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Divertor asymmetries with helium puffing are investigated in various divertor configurations on

Experimental Advanced Superconducting Tokamak (EAST). The outer divertor electron temperature

decreases significantly during the gas injection at the outer midplane. As soon as the gas is injected

into the edge plasma, the power deposition drops sharply at the lower outer target while increases

gradually at the lower inner target in LSN configuration; the power deposition increases quickly at

the upper outer target while remains unchanged at the upper inner target in upper single null

configuration; the power deposition increases slightly at the outer targets while shows no obvious

variation at the inner targets in double null configuration. The radiated power measured by the

extreme ultraviolet arrays increases significantly due to helium gas injection, especially in the outer

divertor. The edge parameters are measured by reciprocating probes at the outer midplane, showing

that the electron temperature and density increase but the parallel Mach number decreases

significantly due to the gas injection. Effects of poloidal E�B drifts and parallel SOL flows on the

divertor asymmetry observed in EAST are also discussed. VC 2014 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4863843]

I. INTRODUCTION

Divertor target power distribution is an important issue

for the next step tokamak fusion devices. Divertor asymme-

try in target heat flux has been discussed in several toka-

maks, such as JT-60U,1–3 JET,4–6 ASDEX-Upgrade,7,8

DIII-D,9,10 Alcator-C Mod,11 and NSTX.12 Usually, the

outer divertor receives large power in normal field (ion rB

drift direction towards the lower divertor) for lower single

null (LSN) configuration, while the divertor asymmetry is

balanced or even inboard enhanced in reversed field (ion

rB drift direction away from the lower divertor).3,11,13,14

Several mechanisms have been proposed to interpret the di-

vertor asymmetry, such as Shafranov shift, divertor geome-

try, divertor radiation, B�rB drift, diamagnetic drift,

E�B drifts, parallel scrape-off layer (SOL) flow, and

ballooning-like transport. The poloidal E�B drift in SOL

plays an important role in divertor asymmetry, enhancing

the outer divertor particle flux in normal field for LSN con-

figuration.15 A model based on modified Bohm boundary

condition indicates that the poloidal E�B drift directed

towards the target plate leads to a decrease in density and

increase in temperature.16 The gas puff-and-pump divertor

experiment results show that the poloidal E�B drift across

the private flux region (PFR) dominates the particle trans-

port between the inner and outer divertors in DIII-D,9,17

which is demonstrated by UEDGE code.18

Parallel SOL flow has a strong effect on divertor asym-

metry due to the fast parallel transport along magnetic field.1

The parallel SOL flow at various poloidal locations has been

measured in many tokamaks, such as JT-60U,19 JET,20

ASDEX-Upgrade,21,22 DIII-D,23 Alcator C-Mod,24 NSTX,25

Tore Supra,26 and TCV.27 The absolute value and direction

of parallel flow measured in low-field side (LFS) SOL are

in good agreement with the Pfirsch-Schl€uter (PS) flow.28

The parallel flow consists of two components: one is the

BT-dependent flow which refers to classical drifts; the other

one is the BT-independent flow, e.g., ballooning-like flow.29

Both the two components have significant effects on divertor

asymmetry.

Divertor asymmetry during helium puffing is investi-

gated in various divertor configurations on Experimental

Advanced Superconducting Tokamak (EAST). The paper is

organized as follows. Section II describes related diagnostics

and experimental setup. Section III gives the experiment

results about divertor asymmetry, parallel SOL flow and di-

vertor radiation. Section IV is a discussion. Conclusions are

presented in Sec. V.

II. EXPERIMENTAL SETUP

EAST is a superconducting tokamak with a modern di-

vertor configuration (R0 � 1.88 m, a � 0.45 m, BT< 3.5 T).30

EAST has a flexible poloidal field control system to accom-

modate LSN, double null (DN), and upper single null (USN)

divertor configurations. Graphite tiles were replaced with mo-

lybdenum tiles on the low heat load area of the plasma facinga)Email: lshch@ipp.ac.cn
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components (PFC) to reduce recycling and facilitate

high-performance operation in 2011, but the graphite tiles

remained on the divertor target plates. An in-vessel cryopump

was installed under the lower outer passive target blanket to

enhance the gas pump efficiency,31 as shown in Fig. 1. EAST

has achieved 410 s steady-state long pulse divertor operation

in the 2012 experimental campaign after wall conditioning by

lithium evaporation.

