in Figure  which corresponds to Figure  above but without the mixed liquor fermenter.  

Comparing the two we can see that utilizing a fermenter leads to lower nitrate concentrations 

when acetate is not supplemented and a reduced total and 7 day storage requirement.  

Additionally acetate only needs to be supplemented from days 80 to 108 in this case 

compared to being required from day 80 onward in the scenario without MLF. 
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Figure 9 – Effluent Nitrate (top) and Acetate Feed for NOx Control (bottom) w/ MLF (1 gallon = 3.78 

litres) 
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Abstract 
The aim of this work was to evaluate bioaugmentation with nitrifiers at pilot scale using two 
Membrane Bioreactors (MBRs) in order to assess the suitability of state of the art activated sludge 
models (ASM) in predicting the efficiency of bioaugmentation as a function of operating conditions. It 
was verified that the difference of temperature between seeding and seeded reactors (ΔT) is affecting 
bioaugmentation efficiency and that the experimental data can be accurately simulated when ΔT is 
within a given range (about 10 °C). On the contrary, when the temperature is significantly lower in the 
seeded reactor than in the seeding one, standard ASMs overestimate bioaugmentation efficiency. An 
ASM able to accurately represent biomass transfer in the presence of high ΔT will require the 
inclusion of mathematical modelling of the effect of temperature time gradients on nitrifiers.  
 
Keywords 
Activated sludge models, nitrifiers, bioaugmentation, membrane bioreactors. 

 

 
INTRODUCTION 
Bioaugmentation with nitrifiers is a cost-effective strategy to obtain high nitrification 
efficiencies at relatively low solids retention time (SRT) (Bartolì et al., 2011; Szoke et al., 
2011). It consists of enriching the mixed liquor of the main-stream reactors of an activated 
sludge system with nitrifying biomass collected from a side stream reactor where the 
environmental conditions are favourable for nitrifiers growth. 
Several phenomena can influence bioaugmentation efficiency (i.e. predation, large 
temperature differences and different nitrifying biomass in the seeding and the seeded reactor) 
that are not included in state-of-the-art of activated sludge models and only in few cases 
bioaugmentation efficiency has been accurately predicted  using conventional IWA ASMs 
(Munz et al, 2012). 
Bioaugmentation is not yet easy to predict and control (Van Limbergen et al. 1998) and its 
success depends on the effective establishment and metabolic adaptation of the added biomass 
in the treatment system (Satoh et al. 2013). 
A Membrane Bioreactor (MBR) offers more accurate control of some important parameter 
(SRT, total undifferentiated bacteria retention) and this can facilitate the verification of ASMs 
suitability to predict bioaugmentation.  
The use of MBRs both for the seeding and the seeded reactors, ensures similar selective 
conditions and  the possibility of maintaining seeded nitrifiers inside the new environment. 
The aim of this work was to model the bioaugmentation process at pilot scale using two 
MBRs operating in different conditions of ammonia loading rate (ALR), SRT and hydraulic 
retention time (HRT).  
 

 
 

mailto:alberto.mannucci@dicea.unifi.it
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MATERIAL AND METHODS 
The experimental set-up consisted of two MBRs as shown in Figure 1. The first pilot scale 
MBR (MBR1- the seeding reactor) consisted of pre-denitrification, nitrification and of a 
filtration tank equipped with three flat membranes (DF-10 Kubota, Japan). MBR1 was fed 
with synthetic high strength ammonia influent simulating anaerobic digester supernatant (650 
mg N-NH4

+
 L

-1
; 250 mg COD L

-1
) and operated for more than 600 days with an SRT of 20 d. 

The second  pilot scale MBR (MBR2 - the seeded reactor) was equipped with a hollow fiber 
filtration module (Module ZW10 GE-Zenon Environmental) and fed with real domestic 
wastewater continuously collected from the sewer at the Cuoiodepur WWTP (San Romano – 
San Miniato, Pisa, Italy). ALR was close to 18 g N-NH4

+
 L

-1 
d

-1
 Dissolved oxygen (DO) 

concentration and pH were the same in both reactors: pH = 7.5 ±0.5, DO = 4 ± 0.5 mg L
-1

. In 
MBR1, temperature was controlled and maintained at 20 ± 0.5 °C while in MBR2 
temperature depended on environmental temperature without any control and varied from 24 
to 6 °C during the experiment. MBR2 was operated in steady state conditions for more than 
400 days without any external seeding before bioaugmentation started with a constant flow of 
2.5 L d

-1
 of nitrifying sludge from the filtration tank of MBR1 (Figure 1). Bioaugmentation 

phase lasted more than 150 d. 
 

 
Figure 1  Schematic of the experimental pilot scale set-up 

 

 
In order to study the kinetic behavior of the MBR pilot plant nitrifying biomass, a series of 7 
conventional kinetic batch test were performed. 1 L of mixed liquor was collected from 
nitrification tank of the MBR pilot plant and maintained in mixed and aerated conditions until 
reaching endogenous. A fixed amount of NH4Cl was dosed  in order to obtain an initial 
concentration that will not be neither limiting nor inhibitory, based on observation and 
literature data. The pH was controlled at 8 ± 0.1 and the DO higher than 4 mg L-1 through 
fine bubbles aeration. A sample was collected every 10 minutes and the N-NH4+ was 
analyzed through colorimetric analysis. Each test was repeated in triplicates. 
An activated sludge model with a two-step nitrification-denitrification (ASMN, Hiatt and 
Grady, 2008) was used to describe the processes (autotrophic and heterotrophic biomass) in 
both pilot plants and to estimate the amount of active AOB biomass at the time of batch tests 
according to Munz et al. (2011). The model, that separately represents AOB and NOB 
populations, was used to calibrate the maximum specific growth rate for AOB (µmax,AOB) and  
the half-saturation constant for ammonia (KNH) with the results of batch tests. 
 
RESULTS AND CONCLUSIONS 

Ammonia Removal Efficiency (ER) estimated in MBR2 under bioaugmented (ON) and non 

bioaugmented (OFF) period is reported in Figure 2 as a function of the actual temperature. 

Ammonia RE increase in presence of continuous AOB seeding from MBR1 and 
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bioaugmentation efficiency (as RE increasing) depends on MBR2 temperature and presents a 

peak when temperature was in  the range 15-17 °C (Figure 6).  

 

 

 
Figure 2  Ammonia Removal Efficiency (ER) in MBR2 under bioaugmented (ON) and non bioaugmented 

(OFF) period 

 

The AOB concentration of the samples used in kinetic test was determined through the 

modeling of the nitrification capacity of the MBR1 and MBR2 pilot plants; AOB 

concentration was then used to calibrate µmax,AOB and KNH using ASMN model on the 

ammonia bulk liquid concentration obtained in conventional batch kinetic tests.  

An example of experimental and modeled ammonia concentration for the MBR2 nitrifying 

biomass is reported in Figure 3. 

 
Figure  3 Experimental results and calibration with ASMN of a test for half-saturation constant and 

maximum specific growth rate estimation 

 
Average values of µmax,AOB and KNH obtained from kinetic batch tests and long term 
monitoring data elaboration are reported in Table 1. 
 
 
Table 1 Calibrated ASMN parameters in batch tests 

Parameter Unit 
MBR1 MBR2 Bioaug OFF. MBR2 Bioaug. ON 

Avg. Std. Dev. Avg. Std. Dev. Avg. Std. Dev. 
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KNH mg  L
-1

 0.8 0.28 0.4 0.14 0.39 0.24 

µmax, AOB d 
-1

 0.95 0.025 0.85 0.015 0.84 0.019 

 
As reported in Table 1, the main kinetic parameters of AOB in MBR2 were not influenced by 
continuous seeding of nitrifiers with different kinetics; thus, for further simulations, an unique 
nitrifying biomass in MBR2 also in presence of bioaugmentation was considered. 
ASMN model and calibrated kinetic parameters have been validated on experimental effluent 
quality data in non-biaougmented period (until day 440) in MBR1 (data not shown) and 
MBR2 (Figure 4) before modelling the effect of bioaugmentation process (from day 441 to 
day 525). 
Until the difference between temperature in MBR1 and MBR2 (ΔT) was lower than 10°C (T 
in MBR1 > 10 °C) ASMN model was able to describe MBR2 effluent quality in the presence 
of bioaugmentation. Differences between experimental data and model output started when 
ΔT is higher than 10 °C (Figure 5).  
The results confirmed the possibility of modeling bioaugmentation effects using a single 
nitrifying biomass in both seeded and seeding reactors and highlighted the importance of 
temperature stress.  
Adopted model does not consider some important biological adaptation mechanisms reported 
in literature that can explain bacterial growth reduction due to sudden temperature changes 
higher than 10°C. 
The observed phenomena can be explained when assuming that the investigated biomass was 
subject to an adaptation phase and a subsequent partial lag-phase, depending on temperature 
shock, during which many physiological changes as the induction of the cold-shock proteins 
occurs (Beales, 2004; Lee et al., 2011).  
Due to the presence of a lag phase necessary for the biomass to recover its full activity, the 
effect of the sudden temperature change should be related to the HRT (in the seeded reactor) 
and this relationship should be further explored. 
As evident from the results of experimental and simulated data reported in Figure 5, where the 
whole experiment was summarized, ΔT between seeding and seeded reactor plays a very 
important role on the effect of bioaugmentation on nitrification efficiency and has to be taken 
into consideration in order to improve bioaugmentation modelling. 
As reported by Oleszkiewicz and Berquist (1988) and Guo et al. (2010) temperature 
correction factor depends on the studied temperature range. In this work, temperature in 
MBR2 reactor varied in the range 7°C – 20°C in order to study nitrification process in the 
range of temperature of civil wastewater, but the effect of the same ΔT in a different 
temperature range needs to be evaluated. 
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Figure 4  MBR2: Temperature (red line), experimental (white circles) and modeled ammonia effluent 
concentration using ASMN in the absence (gray dotted line) and in the presence (solid black line) of 
bioaugmentation.    
 

 
 
Figure 5  Difference between simulated (gray) and experimental (black) increase of ammonia removal 

efficiency (ER) due to bioaugmentation as a function of ΔT. 
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Abstract 

Recent research focuses on the use of photobioreactors (PhBRs) as a means to recover 

wastewater resources and/or as a tertiary treatment process used to polish wastewater 

treatment plant (WWTP) effluent. Several models have been developed to simulate algae 

growth. However, there is no accepted process model developed using the systematic 

approach proposed in the activated sludge modeling (ASM) framework. In this paper, we 

present a mathematical model developed to simulate green micro-algal growth (ASM-A). It 

was developed as an extension to the ASM-2d (Henze et al., 2000), hence it can be readily 

coupled with this commonly used wastewater treatment model. We identified and 

calibrated a suitable model structure that can describe factors, influencing autotrophic algal 

growth and nutrient uptake, including macro-nutrient availability and light irradiance in 

photobioreactors. For model calibration, parameters were estimated through micro-batch 

(microplate) and a series of batch experiments using a mixed green micro-algal culture 

isolated in a wastewater pond, growing strictly in suspension. The model was evaluated 

using independent data obtained in batch experiments with synthetic growth medium. 

 

Keywords 
Process modeling, nutrient recovery, microalgae, wastewater  

 

INTRODUCTION 

Microalgae photobioreactors offer the potential to recover nutrients contained in wastewater 

and provide an opportunity for efficient nutrient recycling (Samorí et al., 2013), while serving 

as tertiary wastewater treatment step. In addition, their biomass can be used for biogas or 

biodiesel production through anaerobic digestion and the utilization of lipids, respectively. 

Unlike crop-based biofuels, microalgal biomass does not compete with food production, 

which qualifies it as a third generation biofuel. However, the production of microalgae has a 

higher environmental impact (carbon footprint) than the production of crops used for biofuel 

production.This is due to the comparably higher water demand and energy consumption as 

well as the greenhouse-gas (GHG) emission associated with the production of nutrients used 

for cultivation of microalgae (Clarens et al., 2009). With the current technologies, large scale 

biofuel production from microalgae is neither energetically nor economically favorable, 

unless wastewater treatment is the primary goal (Lundquist et al., 2010 and Pittman et al., 

2011). Moreover, the combination of wastewater treatment with microalgae cultivation 

eliminates the need to add scarce and potentially costly nutrients like phosphate to the culture 

medium (Cheng and Ogden, 2011). An accurate model able to simulate algal growth in 

PhBRs connected with conventional WWTP would be a powerful tool for process design and 

evaluation of this innovative technology, an area this research addresses.  

The main objectives of this study are (i) to develop a micro-algal model in the ASM 

framework that can combine the bacterial and micro-algal wastewater treatment processes; (ii) 

to simulate the micro-algal uptake, storage and growth on nitrogen and phosphorous; (iii) to 

model the co-limitation of various substrates. 
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Modelling the growth of green micro-algae  

 

Several models exist, describing green micro-algal growth. Table 1 summarizes all the models 

used for model identification in our study. The models range in complexity, from modelling 

the influence of one single variable on growth e.g. light (Grima et al., 1994; Huesemann et al., 

2013) to models incorporating the influence of multiple variables combined e.g. light, nutrient 

availability, temperature and pH (Ambrose et al., 2006; Wolf et al., 2007; Quinn et al., 2011; 

Broekhuizen et al., 2012; Guest et al., 2013 or Decostere et al., 2013). Even when the 

complexity and the number of factors taken into account are high, some of these models are 

still missing important aspects related to micro-algal growth and their applications. As an 

example, the PHOBIA model, developed by Wolf et al. (2007), is a biofilm model that 

includes growth of heterotrophs, nitrifiers and micro-algae, but disregards the algae growth on 

phosphate, making it inefficient for applications like polishing steps in effluents from WWTP. 

The modified IWA River Water Quality Model no. 1, described in Broekhuizen et al. (2012), 

developed to simulate a pilot-scale high rate algae pond, is a model accounting for pH, 

carbon, oxygen, nitrogen and phosphate. Both models estimate the algal biomass 

concentration on COD concentration units, which allows closing the mass balances between 

the different organic components and microbial groups. However, growth on nutrients is 

described through Monod kinetic formulations and do not account for i) uptake and storage 

and ii) growth on the stored nutrients – factors crucial to predict nutrient recovery from 

wastewater. The model by Droop (1973) describes uptake and storage as well as growth on 

stored nutrients. Models with multiple substrate limitations, in accordance to Droop’s 

approach, are those by Ambrose et al. (2006), Quinn et al. (2011) or Guest et al. (2013). 

Nevertheless, this approach is still under discussion due to the different approaches to model 

the nutrient growth limitation (the threshold model or the multiplicative model, described in 

Bourgaran et al., 2010) and the presence of a nitrogen quota (Richmond 2004). None of these 

models include the bacterial growth, so coupling them with a WWTP model may fail because 

they do not take into account the synergies between the different microorganisms (e.g. 

inorganic carbon or light availabilities due bacterial growth). Although several studies report 

the growth of algae on different organic substrates (Mata et al., 2010 or Brennan and Owende 

2010), none of the models takes into account the mixotrophic or heterotrophic algal growth. 

Organic carbon sources like glucose or acetate, can enhance algal growth to some extent, but 

become inhibitors for some algae at high concentrations. Therefore, Moya et al. (1996), 

proposed a simple model that takes into account the microbial growth rate of algae as a 

function of light (autotrophic growth) and acetate (heterotrophic growth). While this model 

would be useful to predict heterotrophic algal growth, the effect of nutrient availability, 

amongst others, is missing.  

 

The effect of light on algal growth has been modeled by using expressions accounting for 

different parameters. In certain cases the effect of light on algal growth is modeled by taking 

into account light inhibition, i.e. Steele, Peeters and Eilers or Haldane (Ambrose et al., 2006, 

Bouterfas et al., 2002) while in other models photo-inhibition is not included, i.e. Monod, 

Platt and Jassby, Poisson single-hit models or Smith equations (Ambrose et al., 2006, 

Bouterfas et al., 2002 and Skjelberd et al., 2012). 
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Table 1: Review of algal models considered for the model development of the ASM-A. The green filling indicates the structure and parameters included in each of the 

models. P&E stands for Peeters & Eilers; P&J stands for Platt & Jassby. 

Model 

Autotrophic growth 
Heterotrophic 

growth 

Bacterial growth 

pH Nutrients 
DIC 

Light 
XH XA XPAO Droop Monod N P Monod Haldane Steele P&E P&J Smith Poisson 

Moya et 

al. 1996 
                 

Bouterfas 

et al. 2002 
                 

Ambrose 

et al. 2006 
                 

Wolf et al. 

2007 
                 

Bougaran 

et al. 2010 
                 

Quinn et 

al. 2011 
                 

Broekhuiz

en et al. 

2012 

                 

Skjelbred 

et al., 2012 
                 

Guest et 

al. 2013 
                 

Decostere 

et al. 2013 
                 

Van 

Wagenen 

et al. 2014 

                 

ASM-A  

(Wágner 

et al. 2014) 
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ASM-A MODEL DEVELOPMENT 

 

The model presented in this study was developed in the framework of the well established 

model for activated sludge ASM-2d (Henze et al., 2000). This ASM model includes all the 

relevant bacterial groups involved in enhanced biological phorphorus removal systems 

(EBPR), i.e. heterotrophs, nitrifiers and polyphosphate accumulating organisms (PAOs). 

However, the expressions included in this section, as well as the model assessment, only refer 

to the algal processes (Table 2). The units are expressed in accordance with the ASM 

framework where closed mass balances are used over electron equivalents, expressed in COD, 

nitrogen and phosphorous and inorganic carbon. ASM nomenclature was followed to make 

the integration of the algal model into the existing model structures easier.  

 
Uptake and Storage of Nitrogen (R1 and R2) 

Ammonia is the preferred form of nitrogen over nitrate for algal growth. In ASM-A, algal 

uptake and storage of nitrogen is modelled using ammonia (Eq.1) or nitrate (Eq.2) as nitrogen 

forms. In ASM-A the uptake and storage of N is described in relation to the availability of 

external N in the wastewater (SNH/SNO), as well as to the internal cell quota of N (XAlg,N), 

defined as cell internal storage of N per total mass of biomass. Nutrient uptake rate decreases 

as XAlg,N approaches the maximum internal cell quota, XAlg,Nmax, in the biomass (XAlg). To take 

into account the algal preference for ammonia, an inhibition term for nitrate uptake is 

included when ammonia is available. 

 

     (1) 

   (2) 

 

 

Uptake and Storage of Phosphorous (R3) 

The uptake and storage of P is defined relative to the availability of external soluble PO4 
3-

 in 

the wastewater (SPO4), as well as to the internal cell quota of P (XAlg,PP), defined as cell internal 

storage of P per total mass of biomass. Nutrient uptake rate decreases as XAlg,PP approaches the 

maximum internal cell quota for P, XAlg,PPmax in the algae biomass XAlg. 

 

 

 

 

 

Photoautotrophic Growth (R4) 

Nutrient limitation is described by the Droop model, assuming that growth is dependent on 

the internal cell quota of the different nutrients. Growth rate decreases as the internal cell 

quota approaches the minimum subsistence cell quota (XAlg,Nmin or XAlg,PPmin) in the algae 

biomass. The uptake of dissolved inorganic carbon (DIC) is modeled using Monod kinetics. 

Light limitation is determined by the photo-synthetically available irradiance passing through 

the PhBR. We assume that the algae are exposed to a constant light intensity, denoted as IAv. 

To identify a suitable model structure to describe the light influence on micro-algal growth, 

six different model equations were fitted to the obtained experimental data (not shown) using 

Sigmaplot©. Two out of the expressions include the photo-inhibition, i.e. Steele and Peeters 

and Eilers while in the other models photo-inhibition is not included, i.e. Monod, Platt and 

 (3) 
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Jassby, Smith and Poisson single-hit models. Light dependence is modeled using the Steele 

equation that was chosen based on experimental results (see the results section).  

 

    (4) 

 
Heterotrophic Growth (R5) 

Micro-algae are able to grow on readily biodegradable organic carbon sources. However, high 

concentrations of organic substrate can result in substrate inhibition of growth (Richmond, 

2004). In accordance with the ASM-2d, acetate is assessed as the organic carbon substrate 

(SA). The Haldane model is employed to describe the effect on growth rate as a function of the 

substrate concentration. Oxygen serves as a substrate for heterotrophic growth (SO2), and its 

effect on growth rate is described using the Monod kinetics. The model also takes into 

account the inhibition due to light intensity of the heterotrophic growth, as well as the nutrient 

consumption associated with algal growth.  

