

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Dec 20, 2017

Solving Multiple Timetabling Problems at Danish High Schools

Kristiansen, Simon; Stidsen, Thomas Jacob Riis; Herold, Michael B.

Publication date:
2014

Document Version
Peer reviewed version

Link back to DTU Orbit

Citation (APA):
Kristiansen, S., Stidsen, T. R., & Herold, M. B. (2014). Solving Multiple Timetabling Problems at Danish High
Schools. Department of Management Engineering, Technical University of Denmark.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Online Research Database In Technology

https://core.ac.uk/display/43247351?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://orbit.dtu.dk/en/publications/solving-multiple-timetabling-problems-at-danish-high-schools(2ef07278-b06b-49f5-b21e-fb819b724cf5).html

Ph.D. thesis

Solving Multiple Timetabling
Problems at Danish High Schools

Simon Kristiansen

November 28, 2013

Dansk titel:
Løsning af flere planlægningsproblemer p̊a de danske gymnasier
Type: Ph.D.-afhandling

Forfatter: Simon Kristiansen

ISBN-nr:

Division of Management Science
Department of Management Engineering
Technical University of Denmark
Produktionstorvet, Building 426,
DK-2800 Kgs. Lyngby, Denmark
Phone: +45 45 25 48 00, Fax: +45 45 25 48 05
phd@man.dtu.dk

MaCom A/S
Vesterbrogade 48, 1.
DK-1620 Kbh V., Denmark
Phone: +45 33 79 79 00

November, 2013

Abstract

Planning problems at educational institutions are often time-consuming and complex tasks. Ed-
ucational planning problems are studied using operational research techniques, which have been
used with success and resulting in great improvements on the field. Educational planning prob-
lems are often divided into four main categories; University Course Timetabling, High School
Timetabling, Examination Timetabling and Student Sectioning.

This Ph.D. thesis addresses some of the planning problems the high schools are struggling with
annually, and it is partitioned into three research directions; High School Timetabling, Student
Sectioning and the Meeting Planning Problem.

The underlying work of this thesis is carried out as an Industrial Ph.D. project in co-operation
with the Danish software company MaCom A/S, which delivers administrative software solutions
for high schools in Denmark.

Research in High School Timetabling has mainly been concentrated on local problems until
recently. By the creation of an XML-format, XHSTT, and applicable wide ranging benchmark
instances, it is been possible to solve the more generalized High School Timetabling problem. The
first part of this thesis presents two approaches for the High School Timetabling problem of XH-
STT; a heuristic method and an exact method. The heuristic method presented is an Adaptive
large Neighborhood Search (ALNS) and was submitted as a contribution to the Third Interna-
tional Timetabling Competition in 2011. The algorithm was one of the finalists, and it achieved
a third place. For the exact method a Mixed Integer Programming (MIP) model has been devel-
oped, and a two stage method has been used to solve it in a state-of-the-art MIP solver. Using
the exact method has made it possible to generate lower bounds for several instances and to prove
optimality of a few.

In the second part two different Student Sectioning problems at Danish high schools have been
presented with three papers. Firstly the Elective Course Planning problem has been presented,
which is the problem of assigning 2nd and 3rd year students to elective courses given their re-
quests. The problem has been solved using Dantzig-Wolfe decomposition in a Branch-and-Bound
framework. The method applied shows that a previously applied method performs poorly and is
insufficient. A more comprehensive model has been created, containing the lacking constraints,
using the more appropriate name; Elective Course Student Sectioning. The problem is solved us-
ing ALNS and solutions are proven to be close to optimum. The algorithm has been implemented
and made available for the majority of the high schools in Denmark.

The second Student Sectioning problem presented is the sectioning of each first year student
to a cohort, based on his/hers study line request, and two elective courses based on the requests
for these. The High School Student Sectioning problem has been modeled as a bipartite network
model and solved using two solution methods, a direct and a sequential method. The results show
that by using a sequential method it is possible to gain much better results.

I

The last part of the thesis is concerned the Meeting Planning Problem and presented with two
papers.