Divertor probes are configured as 74 triple probes which

consist of 222 Langmuir probes embedded in the divertor

target tiles to measure ion saturation current jsat, electron

temperature Te, and the electron density ne at the four diver-

tor targets (UI-upper inner, UO-upper outer, LI-lower inner,

LO-lower outer) with a spatial resolution of 15 mm and

10 mm at the inner and outer divertor target plates, respec-

tively, as shown in Fig. 1.32 The temporal resolution of the

divertor probes is 20 ls. The particle flux Ut and heat flux qt

at target are derived from Langmuir probes with the formulas

as follows:

Ct ¼ ntcst sin h ¼ nt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kTe=mi

p
sin h; (1)

qt ¼ ckTtCksin h; (2)

where h is the angle between the magnetic field line and the

target plate plane, and c � 7 is the sheath heat transmission

coefficient. The total target power deposition is given by

integrating the heat flux at the four target plates

P ¼
X4

i¼1

Pi ¼
ðsb

sa

2pRdivqt Rdiv; sð Þds; (3)

where s is the poloidal coordinate along the target plate, Rdiv

is the major radius of the divertor probe, Pi (i¼ 1, 2, 3, 4,

corresponding to UI, UO, LI, LO divertor target, respec-

tively) is the power load at each plate, and P is the total

power deposition at all the four targets.

Reciprocating probes are used to measure the edge float-

ing potential Vf, electron temperature Te, electron density ne,

and the parallel Mach number in the LFS SOL,33 with the

temporal resolution of 1 ls. The divertor radiated power is

measured by two absolute extreme ultraviolet (AXUV)

array, with one array viewing the lower divertor from the

plasma top and the other array viewing the whole plasma

from the LFS midplane.34,35 A new dual gas puff imaging

(GPI) system has been installed with up-down symmetry

views in EAST, measuring the edge turbulence structure and

velocity, with a temporal resolution of 400 kHz and spatial

resolution of 2 mm,36 as illustrated in Fig. 1. A total of

200 Pa l helium gas is injected into the plasma edge for each

GPI view for �250 ms. It should be noted that the gas puff

intensity of the upper GPI is much smaller than the lower

one, mainly due to the obstruction in the upper GPI gas tube.

III. EXPERIMENTAL RESULTS

A series of experiments have been carried out in EAST

to study the effects of helium gas puffing on divertor asym-

metry. The typical discharge conditions are illustrated in

Fig. 2, with plasma current Ip¼ 400 kA, toroidal field

BT¼�2 T in reversed field (anti-clockwise direction

viewing from the plasma top, i.e., ion rB drift direction

away from the lower divertor), line averaged electron density

�ne ¼ 2 � 2:3� 1019m�3 before gas puff and 2:5 � 2:9
� 1019m�3 after gas puff, the Ohmic heating power

POhmic¼ 0.33–0.38 MW, and no auxiliary heating power.

The dRsep of shot #41606, #41608, and #41610 defined as

the distance between the two X points mapped to LFS mid-

plane are 0.1, �3.2, and 3.2 cm, corresponding to DN, LSN,

and USN configurations, respectively. The reciprocating

probe at the LFS midplane makes two strokes to measure the

edge plasma parameters at 5.2 s and 7.1 s. The control signal

of GPI gas puff valve is shown in Fig. 2(g), with helium gas

puff from 6 to 6.3 s. As seen from Fig. 2, the gas puff leads

to an increase in plasma density D�ne ¼� 0:5� 1019m�3 and

an increase in plasma stored energy �10%, which indicates

that the amount of gas puff does not result in a strong cooling

effect. In these experiments, the effects of helium puffing on

divertor asymmetry can be investigated at various divertor

configurations with otherwise identical conditions.

In a steady-state discharge, divertor power plus the radi-

ated power should be close to the total input power. The

power balance is analyzed in these L-mode Ohmic discharges,

as shown in Fig. 3. The total radiated power of the whole

plasma Prad is measured by the resistive bolometer,37 and the

power loading on the divertor targets Pdiv is measured by the

infra-red (IR) camera.38 The portion of radiated power in the

total input power is 30%–40%, and the divertor target power

is about 40%–60% of the input power. For the three shots

#41606 (DN), #41608 (LSN), and #41610 (USN), the total

radiated power increases �10% due to the helium gas injec-

tion. The divertor power decreases after the gas injection in

both the DN and LSN configurations, while increases in USN

configuration. The sum of Prad and Pdiv is a little smaller than

the input power POH, indicating that a small part of the input

power probably deposit on the first wall which is not moni-

tored by the IR camera. The experimental results show a good

power balance in our experiments.

FIG. 1. Diagnostic setup in EAST, including divertor probes at four target

plates, reciprocating probes at the LFS midplane, two GPI views on LFS and

the in-vessel cryopump under the LO passive target blanket.
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As predicted by the two-point model, the static pressure

at the divertor target would be approximately half of the

upstream pressure, i.e., 2netTet¼ neuTeu, derived from the

parallel power balance in the SOL region.39 The upstream

and target pressure showed in Fig. 4 is in perfect agreement

with the two-point model, indicating that the measurements

at the outer midplane and divertor target are consistent with

each other.

FIG. 2. The discharge conditions of

shot #41606 (black pecked line),

#41608 (blue dashed line), and #41610

(red solid line). (a) plasma current; (b)

line averaged density; (c) the Ohmic

heating power; (d) plasma stored

energy; (e) dRsep; (f) the in-out power

asymmetry ratio measured by divertor

Langmuir probes; (g) the valve control

signal of GPI.