 

  (5) 

Algal Decay (R6) 

The algal decay process includes all forms of algal biomass loss and energy requirements not 

associated with growth. This includes internal resources used for maintenance, biomass loss 

during dark respiration, death and lysis that will reduce the amount of active biomass in the 

culture. In addition, the term includes reduction in biomass due to predators grazing on the 

algal biomass.  

 

       (6) 

 

MATERIALS AND METHODS 

 

Process model calibration and implementation 

Table 2 shows the stoichiometry of each of the processes of the ASM-A model. The ASM-A 

model was implemented as an extension of the simulation model of ASM-2d implemented in 

Matlab R2012a (The MathWorks, Natick, MA) by Flores-Alsina et al. (2012). 

 

Microorganisms and media 

The mixed green micro-algal consortium used in this study was isolated in a natural pond in 

contact with wastewater, including mainly Chlorella sp. and Scenedesmus sp. (data not 

shown). Importantly, the algae grow strictly in suspension, without significant biofilm 

formation.  The mixed culture was cultivated using synthetic cultivation medium, MWC+Se 

medium (Guillard and Lorenzen, 1972) under standard temperature.  

 

Micro-batch (microplate) experiments 

Micro-batch experiments for assessing exponential growth rate were set up in 24 wells black 

microplates  (VisiPlate, PerkinElmer Inc., Waltham, MA). In this study we refer to the 

experiments conducted in microplates as micro-batch experiments. Each well can hold a 2 mL 

sample. Temperature was regulated at 19.8±1.0 ºC. The inoculated micro-batches were placed 

on a shaker table (Lab-Saker LS-X), operated at 160 RPM. Light was supplied by six 15 W 

fluorescent lamps (GroLux, Sylvania®, Danvers, MA).  In Vivo Fluorescence (IVF) was used 
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to measure the algal growth because of its high sensitivity at low biomass concentration. This 

methodology was successfully applied by Van Wagenen et al. (2014) to determine reliable 

model parameters describing the light dependence of algal growth for different algae species. 

In the present work, the methodology is extended to assess the nutrient limitation effect by 

modifying the MWC+Se medium, progressively decreasing the content of either nitrogen 

(from ammonia or nitrate) or phosphate in each of the wells. In this way, specific growth rates 

were obtained as a function of the concentration of the different nutrients.  

 

Batch experiments 

For assessing the effect of nutrient availability on growth, nutrient uptake and storage, batch 

experiments were set up using 1 L wide-neck glass bottles (Duran ®, Germany) with a multi-

port system allowing for sample extraction and aeration with CO2 enriched air. Light was 

supplied from the two sides of the batches using 18 W fluorescent lamps (GroLux, Sylvania®, 

Danvers, MA). Dilutions were made with the cultivation medium when the optical density 

reached the value of 0.4 to avoid self-shading in the culture, thus light inhibition. During the 

batch experiments the limiting substrates were monitored using Hach-Lange test kits and cell 

density analysis (APHA, 1995). A control batch was run and monitored parallel to the 

experiments, yielding an independent data set used for model assessment.  
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Table 2: a) Gujer matrix of the ASM-A model; b) Process rate equations identified in the ASM-A model: 

Component NH4 NO3 
Internal 
quota N 

PO4 
Internal 
quota P 

Inorg. carbon Acetate O2 
Algal 

Biomass 
Inert 

Particulates 
Rate 

Symbol SNH4 SNO XAlg,N SPO4 XAlg,PP SDIC SA SO2 XAlg XI  
Unit gN/m

3
 gN/m

3
 gN/m

3
 gP/m

3
 gP/m

3
 gC/m

3
 gCOD/m

3
 gCOD/m

3
 gCOD/m

3
 gCOD/m

3
 

 
Process  Stoichiometric Matrix 

Uptake and 
storage of 

nitrogen from 
NH4 

-1 
 

1 
   

 
   

R1 

Uptake and 
storage of 

nitrogen from 
NO3 

 
-1 1 

   
 

   
R2 

Uptake and 
Storage of PO4    

-1 1 
 

 
   

R3 

Autotrophic 
growth   

- i_NXalg 
 

-i_PXalg -1/YXalg,SDIC  1/(2.67*Yxalg,SDIC) 1 
 

R4 

Heterotrophic 
growth 

     1/(0.4*Yxalg,SA) -1/(1.067*Yxalg,SA) -1/(1.067*Yxalg,SA) 1  R6 

Decay i_NXalg-fXiN,XI   
i_PXalg-fXiP,XI   

 -(1-fXi) -1 fXi R5 

Process rates 

R1 [g N m
-3

 d
-1

] 

 

R2 [g N m
-3

 d
-1

]    

R3 [g P m
-3

 d
-1

] 
 

R4 [g COD m
-3

 d
-1

] 

 

R5 [g COD m
-3

 d
-1

] 

 
R6 [g COD m

-3
 d

-1
]  
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RESULTS AND DISCUSSION 

 

Model calibration 

Between the six different models of light effect over algal growth, the Steele expression 

(included in eq. 4) was found to most accurately describe the light dependence of algal growth 

(Fig. 1). This expression includes the photo-inhibition however, which is not fully-supported 

by the measured data, and hence further assessment at higher light intensities will be carried 

out in this project. The maximum microbial growth rate (µmax) is found at an optimal light 

intensity (Is) of 758.2 µmol m
-2

 s
-1

, its value being 3.6 d
-1

.  

 
Figure 1: Specific microbial growth rate plotted as function of light intensity according to the Steele 

equation. Dots represent the value obtained in the micro-batch experiments and the error bars represent 

the standard deviation on the light intensity and the optical density measured in the micro-batches. 

 

Once the effect of light over algal growth was defined, we conducted micro-batch and batch 

experiments for model parameter estimation. The nutrient limitation of the microalgae was 

assessed in both micro-batch and batch experiments. Table 3 shows that results obtained in 

micro-batch and 1 L batch experiments are comparable. Van Wagenen et al. (2014) also 

reports that the parameters describing the light effect over algal growth estimated through 

micro-batch experiments were comparable to those obtained at larger scale. Therefore, it can 

be concluded that micro-batch experiments are an efficient tool to estimate the effect of 

different substrates on microbial growth of micro-algae, saving time and costs.  

 
Table 3: Parameters estimated in micro-batch (2 ml) and batch (1 l) experiments: 

Parameter Microbatch Batch 

µA,max 3.6 3.25 

KNH3,Alg 0.5 0.88 

KNO3,Alg - 3.39 

KPO4,Alg 0.1 0.25 
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The complete parameter set of the ASM-A, including among others the minimum and 

maximum internal cell quota for nitrogen and phosphorous, the specific uptake rates and the 

decay rate, are presented by Wágner et al. (2014). 

 

 

Model evaluation 
 

Simulations were carried out using the Matlab implementation of the ASM-A model. A 

reference parameter set was derived from micro-batch and batch experiments carried out in 

this study and some parameters were taken from literature (Wágner et al., 2014). The model 

was calibrated and the prediction was compared with an independent data set from batch 

experiments. Two cycles were modelled including the point of dilution at the third day, which 

was done to avoid self-shading effect. Results are shown in Fig. 2: 

 

  

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Control batch simulation. a) algae growth in the control batch reactor,in terms of the 

concentation of algae biomass; b) internal nitrogen storage of algae, in terms of the nitrogen quota; c) 

bulk nitrate concentration.  

 

According to Fig. 2, ASM-A can predict the algal biomass growth reasonably well during the 

batch experiment (Fig. 2 a). In these simulations it is assumed that light intensity is constant 

during the experiments and thus the entire photo-bioreactor is exposed to an average light 

intensity (Iav) measured at the beginning of the experiment. However, since the biomass 

concentration increases in the batch, the light availability decreases due to self-shading by the 

algae. The discrepancies between measured and simulated data in Fig. 2, indicate the 

importance of using a more realistic model describing the light absorption in PhBR. In Fig. 2 

b, the prediction of the nitrogen content in biomass shows some limitations at low 

concentrations. The model predicts well the second cycle of the measurement, however 

underestimates the measured values in the first cycle. The bulk liquid concentration of nitrate 

(Fig. 2 c) is reasonably well described by the model.  

 

B 

C 

A 
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CONCLUSION 

 

In this study, a process model for green micro-algal growth has been identified and developed 

using the systematic approach of the activated sludge models. The model accurately describes 

the micro-algal growth under constant light intensity within the culture. In order to improve 

the estimation of the biomass concentration, the integration of a model for light distribution in 

PhBR is needed. The model prediction of nitrogen uptake and storage process needs further 

improvement. Therefore, our future research activities will focus on the development of a 

better understanding of the internal nutrient storage in algae in order to reduce the prediction 

uncertainty derived from the identified model structure.  
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Abstract 

Advanced dynamic anaerobic digestion models, such as ADM1, requires both detailed 

organic matter characterisation and intimate knowledge of the involved metabolic 

pathways. In the current study, a methodology for municipal sludge characterization 

previously developed is used to describe two key parameters: biodegradability and 

bioaccessibility of organic matter. The methodology is based on coupling sequential 

chemical extractions with 3D fluorescence spectroscopy. The proposed approach showed a 

strong application potential for reactor design and advanced control of anaerobic digestion 

processes. In order to complete the modified model, the organic micropollutants fate 

modeling is considered, since their degradation is strongly linked with the organic matter 

biodegradation, and addition of micropollutants kinetics terms in the overall model is 

proposed. 

 

Keywords 
Modelling; ADM1, organic matter characterization, bioaccessibility, organic 

micropollutants 

 

INTRODUCTION 

In the current context, where anaerobic digestion (AD) has become a key process for organic 

matter treatment and energetic valorization, precise control and prediction of process 

performance is a must-be. Concomitantly to the organic matter degradation and valorization, 

some Organic MicroPollutants (OMPs) like Polycyclic Aromatic Hydrocarbons (PAHs) have 

been shown to be removed during AD and are strongly correlated with organic matter (OM) 

removal (Barret et al. 2012). During the biological wastewater treatment, the main pathway of 

degradation of OMPs is the sorption on sludge (Barret et al., 2012). As a consequence, AD of 

sludge has to deal with the OMPs degradation, above all from a sanitation and regulations 

point of view. In terms of OM characterisation and degradation prediction, three concepts are 

of the most relevance for a particulate substrate such as municipal sludge: bioavailability, 

bioaccessibility and biodegradability. As OMPs sorbed to the particulate evolves with OM, 

these concepts would impact them. Recently, a methodology based on chemical sequential 

extractions and 3D fluorescence spectroscopy has been developed for sewage sludge. A 

successful correlation with bioaccessibility and biodegradability was found and variables 

from modified Anaerobic Digestion model n°1 (ADM1) have been characterized (Jimenez et 

al., 2014). In this study, the methodology is applied before and after AD samples. OMPs 

measurement was done in each organic matter fractions in order to adapt the ADM1 model to 

the fractionation developed and to propose a first model of OMPs degradation. 

MATERIAL AND METHODS 

Organic matter characterization 

Based on the floc definition, the applied sequential extraction (SE) correlates bioaccessibility 

of sludge organic matter to its chemical accessibility. The obtained fractions were Dissolved 

Organic Matter (DOM) obtained by centrifugation and filtration at 0.45µm, soluble Exo-

Polymeric Substances (S-EPS), readily bound EPS (RE-EPS) and Humic Like Substances 

(HLS) obtained by chemical extractions using salt and/or soda of increasing molarity. The 
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non extracted (NE) fraction is the non extractible fraction. Extracts were then measured by 

fluorescence spectroscopy as explained by (Jimenez et al., 2014).  

Batch reactors test 

Two biochemical methane potential (BMP) were operated with a secondary sludge from a 

wastewater treatment plant in France. The methodology followed was the same than in 

Angelidaki et al., (2009). Concerning OMPs fate, the first BMP reactor (named BMP1) was 

operated without PAH addition while the second (BMP2) was operated with PAH addition. 

OMPs which are sorbed into the particulate fractions SEPS, RE-EPS, HSL and NE were 

measured after solvent extraction (50:50 v:v of hexane/acetone) and high-performance liquid 

chromatography analysis.  

RESULTS 

New implementation of organic matter variables in ADM1 
Concerning the organic matter degradation, the modified ADM1 model used by Jimenez et al. 

(2014) has been chosen because (i) the limiting step in sludge AD is the hydrolysis (Contois 

equation) and (ii) two complex substrates with different hydrolysis rates are considered on the 

two-shaped curve obtained for methane production rate for sludge. The 3D-SE-LPF 

methodology is used in order to calculate the non biodegradable fraction, the readily and 

slowly biodegradable fractions through the Partial Least Square model developed by Jimenez 

et al. (2014). As shown by the authors, DOM, S-EPS and RE-EPS are the most accessible 

fractions while HLS and NE are the least one. In order to make more easier the OMP 

degradation model implementation, ADM1 input variables (readily and slowly biodegradable) 

are replaced by the extracted fractions : S-EPS and RE-EPS as the particulate COD readily 

bioacessible and HSL and NE as the particulate COD slowly bioaccessible (cf. Figure 1).  

Applied on the batch reactor test, methane production curve and output fractions were well 

predicted as shown by figure 1 by calibrating the maximum growth rate of hydrolytic 

biomass. 
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Figure 1. Simulations of methane production and particulate fractions of sludge during BMP tests  

OMPs mass balance and model proposition 
Delgadillo-Mirquez (2011) has demonstrated that the OMPs biodegradation are mainly 

related with the upper biological pathway of anaerobic digestion (hydrolysis and 

acidogenesis). As a consequence, the bioavailability and bioaccessibility concept of organic 

matter could be useful for OMPs fate characterization. Consequently, the SE protocol has 

been applied for OMPs partition assessment into the organic matter compartments in order to 

estimate their bioavailability. Barret et al. (2012) and Delgadillo (2011) confirmed that the 

bioavailable fraction is contained in the aqueous phase (free OMPs and sorbed to colloidal 

matter) and that the bioaccessibility depends on the pollutants sorbed to particles.  
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OMPs mass balance obtained during BMP tests are presented in the figure 2 where 3 PAH 

(Fluorene, Pyrene, Benzo(b)Fluoranthene) from 13 are considered. It appeared that in both 

BMP1 and BMP2, OMPs degradation was negative in some fractions. One hypothesis would 

be that during hydrolysis process, OMPs molecules passed from the least accessible fraction 

to the most one (i.e. DOM). Moreover, in the case of BMP2 where OMPs addition occurred, a 

bound-residue seemed to be created in the NE from the degradation of OMPs located in HLS.  

 

Figure 2. OMPs mass balance during BMP1 and BMP2 tests 

Delgadillo et al. (2011) showed that combining bioavailability and cometabolism concepts on 

a dynamic simplified model allowed the prediction of the OMPs fate in anaerobic digestion. 

Consequently, OMPs degradation model is proposed (cf. figure 3) based on cometabolism 

during hydrolysis (with Contois hydrolytic biomass) and during the degradation of the 

bioavailable fraction DOM into metabolites. Finally, a process of bound residue formation is 

added. 

 

Process involved rS Metabolites CDOM CSEPS CREPS CHSL CNE

Hydrolysis contois S-EPS 1 -1

Hydrolysis  contois RE-EPS 1 -1

Hydrolysis contois HSL 1 -1

Hydrolysis contois NE 1 -1

Acidogenesis 1 -1

fxCHSL Bound residue formation in NE -1 1

C
o
m
e
ta
b
o
li
sm

 

Figure 3. Model proposed for OMPs degradation during anaerobic digestion of sludge 

PERSPECTIVES 
Based on previous work, modified ADM1 was able to predict methane production and the 

different OM particulate fractions simulating bioaccessibility. Concerning OMPs degradation, 

a new distribution from NE fraction to HLS, RE-EPS, S-EPS and then DOM was observed. 

Based on these observations, a model was proposed and future data coming from a continuous 

reactor will provide validation or not of these hypothesis. 
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Abstract 

Co-digestion is the anaerobic digestion of several types of waste and can be used to 

increase resource recovery. However, co-digestion can exacerbate a digester’s tendency to 

become unstable and stop working. In addition, the quantitative relationship between a 

diverse set of waste combinations and codigester stability is largely unknown. To address 

this concern, we created a stability assessment that employs the Anaerobic Digestion Model 

No. 1 (ADM1) and stability metrics, such as alkalinity concentration, in order to identify 

influent characteristics that achieve stable operation.  The characteristics of particulate-only 

influent compositions that support stable digester performance have been identified. Also, 

current design guidelines, which have enabled the effective design and operation of sludge 

digesters, have been found to be too limited when applied to codigestion systems.  Overall, 

this work contributes to the establishment of case-specific digestion guidelines, which can 

include re-defining design guidelines for anaerobic co-digestion.  

 

Keywords 

anaerobic co-digestion, ADM1, stability, resource recovery 

 

 

INTRODUCTION & MODELING APPROACH 

While anaerobically co-digesting several types of wastes can increase the recovery of 

resources, it can also reduce digester stability and lead to higher costs and lower reliability. 

Therefore, we developed a digester stability assessment that can be used to establish influent 

guidelines for codigestion and to improve resource recovery from waste without 

compromising digester stability.    
 

Stability Index  

Stability indicators are chemical and biological compounds that can indicate if a digester is 

stable or unstable (Boe et al., 2010; Ferrer et al., 2010; Schoen et al., 2009; Switzenbaum et 

al., 1990). These stability indicators can be used to compare simulated digester effluent 

concentrations against values expected for a stable codigestion system. For each indicator, a 

digester’s simulated effluent was compared to the indicator’s concentration range in order to 

rate the digester’s stability based on that indicator (e.g., highly stable, borderline stable, or 

unstable). For example, a stable pH range was assumed to be 6.1 – 8.3, and a digester with a 

pH of 6.2 was considered less stable than a digester with a pH of 7.  Table 1 compiles the 

stability indicators used in this research along with their target concentration ranges, as found 

in the literature.  Next, each indicator was assigned a weight to represent that indicator’s 

ability to describe a digester’s overall stability, which is evaluated by assessing its link to the 

anaerobic microbial food web, the validity of its concentration range, and its independence 

from other indicators.  Finally, a weighted sum of all the indicators’ ratings was calculated to 

represent the digester’s overall stability.    
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Table 1. Stability indicators’ stable concentraiton ranges and weights used in the 

stability index. 

Indicator Units Minimum Maximum Weight Citations 

Methane Biogas 

Composition % (by volume) 55 n/a 1 AB 

pH (--) 6.1 8.3 1 ABC 

Alkalinity mg CaCO3/L 2,000 20,000 1 BDE 

Free ammonia mg NH3-N/L n/a 150 1 BGI 

Chemical Oxygen 

Demand (COD) 

Removal %  (by concentration) 45 n/a 1 BL 

Volatile Fatty Acids 

(VFA) to Alkalinity 

Ratio 

mg acetate 

equivalent/(mg 

CaCO3 equivalent) n/a 0.4 0.5 JK 

Long Chain Fatty Acids mg COD as LCFA/L n/a 1,400 0.5 H 

VFAC2-C5 
mg COD as C2-C5 

VFAs/L n/a 3,700 0.5 A 

Acetate mg COD as acetate/L n/a 850 0.5 AF 
A=(Ferrer et al., 2010); B=(Tchobanoglous et al., 2003); C=(Grady et al., 2011); D=(Astals et al., 2012); 

E=(Alvarez et al., 2010); F=(Hill et al., 1987); G=(Wang et al., 2012); H=(Neves et al., 2009); I=(Parameswaran 

and Rittmann, 2012); J=(Schoen et al., 2009); K=(Switzenbaum et al., 1990); L=(Hampton Roads Sanitation 

District, 2013) 

 

Anaerobic Digestion Simulation & Uncertainty  

Influent compositions were created to represent a wide range of potential waste combinations, 

and the digester performance was simulated using the Anaerobic Digestion Model No. 1 

(ADM1) (Batstone et al., 2002). In order to represent a large particulate influent space, 10,000 

influent compositions were randomly generated using the following criteria:  (1) the total 

organic loading rate (OLR) was within a range of 1-11 kg COD/m
3
/d, which includes a 

maximum loading that is about 20% greater than experimentally determined stable loadings 

(Björnsson et al., 2000; Ferrer et al., 2010; Westerholm et al., 2012) in order to provide a 

large range of influent compositions;  (2) the loading of carbohydrates, lipids, and proteins 

were each within a range of 0-11 kg COD/m
3
/d in order to represent many different influent 

composition possibilities;  and (3) the loading of inert compounds were within a range of 0-

20% of the influent’s total COD to represent an average inert concentration for a variety of 

wastes (Zaher et al., 2009).  

