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Preface  

 

This dissertation is the outcome of an industrial PhD project performed in collaboration between 

Novozymes A/S and the Department of Management Engineering at the Technical University of 

Denmark. The title of the project is: Environmental assessment of biomass based materials - With 

special focus on the climate effect of temporary carbon storage. The project was initiated in 

November 2010 and finalized in January 2014. 

 

The dissertation includes four articles, which all have been published in peer-reviewed journals and 

can be seen in Chapter 14. Further, the dissertation includes a report introducing, summarizing and 

concluding on the outcome of the articles, as well as additional chapters for introducing other areas 

relevant for drawing overall conclusions.  

 

Professor Michael Zwicky Hauschild, head of division, Division for Quantitative Sustainability 

Assessment (QSA), DTU Management Engineering has been the university supervisor, while 

Senior Manager Per Henning Nielsen, Novozymes A/S has been the company supervisor. Jesper 

Hedal Kløverpris, Sustainability Manager, Novozymes A/S has been co-supervisor from the 

company. 

 

The PhD project was defended in April 2014 at the Technical University of Denmark. Since then, 

only minor changes have been made to the dissertation. The only textual changes are, that the 

published versions of all articles are now included in the printed version of the dissertation, and the 

publication years and links to the published articles have been included in both the online and the 

printed version of the dissertation. 

 

 

 

 

 

 

_________________________________ 

 

Susanne Vedel Jørgensen  
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Summary 

 

Goal and scope 

The goal of this PhD project is to contribute to a more consistent methodology for life cycle 

assessment (LCA) of biomaterials and to address the environmental performance and perspectives 

of biomaterials. In particular, it is the goal to develop an approach for dealing with temporary 

carbon storage in biomaterials, in a way that quantifies the potential climate change benefit in 

relation to avoiding crossing near-term climatic targets. 

 

The geographical scope in this PhD project is global, as the focus is on methodology development 

and assessment of biomaterials at a global level. The temporal scope is defined by the impact 

category considered. The technological scope includes both current environmental performance of 

biomaterials and a discussion of future perspectives, including potentials for future change in their 

environmental impacts compared to fossil based materials. 

 

Background 

The society today is highly dependent on fossil oil and gas for producing fuels, chemicals and 

materials, however many of those can alternatively be produced from biomass. The potential of 

biomaterials to substitute fossil based materials receives increased attention, and their global 

production is increasing. As the demand for biomaterials increases, so does the need for knowledge 

about their environmental performance – both in absolute terms and relative to the petrochemical 

counterparts that they may replace. LCA is a commonly used tool for assessing environmental 

sustainability of products and systems, accounting for the environmental impacts during their entire 

lifecycle. However, there are still important gaps in the methodology for LCAs of biomaterials.  

 

One such gap is the handling of the potential climate change mitigation value of the temporary 

storage of carbon that takes place in biomaterials, on which there is currently no consensus. Other 

important environmental aspects related to biomaterials that are currently not generally included in 

LCAs are land use and land use change (LULUC) related impacts, such as changes in biogenic 

carbon stocks (especially including soil organic carbon), surface albedo and biodiversity, as well as 

potential indirect land use changes (ILUC) of biomaterial production.  

 

Potential value of (temporary) carbon storage 

Due to the existence of climate tipping points, expected to induce dangerous and potentially 

irreversible changes in the climate system if crossed, temporary carbon storage may have a potential 

for contributing to mitigating climate change. This potential is in terms of either avoiding the 

crossing of such expected tipping points (assuming the mitigation scenario RCP3PD, where the 

atmospheric CO2 concentration peaks within the coming decades) or substantially postpone the 

crossing (assuming the medium stabilization level scenario RCP6 with a continuous growth in the 

atmospheric CO2 concentration towards year 2100). 
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Besides the value of the temporary carbon storage in single products, resulting stock changes are 

expected if petrochemical materials are substituted with biomaterials. These stock changes are more 

long-term or even permanent, leading to a reduction of carbon fluxes from fossil resources, while 

potentially increasing fluxes from the atmosphere to the biosphere and via this to the 

anthroposphere. This leads to a decrease in atmospheric carbon stock and increase in biosphere 

carbon stock, as well as an increase of biogenic carbon storage in the anthroposphere. This is a 

trend that will be permanent as long as the biomaterial production is not decreased or phased out 

again. 

 

The CTP approach 

The general used metric in LCA for assessing climate change, the GWP, does not take into account 

the need for staying below climatic target levels, and it does not reflect the increased importance of 

short-lived GHGs in terms of near-term target levels.  

 

An approach has been developed in this PhD project for inclusion of the urgency of avoiding 

crossing dangerous climatic tipping points in the assessment of GHG emissions – the Climatic 

Tipping Potential (CTP). This approach assesses impacts of GHG emissions up until the potential 

crossing of a predefined climatic target level. This impact is expressed as a fraction of the 

atmospheric ‘capacity’ for absorbing the impact without exceeding the target level. The CTP should 

be seen as complementary to GWP, which should still account for long-term climate change 

impacts. 

 

The CTP method has been further developed to consider the aspect of temporary carbon storage, 

and illustrate the potential mitigation value of this in relation to avoid crossing dangerous climatic 

target levels. CTP characterization factors for several GHG development scenarios and a number of 

other important model parameters are given, making the approach operational for direct inclusion in 

LCA. 

 

Influence of selected non-standard impacts from land use and land use change (LULUC) 

Some of the impacts associated with LULUC for biomass production, which are often not addressed 

in LCAs have been addressed through a theoretic case study in this PhD project. These impacts are 

changes in surface albedo, biogenic carbon fluxes (including SOC) and biodiversity. All three 

impacts are here found to be potentially important for the environmental performance of the 

biobased production. Further, potential tradeoffs are found between these impacts. This supports the 

need for including the best possible assessment of these impacts in LCA, in order to get a realistic 

picture of the overall impacts from a biomass feedstock crop establishment, and thus downstream 

products. However, there is a challenge in terms of e.g. the preliminary state of methods, and the 

requirements to availability of local data. 
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Available biomass potential 

When discussing the environmental preference of biomaterials relative to fossil-based materials, an 

important aspect is the sustainable availability of biomass for the production of the biomaterials. It 

is estimated that there will be enough biomass feedstock available for future biomaterial production 

without competing with food for the land, even if the entire global need for organic chemicals 

(including polymers) is based on biomass in the future. However, there is likely to be a competition 

with bioenergy, including biofuels, for the biomass. 

 

Environmental performance of biomaterials 

Biomaterials generally perform better than equivalent petrochemical materials in terms of fossil fuel 

savings and reductions in GHG emissions. However in other impact categories they often perform 

worse, e.g. in terms of eutrophication and acidification, while also entailing land use and related 

environmental impacts. If using second generation biomass, some of those aspects are likely to 

improve. It is important to understand that the group of biomaterials is very diverse, both in terms 

of life cycle pathways and end-products. This gives different environmental profiles within the 

group, and one should thus be careful with a ‘one profile fits all’ mindset when it comes to 

environmental assessment of biomaterials. 

 

Future perspectives 

As biomaterials are often based on new, and hence immature, technologies, large improvement 

potentials are expected for those technologies relative to the competing petrochemical technologies, 

which are rather mature. Further, potential future shifts in feedstock for both biomaterials and fossil 

based materials may change their relative environmental performance. 
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Resumé  

 

Mål og afgrænsning 

 

Målet med dette PhD-projekt er at bidrage til en mere konsistent metode til livscyklusvurdering 

(LCA) af biomaterialer og at adressere den miljømæssige præstation samt perspektiver af 

biomaterialer. I særdeleshed er det målet at udvikle en metode til at håndtere midlertidig 

kulstoflagring i biomaterialer, på en måde der kvantificerer mulige klimaforandrings-’gevinster’ i 

forhold til at undgå at overskride nært forestående klimatiske grænseniveauer. 

 

Den geografiske afgrænsning i dette PhD-projekt er global, da fokus er på metodeudvikling og 

vurdering af biomaterialer på globalt plan. Den tidsmæssige afgræsning er defineret af den 

miljøpåvirkningskategori som tages i betragtning. Den teknologiske afgrænsning omfatter både 

aktuelle miljømæssige præstationer af biomaterialer og en diskussion af fremtidige perspektiver, 

herunder potentialer for fremtidig ændring i deres miljøpåvirkninger i forhold til fossile materialer. 

 

Baggrund 

Nutidens samfund er i høj grad afhængigt af fossil olie og gas til fremstilling af brændstof, 

kemikalier og materialer, men mange af disse kan alternativt produceres af biomasse. 

Biomaterialers potentiale i forhold til at erstatte fossile materialer får øget opmærksomhed og den 

globale produktion af biomaterialer er stigende. Med den stigende efterspørgsel efter biomaterialer 

følger et stigende behov for viden om deres miljømæssige præstationer – både absolutte og i forhold 

til de tilsvarende petrokemiske materialer de kan erstatte. LCA er et almindeligt anvendt værktøj til 

miljøvurdering af produkter og systemer, som tager højde for miljøpåvirkningerne gennem hele 

deres livsforløb. Der er dog stadig betydningsfulde huller i metodegrundlaget for LCA’er af 

biomaterialer. 

 

Et sådant hul er håndteringen af værdien af den potentielle afbødning af klimaforandringer fra den 

midlertidige kulstoflagring som finder sted i biomaterialer, hvor der på nuværende tidspunkt ikke er 

konsensus. Andre vigtige miljøaspekter i forbindelse med biomaterialer, som i øjeblikket generelt 

ikke medtages i LCA, er påvirkninger relateret til arealanvendelse og ændringer i arealanvendelse 

(LULUC), såsom ændringer i biogene kulstoflagre (især inkluderende organisk kulstof i jorden), 

overflade albedo og biodiversitet, samt potentielle indirekte ændringer i arealanvendelse (ILUC) 

som følge af produktion af biomaterialer. 

 

Potentiel værdi af (midlertidig) kulstoflagring 

Som følge af eksistensen af klimatiske ’tippe-punkter’ (’tipping points’), som forventes at forårsage 

farlige og potentielt irreversible ændringer i klimasystemet hvis de overskrides, kan midlertidig 

kulstoflagring have et potentiale i form af at bidrage til at afbøde klimaændringerne. Dette 

potentiale er i form af at enten at undgå overskridelse af sådanne forventede tippe-punkter (forudsat 

at der bliver tale om ’afbødningsscenariet’ RCP3PD, hvor den atmosfæriske CO2-koncentration 

topper indenfor de kommende årtier) eller væsentligt udskyde overskridelsen (forudsat at der bliver 
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tale om ’medium-stabiliseringsniveau-scenariet’ RCP6, hvor den atmosfæriske CO2-koncentration 

fortsætter med at stige frem mod år 2100). 

 

Udover værdien af midlertidig kulstoflagring i enkeltprodukter forventes resulterende ændringer i 

kulstoflagre, hvis petrokemiske materialer bliver erstattet af biomaterialer. Disse ændringer i 

kulstoflagre er mere langsigtede eller endda permanente, hvilket leder til en reduktion i 

kulstofstrømme fra fossile ressourcer, mens kulstofstrømme fra atmosfæren til biosfæren, og via 

denne til antroposfæren, potentielt forøges. Dette leder til en reduktion af mængden af kulstof lagret 

i atmosfæren, samt en forøgelse af den biogene kulstoflagring i antroposfæren. Denne tendens vil 

være permanent så længe biomaterialeproduktionen ikke formindskes eller udfases igen. 

 

CTP-tilgangen 

Den generelt anvendte tilgang til vurdering af klimaændringer i LCA, GWP, tager ikke hensyn til 

behovet for at forblive under klimatiske grænseniveauer og den afspejler ikke den øgede betydning 

af kortlivede drivhusgasser i forhold til nært forestående grænseniveauer. 

 

En metode til inddragelse af haste-aspektet i forhold til at undgå overskridelse af farlige klimatiske 

tippe-punkter ved vurdering af drivhusgasemissioner, det ’klimatiske tippe-potentiale’ (CTP) er 

blevet udviklet i dette PhD-projekt. Denne metode vurderer påvirkningerne af 

drivhusgasemissionerne frem til den potentielle overskridelse af et foruddefineret klimatisk 

grænseniveau. Denne påvirkning udtrykkes som en brøkdel af den atmosfæriske kapacitet til at 

absorbere påvirkningen uden at overskride grænseniveauet. CTP skal ses som et supplement til 

GWP, som fortsat skal gøre rede for de langsigtede klimapåvirkninger. 

 

CTP-metoden er desuden blevet videreudviklet til at tage højde for aspektet omkring midlertidig 

kulstoflagring og illustrere den potentielle afbødningsværdi af denne i forhold til at undgå 

overskridelse af farlige klimatiske grænseniveauer. CTP-karakteringsfaktorer for flere 

drivhusgasudviklingsscenarier og en række andre vigtige modelparametre er fremført, hvilket gør 

metoden anvendelig til direkte inklusion i LCA. 

 

Indflydelse af udvalgte ikke-standard påvirkninger fra arealanvendelse og ændringer i 

arealanvendelse (LULUC) 

Nogle af de påvirkninger der er forbundet med arealanvendelse og ændringer i arealanvendelse i 

forbindelse med produktion af biomasse, som generelt ikke medtages i LCA’er, er blevet adresseret 

via et teoretisk case study i dette PhD-projekt. Disse påvirkninger er ændringer i overflade albedo, 

biogene kulstofstrømme (inklusiv organisk kulstof i jorden) og biodiversitet. Alle tre typer 

påvirkning er her fundet at være potentielt vigtige for miljøpræstationen af den biobaserede 

produktion. Endvidere er der fundet potentielle kompromiser i mellem de forskellige typer 

miljøpåvirkninger. Dette understøtter behovet for at inkludere den bedst mulige vurdering af disse 

påvirkninger i LCA, for at få er realistisk billede af de samlede konsekvenser fra etablering af en 

biomasseråstof-afgrøde, og dermed af afledte produkter. Men der er en udfordring i form af 

eksempelvis metoder som er på et indledende niveau, samt kravene til tilgængelighed af lokale data. 
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Tilgængeligt biomassepotentiale 

Når miljøfordelene ved biomaterialer relativt til fossilt-baserede materialer diskuteres er et vigtigt 

aspekt den bæredygtige tilgængelighed af biomasse til produktionen af biomaterialerne. Det anslås, 

at der vil være nok biomasseråstof til rådighed for fremtidig biomaterialeproduktion uden at 

konkurrere med fødevareproduktion om jorden, selv hvis hele det globale behov for organiske 

kemikalier (inklusive polymerer) baseres på biomasse i fremtiden. Men sandsynligvis vil der være 

en konkurrence med bioenergi, herunder biobrændstoffer, om biomassen. 

 

Miljøpræstationer af biomaterialer 

Biomaterialer klarer sig generelt bedre end tilsvarende petrokemiske materialer når det kommer til 

fossil brændstof besparelse og reduktioner i drivhusgasudledninger. Men i andre 

miljøpåvirkningskategorier klarer de sig ofte dårligere, f.eks. med hensyn til eutrofiering og 

forsuring, mens de også medfører arealanvendelse og hertil relaterede miljøpåvirkninger.  Hvis der 

benyttes anden generations biomasse vil nogle af disse aspekter sandsynligvis forbedres. Det er 

vigtigt at forstå, at gruppen af biomaterialer er meget forskelligartet, både med hensyn til 

livscyklusveje og slutprodukter. Dette fører til forskellige miljøprofiler internt i gruppen af 

biomaterialer, og man skal derfor passe på med en ’én profil passer alle’-tankegang når det kommer 

til miljøvurdering af biomaterialer. 

 

Fremtidige perspektiver 

Da biomaterialer ofte er baseret på nye, og derfor ikke fuldt udviklede, teknologier forventes store 

forbedringspotentialer for disse teknologier i forhold til de konkurrerende petrokemiske teknologier, 

som er forholdsvis fuldt udviklede. Endvidere kan potentielle fremtidige ændringer i råmaterialer til 

både biomaterialer og fossile materialer ændre deres indbyrdes relative miljøpræstation. 