FIG. 3. The evolution of the total radiated power measured by resistive bo-

lometer Prad, the divertor target power measured by IR camera Pdiv, (Prad þ
Pdiv), and the Ohmic heating power POhmic.

FIG. 4. The relationship between upstream and target pressures in the post-

GPI phase of shot #41610 (USN), #41606 (DN), and #41608 (LSN). The red

dashed line (circle) is the target electron pressure multiplied by a factor of 2,

and the blue solid line is the upstream electron pressure.
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A. Divertor asymmetry

The power deposition at each divertor target plate and all

the four targets are given by Eq. (3). The evolution of power

at the four divertor targets measured by divertor Langmuir

probes in USN, DN, and LSN configurations is illustrated in

Fig. 5. The heat flux measured by divertor Langmuir probes is

consistent with that measured by IR camera.40 The heat flux

from divertor Langmuir probes during Ohmic discharge is

2–3 times larger than that from IR camera, mostly due to that

the sheath transmission factor c is not a constant41 and the

uncertainty of the probe and IR camera. However, the target

power deposition from IR camera shows the same characteris-

tics as that from divertor probes, as illustrated from Fig. 5.

FIG. 5. The total power deposition at

target plates measured by divertor

Langmuir probes in USN, DN, and

LSN divertor configurations.

FIG. 6. Profiles of Langmuir probe at

LI and LO target plates in LSN config-

uration (#41608). The distance from

the separatrix is mapped to the LFS

midplane. The parameters are the ion

saturation current js, Te, ne, and heat

flux qt. The green star is the averaged

data in the pre-GPI phase, correspond-

ing to 5.6–6 s; the red diamond is the

averaged data in the post-GPI phase,

corresponding to 6.8–7.3 s.
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Since the temporal resolution of divertor Langmuir probe is

much higher than that of IR camera, and divertor probe can

provide more plasma parameters (js, Te, ne) than IR camera, it

is better to select the divertor probe to analyze divertor asym-

metry. It should be noted that the sudden drops of target

power deposition at 5.2 s and 7.1 s are caused by the strokes of

reciprocating probes. For LSN topology, the power of LO tar-

get is much larger than that of the LI target before gas puff,

exhibiting a strong in-out asymmetry. After the gas puff at 6 s,

the power of the LO target decreases significantly in a short

time of �0.1 s, while the power of the LI target increases

gradually in a relatively long time of �0.8 s. Obviously, the

outer divertor is cooled by the gas puff. For USN topology, an

inboard enhanced divertor power asymmetry appears before

gas puff. After the gas puff, the power of the UO target

increases rapidly during a short time of �0.2 s, while the

power of the UI target is kept at an almost constant level. For

DN topology, the UO target has the largest deposition power,

the UI and LO targets are the next and the LI target is the last.

The power of both the UO and LO targets increases a little,

while the power of the UI target decreases a little.

The divertor in-out asymmetry in target power deposition

is defined as follows: Pt; in=Pt; out ¼ PLI=PLO for LSN, Pt; in=
Pt; out ¼ PUI=PUO for USN, and Pt; in=Pt; out ¼ PUI þ PLIð Þ
= PUO þ PLOð Þ for DN. The divertor asymmetry evolutions for

various divertor topologies are shown in Fig. 2(f). The out-

board enhanced divertor power asymmetry changes to a weak

inboard enhanced asymmetry in LSN, while the inboard

enhanced divertor power asymmetry changes to a weak out-

board enhanced asymmetry in USN. For DN configuration,

the outboard enhanced divertor power asymmetry increases a

bit due to the gas injection. Strong effects of helium gas injec-

tion on divertor asymmetry are observed in these experiments.

Detailed divertor plasma profiles of the two phases in

the LSN configuration are shown in Fig. 6, i.e., prior to the

gas puff (pre-GPI) and right after the gas puff (post-GPI).

The error bars of ion saturation current js were caused mainly

by the effective collecting area of the probe tips, with a sys-

tematic error of about 610%. The scatter of the data which

is probably induced from fluctuations can cause a stochastic

error additionally. All the target data are averaged during

0.4–0.8 s time in order to reduce the error. The errors of

electron temperature Te measured by divertor triple probes

are estimated to be roughly 650%, based on the comparison

with divertor single probe measurements in previous EAST

experiment.40 According to the error transfer formula,

the error of electron density ne is about 635%. The target

power qt consists of the kinetic power qk and the potential

power qP
39

qt ¼ qK þ qP ¼ cTt þ epotð ÞntcSt ¼ cTt þ epotð Þjs=e; (4)