The Consultation Timetabling Problem is one of the minor, but still time-consuming, planning
problems at the Danish high schools. Two types of consultations are presented; the Parental
Consultation Timetabling Problem (PCTP) and the Supervisor Consultation Timetabling Prob-
lem (SCTP). One mathematical model containing both consultation types has been created and
solved using an ALNS approach. The received solutions are close to optimum.

Based on the Consultation Timetabling Problem, a Generalized Meeting Planning Problem
(GMPP) has been developed. Column generation with a Branch-and-Price (B&P) algorithm has
been applied as solution method for the GMPP, and it has been tested on the PCTP and SCTP
problem instances. The results prove that the B&P algorithm is an efficient method for solving
the GMPP, and that the ALSN method performs better than anticipated.

The thesis has been aiming at solving the planning problems to optimality, or near optimality,
and opening up research within the area of educational timetabling. It gives a thorough introduc-
tions to the domain of educational planning problems and presents several solution methods for
High School Timetabling, Student Sectioning and the Meeting Planning Problem.

From an industrial point of view, this thesis has been able to formulate different high school
planning problems as mathematical models and solve them using operational research techniques.
Two of the models and the suggested solution methods have resulted in implementations in an
actual decision support software, and are hence available for the majority of the high schools in
Denmark. These implementations can improve the solution process in terms of time and quality.

II

Resumé
(Summary in Danish)

Planlægningsproblemer for uddannelsesinstitutioner er ofte b̊ade tidskrævende og komplekse. Ud-
dannelsesrelaterede skemalægningsproblemer er et forskningsomr̊ade indenfor operationsanalyse,
hvor teknikker er blevet anvendt med succes og har resulteret i store forbedringer indenfor omr̊adet.
Planlægningsproblemer indenfor undervisningssektoren er ofte opdelt i fire hovedomr̊ader; Univer-
sitets skemalægning, gymnasial skemalægning, eksamensplanlægning og elevfordeling.

Denne ph.d. afhandling adresserer nogle af de planlægningsproblemer som gymnasierne kæmper
med, og er opdelt i tre omr̊ader; første del omfatter skemalægningen p̊a gymnasier, anden del har
fokus p̊a holdpakning af eleverne og den sidste del omhandler mødeplanlægningsproblemer.

Det underliggende arbejde af denne afhandling er udført som et ErhvervsPhD-projekt i sam-
arbejde med den danske software-virksomhed MaCom A/S, der leverer administrative softwa-
reløsninger til gymnasierne i Danmark.

Forskning af gymnasial skemalægning har hovedsageligt været koncentreret om enkelte lokale
gymnasier. Med oprettelsen af et XML-format, XHSTT, med dertilhørende omfattende benchmar-
king datasæt, er der blevet skabt en mere generaliseret problemstilling. Denne afhandling præsen-
terer to forskellige løsningsmetoder for XHSTT skemalægningsproblemet; en heuristisk metode og
en eksakt metode. Adaptive Large Neighborhood Search (ALNS) er anvendt til den heuristiske
metode og var et bidrag til den tredje internationale skemalægningskonkurrence. Algoritmen var
blandt finalisterne og opn̊aede at f̊a en tredjeplads.

Til den eksakte metode er der anvendt heltalsprogrammering til at lave en matematisk model
til problemet og en to-trins løsningsmetode er anvendt i et avanceret løsningsværktøj. Ved brug af
den eksakte metode har det været muligt at generere nogle grænseværdier for flere af problemerne,
og bevise optimalitet i nogle enkelte tilfælde.

I den anden del af afhandlingen er to forskellige holdpakningsproblemer p̊a de danske gymna-
sier præsenteret i tre artikler. Først er holdpakningsproblemet for 2. og 3. års elever præsenteret.
Problemet best̊ar i at tildele eleverne til valgfagsklasser baseret p̊a deres respektive ønsker. Pro-
blemet er blevet løst ved brug af Dantzig-Wolfe dekomponering i en Branch-and-Price (B&P)
konstruktion. Resultaterne viser at en tidligere anvendt metode performer d̊arligt og generelt er
utilstrækkelig. En mere omfattende matematisk model er oprettet og løst ved brug af ALNS og
løsningerne har vist at være tæt p̊a de optimale.