 

ADM1 was chosen to simulate the digestion process because it has effectively simulated both 

experimental and full-scale digesters (e.g., Batstone et al., 2006; Jeppsson, 2007). The 

differential and algebraic implementation of ADM1 as modified by Rosén and Jeppsson 

(2006) was used along with ADM1’s default biochemical and physicochemical parameters for 

mesophilic digestion. In addition, alkalinity concentration was estimated from ADM1 outputs 

using the activated sludge model interface calculations (Nopens et al., 2009). The simulated 

digester had a volume of 3,400 m
3
 and perfect mixing was assumed. The temperature was set 
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at 35 Celsius, and the retention time was 20 days. All simulations were run for 1,000 

simulated days in order to represent steady-state operation.  
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RESULTS AND DISCUSSION 

The value of the stability index was examined by comparing the performance of full-scale and 

lab-scale digesters with the estimated stability assessment (i.e., stability index rating).  Data 

from 4 full-scale domestic wastewater sludge digesters with stable, long-term operation 

(Hampton Roads Sanitation District, 2013) were evaluated using the stability index, and the 

stability index rating was representative of the full-scale digester’s stable performance.  In 

addition, data from two lab-scale codigestion reactors, one reactor codigesting domestic 

wastewater sludge and potato processing industrial waste and the other codigesting manure, 

slaughterhouse and agricultural waste (Murto et al., 2004), were also evaluated, and the 

stability index rating was also representative of the experimental codigesters’ performance. 

Testing the stability index calculations with full- scale and lab-scale stable digesters showed 

the ability of the stability index to estimate stable digester performance.  In addition, the 

stability indicator ranges that are most important to the stability estimation were identified by 

conducting a Monte Carlo assessment.  This assessment found that the minimum percent 

methane biogas composition, maximum long chain fatty acids (LCFA) concentration, and 

minimum percent COD removal were all significantly (p-value <0.5) and strongly (|ρ|>=0.7) 

correlated with overall digester stability for at least one simulated influent composition. More 

information about the stability bounds for these indicators can improve insight about digester 

stability. 

 

Wide-ranging influent compositions were simulated using ADM1 and evaluated using this 

stability index in order to identify a digester’s stable influent space, which is comprised of the 

influent compositions that result in stable operation. Figure 1 shows a digester’s stable 

influent space for particulate influent compositions.  In addition, Figure 1 suggests that there 

are key digester operational considerations. For example, it shows that instability is likely at 

high OLRs, and this trend is reinforced with experimental data from the literature that shows 

digester overloading is possible with OLRs greater than 5 kgCOD/m3/d (Björnsson et al., 

2000; Ferrer et al., 2010; Gomez et al., 2006; Grady et al., 2011; Kusowski et al., 2013). Also, 

the simulations show that there may be a minimum nitrogen requirement for digester stability.  

The main reason for digester instability in this minimum nitrogen region is due to a lack of 

biomass growth, as indicated by the total biomass concentration predicted by ADM1.  This 

minimum requirement is around a protein loading of 1 kg COD/m
3
/d, which equates to a 

minimum nitrogen loading of 7.5 mole/m
3
/d. Overall, this stable influent space highlights a 

relationship between influent composition and digester stability that matches current 

knowledge about stable digester performance under steady-state conditions.  Also, it provides 

the opportunity to inform design guidelines and the selection of wastes in order to achieve 

reliable anaerobic codigestion.  

 

The applicability of conventional design guidelines to codigestion was investigated by 

comparing recommended influent guidelines with the modeled stable influent space. The 

OLR design recommendations is 1-5 kg COD/m
3
/d for continuously-stirred tank reactors 

(Grady et al., 2011).  When comparing this recommendation with the stable influent space, 

the simulations suggests that many stable influents can have an OLR larger than the 

recommended range.  Stable digester operation at OLRs greater than 5 kg COD/m3/d is also 

seen experimentally (Björnsson et al., 2000; Gomez et al., 2006; Kusowski et al., 2013). 

Overall, modeling results and experimental data from the literature suggest that the OLR 

recommendation may be too conservative.   

 



 Cook et al. 

301 

 

 

Another main design guideline is the influent carbon-to-nitrogen (C/N) ratio.  The very 

general ratio range is 10-90:1 (Wang et al., 2012), with an stated optimum usually around 20-

30:1 (Stroot et al., 2001; Wang et al., 2012).  Data from the experimental literature (Astals et 

al., 2012; Stroot et al., 2001; Wang et al., 2012; Wu et al., 2010) suggest that the C/N ratio 

range for stable digestion is based on a specific influent composition, and the stability 

modeling results also suggest that the C/N ratio may have limited applicability.  The C/N ratio 

recommendation may be too specific to a type of waste and too focused on an optimal range 

to provide a good correlation between a large range of influent compositions and general 

reactor stability. 

 

 (a) 

 

(b) 

 
 

(c) 

 

(d) 

 

 

 

Figure 1. Particulate influent compositions and their relationship to digester stability: (a) 

10,000 particulate influent compositions (inert substrate loading not shown); (b-d) influent 

compositions (each representing a varying concentration of 4 substrates) projected onto 2 

substrate loading axes.  

 
 

CONCLUSIONS 

This work shows that a stable influent space can be estimated using ADM1 and this work’s 

stability index. Also, it shows that a digester’s stable influent space for particulate influents 

may be larger than current design guidelines suggest. Codigestion design guidelines that use 

substrate composition data (i.e., characterization of carbohydrates, lipids, proteins, etc.), 

include higher OLRs, and are more inclusive of a diverse range of substrates would be more 

helpful to improve resource recovery without compromising stability.    
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Abstract 

A customized Activated Sludge - Anaerobic Digestion Model (ASDM) from BioWin 3.2™ 

by EnviroSim was used to develop a future operational process control strategy for Blue 

Plains Advanced Wastewater Treatment Plant’s (AWTP) anaerobic digesters with 

CAMBI™ thermal hydrolysis process (THP) pretreatment. This model was developed to 

understand the relative importance of free ammonia on gas production and accumulation of 

volatile fatty acids (VFA).  Under any given loading conditions, the operational setpoints of 

solids retention time (SRT) and free ammonia can be controlled by adjusting the influent 

solids concentration.  This model helps to predict which setpoints would allow for 

maximum gas production while maintaining digester stability.   
 

 

Keywords 
Modeling; ASDM; anaerobic digestion; ammonia inhibition; thermal hydrolysis  

 

 

INTRODUCTION 

Anaerobic digesters with CAMBI™ THP pretreatment are currently being constructed at Blue 

Plains AWTP located in Washington, DC, United States. Partial solubilization of particulates 

and disintegration of cells in the THP reduce sludge viscosity, improve bioavailability of 

organics, and allow the digester to be loaded at higher solids concentrations. However, 

increased feed concentration and destruction of protein and other complex organic materials 

also result in free ammonia (NH3) levels that are much higher than what is typically seen in 

conventional mesophilic digesters (Kepp et al., 2001). Free ammonia has inhibitory effects on 

the methanogens that are responsible for completing the final step in anaerobic digestion 

systems where acetic acid is converted to methane gas (Eldem, 2005, Wilson, 2009, Wett, 

2012). Compared to hydrolysis-limited conventional digestion (Siegrist, 2002, Wilson, 2009), 

Blue Plains thermal hydrolysis-digestion (THD) is expected to be methanogenesis-limited, 

and therefore, minimizing the unionized ammonia level becomes a major concern while 

developing a process control strategy.              
 

One of the key operational controls for Blue Plains is the dilution water feed rate that follows 

the THP system, which can be used to adjust the digester influent solids concentration, SRT 

and ammonia concentration. Operating at higher influent concentrations would allow for 

longer SRT in the digesters but could also result in greater inhibition from higher ammonia 

concentrations. However, operating at lower solids concentrations could result in lower 

inhibition but would also reduce digestion time. A calibrated model could assist the plant staff 

in finding the optimum digester influent concentrations and resulting ammonia concentrations 

and SRTs that would maximize gas production while maintaining digester stability.         

 

mailto:rsuzuki@dcwater.com
mailto:smurthy@dcwater.com
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METHODOLOGY 

 

Model development 

Various advancements have been made to the original ASDM to simulate the unique impacts 

of THP and high-loaded digestion process. The effect of THP can be modeled by converting 

portions of slowly biodegradable COD (Xsp) to readily biodegradable COD(rbCOD), and 

active biomass to Xsp, while tracking the release of inert materials and nutrients (Wett et al., 

2009). This model was further improved by incorporating ammonia inhibition of aceticlastic 

methanogens (AM) and alternative degradation pathways through acetic acid oxidizers 

(ACOX) and hydrogenotrophic methanogens that are more tolerant of higher ammonia levels 

(Wett et al., 2012). The NH3 inhibition was modeled using the logistic model and the 

parameters were calibrated using results from bench-scale digesters fed with thermally-

hydrolyzed Blue Plains sludge (THD) running in parallel with a conventional mesophilic 

digester (Wilson et al., 2009). Additionally, the non-ionized form of acetic acid was 

designated as an inhibitory substrate using the Haldane equation as suggested by Fukuzaki et 

al. (1990).  Detailed descriptions on modeling of THD are provided in previous publications 

by Wett et al. (2009 and 2012).    

 

The feed sludge characteristics were obtained from a calibrated, full-plant model at Blue 

Plains.  The liquid side treatment at Blue Plains consists of a chemically-enhanced primary 

treatment (CEPT), a high-rate secondary treatment that is bioaugmented with waste sludge 

from the nitrification/denitrification (NDN) stage, an NDN system with methanol addition 

and multimedia filtration.  A typical primary sludge (PS) to waste activated sludge (WAS) 

ratio at Blue Plains is 55/45 but the portion of WAS becomes higher during the winter months 

when solids decay in the biological reactors slow down.        

 

 

 
Figure 1.  Model configuration in BioWin 3.2.   

 

Experimental Setup 

Three pilot scale digesters were set up to test the effect of varying influent solids 

concentrations on the digester performance.  A blend of PS and WAS dewatered to 25 to 28% 

TS at Blue Plains high-solids centrifuge was collected and diluted to approximately 16 to 18% 

TS prior to thermal hydrolysis.  The pilot thermal hydrolysis system supplied by CAMBI
TM

 

consisted of a 15 L reactor, a 50 L flash tank and a boiler.  The reactor was operated at 160°C 

for 30 minutes and flashing pressure of 3.1 bars. TH sludge with concentrations of 10-12.5% 

TS was then shipped from Blue Plains to Bucknel University’s Anaerobic Digestion Lab to be 

fed into pilot-scale digesters. 

 

The three digesters were fed at the same solids loading rate of 7 kg TS/m
3
-day but the influent 

concentrations were adjusted, which in turn determined the target SRT.  The operating 
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parameters are presented in Table 2.  The reactors were operated semi-continuously by batch 

feeding once a day.  The same amount of sludge was withdrawn from the reactor after a 24-

hour reaction period prior to the next pulse feed.  The digester headspace was hooked up to a 

respirometer to measure the gas production volume and rate.  The temperatures inside the 

reactors were maintained at 38°C.  

 

Table 1.  Operating parameters of the pilot scale digesters 

 Influent Solids 

Concentration 

Feed 

Rate 

Target 

SRT 

Solids Loading 

Rate 

Digester 

Number 

(% TS) (L/day) (days) (kg/m
3
-day) 

1 7.0 1 10 7 

2 10.5 0.67 15 7 

3 12.5 0.56 18 7 

 

The seed sludge for the digesters came from a previous set of experiments where the impact 

of TH reaction temperature was investigated (in preparation).  In these experiments, five 

digesters were fed with sludge from Blue Plains that had been thermally hydrolyzed at 

reaction temperatures of 130, 140, 150, 160 and 170°C.  They were operated in the same 

condition as Digester 2 with influent solids concentration of 10.5% TS and 15 days SRT.  

Since these digesters had been operating for close to six months, the anaerobic biomass had 

been acclimated to high solids conditions and free ammonia concentrations of 130 to 160 

mg/L.   

    

                                 
Figure 2.  Photos of the pilot TH reactor at Blue Plains [left] and pilot digesters at Bucknell 

[right].  
 

RESULTS AND DISCUSSION 
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Dynamic runs were used to investigate the impact of changing influent concentrations on 

digester performance.  The initial conditions used in the model were assumed to be a steady-

state digester that had been operating at 15 days SRT and 10.5% TS influent.  The feed 

concentrations were adjusted according to Table 1 to simulate the desired SRT.       

 

The measured data and model both show that digester ammonia concentrations can be 

controlled based on the influent solids concentrations as shown in Figure 3.  Even under the 

same loading rate the total ammonia concentration can be adjusted to from 1,500 to 3,700 

mg/L.  The experimental data and model both agreed with a previous study (Kepp et al., 

2001) that showed that total ammonia has a stoichiometric relationship with the influent 

solids concentrations.     

 

 
Figure 3.  Simulation output and experimental data on the total ammonia concentrations 

inside the digester.     

 

The model and experimental data also demonstrated that increasing SRT would result in 

greater specific methane production despite higher ammonia inhibition as shown in Figure 4.  

The simulation results showed that an increase of even 3 days in the SRT may result in 

approximately 4% increase in specific methane production.  Our theory is that although THP 

greatly increases the rbCOD of feed sludge, a large portion of biodegradable COD is still in 

particulate form and needs to be enzymatically hydrolyzed.  That is why the model output 

showed that total mass of sbCOD was much higher in 10 day SRT compared to 18 day SRT.   
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Figure 4.  Simulation output compared to experimental results of daily methane production. 

 

However, increasing the ammonia concentration has a negative impact of elevating the VFA 

levels in the digesters.  The current inhibition constants cause the growth rate of methanogens 

to reduce significantly as the ammonia level reaches what is observed in the digester operated 

at 18 days SRT.  At this point in the experiment, the VFA levels in the 18 days have not 

reached steady state as the last VFA measurement taken is much higher than the value from 

the previous week.  It is difficult to tell if the VFA levels would increase to the level near 

what is being predicted by the model.   

 

Another observed model limitation is that the model is predicting that the effect of ammonia 

inhibition would start to manifest much faster than what the experimental data is indicating.  

Despite the ammonia level that was increasing quickly in the 18 day SRT reactor, the digester 

was able to maintain its VFA levels for a longer time than what the model predicted.  This 

may be from the fact that the digester ecology had been exposed to the higher ammonia 

concentrations for long a time and can withstand a short-term increase in the ammonia level.    
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Figure 5.  Simulation output compared to experimental results of VFA buildup in digesters. 

 

CONCLUSION  
A model was developed to understand the relative importance of ammonia on gas production 

and VFA in high-loaded digestion processes.  This model helps to predict operational 

setpoints of SRT and ammonia by controlling the influent solids concentration.  Thus, under 

any given loading conditions, SRT and ammonia can be controlled to maximize the gas 

production while maintaining digester stability.        
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Abstract 

The paper outlines a protocol for comprehensive evaluation of mixing devices for activated 

sludge tanks using field testing for calibration of computational fluid dynamic (CFD) 

modelling to compare the impacts of tank and mixing device geometry on mixing and 

energy efficiency. The protocol includes a CFD model for activated sludge solids settling 

and transport which captures the influence of solids concentration gradients on fluid 

motion. This element of the protocol is unique in that almost all analyses completed to date 

for activated sludge biokinetic modelling or mixing have assumed either 1) complete 

mixing or 2) neutral density CFD neglecting the true muliphase conditions. To date, the 

protocol has been applied to several types of mixing devices including jet aeration and 

mixing, horizontal shaft propeller mixers, and diffused aeration. Field testing of several 

other types of mixing devices has also been accomplished. The protocol is recommended to 

optimize design and application of mixing devices for activated sludge service in aerated, 

anoxic, and anaerobic tanks as part of biological treatment processes. The approach can be 

extended to incorporate biokinetic models that more accurately predict the impact of tank 

geometry and mixer configuration on treatment efficiency than can be achieved assuming 

complete mixing or neutral density CFD. 

 

Keywords 
Mixing, activated sludge, modelling, CFD, energy efficiency 

 

INTRODUCTION 

With increasing recognition of the importance of nitrogen and phosphorus removal from 

wastewater discharges and recognizing the proven economy of biological treatment processes 

for nutrient removal, the wastewater treatment industry has seen an increase in the use of un-

aerated tanks for anoxic uptake of nitrate and anaerobic tanks to facilitate phosphorus removal 

from wastewater effluents. Anaerobic tanks are also increasingly used to improve activated 

sludge settleability. In order to facilitate these treatment goals, biological treatment tanks with 

significant concentrations of suspended solids must be mechanically mixed. With this 

increasing importance of mixing in standard biological treatment processes, optimization of 

tank geometry and mixer configuration becomes more important. We want the most efficient 

mixing in two senses: 1) we want near uniform distribution of suspended solids across our 

treatment tanks and 2) we want to use tank geometries and mixer configurations that 

minimize consumption of energy. It is towards this optimization of mixing and energy 

efficiency that the proposed protocol aims.  

 

PROTOCOL APPROACH 

The elements of the proposed protocol include the following: 

 Field testing for comparison with CFD results 

 Development of CFD models for the conditions of the field test 

 Calibration of the CFD models 

 Development of CFD models for alternate basin geometry and mixer type and 

configuration and comparison of CFD results from alternative geometries and mixing 

devices in terms of mixing and energy efficiency 
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Field Testing 

Field tests used by the authors to date have included: 1) solids profiles, 2) velocity profiles, 3) 

flow pattern distribution tests, and 4) residence time distribution dye tests. In the current paper 

only solids profiles will be discussed. 

Solids profile tests are arguably the most important data for evaluation of mixers for activated 

sludge service. In suspended growth wastewater applications a uniform distribution of solids 

concentrations at the lowest power level is the primary goal. Solids profile tests can be 

implemented in the field in a number of ways. Solids samples can be withdrawn by 

Kemmerer samplers or by a series of sample pumps using the techniques developed by Robert 

Crosby (Bender and Crosby, 1980) or by solids probes. In the Crosby technique a grid of 

approximately 25 samples are withdrawn across the tank width and depth at locations chosen 

to illustrate mixer influence. The samples are then analyzed for suspended solids content 

(Standard Methods 2540D.) For measurements discussed below we used an Insite 

Instrumentation Group Model 3150 probe. 

Detailed TSS measurements for four vertical shaft mixers have been conducted by Carollo 

Engineers for the Orange County Utilities’ (OCU) South Water Reclamation Facility (SWRF) 

in Orlando, Florida. A cross sectional grid of 25 data points were measured for each mixer. 

Three hydrofoil mixers from different manufacturers were compared to a hyperboloid mixer. 

Hydrofoil I had three flat impellers each with a downward bending trailing edge. Hydrofoil II 

had three curving impeller blades of relatively large diameter. Hydrofoil III was constructed 

of a single flat plate with three downward folding projections. These impellers all produce a 

downward pumping action through the impeller. The Hyperboloid I mixer also produced a 

downward pumping action using a series of upwardly projecting shallow ridges of 

hyperboloid shape. Measurements were taken over the course of a one-hour period on 

different days for each mixer. The deviation of the measured concentration from the average 

concentration across the entire section was then calculated. This deviation may be considered 

the coefficient of variation (CoV) of the sample data for each mixer.  

Contour plots of the measured concentration data for two of the hydrofoil mixers are 

presented in Figure 1. The contour plots indicate an asymmetry across the tank. This 

asymmetry is thought to have been caused by upstream conditions in the racetrack tank. The 

three hydrofoils were all arranged on their vertical shafts at approximately one third depths in 

the tanks. The one hyperboloid mixer was nearer to the bottom of the reactor tank. The 

contour data for this mixer (not shown) indicated relatively uniform concentrations across the 

tank, but significantly higher concentrations in the tank bottom. 

Carollo Engineers also conducted limited field tests of jet mixing and aeration of an operating 

sequencing batch reactor (SBR) at the Blacks Ford Regional Water Reclamation Facility 

(BFRWRF) of the JEA Utility in Jacksonville, Florida. The tests (Samstag et al., 2012) were 

conducted to establish solids concentration profiles under normal operating conditions for use 

in calibrating CFD modelling. Solids concentration measurements were taken at multiple 

depths at two locations at the edge of the operating SBR using a calibrated optical solids 

measurement probe. Mixed liquor suspended solids (MLSS) measurements were made during 

mixed cycles with both air and pumping operational and during pumping-only mix cycles.  
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Figure 1. Solids profiles for two vertical shaft mixers. 

