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a b s t r a c t

The generalised phase contrast (GPC) method provides versatile and efficient light shaping for a range of
applications. We have implemented a generalised phase contrast system that used two passes on a single
spatial light modulator (SLM). Both the pupil phase distribution and the phase contrast filter were
generated by the SLM. This provided extra flexibility and control over the parameters of the system
including the phase step magnitude, shape, radius and position of the filter. A feedback method for the
on-line optimisation of these properties was also developed. Using feedback from images of the gen-
erated light field, it was possible to dynamically adjust the phase filter parameters to provide optimum
contrast.
& 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Phase distributions can be converted into intensity distribu-
tions by means of a common path interferometer. This concept
was used in Zernike's phase contrast microscope [1], which can be
used to observe phase fluctuations introduced by transparent or
semi-transparent specimens. A phase contrast system usually
constitutes a 4f system where the zero order or DC component of
the Fourier transform of the phase distribution is phase-shifted by

/2π in order to generate a synthetic reference wave (SRW). Once
the beam is re-collimated, the SRW interferes with the spatially
varying phase fluctuations, and an interferogram can be observed
at the output plane. This is illustrated in Fig. 1, where x y( , )ϕ re-
presents a phase disturbance across the beam, and I x y( , )′ ′ re-
presents the observation plane.

While Zernike phase contrast is useful for visualising small
phase fluctuations, the case of generalised phase contrast (GPC)
allows for the conversion of larger phase fluctuations to intensity
distributions [2]. It is advantageous to use GPC for the generation of
smooth continuous intensity distributions [3]. Evenwhen the phase
modulation element is pixelated, such as when using a liquid crystal
spatial light modulator, the optical transfer function of the 4f system
will provide a blurring effect, which results in a smooth intensity
distribution. In addition to this, GPC provides efficient conversion of
the input beam to a desired intensity distribution; efficiencies of up

to 85% have been reported for binary GPC of a Gaussian beam [4],
while efficiencies of 74% have been reported for the generation of
greyscale intensity patterns [5]. With these properties GPC has uses
in applications such as targeted photo-activation of neurons [6,7],
optical trapping [8,9], and quantitative measurement of an un-
known phase distribution [10]. In addition to being used for in-
tensity shaping of monochromatic beams, GPC has also been ex-
tended to broadband beams [11].

Another common method used to generate custom intensity
distributions is holographic beam shaping. This technique uses
phase distributions in the entrance pupil of a lens to generate an
intensity pattern at the focus of the lens [12]. The appropriate
pupil phase pattern can be found using methods such as the
Gerchberg–Saxton algorithm [13]. While this is a powerful tech-
nique, speckle can become a problem in the focal region of the
lens. GPC can overcome this difficulty as it is based around a 4f
imaging system, where the output intensity distribution is con-
jugate to the phase modulation applied at the entrance pupil [14].

A number of other techniques have been developed for in-
tensity shaping of both coherent and incoherent sources. These
include those that use diffractive optical elements to generate
intensity distributions to generate flat-top illumination [23,25,24]
or more complex illumination patterns [22]. Arrays of microlenses
can also be used for intensity shaping [19,20], as is described in
[26], where Köhler illumination was generated using two micro-
lens arrays. A technique using two aspheric lenses to convert a
Gaussian beam to a flat-top beam has also been described [21].

A spatial light modulator is often used to generate the initial
phase distribution in the entrance pupil of the system, while the
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phase contrast filter (PCF) can be constructed from a machined
plate of glass, where a small area in the centre is machined such
that it is thinner than the surrounding glass. Alternatively, the
optical path length through the central region of the filter can be
increased by the addition of a layer of material. These filters are
usually static, and their parameters are chosen in advance based
on theoretical calculations [2,9,6].

In this work, we used two passes on a single SLM. The first pass
was used to control the pupil phase distribution, while the second
generated the phase contrast filter. This provided further flexibility
and stability to the system; in order to change any filter para-
meters no mechanical changes to the system were required, only
adjustments of the phase pattern on the SLM. This setup also al-
lowed control of the alignment of the GPC system by the optimi-
sation of a contrast metric calculated from the output intensity
distribution. This metric provided a measure of the quality of the
operation of GPC setup and the suitability of the PCF parameters.