Det andet holdpakningproblem er første̊arsholdpakning, hvor de nye studerende skal tildeles
en stamklasse baseret p̊a deres retningslinjer og to valgfagsklasser, baseret p̊a valgene for disse.
Første̊ars holdpakningen er blevet udformet som et todelt netværksproblem og løst ved brug af to
løsningsmetoder, en direkte og en sekventiel. Resultaterne viser, at man ved brug af en sekventiel
metode opn̊ar langt bedre resultater.

III

Den sidste del af afhandlingen omhandler mødeplanlægningsproblemet og er præsenteret i to
artikler. Konsultationsproblemet er et af de mindre, men stadig tidskrævende, planlægningspro-
blemer p̊a de danske gymnasier. Der findes to typer konsultationer p̊a de danske gymnaeier; foræl-
drekonsultationer og vejlederkonsultationer. En matematisk model omfattende begge typer er
etableret og løst ved brug ALNS. De opn̊aede resultater er tæt p̊a at være optimale.

Baseret p̊a konsultationsproblemet er der blevet udviklet et mere generaliseret mødeplanlæg-
ningsproblem. Kolonnegenerering og en B&P algoritme er anvendt p̊a det generaliserede problem
og testet p̊a de to konsultationstyper. Resultaterne viser, at den udviklede B&P algoritme er en
effektiv løsningsmetode og at ALNS metoden performer bedre end først antaget.

Denne afhandling satser samlet set p̊a at løse de nævnte planlægningsproblemer til optimalitet,
eller nær-optimalitet, og at åbne forskningsfeltet indenfor uddannelsesrelaterede planlægningspro-
blemer.

Den giver en grundig introduktion til domænet af uddannelsesrelaterede planlægningsproblemer
samt en præsentation af flere løsningsværktøjer til at løse problemer som gymnasieskemalægning,
holdpakning og mødeplanlægning.

Fra et industrielt synspunkt, har det været muligt at formulere forskellige planlægningsproble-
mer som matematiske modeller og løse dem ved brug af teknikker indenfor operationsanalyse. To
af modellerne, og de dertilhørende foresl̊aede løsningsmetoder, har resulteret i implementeringer i
et aktuelt beslutningsværktøj, og er dermed anvendelig for størstedelen af de danske gymnasier.
Disse implementeringer har forbedret planlægningsprocessen i form of reduceret arbejdstid og øget
løsningskvalitet.

IV

Preface

The work presented in this dissertation fulfills the requirements for acquiring the degree Philoso-
phiae Doctor (Ph.D.) at Technical University of Denmark, as well as the Industrial Ph.D. diploma
awarded by the Danish Ministry of Science, Technology and Innovation for Ph.D. students following
the Industrial Ph.D. program.

The Ph.D. study was performed at DTU Management Engineering, Technical University of
Denmark, from December 2010 to December 2013.

As part of the Industrial Ph.D. program, I have been employed at the privately held company
MaCom A/S in Copenhagen. Here I have spent half of my time during the Ph.D. and worked as
an integrated part of the development section, where all the results herein have been implemented
into the product of MaCom A/S, Lectio. Currently the work of two papers of this thesis has
resulted in operational software usable for the majority of Danish high schools.

Lecturer Thomas R. Stidsen, DTU Management Engineering has supervised the study, and
Development Manager Michael B. Herold, MaCom A/S, has co-supervised the project on behalf
of MaCom A/S.

This thesis is part of a larger research project concerning planning problems at educational
institutions. The overall research project contains an additional Ph.D. project carried out by
Matias Sørensen. The two Ph.D. projects are closely connected and have led to some collaboration.

The thesis consists of eight research papers. Two of these papers are published and one accepted
for publication in scientific journal, one appears in a conference proceeding, one is published as a
technical report, and the remaining three are submitted to peer review journals within the field.
All papers are co-authored.