Development of CFD models for the conditions of the field test 

The first step in development of a calibrated CFD model is to produce a geometric and 

computational mesh of the field-tested reactor. Modern tools for CFD allow construction of 

extremely detailed models of complex geometries and optimized computational meshes. The 

authors have ANSYS GAMBIT, Version 2.4.6 for both modeling and meshing for the case 

studies referenced here. 

Figure 2 presents an illustration of the three-dimensional geometric model and a projection of 

the computational mesh prepared for the BFRWRF SBR tanks for CFD analysis. The model 

shows the three jet headers, the main header pump intake, the auxiliary header pumps and 

intakes, and the effluent decanters. The effluent decanters were not required for the flow 

simulation, but were included to simulate the fluid environment. The polyhedral 

computational mesh of approximately one million cells is shown projected onto model 

surfaces. 

 

Figure 2. SBR Tank Geometric Model and Computational Mesh. 

 

Calibration of the CFD models 

Modern CFD models can be used without calibration. The physics of CFD have been verified 

within the tolerance of most field measurements many times before. A possible exception is 

in the area of turbulence estimation. It is widely believed that the k-epsilon turbulence model 

is appropriate for the types of recirculating flows commonly seen in activated sludge 
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sedimentation tanks, but calibration is more important where the CFD is used as a base for 

solids transport or biokinetic models, since many of the empirical parameters used in these 

models are much less well established than the physical parameters applicable to fluid flow. 

Calibration techniques have included solids settling rate testing, solids profile matching, and 

clarifier sludge blanket matching during dynamic flows. See Griborio et al. (2008), Wicklein 

and Samstag (2009), Samstag and Griborio (2010), and Samstag et al. (2010). For this 

protocol we demonstrate the use of one of the most useful techniques, solids profile matching. 

The authors used Fluent Version 13 on a computing platform of 64-bit workstations with 

multiple CPU cores running a 64-bit Windows XP operating system. 

Figure 3 presents contour plots of CFD simulations of dynamic solids profiles for the 

BFRWRF under conditions of normal operation with aeration on and with only the 

recirculation pumps on. The simulation of the aerated condition produced a good match to the 

fully mixed condition seen in the field tests. The solids profile match for simulation of 

pumped mixing after aeration had been turned off for 25 minutes confirmed the development 

of relatively clear water in the top of the tank that was seen in the field tests. See Samstag et 

al., 2012. 

 

Figure 3. Solids profiles of CFD results with (left) and without (right) aeration. 

These simulations were conducted using a user defined function (UDF) for solids settling and 

transport with coupling of the influence of solids gradients on the density profile and fluid 

flow. Hindered settling velocities were calculated based on a sludge volume index (SVI) of 150 

mL/g, using the revised Daigger equation (Daigger, 1995). Further details are presented in 

Samstag et al. (2012). 

The work did not include velocity profiling of the SBR tanks. This provides another 

opportunity for calibration. Calibration of velocity fields has been accomplished in 

sedimentation tanks. The early work of Larsen (1977) is compared to CFD in Wicklein and 

Samstag (2009) Samstag et al (2010) compares drogue velocity measurements to CFD model 

results.  

Figure 4 presents the predicted velocity profile for the SBR tanks at the BFRWRF from the 

CFD model. With the aeration on, higher velocities penetrate to the upper reaches of the tank 

resulting in complete solids mixing. With aeration turned off very high velocities at the exit 

from the mixing jets dissipate rapidly in the tank leaving velocities less than 0.1 m/s in most 

of the tank. 
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Figure 4. Velocity profiles for air mixing (left) and pumped mixing (right).  

The importance of including density coupling in the CFD simulation is illustrated in Figure 5. 

The figure compares the results from simulation of 25 minutes of pumped mixing in the SBR 

tanks after turning off aeration with the density couple active (left side) to a neutral density 

simulation where the effect of concentration gradients on the density field was turned off 

(right side). Without including the density couple, the CFD simulation predicts relatively 

complete mixing for the pumped mix condition. This result is unrealistic based on the field 

tests. Since neutral density CFD simulation of mixing is common in the industry, this is a 

significant finding. 

 

 
Figure 5. Comparison of solids profiles from density-coupled and neutral density models 

CFD Model Alternatives 

After calibration of the CFD model to conditions of operation in the field, the CFD model can 

be used to consider alternative configurations to improve operation. For the BFRWRF project, 

for example, a series of alternatives were considered in which the jet velocity was increased in 

an effort to improve solids mixing during the pumped mix cycle. CFD simulations were 

developed for four different jet velocities from 2.5 m/sec to 4.0 m/sec. The simulations 

indicated that increasing the velocity to 3.0 m/sec would reduce solids deposition in the tank 

after 25 minutes of pumped mixing after aeration is turned off, but that increasing the jet 



 Samstag and Wicklein. 

315 

 

velocity to 4.0 m/sec would be required to achieve a CoV for solids concentration less than 10 

percent. Power requirements for this increase in mixing intensity would triple the installed 

power for this facility. These results showed that the original design was significantly 

inadequate to meet a specification of CoV less than 10 percent. 

In another project Carollo investigated the efficiency of solids mixing in the plug flow 

racetrack tank. Two different mixers were investigated using an un-calibrated CFD model 

incorporating density-coupled solids settling and transport. This project also included a two-

fluid model of the aerated zone in a side-sloped reactor.  

Table 1 presents summary date for mixing efficiency derived from the field tests and 

calibrated and un-calibrated CFD simulations discussed above for: 

 Pumped jet mixing 

 Vertical hydrofoil mixers 

 Vertical hyperboloid mixers 

 Horizontal propeller mixers 

The data indicate that the hydrofoil, hyperboloid, and horizontal propeller mixers have the 

potential for much greater power efficiency than pumped mixing. The equivalent power 

required for these mixers for a CoV of 10 percent varied in the range of 1.4 to 8.5 W/m3. 

These values are almost an order of magnitude greater than for pumped jet mixing.  

CONCLUSIONS 

A protocol has been developed for comparisons of the efficiency of activated sludge mixing 

systems using field-calibrated CFD models. A crucial difference in this protocol from 

previous work is to incorporate the effects of solids settling and transport on fluid motion. 

Elements of the protocol have been applied to jet aeration and mixing, vertical shaft 

hyperboloid mixers, horizontal propeller mixers, and diffused aeration. We propose this 

protocol as a comprehensive approach to optimizing activated sludge mixing and urge its 

adoption in future studies. 
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Table 1. Comparison of required volumetric power input for different mixer types. 

Type of Mixing Reference Basis of Test CoV Power Level (W/m
3
) 

Equivalent 10% CoV Power 

Level (W/m3) 

Pumped jet Samstag et al. (2012) 2.5 m/sec jet CFD 50.0% 7.7 38.5 

Pumped jet Samstag et al. (2012) 3.0 m/sec jet CFD 40.0% 13.0 52.0 

Pumped jet Samstag et al. (2012) 3.5 m/sec jet CFD 12.0% 20.7 24.8 

Pumped jet Samstag et al. (2012) 4.0 m/sec jet CFD 9.0% 30.8 27.7 

Vertical 

Hydrofoil I OCU Field test 3.7% 7.9 2.9 

Vertical 

Hydrofoil II OCU Field test 9.2% 1.4 1.3 

Vertivcal 

Hydrofoil III OCU Field test 5.5% 7.5 4.1 

Vertical 

Hyperboloid I OCU Field test 7.5% 5.3 4.0 

Vertical 

Hyperboloid  Oton et al. (2009) Field test 11.0% 4.0 4.4 

Vertical 

Hyperboloid w/ 

MLR Wicklein et al. (2013) CFD Simulation 2.1% 6.8 1.4 

Horizontal 

propeller (initial) Wicklein et al. (2013) CFD Simulation 10.3% 8.3 8.5 

Horizontal 

propeller (final) Wicklein et al. (2013) CFD Simulation 5.4% 7.7 4.2 

Horizontal 

propeller w/ 

MLR Wicklein et al. (2013) CFD Simulation 1.9% 13.0 2.5 

 



 Samstag and Wicklein. 

317 

 

REFERENCES 

American Public Health Association (APHA), the American Water Works Association 

(AWWA), and the Water Environment Federation (WEF) (2013) Standard Methods 

for the Examination of Water and Wastewater. Online Edition 

(http://www.standardmethods.org/store/ProductView.cfm?ProductID=63). 

Bosma, A.J. and Reitsma, B.A. (2007) Hydraulic Design of Activated sludge Tanks with 

CFD. Proceedings of the COMSOL Users Conference, Grenoble. 

Crosby. R. M. and Bender, J.H. (1980) Hydraulic Considerations That Affect Secondary 

Clarifier Performance. EPA Technology Transfer, United States Environmental 

Protection Agency, 905N80001. 

Daigger, G.T. (1995) Development of Refined Clarifier Operating Diagrams Using Updated 

Settling Characteristics Database. Water Environment Research, 67, 95. 

Griborio, A.; Rohrbacher, J., Taylor, R., Pitt, P., and Latimer, R. (2008) Evaluation of Wet 

Weather Strategies and Clarifier Optimization Using State-of-the-Art Tool. 

Proceedings of the Water Environment Federation, WEFTEC Conference. 

Larsen, P. (1977) On the Hydraulics of Rectangular Settling Basins, Experimental and 

Theoretical Studies. Department of Water Resources Engineering. Lund Institute of 

Technology / University of Lund, Report No. 1001, Lund, Sweden. 

Oton, S. et. al. (2009) The Fine Line Between Thorough Mixing and Energy Consumption. 

WEF Nutrient Removal Conference Proceedings, 2009. 

Samstag R. and Griborio, A. (2010) Calibration and validation of CFD Models – Case Study: 

CFD Modelling of Secondary Clarifiers. Second International Water 

Association/Water Environment Federation Wastewater Treatment Modeling Seminar, 

Mont-Sainte-Anne, Quebec, Canada. 

Samstag, R.W., Wicklein, E.A., Reardon, R. D., Leetch, R. J., Parks, R. M., and Groff, C. D. 

(2012) Field and CFD Analysis of Jet Aeration and Mixing. Proceedings of the Water 

Environment Federation 84th Annual Technical Conference and Exposition; Orlando, 

Florida  

Samstag, R., Zhou, S., Chan, R., Royer, C., and Brown, K. (2010) Comprehensive Evaluation 

of Secondary Sedimentation Performance. Proceedings of the Water Environment 

Federation 82nd Annual Technical Conference and Exposition, New Orleans, LA. 

Wicklein E. A. and Samstag R.W. (2009) Comparing Commercial and Transport CFD 

Models for Secondary Sedimentation. Proceedings of the Water Environment 

Federation 81st Annual Technical Conference and Exposition; Orlando, Florida. 

Wicklein, E. A., K. Rogers, R. Hunt, A. Gharagozian, M. Cocke, and P. Roy. (2013) CFD 

Modeling of Activated Sludge Mixing in an Oxidation Ditch Conversion. Proceedings 

of the 85
th

 Annual WEFTEC Conference, Chicago, Illinois.  



 Gaden et al. 

318 

 

A general three-dimensional extension to ADM1: the 

importance of an integrated fluid flow model 
 

 

David L. F. Gaden
1
 and Eric L. Bibeau

2
 

 

     
1
Department of Mechanical & Manufacturing Engineering, University of Manitoba, R3T 2N2, Winnipeg, 

Canada (Email: david_gaden@umanitoba.ca) 
2
Department of Mechanical & Manufacturing Engineering, University of Manitoba, R3T 2N2, Winnipeg, 

Canada (Email: Eric.Bibeau@ad.umanitoba.ca) 
 

 

Abstract 

The current state-of-the-art model for anaerobic digesters is Anaerobic Digestion Model 

No. 1 (ADM1).  It is a bulk model with a framework that ignores spatial variations, leading 

to several inherent limitations.  Anaerobic Digestion Model with Multi-Dimensional 

Architecture (ADM-MDA) is an extension to ADM1 that incorporates spatial discretization 

and computational fluid dynamics (CFD).  A comparison between ADM1 and ADM-MDA 

shows that under some conditions, spatial variation alone can make the difference between 

a healthy digester and digester failure.  These findings underscore the importance of CFD 

in digester simulations.  This paper presents the results of this four-year numerical model 

development project. 

 

Keywords 
3D; ADM1; CFD; modelling; OpenFOAM; spatial resolution 

 

 

INTRODUCTION 

Anaerobic digestion modelling has traditionally been more focused on the biochemistry of 

digestion, and less focused on the fluid flow and reactor geometry.  Anaerobic Digestion 

Model No. 1 (ADM1) (Batstone, Keller et al., 2002) is such a model, with a solid biochemical 

foundation, but little, if any, consideration of fluid flow.  Intuitively this makes sense, as the 

biochemistry of anaerobic digesters is considerably more complicated than the fluid flow, 

particularly considering the fluid velocities can be near zero.  However, fluid flow and 

thermal gradients may impact the model more significantly than this line of thinking suggests.  

There have been numerous experimental studies into fluid, such as Karim, Hoffmann et al. 

(2005a, 2005b), who studied the efficacy of various mixing strategies at different waste 

concentrations.  Numerical studies into digester fluid flow also have been reported, although 

these generally ignore biochemistry, including Wu and Chen (2008), who performed a 

computational fluid dynamics (CFD) study into flow in lab-scale and pilot-scale digesters, 

focusing on the effect of using a non-Newtonian fluid model.  Although sparse, a few studies 

exist that combine biochemistry and fluid flow, including Fleming (2002) who created a CFD 

model with biochemistry based on Hill’s monod reaction model (1983a, 1983b).  Other 

studies have accomplished some aspects of fluid flow and biochemistry, such as Batstone, 

Hernandez, et al. (2005), which used compartmental ADM1 simulations to establish spatial 

variation in a plug-flow reactor.  To further address fluid flow and biochemistry, this project 

implements Anaerobic Digestion Model with Multi-Dimensional Architecture (ADM-MDA) 

(Gaden, 2013), a three-dimensional full implementation of ADM1 with an integrated CFD 

flow model. 

 

 

 



 Gaden et al. 

319 

 

 

MODEL DEVELOPMENT 

Extending the governing equations of ADM1 from a bulk model to three dimensions is 

achieved by including spatial variables in the derivation.  For instance, the mass balance for a 

species changes from: 

 

 
 

to: 

 

 
 

However, solving the new equation set is non-trivial as the introduction of spatial resolution 

changes a differential-algebraic equation set (DAE) to a partial differential algebraic equation 

set (PDAE), and few suitable solvers exist. 

 

This project develops Coupled-Reaction-Advection-Flow Transient Solver (CRAFTS) to 

handle the new numerical framework.  CRAFTS is a general reaction solver for single-phase, 

incompressible fluid flows.  It allows users to define their own variables, reactions, 

inhibitions, coefficients and control logic without requiring any programming.  CRAFTS also 

has a framework for User-Defined Functions (UDFs) that allows for custom algebraic 

algorithms, such as ADM1’s Newton-Raphson ion model.  CRAFTS is a novel PDAE solver 

that also employs a novel programmable logic controller (PLC) emulator.  CRAFTS is built 

using OpenFOAM®, a free and open source CFD suite. 

 

Gaden (2013) presents the full details of the model and its development. 

 

CASE SETUP 
To evaluate model performance, this study compares the performance of ADM1 against 

ADM-MDA on a case involving a 100 m
3
 rectangular digester.  In this case, fluid injection 

events of occur daily for two minutes at a velocity of 0.05 ms
-1

, giving a hydraulic retention 

time of only 8.33 days.  Fluid mixing events occur for ten minutes every hour. 

 

RESULTS 

Most variables show little differences between the two models, however, the continuum 

assumption of ADM1 leads to subtle differences in mass exchanged during each fluid 

injection event.  These differences can amplify quickly with highly sensitive dynamic 

systems, such as ADM1.  Figure 1a shows the two models have a significant disagreement 

with the total acetate concentration, Sac.  ADM1 suggests a stable digester, whereas ADM-

MDA indicates an unhealthy digester.  This disagreement can be explained by the fact that 

acetate degraders can be seen washing out only in ADM-MDA, Figure 1b. 
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 Figure 1a. Total acetate concentration, Sac Figure 1b. Acetogenic biomass, Xac 

 

The spatial data that ADM-MDA provides can also be useful for design purposes.  For 

instance, the model showed dissolved methane building up at the centre of the reactor, Figure 

2.  This suggests a change in mixing strategy might improve gas transfer rate.  By way of 

contrast, ADM1 does not include spatial data. 

 

 
 Figure 2. ADM-MDA 

Dissolved methane concentration, Sch4, spatial distribution at t = 56,651 s (15h 44m 11s). 

 

FUTURE DEVELOPMENT 
This research project has produced a strong foundation for a spatially-resolved 

implementation of ADM1; however, the second-order accuracy inherent in CRAFTS’ finite 

volume method can conflict with the numerical stiffness of ADM1.  This may limit the 

practicality of the model, such as reduce the maximum mesh size.  There are several 

promising areas for model improvement, including the gas model and the transport model.  

Source code from this research endeavour is being released as free and open source software 

to the ADM1 modelling community to facilitate further model developments, (Gaden, Bibeau, 

2013). 
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Abstract 

A mathematical model was developed to investigate hydraulic transport and bacterial 

selection during slow up-flow anaerobic feeding (0.9 m h
-1

) of wastewater across the settled 

bed of granular sludge biofilms used in column-type sequencing-batch reactors to remove 

nutrients. A plug-flow regime with dispersion was identified from residence time 

distribution data (RMSE < 0.010, R
2
 = 0.999). Metabolic formulations allowed assessing 

the effect of environmental conditions on the competition of polyphosphate- (PAO, 

Accumulibacter) and glycogen-accumulating organisms (GAO, Competibacter) for the 

uptake of acetate during anaerobic feeding. Since PAO and GAO metabolisms rely on 

distinct dynamics of intracellular storage polymers, the feeding phase length at nominal 

flowrate was shown to impact bacterial selection. In addition, acetate was preferentially 

consumed by PAO under alkaline conditions (pH 7.5-8.0) independently of temperature 

(10-30°C). GAO were only able to outcompete PAO under combined acidic (pH 6.0-6.5) 

and higher mesophilic (25-30°C) conditions. However, the difference in uptake rates was 

only half of the one obtained under conditions selecting for PAO. The model can support 

the assessment of spatial stratification of conversion processes across the bed and the 

design of operation and bed geometries towards optimal bacterial resource management in 

granular sludge. 
 

Keywords 
Biological nutrient removal; granular sludge biofilms; feeding phase; reactor regime; 

PAO/GAO  

 

 

INTRODUCTION 

Efficient biological nutrient removal (BNR) in intensified sequencing-batch reactors (SBR) 

using aerobic granular sludge (AGS) biofilms requires optimal management of the bacterial 

resource. Preferential selection of polyphosphate- (PAO, e.g. Accumulibacter) over glycogen-

accumulating organisms (GAO, e.g. Competibacter) is required for enhanced biological 

phosphorus removal. PAO and GAO are selected under slow up-flow anaerobic feeding 

regime across the settled bed of AGS (de Kreuk and van Loosdrecht, 2004). Operation with 

selective purge of upper bed fractions can favor PAO over GAO (Winkler et al., 2011). 

Similarly to activated sludge systems (Oehmen et al., 2010), pH and temperature trigger PAO 

and GAO selection in AGS (Weissbrodt et al., 2013). Since the PAO/GAO competition relies 

on their ability to take up volatile fatty acids (VFA) under anaerobic conditions, a hydraulic-

metabolic mathematical model was developed here to investigate the effect of combined 

feeding and environmental conditions on bacterial selection in AGS. 
 

 

MATERIAL AND METHODS 
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Investigations were conducted in a lab-scale column-type reactor with a volume of 1.6·10
-3

 

m
3
 and a height-to-diameter ratio of 9.66. The AGS bed of 0.33 m comprised 543 g of wet 

granular biomass with a biofilm density of 1120 kg m
-3

 and a homogeneous size distribution 

over the height (1.7±1.2 mm). The influent was fed at a slow nominal flowrate of 1.2·10
-3

 m
3
 

h
-1

 corresponding to superficial and interstitial velocities of 0.44 and 0.90 m h
-1

, respectively. 