where c is sheath transmission coefficient, epot is the poten-

tial energy per incident ion, including the ionization potential

of a hydrogenic ion (13.6 eV) and half of the binding

energy of a hydrogenic molecule (approximately 2.2 eV),

thus epot � 16 eV. If epot � cTe, dqt/qt � dTe/Te þ djs/js, i.e.,

�660%. In the region where cTe is comparable to epot, the

error of qt is determined mainly by the error of js measure-

ment, i.e., �610%. As shown in Fig. 6, the shapes of qt pro-

files are the same as js, demonstrating the error of qt is

determined by js. Since all the data here measured by diver-

tor Langmuir probes are time-averaged value, the relation-

ship of electron pressure between divertor target and

upstream is consistent with the two-point model, demonstrat-

ing that the errors of parameters measured by divertor probes

are acceptable. In the pre-GPI phase, the LO target has larger

js, Te and peak heat flux qt near the strike point than the LI

target, with balanced density ne for the two targets. In the

post-GPI phase, though the js and ne at the LO target increase

FIG. 7. Profiles of Langmuir probe at

UI and UO target plates in USN con-

figuration (#41610). The green star is

the averaged data in the pre-GPI phase,

corresponding to 5.6–6 s; the red dia-

mond is the averaged data in the post-

GPI phase, corresponding to 6.2–7 s.
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evidently, the Te reduces significantly leading to a much

lower heat flux qt compared to the pre-GPI phase. In contrast

to the LO target, the parameters of the LI target increase sig-

nificantly, especially the peak value of js, ne, and qt. It is

clear that the sharp drops of the heat flux at the LO target are

due to the large decrease of Te.

Divertor profiles in the USN configuration are shown

in Fig. 7. In the pre-GPI phase, the UI target has a larger

peak js, ne, and qt than the UO target. In the post-GPI phase,

the Te of UO target decreases a little, but the ne increases

dramatically, which leads to a large increase of peak heat

flux. The effect of gas injection on the UI target is very

weak, which is consistent with the total power deposition at

the UI target. It should be noted that the cooling effect at

the UO target in USN due to the gas puff is much weaker

than the LO target in LSN, therefore the divertor asymme-

try in target power deposition favors the outer target in

USN configuration in the post-GPI phase, as illustrated in

Fig. 2(f).

Divertor profiles in the DN configuration are shown

in Figs. 8 and 9. In the pre-GPI phase, the peak heat

fluxes at the UI and UO targets are almost equal and

larger than that of the LO target, and the peak heat flux of

LI target is the lowest one. In the post-GPI phase, the

peak heat flux of LI target is the smallest one, and the

other three targets have equal peak heat fluxes. The he-

lium gas injection leads to an evident decrease of Te at

the UO and LO plates, and a large increase of ne at all the

divertor plates except for the LI target. The gas puff effect

on divertor heat flux is relatively weak in DN compared

to single null (SN) configuration. It should be noted that

the peak heat flux at the target in DN is smaller than that

of SN configuration.

B. Parallel SOL flow

The edge plasma parameters and parallel SOL flow ve-

locity in the outer midplane SOL are measured by reciprocat-

ing probes in both the pre-GPI (5.2 s) and the post-GPI

(7.1 s) phases, as illustrated in Fig. 10. In contrast to the pre-

GPI phase, the ne and Te of LSN topology in the post-GPI

phase increase significantly, leading to a relatively high elec-

tron pressure presumably due to the increase of Ohmic heat-

ing power and plasma stored energy. The ne increases

evidently while the Te increases slightly in DN and USN

configurations. The parallel Mach number is shown at the

bottom of Fig. 10, with the maximum value of jMkj near the

separatrix in the range of 0.3–0.5, corresponding to the ve-

locity of jVkj ¼ 30� 50 km=s. It should be noted that the

maximum of jMkj in LSN is much smaller than the DN and

USN configurations, i.e., the plasma rotation is smaller in

LSN topology. The measured parallel SOL flow in EAST is

consistent with the PS flow.42 Since these discharges are in

reversed field, the PS flow is from the plasma top to the bot-

tom that is in the same direction as the measured parallel

flow. The parallel Mach number decreases significantly in

the post-GPI phase, presumably due to the enhancement of

density caused by the gas injection, which is a key character-

istic of the PS flow.

Components of the poloidal particle flux produced by the

parallel SOL flow and the poloidal E�B drift are analyzed, as

illustrated in Fig. 11. The total poloidal particle flux in SOL is

calculated by integrating the parallel flow component (VkH)

and the poloidal E�B drift component (VE�B/) across the

SOL from separatrix (0) to the outermost radius (kSOL)43

Ch ¼
ðkSOL

0

2pR niVjjHþ niVE�B/
� �

dr; (5)

FIG. 8. Profiles of Langmuir probe at

LI and LO target plates in DN configu-

ration (#41606). The green star is the

averaged data in the pre-GPI phase,

corresponding to 5.6–6 s; the red dia-

mond is the averaged data in the post-

GPI phase, corresponding to 6.6–7 s.
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where H ¼ Bh=Bk � Bh=B0, / ¼ BT=Bk � 1. The radial

electric field Er is estimated by the calculated mean phase

velocity of turbulence, ignoring the turbulence phase veloc-

ity in the plasma frame.44–47 In reversed field, the parallel

flow component is directed downwards, and the poloidal

E�B drift component directed upwards in the main SOL.