Copenhagen, Denmark, November 2013

Simon Kristiansen

V

Acknowledgements

First of all I would like to thank my supervisors, Thomas R. Stidsen, from DTU Management, and
Michael B. Herold, from MaCom A/S, for their excellent guidance throughout the entire project.
Thomas for his great supervision, his encouragement and open mind towards new ideas. Without
the support of Michael, this project would never have had the same level of real world impact, and
it would not have contributed with running decision support software. I would also thank David
Pisinger for his happy spirits and for always being helpful when needed.

Great thanks to Senior Lecturer Andrew Mason for inviting me to visit the University of Auck-
land. It was a great experience to work with Andrew and I thank him for his commitment to my
projects. It should be mentioned that my stay abroad was partially supported by the European
Union Seventh Framework Program (FP7-PEOPLE-2009-IRSES) under grant agreement number
246647 and by the New Zealand Government as part of the OptALI project. And I am very
grateful of getting this financial support, which made it possible for me to stay in Auckland for
six month.

Thanks to all the co-authors and for their contribution in the different projects I have been
involved in. A special thanks to Matias Sørensen, whom I have shared office with a both DTU
and MaCom A/S, for close collaboration and tremendous support throughout my Ph.D.. I highly
appreciate the teamwork and discussions.

I would like to thank my colleagues at DTU Management Engineering as well as my colleagues
at MaCom A/S for fruitful discussions, interest in my project and a pleasant work environment.
It has been a pleasure to be part of them both.

Thanks to Kia Kristiansen, Peter Vest Hansen, Simon Bull and Tor Justesen for proofreading
and commenting on parts of this thesis.

Finally, great thanks goes to my family and friends, and to my wonderful girlfriend Maria
Cloetta Jensen for her encouragements and support, and for letting me spend six month away
when I was in Auckland. Thanks!

VII

List of Papers
(Chronological order)

• Article: Simon Kristiansen, Matias Sørensen and Thomas R. Stidsen (2011). ”Elective
Course Planning”.
In: European Journal of Operational Research. (Published)

• Conference Abstract: Matias Sørensen, Simon Kristiansen and Thomas R. Stidsen (2012).
”International Timetabling Competition 2011: An Adaptive Large Neighborhood Search
algorithm”.
In: Conference proceedings of PATAT 2012. (Published)

• Article: Simon Kristiansen, Matias Sørensen, Michael B. Herold and Thomas R. Stidsen
(2013). ”The Consultation Timetabling Problem at Danish High Schools”.
In: Journal of Heuristics. (Published)

• Article: Simon Kristiansen and Thomas R. Stidsen (2013). ”Elective Course Student Sec-
tioning at Danish High Schools”.
In: Special issue of Annals of Operations Research in collaboration with PATAT2012. (Ac-
cepted with minor revision)

• Article: Simon Kristiansen, Matias Sørensen and Thomas R. Stidsen (2013). ”Integer
Programming for the Generalized (High) School Timetabling Problem”.
In: Journal of Scheduling. (Submitted)

• Article: Niels-Christian F. Bagger, Matias Sørensen, Simon Kristiansen and Thomas R.
Stidsen (2013). ”A Branch & Price Algorithm for the Generalized Meeting Planning Prob-
lem”.
In: Computers and Operations Research. (Submitted)

• Article: Simon Kristiansen, Thomas R. Stidsen and Andrew Mason (2013). ”High School
Student Sectioning at Danish High Schools”.
In: European Journal of Operational Research. (Submitted)

• Technical Report: Simon Kristiansen and Thomas R. Stidsen (2013). ”A Comprehensive
Study of Educational Timetabling - a survey”.
In: DTU Mananagement Technical Report. (Published)