 

A one-dimensional plug-flow hydraulic transport model with dispersion was implemented in 

Berkeley Madonna and calibrated based on residence time distributions (RTD) recorded at the 

bed and reactor outlets with on-line electrical conductivity after step-change of the inlet 

concentration of an inert NaBr tracer, according to Gujer (2008). Axial and radial dispersion 

coefficients were identified from the dimensionless variance of the normalized probability 

function of residence time. The calibrated hydraulic transport model was coupled to structured 

formulations of anaerobic metabolisms of Accumulibacter and Competibacter in function of 

pH (6.0-8.0) and temperature (10-30°C) (Lopez-Vazquez et al., 2009). Since VFA uptake by 

PAO and GAO rely on dynamics of intracellular storage polymers that are not transported 

with the flow, and cannot reach a steady-state, the feeding phase length (0.25-2.5 h) was 

studied as additional factor of bacterial selection. 
 

 

RESULTS AND DISCUSSION 

The structure of the calibrated hydraulic transport model comprised 50 mixed compartments 

in series and dispersion of 36% in volume and 7% in flowrate (RMSE < 0.010, R
2
 = 0.999). 

The wastewater flow was related to laminar regime (Rebed = 0.25 < 1). The dimensionless 

coefficient of axial dispersion in the z-direction of flow (NDz = 0.047), that corresponded to an 

absolute value (Dz) of 1.5·10
-2

 m
2
 h

-1
, was in the domain of large amount of dispersion 

(0.025-0.200) for packed bed bioreactors (Albuquerque and Santana, 2004). The radial 

dispersion transverse to the direction of flow (NDt = 0.299, Dt = 9.6·10
-2

 m
2
 h

-1
) was even 

more higher in this AGS system with low Peclet numbers (Pez = 21.3 and Pet = 3.4 < 100). 

According to RTDs measured at bed and reactor outlets, no mixing occurs between the 

influent and the treated wastewater volume above the bed. 

 

Under non-selective reference simulation conditions in a bed of 50 cm with 60 min feeding, 

20°C, pH 7.0, 64 kgTSS mbed
-3

 with 67%VSS and 50% of active cells related to 25% PAO and 

25% GAO, both populations removed acetate at equal volumetric rate (1.25 kgCOD h
-1

 m
-3

). 

Prolonged feeding of 120 and 150 min at nominal flowrate switched off GAO and PAO 

activities by full depletion of glycogen and polyphosphate, respectively. Simulations 

displayed preferential uptake of acetate by PAO under alkaline conditions (e.g. pH 8.0) 

independently from temperature (10-30°C) (Figure 1). GAO were only able to outcompete 

PAO under combined acidic and higher mesophilic conditions (e.g. pH 6.0 and 30°C). 

However, the difference in acetate uptake rates in the bed was only half of the one obtained 

under conditions selecting for PAO. These results met with multifactorial experiments 

conducted in AGS-SBRs (Weissbrodt et al., 2013). Contrary to pH, temperature significantly 

affected bed height requirements for full acetate uptake under anaerobic feeding. 
 

 

CONCLUSIONS 

Modelling hydraulic transport of wastewater during slow anaerobic feeding across AGS beds 

should integrate axial and radial dispersion components. For the application, the present 

approach highlighted that fill-and-draw phases can efficiently be implemented in column-type 

AGS-SBRs. The feeding phase length and indirectly the working volume impact bacterial 
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selection. Slightly alkaline conditions, e.g. by addition of lime in the influent, efficiently 

select for PAO. The amount of AGS should be adapted in function of temperature for full 

anaerobic VFA uptake during feeding. 
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Figure 1. Structure of the plug-flow hydraulic transport model with dispersion (A) and impact of pH and 

temperature on acetate uptake by PAO and GAO (B) under slow up-flow anaerobic feeding of wastewater across 

the bed of AGS. 
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Abstract 
This study reveals the presence of nitrifying bacteria in influent municipal wastewaters reaching full-

scale biological wastewater treatment plants (WWTPs). Respirometric assays showed that the influent 

nitrifiers could be activated following metabolic induction. We also show that there is a potential of the 

nitrifiers in the influent stream to actually seed activated sludge bioreactors. Influent-incurred nitrifier 

seeding affects model performance and influences ammonium (NH4
+
) removal. Simulation studies 

showed that the impact of nitrifier seeding by influent is more prominent at low temperatures.  At 4 °C, 

a nitrifier seed of 5 mg-CODbiomass/L induces a 30% reduction in residual NH4
+ 

level and a 17% gain in 

solids retention time (SRT) as compared to unseeded conditions. These findings support the need to 

fine-tune process modelling pertaining to NH4
+
 removal in wastewaters and provide a novel potential 

means of sustaining nitrification in cold temperature through seeding of influent with nitrifiers.  

 

Keywords 

Ammonia; influent; modelling, nitrification, nitrifying bacteria  

 

 

INTRODUCTION 

Ammonia (NH3) represents a serious environmental hazard and a deadly threat to fish and 

aquatic life due to its toxicity (Campos et al. 2008). The most widely applied process 

worldwide for ammonia removal from municipal wastewater is nitrification: the aerobic 

biological conversion of NH3 to nitrate (NO3
−
) via nitrite (NO2

−
) as a secreted intermediate 

(Mahvi et al. 2008). This microbial-induced catalyzed oxidation is a key process in 

wastewater treatment and effectively reduces the toxicity associated with NH3 and the 

biochemical oxygen demand (BOD) of NH3/NH4
+
. However, nitrification is a fragile 

temperature sensitive process (Van Dyke et al. 2003). It is, therefore, not surprising why 

many biological wastewater treatment systems carrying out nitrogen removal have 

encountered failures during winter season (Ilies and Mavinic 2001; Kim et al. 2006). Yet, 

since NH3 is toxic to fish and other aquatic life during all seasons, stricter effluent standards 

are being implemented and enforced to protect aquatic environments like in the case of North 

American jurisdictions which have adopted year round regulations for the discharge of total 

ammonia nitrogen (Canada Fisheries Act 2012; U.S.A Federal Register 2013). Consequently, 

the conversion of NH3 into NO3ˉ is a requirement even during the winter season, which drives 

the increase of the design solids retention time (SRT) to prevent nitrifier washout (Rittmann 

and McCarty 2001). As a consequence, the footprints of these wastewater treatment plants 

(WWTPs) and the necessary capital investment are higher than for warmer climates.   

 

Nitrifying microorganisms are clustered in few evolutionary lineages within the prokaryotic 

and archeal domains. They are functionally classified as (1) Ammonia Oxidizing Bacteria 

(AOB) and Ammonia Oxidizing Archea (AOA), which oxidize NH3 to NO2
−
, and (2) Nitrite 

Oxidizing Bacteria (NOB), which convert NO2¯ to NO3¯ (Schramm 2003). AOB and NOB 

share a close symbiotic relationship with each other forming densely packed microcolonies 
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and cell clusters in wastewater treatment systems, since the product of NH3 oxidation by AOB 

is the substrate for NOB, and whose accumulation is inhibitory to AOB (Daims et al. 2006).   

 

So far the possible seeding of nitrifiers in terms of AOB and NOB by influent wastewaters to 

activated sludge bioreactors has been overlooked. Even current best practices for biological 

wastewater treatment modelling, such as the International Water Association (IWA) 

consensus Activated Sludge Models (ASMs), assume no active biomass in municipal 

wastewater at the entrance of treatment facilities. If nitrifier seeding subsists in wastewater 

treatment systems, this may cause models to underestimate nitrification in extreme situations 

like cold temperature, and lead to over-sizing of aerated bioreactors. Evidencing the existence 

of significant influent nitrifier seeding may trigger important reviews of wastewater treatment 

system design practices for cold climate.  

 

To our knowledge, no studies have been conducted so far to unravel the presence of nitrifiers 

in influent municipal wastewaters reaching full-scale biological wastewater treatment 

facilities. In this study, we provide answers to the following questions which we believe will 

promote our understanding of the ecophysiological implications and dynamics of nitrifiers 

across activated sludge wastewater treatment systems: Are autotrophic nitrifiers present and 

active in influents of full-scale municipal WWTPs? Are the influent nitrifying populations the 

same as those present in mixed liquors or in other words, is seeding possible and observed? 

And given the level of observed potential seeding, what type of gains in design SRT could be 

made if seeding is considered during modelling?    

 

 

MATERIALS AND METHODS  

Site description and sample collection 

Influent and Mixed Liquor Suspended Solids (MLSS) samples were collected from 8 full-

scale biological WWTPs located in the region of Montreal in Quebec, Canada.  The treatment 

plants use the activated sludge type process and have different layouts and configurations 

(Table 1). 24-hour composite influent samples and grab MLSS samples were collected at a 

depth of 1 m during the Winter 2013. The biomass was spun by micro-centrifugation in 1.5 

ml eppendorf tubes and periodically frozen at -20 °C until time of analysis. 

 

Table 1. Description of activated sludge wastewater treatment plants  

WWTPs 
Geographic location Plant 

process
a
 

Flow rate 

(m
3
/day) 

SRT 

(day) 

HRT 

(hr)  

Influent 

composition (%)
b
 

 Latitude N Longitude W       

Cowansville 45°13'16.55" 72°46'30.41" CA 14,000 10 18 90:10 

Farnham 45°17'21.90" 72°59'35.05" EA 6,000 80 48 80:20 

Granby 45°22'17.45" 72°46'23.98" CA 55,000 7 20 50:50 

LaPrairie 45°24'16.48" 73°33'22.06" EA 65,000 7 15 45:55 

Marieville 45°26'20.28" 73° 9'51.40" EA 5,000 25 12 80:20 

Pincourt 45°23'25.30" 74° 1'37.34" EBPR 6,000 15 8 90:10 

Salaberry 45°13'34.61" 74° 4'20.44" EBPR 57,000 25 12 27:6:57 

Vaudreuil  45°23'25.30" 74° 1'37.34" SBR+EBPR 18,000 5 3 50:50 
a: CA-conventional aeration; EA-extended aeration; EBPR-Enhanced Biological Phosphorus Removal; SBR-Sequencing Batch 

Reactor    

b: Residential : Industrial : Infiltration  
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DNA extraction and PCR amplification of amoA and nxrB genes 

Genomic DNA was extracted from 0.25g of decanted samples (influent and mixed liquor) 

using the MO BIO UltraClean
TM

 Fecal DNA Kit (Carlsbad, CA). The extracted DNA samples 

were diluted to 12 ng and used to determine the presence of nitrifiers by PCR amplifying 

specific genes using barcoded primers. Barcode multiplexing allows simultaneous sequencing 

and retrieving of samples based on the identification of sample specific Multiplex Identifier 

(MID) tag (Liu and Jansson 2010). Ammonia oxidizing bacteria (AOB) were analyzed by 

targeting the amoA functional gene using the forward primer amoA-1F  GGG GTT TCT ACT 

GGT GGT and reverse primer amoA-2R CCC CTC TGC AAA GCC TTC TTC (Rotthauwe et 

al. 1997) while the nitrite oxidizing bacteria (NOB) population was studied by targeting the 

nxrB gene using the forward primer nxrB-F169 TAC ATG TGG TGG AAC A and reverse 

primer 616R CGG TTC TGG TCR ATC A (Maixner 2009). Each 50µl of PCR reaction 

mixture contained 2.5µl of 0.5M forward primer, 2.5µl of 0.5M reverse primer, 10µl of 1x 

PCR colorless buffer (Bioline), 2.75µl of 2.75mM MgCl2, 0.5µl of 250µM dNTP mixture, 2µl 

of 12ng DNA template, 0.5µl of 2.5 units Taq DNA Polymerase (Bioline) and 29.25µl of 

UltraPure™ DNase/RNase-Free Distilled Water (Invitrogen). The PCR thermocycling 

conditions for amoA gene fragment amplification were as follows: 95 °C for 4 min, 35 cycles 

of 95 °C for 40 s, 56 °C for 30 s, 72 °C for 1 min followed by a final extended elongation at 

72 °C for 10 min. The thermal profiles used for the amplification of nxrB gene target 

sequence were as follows: 95 °C for 5 min, 35 cycles of 95 °C for 40 s, 62 °C for 40 s, 72 °C 

for 1 min followed by a final extended elongation at 72 °C for 10 min. The PCR amplicons 

were purified using the MO BIO UltraClean
TM

 PCR Clean-UP Kit.  

 

GX FLS Titanium 454-pyrosequencing  

The amplicon concentration of each sample was determined using the Quant-iT™ PicoGreen 

kit and normalized to a concentration of 30 ng/µl. The PCR products were pooled and their 

quality assessed by the Bioanalyzer 2100 (Agilent Technologies). Purified amplicons were 

subjected to emulsion PCR (emPCR) based on Roche-454 Life Science Protocol and then 

pyrosequenced by the GS FLX Titanium Sequencing machine.  The sequencing run was 

performed at the McGill University and Genome Quebec Innovation Centre (Montreal, QC) 

on 1/4
th

 PicoTiter plate.  

 

Sequence data analysis  

The amoA and nxrB gene sequences were trimmed and filtered using the QIIME Pipeline 

(Caporaso et al. 2010) to retain only good quality sequences devoid of primers and barcodes.  

Quality filtered sequences (minimum read length of 200 bp, quality score higher than 25 and 

without ambiguous bases and mismatches) were clustered at 97% sequence similarity and 

assigned to taxonomic operational taxonomic units (OTUs) using the RDP classifier 

(FunGene Pipeline and repository) (Wang et al. 2007). Bacterial diversity analyses (alpha and 

beta) were performed using the BiodiversityR package of the R-software, version 3.0.1, based 

on standardized OTU abundance data.   

 

Respirometric-response assessment of influent nitrifying biomass   

In order to assess the metabolic status of nitrifying biomass in the influent wastewater, 

approximately 8-10 L of influent were collected from the LaPrairie WWTP and the biosolids 

were concentrated to about 2500 mg/l. The concentrated biosolids were used to perform 

respirometric assays by batch respirometry using the Challenge Technology 
TM

 AER-208 

Respirometer System to stimulate oxygen uptake rate (OUR) of AOB and NOB populations 
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Where, 

SNH      Residual effluent NH4
+
  

KNH,A  Saturation constant for NH4
+
 

       Solids retention time 

         Hydraulic retention time 

b         Endogenous respiration rate 

         Max. substrate uptake rate 

YA        Nitrifier yield coefficient 

       Nitrifying biomass in influent 

       Nitrifying biomass in MLSS 

 

through the addition of NH4
+
 and NO2¯ respectively as electron donors and measuring the 

resulting OUR profiles (Chandran and Smets 2005).  

 

Steady-state modelling of NH4
+ 

removal 
 

Residual NH4
+
 (SNH) concentration from nitrification was simulated to compare the impacts of 

temperature and SRT under nitrifier seeding and non-seeding conditions. The steady-state 

equations were derived using mass balances on the control volume (reactor and settling tank) 

(Rittmann and McCarty 2001). SNH concentration resulting from treatment of a given 

bioreactor under non-seeding condition was computed using equation (1). The impact of 

nitrifier seeding on the 

treatment system was 

expressed by reformulating 

Eq. (1) to Eq. (2) to 

incorporate a term defining 

nitrifying biomass in the 

influent stream  ( ) and 

mixed liquor ( . Default 

stoichiometric, kinetic and 

composition model 

parameters were adopted 

from ASM3 to perform the calculations (Henze et al. 2000).  

 

 

RESULTS AND DISCUSSION 

Presence of nitrifiers in influent  

Nitrifiers (both AOB and NOB) were detected in all municipal influents collected from the 8 

WWTPs. Scrutinizing the sequences at 97% sequence similarity resulted in an average of 360 

distinct OTUs in the influent and 236 OTUs in the mixed liquor samples for the AOB 

sequences. An inferior number of OTUs was detected for the NOB sequences with an average 

of 96 OTUs in the influent and 76 OTUs in the mixed liquor samples. The significant 

(P<0.05) lower diversity in the mixed liquor samples suggests that less OTUs dominate the 

mixed liquor samples than the number of OTUs entering the plants. Explicit comparison of the 

nitrifying AOB OTUs in the influent and mixed liquor samples by cluster analysis showed no 

clear distinction between these 2 types of sample, i.e., all influent and all mixed liquor samples 

did not cluster together (Figure 1a).  

 

 

 

 

 

 

 

Yet, in general, 

influent and mixed 

liquor samples 

from the same 

plant also did not 

cluster together. 

However, since 

a) b) 
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the OTUs detected in the influents were also observed in the mixed liquors, seeding from the 

influent is possible. Comparison of the biotic similarity between the influent and mixed liquor 

AOB community assemblages of the same WWTP, using the Bray-Curtis and Kulczinski 

similarity indices based on standardized abundance datasets, showed that an average of 24% of 

AOB OTUs were shared between the two types of sample matrices with the shared OTU 

reaching as high as 68% in the case of Cowansville wastewater treatment facility. The most 

abundant AOB OTU in the influent also occurred as the most abundant AOB OTU in the 

mixed liquor for all the WWTPs.  

 

Seeding was more apparent for the NOB populations with influent and mixed liquor NOB 

sequences clustering together for Vaudreuil, Cowansville, Granby, Pincourt and Farnham 

WWTPs (Figure 1b). Abundance-based similarity indices (Bray-Curtis and Kulczinski) 

showed an even higher sharing of NOB OTUs as compared to the AOB taxonomic units, 

averaging 61% with the highest degree of OTU sharing attaining as high as 86% in the case of 

Granby WWTP. Similar to the AOB abundance pattern, the most abundant NOB OTUs in the 

influent were also found to be most abundant ones in the mixed liquor.              

 

Stochastic models describing bacterial community assemblies predict that random immigration 

of bacteria plays a crucial role in shaping bacterial communities (Ofiţeru et al. 2010). The 

present study supports this prediction and allude the potential seeding of autotrophic nitrifying 

bacteria from influent streams to the activated sludge. The scale of bacterial immigration from 

the source community is likely to be dependent on the size of the source bacterial reservoir 

with the immigration rate being higher when the source community size is small (Curtis and 

Sloan 2006). Hence, seeding of nitrifiers in wastewater treatment systems may be more 

significant as compared to seeding of heterotrophic bacterial populations since nitrifiers are 

much less diverse than heterotrophs. According to Curtis et al. (2006), AOB have a low 

diversity in WWTPs with only 100-200 species growing in WWTPs in a global bacterial 

community of 10
27

. This is line with our findings where we detected AOB populations 

comprising of 100-395 species and NOB constituting of even smaller populations with only 

50-100 species, in the activated sludge samples.     

 

Effects of nitrifier seeding on modelling approaches  
The potential of biological activated sludge systems to perform nitrification is significantly 

limited at low temperatures, thereby 

requiring larger aeration tank sizes and 

longer aerobic SRTs. This is intimately 

linked to the slow growth rate of nitrifying 

bacterial biomass at low temperatures 

(Grady et al. 1999). Based on mass balance 

considerations, it had been estimated that 

supplementing a system with 0.1 g of 

nitrifiers per day per g of nitrifiers already 

present can effectively reduce the SRT up to 

45% at 8 °C (Salem et al. 2003). The 

respirometric assays we performed showed 

that the influent AOB and NOB populations 

responded immediately to the addition of 

electron donors, and that they could attain 

full metabolic activity within 6.5 h and 4.5 h 

a) b) 
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Figure 2. OUR profile obtained from respirometric analysis. 

NO2ˉ and NH4+ were added as substrate at 1.25h and 8.50h 
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Figure 3. Simulation of NH4
+
 residual concentrations from 

nitrification in an activated sludge system under influent-

nitrifier seeding (5 mg/L) and non-seeding conditions at 

different temperatures. 

respectively (Figure 2). This is indicative of active nitrifiers continuously entering WWTPs via 

the influent and hints towards potential seeding of activated sludge systems. Based on the 

activity test data, the level of nitrifiers in the influent of LaPrairie WWTP was estimated at 5 

mg-CODbiomass/L, which corresponded to a seeding level at this site of 0.2-0.3 g of nitrifiers 

per day per gram of nitrifiers already present. The level of biomass observed in the influent of 

LaPrairie WWTP justifies further considering potential seeding for modelling and design 

purposes. 