The total poloidal particle flux directed downwards increases

steeply near the separatrix at outer midplane, dominated by

the parallel flow component. It is obvious that the total poloi-

dal particle flux in LSN configuration is smaller compared to

the other two configurations. The total poloidal particle flux

at outer midplane is calculated by integrating Ch radially

from separatrix to far SOL region, as shown in Fig. 12(a). In

DN and USN configurations, the total particle fluxes in

post-GPI phase are �2 times larger than that in pre-GPI

phase, indicating enhanced poloidal particle flux directed

FIG. 9. Profiles of Langmuir probe at

UI and UO target plates in DN config-

uration (#41606). The green star is the

averaged data in the pre-GPI phase,

corresponding to 5.6–6 s; the red dia-

mond is the averaged data in the post-

GPI phase, corresponding to 6.6–7 s.

FIG. 10. The edge plasma parameters at the LFS midplane in LSN, DN and USN configurations, including the floating potential Vf, radial electric field Er,

electron pressure pe, temperature Te, density ne, and the parallel Mach number M||. The positive M|| means that the direction of parallel flow in the poloidal

plane is directed upwards at the LFS midplane, while the negative value means downwards.
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downwards after gas puff. Although the parallel flow compo-

nent with downwards direction in post-GPI phase are a bit

smaller than that in pre-GPI phase, the significant drops of

the poloidal E�B drift component with upward direction

make the downward total particle fluxes increase, exhibiting

broad profiles in SOL region, as shown in Fig. 11. However,

in LSN configuration, the poloidal E�B drift component is

enhanced in main SOL in post-GPI phase compared to

pre-GPI phase, which leads to smaller integrated total

poloidal particle flux in post-GPI phase. In contrast to DN

and USN, the integrated total poloidal particle flux is much

smaller in post-GPI phases in LSN configuration. The PS

flow increases with radial electrical field but deceases with

�ne, defined as follows:48

Vps ¼ 2q cos h Er �
rrpi

en

� �
� B0

B2
; (6)

FIG. 11. Components of the poloidal particle flux produced by parallel flow (nVkH) and poloidal E�B drift flow (nVE�B) at the outer midplane in both the

pre-GPI (left panel) and post-GPI (right-panel) phases.

FIG. 12. (a) The total poloidal particle flux calculated by integrating radially from separatrix to far SOL region at outer midplane, directed downwards. (b) A

typical parallel Mach number measured by reciprocating probes at outer midplane and the PS flow calculated from Eq. (6).
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where q ¼ rB0=R0Bh is the safety factor, h is the poloidal

angle with h¼ 0 at the outer midplane, assuming pe ¼ pi.

The PS flow is maximum and directed downwards in the

outer midplane SOL in reversed field. A typical comparison

between the parallel SOL flow and the PS flow is illustrated

in Fig. 12(b), and they are consistent with each other well in

the main SOL region.

As illustrated in Fig. 13, the radial particle flux driven

by turbulence is also calculated from reciprocating probes

Ce ¼ h~ne
~Vri � h~Is

~Ehine= IsBtð Þ; (7)

where angular brackets denote an ensemble average and Eh

is derived from the difference of floating potential at two

poloidal locations. The radial particle flux is outwards in all

the three divertor configurations, and enhanced by gas puff.

It is smaller in LSN compared to the other two configura-

tions. Therefore, the LSN topology has the smallest poloidal

particle flux near the separatrix and turbulence-induced ra-

dial particle flux, while both of these two particle fluxes in

DN topology are the largest. Turbulence-induced radial par-

ticle transport is probably closely related to the parallel flow

and poloidal particle transport.

C. Divertor radiation

Divertor radiation is measured by two XUV arrays: one

array measures the radiated power in the lower divertor

viewing from the plasma top; the other array measured the

whole plasma, from the upper X-point to the lower X-point,

as illustrated in reference.34 The radiation distributions in

both the pre-GPI phase (5.5 s) and the post-GPI phase (7 s)

are shown in Fig. 14. In the pre-GPI phase, the radiated

power in the LO divertor is much higher than the LI divertor

in all the three divertor configurations, as shown in the left

panels. From the up-down XUV array in the right panels, the

main radiated power is located at the upper divertor for USN

and at the lower divertor for LSN, and the DN configuration

exhibits an upper divertor favored radiated power asymme-

try. In the post-GPI phase, radiated power in the LO divertor

in LSN configuration increases significantly compared to the

pre-GPI phase, but the radiated power in the LI divertor

remains unchanged. For the DN configuration, the radiation

intensity in the LI divertor decreases in the post-GPI phase,

while the radiation in the LO divertor remains unchanged.

For the USN configuration, the radiated power in the lower

divertor decreases evidently in the post-GPI phase. However,

the up-down XUV array indicates that a great increase of

radiated power is observed in all the three configurations in

the post-GPI phase. Since the radiation measured by the

XUV array is the chord-integrated intensity, not only the

divertor but also the plasma along the chord makes a contri-

bution to the measured radiation, which leads to the differen-

ces between the two XUV arrays. For the up-down XUV

array, a considerable contribution to radiation may come

from the LFS edge plasma, especially in the LFS gas injec-

tion experiment.