 

 



PhD dissertation                                                                              Environmental assessment of biomass based materials 

 

ix 

 

Abbreviations  

 

1G First generation  

2G Second generation  

3G Third generation  

AGB Above ground biomass 

BGB Below ground biomass 

CCS Carbon capture and storage 

CO2e CO2 equivalents 

CTP Climate tipping potential 

GHG Greenhouse gas 

GTP Global temperature potential 

GWP Global warming potential 

ILUC Indirect land use change  

IPCC Intergovernmental Panel on Climate Change 

LCA Life cycle assessment 

LUC Land use change 

ppm Parts per million 

pptrc Parts per trillion of remaining capacity 

SOC Soil organic carbon 

 

 

Synonyms 

 

Biomaterials = Biomass based materials 
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1 Introduction 

The society of today is highly dependent on fossil oil and gas for producing fuels, chemicals and 

materials. However, the use of the fossil resources involves several concerns. Being fossil, it means 

that they are limited resources and with the increasingly high consumption since the 

industrialization, accessible oil reserves are going fast towards depletion and oil prices are 

accordingly rising. Further, the burning of fossil fuels has negative consequences for the 

environment and leads to climate change which has very serious consequences on a global level. 

For those reasons, alternative solutions to a fossil feedstock based society are increasingly yearned 

for, and with rising oil prices they are becoming more and more competitive. Many of the fuels, 

chemicals and materials today being produced from fossil resources can be alternatively produced 

from biological raw material (biomass), such as agricultural crops or residues. Besides biomass 

being a renewable resource, it can also be locally produced and can contribute to local job creation 

(e.g. Carus et al. 2011). For those reasons, the potential of biobased products as substitutes for fossil 

based ones receives increased attention, and global production is increasing. Already today a 

number of conventional fossil based products are also being produced based on biomass feedstock, 

and many more are in the pipeline. In 2003, 8-10% of the feedstock for the European chemical 

industry was biomass (Rothermel 2008), and the global share of chemicals being biobased was 2% 

in 2008 and is expected to be at least 22% by 2025 (USDA 2008), while the global share of 

polymers being biobased is already more than 8% today (Carus et al. 2013). Both direct substitution 

of some of the same fuels, chemicals and materials which are conventionally produced based on oil 

is possible, but also new products with different properties are being developed.  

 

As the demand for biomaterials increase, so does the need for knowledge on the environmental 

performance of the biomaterials relative to their petrochemical alternatives. While the feedstock of 

biobased products consist of biomass, the production of the feedstock as well as other processes in 

the product life cycle may however have fossil fuel consumption, or in other ways contribute to 

GHG emissions and other environmental impacts. Life cycle assessment (LCA) is a commonly used 

tool for assessing environmental sustainability of products and systems, accounting for the 

environmental impacts during their entire lifecycle. A number of LCAs exist on biobased materials 

(see e.g. Weiss et al. 2012), but even though the area today has a strong focus, there is still 

important shortcomings in the methodology. One aspect currently being discussed is the potential 

climate change mitigation value of temporary carbon storage in biomaterials. But despite several 

attempts to account for this, no consensus has yet been reached (see e.g. Brandão et al. 2013).  

 

Other aspects of importance for the environmental life cycle performance of biomaterials that are 

currently not consistently included in LCAs are land use and land use change (LULUC) related 

impacts, such as: Changes in biogenic carbon stocks (e.g. Cherubini et al. 2012a) and more 

specifically changes in soil carbon (e.g. Weiss et al. 2012), crop water consumption and erosion of 

soil (e.g. Weiss et al. 2012), changes in surface albedo (e.g. Cherubini et al. 2012a) and biodiversity 

impacts (e.g. de Baan et al. 2013; Koellner et al. 2013; Weiss et al. 2012; Michelsen 2008). Further, 
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impacts from potential indirect land use change (ILUC), which may be substantial, is an area 

receiving much attention today but it is not yet operational to a point where it is included in general 

LCAs (e.g. Weiss et al. 2012). A consistent methodology for inclusion of all relevant environmental 

aspects is of course important in order to enable a holistic environmental assessment, avoiding 

tradeoffs between different environmental impacts.  

 

As LCA is generally a product oriented method, addressing chosen alternatives in comparison, but 

not considering alternatives not included in the assessment, it does not automatically include the 

aspect of competition for the resources between alternative utilizations, potentially being produced 

from the same resource. And while biomass is a renewable feedstock, it is also finite, in terms of 

potential annual global production capability. Thus, there is a need to know how much biomass is 

potentially available on a sustainable basis, taking into account food and feed needs of a growing 

global population. Also, this calls for an environmental comparison of not only the biomaterials 

with their fossil counterparts, but also with potentially competing uses of biomass such as biofuels, 

to establish the most environmental effective utilization of the available resources.  

 

1.1 Objectives 

The goal of this industrial PhD project is to contribute to a more consistent methodology for LCA 

of biomaterials by addressing essential gaps in the existing methodology. In particular it is the goal 

to develop an approach for dealing with temporary carbon storage in biomaterials, in a way that 

illustrates the potential climate change benefit in relation to urgent short-term climatic targets. This 

includes consideration of the time perspective in LCA of biomaterials, in terms of impact 

dependency of GHG uptake and emission timing. Further, the importance of a number of the 

LULUC related impacts currently not consistently included in LCA will be addressed through a 

hypothetic case study. Those selected impacts are: changes in biogenic carbon stocks (including soil 

organic carbon (SOC) and timing of carbon fluxes), surface albedo and biodiversity, following 

establishment of a biomass production. The importance of including those aspects and the current 

option for doing so will be briefly discussed. Finally, it is the aim to assesses the environmental 

performance and perspectives of biomaterials, both relative to fossil counterparts and when 

considering the perspective of sustainably available biomass at a global level. 

 

1.2 Scope 

The geographical scope in this PhD project is global, as the focus is on methodology development 

and assessment of biomaterials at a global level.  

 

The temporal scope is defined by the impact category considered. In most cases, environmental 

impacts are in principle considered for an infinite time horizon, but for global warming most 

assessments use a 100 year time horizon. For the approach developed in this PhD project, for 

inclusion of the potential climate change benefit of temporary carbon storage in relation to urgent 
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short-term climatic targets, the temporal scope is however defined by the time until reaching a 

target time. This target time is the expected time of crossing a specified climatic target level. For the 

biomass feedstock potentials, the scope is both the current situation and future scenarios until 2050.  

 

For the technological scope, both environmental performance of biomaterials with current 

technologies, and potential relative changes between competing technologies (biobased and 

petrochemical based) from future developments in e.g. feedstock use are discussed. 

 

2 Definition of biomaterials 

Carbon-based materials can be defined as either fossil or biobased, depending on their feedstock. 

Conventional petrochemical polymer (plastic) materials are based on carbon from fossil oil. This 

carbon has been removed from the atmosphere millions of years ago through biomass growth, and 

has been converted into oil and stored as such over millions of years. That carbon is not part of the 

natural biogeochemical carbon cycle today and thus releasing it changes this carbon balance.  

 

Biomaterials on the other hand are produced either entirely or partly from a biomass feedstock, in 

the form of plants or biogenic residues/waste (Weiss et al. 2012). The plants sequester CO2 from the 

atmosphere during growth and store it in the form of biogenic carbon. As this carbon has recently 

been sequestered from the atmosphere, re-emitting it will not change the present carbon cycle 

balance. The biogenic carbon is therefore often considered ‘carbon neutral’ over time
1
. This is 

however not the case if the biomass comes from a so-called virgin source, such as rainforest or 

other previously undisturbed biomes, leading to a net reduction of biogenic carbon storage. 

 

While biomaterials cover a vast group of materials, the focus in this project is mainly on those 

substituting conventional petrochemical products, such as chemicals and polymers, rather than 

traditional biomaterials such as wood, paper and natural textiles. However, many of the aspects 

discussed here apply for the traditional biomaterials as well. 

 

2.1 First, second and third generation 

Biobased products are distinguished into so-called ‘generations’:  

 

o First generation (1G): Using a feedstock based on sugar, starch, vegetable oil or animal fats 

o Second generation (2G): Using lignocellulosic feedstock (e.g. agricultural residues or energy 

crops) 

                                                 
1
 There are however some issues of timing of carbon sequestration and release which affects the ‘carbon neutrality’ 

aspect, as temporary release or storage of carbon may also play a role in terms of climate change, especially on short 
term targets (see e.g. Cherubini et al. 2012b). The issue of the potential role of temporary carbon storage in relation 
to climate change is addressed in Chapter 4 
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o Third generation (3G): A terminology often used for algae feedstock (Carus and Dammer 

2013), however the term is in some cases also used to refer to a follow up on 2G, rather than 

to a specific feedstock (Bessou et al. 2011). 

  

Biobased products beyond 1G are in some cases termed under one as ‘advanced’ or ‘next 

generation’.  

 

2.2 Biodegradability 

The terms biobased and biodegradable are often used mistakenly as synonyms. Biodegradability is a 

material property, which depends on the molecular structure of the material, not the feedstock 

(PlasticsEurope 2013). Thus, both biobased and petrochemical materials can be biodegradable, but 

none of them are necessarily so. What is important to understand is that once a specific material, 

e.g. polyethylene (PE), has been produced, its material properties are independent of its feedstock. 

 

Further, a material being biodegradable does not inherently mean it is more sustainable. 

Biodegradability is a property like many others, which may or may not have a positive impact on 

the environmental sustainability profile of a product when considering all life cycle impacts under 

the relevant circumstances. 

 

3 Temporary carbon storage  

Reducing the atmospheric GHG concentration increase from anthropogenic GHG emissions 

through carbon removal and subsequent storage is currently discussed as an option for assisting in 

mitigating climate change. This can be in the form of more or less permanent storage such as carbon 

capture and storage (CCS), but also the potential benefit from temporary carbon storage in e.g. 

biomaterials is being discussed, as outlined in Chapter 3.1. 

 

3.1 State-of-the-art 

Some argue that storage of carbon for a period of time can compensate cumulative climatic impacts 

of CO2 emissions, (e.g. Moura-Costa and Wilson 2000). However others argue that in a long term 

perspective temporary carbon storage does not give much benefit to climate change and may even 

have a negative climatic impact (e.g. Kirschbaum 2006; Meinshausen and Hare 2002). Others again 

claim, that there is a value in temporary carbon storage through its ability to reduce impacts of 

climate change in the short term as this can ‘buy time’ for more permanent solutions to be 

developed and implemented (e.g. Dornburg and Marland 2008; Fearnside 2008). A number of 

approaches assessing the potential climate change mitigation value of temporary carbon storage in 

LCA and carbon footprinting have been suggested (Brandão et al. 2013) and the handling of the 

issue in LCA and carbon footprinting was discussed at an expert workshop at the Joint Research 
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Centre of the European Commission (Brandão and Levasseur 2011). However no consensus on the 

issue has yet been reached (Brandão et al. 2013; Article 1: Jørgensen and Hauschild 2013; Guest et 

al. 2013). 

 

3.2 Relevant timescales and the global carbon cycle 

When considering the value of temporary carbon storage, the timescale on which it is assessed 

becomes essential. For assessing climate change impacts in LCA and carbon footprinting, global 

warming potential (GWP) impacts for greenhouse gases are used, often applying a 100-year time 

horizon, reflecting the time horizon that was adopted in the Kyoto Protocol (UNFCCC 1998). The 

choice of the 100-year time horizon in the Kyoto Protocol is not scientifically based, but rather 

reflects that this was the middle choice of the three GWP time horizons presented by the IPCC 

(Shine 2009). In approaches for assessing the value of temporary carbon storage, this is often 

interpreted as implying that impacts occurring after this time are not included (e.g. Moura-Costa 

2002; Clift and Brandão 2008). Using the time horizon as accounting period like this means that 

when temporarily storing carbon, some of the cumulative impact that would otherwise have 

occurred within the accounting period will move beyond it and be considered avoided (Article 1: 

Jørgensen and Hauschild 2013). This is problematic as it hides long-term impacts.  

 

A literature review of the global carbon cycle shows timescales of thousands of years for the 

transport of carbon from the atmosphere to pools beyond the near-surface layers of the Earth, from 

where it will not readily be re-emitted as a response to change in near-surface conditions, see Figure 

1:  
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Fig. 1 (Figure from Article 1: Jørgensen and Hauschild 2013): Model of the global carbon cycle with estimates of 

carbon stocks, transport processes and indication of associated timescales, based on a literature study (see details and 

underlying assumptions in Article 1: Jørgensen and Hauschild 2013 - Online Resource 1).  

  

Compared to this, using a 100-year accounting period does not give a meaningful picture of long-

term impacts, as it causes long-term global warming impacts to be hidden by short-term storage 

solutions.  

 

Assessing the dependency of the choice of accounting period on results reveals that this choice is 

essential for results in terms of savings in GWP, as illustrated in Table 1. Here, the approach for 

assessing temporary carbon storage with storage times of 2-25 years, as suggested by Clift and 

Brandão (2008), has been used as example for illustrating the result of cutting off climate change 

impacts occurring after a 100 years accounting period, compared to using other accounting periods. 

 

Table 1 (Table from Article 1: Jørgensen and Hauschild 2013): Carbon credits for 20 years storage of 1 GtC with 

different accounting periods between 100 and 1000 years, using the approach for storage times of 2-25 years as 

suggested by Clift and Brandão (2008). Results first presented by Jørgensen and Hauschild (2010) 

Accounting period,  

T (yr) 

GWP-savings 

(tC) 

GWP-savings 

(tCO2e) 

100 0.152 0.557 

200 0.0740 0.271 

1000 0.0162 0.0594 
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Due to the decisive role of the accounting period, the choice of this should be considered carefully 

in order to obtain results that are meaningful in reflecting the climate change mitigation value of 

temporary carbon storage.  

 

If long-term climatic benefits should be ensured, it is considered to require storage of carbon for at 

least thousand years considering the global carbon cycle illustrated in Figure 1; thus temporary 

carbon storage does not have a value in terms of long-term climate change mitigation. (See further 

details on this in Article 1: Jørgensen and Hauschild 2013). 

 

3.3 Tipping points and urgency 

Long-term climate change implications is however not the only issue when discussing the relevance 

of carbon storage in mitigating climate change; it is also very important to stay below certain 

climatic target levels. This is due to the climate system approaching so-called tipping points, which 

if crossed are expected to lead to dramatic changes in the climate system that may be irreversible 

(Meehl et al. 2007; Hansen et al. 2008). A conceptual illustration of reversible and irreversible 

tipping points is shown in Figure 2: 

 

 
Fig. 2 Grey arrows indicate external forcing, while white arrows indicate tipping points (that are a) reversible and b 

irreversible) from where the external forcing no longer determines the course of event, but internal system mechanisms 

means a shift from one state to a new one (first state illustrated by the grey ball, second by the white ball)  

 

To avoid passing expected climatic tipping points, mitigation of the rise in atmospheric GHG 

concentration is urgently required. In this perspective even short term carbon storage may be of 

value if it has a potential for ‘bridging’ a pathway to a low carbon future, or for ‘buying time’ by 

facilitating temporary solutions until more sustainable permanent solutions are available.  
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3.4 Development of an approach for including urgency in climate change impact assessment 

– the Climate Tipping Potential (CTP) 

For addressing the urgency aspect the GWP approach is less fitting, as it gives equal weight to 

emissions irrespective of time of emission. It does not take into account the need for staying below 

certain climatic target levels, nor the increasing impacts of short-lived GHGs with a near-term 

target compared to long-term targets. The need for an alternative climate change impact assessment 

metric that considers climatic target levels has been increasingly recognised (e.g. Shine et al. 2007; 

Peters et al. 2011; Cherubini et al. 2012b).  