  

Modelling the NH4
+
 removal from wastewater under the level of nitrifier seeding observed at 

LaPrairie WWTP and non-seeding scenarios shows that influent nitrifier seeding does not 

seem to make a significant difference on SNH concentrations at temperatures above 10 °C 

(Figure 3). However, as temperature decreases an accrued effect is observed on the SNH 

concentrations when nitrifying 

biomass seeding is considered. At 4 

°C, a seeding of 5 mg-CODbiomass/L of 

nitrifying biomass reduced the SNH 

concentration by 30% as compared to 

unseeded condition. The same 

simulations showed that nitrifier 

seeding could allow a reduction of the 

SRT by approximately 17% to reach 

the same SNH level as for the unseeded 

conditions. These findings demonstrate 

the kind of gains that can be made in 

design if seeding of nitrifiers is 

considered. This may be of interest to 

modellers and designers, especially at 

the design stage of wastewater 

treatment systems since determining 

the size of activated sludge reactors 

during design is done by considering 

the minimum SRT capable of 

sustaining high enough activity to 

provide satisfactory NH4
+
 removal. Considering nitrifier seeding from the influent stream may 

help reduce the size of aeration tanks at the design stage. In turn, alleviating over-sizing of 

reactors would translate in reductions in capital expenditure for the construction of wastewater 

treatment infrastructures. Potentially, this would also reduce the costs of operation because 

lower oxygen demands would follow as the oxygen demand by the plant is proportional to the 

SRT (Rittmann and McCarty 2001). However, although our study shows the existence of 

potential seeding from influent municipal wastewaters to activated sludge bioreactors, the 

extent of such seeding still needs to be assessed. Reproducing seeding scenarios in lab or pilot-

scale bioreactors using actual influent nitrifiers from full-scale WWTPs may help to elucidate 

this aspect which will represent yet another step in understanding this phenomenon.   

 

 

CONCLUSIONS  

It is the first time that the presence of nitrifying bacteria (both AOB and NOB) has been 

revealed in influent municipal wastewaters reaching wastewater treatment facilities. Our 

findings advocate the existence of potential seeding of nitrifiers from influent streams to full-
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scale activated sludge reactors that may be contributing to the nitrification process in these 

systems. Simulation of NH4
+
 removal showed that nitrification is enhanced at low temperature 

under seeding conditions as compared to unseeded scenarios. This may require fine-tuning of 

process modelling by incorporating seeding especially at low temperatures where the impact 

may be significant. Such aspect may prove useful in reactor design and improving operation 

optimality with the aim of sustaining nitrification all year-round including extreme winter 

seasons. It also paves the way for the implementation of a novel potential means to cope with 

nitrification in cold temperature by actually seeding influent wastewaters to increase the 

nitrifier fractions in sewer systems.  
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Abstract: The success of many modelling studies strongly depends on the availability of 

sufficiently long influent time series - the main disturbance of a typical wastewater treatment 

plant (WWTP) - representing the inherent natural variability at the plant inlet as accurately as 

possible. This is an important point since most modelling projects suffer from a lack of realistic 

data representing the influent wastewater dynamics. The objective of this paper is to show the 

advantages of creating synthetic data when performing modelling studies for WWTPs. This 

study reviews the different principles that influent generators can be based on, in order to 

create realistic influent time series. In addition, the paper summarizes the variables that those 

models can describe: influent flow rate, temperature and traditional/emerging pollution 

compounds, weather conditions (dry/wet) as well as their temporal resolution (from minutes to 

years). The importance of calibration/validation is addressed and the authors critically analyse 

the pros and cons of manual versus automatic and frequentistic vs Bayesian methods. The 

presentation will focus on potential engineering applications of influent generators, illustrating 

the different model concepts with case studies. The authors have significant experience using 

these types of tools and have worked on interesting case studies that they will share with the 

audience. Discussion with experts at the WWTmod seminar shall facilitate identifying critical 

knowledge gaps in current WWTP influent disturbance models. Finally, the outcome of these 

discussions will be used to define specific tasks that should be tackled in the near future to 

achieve more general acceptance and use of WWTP influent generators. 

 

Keywords: Disturbance generators, dynamics, flow, influents, pollution loads, uncertainty 
 

INTRODUCTION 

The use of activated sludge models (ASM) (Henze et al., 2000) is constantly growing and 

both industry and academia are increasingly applying these tools when performing wastewater 

treatment plant (WWTP) engineering studies. The level of detail and the specific data 

required for a modelling exercise strongly depend on the project objectives. In general, the 

more specific the results of the simulation study, the more detailed the required set of data 

(Cierkens et al., 2012). However, due to the high cost of measuring campaigns, many 

simulation studies of full-scale WWTPs suffer from a lack of sufficiently long and detailed 

time series for flow rates, temperature and nutrient/pollutant concentrations representing 

realistic wastewater influent dynamics. For this reason, model-based influent generators are 

an alternative that has recently gained considerable interest (Gernaey et al., 2011). 

 

METHODS 

Literature offers a wide range of tools generating influent characteristics by means of 

mathematical models. The paper will analyse in detail: 

 The shift in methods to generate influent dynamics from the simpler (black box) to the 

more complex (grey/white box) models including a more detailed description of the 
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phenomena taking place in the urban drainage system with more/less equations/model 

parameters (Fig 1). The type of approach will determine: 1) model parsimony (limiting the 

number of parameters); 2) model transparency (by using model parameters that have a 

physical meaning); and 3) model flexibility (easily extended to other applications) 

(Gernaey et al., 2011). 

 The data availability to create/re-create the different influents. Here, different relevant 

questions are to be answered: “Do I have measurements and can I therefore apply 

statistical analysis to obtain longer time series? “Are measurements entirely missing and do 

I need a model that can provide realistic patterns without measurements?” 

A more in depth analysis about methods will be complemented with the critical review carried 

out by Martin and Vanrolleghem (2013).  

BLACK BOX 

MODELS

GREY BOX 

MODELS
WHITE BOX 

MODELS

MODEL COMPLEXITYo

PREDICTION CAPABILITIES (DRAINING PHENOMENA)o- +

FLOW-RATE TEMPERATURE POLLUTANTS

CALIBRATION EFFORT

GENERATION OF 
SCENARIOS

INFLUENT 
FRACTIONATION

INCREASE DATA 
FREQUENCY

DESIGN OF SAMPLING 
CAMPAIGNS

UNCERTAINTY 
QUANTIFICATION

ENGINEERING 

APPLICATIONS

 
Figure 1. Methods, characteristics, modelled compounds and engineering applications of influent generators. 

 

COMPOUNDS AND TEMPORAL RESOLUTION 

Another point of discussion will focus on what kind of compounds (and their temporal 

resolution) can be described with the current models. For example: 

 Generation/frequency of (dry weather) flow rate, temperature, traditional components 

(COD, TSS, TN and TP) and emerging components (pharmaceuticals, illicit drugs); 

 Generation/frequency of wet weather flow, temperature and traditional/emerging 

components. 

Most of the models used to describe traditional compounds are based on intensive measuring 

campaigns carried out during the 90s (Butler et al., 1995). In addition to the description of 

traditional pollutants some of these models can also describe emerging compounds. For 

example, De Keyser et al. (2010) developed a database summarizing different emission 

patterns for 26 priority pollutants (daily/weekly/seasonal /annual). Lindblom et al. (2006) 

and Snip et al. (2013) upgraded the phenomenological influent model presented by Gernaey 

et al. (2011) including the behaviour of bisphenol A, pyrene and some pharmaceuticals 

(antibiotics, painkillers, mood stabilizers). Ort et al. (2005) developed a conceptual stochastic 

model to characterise short-term variations of benzotriazole concentrations (a chemical 

contained in dishwasher detergents), which can be easily adapted to any down-the-drain 

household chemical. Additional model complexity is necessary to describe the behaviour of 

all these elements in wet-weather conditions (Gernaey et al., 2011). Nevertheless some of the 

wet-weather generators are simplified and may not correctly represent the rainfall properties, 

the build-up/wash-off (pollution) and rainfall/run-off (water). Specifically, associated soil 

models currently do not include physico-chemical descriptions of moisture properties and 

some transport models are not capable to correctly describe the first-flush effect after a 

(heavy) storm event (Martin and Vanrolleghem, 2013). For these reasons the effect on flow 

rate, substances and temperature might be systematically under- or overestimated. 



 Flores-Alsina et al. 

336 

 

CALIBRATION AND VALIDATION 
Another important point that will be discussed is related to several aspects that should be 

considered during calibration/validation of such influent generation models: 

  In most black box models, parameter values are identified after processing long time 

series. However, these parameters are adjusted to fit the inputs and outputs and do not have 

any physical/biological/chemical meaning. On the other hand, grey and white box models 

are based on parameters that correspond to measurements or physical characteristics of the 

catchment. 

 The traditional calibration procedure uses a trial and error process of parameter 

adjustments. Often, the goodness-of-fit of the calibrated model is basically a visual 

judgement comparing simulated and observed data. This process is subjective and can be 

quite long and tedious unless the process engineer has a good knowledge about the model 

behaviour (Flores-Alsina et al., 2013). Automatic calibration has the advantage that it can 

(in some cases) accelerate the process and be objective as it is based on quantitative 

goodness-of-fit criteria. 

 Frequentist analysis has demonstrated to work quite well in identifiable systems (Omlin 

and Reichert, 1999). Nevertheless, when the models present: 1) some apparent 

identifiability problems (Omlin and Reichert, 1999); or, 2) some structural uncertainty in 

the model formulation (Neumann and Gujer, 2008), this approach is no longer valid and 

other approaches based on Bayesian statistics are recommended. However, the calibration 

effort increases substantially when using more elaborate methods (Lindblom et al., 2011; 

Rieckermann et al., 2011;Talebizadeh et al., 2013) (Fig 1). 
 

ENGINEERING APPLICATIONS 

The engineering applications of influent generators are various (Fig 1): 

1. Increase data frequency: Sub-hour frequency of influent data is required when the model is 

used to test control strategies and wet-weather operation. Characterization of the influent 

implies a large effort and high costs when analysing samples for a series of pollutants. Recent 

developments in measurement technology have made sensors more reliable and cheap. Still, 

several standard lab analyses, such as COD, cannot be performed reliably in on-line mode in 

the influent of a WWTP (Olsson et al., 2012). In these situations, influent generators can 

certainly increase the frequency of influent data and provide additional dynamics not revealed 

by measurements (Devisscher et al., 2006; Gernaey et al., 2011; Flores-Alsina et al., 2013).  
 

2. Design of sampling strategies: Grey / Black box influent generators can account for, 

amongst other factors, different types of dynamics, levels of occurrence and the effect of 

pumping strategies in the sewer when (mathematically) describing the occurrence of 

traditional/emerging pollutants. This feature can be extremely useful when designing 

sampling campaigns. Ort et al. (2010) demonstrated that errors of 50% or more are possible 

for 24-h composite samples when the compound is not sampled at a sufficiently high 

frequency.  
 

3. Fractionation: Influent fractionators can easily be plugged in to the time series created by 

influent generators. The main idea is to correlate the model state variables used in the ASM 

models (Henze et al., 2000) with their analytical measurements. For example, Grau et al. 

(2007) and Gernaey et al. (2011) proposed two alternatives based on different principles. The 

first approach is based on an optimizer that finds suitable fractionation parameters according 

to the available data. The second approach uses (fixed) parameter values in order to convert 

for example CODsol into non-biodegradable (SI) and biodegradable (SS) soluble substrates 

using the ASM1 (Henze et al., 2000). 
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4. Uncertainty/Sensitivity analysis of influent profiles: The use of probability distribution 

functions in some of the influent generator models combined with Monte Carlo simulations 

might help to quantify the range and/or uncertainty of simulated data (wastewater properties). 

These simulation outputs can be used to better design WWTPs using probabilistic concepts 

rather than safety factors (Rousseau et al., 2001; Belia et al., 2009; Flores-Alsina et al., 

2012; Talebizadeh et al., 2013) or to test the robustness of control strategies (Benedetti et 

al., 2006; Flores-Alsina et al., 2008; ). 
 

5. Generation of scenarios: Dynamics and complexity of factors influencing wastewater 

systems make reliable predictions very difficult, i.e. the characteristics of the catchment area 

can change substantially over the years. For this reason, it is necessary to improve the 

planning and design of wastewater treatment infrastructures through methodologies that 

systematically account for uncertain futures (Dominguez and Gujer, 2006). The use of the 

presented tools can be very beneficial to answer “what-if” questions (Gernaey et al., 2011; 

Flores-Alsina et al., 2013; Martin and Vanrolleghem, 2013).  

 

PURPOSE OF THE PAPER 

The main objective of this presentation/paper is to demonstrate the advantages of influent 

generators (reduce the cost of measuring campaigns, fill data gaps, create additional 

scenarios) with several illustrative case studies. The second purpose is to identify critical 

knowledge gaps related to model development, calibration procedures and increasing the 

number of (wastewater) engineering applications. Comments received at the conference will 

be included in subsequent influent generator model upgrades (the authors are actively 

working on model development), thus addressing modellers’ needs. This will finally achieve a 

more general acceptance and – equally important – common standards on model building and 

calibration of influent generators.  
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Abstract 

Model-based analysis and optimization of wastewater treatment plants usually consists of 

numerous simulations and large data sets generated. Finding specific information in these 

data sets is not always a trivial task especially when this information is hidden in temporary 

algebraic variables that are not easily accessible or not defined as such. An extremely 

simple yet effective colour-based evaluation method is proposed for system analysis, e.g. 

for bottleneck identification. The tool proved very useful in evaluating large amounts of 

data and in taking certain decisions. Including the tool in simulation platforms could 

facilitate ASM model analysis and provide transparency for both experienced and 

inexperienced modellers. 

 

Keywords 
Post-processing; bottleneck identification; data evaluation; ASM analysis 

 

INTRODUCTION 

Present-day wastewater treatment plant (WWTP) optimization is largely based on model-

based analysis. However this analysis usually results in the execution of a large number of 

simulations and the generation of large data sets. Trying to find explanations why one 

scenario (unexpectedly) performs better than the other or even trying to determine which 

scenario is the better one requires “number crunching”. Visual inspection of time series 

contains the risk of overlooking things, whereas summarizing time series into single numbers 

(average, minimum, maximum, etc.) results in significant loss of information. Simple colour-

based evaluation methods might be a third approach to facilitate the data evaluation. In 

addition, the description of process rates or kinetics has become increasingly complex and 

typically multiple switching functions are joined to yield the overall process rate. Although of 

profound importance, these switching functions are somewhat “hidden” and often not 

explicitly available as output variable, meaning that intermediate calculation results are not 

directly accessible for the modeller. Detailed analysis of these switching functions can 

provide useful insight. The goal of this paper is to demonstrate the proposed system analysis 

tool based on an illustrative example. 

 

MATERIALS AND METHODS 

A method is proposed for the analysis of kinetic expressions that consist of a product of 

switching functions. These switching functions, e.g. Monod functions (Monod, 1942), are 

used to describe the effect of a limiting factor on a particular biological process or to 

(de)activate a process when a factor is exceeding a threshold. Typically, several switching 

functions are joined together and finally result in having a process run in the range between its 

maximal rate and zero. However, when a rate drops, it is not always obvious from the 

simulation which switching function is actually the limiting factor due to their joined nature 

and the fact that they are not separately calculated as algebraic states or output variables. 

Hence, these switching functions contain valuable “hidden” information on the activity of the 

process. Using colour coding for all distinctive switching functions allows for a fast 

inspection of the impact of all switching functions on the overall process rate and to detect 

mailto:youri.amerlinck@ugent.be
mailto:katrijn.cierkens@ugent.be
mailto:ingmar.nopens@ugent.be
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which factor is limiting. The method was applied using the WWTP model of Eindhoven 

(Amerlinck et al., 2013) to evaluate the evolution of enhanced biological phosphorus removal 

(EBPR), nitrification and denitrification activity in scenarios with reduced phosphate 

concentration in the inlet (induced by the application of dissolved air flotation (DAF)). As an 

illustrative example, the process rate limitation of autotrophic growth is shown here. In the 

ASM2d model (Henze et al., 2000) the growth rate of autotrophs (Equation 1) contains 

switching functions for oxygen (SO), ammonium (SNH), phosphate (SPO) and alkalinity (SALK). 

 

   Equation 13 

 

RESULTS AND DISCUSSION 

Dynamic simulation of a scenario with reduced phosphate concentration in the inlet of the 

biological treatment (Figure ), resulting from the application of a DAF, showed an unexpected 

but significant increase in ammonium concentration while oxygen levels and the amount of 

nitrifiers seemed sufficiently high.  

 

 

Figure 1. The circular modified UCT configuration of the activated sludge tanks at the WWTP of Eindhoven 

and the mapping of tanks in series used in the model. 

At some points in time phosphate was rather low but it could not be deduced directly from the 

dynamic simulation results that this was causing the decrease in nitrification activity. In 

contrast, the proposed method gave a clear view on this aspect. Table  shows the individual 

effect of the distinct Monod switching functions (row 1-4) and the overall autotrophic growth 

rate as a fraction of the maximum growth rate (row 5, being the product of rows 1-4), for the 

different reaction zones, averaged over the entire simulation period. Colours evolve from 
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green, indicating a high value (no limitation) over orange to red, indicating a low value 

(severe limitation). 

From Table  it can be clearly seen that phosphate is not limiting in the anaerobic (AN01 

through AN04) and anoxic zones (DT01 and DT02). The limiting factor in these zones is 

obviously the lack of oxygen. However, in the aerobic zones (BT01 through BT06) a relation 

can be seen between the limitation in the autotrophic growth rate and the Monod switching 

function for phosphate. I.e. while the Monod switching functions for alkalinity, ammonium 

and oxygen are high (and thus not limiting), the Monod switching function for phosphate and 

as a consequence also the overall autotrophic growth rate is low. 

Table 1. Oxygen limitation (in the anaerobic and anoxic zones) and phosphate limitation (in the aerobic zones) 

of the overall autotrophic growth visualized through the impact of the different Monod terms for the different 

sections of the activated sludge tank, averaged over the entire simulation period, using a colour-based system 

analysis tool. 

 
 

Table 10 shows the dynamic behaviour of the same autotrophic growth rate (as a fraction of 

the maximum growth rate; similar as row 5 of Table  but dynamic instead of averaged). Table  

on the other hand shows only the Monod term for phosphate as nutrient for growth (similar as 

row 4 of Table  but dynamic). Also from Table 10 and Table  this relation, between the 

autotrophic growth rate and the Monod switching function for phosphate, can be deduced. I.e. 

when the Monod term for phosphate reaches higher percentages (green colour) the growth of 

autotrophs increases (yellow to green colours). The switching functions for oxygen (SO), 

ammonium (SNH) and alkalinity (SALK) remain high and do not show the same trend (results 

not shown), although they lower the activity of the nitrification process slightly. 

Table 10. Recovery over time of the growth rate of autotrophs for the different sections of the activated sludge 

tank shown using a colour-based evaluation method. 
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Table 3. Recovery of the phosphate limitation over time shown through the impact of the Monod term of 

phosphate for the different sections of the activated sludge tank using a colour-based evaluation method. 

 
 

CONCLUSION 

A simple yet effective colour-based system analysis tool for ASM was illustrated for 

supporting model analysis. The tool allowed expert modellers to make a fast system analysis 

given the large amount of simulation outputs. The tool also facilitated discussion with and 

reporting for the non-expert modellers and proved to be a valuable tool in the decision-

making process. 
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Abstract 

Research on nitrous oxide (N2O) formation in engineered wastewater systems has 

experienced an exponential development in the recent years due to the important 

environmental impact of this greenhouse gas. These efforts have crystalized in a large 

number of publications that aim to identify the importance of the main microbial processes 

responsible for its production and consumption. The conceptualization of these pathways in 

mathematical models has the potential to become a key tool to increase our understanding 

on the complex interrelationships within these ecosystems and develop strategies to 

minimize the carbon footprint of wastewater treatment plants. The present contribution 

aims to summarize the recent developments in this field and makes use of standard 

indentifiability measures to show how the choice of experimental protocols and model 

structures can potentially impact their calibration. 

 

Keywords 
Modelling; nitrous oxide; wastewater, calibration, uncertainty 

 

 

INTRODUCTION 

Process modelling can be a valuable tool to predict and minimize the environmental footprint 

of nitrogen removal processes in wastewater treatment plants. Consequently, several models 

have been proposed to date in order to describe the production and dynamics of nitrous oxide 

(N2O) both from aerobic ammonium oxidizing bacteria (AOB, e.g. Ni et al., 2011) and 

heterotrophic bacteria (HB, e.g. Hiatt and Grady  Jr., 2008). Recent studies have identified 

AOB as the main driver for N2O emissions during biological nitrogen removal operations 

(Wunderlin et al., 2013). 