IV. DISCUSSION

Several mechanisms are probably related to the divertor

asymmetry observed in these experiments, such as the poloi-

dal E�B drift and the PS flow, as illustrated in Fig. 15.

Poloidal E�B drift in SOL is an important mechanism to

influence the divertor asymmetry.15,49 A model base on the

poloidal E�B drift in the SOL is reported to interpret the di-

vertor asymmetry recently.16 Since the poloidal plasma flow

associated with the poloidal E�B drift VE�B
x is of the same

order as the total particle flow to the plate csbx with the

poloidal sound speed velocity, at the plates the following

boundary condition is satisfied:

VE�B
x þ bxVk ¼ csbx; (8)

FIG. 13. The radial particle flux driven by turbulence in both Pre-GPI (left panel) and Post-GPI (right-panel) phases for LSN, DN, and USN divertor

configurations.

022509-9 Liu et al. Phys. Plasmas 21, 022509 (2014)

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

192.38.67.112 On: Thu, 25 Dec 2014 10:55:46



where bx is the unit vector in the poloidal direction. In the

present of drifts, the parallel velocity should adjust itself to

satisfy this modified Bohm boundary condition.

Consequently, for drifts directed away from the plate, the

parallel flow increases, making the divertor denser and

colder, while for the drifts towards the plate, the parallel

flow decreases, hence decreasing the divertor density and

increasing the divertor temperature. As predicted by the

simulations, these effects are important in low density

cases, but become very weak in high density cases.16 Since

the line averaged density is rather low, around 2� 1019m�3

(�0:5nGW
e ) for the experiments presented here, the divertor

plasma is in the low recycling, sheath-limited regime, as

indicated by the parallel pressure balance along the field

lines in the SOL (Fig. 4), hence, the modified Bohm bound-

ary condition may significantly influence the divertor asym-

metry. However, the poloidal E�B drift in SOL is

considered to enhance the divertor particle flux in the same

direction as drift,15 which is in contradiction with modified

Bohm boundary condition. Both these two effects of poloi-

dal E�B drift are presented here to interpret our experi-

ment results. The poloidal E�B drift across the PFR may

also play an important role, as demonstrated by the DIII-D

experiments.9,17 The UEDGE modeling results suggest

that a larger radial electrical field exists in moving into the

PRF because of the rapid drop in the electron temperature

there, so that the E�B drift across the PFR gives impor-

tant contribution to particle transport.18 As aforemen-

tioned, the parallel flow at outer midplane measured by

reciprocating probes also contributes to the particle trans-

port in SOL.

Fig. 16 shows the turbulence of upper and lower GPI

diagnostics for a typical DN configuration (#41606) in

Figs. 16(a) and 16(d), along with turbulence poloidal veloc-

ity Vh in Figs. 16(b) and 16(e), and the turbulence radial ve-

locity Vr in Figs. 16(c) and 16(f), during 6 to 6.25 s. The

velocity is calculated using time-delay cross-correlation

method,50 with 500 frames to obtain the velocity profile in

the poloidal-radial plane vs. time. For both the upper and

lower GPI, the poloidal velocity Vh is directed upwards in

LFS SOL, and the radial velocity Vr is outward and

enhanced in the SOL. Noted that the Vh is in the same

direction as VE � B, as shown in Fig. 15(b). Assuming the

turbulence motion measured by GPI diagnostic is domi-

nated by the local E�B flow,51 the poloidal VE�B velocity

can be estimated by the Vh measured by GPI diagnostics.

The radial profiles of Vh are illustrated in Fig. 17. The peak

poloidal Vh of upper GPI is located near the separatrix in

the SOL, �1.5 km/s for USN and DN, �0.5 km/s for LSN;

while the peak Vh of lower GPI is �1.6 km/s for DN, and

FIG. 14. The radiation profiles in both the pre-GPI phase (5.5 s) and the post-GPI phase (7 s). The data panels on the left show the radiation distribution in

lower divertor, viewing from plasma top, and the horizontal axis is r¼R-185 cm with R as the intersection of sight line and the horizontal line of Z¼ 0. Data

panels on the right show the radiation distribution of the whole plasma, from the upper X-point to the lower X-point, and the horizontal axis is the Z coordinate

of the intersection of sight line and the vertical line of R¼ 1.85 m. The sight line arrangements are shown in reference.34
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1.2 km/s for USN and LSN. Compared to the high input

power discharges in EAST,36 the Vh in our experiment is

relatively small, indicating small poloidal E�B flow in

SOL.

A. LSN configuration

In the pre-GPI phase, the outer target has larger Te, bal-

anced ne, and larger peak qt than the inner target in LSN con-

figuration, as expected, because of larger outboard SOL area.

FIG. 15. Directions of the poloidal

E�B drift and the PS flow in LSN,

DN, and USN divertor configurations

in reversed field.