2. Background

Experimental implementation of GPC is based on a spatial fil-
tering system [15], similar to that shown in Fig. 1, where the input
phase distribution is controlled by a phase modulation device such
as a spatial light modulator (SLM). Such device generates the input
field, a x y( , ), which, for a circular aperture, is represented as follows:

⎜ ⎟⎛
⎝

⎞
⎠a x y

r
r

i x y( , ) circ exp( ( , )),
(1)

ϕ=
Δ

where (x,y) is the coordinate system defining positions across the

beam at the entrance pupil of the system, r x y2 2= + , rΔ is the
radius of the pupil, and ϕ is the phase distribution across the
beam. In the case of Zernike phase contrast, the phase distribution
is approximated using the first terms of a Taylor expansion, and is
valid for small phase disturbances. In the case of GPC, higher order
terms in the expansion are taken into consideration, which means
that GPC can be used to visualise larger magnitudes of phase than
Zernike phase contrast [15].

After the phase distribution has been Fourier transformed by a
lens, a phase contrast filter can be introduced, which phase shifts
some of the zero-order diffracted light. This filter can be described
using the following equation:

⎡⎣ ⎤⎦( )H f f A BA i f f( , ) 1 ( exp( ) 1)circ / , (2)x y r r
1 θ= + − Δ−

where fx and fy are the spatial frequency coordinates in the Fourier

domain and fr is the spatial frequency radius ( f f f( )r x y
2 2= + ). B is

the transmittance within the diameter of the phase contrast filter,
while A is the transmittance for off-axis light. θ is the magnitude of
the phase step of the PCF and frΔ is the spatial frequency radius of

the filter. The central region of the PCF phase shifts a portion of the
zero order of the Fourier transform with respect to the higher
spatial frequency components that are diffracted off-axis.

Once the beam is re-collimated by a second lens, the phase
shifted portion acts as a synthetic reference wave (SRW) that can
interfere with the re-collimated higher order diffracted light. In
this way the system acts as a common path interferometer which
is similar to the Zernike phase contrast system. The output of the
GPC system consists of the interference between the SRW and the
higher spatial frequency components of the incident beam and is
represented by the following expression [3]:
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where I is the intensity of the distribution at the output plane,

x y( , )′ ′ are the spatial coordinates (r x y( )2 2′ = ′ + ′ ), ᾱ is the
average phase across the input phase distribution, and rΔ is the
radius of the aperture stop of the system. g r( )′ represents the
synthetic reference wave; for a circular aperture and circular phase
contrast filter it is defined as [3]

g r r J rf J r f df( ) 2 (2 ) (2 ) , (4)
f

r r r0 1 0

r∫π π π′ = Δ Δ ′
Δ

where frΔ is the spatial frequency radius of the phase contrast
filter and all other quantities are as previously defined.

Eq. (3) amounts to a coherent sum between its first and second
terms within the modulus brackets. A number of quantities govern
the expected contrast in the intensity distribution, such as the
phase step of the filter, θ, the spatial frequency radius of the filter,

frΔ , the average phase across the initial phase distribution, ᾱ, and
the transmission coefficients of the filter, A and B.

In previous work, the filter has been machined from a piece of
glass and was fixed after manufacture. As a result of this, the op-
eration of the GPC system was constrained. The experimental
system, which will be described in the next section, could control
all aspects of the filter, and was therefore a suitable test-bed for
experiments on the effects of varying its parameters. Control over
the transmission of the filter could be attained by applying a high
spatial frequency pattern to the SLM, such that reflected light
would be diffracted outside the aperture of the collecting lens.