 

While some of these models make use of parametric correlations obtained from the fitting of 

experimental data (Houweling et al., 2011), most of the documented modelling approaches 

are pseudo-mechanistic, meaning that the proposed biochemical processes producing or 

consuming N2O are mathematically outlined with traditional biokinetic formulations (Ni et 

al., 2011; Mampaey et al., 2013; Ni et al., 2013a). A recent study has attempted to examine 

the ability of different model structures to predict the N2O production mechanisms by AOB 

(Ni et al., 2013b). However, the methodology used was biased by an ambiguous selection of 

calibrated model parameters. Furthermore, the wide range of model structures used result in 

comparably low number of parameter values published in this field, which in turn does not 

allow for a consensus-based set. 

 

The present contribution makes an in-depth and robust assessment of the predictive 

capabilities of existing model structures by using standard metrics for parameter identifiability 

under well-defined experimental conditions. 
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MATERIALS AND METHODS 

Three models describing N2O production by AOB (Ni et al., 2011; Mampaey et al., 2013; Ni 

et al., 2013a) were implemented in Aquasim 2.1 (Reichert, 1994). The parameter sets used in 

each model were the ones suggested in each study. The following reactor was modelled in all 

three cases: it had a volume of 3L, it was considered completely mixed, and it contained a 

population of AOB which corresponded to about 10% of the active VSS fraction in the 

assayed sludge (2500 mg-VSS/L, values derived from Ekama and Wentzel, 2008, and 

Saunders et al., 2013). Four experimental scenarios were further considered for each model, 

all of them had a total duration of 12.5 hours: 

 

 Case A: A batch test where three NH4
+
 pulses of 6 mg N/L were added at times 0, 3.3, 

and 7.2 hours in the presence of a controlled dissolved oxygen (DO) concentration of 

2 mg/L. 

 Case B: A batch test where three NH4
+
 pulses of 6 mg N/L were added under 

uncontrolled DO conditions at the same times as previously indicated. 

 Case C: A chemostat test at an NH4
+
 load of 0.1 g N/day where the aeration is turned 

off 3.3 hours after the beginning of the experiment and turned back on 3.3 hours after 

the disturbance. 

 Case D: A chemostat test at an NH4
+
 load of 0.1 g N/day and constant aeration rate 

where the NH4
+
 load is increased 20 fold after 3.3 hours of operation and is brought to 

the initial value 3.3 hours after the disturbance. 

 

The metrics described by Brun et al (2001), i.e. the mean square sensitivity measure (δ
msqr

) 

and the collinearity index (γ), were adapted for the assessment of the structural identifiability 

of the considered model. Both identifiability parameters were coded as scripts in MATLAB 

(Sin and Vanrolleghem, 2007). The numerical data required to drive those functions was 

generated with a batch version of Aquasim run in parallel by using the implemented model 

files. 

 

RESULTS AND DISCUSSION 

The study of the local sensitivity functions for the considered models is summarized in Figure 

1 (only for Case B). Ideally, higher values for the mean sensitivity measurement (
msqr

) are 

preferred, as they reflect a higher impact of the model parameters on the model output and 

hence a higher probability of describing experimental data. This measurement should agree 

with a low collinearity index (below 5), which forms a measure of the higher identifiability of 

the feasible parameter subsets that can describe of N2O dynamics. Here, even though there is 

a higher percentage of identifiable parameter subsets for the model proposed by Mampaey et 

al. (i.e. % of all subsets with an identifiability index below 5), they have on average a lower 

sensitivity (reflected by an average mean squared sensitivity measure computed for all the 

considered model parameters), which may complicate model calibration.  



 Smets et al. 

345 

 

 
Figure 1. Average model sensitivities and percentage of identifiable parameter subsets wrt 

N2O dynamics in selected model structures.  

In contrast, there is a smaller fraction of identifiable parameter subsets in both models by Ni 

et al. However, their sensitivity is clearly larger, suggesting that a careful selection of 

parameter subsets (so that they are identifiable) can make the calibration of these models 

easier in comparison to the model suggested by Mampaey et al. This higher degree of 

sensitivity could derive from a higher degree of simplification in the processes involved in 

N2O production and consumption in both models by Ni et al. (4 processes are involved versus 

5 in Mampaey et al.). 

 

Using the model by Ni et al. (2011) as an example (Figure 2), it can be seen how the 

experimental conditions can impact the sensitivity of the parameters involved in N2O 

production. Those experimental protocols with higher associated oxygen dynamics (i.e., cases 

B and C) result in modelling scenarios that yield parameters with higher average sensitivity 

on the N2O concentration, which should ease the calibration of the considered model. Similar 

trends were obtained for the other two models studied. 

 
Figure 2. Average model sensitivities and percentage of identifiable parameter subsets wrt 

N2O dynamics in Ni et al. 2011 under the modelled experimental cases. Case A: Batch, cnt 

DO; Case B: Batch, uncontrolled DO; Case C: Chemostat, negative pulse in aeration; Case 

D: Chemostat, NH4
+
 load pulse. 

 

CONCLUSIONS 

It is possible to conclude that the selection of a model structure and an experimental protocol 

both have a direct impact on the calibration procedure of process models describing N2O 

production by AOB. Further work should facilitate the preparation of experimental protocols 

for calibration of existing process models for N2O dynamics. 
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ABSTRACT 

A mathematical model was applied to evaluate the influence of microbial kinetics of the 

process operation on the coexistence of nitrite dependent anaerobic methane oxidizing 

bacteria (N-DAMO) and anaerobic ammonium oxidizing bacteria (Anammox) in a single 

granule. Only if the influent contained the exact stoichiometric ratios at which both bacteria 

got enough nitrite, complete ammonium and methane removal could be realized. At high 

nitrogen biomass loadings N-DAMO lost the competition against Anammox bacteria. In 

addition, was the influence of granular size evaluated showing that a granules size of up to 

0.75mm enabled a simultaneous ammonium and methane removal efficiency above 85%.  
 

INTRODUCTION 

During anaerobic digestion methane is formed which can be used for energy generation through 

cogeneration. However, some of the methane remains in a dissolved state in the effluent of the anaerobic 

digestion (reject water) and may escape into the atmosphere during downstream processing. Given the 

large global warming potential of methane, being about 25 CO2 equivalents over a 100 year time 

horizon, even small quantities of methane emissions can largely affect the carbon footprint of a 

wastewater treatment plant (WWTP). Since reject water typically contains high ammonium 

concentrations and little or no organic carbon, Anammox-based system are often applied to remove 

nitrogen in an autotrophic way. To prevent greenhouse gas emissions, it would clearly be beneficial if 

dissolved methane could be biologically removed from the reject water at the same time as nitrogen. 

Recently a new bacterium (Candidatus Methylomirabilis oxyfera) was discovered capable of 

oxidizing methane with nitrite as electron and converting it to nitrogen gas and carbon dioxide 

(Ettwig et al, 2010). A combination of biological anaerobic methane oxidation (N-DAMO) and 

anaerobic ammonium oxidation (Anammox) could hence solve the methane emissions caused from 

reject water. Some early experiments have already been done, demonstrating the possible 

coexistence of both bacteria performing simultaneous removal of methane and ammonium (Leusken et 

al., 2011). Since both bacteria have a doubling time of more than ten days proper biomass retention is 

needed to handle large volumetric flows and loading capacities such as encountered in a WWTP (Ettwig 

et al., 2010; Strous et al., 1998). Granular sludge reactors are a type of biofilm reactors in which 

biomass is grown in the form of dense, fast-settling granules, resulting in compact systems which allows 

a high loading rate due to a large biofilm surface area in the reactor. Therefore, granules offer a good 

option for simultaneous growth of both N-DAMO and Anammox bacteria combine both slow growing 

bacteria in one granule. Due to the slow growth rates of the involved bacteria, experimental work aiming 

at process optimization can be very time consuming. Mathematical models have been shown earlier to 

be useful to optimize the performance of granular sludge reactors (Batstone et al., 2004; De Kreuk et al., 

2007). In this study, a mathematical model is applied to evaluate the influence of process operation on 

the coexistence of anaerobic methane and ammonium oxidizing bacteria in a single granule.  

 

GRANULAR SLUDGE REACTOR MODEL 

A one-dimensional biofilm model was set up to describe growth and decay of anaerobic methane 

oxidizers (N-DAMO) and anaerobic ammonium oxidizers (Anammox) in a granular sludge reactor. 

The model was implemented in the Aquasim software. The reactor volume was considered to be fixed 

at 400 m
3
. Spherical biomass particles (granules) are grown from an initial radius of 0.01 mm to a 
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predefined steady state granule radius such that the reactor eventually contains 100 m
3
 of particulate 

material, comprising both active biomass as well as inerts generated during endogenous respiration. 

The reactor behaviour has been simulated at a flow rate of 2500 m
3
d

-1
 at a total nitrogen concentration 

of 1000 g N.m
-3

 and 200 g COD.m
-3

of methane, respectively. These values are based on typical values 

as measured in reject water (Bandara et al., 2011). Furthermore, it was assumed that the total nitrogen 

concentration fed into the system consisted of 430 g N.m
-3

 of ammonium and 570 g N.m
-3

 of nitrite, 

corresponding to stoichiometric-optimal nitrite:methane and nitrite:ammonium ratios for conversion 

with methane and ammonium, by N-DAMO and Anammox, respectively. 

 

RESULTS AND DISCUSSION- Competition for nitrite and ammonium 

N-DAMO bacteria mainly grew in inner part of the granules, which can be explained by their slower 

growth rate, whereas Anammox mainly grew in the outer part of the granule. The inner part of the 

granules was consisting of inerts (Figure 1). In the model different NO2
-
/totalN ratios (total N 

1000mgN/m
3
) were tested at a fixed COD concentration (200 gCOD/m

3
) to study at which influent 

composition both bacteria could coexist. At lower ratios (ammonium in access) N-DAMO bacteria 

were out competed by Anammox bacteria. However, at ratios close to the stoichiometric equilibrium 

(NO2, NH4, CH4) needed to completely remove methane and ammonium, N-DAMO bacteria could 

retain in the system. At high ratios Anammox bacteria got restricted by ammonium leading to an 

accumulation of nitrite in the bulk (Figure 2). 

  

 
Figure 1. A) schematic view as well as B) modelling 

image of a distribution of  (♦) Anammox and (■) N-

DAMO bacteria as well as (●) inerts as a function of 

granular diameter.  

 

 
Figure 2. Reactor performance in terms of (●) 

ammonium, (x) methane, (▲) nitrate, (♦) nitrite, 

and (–) N2 at different nitrite over nitrogen ratios. 

 

Influence of volumetric biomass loading rate and granular size 

For granule radius in a range of 0.1-0.75 mm both types of bacteria coexisted in approximately equal 

amounts leading to a simultaneous methane and ammonium removal above 85%. At higher granule sizes 

inerts increase due to substrate depletion in the inner core of the granule hence restricting microbial growth. 

In addition, N-DAMO bacteria decrease at higher granules radius due the lower diffusion coefficient of 

methane compared to ammonium. Bigger granules favoured Anammox bacteria whereas smaller granules 

enabled the coexistence of both bacteria in one granule (Figure 3). The effect of changing the total biomass 

volume on the bulk liquid concentrations as well as on the biomass fractions of both bacteria was evaluated 

based on media containing the stoichiometric ratios needed for a complete ammonium and methane removal 

(Figure 3). When only little biomass was in the reactor (biomass volume lower than 50m
3
) Anammox 

dominated the system (Figure 4 phase I). At a biomass volume from 50m
3
 until 100 m

3
 both bacteria started 

to compete for substrate and space (no inerts). During this transition period (50m
3
 until 100 m

3
) the removal 

efficiencies, which could be explained by ammonium and nitrite affinity constants (data not shown). From 

100 m
3
 on N-DAMO bacteria dominated the granule and the oscillation in bulk liquid concentrations 

stopped. When N-DAMO dominated the system (>100m
3
) simultaneous ammonium and methane removal 

could be realized (Figure 4 phase II). The results showed that the volumetric biomass loading rate needs to be 

sufficiently low to allow simultaneous methane and ammonium removal.  
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Figure 3. Influence of granule diameter on (A) reactor performance in terms of methane (▲) ammonium 

(●) removal efficiency and nitrate production (♦) as well as (B) biomass concentrations of Anammox (Ж), 

N-DAMO (+), and interts 

  
Figure 4. (A) Reactor performance of (♦) biomass loading, (+) biomass activity, (x) nitrogen removal 

efficiency, and (-) methane removal efficiency as well as (B) biomass profiles of (▲) Anammox bacteria, 

(●) N-DAMO bacteria, and (■) inerts at different biomass volume fractions in the reactor. The total volume 

of the reactor was considered to be 400 m
3
. In phase I (A) no methane was removed and (B) no N-DAMO 

were present. In phase II (A) methane was removed (B) and N-DAMO grew in the system. (C) only in this 

period oscillations occurred. 

 

CONCLUSIONS 

 Simultaneous anaerobic methane and ammonium removal, through N-DAMO and Anammox 

bacteria respectively, was described for the first time through a mathematical model, which was 

subsequently applied to simulate these reactions in a granule sludge reactor.  

 Bigger granules favoured Anammox bacteria whereas smaller granules enabled the coexistence of 

both bacteria in one granule  

 The volumetric biomass loading rate needs to be sufficiently low to allow simultaneous methane 

and ammonium removal. At high loading rates, N-DAMO are outcompeted by Anammox bacteria.  

 The stability of simultaneous anaerobic methane and ammonium removal is severely affected by 

the ammonium and nitrite affinity constants of N-DAMO and Anammox bacteria. 
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Abstract 

A knowledge-based risk assessment modelling approach is proposed to provide a 

qualitative means of benchmarking WWTP design and control strategies in terms of risk of 

N2O production.  The approach makes use of ASM model output variables corresponding 

to conditions that have been specifically linked to the risk of WWTP N2O production in the 

literature, and applies a fuzzy logic rule-based system to qualitatively assign risk of N2O 

production, as opposed to predicitng actual emission.  To demonstrate the proof of concept, 

the qualitative N2O risk model was used to interpret mathematical simulation data and 

distinguish risk of N2O production resulting from two different aeration control strategies 

(DO set points of 2 mg·L
-1

 and 1.3 mg·L
-1

). The approach demonstrated its potential in 

assessing risk of N2O production on a plant-wide level, as well as the reactor level, which 

allowed diagnosing specific risks and identifying opportunities for mitigation.  Results also 

demonstrated how the N2O risk model tool can be helpful in selecting appropriate 

mechanistic N2O production models through its risk diagnosis.  The N2O risk assessment 

model can also serve as a practical decision support tool for qualitatively assessing multi-

criteria control strategies as seen in the N2O risk, effluent quality, and operational cost 

benchmarking results.  The tool is flexible and can be used not only with mathematical 

model output data, but also online, or SCADA data for examining risk of N2O production 

for current and historical plant operations. 

 

Keywords 
Activated Sludge Model (ASM), nitrous oxide, qualitative modelling, risk assesment 

modelling 

 

INTRODUCTION  

A considerable amount of focus has been placed on modelling full-scale wastewater treatment 

plant (WWTP) nitrous oxide (N2O) emissions in recent years given their high global warming 

potential.  As a result, several promising mechanistic models have been developed (Yu et al., 

2010; Ni et al., 2011; Houweling et al., 2011; Law et al., 2012; Ni et al., 2012; Guo and 

Vanrolleghem, 2013; Mampaey et al., 2013; Ni et al., 2013). However, there is not yet a 

rigorously validated and consensus-based model.  This is largely due to the complex and 

interactive nature of the processes leading to N2O emissions from activated sludge systems, 

including ammonia-oxidizing bacteria (AOB) cell metabolism and gene expressions (Yu et 

al., 2010, Chandran et al., 2011), AOB and nitrite-oxidizing bacteria (NOB) kinetic rates 

(Foley et al., 2010), mass transfer processes, and the dynamic operational and environmental 

conditions that impact the propensity of full-scale microbial populations for producing N2O 

during both nitrification and denitrification (Kampschreur et al., 2009; Foley et al., 2010, 
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Chandran et al., 2011).  As researchers continue to make strides in reaching a consensus on 

N2O dominant pathways, model validation, and implementing and calibrating multiple N2O 

pathway models, a knowledge-based risk assessment modelling approach is proposed to 

complement the progression of the mechanistic description of N2O production, and provide a 

qualitative means of benchmarking WWTP design and control strategies.  A similar 

knowledge-based risk assessment modelling approach (AS risk model) has been successfully 

developed and implemented by Comas et al. (2008) for diagnosing the risk of microbiology 

related solids separation problems, such as filamentous bulking, foaming, and rising sludge, 

resulting from various activated sludge control strategies. Parallels between modelling 

activated sludge solids separation problems and N2O production, such as the lack of validated 

mechanistic models and interest in more holistic benchmarking of control strategies, thus 

motivated the extension of this risk assessment modelling concept for heuristically diagnosing 

WWTP N2O production. 

 

METHODS 

The methodology for developing the N2O risk model is generally consistent with that of the 

AS risk model development (Comas et al., 2008).  The proposed integrated mathematical / 

knowledge-based risk assessment modelling approach makes use of ASM state variables 

corresponding to conditions that have been specifically linked to the risk of WWTP N2O 

production in the literature (Kampschreur et al., 2009; Foley et al., 2010; Ahn et al., 2010; 

GWRC, 2011), but not yet formalized in a modelling platform through which N2O risk can be 

assessed with other criteria in various WWTP simulation scenarios. Therefore, a knowledge 

base of the operational conditions/parameters associated with risk of N2O production via  

heterotrophic denitrification and  AOB nitrification/denitrification pathways was compiled 

and then classified in terms of low, medium, and high risk according to values found in the 

literature correlating to low, medium, and high N2O production in either full-scale or lab-scale 

studies.  This knowledge was then represented in a fuzzy logic, IF / THEN rule-based system 

implemented in both Matlab and Excel, through which a qualitative risk score can be 

dynamically assigned for each variable representing the operational risk condition.  The risk 

score is based on scale from 0 to 1, with 1 representing the highest risk.    

 

To demonstrate the proof of concept of N2O risk assessment modelling, the risk model was 

implemented for only three of the several risk parameters defined in the knowledge base: high 

nitrite (NO2
-
) for nitrification and denitrification reactors, and low dissolved oxygen (DO) and 

ammonia oxidation rate (AOR) via DO for nitrification reactors (Table 1). This portion of the 

N2O risk model was applied to the Benchmark Simulation Model No. 2 (BSM2), a five 

reactor (two anoxic and three aerobic) MLE configuration.  Two different control scenarios 

were compared: Scenario 1 - DO set point of Activated Sludge Unit (ASU) No. 4 (ASU4) is 2 

mg·L
-1

, and Scenario 2 – DO setpoint of ASU4 is 1.3 mg·L
-1

, with kLa set proportionally as 

1.5kLa, kLa, and 0.5kLa for the aerobic reactors ASU3, ASU4, and ASU5, respectively. The 

model implemented in Porro et al. (2011), which includes two-step nitrification and four-step 

denitrification, was used since the NO2
-
 state variable could be used for implementing the 

N2O risk model for the high NO2
-
 condition, whereas the original BSM2 platform 

implementing ASM1 only includes single-step nitrification and, hence, no NO2
-
 variable.  

Although the model used in Porro et al. (2011) also includes the implementation of 

mechanistic models for N2O production, the N2O variables are ignored since the purpose of 

the paper is demonstrating a qualitative approach to assessing control strategies for N2O 

production risk as opposed to a quantitative approach (i.e. mechanistically predicting N2O 

concentrations).  The ASM model output data was then input into the Excel version of the risk 
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model to plot dynamic N2O risk based upon the corresponding BSM2 model output state 

variables. Similarly to Corominas et al. (2012) and Guo et al. (2012), Operational Cost Index 

(OCI), which includes energy costs, and Effluent Quality Index (EQI) per Nopens et al. 

(2010) were also compared for the two scenarios along with overall N2O risk to demonstrate 

the N2O risk assessment model’s potential in multi-criteria decision support. 