 

To account for the impacts related to passing climate tipping points, without disregarding long-term 

impacts, it is suggested to address the value/impact of temporary carbon storage with a dual 

approach, including two parallel assessments; one addressing long-term perspectives and one 

addressing the urgency of not crossing certain climatic target levels (Article 1; Jørgensen and 

Hauschild 2013).  In this approach, long-term impacts are still suggested to be represented by the 

GWP, while the impacts related to a climate tipping point are suggested to be accounted for using 

the Climate Tipping Potential (CTP); a new approach developed during this PhD project (Article 2: 

Jørgensen et al. 2014).  

 

The idea behind the CTP approach is to express the cumulative impact of a marginal GHG emission 

from the emission time to the target time, with the latter being the point in time where the target 

level is expected to be reached, according to the selected GHG concentration development scenario.  

The CTP expresses how much the GHG emission takes up of the atmospheric ‘capacity’ for 

absorbing the impact without exceeding the target level. The remaining atmospheric capacity is thus 

seen as a limited ‘resource’. The conceptual idea is illustrated in Figure 3:  
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Fig. 3 (Figure from Article 2: Jørgensen et al. 2014): Conceptual illustration of the CTP approach, expressing GHG 

emission impacts as the fraction they take up of the remaining atmospheric capacity for receiving GHG emissions 

without exceeding a predefined climatic target level 

 

As opposed to other target time approaches, such as the time-dependent global temperature 

potential (GTP) (Shine et al. 2007), the nature of the developed CTP approach results in increasing 

impacts of the assessed GHGs as the emission time approaches the target time. In this way, the 

results of the CTP approach reflect the rapid decrease in remaining atmospheric capacity and thus 

the increasing potential impact of the GHG emission.  

 

The approach is directly applicable in LCA by using the CTP characterization factors which have 

been calculated for the three main anthropogenic GHGs, CO2, CH4 and N2O. These have been 

calculated for different GHG concentration scenarios; the so-called Representative Concentration 

Pathway (RCP) scenarios (Meinshausen et al. 2011). CTP characterization factors for the RCP6 

medium stabilization level scenario (made available by Meinshausen et al. (2011) based on 

background data from Fujino et al. (2006)) for selected emission years can be seen from Table 2: 
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Table 2 (From Article 2: Jørgensen et al. 2014): CTP characterization factors for N2O, CH4 and CO2, using the RCP6 

Scenario and an atmospheric target level of 450 ppm CO2e. CTP values are given as ppt of remaining capacity, pptrc 

Year of emission N2O CH4 CO2 

 

[pptrc  kg N2O
-1

] [pptrc kg CH4
-1

] [pptrc kg CO2
-1

] 

2015 1.01∙10
0
 2.73∙10

-1
 3.53∙10

-3
 

2020 1.44∙10
0
 4.51∙10

-1
 5.19∙10

-3
 

2025 2.50∙10
0
 9.19∙10

-1
 9.43∙10

-3
 

2030 8.47∙10
0
 3.70∙10

0
 3.53∙10

-2
 

2031 1.38∙10
1
 6.25∙10

0
 6.01∙10

-2
 

 

See details on the approach in Article 2: Jørgensen et al. (2014), and CTP characterization factors 

for all emission years from present until the target time, for all four RCP Scenarios, in the 

appertaining Online Resource 1. 

 

3.5 Inclusion of potential temporary carbon storage value in LCA  

The nature of the CTP approach means that it has potential for estimating the climate change 

mitigation value of temporary carbon storage, in terms of helping avoiding crossing climatic target 

levels. However, it needs to be adapted to be able to distinguish the value of permanent carbon 

storage from that of temporary carbon storage.  

 

In order to do this, a storage period defined as having full benefit equal to that of permanent storage, 

, is defined. Here a value of  = 50 years is chosen, from the argumentation of the urgency of 

buying time, in order to avoid crossing the climatic target level. For shorter storage times of a 

minimum of 2 years, a gradual value for all temporary carbon storages which ends after T, has been 

established as the fraction-wise value in terms of storage period (e.g. 2 years storage having 1/25 

the value of 50 years storage). Sequestration of CO2 with following storage is modelled as negative 

emissions. This is summarised in Equation (1) from Article 3: Jørgensen et al. (2015): 
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Where CTPTCS,T(tst,te) is the climate tipping potential of temporary carbon storage from time of 

sequestration and following storage, tst, until emission time te, and a target time T, n is the length of 

the storage period from 1 to , with all periods above  having a value equal to that of a period of , 

ACO2 is the specific radiative forcing of CO2 per kg in the atmosphere and ACO2,ppm is the specific 

radiative forcing of CO2 per ppm, a and  are coefficients and time constants for the removal 

processes that are active in the IPCC decay function for CO2 in the atmosphere, according to the 

revised Bern carbon cycle model (Forster et al. 2007): a0 = 0.217, a1 = 0.259, a2 = 0.338, a3 = 0.186, 

1 = 172.9 years, 2 = 18.51 years, 3= 1.186 years, CT is the target level concentration of 

atmospheric GHG, occurring at the target time T, and Ct is the concentration of atmospheric GHG 

at time t of the assumed GHG concentration scenario.  

 

In the case where tst < T > te, Equation (2) applies (Article 3: Jørgensen et al. 2015): 

 

dtCC

A

tdtaaA

dtCC

A

tdtaaA

ttCTP
Tt

tt

tT

ppmCO

Tt

tt

i

i

iCO

Tt

tt

tT

ppmCO

Tt

tt

i

i

iCO

estTT

st

st

e

e

)(

)]/exp([

)(

)]/exp([

),(

,2

02

,2

02

,CS



 



 





































































(2) 

 

Using Equation (1) and (2), CTP characterization factors for temporary carbon storage for all 

storage and emission times from present until the target time can be calculated. As can be seen from 

Figure 4, temporary carbon storage gives a CTP saving if the carbon is stored beyond the target 

time, but increases CTP impacts if carbon is released again before the target time. 
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Fig. 4 (Figure from Article 3: Jørgensen et al. 2015): CTP for temporary carbon storage, with different years of carbon 

sequestration before T, and for different storage durations, assuming Scenario RCP6. CTP is measured in ppt of the 

remaining atmospheric capacity (pptrc) for taking up GHGs without exceeding the target level. Negative values illustrate 

mitigation potential 

 

Figure 4 shows the development in CTP characterization factors as function of year of carbon 

sequestration as well as storage durations for the RCP6 Scenario. A similar illustration of CTP 

characterization factors for the RCP3PD Scenario (a mitigation scenario with a peaking radiative 

forcing in year 2044, followed by a decline) can be seen from Article 3: Jørgensen et al. (2015), 

along with further discussion of the results. The RCP3PD Scenario is made available by 

Meinshausen et al. (2011), based on background data from van Vuuren et al. (2007). CTP 

characterization factors for all storage durations for different sequestration times are given for both 

the RCP6 and the RCP3PD Scenario in Article 3: Jørgensen et al. (2015), Online Resource 1, which 

enables direct inclusion in LCA.  

 

Introducing the CTP approach in the environmental impact assessment of biomaterials enables that 

the potential benefit from temporary carbon storage in biomaterials, in terms of avoiding or 

postponing a dangerous climatic target level, can be included in their environmental profile. This 

also entails that the different CTP potentials from different biomaterials, and the use of different 

feedstock, processes etc. in the life cycle, can be distinguished. The potential mitigation value of the 

temporary carbon storage is highly dependent on the timing of sequestration and re-emission of 

carbon (in the form of atmospheric CO2) relative to the target time. Re-emission before the target 

time even increases the CTP impact rather than mitigating it, as illustrated in Figure 4.  

 

The total CTP impact of a biomaterial is made up of the sum of both the CTP impact/saving of the 

temporary carbon storage and of the GHG emissions during the product life cycle. An example of 

this can be seen in Figure 5, for three different types of biobased polyethylene (PE) products with 
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different lifetimes and thus carbon storage durations, from three different biomass feedstocks, and 

with carbon sequestration occurring in three different years. Modelling of GHG emissions for PE 

production from the three types of biomass is based on background data from Bos et al. (2012), 

which describes current agricultural practice. Thus in the case of miscanthus and sugar cane, GHG 

savings from energy production from co-products is included (see more details on calculations in 

Article 3: Jørgensen et al. 2015). 

 

 
Fig. 5 (Figure from Article 3: Jørgensen et al. 2015): CTP of temporary carbon storage in one t biobased PE products, 

with different storage durations (short: 2 years, medium: 10 years, long: above 50 years), for different years of carbon 

sequestration, including life cycle GHG impacts, for three different feedstock crops, using the RCP6 Scenario 

 

While results for only the temporary carbon storage are rather homogenous as illustrated in Figure 

4, including the life cycle GHG impacts makes the picture look a bit more complex, as the two 

types of impacts vary differently with storage duration, timing of sequestration and feedstock type. 

Savings in GHG emissions gives negative CTP values (savings), while GHG emissions give 

positive values, but the magnitude depends on the timing of the emissions relative to the target time. 

A biobased product has a negative CTP value if it has a net mitigation of climate tipping potential 

during its entire life cycle, e.g. when the sum of CTP values from the temporary carbon storage and 

the CTP impacts of the product over the rest of its life cycle is negative. (See similar results for the 

RCP3PD Scenario and more discussion of results in Article 3: Jørgensen et al. 2015). 
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3.6 The climate change mitigation potential of temporary carbon storage in biomaterials 

The carbon storage inherent in biomaterials has a potential climate change mitigation value - both in 

terms of temporary and permanent carbon storage. The magnitude of the potential climate change 

mitigation value of temporary carbon storage is addressed here, while the aspect of permanent 

carbon storage is dealt with in Chapter 4. 

 

As the climate change mitigation value of temporary carbon storage lies in temporarily removing 

CO2 from the atmosphere, it should be assessed relative to avoiding or postponing the crossing of 

short-term climatic target levels. Here, a climatic target level of 450 ppm CO2e atmospheric GHG 

concentration is chosen, as discussed in Article 2 (Jørgensen et al. 2014). The potential value of the 

temporary carbon storage further depends on the expected development in atmospheric GHG 

concentrations.  

 

Here, the RCP3PD and the RCP6 scenarios for GHG concentration development have been used. 

The trends of the two scenarios mean that storage of enough carbon for a sufficiently long period of 

time has bridging potential by contributing to avoid the crossing of the 450 ppm target level 

assuming the RCP3PD scenario, and the potential to buy time by contributing to postpone the 

crossing of the target level assuming the RCP6 scenario. This potential value of temporary carbon 

storage in biomaterials can be estimated, comparing the potentially stored amount to the estimated 

amount of carbon emission that must be avoided.  

 

Using the RCP3PD Scenario, the predicted time of exceeding the target level, which must be 

bridged, is 24 years, as illustrated in Figure 6 a). 

 

 
Fig. 6 (Figure from Article 3: Jørgensen et al. 2015): a) the peak and decline scenario (RCP3PD) (Meinshausen et al. 

(2011) and van Vuuren et al. (2007)) and b) the continuous increase scenario (RCP6) (Meinshausen et al. (2011) and 

Fujino et al. (2006)), with illustration of expected excess atmospheric GHG concentrations (grey hatched area) above a 

450 ppm CO2e target level (grey punctured line) 

 

Considering this, only biopolymers used in building and construction, which are expected to have 

longer average lifetimes than 24 years, are considered here. A rough estimate of the potential 

climate change mitigation value of these biopolymers, in terms of avoiding the 450 ppm CO2e 
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target level, is estimated by assuming full substitution of the global production of polymers for 

building and construction with biopolymers. Covering the global demand for building and 

construction polymers with biopolymers is here only considered from the year the RCP3PD 

Scenario predicts that the target level will otherwise be crossed, which is 20 years from now.  

 

The carbon storage in long-lived biopolymers as described here, produced from the time the target 

level would otherwise be expected to be crossed, could account for at least 26% of the carbon that 

must be avoided emitted each year (as CO2) from 2034 until 2057, assuming the RCP3PD Scenario 

(Article 3: Jørgensen et al. (2015)).  In many years, it could even contribute with a saving larger 

than the needed. Assuming the RCP6 Scenario, the potential value of carbon storage in the long-

lived biopolymers is expressed in terms of contribution to avoiding the target level for the first 50 

years after it is predicted to be crossed, as no bridging is possible due to the continuous increase in 

atmospheric GHG concentration (as can be seen in Figure 6 b). The potential of the long-lived 

biopolymers for doing so in this case is 10-28% each year, except for the first year, where it is 90%, 

as the target level is only expected to be slightly exceeded that year (Article 3: Jørgensen et al. 

(2015)). Details on calculations can be seen from Article 3: Jørgensen et al. (2015). 

 

4 Carbon stock changes  

For the carbon stock in the biosphere, the development has in the last many years been a drastic 

decrease, with large amounts of virgin forest being cleared, e.g. for using the timber or opening the 

land for agricultural production. Further, the fraction of carbon stored in the lithosphere which is in 

the form of fossil resources; oil, coal and gas, has also been heavily extracted and consumed since 

the industrialization. Both developments have led to decrease in formerly permanent stocks of 

carbon (on reasonable timescales).  

 

A fraction of the carbon from the biosphere and fossil carbon from the lithosphere is stored in the 

anthroposphere in the form of products, e.g based on wood or plastic. However the largest part by 

far has been released to the atmosphere, leading to a drastic increase in the carbon stock there, with 

associated environmental impacts as a consequence, here among climate change. When the carbon 

stock in the atmosphere, in the form of CO2, is increased, the increased CO2 concentration induces a 

concentration gradient pressure between the CO2 concentration in the atmosphere and the ocean, 

leading to a net uptake of CO2 by the ocean. While this mechanism removes large parts of the 

atmospheric CO2, a substantial fraction stays in the atmosphere for thousands of years (Archer et al. 

1997). Further, the increase of carbon in the ocean leads to increased acidification which may have 

large implications for the marine ecosystem. The described current carbon stock change trends can 

be seen in Figure 7. 

 

However, if considering the biobased society vision, of replacing fossil fuel feedstock of today’s 

society with a biobased one, this would also impact the carbon stocks trends. While single product 
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carbon storage may be temporary, the resulting stock changes are usually more long-term, or even 

permanent.  

 

The biobased society vision would lead to a scenario where, for one thing, carbon flows from the 

lithosphere in the form of fossil fuels would be reduced (and in case of full substitution, completely 

avoided). Secondly, if substituting the current fossil-based material production with a biobased one, 

more biomass is needed. If this biomass is additionally produced, not supplied by consuming 

existing biomass stocks (e.g. current crops, forests, etc., as well as not leading to lower levels of 

biogenic carbon stocks in the area) this leads to an increase in the carbon stock of the biosphere. 

Supplying the additional biomass can be done in various ways, e.g. using surplus agricultural land, 

increasing yields of existing agricultural production, or using energy crops on degraded land not 

suitable for normal agricultural production. Third, increasing the carbon stock in the biosphere 

through additional biomass production means withdrawing carbon (in the form of CO2) from the 

atmosphere, thus yielding a climate change saving. However, due to the internal mechanisms of the 

global carbon cycle, part of this saving may be compensated by some degree of release of CO2 from 

the ocean to the atmosphere, as the balance of the CO2 exchange between the two compartments 

depends on the air–sea CO2 concentration gradient (e.g. Archer and Brovkin 2008).  