3. Experimental system

The experimental system is depicted in Fig. 2. A diode laser
(Edmund Optics #85-230 4.5 mW CW, λ¼780 nm) was first spa-
tially filtered and expanded using lenses L1 and L2 and the spatial
filter (SF). An iris defined the size of the beam incident on the first
pass of the SLM and was set to approximately 4 mm in diameter.
This was imaged onto the SLM using lenses L3 and L4. The SLM
was manufactured by Boulder Nonlinear Systems (model no. P512-
785), and was capable of a full wave of modulation at 785 nm. It
consisted of a 512�512 array of pixels of size 15 μm. Turning
mirrors were used to direct the beam reflected off the SLM
through lens L5, which focused the beam onto an adjacent portion
of the SLM. The focal length of this lens was set at 500 mm in
order to keep the angles of incidence and reflection onto the SLM
less than 5°. The output intensity distribution was viewed on an
8-bit CMOS camera (Thorlabs DCC1545M). In this configuration,
both a pupil plane and a focal plane could be simultaneously
controlled using adjacent parts of the SLM.

LABView software was written to control all aspects of the
system controlled by the SLM, such as the input phase distribution

Fig. 1. Phase contrast system based on a 4f system. A phase distribution, x y( , )ϕ , is
Fourier transformed using a convex lens and a phase contrast filter (PCF) shifts the
zero-order diffracted spot with respect to the rest of the diffraction pattern. After
re-collimation this phase shifted spot forms a synthetic reference wave (SRW).
I x y( , )′ ′ represents the interference between the SRW and the higher spatial fre-
quency components.
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and the filter parameters; the position of the filter could also be
changed using this software. Three example output images from
the system are shown in Fig. 3. These were obtained using input
binary phase patterns. The intensity patterns produced were a
circle, an annulus and a pattern of lines of spatial duty cycle 25%.
These were binary patterns that were phase shifted by π with
respect to the background. The images in Fig. 3 showed that the
dual-pass SLM-based system was operating as a conventional GPC
system.

As the system provided flexibility in the control of both the
input phase distribution and the phase contrast filter, this per-
mitted the implementation of a feedback scheme to optimise the
parameters of the PCF. An image-based adaptive optics approach
was used, whereby a quality metric derived from the contrast of an
image of the output intensity was maximised. This approach has
been used extensively for the correction of aberrations in micro-
scopes and other optical systems [16].

4. Filter optimisation

Using the SLM to generate the phase contrast filter provided
flexibility and programmability in controlling the filter's para-
meters. Parameters such as the magnitude of the phase step,
diameter, shape and position of the filter could be controlled. This
provided an advantage in the adaptive alignment and optimisation
of the filter parameters for different experimental requirements.

We illustrate this capacity using a metric, which was chosen to
assess the quality of binary-intensity GPC output patterns ob-
tained from the system. First, a mask was generated from the
desired intensity pattern, dividing the pixels into those inside and
outside the mask, corresponding the bright and dark areas in the
desired intensity patterns. The metric, μcontrast, was defined as the
difference between the sum of the pixel values inside and outside
the mask, denoted by ηinside and ηinside respectively; the bright
areas were inside the mask, while the dark areas were outside

(5)contrast inside outside∑ ∑μ η η= −

4.1. Filter diameter and phase step optimisation

The first two filter parameters to be optimised were the mag-
nitude of the phase step and the radius of the filter. As each of the
filter parameters were independent of each other, they could be
optimised in turn. Two test phase distributions were used in the
entrance pupil of the system, and applied using the first pass of
the SLM. These were the circle and the set of lines shown in Fig. 3.

In optimising the radius and phase step of the filter, the system
was first coarsely aligned by adjusting the position and radius of
the filter with a phase step of π, which was an estimate of the
optimal phase step. A routine was written in LabVIEW to vary the
radius or phase step in turn, and then to record an image.
The contrast metric was calculated for each value of the radius or
phase step.