FIG. 16. Image data and velocity analysis of the upper and lower GPI diagnostic systems in an Ohmic DN configuration discharge in EAST. (a) Turbulence of

upper GPI diagnostic, normalized by the time averaged emission intensity. Horizontal axis is along major radius, and the vertical axis is along vertical direc-

tion. The white dashed line is the separatrix. (b) Poloidal velocity Vh of upper GPI diagnostic, vertical axis is the distance from separatrix along the minor ra-

dius, i.e., r-rsep. Positive Vh means the velocity towards the direction of ion diamagnetic drift, i.e., upwards at the outer midplane in reversed field. (c) Radial

velocity Vr of upper GPI diagnostic. Positive Vr means the velocity outwards along the minor radius. (d) Turbulence of lower GPI diagnostic. (e) and (f) are

the poloidal velocity and radial velocity of lower GPI diagnostic, respectively, with the velocity direction is the same as (b) and (c).
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As predicted by the modified Bohm boundary condition, the

poloidal E�B drift in SOL directed away from the outer di-

vertor target increases the parallel flow towards target, lead-

ing to larger peak js, particle and heat fluxes, as illustrated in

Fig. 6. Noted that the Te near the separatrix at outer target is

much larger than that at inner target, which does not agree

with this model. The poloidal particle flux shown in Fig. 11

indicates the parallel flow is very important in the poloidal

particle transports in SOL, favoring the outer divertor. In

addition, the poloidal E�B drift across PRF region

increases the outer divertor particle flux. Since the observa-

tions of divertor asymmetry are influenced by a large number

of effects, the mechanisms listed here are considered as pri-

mary candidates contributing to the experimental results.

During the post-GPI phase, the Te of LO target decreases

significantly, which leads to a sharp decrease in peak heat

flux. In contrast, the Te increases rapidly at LI target, while

the ne increases gradually, leading to the slow increase of

peak heat flux. As illustrated in Fig. 2, the line averaged den-

sity, Ohmic heating power, and plasma stored energy

increase significantly due to the helium gas puffing, which

may also increase the LI target heat flux.

The helium injected into plasma on LFS may change the

local plasma parameters through different physical mecha-

nisms: cooling of electrons due to dissociation and ionization

of the injected helium molecules and impurity radiation, pro-

duction of electrons owing to ionization of injected impurity,

forces on electrons and background ions arising from colli-

sions with impurity particles.52 Therefore, a large portion of

the injected helium molecules change to ions due to ioniza-

tion, then the helium ions move along the magnetic field line

and reach the divertor region. Parallel transport of impurity

ions is determined by friction and thermal forces.53 Because

of the parallel flow at the outer midplane directed to the LO

divertor and the short connection length between the gas

injection locations and the LO divertor plate, much more he-

lium transported to the LO divertor compared to the LI

divertor can be anticipated. The total poloidal particle flux is

directed to the LO divertor at outer midplane measured by

reciprocating probes, as shown in Fig. 11. Furthermore, the

modified Bohm boundary condition enhances the helium

content at LO divertor. In addition, the in-vessel cryopump

near the LO divertor enhances the SOL flow directed to the

LO target, which may drag helium into the LO divertor due

to the frictional force exerted by the background plasma.

A high impurity content can result in large radiation at the

LO target,39 which is demonstrated by both the lower diver-

tor XUV array and the up-down XUV array, as illustrated in

Fig. 14. The LO divertor plasma is significantly cooled by

helium injection.

Ions in LO divertor and LFS SOL can be transported to

LI divertor by the poloidal E�B drift in SOL and the parti-

cle and heat fluxes at LI divertor increase slowly, though its

effect may be smaller than that in DN and USN configura-

tions, as illustrated in Fig. 11. As aforementioned, the poloi-

dal E�B drift across the PFR may influence the evolution

of divertor heat flux, decreasing the particle flux in the LI di-

vertor and increasing that at the LO divertor. The radiated

power measured by the lower divertor XUV array in the LI

divertor remains unchanged, indicating that the impurity

content is still at a low level.

B. USN configuration

In the pre-GPI phase, the UI divertor has larger peak ne

and qt than the UO divertor, in spite of larger outboard SOL

area. Since the poloidal E�B drift in SOL is from inner

divertor to outer divertor, the modified Bohm boundary

condition makes the inner target denser and colder, and the

consequent larger particle and heat fluxes, which is consist-

ent with the experimental results, as shown in Fig. 7.

Moreover, the poloidal E�B drift across the PFR directed

to the inner divertor may play a role in the divertor electron

density, particle flux, and heat flux asymmetries. The

FIG. 17. The poloidal velocity Vh measured by upper (the left panel) and lower (the right panel) GPI diagnostics, with the data averaged during the time from

6.094 to 6.097 s. The horizontal axis is the distance from separatrix along the minor radius.
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outboard enhanced target power asymmetries were

observed by many tokamaks in LSN configuration, but

there are very few reports about the divertor asymmetry in

USN configuration. Detailed divertor asymmetry observa-

tions in LSN, DN, and USN configurations on EAST pre-

sented here may shed more light on these intriguing results,

divertor asymmetry and particle transport in SOL.