 

The transition from petrochemical to biobased society would not lead to a change in anthropogenic 

carbon stocks, assuming substitution of products with similar carbon properties. However, at curent 

the global production of polymers keeps increasing, which increases the carbon stock in polymers 

in the anthroposphere. And with a growing global population and expanding consumption patterns, 

this points to a continuous increase in polymer production for many years. As long as this trend 

continues, it means that each year’s stock increase in the anthroposphere and biosphere, and the 

associated changes in the other carbon stocks, can be considered permanent, as they will not be 

reversed by a decrease in production the following years. The induced trends in carbon stock 

changes due to a biobased society scenario can also be seen in Figure 7. 
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Fig. 7 Conceptual illustration of trends in changes for relevant carbon stocks of the global carbon cycle in terms of 

exchanges affected by anthropogenic behavior. From pre-industrial to current situation, as well as for the potential 

biobased society (BS) scenario development in stocks due to main net flows. Current stock sizes are based on the model 

of the global carbon cycle in Figure 1, based on a range of literature values (see Article 1: Jørgensen and Hauschild 

2013, Online Resource 1) 

 

5 LULUC impacts  

LULUC for producing biomass for biomaterials can impact a number of environmental aspects in 

different ways, of which not all are usually considered in LCA. The current status in terms of 

inclusion in LCA of some of these main aspects, and their potential importance for LCA results, are 

discussed in this chapter, based on a theoretic case study conducted during the PhD project (details 

on the theoretic case study, along with background data and assumptions, can be seen in Article 4: 

Jørgensen et al. (2014)). 

 

5.1 Albedo 

Albedo is a measure of surface reflectivity, in terms of the fraction of incoming solar radiation 

which is reflected by a surface. Albedo values differ a lot depending on the type of land cover; e.g.  

surfaces covered in snow and ice have much larger albedo than darker surfaces, for instance areas 

covered with forest (Bright et al. 2012a; Cherubini et al 2012a). As higher reflection of solar 

radiation means that less heat is absorbed, the effect of increased albedo is cooling, whereas 

decreased albedo of a surface leads to warming. Land use change (LUC) can lead to important 

changes in albedo of an area, and can thus be of major importance in relation to global warming. 

For instance, while deforestation has a warming effect through the biogenic CO2 release from 

standing biomass and SOC, the cooling effect from increased albedo can in some cases be even 

larger, leading to a net cooling effect (Randerson et al. 2006; Bala et al. 2007; Betts 2007; Davin et 

al. 2007; Cherubini et al. 2012a; O’Halloran et al. 2012). Other biogeophysical effects exist, but on 
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a global scale the albedo effect is the dominating direct climate forcing of these, especially in 

locations seasonally covered in snow (Claussen et al. 2001; Randerson et al. 2006; Bala et al. 2007).   

 

As it is recognized that albedo changes can play an important role in terms of climate impacts it is 

increasingly included in climate impact assessments of bioenergy systems (Georgescu et al. 2009; 

Loarie et al. 2011; Georgescu et al. 2011; Anderson-Teixeira et al. 2012; Bright et al. 2012a; Bright 

et al. 2012b; Cherubini et al. 2012a). However, in LCAs of such systems, albedo is not included on 

a routine basis. Through a theoretic case study (Article 4: Jørgensen et al. 2014) the potentially 

important role of albedo changes in terms of climate change impacts from a LUC is illustrated, and 

the necessity of including this aspect on a routine basis in LCA of product systems where LUC 

and/or ILUC occur is thus supported.  

 

A procedure for including albedo in LCA already exist, as the climate forcing from change in 

albedo from a LUC can be compared to that of GHG emissions in terms of radiative forcing (RF) 

(Betts 2011; Bright et al. 2012a; Cherubini et al. 2012a). However, different types of climate 

forcings can have different climate efficacies which determine the climate response per unit of the 

forcing, such as change in global mean temperature. In order to compare two types of climate 

forcings in terms of effect on global mean temperature, the effective forcing can be used, which is 

the product of the instantaneous radiative forcing and the climate efficacy of the climate forcing. 

The radiative forcing and effective forcing of a change in albedo can be computed and included in 

an LCA according to Cherubini et al. (2012a). The albedo values of different land cover types at 

different geographical locations can be obtained using historic satellite data. Albedo values vary 

with the seasons, especially in areas seasonally covered in snow. In order to reduce uncertainty 

related to annual variability in climate and phenology, average monthly data for a representative 

period of years can be used.  

 

While the inclusion of albedo impacts on climate change from a LUC may be somewhat time-

consuming, it is both possible and crucial to include it in climate change impact assessment in 

LCAs of products and systems including LUC. However, the availability of relevant data of course 

requires that there has been a land use in the area similar to that which is being assessed, for a 

sufficient period of time. 

 

5.2 Biogenic carbon fluxes  

Biogenic carbon stocks of an area consist of above ground biomass (AGB) of the plants such as 

stem, branches and leaves, below ground biomass (BGB) of the plants, which means roots above a 

certain size, and soil organic carbon (SOC) in both organic and mineral soils including roots too 

fine to be included in BGB. Biogenic carbon stock depends on both crop type, management and 

previous land use, and are site-specific as they depend on local conditions such as climate (Cowie et 

al. 2006; Anderson-Teixeira et al. 2009; Djomo et al. 2011; Cherubini et al. 2012a).  
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While AGB of a former land use will be replaced by that of the new land use, literature shows that 

approximately 20-40% of SOC from uncultivated land is typically lost during conversion to 

cultivation, and most within the first few years (Davidson and Ackerman 1993). Over time, new 

land use can either result in decrease or increase of SOC content, depending highly on SOC content 

of the former land use and crop and management type of the new land use (Cowie et al. 2006). 

Likewise, the magnitude of net loss or gain of total biogenic carbon stocks (i.e. biogenic carbon 

flux) of an area over a period of time following a LUC depends on the magnitude and pace of new 

carbon sequestration compared to that lost from the former land use. Thus planting crop with high 

potential for biogenic carbon sequestration on soil with previous low biogenic carbon content, e.g. 

degraded land, can lead to increased biogenic carbon stocks in the area, whereas clearing carbon 

rich forest for planting crops will likely have the opposite effect (See an example on this in Article 

4: Jørgensen et al. 2014). Results of biogenic carbon stock changes are also highly dependent on the 

time period of the assessment.  

 

SOC stocks can also be affected without changing the crop type, as in the case of removing 

agricultural biomass residues from the field, e.g. as feedstock for biobased products or energy 

production (e.g. Anderson-Teixeira et al. 2009; Don et al. 2012). While increased biomass residue 

removal is likely to decrease SOC content, this depends largely on the type and fraction of removal 

and the alternative fate of the carbon in the residues if left on the land. E.g. root and leaf litter 

constitutes the major input to SOC in many biomass production systems and leaving this behind 

diminishes the SOC decrease. Further, a large part of the coarse biomass residues are expected to 

decay at the surface if not removed, meaning atmospheric emission of the carbon rather than soil 

carbon replenishment. Both aspects limit impacts of residue removal from biomass systems (Cowie 

et al. 2006). 

 

As biogenic carbon fluxes from LUCs are to a high degree case-specific, available data is required 

for the specific case, or at least for a similar situation in terms of location, crop and soil type, 

previous land use etc. This is a main challenge of including this aspect at a site-specific level on a 

routine basis in LCA. 

 

5.3 Biodiversity 

Biodiversity change is a widely recognized environmental issue following a LUC due, e.g. to 

biobased feedstock production. Biodiversity is a measure of the variability between and within 

living species and ecosystems (UNEP 1992), though specific definitions differ. The loss of 

biodiversity has been identified as a key environmental concern (e.g. Diaz and Cabido 2001) and 

habitat loss and (local) species extinction due to a changed land use is expected to be the main 

driver of biodiversity changes in terrestrial ecosystems (Sala et al. 2000). Other important aspects in 

terms of biodiversity changes are increased atmospheric carbon dioxide concentrations and climate 

change, nitrogen deposition and introduction of invasive species (Sala et al. 2000). As for other 

impacts following a LUC biodiversity impacts depend on the state of the former land use, while the 
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type of biomass grown after the conversion also plays a role, and in some cases a LUC can even 

lead to a positive biodiversity development in an area (Campbell and Doswald 2009).   

 

However, no consensus on how to handle the implementation of biodiversity in LCA has yet been 

achieved and approaches on the aspect are still on a rather preliminary level with substantial 

shortcomings (e.g. de Baan et al. 2013; Koellner et al. 2013; Michelsen 2008). Generally, existing 

approaches for assessing LUC impacts on biodiversity can be divided into a group focusing on 

changes in species composition and one focusing on structural changes, key factors and change in 

habitats. A severe challenge for all the approaches is the lack global available data (de Baan et al. 

2013). Two of the most advanced approaches, which stand out in terms of geographical validity and 

spatial resolution, are the ones presented by de Baan et al. (2013), and Michelsen (2008) (which has 

been made globally applicable by Coelho and Michelsen (2013)). The method presented by the 

Baan et al. (2013) focuses on changes in species diversity, while the method presented by 

Michelsen (2008) focuses on rareness as well as structures necessary for biodiversity. In common 

for both methods are that they consider biodiversity impacts of a land use compared to the natural 

state of that area before human interference. Thus, using those methods to assess the difference in 

biodiversity in an area due to a new land use, the impact on biodiversity of the use of the land 

before the assessed LUC is not considered. The reason for this is that the use of a land area is seen 

as a delay in getting back to its natural state (de Baan et al. 2013). However, not considering the 

former land use e.g. means that turning a virgin forest into a crop production is considered to have 

the same impact on biodiversity as using an already biodiversity degraded area, which was once 

virgin forest. This does not seem a fair reflection of reality.  

 

Even if assuming that the degraded land would get back to its natural state if left alone, this will 

take time, and thus there will as minimum be a time lag before this area reaches the same 

biodiversity level as a similar land area which has stayed at the natural state. Further, in many cases 

the surrounding area of a land degraded from the natural state will have changed too, species may 

have been locally extinct, and conditions may not facilitate a turn back to the natural state. This 

advocates for the assessment method reflecting the difference in biodiversity impact from using 

virgin land and already degraded land that once was similar virgin land.  

 

When the goal is to assess the difference in biodiversity impact following a LUC from one human 

influenced land use to another, an elaboration of both methods to reflect this is thus suggested, by 

comparing the biodiversity level of the former land use and the new land use, rather than comparing 

the new land use to a reference state of natural biodiversity in the area, before human influence. (In 

fact, this is the same as considering the different biodiversity impacts of two competing potential 

land uses for implementation on a certain land, using the two methods). Application of this 

suggested elaboration on a hypothetic case study can be seen in Article 4: Jørgensen et al. (2014) 

along with further discussion on impacts of this on results etc. 

 

One could argue, that in a case where the new land use in the assessed area would lead to ILUC, 

that could potentially mean that a virgin land area might be converted somewhere else, by 
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implementation of the former land use of the assessed area. This would be the case if virgin land is 

the marginal available land assumed to be used for the production of what was previously produced 

on the area of the LUC assessed (see more on the definition and modelling of marginal land use in 

Kløverpris (2010)). However, if a LUC leads to an ILUC, a correct way to deal with that would be 

to assess the biodiversity impact of the latter separately, along with the other environmental impacts 

of the ILUC, taking into account where it is expected to take place and thus the geographical 

specific impacts. Whether a LUC will lead to ILUC somewhere else depends on whether the former 

land use is still needed. E.g. in a case of introducing a LUC on a land formerly used to produce a 

crop, this crop will need to be produced somewhere else, to fulfil the same demand (e.g. Kløverpris 

2010). However, in the case where the use of the former produced crop is substituted by the new 

crop (e.g. 1G crops as feedstock for biofuels being substituted by 2G crops for the same purpose) 

this will not lead to ILUC if the end product yield produced per area of the new crop production is 

the same as that of the former crop production. (If the new land use has a higher yield per area than 

the former, the result in such a case will on the contrary be land savings.) 

 

As both the method by de Baan et al (2013) and the one by Michelsen (2008) include substantial 

uncertainty, a comparison of the results of both methods has been performed on a case study of 

biodiversity impacts from a hypothetic change in land use, in order to determine whether they 

support the same conclusions. This comparison shows that the original methods give potentially 

very different results, not only between methods, but also comparing results within each method to 

either neighboring ecoregion  (for the Michelsen (2008) method) or average global data (for the de 

Baan et al. (2013) method). This is assumed to be mainly due to lack of geographical specific data. 

However, when using the suggested elaboration of both methods, a qualitative agreement can be 

seen, as all methods point to the same preferred change in land in terms of biodiversity impacts, 

even though quantitative results still vary greatly (see more results and discussion on this in Article 

4: Jørgensen et al. (2014)).  

 

The lack of consensus on assessment method and the lack of geographical specific data are main 

obstacles for obtaining quantitative and reliable results of biodiversity impacts in LCA. However, 

due to the importance of this aspect, obtaining qualitative or rough quantitative results of best 

available approaches is considered better than disregarding biodiversity impacts. Comparison of 

results from several methods can be used to address the uncertainty issue. It is here recommended to 

use the current biodiversity level as reference state for the assessment, rather than the natural state, 

for including the biodiversity impact of the previous land use.  

 

5.4 Potential tradeoffs 

Effective forcing offsetting from surface albedo increases when dense vegetation covered areas 

such as forests are replaced with crops being cut down annually (especially in seasonally snow 

covered areas). However, this type of changed land use can at the same time substantially decrease 

biodiversity in the area. This tradeoff effect is illustrated in Figure 8. 
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Fig. 8 (Selected parts of result figures from Article 4: Jørgensen et al. 2014): Change in a) effective forcing for 100 

years from the time of the LUC in the specified geographical area for both biogenic CO2 flux, albedo change and the net 

change of both effects, and b) for the induced biodiversity impact, in the case of producing miscanthus on a former 

forest area  

 

The results shown in Figure 8 clearly illustrate a potential tradeoff between effective forcing and 

biodiversity impacts following a LUC. The importance of these impacts, as well as the potential 

tradeoffs between them, supports the need for inclusion of the best possible assessment of these 

impacts in standard LCAs of biomaterials, despite the challenges currently existing for assessing 

some of them. This is needed in order to get a realistic picture of the overall environmental impacts 

from a biomass feedstock crop establishment, and thus of downstream products of the biomass 

feedstock. 

 

6 Available biomass potential and competition issues 

A central sustainability issue of biomaterials is the feedstock; biomass. LCA in various ways 

addresses the sustainability aspects of the biomass production and associated LUCs (with the 

limitations described in Chapter 1). Another crucial aspect is however the availability of a sufficient 

amount of biomass at a global level, both now and in the future. This biomass should be 

sustainable, in the sense that it neither leads to deforestation or similar depletion of natural habitats, 

nor takes up the land needed for feeding the growing global population.  

 

6.1 Biomass potential and demands for biomaterials and bioenergy 

Available biomass potentials and demands are considered at a global scale, as they are typically not 

constrained within national borders, but traded across, due to global market mechanisms.  

 

A global predicted available biomass potential range for today as well as year 2030 and 2050 is 

compared to estimates of demands for energy (including fuels) and organic chemicals (including 

polymers) in the same years in Figure 9. The figure is based on a review of literature data and 
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estimates, and to some extend conversion and extrapolation of those (see details and assumptions in 

Appendix 1).  

 

 
Fig. 9: Estimated potentials for global biomass feedstock sustainably available

2
 for substituting fossil fuel demands 

from energy
3
 and organic chemical production, from present until 2050 

 

What can be seen from Figure 9 is that there are large variations in the estimates of both potentials 

and demands. A part of this variation is due to the conversion from energy units (generally used in 

original references) to mass (dry weight), which has been done using an energy density range of 

biomass of 15-19 GJ/ton
 
(see background in Appendix 1).  