4.2. Filter diameter

Using the circular phase pattern, the optimal diameter for the
filter was found to be 9 pixels, which was equivalent to 135 μm as
the pixel size of the SLM was 15 μm. This metric curve, depicted in
Fig. 4(a) showed a clear peak indicating the optimal filter diameter
for this pattern. Plotting a similar curve for the second input phase
distribution gave a different value for the optimal filter diameter.
The optimal filter diameter for the line pattern was 10 pixels,
equivalent to 150 μm. The metric curve for this measurement is
shown in Fig. 4(b). Example images from this experiment are also
shown in Fig. 5. This figure shows the GPC image obtained using

Fig. 2. Schematic of the GPC system using two passes on a single SLM. The first
SLM pass introduced a phase distribution across the beamwhile the second applied
a phase shift to the centre of the Fourier transform of the input phase distribution.
Ls is a diode laser, L1–L6 are lenses, M1–M6 are plane mirrors, SF is a spatial filter,
HWP is a half wave plate, Pol is a polariser, SLM is a liquid crystal spatial light
modulator (P512-0785 manufactured by Boulder Nonlinear Systems), and a CMOS
camera was used as detector. The inset figure shows the design of the two-passes
on the SLM in more detail.

Fig. 3. Example output images from the GPC system. Intensity distributions of a circle, annular aperture and a set of lines with 25% duty cycle were generated. The weak
diagonal fringes visible across the images were due to the interference of a back reflection off a polariser in the optical system.
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the circle pattern for different diameters of phase contrast filter.
These qualitatively show a variation in the contrast of the output
when the diameter of the PCF is changed.

Additionally, the contrast observed in the line pattern did not
depend greatly on the filter diameter as long as the diameter was
greater than ten pixels. This is different to the trend observed
using the circle pattern, and can be explained if we consider the
line pattern and its corresponding Fourier transform. The Fourier
plane in this case will consist of the zero order in the region of the
geometric focus, as well as a line of discretely space points re-
presenting the regular spatial frequency content of the pattern.
The orientation of these points depends on the orientation of the
line pattern in the input phase distribution. Little light will be
present between these discrete points and, therefore, modifying
the filter diameter up to the diameter corresponding to the first-
order diffracted spots should have little effect on the measured
contrast. The dependence of the optimum PCF diameter upon the
desired output intensity illustrates the benefit of the adaptable
GPC configuration.

4.3. Phase step

The results for the optimisation of the phase step and the ra-
dius are shown in Fig. 6. The contrast metric was calculated for a
set of input values of θ, varying in steps of 0.05 over one full
wavelength. The SLM had previously been calibrated and line-
arised between crossed polarisers, such that the value of θ was

known from the voltage applied.
The two desired output patterns were again used to illustrate

the optimisation process, the circle and line patterns shown pre-
viously in Fig. 3. As shown in Fig. 6(a), the optimum phase step for
the circular intensity distribution was found to be 0.525 waves,
while for the line pattern, the optimal value of θ was 0.590 waves.
The difference between these two values of phase step can be
attributed to the ᾱ term in Eq. (3). This term is related to the
average value of the input phase distribution and directly affected
the contrast in the interference described in Eq. (3). As the circle
and line patterns have different average phases, it follows that
their respective optimal values of θ would also be different. This
has previously been discussed in [17], where the magnitude of the
phase step could be matched to ᾱ using a graphical phase chart
and ternary phase distribution. ᾱ can also be modulated in the
pupil plane by including high spatial frequency patterns in the
input image [18]. This diffracts some of the light off-axis so that it
is not collected by the constituent lenses of the GPC system, and
does not contribute to the final image.

4.4. Position optimisation

The position of the filter was optimised by scanning the filter
across a range of pixel positions and measuring the resulting
contrast metric. First, the filter was coarsely positioned by eye; its
position was then scanned over an 10�10 grid of SLM pixels
centred on this coarse position. An image was recorded at each

Fig. 4. The calculation of the contrast metric was used to optimise the diameter of the phase contrast filter, which was controlled using second pass on the SLM. Metric
curves were obtained for two intensity patterns, a circle (a), and a set of lines of duty cycle 25% (b).

Fig. 5. GPC images of a circle shown for different diameters of phase contrast filters, increasing from left to right. The PCF for the left image has no PCF present; there is little
difference in intensity between pixels inside and outside the circle. The PCF for the central image has a more optimal diameter of 8 SLM pixels (pixel size¼15 μm), while the
PCF for the right image is larger than optimal at 16 pixels.
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position and the contrast metric described in Eq. (5) was calcu-
lated. The resulting calculations of the metric are shown in Fig. 7.