 

RESULTS AND DISCUSSION 

Table 2 summarizes N2O risk model results in each of the reactors by average overall risk, 

from taking the maximum risk of the three individual risk parameters results for each time 

step, and by percent of time under high risk, with high risk being a risk score of greater than 

or equal to 0.8, as defined by Comas et al. (2008).  Also summarized in Table 2 is the average 

overall risk score for all of the reactors, as well as the percent of time under high risk 

accounting for all reactors, or the percent of the total simulation time in which at least one 

reactor was under high risk.   As anticipated, the two different DO control set points resulted 

in different conditions in each of the reactors, and hence, noticeable differences in average 

overall risk scores and time under high risk between the two scenarios.  Obviously the largest 

differences are seen in the aerobic reactors, since the only change between the scenarios was 

the DO set point.  These differences in risk results in the aerobic reactors are due to the DO 

concentration itself, as low DO implicates the potential for N2O production via AOB 

denitrification (Kampschreur et al., 2009; Tallec et al., 2008), and higher DO implicates N2O 

production via the hydroxylamine oxidation pathway (Law et al., 2012), as well as the NO2
-
 

concentrations, which implicate AOB denitrification (Kampschreur et al., 2009).  Inspecting 

the N2O production risk results in each of the reactors, ASU5 reactor stands out for Scenario 

2, with an average overall risk score of 0.95 and 96 percent of the time under high risk.  

 

To give a sense of the N2O risk model tool’s capabilities, Figure 1 is provided to illustrate 

further inspection of the risk results, comparing plots of both the individual and overall risk in 

ASU5 for both scenarios.  As the DO set point is lower in Scenario 2, and ASU5 has a kLa 

that is half that of ASU4 where the DO set point is controlled, it can be understood why the 

DO levels are significantly lower and hence the N2O production risk, due to low DO, 

significantly higher.  To add to the risk of ASU5, the lower DO concentrations also lead to 

higher NO2
-
 concentrations compared to Scenario 1 due to the difference in oxygen half-

saturation constants between AOB and NOB (Hanaki et al.,1990; Mota et al., 2005), and 

therefore, higher risk due to high NO2
-
 concentrations. As the ASU5 DO concentrations in 

both scenarios are less than the low risk threshold (<1.8 mg·L
-1

) for AOR risk, N2O 

production risk due to AOR (hydroxylamine oxidation pathway) is always zero in both 

scenarios for ASU5.  As the two remaining risk parameters with high risk values account for 

AOB denitrification, one could surmise that the particular conditions for ASU5 lend to N2O 

production via the AOB denitrification pathway.  This highlights the capability of the tool in 

helping to hypothesize pathways, and therefore, also to select mechanistic models of N2O 

production.  As the specific risks can be diagnosed, the N2O risk model tool also demonstrates 

its potential in identifying opportunities for mitigating N2O production risk.  In this case, it is 

clear that better control of the DO in ASU5, or better distribution of the air between ASU3 

and ASU5 could help to minimize the risk in ASU5, and hence the overall risk for Scenario 2 

since ASU5 was under high risk 96 percent of the simulation time.  The opportunity to better 

distribute air among reactors was also noted by Guo et al. (2012) for minimizing greenhouse 

gas mass transfer and emissions into the air as it is related to the kLa.  However, in this case, 

the N2O risk model assesses only the effect of DO on risk of production and not mass transfer 

and emissions.  It is also clear from these results that looking at only average overall risk 
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alone, may not fully diagnose the potential N2O production risk as the average overall risk 

score for each scenario only differed by 0.07.  Since different reactors can be under high risk 

at different times, it is helpful to also consider the amount of time in which at least one reactor 

is under high risk.     

 

Table 3 summarizes the N2O risk, EQI, and OCI results for both scenarios.  As anticipated 

the lower DO control resulted in some cost savings based upon the OCI; however, the EQI 

decreased slightly, and the average overall N2O risk score increased slightly.  However, the 

time under high risk for all five reactors increased significantly, by 1.5 times to almost 100 

percent of the simulation time.  Depending upon objectives, this information could be helpful 

in determining whether the five percent savings in the OCI is worth increasing the time under 

high N2O production risk to almost 100 percent of the time.  This information could also help 

in decision making by prompting further investigation into the conditions in ASU5.  For 

example, if better control or distribution of the air among ASU3 and ASU5 is feasible, as 

suggested previously, then risk could potentially be mitigated, while still realizing the same 

cost savings since essentially the same amount of air would be added, just distributed 

differently.             

 

CONCLUSIONS AND PERPESCTIVES 

The integrated mathematical / knowledge-based risk assessment modelling concept by Comas 

et al. (2008) has been adapted for assessing the risk of N2O production in WWTPs.  The 

qualitative N2O risk model approach was used to interpret mathematical simulation data and 

distinguish risk of N2O production resulting from two different aeration control strategies.  

The approach demonstrated potential for assessing risk of N2O production on a plant-wide 

level, as well as the reactor level, which allowed diagnosing specific risks and identifying 

opportunities for mitigation.  Results also demonstrated how the N2O risk model tool can 

complement the application of mechanistic models of N2O production through the implication 

of specific N2O production pathways in the risk diagnosis, which can then be used in 

hypothesizing underlying mechanisms and selecting appropriate mechanistic N2O production 

models.  The N2O risk assessment model can also serve as a practical decision support tool for 

qualitatively assessing multi-criteria control strategies as seen in the results.  As the Excel 

version of the risk assessment model was used in this study, the results not only demonstrate 

the potential application of the tool with mathematical model output data, but also with 

online, or SCADA data for operators interested in making use of the available knowledge and 

examining risk of N2O production for current and historical plant operations.  Work is 

ongoing confirming AOR values/risk and to test the entire knowledge base with full-scale 

data from various measurement campaigns.  
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Table 1. Portion of N2O production risk knoweldge base included in N2O risk assessment model  

Low Medium High

range <0.2 0.2 - 0.5 >0.5 

units

range <0.2 0.2 - 0.5 >0.5 

units

range > 1.5 0.4 - 1.5 < 0.4

units

range < 1.8 2.15 > 2.5

units

Kampschreur et al. 2010 Tallec et al., 2008
mg/L

Non-limiting DO, NH4, 

AOR
DO

AOB nitrification
Ahn et al., 2010, 

Chandran et al., 2011, 

Law et al., 2012

Law et al., 2012
O2 mg/L

Nitrification 

high NO2 NO2
AOB denitrification

Kampschreur et al. 

2009; Foley et al., 

2010; Ahn et al., 2010; 

GWRC, 2011

GWRC, 2011

mg/L

low DO DO AOB denitrification

References for 

Operational Risk 

Parameter 

Identification

References for 

Parameter Values

Denitrification high NO2 NO2

- Heterotrophic 

denitrification

- AOB denitrification

Kampschreur et al. 

2009; Foley et al., 

2010; Ahn et al., 2010; 

GWRC, 2011

GWRC, 2011

mg/L

Process/

Condition

Operational 

Parameter / Condition 
ASM Variable

Risk Classification
Mechanism

 
 

 

Table 2. Summary of overall N2O risk results 

Average 

Overall 

Risk 

% of Time 

Under High 

Risk 

Average 

Overall 

Risk 

% of Time 

Under High 

Risk 

Average 

Overall 

Risk 

% of Time 

Under High 

Risk 

Average 

Overall 

Risk 

% of Time 

Under High 

Risk 

Average 

Overall 

Risk 

% of Time 

Under High 

Risk 

Average 

Overall 

Risk 

% of Time 

Under High 

Risk 

Scenario 1_DO2 0.58 21 0.31 21 0.56 33 0.41 10 0.51 19 0.47 64

Scenario 2_DO1.3 0.44 13 0.11 2.4 0.74 50 0.46 30 0.95 96 0.54 98

OverallASU1 ASU2 ASU3 ASU4 ASU5

 
 

 

 

 

 

 
Table 3. Summary of Scenario Benchmarking Results  

  Scenario1 DO_2 Scenario2 DO_1.3 

Time Under High N2O Risk (%) 64 98 

Average Overall N2O Risk Score 0.47 0.54 

EQI (kg poll·d-1) 5612 5694 

OCI (-) 10537 10023 
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Figure 1 Dynamic N2O risk results for ASU5: Scenario 1_DO2 individual (A) and overall 

(B) risks, and Scenario 2_DO1.3 individual (C) and overall (D) risks.  High risk (≥ 0.8) is 

shaded in grey. 
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Abstract 

This paper offers a modeling approach for estimation of greenhouse gas emissions based on 

apparent differential AOB-NOB rates estimation and NirK kinetics as the main key 

parameters. This simplified greenhouse gas model was calibrated with data obtained from a 

full-scale experiment on the mainstream deammonification stage at the Strass WWTP 

showing increased N2O emissions at higher DO set-points. The latter was directly 

correlated with the increased AOB-NOB differential at higher DO set-points resulting in 

increased nitrite accumulation. 

 

 

INTRODUCTION 

The formation of N2O and NO is considered complex and difficult to predict due to the 

interplay of many possible factors, contributors and mechanisms within the contributors. As 

aerobic ammonium oxidizing bacteria (AOB) are believed to be the main contributors to the 

N2O and NO emissions in wastewater treatment plants (Chandran et al. 2011, Ni et al. 2013), 

the main focus in research, measuring campaigns and modeling studies goes to understanding 

the AOB mechanisms of NO/N2O production in detail. Two main routes are distinguished in 

those studies and referred to as the forward (through NH2OH) and reverse (through nitrite) 

route. The forward route is mainly linked to peaks in ammonium loading, while the reverse 

route is mainly dependent on nitrite accumulation as shown in pure or enriched AOB cultures 

(Chandran et al. 2011).  

 

Simulation of N2O emissions based on the different routes studied in these detailed AOB 

studies becomes quite complex especially as the relative contributions of both routes and its 

kinetics are not known and calibration could be difficult as measurements of all possible 

intermediates and gene expressions in real systems is scarce and difficult to accomplish. In 

this study we propose a simplified approach based on apparent rate differential estimation 

between AOB and nitrite oxidizers (NOB) considering nitrite as the main precursor for N2O 

emission. Model calibration was done based on greenhouse emission data obtained from the 

full-scale plant in Strass. In this system mainstream deammonification was applied and 

greenhouse gas emissions were deliberately increased by increasing the dissolved oxygen 

(DO) set-point and nitrogen loading (addition of filtrate) resulting in higher nitrite 

accumulation. 

 

EXPERIMENT 

Greenhouse gas emissions were measured on the B-stage of the Strass WWTP (Austria) in 

which a full-scale mainstream deammonification trial was taking place at that moment (Wett 

et al. 2012). During normal operations the B-stage was operated with a fully anoxic 

predenitrification stage followed by a nitrification stage (carrousel) at a DO set-point at the 

end of the aeration zones of 2 mg O2/L (reactors Naer3b and Naer4b in schematic Figure 4). 

The plant was fed with 6000 kg COD/d and 560 kg N/d (raw sewage). To test the relation 

between the operational conditions and the greenhouse gas emissions, the DO set-point in the 

mailto:hd2296@columbia.edu
mailto:imre@dynamita.com
mailto:wett@araconsult.at
mailto:Sudhir.Murthy@dcwater.com
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nitrification zone was changed for 2.5h to 1, 3 and 2 mg O2/L subsequently. At DO set-points 

of 3 and 2 mg O2/L the nitrogen load was increased with 10% by addition of filtrate to the 

mainstream reactor. The latter allowed for continuous aeration during the testing (NH4-based 

control). Oxygen profiles within the nitrification carrousel are given in Table 1.  

 
Table 1: Observed DO profiles in the nitrification carrousel at different DO set-points 

DO  

set-point 

Observed DO concentration (mg O2/L) 

 Nanox3a Nanox3b Naer3a Naer3b Nanox4a Nanox4b Naer4a Naer4b 

1 0.7 0.1 0.4 1 0.7 0.1 0.4 1 

2 0.8 0.15 0.7 2 0.8 0.15 0.7 2 

3 2 1.2 2 3 2 1.2 2 3 

 

RESULTS AND DISCUSSION 

 

Why is the apparent differential AOB-NOB rate the key parameter? 

Forward N2O route 

High ammonium peak loadings are described as triggers for N2O production and believed to 

happen through the forward pathway. However, ammonium peak loadings will also results in 

a dynamic nitrite accumulation due to a larger differential between AOB and NOB rates at 

high ammonium residual levels (Figure 1). Therefore, the reverse N2O pathway starting from 

this accumulated nitrite could play a more important role than described right now, especially 

as hydroxylamine accumulation remains very minor. No hydroxylamine could be detected in 

the B-stage of the WWTP in Strass (Austria) under different loading conditions and 

ammonium residual concentrations (data not shown). 

 

Reverse N2O route 

The reverse pathway is described to be mainly dependent on oxygen conditions (Chandran et 

al 2011). Measurements of NO and N2O emissions in the mainstream B-stage of the 

wastewater treatment plant in Strass (Austria) showed increased emissions when operating at 

higher dissolved oxygen (DO) concentrations, while you would expect the opposite based on 

Chandran et al. (2011) (Figure 2). This effect could be explained by a higher nitrite 

accumulation at higher DO compared to lower DO operation (0.5 compared to 4 mg NO2-N/L 

at 1 and 3 mg O2/L, respectively) as the apparent oxygen affinity coefficient for AOB was 

higher than for NOB and the differential in rates happens mainly at high DO (Figure 2). 

 
Figure 1: Simulation of Monod kinetics of AOB and NOB explains the nitrite accumulation at higher 

ammonium residual concentration (Downing et al 1964) which represents ammonium peak loading conditions 

(based on WEFTEC presentation of Dold P., 2012) 
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Figure 2: left: Increased levels of N2O emission going from low (1 mg O2/L) to high DO (3 mg O2/L) operation 

in the B-stage of the WWTP in Strass (Austria), right: Simulation of AOB and NOB kinetics measured at that 

time in the full-scale reactor showing increased differential rate between AOB and NOB at high DO. 

 

Nitrite/NirK kinetics as the basis of N2O/NO formation 

The key genes in the N2O pathway starting from nitrite (reverse route) are nitrite reductase 

(NirK) and nitric oxide reductase (Nor). Expression of NirK is dependent on nitrite levels, 

ammonium presence and oxygen levels (Yu et al. 2010). The nitrite concentration 

dependency, which is the results of the differential AOB-NOB rates, was determined in a 

batch experiment. The nitrite affinity coefficient for NO and N2O production was observed to 

be 1 mg NO2-N/L in the presence of ammonium and transient anoxia operation (Figure 3). 

Besides nitrite levels, implementation of an oxygen switch for NirK expression simulating the 

first order decay of nirK during aerobic conditions is often needed to explain the decrease in 

N2O/NO emission after the transition from anoxic to aerobic (Yu et al 2010, Wett 2012) and 

was therefore incorporated in the model. 

 
Figure 3: Left: Monod model fit for NO and N2O specific production rate of B-stage sludge from Blue Plains 

advanced WWTP (Washington DC) depending on the nitrite concentration in the system during transient anoxia 

(10/10 minutes) and in the presence of excess ammonium (10 mg N/L).  

 

GHG Model 

The Strass plant (Austria) was modelled using the same 4-step nitrification/denitrification and 

GHG model (Sumo-N in the Sumo simulator) as described in the GHG workshop at 

WWTMod 2012. The model contains the Hyatt and Grady (2008) heterotrophic 

denitrification model and the autotrophic denitrification concept (Mampaey et al. 2013), 

extended by the nirK enzyme indicator (Table 2). The latter concept was originally based on 

the observation that during transition periods from anoxic to aerobic conditions GHG-

emissions first tend to increase and then at continued aeration concentrations decrease. 

Enzyme measurements (Yu et al. 2010) indicated during periods of nitrite availability a 

corresponding accumulation specifically of NirK known to catalyse NO-formation and and a 
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more pronounced depletion of this enzym at increasing DO concentrations. The enzym-

activity growth- and decay-approach is considered as a method to describe the dynamics of 

NO-formation depending on preceding process conditions. The calibration consisted of 

setting up the plant configuration with the proper loading and DO values, and adjusting half 

saturation values in order to obtain the right N2O release proportions (Table 3).  

 
Table 2: Rate expressions used in the model to describe the kinetics for NO and N2O production by AOB 

Processes 

by AOB 

Rate expression 

NO2  NO µAOB*XAOB*Msat(SO2;kO2,AOB)*Msat(SNHx;kNHx,nut)*ηNO2,AOB*XENZ,AOB*Msat(SNO2;kNO2,AOB) 

NO  N2O µAOB*XAOB*Msat(SO2;kO2,AOB)*Msat(SNHx;kNHx,nut)*ηNO,AOB*Msat(SNO;kNO,AOB) 

Enzyme activation µENZ,AOB*XAOB*Msat(SNO2;kNO2,AOBENZ)*Max(0;(1-XENZ,AOB)/((1-XENZ,AOB) +kscaling)) * 

(kscaling+1) 

Enzyme decay bENZ,AOB*Msat(XENZ,AOB;kENZ,AOB)*Msat(SO2;kO2,AOBENZ) 

Msat(var; k)= var / (k + var); 
 

Table 3: Parameters used in the GHG model for the Strass case study.  

 
Figure 4: Sumo configuration of the Strass Mainstream Deammonification process 

 

Oxygen profiles were calibrated by adjusting the kLaO2 to 240, 280 and 350 d
-1

 for DO set-

points 1. 2 and 3 mg O2/L. Due to the fact that this experiment was done at full scale (less 

defined boundaries) and due to the complexity of NOB out-selection during mainstream 

Parameter Symbol Value Unit 

O2 half saturation coefficient for AOB kO2,AOB 0.4 mg O2/L 

O2 half saturation coefficient for NOB kO2,NOB 0.4 mg O2/L 

O2 inhibition coefficient OHO kO2,OHO 0.05 mg O2/L 

NO2 half saturation coefficient for AOB kNO2,AOB 0.2 mg NO2-N/L 

NO2 half saturation coefficient for NOB kNO2,NOB 0.2 mg NO2-N/L 

NO2 half saturation coefficient for OHO kNO2,OHO 1 mg NO2-N/L 

NO half saturation coefficient for AOB kNO,AOB 0.001 mg NO-N/L 

NO half saturation coefficient for OHO kNO,OHO 0.001 mg NO-N/L 

N2O half saturation coefficient for OHO kN2O,OHO 0.1 mg N2O-N/L 

NO2 nirK enzyme half saturation for AOB kNO2,AOBENZ 0.1 mg NO2-N/L 

O2 half saturation for enzyme decay in AOB kO2,AOBENZ 0.1 mg O2/L 

Maximum enzyme activation rate µENZ,AOB 1 d
-1

 

Correction factor for NO production by AOB ηNO2,AOB 1 - 

Correction factor for N2O production by AOB ηNO,AOB 1 - 

Maximum growth rates for AOB µAOB 0.9 d
-1

 

Maximum growth rates for NOB µNOB 0.7 d
-1

 

Maximum growth rates for OHO µOHO 6 d
-1

 



 De Clippeleir et al. 

362 

 

deammonification (Al-Omari et al. 2014) modeled nitrite accumulation values were slightly 

lower than the observed values. Nitrite concentrations of 0.3, 1.3 and 1.7 mg NO2-N/L were 

obtained by the model at 1, 2 and 3 mg O2/L, respectively, while an increase of 0.5 to 4 mg 

NO2-N/L was observed during the experiment. Although absolute nitrite levels were lower, 

the model showed the stepwise increase in N2O emission with increasing DO set-point and 

thus increasing AOB-NOB differential (Figure 5).  

 

It should be noted that the N2O emissions obtained in this experiment were very high (3, 9 

and 15% of N load at 1, 2 and 3 mg O2/L) and were enhanced on purpose during this 

experiment. It was not the attempt of this experiment to minimize emission but rather test 

potential conditions which would increase the emissions. Moreover, no adaptation of the 

system towards the transient condition applied in this experiment (oxygen and loading) was 

allowed which further maximized the potential effect. The emission observed in this 

experiment are therefore not expected during long term mainstream deammonification 

operation as optimal balances between NOB out-selection and anoxic nitrite removal by 

anammox or denitrification will decrease nitrite accumulation especially at the transition 

between anoxic to aerobic conditions. Moreover, adaptation can occur which will further 

decrease the emissions (Yu et al 2010). 

 
Figure 5: Modeled vs observed N2O emission at increasing DO set-points and subsequently higher 

nitrite accumulation 

 

CONCLUSION 

This study that with a simplified GHG model only focused on the reverse N2O pathways, 

increased N2O at higher DO concentrations and thus higher AOB-NOB differential could be 

predicted.  
. 
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