 

Further, the estimated potentially available amount of biomass differs significantly between 

references, partly due to varying assumptions on what is economically feasible and environmentally 

sustainable. Some key reasons for large variations between different literature estimates are: 

 

                                                 
2
 The biomass potentials do not include possible ‘blue biomass’ potential (biomass from the ocean, e.g. algae)  

3
 Estimate ranges exclude energy demand covered by nuclear power, as well as hydro power and other renewable 

energy sources other than biomass and waste (to the extent that the latter have been separable in the reference), meaning 

that it gives the global biomass demand for substituting fossil fuel energy production (see more details in Appendix 1) 



PhD dissertation                                                                              Environmental assessment of biomass based materials 

 

24 

 

 Estimated future biomass/land demand for food, feed etc. vary with different development 

assumptions 

 Some estimates are given as the technical potential, which in itself can vary significantly 

due to different future assumptions, whereas other address a potential which also includes 

practical aspects such as collection loss and competing use of the biomass 

 The issue of the biomass production being sustainable has a varying focus in the different 

studies, and is addressed differently, e.g.: 

o Some studies include assumptions of a high degree of energy crops in the future, 

either replacing existing crops, or being grown on additional land  

o Assumptions for additionally available land for biomass production on a sustainable 

level varies a lot 

o A potential for available biomass from residues and waste is not included in all 

studies, while others only include this potential 

o Inclusion and handling of the aspect of leaving biomass in the fields for soil 

enrichment and replenishment of soil carbon content differs between studies  

 

The estimates of the future demand for energy and organic chemicals also vary a lot, primarily 

depending on the future development scenario used. The given estimates for future energy demand 

thus covers different scenarios form high economic growth scenarios to environmentally oriented 

development scenarios, which has high impact for the estimated future demand. 

 

As future demands and potentials of biomass availability to a large degree depend on various 

development scenarios, this explains the increasing variation in estimates with time into the future 

which can be seen from Figure 9. 

 

Despite the large variations in biomass potentials and demands, some general conclusions can still 

be drawn based on the results from Figure 9: 

 

 On a global scale, most estimates support that there are sufficient amounts of biomass 

sustainably available to cover the global need for polymers and other organic chemicals, 

both today and towards 2050. 

 The available biomass level today and towards 2050 is however not expected to be sufficient 

to cover the entire fossil fuel energy demand as well, (except for the most optimistic 

estimates in 2050) 

 As the need for biomass in order to substitute the entire fossil fuel demand for energy and 

organic chemicals thus seems to be greater than the amount available at a sustainable level, 

there will be a competition issue, meaning that a prioritization of the biomass use will be 

necessary 

 

The estimates above address the potential for total substitution of fossil fuel use for energy and 

organic chemicals (including polymers) with biomass feedstock, in order to give an overview of the 

potential options and limitations of a future biobased society. In reality, substitution of fossil fuel 
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use with biomass feedstock will happen gradually, and will depend on e.g. economic and 

technological development.  

 

6.2 Land use estimates for fulfilling the demand of biomass for biomaterials 

Compared to the demand for energy, the demand for biomass for organic chemical production is 

much more modest, as can be seen from Figure 9. Here, different options for fulfilling this demand 

in terms of land use of different biomass feedstock types are addressed by rough estimates (see 

assumptions and calculation in Appendix 2). 

 

The total consumption of fossil based bulk chemicals was in the order of 360 million ton in 2010 

(UNEP 2013). Replacing this amount of fossil based chemicals with biobased ones would require in 

the magnitude of 70-140 Mha agricultural land for feedstock production, if using starch from 

sugarcane (lower land use) and corn (higher land use), respectively. These amounts of land use 

correspond to approximately 5-10%, of the current global agricultural land. If using 2G energy 

crops instead, it would require around 50-90 Mha agricultural land, corresponding to approximately 

3-6% of the current global agricultural land. If instead using degraded land (or low productivity 

marginal land) for the energy crops, the area needed would be in the range of 90-900 Mha, 

depending on the degradation level of this land. This would correspond to between ~20% and 

~200% of the available degraded land.  

 

For comparison Dornburg et al. (2008) estimate a land use of 126 Mha and 52 Mha, respectively, 

for substitution of 300 million ton petrochemicals with biobased ones, using starch and 

lignocellulosic feedstocks (on agricultural land). Extrapolating these results to substitution of 360 

million ton petrochemicals (2010 production) yields approximately 150 and 60 Mha for starch and 

lignocellulosic feedstocks, respectively. This fits rather well with results obtained here, considering 

the major uncertainties and crude assumptions. 

 

In 2050 the demand for organic chemicals is projected to increase to roughly 1.2 billion ton. If 

assuming that by 2050 most organic chemicals can be produced from 2G biomass, then producing 

all organic chemicals on degraded land would require 300-3000 Mha. This corresponds to between 

~60 and ~600% of the globally available degraded land. Using only degraded land can thus cover a 

substantial part of the global need for organic chemicals, but may not be enough to fulfill the 

demand. Using agricultural residues, e.g. from food production, as well as other biomass residues, 

could decrease the land need.  

 

6.3 Biomaterials and impact on food security 

The concern for impact on food security from using biomass for biofuel production has long been a 

debated topic. And while the demand for biomass for biomaterials is much smaller than the 

potential demand for biomass for biofuels, some of the same discussions may transfer to 
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biomaterials. Thus it seems relevant to shortly address some of the key issues in the debate, which 

are of potential relevance for biomaterials. 

 

It is argued by some that biofuel production, with the focus on 1G, competes with global food 

production and may lead to increased hunger in third world countries. The picture is however much 

more diverse than that. Two main points are discussed in this context; competition for land and food 

price impacts. 

 

For the land competition aspect, it is true that 1G biomass feedstock production for biofuels, and 

biomaterials, use agricultural land, which could otherwise have been used for food production. This 

is however not the same as the production of biofuels and biomaterials leading to hunger, as long as 

enough land (with the right geographical distribution) is left for food production. In fact, the global 

crop production in 2010 was enough to feed 12 billion people, and even more can be produced 

(Hamelinck 2013). Thus while there may not be enough biomass to feed the entire world demand 

for both food, feed, energy and materials, there should be room for substantial biomass utilization 

for biobased products before actually competing with needed food production. Instead, local hunger 

issues primarily arise due to bad harvests, low agricultural yields, problems with transport and 

proper storage of the food, food waste and conflicts (Hamelinck 2013).  

 

If growing 2G biomass on agricultural land, this competes for land in the same way as 1G, and the 

determining factor for the better feedstock crop should be determined in terms of yields (Carus and 

Dammer 2013). However 2G biomass feedstock is often able to grow on degraded or marginal land 

not suited for agricultural production, in which case there is no competition. 

 

For the issue of rising food prices, European biofuel and biodiesel demands are considered to have 

increased world grain prices with ~1-2%, and oilseed prices with ~4% up to 2010, and may affect 

them further due to future demands (Hamelinck 2013).  These direct impacts on food prices arise 

when using 1G biomass feedstock. However, other factors such as food storage and transportation 

issues, food waste and financial speculations have much more impact on local food prices 

(Hamelinck 2013). Another aspect of the food price discussion is that earlier, the issue of dumping 

food prices has been much debated as threatening the food security and leading to local producers 

not being able to sell their products (Hamelinck 2013). Thus, in case of increasing food prices, it 

becomes harder for local customers to afford food, whereas it increases the income of e.g. local 

farmers, and vice versa, and both may have an impact on food security, making the issue a lot more 

complex. 

 

Another suggested food security aspect of growing 1G biomass as industrial feedstock for biofuels 

and biomaterials is that this biomass can also be seen as a potential ‘food buffer’ that could be 

allocated to cover food demands in case of a food crisis (Carus and Dammer 2013).  

 

A final aspect worth noting concerning the issue of food availability is the consumption patterns. 

Today, the largest amount of biomass use by far (e.g. nova-Institute 2013) goes to feed. Thus, part 
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of the discussion of how much land is needed for food production also depends on the future diet of 

the global population, and there is a large potential for biomass savings if primarily fulfilling the 

global food demand with crop-based food products, compared to a more meat rich diet. 

 

7 Environmental performance of biomaterials 

7.1 LCA results of biomaterials compared to fossil counterparts 

The aim of this chapter is to provide a review of the current state-of-the-art within environmental 

impact results from LCAs on biomaterials compared to fossil based counterparts.  

 

Conclusions on the relative environmental sustainability of biobased products compared with their 

fossil based counterparts cover a wide range. However, some general conclusions from LCA studies 

on biomaterials are: 

 

o Biomaterials generally perform better than their petrochemical counterparts with respect to 

fossil fuel consumption and climate change impacts (Weiss et al. 2012; Tufvesson 2010, Weiss 

et al. 2007; Patel et al. 2005). However, this may change if the feedstock is planted on 

previously high carbon stock land (Kim et al. 2009) or when including GHG emissions from 

ILUC, which may be substantial (e.g. Weiss et al. 2012).  

o Biomaterials often have a higher impact than conventional products in the case of 

eutrophication and stratospheric ozone depletion (e.g. Weiss et al. 2012; Weiss et al. 2007). 

o For acidification, some conclude that biomaterials generally have a higher impact than 

conventional products (e.g. Tabone 2010; Tufvesson 2010; Weiss et al. 2007), but others group 

it with the rest of the impact categories with inconclusive results, indicating that the results vary 

between different types of biomaterials (Weiss et al. 2012).  

Also, biomass feedstock production use land and thus include a number of LULUC related impacts, 

which are however in many cases not consistently included in LCA, as mentioned in Chapter 1, and 

addressed more specifically in Chapter 5 (selected impacts).  

While there are trends in the general LCA conclusions outlined above, it is also clear that no 

overarching generally applicable conclusion can be drawn on the environmental performance of 

biomaterials compared to their petrochemical counterparts. This underlines the importance of 

including all relevant impact categories, in order to identify and avoid problem shifting. It also 

highlights that environmental performance of biomaterials relative to fossil counterparts is case 

specific, emphasizing the need for LCAs on case level.  

 

Further, the above conclusions on environmental performance of biomaterials may improve if using 

2G biomass feedstock rather than 1G, as 2G biomass feedstock is generally expected to have a 

better environmental performance than 1G (e.g. Cherubini and Jungmeier 2010). Compared to 1G 
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biomass, 2G biomass e.g. generally has a lower need for agricultural input such as fertilizer, 

pesticides and irrigation (e.g. Dohleman et al. 2010)) and has higher soil organic carbon (SOC) 

sequestration potentials (e.g. Anderson-Teixeira 2009) and can reduce erosion (e.g. Somerville et al. 

2010). Bioproducts based on 2G biomass can thus increase savings in GHG emissions and non-

renewable energy use when substituting fossil products, compared to 1G (e.g. Dornburg et al. 2008) 

and has the potential to decrease the impact on water quality and water use (e.g. Gnansounou 2010). 

Further, it can decrease the land use and especially the use of agricultural land, as discussed in 

Chapter 6.2. If using 2G feedstock in the form of biomass residues and waste, no land use is 

required and many additional agricultural inputs can be completely avoided. However, the use of 

residues may induce other impacts, such as decrease in SOC, depending on the degree of removal of 

residues, as well as other management issues etc. (e.g. Cowie et al. 2006).  

 

In terms of bioproducts
4
 based on algae biomass, there may also be interesting perspectives. Some 

promising features of algae biomass as feedstock for bioproducts are that they can save use of land, 

there is a wide availability, and CO2 capture and biomass yields are high (e.g. Posten and Schaub 

2009; Clarens et al. 2010). However, algae feedstock may still have higher impacts in most 

environmental impact categories compared to conventional crops, including fossil energy use and 

GHG emissions (Clarens et al. 2010) and improvements are needed in order to make algae as 

feedstock for biobased production a sustainable and commercial viable reality (e.g. Sander and 

Murthy 2010). 

 

The non-uniformity of biomaterials and their environmental performance due to different pathway 

options is addressed in the following subchapters. 

 

7.2 Pathways of biomaterial product life cycles 

Consideration of the potential pathway diversity of biomaterial based products is addressed here. A 

conceptual illustration of this diversity is given in Figure 10, and the potential differentiation 

options with inherent environmental impacts for the different life cycle step options is discussed in 

the following subchapters. 

 

                                                 
4
 Assessments generally consider biofuels such as biodiesel, however in terms of feedstock use this can also be used to 

give an indication for biomaterials 
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Fig. 10 Conceptual illustration of potential pathways for biomaterial product lifecycles. Each of the vertical arrows 

cover different possibilities for production routes and/or transport systems, distances etc. *While degraded land is not in 

itself a feedstock, there is an option for 2G feedstock production on degraded or marginal productivity land, which is 

important to include due to different potentials/impacts compared to production on more fertile land. Examples on 

potential biobased chemicals and materials are based on Cherubini and Strømman (2011) and Carus et al. (2013) 

 

7.3 Biomass feedstock type and production 

Some of the main issues impacting environmental sustainability of the biomass feedstock are: 

 

 Former land use 

 Type of biomass  

 Management practice 

 Climate and soil conditions 

 

 

 

Former land use and type of biomass feedstock 
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Biomass feedstock production for biomaterials requires use of land and; how much depends on the 

potential yield of the biomass. For instance, the land need for biomass production if using sugarcane 

starch as feedstock is almost half of that needed if using corn starch (de Vries et al. 2010), while 

using energy crops such as miscanthus and switchgrass has the potential to reduce the land need 

even further (e.g. Sanderson 2006) (see yield and land use estimates of those feedstocks in 

Appendix 2). 

 

Besides the quantity aspect of land use, the quality in terms of environmental impacts is also 

dependent on the type of biomass feedstock produced, as well as on the former land use. Generally, 

converting natural forests and other land types rich in biodiversity and biogenic carbon to crop 

production will have larger impact on biodiversity loss and atmospheric CO2 emissions than using 

other land types; if using degraded land for establishing bioenergy plantations this will on the 

contrary increase biogenic carbon stocks, improve soil quality and positively impact the quality of 

aquatic ecosystems (e.g. Lal 2005). For the overall global warming change following a LUC from 

one type of land use to another, albedo change impacts may also be highly important, but often with 

opposite operational sign than impacts from biogenic carbon fluxes. E.g. the clearing of a forest will 

lead to global warming impacts from oxidation of the biogenic carbon stock, but this may in some 

cases be more than counterbalanced by the climate cooling induced by the entailed change in 

surface albedo (Randerson et al. 2006; Bala et al. 2007; Betts 2007; Davin et al. 2007; Cherubini et 

al. 2012a; O’Halloran et al. 2012) as also discussed in Chapter 5. (See Chapter 5 and Article 4: 

Jørgensen et al. (2014) for further discussion on potential impacts and tradeoffs from biogenic 

carbon flux, albedo and biodiversity changes from different former land uses to a biomass crop 

production, based on a hypothetic case study). (For general differences in environmental impacts 

between 1G, 2G and 3G, see Chapter 7.1). 

 

Management practice 

While some agricultural input requirement is determined by the crop type, different management 

practices can be employed. Differences can e.g. include whether, and to which degree, tilling, 

fertilizers, pesticides and irrigation are employed in the crop production. Changes in management 

practices can substantially change impacts on e.g. SOC (Cowie et al. 2006) and eutrophication and 

stratospheric ozone depletion (Weiss et al. 2012). However change in management practice for 

reducing environmental impacts of the production will often also impact yields, and thus may lead 

to increased demand for land, which need to be taken into consideration in the overall assessment of 

the environmental performance (e.g. Weiss et al. 2012). 

 

Climate and soil conditions 

The climate and soil conditions of an area used for crop production can have high impact in terms 

of potential biomass yield (e.g. McKendry 2002) and SOC content (Mishra et al. 2012, Cowie et al. 

2006). It will also influence global warming impact potentials; both through the influence on 

biogenic carbon stock, and through surface albedo, which is affected by climate aspects such as 

seasonal snow cover (e.g. Claussen et al. 2001). Climate conditions also impact the need for 

irrigation to obtain optimal crop yields (e.g. Mishra et al. 2012). 
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7.4 Conversion route and product type 

 Conversion route 

 Intermediate chemicals  

 End products  

 Transportation 

 

Conversion route and intermediate chemicals  

There are several conversion steps involved in the production of biomaterial based products. First 

there is the conversion of the biomass feedstock through a number of processes to bulk chemicals. 

In some cases, the bulk chemicals may also be the end product. But those chemicals can also be 

building blocks for a number of other chemicals and materials (e.g. UNEP 2013, Cherubini and 

Strømman 2011). The environmental performance of the end product thus depends on the 

performance of all conversion processes taking place in the production, potentially via a number of 

intermediate chemicals. The same biobased end products can often originate through different 

conversion routes, which all have influence on the environmental performance. Conversion 

technologies from biomass to chemicals include e.g. enzymatic, thermal and chemical processes. 