The optimal position was found to be (68, 41) as shown in the
two-dimensional plot in Fig. 7(a). This was different to the initial
manual position, approximately one pixel away in the vertical
direction on the SLM. This corresponded to an difference in posi-
tioning of the filter of 15 μm, which is the size of one pixel on the
SLM.

Fig. 7(b) shows the effect of mis-positioning of the phase con-
trast filter on the intensity distribution. In this figure, it can be
seen that when the PCF was displaced from its optimal position, a
gradient in the intensity distribution was observed. The orienta-
tion of this gradient was related to the direction of displacement of
the filter. This property could also be used to develop a metric for
the optimisation of the GPC system for both initial alignment and
monitoring of the alignment of the system throughout an ex-
periment. This effect is related to Eq. (3), which expressed the

coherent sum of the SRW and the phase distribution. When the
filter is positioned non-optimally, a misalignment between the
SRW and the phase distribution occurs, which results in the ob-
served gradient.

5. Conclusion

In this paper we have presented a dynamic generalised phase
contrast system using two passes on a single SLM. The first pass
was used to control the phase distribution across the beam, while
the second pass coincided with the Fourier plane of this phase
distribution and provided flexible control over the phase contrast
filter. The controllable parameters of the filter included diameter,
phase step size, and position. Although not shown here, the con-
figuration also permitted modification of further PCF parameters
including shape and coefficient of transmission. The latter could be

Fig. 6. The calculation of the contrast metric was used to optimise the magnitude of the phase step, θ in Eq. (2), of the phase contrast filter, which was controlled using the
second pass on the SLM. Metric curves were obtained for two intensity patterns, a circle (a), and a set of lines of duty cycle 25% (b).

Fig. 7. The calculation of the contrast metric was used to optimise the position of the phase contrast filter, which was implemented via a second pass on the SLM. The metric
was measured over a 10�10 grid of positions on the SLM. This 2D plot (a) represents the contrast metric calculated for each of these positions, with the maximum at (41, 68)
indicating the optimal position of the PCF on the SLM. Example images (b) from the GPC system showing the effect of mis-alignments of the phase contrast filter. The central
image was recorded when the filter was at its optimal position. When the filter was moved away from this position, gradients related to the displacement of the filter were
visible in the recorded images.
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controlled by applying a phase pattern of high spatial frequency in
the filter plane.

Previous GPC systems had used fixed phase contrast filters,
which placed constraints on the inputs and outputs of the system.
The dynamic GPC system provided considerably more flexibility
than a corresponding fixed phase contrast filter, as the parameters
listed above could be controlled through software without physi-
cally adjusting any component of the system. With this, it was
possible to develop a routine enabling adaptive alignment and
optimisation of the phase contrast filter. An image contrast metric
was introduced that measured the efficacy of the GPC system for
any binary output image and provided a feedback criterion for the
optimisation of the system configuration.

The contrast metric could be used to optimise the position of
the phase contrast filter, thus removing any errors due to im-
precise manual positioning. Results also suggested that the dis-
placement of the filter from its optimal position had a predictable
influence on the intensity distribution from the system. A gradient
was observed in the images which depended on the distance and
direction of the displacement of the filter. We note that the results
presented in this paper were obtained using binary phase dis-
tributions. In the case of greyscale GPC, an adjustment would be
made to the metric used, where a weighting would be applied to
discrete areas of the GPC output. The weighting would depend on
the expected GPC output.

Optimisation of the diameter of the filter gave different results
depending on the input field. The metric curve for the circle had a
clear maximum, while for the lines, once a threshold filter dia-
meter had been reached there was little dependence on the size of
the filter. In optimising the phase step of the filter, different op-
timal values were again obtained for the circle and the lines dis-
tributions. Dynamic control over the optimisation of the PCF
provided the capacity to easily switch between these intensity
distributions. This could be achieved using software to change the
pattern applied to the SLM and is an advantage over GPC systems
that use a static filter.
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