In the post-GPI phase, the density, as well as the particle

fluxes, as manifested by the ion saturation currents, increases

evidently in UO divertor, the temperature Te increases near

the strike point but reduces elsewhere, leading to an outboard

enhanced peak heat flux asymmetry. As shown in Fig. 17,

the Vh of upper GPI in USN configuration is about 3 times as

larger as that in LSN configuration, enhancing the effect of

poloidal E�B drift in SOL which transports particle to UO

divertor. The major difference between LSN and USN con-

figurations is that the peak heat flux of the LO target

decreases, but that of the UO target increases due to the gas

injection. As mentioned in Sec. II, the intensity of gas puff

for the upper GPI is much smaller than the lower GPI, there-

fore much more helium gas moves to LO divertor and cools

there due to the short connection length between the lower

GPI and the LO divertor in LSN configuration. Another im-

portant mechanism is the parallel flow in LFS SOL directed

downwards which reduces the amount of helium gas into the

UO divertor, especially for the helium injected by the lower

GPI, which is demonstrated by Figs. 11 and 12: the maxi-

mum poloidal particle flux near separatrix in USN directed

downwards is �4 times larger than that in LSN configura-

tion, and the integrated total poloidal particle flux in USN is

�3 times larger than that in LSN configuration in post-GPI

phase. The modified Bohm boundary condition further

reduces the helium transported to UO target. Consequently,

the strong cooling effect is not observed in the UO divertor

for USN in contrast to LSN. The density increases at the UI

target mostly due to the increase of the plasma line averaged

density.

C. DN configuration

In the pre-GPI phase, the peak heat fluxes at the UI and

UO targets are equal, and larger than that of the LO, and espe-

cially the LI targets. For Ohmic discharges, up-down peak heat

flux asymmetry in LFS divertors favors the upper divertor in

pre-GPI phase, in the same direction as ion B�rB drift.

In the post-GPI phase, the temperature near separatrix at

UO target decreases significantly while the density increases,

leading to a little drop of peak heat flux, but the total deposi-

tion power at the outer targets exhibits a small increase, as

shown in Fig. 5. The cooling effect at LO target is weaker

than UO target. Consistent with the up-down asymmetry in

pre-GPI phase, the UO target receives large part of particles

and the plasma near the strike point is cooled. However, the

poloidal particle flux at outer midplane is enhanced by gas

puff and directed downwards, as shown in Fig. 11, but the

integrated total poloidal particle flux is still much smaller

than that in USN configuration. In addition, the poloidal ve-

locity measured by GPI diagnostics during helium gas puff

in DN configuration exhibits larger peak value and broad

radial distribution than that in LSN and USN configuration,

as shown in Fig. 17. Compared to outer midplane, the paral-

lel flow velocity at the locations of GPI diagnostics decreases

greatly because the PS flow will decrease towards zero near

the X-point.27 Since the poloidal E�B drift in SOL can be

estimated from Vh measured by GPI diagnostics, the poloidal

E�B drift probably causes the up-down asymmetry in LFS

in DN configuration.

As demonstrated by our experiment, the poloidal E�B

drift in SOL does not always enhance the divertor particle

flux in the direction of drift, while poloidal E�B drift

directed away from divertor can increase the divertor density

and particle flux by modified Bohm boundary condition.

V. CONCLUSION

A series of experiments have been carried out to inves-

tigate the divertor asymmetry during helium gas puffing in

various divertor configurations in EAST. The divertor tem-

perature, density, and heat flux are measured by Langmuir

probes, the radiated power is measured by a resistive bo-

lometer and two XUV arrays, and the upstream parameters

and parallel flow are measured by reciprocating probes at

the outer midplane. The helium gas injected into the LFS

plasma edge moves along the magnetic field line to the di-

vertor region through friction and thermal forces after ioni-

zation. Both the plasma stored energy and radiated power

increase �10% after helium injection, indicating the

amount of helium gas is not too much to cool the main

plasma. In LSN configuration, a large portion of helium

ions are transported to the LO divertor due to the parallel

SOL flow which is enhanced by the in-vessel cryopump and

the modified Bohm boundary condition. Therefore, signifi-

cantly cooling effect is observed at the LO target due to a

large increase of radiation, while the heat flux at LI target

increases gradually presumably due to the poloidal E�B

drift in SOL. In USN configuration, the density and heat

flux at UO target increase significantly and the cooling

effect is very weak, presumably due to that the smaller gas

injection intensity of upper GPI compared to lower GPI and

the reduction of parallel flow directed to UO target by

modified Bohm boundary condition. In DN configuration,

the LFS up-down asymmetry in both the pre-GPI and post-

GPI phases are consistent with the poloidal E�B drift

which is more important than that in LSN and USN config-

urations. Detailed divertor asymmetry observations in LSN,

DN, and USN configurations on EAST presented here may

shed more light on some intriguing issues, divertor asym-

metry, and particle transport in SOL.
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