The influence of the conversion route on the environmental profile of the end product depends e.g. 

on efficiency, both in terms of use of the biomass feedstock, but also in terms of additional inputs 

such as energy, chemicals and water.  

 

End products 

The type of end product is determining not only for the amount of biomass feedstock needed and 

associated environmental impacts, but also for the duration of temporary carbon storage in the 

product. This duration is the time from atmospheric CO2 sequestration in biomass
5
 until the final re-

emission of the carbon to the atmosphere after the disposal of the product, and is thus dependent on 

the lifetime of the product (and potentially on the end-of-life handling which is addressed in 

Chapter 7.5). The climate change mitigation value or impact of the temporary carbon storage in 

biomaterials is highly dependent on the time of sequestration and duration of the storage (see 

Chapter 3.5 and Article 3: Jørgensen et al. 2015). 

 

Transportation 

The issue of transportation is involved several times during the product life cycle; both of biomass 

from field to conversion facility (which may include transport to several intermediate production 

facilities) before the end product is transported to the consumer. Finally there will be some degree 

of transportation from the consumer to the final disposal. Environmental impacts from 

                                                 
5
If the biomass has been produced for the purpose of producing the biobased product, and the stored carbon thus can be 

assigned to this, as it would not have been stored otherwise. This is not the case if e.g. using biomass from virgin land 

etc. where the carbon was already stored, and the carbon storage can thus not be assigned to the biomaterial production.  
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transportation depend on distance, transport mean, infrastructure, fuel type etc., and may have 

substantial influence on the environmental profile of e.g. end products with low density (e.g. Patel 

et al. 2005). 

 

7.5 End-of-life handling 

 Geographic location 

 Waste management options 

 Potential prolonging of carbon storage 

 

Geographic location 

For the end-of-life handling, geographic location is a key parameter, due to national differences in 

waste management infrastructure (e.g. Patel et al. 2005).  

 

Waste management options  

Waste management options for biomaterials cover a wide range including recycling, incineration, 

composting and landfilling (e.g. Weiss et al. 2012; Patel et al 2005). The type of waste management 

applied may have substantial influence on the life cycle GHG impacts of biomaterials. E.g. GHG 

variations from different waste treatment scenarios of a specific biobased product have been shown 

to be as large as the difference in GHG impacts between the biobased product and its fossil fuel 

reference product (Würdinger et al. 2002). 

 

Potential prolonging of carbon storage 

In the case of landfilling biomaterials, this may enhance the duration of the temporary storage of the 

carbon bound in the biomaterial, to the extent that the biomaterial is not degraded under the given 

conditions in the landfill. The potential climate change mitigation benefit from prolonging the 

temporary carbon storage should be seen in comparison to the environmental impact savings from 

alternative waste management options, e.g. fossil fuel replacement in case of incineration with 

energy recovery, or reduced materials production in case of recycling. 

 

8  Environmental perspectives of biomaterials 

While Chapter 7 addresses the environmental performance of biomaterials, this chapter addresses 

the environmental perspectives of biomaterials, that is, adding a future perspective. Both in terms of 

potential competition and synergy effects of biobased products, and in terms of future potential 

development in environmental performance of biomaterials relative to that of conventional fossil 

fuel alternatives. 
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8.1 Competition and synergy issues 

As discussed in Chapter 6, the amount of sustainably available biomass in the future is not likely to 

cover the total demand of a biobased society, replacing all fossil based materials and energy. Thus, 

the biomass that will be available for the biobased society vision should be prioritized to the use 

where it has most value.  

 

Competitiveness of biomaterials compared to biomass use for energy purposes 

When comparing the environmental performance of biomaterials to that of bioenergy, several 

studies conclude that biomaterials currently come out more favorable in terms of potential for 

saving energy and reducing GHG emissions (Patel et al. 2005). The temporary storage of carbon in 

biomaterials may also pose an environmental preference of biomaterials compared to biofuels 

(Carus and Dammer 2013), depending on timing of carbon sequestration and duration of the storage 

(Article 3: Jørgensen et al. 2015). Besides, biomaterials are more high-value products and seem to 

have a better economic performance than bioenergy, while also having the potential to create more 

jobs (Carus and Dammer 2013). Moreover, biomaterials cannot easily be replaced by other 

renewables, which is not the case for bioenergy (Carus and Dammer 2013).  

 

As the involved technologies are in many cases still rather new with potentials for improvements, 

these results are preliminary and are subject to change depending on future innovations. Another 

aspect is to which degree the use of biomass for materials and energy is competition and to which 

these may be produced in synergy as complementary products (Patel et al. 2005). 

 

Integrated Biorefineries and carbon cascading 

Complementary production of e.g. biomaterials and biofuels is suggested to be done through 

integrated biorefineries. The general concept of a biorefinery is a biobased equivalent to the normal 

petrochemical refineries existing today, producing fuels and other products in an integrated process. 

While the borefinery concept already exist to some extend today, the technology is still on a 

preliminary level and significant development in this field is expected in the coming years (Weiss et 

al. 2012). Utilizing biomass for producing energy and materials in integrated biorefineries through 

the use of a range of technical processes is expected to optimize the energy and material recovery of 

the available biomass (Cherubini and Jungmeier 2010). 

 

Another suggestion for optimizing the use of the available biomass resources is the concept of 

‘carbon cascading’, which means that the biomass is first used for biomaterial products, and at their 

end-of-life they are used for producing bioenergy, through incineration with energy recovery (e.g. 

Weiss et al. 2012). 

 

8.2 Maturity of competing technologies 

An important perspective of environmental performance of biomaterials relative to conventional 

fossil counterparts is the aspect of the age of the competing technologies. While the petrochemical 
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industry is based on a mature technology which has been optimized for many years, the same is not 

the case for many of the biotechnologies used for producing biomaterials (e.g. Weiss et al. 2007).  

Thus, substantial improvement potentials of biotechnology are expected in terms of both efficiency 

optimization and in terms of the integrated production of biofuels and biomaterials in biorefineries 

(Patel et al. 2005).  

 

8.3 Future feedstocks 

Future biomass feedstocks 

While most biomaterials being produced today are based on 1G biomass feedstock, the 

development in use of advanced biomass feedstock has a major focus today. As outlined in Chapter 

7.1, the environmental performance is likely to improve on a number of impacts if using 2G rather 

than 1G biomass feedstock. According to this, biomaterial products have a promising potential for 

future environmental improvement relative to conventional fossil based products through increased 

use of 2G feedstock. 

 

Future fossil fuel feedstock 

The biomass feedstock is not the only feedstock which may change in the future. With oil resources 

going fast towards depletion, accompanied by rising oil prices, new types of fossil fuel feedstock 

for different products are getting increased attention. Two such options are shale gas and oil tar 

sands. Some environmental aspects of those fossil feedstock types are that both have a life cycle 

water consumption which is about twice as high as for conventional oil (King and Webber 2008) 

and both lead to changes in quality and availability of land (Jordaan 2012). Further, the use of oil tar 

sands at the moment leads to approximately a three times higher GHG emission impact than 

conventional oil (NETL 2008; Charpentier et al. 2009). Thus if using shale gas and oil tar sands as 

fossil material feedstock in the future, increases in environmental impacts compared to using 

conventional oil as feedstock needs to be considered, thus improving the relative environmental 

performance of biomaterials compared to fossil materials. 

 

9 Conclusion 

This chapter summarizes main conclusions from the PhD project presented in this dissertation  

 

9.1 The CTP approach for GHG emission and temporary carbon storage assessment 

With quickly approaching climate tipping points, which are expected to lead to dramatic and 

potentially irreversible changes if crossed, there is a need for addressing the urgency of mitigating 

climate change in order to stay below such levels. This is not included in the GWP. The suggested 

CTP approach covers this need, by expressing GHG emission impacts divided by the ‘capacity’ of 

the atmosphere for absorbing the impact, without exceeding the target level. The CTP is suggested 
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to compliment the GWP, which should still be used to represent the long-term climate change 

impacts of GHG emissions. 

 

Further, the potential climate change mitigation value of temporary carbon storage, in terms of 

contributing to avoid or postpone the crossing of climate tipping points, can be included in the 

environmental profile of biomaterials through the use of an adapted version of the CTP approach. 

The CTP mitigation value of temporary carbon storage is very dependent on the timing of 

sequestration and re-emission of carbon relative to the target time and the duration of the storage. It 

may even lead to an increase in CTP impact if the carbon is re-emitted before the expected time of 

crossing the target level, while for storage beyond this time, mitigation values increase the further 

the storage goes beyond the target level. Implementation of the CTP approach in LCA for both 

emissions and temporary carbon storage is supported by the CTP characterization factors provided 

for several GHG concentration development scenarios and a target level of 450 ppm CO2e. 

 

9.2 Potential importance of (temporary) carbon storage in biomaterials 

The climate change mitigation value of temporary carbon storage lies in temporarily removing CO2 

from the atmosphere, if this can contribute to either bridging, or at least postponing for a 

noteworthy period, the crossing of a climatic target level, which is otherwise expected to induce 

dangerous climate change impacts. Long-term carbon storage in biomaterials has the potential to 

provide substantial contribution to avoid or postpone (depending on the general development in 

atmospheric GHG concentration) the crossing of the expected dangerous climate change level of 

450 ppm CO2e. The total magnitude of this potential is dependent on the market share biomaterials 

will gain in the future.  

 

While single product carbon storage may be temporary, the resulting stock changes are usually 

more long-term, or even permanent. Substitution of petrochemical materials with biomaterials (and 

even more so a shift from a fossil based to a biobased society) would lead to reduction of carbon 

fluxes from fossil fuel reservoirs to the atmosphere, as well as increase carbon fluxes from the 

atmosphere to the anthroposhere (via the biosphere) and potentially also increase the carbon stock 

in the biosphere. These carbon flux changes lead to a reduction in the atmospheric GHG 

concentration level, which will be permanent as long as the biomaterial production is continued at 

the same level or is increased. 

 

9.3 Potential influence and tradeoffs of selected current non-standard LCA impacts  

Changes in biodiversity, surface albedo and total biogenic carbon flux (including SOC) following a 

LUC are often not included in LCAs of biomaterials. However, all three types of impacts are 

potentially of great importance. Further, potential tradeoffs exist between some of those impacts. 

Thus it is important to include the best possible assessment of these impacts in LCA of 

biomaterials, in order to get a realistic picture of the overall impacts from a biomass feedstock crop 
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establishment, and thus downstream products. However, for assessment of several of those impacts, 

challenges exist in terms of e.g. the requirements to availability of local data as well as the 

preliminary state of some methods.  

 

9.4 Environmental performance and perspectives of biomaterials 

Generally, biomaterials are in LCA studies found to save fossil fuel consumption and reduce global 

warming compared to conventional petrochemical materials. At the same time, biomaterials often 

increase other impacts such as eutrophication and acidification, while also carrying a land use and 

related environmental impacts. Many of those aspects are expected to be improved if using 2G 

biomass feedstock for biomaterials, rather than 1G. However, no general conclusion on the overall 

environmental performance of biomaterials relative to petrochemical materials can be made, as 

biomaterials are very diverse in terms of both end products and life cycles.  

 

Future perspectives of biomaterials include the option for optimization of biomass use through 

integrated co-production of biomaterials and biofuels in biorefineries, as well as the expectations of 

efficiency improvements of technologies for biomaterial production, relative to the efficiency of the 

more mature technology for petrochemical material production. Finally, the aspect of future 

potential shifts in feedstocks, both in terms of the option of using biomass beyond 1G as feedstock 

for biomaterials, and the potential use of new fossil fuel feedstocks, may change the relative 

environmental performance of biomaterials and conventional petrochemical materials. 

 

In terms of potential for biomass feedstock availability, it is estimated that there will be enough 

biomass feedstock available for future biomaterial production without competing with food for the 

land, even if the entire global need for organic chemicals (including polymers) is based on biomass 

in the future. However, as there is not likely to be enough biomass available to cover both the entire 

future demand for energy and materials, some degree of competition between these two uses is 

expected. Current estimates point to biomaterials being both more valuable and yielding higher 

environmental savings than bioenergy, giving the former a competitive advantage. 

 

10 Recommendations for future work  

Through the work during this PhD project, potentials for further elaboration and application of 

methods beyond the scope of this project have been identified and recommendations for future 

research are briefly outlined in this chapter. 

 

10.1 Calculation of additional CTP characterization factors  

The developed CTP approach has been applied to a number of atmospheric GHG concentration 

development scenarios, calculating characterization factors for at target level of 450 ppm CO2e for 
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the three major anthropogenic GHGs, CO2, CH4 and N2O, with emission times from present until 

the respective target times. For emissions of those GHGs, CTP characterization factors have been 

calculated for all four representative concentration pathway scenarios (RCPs), given by 

Meinshausen et al. (2011), which are also used for the 5
th

 IPCC report (Stocker et al. 2013). CTP 

characterization factors for temporary carbon storage have been calculated for two of the RCPs as 

described in Chapter 3.5, with time of carbon sequestration from present until the respective target 

times, for storage durations of 2 to 50 years. 

 

Further work should be done in terms of calculating CTP characterization factors for other GHG 

emission types (e.g. CFC, HCFC and HFC gasses), for the four RCP scenarios. This is possible to 

do directly by applying the proposed CTP method (see Article 2: Jørgensen et al. 2014) if the 

atmospheric lifetime and specific radiative forcing of those GHGs are available. Further, 

characterization factors for other climatic target levels and other GHG development scenarios can 

be calculated, depending on which climatic target level is pursued and which atmospheric GHG 

concentration development pathway is expected. Likewise, CTP characterization factors of 

temporary carbon storage for the two last RCP scenarios (RCP 4.5 and RCP 8.5) should be 

calculated as well, which can be done by using the developed method for this special aspect (see 

Article 3: Jørgensen et al. 2015). 

 

10.2 Application of the CTP approach for non-GHG climate forcings 

Besides calculating CTP factors for all relevant GHGs, another important aspect is the inclusion of 

other important non-GHG drivers of climate forcings, such as change in surface albedo. The 

application of the CTP approach to such aspects can be done by expressing their impacts as CO2e, 

in terms of effective forcing change impact, from the time the change in climate forcing begins until 

the target time. The formulation of this requires further elaboration and is an issue for further work. 

 

10.3 Application of the CTP approach in a Planetary Boundary context 

As the remaining atmospheric capacity for receiving GHG emissions up to the point where the 

target level is reached is treated as a limited ‘resource’, the nature of the CTP approach is in line 

with the idea of defining absolute limits to environmental impacts in terms of ‘planetary 

boundaries’ (Rockström et al. 2009), as mentioned in Article 2: Jørgensen et al. (2014). The CTP is 

thus based on a planetary boundary for climate change, striving to avoid the crossing of dangerous 

climate tipping points. The approach developed for the CTP could also be applied to other impact 

categories, provided that boundaries/target levels can first be established, quantifying the associated 

remaining capacities and thus the impact factors. Further work should be done in terms of pursuing 

the potential of the capacity concept of the CTP approach to establish ‘boundary exceeding 

potentials’ in other impact categories. 

 



PhD dissertation                                                                              Environmental assessment of biomass based materials 

 

38 

 

11 References 

Anderson-Teixeira KJ, Davis SC, Masters MD, Delucia E H (2009) Changes in soil organic carbon 

under biofuel crops. GCB Bioenergy 1: 75–96 

 

Anderson-Teixeira KJ, Snyder PK, Twine TE, Cuadra SV, Costa MH, DeLucia EH (2012) Climate-

regulation services of natural and agricultural ecoregions of the Americas. Nature Climate Change 

2: 177-181 

 

Archer D, Brovkin V (2008) The millennial atmospheric lifetime of anthropogenic CO2. Clim 

Change 90: 283–297 

 

Archer D, Kheshgi H, Maier-Reimer E (1997) Multiple timescales for neutralization of fossil fuel 

CO2. Geophys Res Lett 24: 405-408 

 

Bala G, Caldeira  K, Wickett M, Phillips TJ, Lobell DB, Delire C, Mirin A (2007) Combined 

climate and carbon cycle-cycle effects of large-scale deforestation. PNAS 104: 6550-6555 

 

Bessou C, Ferchaud F, Gabrielle B, Mary B (2011) Biofuels, Greenhouse Gases and Climate 

Change. In: E. Lichtfouse et al. (eds.) Sustainable Agriculture Volume 2. doi: 10.1007/978-94-007-

0394-0_20, Springer Science+Business Media B.V. - EDP Sciences 2011 

 

Betts R (2007) Implications of land ecosystem-atmosphere interactions for strategies for climate 

change adaptation and mitigation. Tellus B 59: 602–615 

 

Brandão M, Levasseur A (2011) Assessing temporary carbon storage in life cycle assessment and 

carbon footprinting: Outcomes of an expert workshop. Publications Office of the European Union, 

Luxembourg. ISBN 978-92-79-20350-3  

 

Brandão M, Levasseur A, Kirschbaum MUF, Weidema BP, Cowie AL, Jørgensen SV, Hauschild 

MZ, Pennington DW, Chomkhamsri K (2013) Key issues and options in accounting for carbon 

sequestration and temporary storage in life cycle assessment and carbon footprinting. Int J Life 

Cycle Assess. doi: 10.1007/s11367-012-0451-6 

 

Bright RM, Cherubini F, Strømman AH (2012a) Climate impacts of bioenergy: Inclusion of carbon 

cycle and albedo dynamics in life cycle impact assessment. Environ Impact Asses Rev 37: 2-11 

 

Bright RM, Cherubini F, Astrup R, Bird N, Cowie AL, Ducey, MJ, Marland G, Pingoud K, 

Savolainen I, Strømman AH (2012b) A comment to “Large-scale bioenergy from additional harvest 

of forest biomass is neither sustainable nor greenhouse gas neutral”: Important insights beyond 

greenhouse gas accounting. GCB Bioenergy 4(6): 617-619 



PhD dissertation                                                                              Environmental assessment of biomass based materials 

 

39 

 

 

Bos HL, Meesters KPH, Conijn SG, Corré WJ, Patel MK (2012) Accounting for the constrained 

availability of land: a comparison of bio-based ethanol, polyethylene, and PLA with regard to non-

renewable energy use and land use. Biofuels, Bioprod. Bioref. 6: 146–158 

 

Campbell A, Doswald N (2009) The impacts of biofuel production on biodiversity: A review of the 

current literature. UNEP-WCMC, Cambridge, UK  

 

Carus M, Baltus W, Carrez D, Kaeb H, Ravenstijn J, Zepnik S (2013) Market study on Bio-based 

Polymers in the World, Capacities, Production and Applications: Status Quo and Trends towards 

2020 (leaflet). nova-Institut GmbH, Version 2013-07.  

 

Carus M, Carrez D, Kaeb H, Ravenstijn J, Venus J (2011) Level Playing Field for Bio-based 

Chemistry and Materials. nova-Institut GmbH, nova paper #1 on bio-based economy 2011-07 

 

Carus M, Dammer L (2013) Food or non-food: Which agricultural feedstocks are best for industrial 

uses? nova-Institut GmbH, nova paper #2 on bio-based economy 2013-07 

 

Charpentier AD, Bergerson JA, MacLean HA (2009) Understanding the Canadian oil sands 

industry’s greenhouse gas emissions. Environ Res Lett 4: 014005  

 

Cherubini F, Bright RM, Strømman AH (2012a) Site-specific global warming potentials of biogenic 

CO2 for bioenergy: contributions from carbon fluxes and albedo dynamics. Environ Res Lett 7: 

045902 

 

Cherubini F, Guest G and Strømman AH (2012b) Application of probability distributions to the 

modeling of biogenic CO2 fluxes in life cycle assessment. GCB Bioenergy 4:784-98 

 

Cherubini F, Jungmeier G (2010). LCA of a biorefinery concept producing bioethanol, bioenergy, 

and chemicals from switchgrass. Int J LCA 15: 53-66 

 

Cherubini F, Strømman AH (2011) Chemicals from lignocellulosic biomass: opportunities, 

perspectives, and potential of biorefinery systems. Biofuels Bioprod Bioref 5: 548–561 

  

Clarens AF, Resurreccion EP, White MA, Colosi LM (2010) Environmental Life Cycle 

Comparison of Algae to Other Bioenergy Feedstocks. Environ Sci Technol 44: 1813–1819 

 

Claussen M, Brovkin V, Ganopolski A (2001) Biogeophysical versus biogeochemical feedbacks of 

large-scale land cover change. Geophys Res Lett 28: 1011-1014 

 

Clift R, Brandão M (2008) Carbon storage and timing of emissions. Centre for Environmental 

Strategy, University of Surrey, GU2 7XH, UK. ISSN: 1464-8083  



PhD dissertation                                                                              Environmental assessment of biomass based materials 

 

40 

 

 

Coelho CRV, Michelsen O (2013) Land use impacts on biodiversity from kiwifruit production in 

New Zealand assessed with global and local datasets. Int J Life Cycle Assess doi: 10.1007/s11367-

013-0628-7 

 

Cowie AL, Smith P, Johnson D (2006) Does soil carbon loss in biomass production systems negate 

the greenhouse benefits of bioenergy? Mitig Adapt Strateg Glob Chang 11: 979-1002 

 

Davidson EA, Ackerman IL (1993) Changes in soil carbon inventories following cultivation of 

previously untilled soils. Biogeochemistry 20: 161-193 

 

Davin EL, de Noblet-Ducoudré N, Friedlingstein P (2007) Impact of land cover change on surface 

climate: Relevance of the radiative forcing concept. Geophys Res Lett 34: L13702 

 

de Baan L, Alkemade R, Koellner T (2013) Land use impacts on biodiversity in LCA: A global 

approach. Int J Life Cycle Assess. doi: 10.1007/s11367-012-0412-0 

 

de Vries SC, van de Ven GWJ, van Ittersum MK, Giller KE (2010) Resource use efficiency and 

environmental performance of nine major biofuel crops, processed by first-generation conversion 

techniques. Biomass and Bioenergy 34: 588-601 

 

Diaz S, Cabido M (2001): Vive la difference: plant functional diversity matters to ecosystem 

processes. Trends in Ecology & Evolution 16: 646–655 

 

Djomo S N, Kasmioui O E, Ceulemans R (2011) Energy and greenhouse gas balance of bioenergy 

production from poplar and willow: a review. GCB Bioenergy 3: 181–197 

 

Dohleman FG, Heaton EA, Long SP (2010) Perennial Grasses as Second-Generation Sustainable 

Feedstocks Without Conflict with Food Production. In: Khanna M et al. (eds) Handbook of 

Bioenergy Economics and Policy. Natural Resource Management and Policy 3. doi: 10.1007/978-1-

4419-0369-3_3, Springer Science+Business Media, LLC 

 

Don A, Osborne B, Hastings A, Skiba U, Carter M S, Drewer J, Flessa H, Freibauer A, Hyvönen N, 

Jones M B, Lanigan G J, Mander Ü, Monti A, Djomo S N, Valentine J, Walter K, Zegada-Lizarazu 

W and Zenone T (2012) Land-use change to bioenergy production in Europe: implications for the 

greenhouse gas balance and soil carbon. GCB Bioenergy 4: 372–391 

 

Dornburg et al. (2008) Scenario projections for future market potentials of biobased bulk chemicals. 

Environ Sci Technol 42: 2261-2267 

 



PhD dissertation                                                                              Environmental assessment of biomass based materials 

 

41 

 

Dornburg V, Marland G (2008) Temporary storage of carbon in the biosphere does have value for 

climate change mitigation: a response to the paper by Miko Kirschbaum. Mitig Adapt Strateg Glob 

Change 13: 211-217 

 

Fearnside PM (2008) On the value of temporary carbon: a comment on Kirschbaum. Mitig Adapt 

Strateg Glob Change 13: 211-217 

 

Forster P, Ramaswamy V, Artaxo P, Berntsen T, Betts R, Fahey DW, Haywood J, Lean J, Lowe 

DC, Myhre G, Nganga J, Prinn R, Raga G, Schulz M, Van Dorland R (2007) Changes in 

atmospheric constituents and in radiative forcing. In: Solomon S, Qin D, Manning M, Chen Z, 

Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate Change 2007 - The Physical Science 

Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental 

Panel on Climate Change. Cambridge University Press: Cambridge, UK and New York, NY, USA, 

pp 129-234 

 

Fujino J, Nair R, Kainuma M, Masui T, Matsuoka Y (2006) Multi-gas mitigation analysis on 

stabilization scenarios using AIM global model. Multigas Mitigation and Climate Policy. The 

Energy Journal Special Issue  

 

Gnansounou E (2010) Production and use of lignocellulosic bioethanol in Europe: Current situation 

and perspectives. Bioresource Technology 101: 4842–4850 

 

Georgescu M, Lobell DB, Field CB (2009) Potential impact of U.S. biofuels on regional climate, 

Geophys Res Lett 36: L21806  

 

Georgescu M, Lobell DB, Field CB (2011) Direct climate effects of perennial bioenergy crops in 

the United States. PNAS 108: 4307-4312 

 

Guest G, Cherubini F, Strømman, AH (2013) Global warming potential of carbon dioxide 

emissions from biomass stored in the anthroposphere and used for bioenergy at end of life. J Indust 

Ecol 17:20-30 

 

Hamelinck (2013) Biofuels and food security – Risks and opportunities. Project number 

BIENL13469, Ecofys, Netherlands B.V.  

 

Hansen J, Sato M, Kharecha P, Beerling D, Berner R, Masson-Delmotte V, Pagani M, Raymo M, 

Royer DL, Zachos JC (2008). Target atmospheric CO2: Where should humanity aim? Open 

Atmospheric Science Journal 2: 217-231 

 

Jordaan SM (2012) Land and Water Impacts of Oil Sands Production in Alberta. Environ Sci 

Technol 46: 3611-3617 

 



PhD dissertation                                                                              Environmental assessment of biomass based materials 

 

42 

 

Jørgensen SV, Cherubini F, Michelsen O (2014) Biogenic CO2 fluxes, changes in surface albedo 

and biodiversity impacts from establishment of a miscanthus plantation. J Environ Manag 146:346-

354. doi: 10.1016/j.jenvman.2014.06.033 

 

Jørgensen SV, Hauschild MZ (2010) Need for Relevant Timescales in Temporary Carbon Storage 

Crediting. Presentation held at the Expert Workshop on Temporary Carbon Storage for use in Life 

Cycle Assessment and Carbon Footprinting, at the Joint Research Centre of the European 

Commission, Ispra October 2010. Abstract available, and conclusions of the workshop summarized, 

in Brandão and Levasseur (2011) 

 

Jørgensen SV, Hauschild MZ (2013) Need for relevant timescales when crediting temporary carbon 

storage. Int J Life Cycle Assess 18: 747-754 

 

Jørgensen SV, Hauschild MZ, Nielsen PH (2014) Assessment of urgent impacts of greenhouse gas 

emissions – the Climate Tipping Potential (CTP). Int J Life Cycle Assess 19:919–930. doi: 

10.1007/s11367-013-0693-y 

 

Jørgensen SV, Hauschild MZ, Nielsen PH (2015) The potential contribution to climate change 

mitigation from temporary carbon storage in biomaterials. Int J Life Cycle Assess 20:451–462. doi: 

10.1007/s11367-015-0845-3 

 

Kim H, Kim S, Dale BE (2009) Biofuels, Land Use Change, and Greenhouse Gas Emissons: Some 

Unexplored Variables. Environmental Science and Technology 43: 961-967 

 

King C, Webber M (2008) Water intensity of transportation. Environ Sci Technol 42: 866−7872 

 

Kirschbaum MUF (2006) Temporary Carbon Sequestration Cannot Prevent Climate Change. Mitig 

Adapt Strateg Glob Change 11: 1151-1164 

 

Kløverpris J (2010) Consequential Life Cycle Inventory Modelling of Land Use Induced by Crop 

Consumption. Industrial PhD Dissertation, DTU Management Engineering, Technical University of 

Denmark. ISBN: 978-87-90855-69-7 

 

Koellner T, de Baan L, Beck T, Brandão M, Civit B, Margni M, Milà i Canals L, Saad R, de Souza 

DM, Müller-Wenk R (2013) UNEP-SETAC guideline on global land use impact assessment on 

biodiversity and ecosystem services in LCA. Int J Life Cycle Assess 18: 1188–1202 

 

Lal (2005) World crop residues production and implications of its use as a biofuel. Environment 

International 31: 575–584 

 

Loarie SR, Lobell DB, Asner GP, Mu Q, Field CB (2011) Direct impacts on local climate of sugar-

cane expansion in Brazil. Nature Climate Change 1: 105-109 



PhD dissertation                                                                              Environmental assessment of biomass based materials 

 

43 

 

 

McKendry P (2002) Energy production from biomass (part 1): overview of biomass. Bioresource 

Technology 83: 37–46 

 

Meehl GA, Stocker TF, Collins WD, Friedlingstein p, Gaye AT, Gregory JM, Kitoh A, Knutti R, 

Murphy JM, Noda A, Raper SCB, Watterson IG, Weaver AJ, Zhao ZC (2007) Global Climate 

Projections. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller 

HL (eds) Climate Change 2007 - The Physical Science Basis. Contribution of Working Group I to 

the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge 

University Press: Cambridge, UK and New York, NY, USA, pp 747-845 

 

Meinshausen M, Hare B (2002) Temporary sinks do not cause permanent climatic benefits. 

Achieving short-term emissions reduction targets at the future’s expense. Greenpeace Background 

Paper, 7 pp 

 

Meinshausen M, Smith SJ, Calvin K, Daniel JS, Kainuma MLT, Lamarque J-F, Matsumoto K, 

Montzka SA, Raper SCB, Riahi K, Thomson A, Velders GJM, van Vuuren DPP (2011) The RCP 

greenhouse gas concentrations and their extensions from 1765 to 2500. Climatic Change 109: 213-

241 

 

Michelsen O (2008) Assessment of Land Use Impact on Biodiversity. Proposal of a new 

methodology exemplified with forestry operations in Norway. Int J LCA 13: 22-31 

 

Mishra U, Torn MS, Fingerman K (2012) Miscanthus biomass productivity within US croplands 

and its potential impact on soil organic carbon. GCB Bioenergy doi:10.1111/j.1757-

1707.2012.01201.x 

 

Moura-Costa P (2002) Carbon accounting, trading and the temporary nature of carbon storage. The 

Nature Conservancy U.S. 

 

Moura-Costa P, Wilson C (2000) An equivalence factor between CO2 avoided emissions and 

sequestration–description and applications in forestry. Mitig Adapt Strateg Glob Change 5: 51-60 

 

NETL (2008) Development of Baseline Data and Analysis of Life Cycle Greenhouse Gas 

Emissions of Petroleum-Based Fuels. National Energy Technology Laboratory (NETL). 

DOE/NETL-2009/1346 

 

nova-Institute (2013) Bio-based Economy, Services of the nova-Institute GmbH, Policy and 

backgroundpapers, Distribution of biomass use worldwide 2008. Available at http://www.bio-

based.eu/policy/en/index.php, accessed January 2014 

 

http://www.bio-based.eu/policy/en/index.php
http://www.bio-based.eu/policy/en/index.php


PhD dissertation                                                                              Environmental assessment of biomass based materials 

 

44 

 

O'Halloran TL, Law BE, Goulden ML, Wang Z, Barr JG, Schaaf C, Brown M, Fuentes JD, 

Göckede M, Black A, Engel V (2012) Radiative forcing of natural forest disturbances. Global 

Change Biology 18: 555-565 

 

Patel M, Bastioli C, Marini L, Wuerdinger E (2005) Life Cycle Assessment of Bio-based Polymers 

and Natural Fiber Composites. Bioploymers Online 

 

Peters GP, Aamaas B, Lund MT, Solli C, Fuglestvedt JS (2011) Alternative “global warming” 

metrics in life cycle assessment: a case study with existing transportation data. Environ Sci Technol 

45: 8633-8641 

 

PlasticsEurope (2013) The Plastics Portal, Q&As. Accessible at 

http://www.plasticseurope.org/what-is-plastic/types-of-plastics-11148/bio-based-plastics/qas.aspx, 

accessed December 2013 

 

Posten C, Schaub G (2009) Microalgae and terrestrial biomass as source for fuels—A process view. 

Journal of Biotechnology 142: 64–69 

 

Randerson JT, Liu H, Flanner MG, Chambers SD, Jin Y, Hess PG, Pfister G, Mack MC, Treseder 

KK, Welp LR, Chapin FS, Harden JW, Goulden ML, Lyons E, Neff  JC, Schuur EAG, Zender CS 

(2006) The impact of boreal forest fire on climate warming. Science 314: 1130–1132 

 

Rockström J, Steffen W, Noone K, et al. 2009. Planetary Boundaries: Exploring the Safe Operating 

Space for Humanity. Ecology and Society 14(2) 32 

 

Rothermel J (2008) Raw material change in the chemical industry – The general picture. 

Presentation at HLG Chemicals – Working Group Feedstock, Energy & Logistics, February 7, 2008 

Brussels. Available at: 

http://ec.europa.eu/enterprise/sectors/chemicals/files/wg_7_8fer08/01rothermel_raw_material_chan

ge_en.pdf, accessed January 2014 

 

Sala OE, Chapin III FS, Armesto JJ, Berlow E, Bloomfield J, Dirzo R, Huber-Sanwald E, 

Huenneke LF, Jackson RB, Kinzig A, Leemans R, Lodge DM, Mooney HA, Oesterheld M, Poff 

NL, Sykes MT, Walker BH, Walker M, Wall DH (2000) Global Biodiversity Scenarios for the Year 

2100. Science 287: 1770-1774 

 

Sander K, Murthy GS (2010) Life cycle analysis of algae biodiesel. Int J Life Cycle Assess 15: 

704–714 

 

Sanderson (2006) A field in ferment. Nature 444: 673-676 

 

http://www.plasticseurope.org/what-is-plastic/types-of-plastics-11148/bio-based-plastics/qas.aspx
http://ec.europa.eu/enterprise/sectors/chemicals/files/wg_7_8fer08/01rothermel_raw_material_change_en.pdf
http://ec.europa.eu/enterprise/sectors/chemicals/files/wg_7_8fer08/01rothermel_raw_material_change_en.pdf


PhD dissertation                                                                              Environmental assessment of biomass based materials 

 

45 

 

Shine KP (2009) The global warming potential - the need for an interdisciplinary retrial. Clim 

Change 96: 467-472 

 

Shine KP, Berntsen TK, Fuglestvedt JS, Skeie RB, Stuber N (2007) Comparing the climate effect of 

emissions of short- and long-lived climate agents. Phil Trans R Soc A 365: 1903-1914 

 

Somerville C, Youngs H, Taylor C, Davis SC, Long SP (2010) Feedstocks for Lignocellulosic 

Biofuels. Science 329: 790-792 

 

Stocker et al. (eds.) (2013) Climate Change 2013 – The Physical Science Basis. Working Group 1 

Contribution to the Fifth Assessment Report of the Intergovernmental  Panel on Climate Change – 

Summary for Policymakers. Available at: http://www.climate2013.org/spm, accessed December 

2013  

 

Tabone MD, Gregg JJ, Beckman EJ, Landis AE (2010) Sustainability Metrics: Life Cycle 

Assessment and Green Design in Polymers. Environ Sci. Technol. 44: 8264-8269. 

 

Tufvesson (2010) Environmental assessment of green chemicals – LCA of bio-based chemicals 

produced using biocatalysis. Dissertation, Lund Universitet, Sweden, Available at 

http://www.dissertations.se/dissertation/6729fb9f7d/, accessed November 2013 

 

UNEP (1992) Convention on Biological Diversity. Text and annexes. United Nations Environment 

Program (UNEP), Geneva 

 

UNEP (2013) Global Chemicals Outlook – Towards Sound Management of Chemicals. United 

Nations Environment Program (UNEP). ISBN: 978-92-807-3320-4 

 

UNFCCC (1998) Report of the Conference of the Parties on its third session, held at Kyoto, from 1 

to 11 December 1997.  Addendum, Part Two: Action Taken by the Conference of the Parties at its 

third session. United Nations Office at Geneva, FCCC/CP/1997/7/Add.1 

 

USDA (2008) US Biobased Products Market Potential and Projections Through 2025, OCE-2008-

01, US Department of Agriculture. Cited in: Philp et al. (2013) Biobased chemicals: the 

convergence of green chemistry with industrial biotechnology. Trends in Biotechnology 31: 219-

222 

 

van Vuuren, D, den Elzen M, Lucas P, Eickhout B, Strengers B, van Ruijven B, Wonink S, van 

Houdt R (2007) Stabilizing greenhouse gas concentrations at low levels: an assessment of reduction 

strategies and costs. Climatic Change 81: 119-159  

 

http://www.climate2013.org/spm
http://www.dissertations.se/dissertation/6729fb9f7d/


PhD dissertation                                                                              Environmental assessment of biomass based materials 

 

46 

 

Weiss M, Haufe J, Carus M, Brandão M, Bringezu S, Hermann B, Patel MK (2012) A review of the 

Environmental Impacts of Biobased Materials. Journal of Industrial Ecology. doi: 10.1111/j.1530-

9290.2012.00468.x  

 

Weiss M, Patel MK, Heilmeier H, Bringezu S (2007) Applying distance-to-target weighing 

methodology to evaluate the environmental performance of bio-based energy, fuels, and materials. 

Resour Conserv Recycling 50: 260-281 

 

Würdinger E, Roth U, Wegener A, Peche R, Rommel W, Kreibe S, Nikolakis A, et al. 2002. 

Kunststoffe aus nachwachsenden Rohstoffen: Vergleichende Ökobilanz für Loose-fill-Packmittel 

aus Stärke bzw. Polystyrol [Polymers from starch: A comparative life cycle assessment for loose-

fill packaging materials from starch and polystyrene]. Projektgemeinschaft BIfA / IFEU / Flo-Pak. 

DBU-Az. 04763. Heidelberg, Germany: Institut für Energie und Umweltforschung Heidelberg 

GmbH Cited in: Weiss M, Haufe J, Carus M, Brandão M, Bringezu S, Hermann B, Patel MK 

(2012) A review of the Environmental Impacts of Biobased Materials. Journal of Industrial 

Ecology. doi: 10.1111/j.1530-9290.2012.00468.x  

 



PhD dissertation                                                                              Environmental assessment of biomass based materials 

 

47 

 

12  Appendix 1: Global biomass potential, and demands from materials and energy 

This appendix gives an overview of available biomass potential, as well as biomass demand, now 

and in the near future, based on a review of literature estimates. Some key assumptions are 

included; for more on specific background assumptions, refer to references. There may be 

references using data from same original source. Newest references from left hand side of figures. 

 

Note: Original data have generally been given by references as energy potentials and demands 

(except for biomass demand for biomaterials); thus data have been converted to mass units (dry 

weight) by using an energy density range for the biomass of 15-19 EJ/Gt 
6
  

 

  

                                                 
6
 The range of energy content of 15-19 GJ/ton biomass (dry weight) is used, as almost all biomass feedstocks destined 

for combustion are in this range, including agricultural residues, which are mainly within the range of ~15-17 GJ/ton, 

and most woody materials, which are within the range of 18-19 GJ/ton (US DOE 2012). Also energy content of 1G 

biomass feedstock such as corn and sugar cane is within the range of ~15-19 GJ/ton (see e.g. ECN 2013) and the energy 

content of energy crops is ~19 GJ/ton (Hoogwijk et al. 2003; van Sark et al. 2006). 
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12.1 Global biomass potential 

 
 

 

 

 

 

  

Fig. A1.2 Global projected biomass potential in 2030. 

For Fischer and Shcrattenholzer (2001) estimates are 

read off from Fig. 2 in the study as no exact numbers 

were available. **Estimates from these references 

have been quoted from Jensen and Thyø (2007); 

estimates for Hall et al. (1993) have been grouped 

with studies assessing the bioenergy potentials in 

2025-2030 in Jensen and Thyø (2007) (based on 

Berndes et al. (2003) stating the temporal scope to be 

2025-2050); estimates for Swisher and Willson (1993) 

have been converted to primary potential 2030 in 

Jensen and Thyø (2007) 

Fig. A1.1 Current global biomass potential. Note that 

‘current’ is an approximate label here, as references 

are of different age, and often the data used are some 

years older. For Fischer and Shcrattenholzer (2001) 

estimates are for year 2015 (read off from Fig. 2 in the 

study). For the case of Yamamoto et al. (2001) the 

range illustrates the span from the total potential 

(upper end of range) to the practical potential (lower 

end of range) (read off values from Fig. 17 in the 

study). *The value for IEA (2013) is the present 

(2012) energy utilization from biofuels and waste 
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Fig. A1.3 Global projected biomass potential in 2050. In the case of Wenzel et al. (2009) the range illustrates the 

biophysical biomass potential, with the lower end including economic and market considerations in availability  
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12.2 Global biomass demand 

Global biomass demands listed here are for full substitution of fossil fuel feedstock consumption by 

biomass feedstock, both for energy and organic chemicals. 

 

For energy 

 

 
 

 

 

  

Fig. A1.4 Current global biomass demand for 

energy. Given as primary energy consumption in 

2012 (BP 2013) and 2011 (IEA 2013) 

Fig. A1.5 Global projected biomass demand for 

energy in 2030. Both estimate ranges covers 

different scenarios. In the case of IEA (2013) values 

are read off from figure in the study (p. 46, top) 
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Note: Energy demand estimates exclude energy demand covered by nuclear power, as well as hydro 

power and other renewable energy sources other than biomass and waste (to the extent that the 

latter have been separable in the reference), meaning that it gives the global biomass demand for 

substituting fossil fuel energy production. (Except for the estimate from Taskforce Energy 

Transition (2008) which gives the total global energy demand in 2050; however this estimate range 

lies within the ranges of estimates from Jensen and Thyø (2007) and thus does not affect neither 

upper nor lower energy demand in the summary in Figure 9 in the dissertation. 

  

Fig. A1.6 Global projected biomass demand for energy in 2050. The ranges from Jensen and Thyø (2007) 

cover estimates from different scenarios; an environmental oriented future, a middle course future scenario 

and a high economic growth future 
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For organic chemicals 

Some of the estimates used here are approximated from original values given by the references, and 

are thus not given directly by the references (as outlined in notes below). 

 

 
 

 

 

 

 

 

 

Note: Values given by Hoogwijk et al. (2003), are given as the demand of biomass for substitution 

of petrochemicals, and results from a conversion efficiency of 40% (2.5 ton biomass/ton product), 

as dictated in the reference. Estimates from van Sark et al. (2006) give the demands for polymers; 

these have been extrapolated to cover organic chemical demands, using that polymers are stated in 

the reference to cover ~2/3 of organic chemicals (excluding solvents and surfactants). These 

estimates have been converted to primary biomass demand by applying a conversion efficiency of 

40%, as found in Hoogwijk et al. (2003). Values from UNEP (2013) cover global production in 

year 2010 of the 7 top bulk chemicals (which is feedstock for many thousands downstream chemical 

products): Methanol, ethylene, propylene, butadiene, xylenes, benzene, toluene (ethanol not 

included here; it is mainly used as fuel). Future demands have been projected from current level 

assuming a 3% global growth per year for organic chemicals until 2050, which is the approximate 

increase for global chemical sales for the period expected in the reference. Values have been 

converted to primary biomass demands by applying the conversion efficiency of 40%, as found in 

Hoogwijk et al. (2003).  

Fig. A1.7 Current (year 2010) 

global biomass demand for 

organic chemicals. Estimates 

based on van Sark et al. (2006) 

and Hoogwijk et al. (2003) are 

averages of original values for 

year ~2000 and 2020 

Fig. A1.8 Global projected biomass 

demand for organic chemicals in 

2030. The estimate based on 

Hoogwijk et al. (2003) has been 

extrapolated from the 2020 value 

using a 2% annual increase as 

assumed by this reference 

Fig. A1.9 Global projected 

biomass demand for organic 

chemicals in 2050 
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13 Appendix 2: Land demand for a biobased global organic chemical production  

 

Table A2.1: Current global organic chemical production (2010) 

Production [Mt] Land need using different feedstock cropsa [Mha] 

   Energy crops 

 Corn starchc Sugarcane starchc Agricultural land Degraded land 

360b 144 74 45-90d 

60-63e 

90-900f 

63-147e 

 

Table A2.2: Global organic chemical production in 2050
g 

Production [Mt] Land use for different feedstock cropsa [Mha] 

   Energy crops 

 Corn starchc Sugarcane starchc Agricultural land Degraded land 

1200h 481 246 150-300d 

200-208e 

300-3000f 

208-491e 

 
a
 Rough estimates  

b 
Including the 7 biggest bulk chemicals: Methanol, ethylene, propylene, butadiene, xylenes, benzene, toluene (UNEP 2013) 

(ethanol not included here; it is mainly used as fuel) 
c
 Using ethanol as example organic chemical; yield efficiencies from de Vries et al. (2010) and an ethanol density of 0.789 t/m

3
. 

(Using ethanol as example of organic chemicals is a very coarse assumption, both concerning conversion efficiency and carbon 

content of organic chemicals, but it can be used as a rough approach for obtaining an order of magnitude) 
d 

Using short rotation woody energy crops on agricultural land: 10-20 t dry biomass/ha/year and a conversion factor of 2.5 t dry 

biomass/ton petrochemical product substituted (product not further specified) (Hoogwijk et al. 2003) 
e 

Using switchgrass and miscanthus, respectively, with ethanol as example organic chemical (Sanderson 2006). Where high- and low 

end yields are given, high-end yields are assumed for agricultural land and low-end yields for low productivity marginal/degraded 

land. However, yields also depend on both the level of degradation of the land and input level of e.g. water and nutrients 
f 

Using short rotation woody energy crops on degraded land: 1-10 t dry biomass/ha/year and a conversion factor of 2.5 t dry 

biomass/ton petrochemical product substituted (product not further specified) (Hoogwijk et al. 2003) 
g
 Not considering efficiency improvement potentials  

h
 Projecting from current level by assuming a 3% global growth per year for organic chemicals until 2050, which is the approximate 

increase expected for global chemical sales for the period (UNEP 2013) 

 

 

Table A2.3: Current land use – Data including comments from Hoogwijk et al. (2003) 

Land type Size (Mha) Comment 

Global land area  13200 Recreational, human settlements and protected nature areas excl. 

Inproductive land 4200 E.g. built-up, mountainous, (semi-)desserts 

Agricultural land 1500  

Pasture land 3500  

Degraded land 430-580 Potentially available for energy crops 
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This PhD dissertation addresses environmental perspectives of producing materials such as plastics 
that are traditionally derived from fossil resources, from biomass instead. The dissertation has a 
special focus on the climate effect of the temporary carbon storage taking place in biomass based 
materials.

In the PhD study, a method for assessing the potential value of temporary carbon storage, in terms 
of avoiding or postponing exceedance of critical climate change levels, has been developed. This 
means that this potential value of temporary carbon storage in biomass based materials can be 
integrated in the existing life cycle assessment (LCA) methodology and thus be taken into account in 
the environmental profile of biomass based materials. 

Further, the importance of changes in surface albedo, biogenic carbon fluxes (including soil organic 
carbon) and biodiversity associated with land use and land use change for biomass production has 
been addressed in this PhD project.
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