IX

Contents

Abstract I

Resumé II

Preface IV

Acknowledgements V

List of Papers VIII

I Introduction 1

1 Introduction and Thesis Motivation 3

1.1 Motivation - the Danish High Schools . 5

1.2 Operations Research . 5

1.3 Contributions . 6

1.4 Thesis outline . 9

2 A Comprehensive Study of Educational Timetabling 17

2.1 Introduction . 17

2.2 Planning Problems and the Components . 20

2.3 University Course Timetabling . 21

2.4 High School Timetabling . 28

2.5 Examination Timetabling . 32

2.6 Student Sectioning . 38

2.7 Conclusion . 40

2.A Summary Tables . 40

II High School Timetabling using the XHSTT format 65

3 International Timetabling Competition 2011 67

3.1 Introduction . 67

3.2 Adaptive Large Neighborhood Search . 67

3.3 Algorithm Setup for ITC2011 . 68

3.4 Final Remarks . 69

XI

Contents

4 Integer Programming for the Generalized (High) School Timetabling Problem 73

4.1 Introduction . 73

4.2 Related Literature . 74

4.3 Problem Description and a Mixed Integer Programming Formulation 75

4.4 Computational Results . 85

4.5 Conclusion . 88

III Student Sectioning Problems at Danish High Schools 93

5 Elective Course Planning 95

5.1 Introduction . 95

5.2 Problem Description . 97

5.3 Modeling of Elective Course Planning . 99

5.4 Solution algorithms . 100

5.5 Results . 105

5.6 Conclusion . 109

6 Elective Course Student Sectioning at Danish High Schools 113

6.1 Introduction . 113

6.2 Problem Description . 114

6.3 Related Literatures . 115

6.4 Integer Programming Model . 115

6.5 Solution Methods . 120

6.6 Defining Weights . 123

6.7 Parameter Tuning . 124

6.8 Performance . 124

6.9 Final Remarks and Outlook . 127

7 High School Student Sectioning at Danish High Schools 131

7.1 Introduction . 131

7.2 High School Student Sectioning . 132

7.3 Integer Programming Model . 135

7.4 Solution Methods . 139

7.5 Experiments and Results . 139

7.6 Conclusion . 140

7.7 Acknowledgments . 142

IV Meeting Planning Problems 145

8 The Consultation Timetabling Problem at Danish High Schools 147

8.1 Introduction . 147

8.2 Consultation Timetabling Problem . 148

8.3 Integer Programming Model . 150

8.4 Adaptive Large Neighborhood Search . 156

8.5 Parameter Tuning . 160

8.6 Performance . 161

8.7 Final Remarks and Outlook . 170

Contents

9 A Branch & Price Algorithm for the Generalized Meeting Planning Problem 175
9.1 Introduction . 175
9.2 Previous Approaches . 176
9.3 A Mixed-Integer Programming model of the Generalized Meeting Planning problem 177
9.4 Test Applications . 182
9.5 Computational Results . 185
9.6 Conclusion . 186

V Conclusion 195

10 Conclusion 197
10.1 Scientific Contribution . 197
10.2 Practical Contribution . 198
10.3 Discussion and Directions of Future Research . 199
10.4 Final Remarks . 200

Part I

Introduction

1

Chapter 1

Introduction and Thesis
Motivation

All over the world, educational institutions are struggling with diverse student administrative
planning problems. These planning problems are all personnel allocation problems. The main is-
sue of the problems is to provide the students and teachers with satisfactory timetables. However,
the school administrations also have to consider educational and economic issues when planning
the timetables. Researchers and commercial (local or external) software vendors are still working
on these problems, as they can vary a lot from institution to institution and from country to coun-
try. In the literature, educational planning problems are often divided into four main categories;
University Course Timetabling, High School Timetabling, Examination Timetabling and Student
Sectioning.

University Course Timetabling: University Course Timetabling is the problem of assigning
lectures of courses to time slots, rooms and possibly other resources, subject to constraints applied
for the single student. The large size and structure of universities often makes the problem of
solving the course timetabling so complicated that it is solved by several experts scattered across
different faculties and departments. Due to the complexity of the problem, it is quite common
that the universities re-use the solution from previous years.

University Course Timetabling is often divided into two general approaches; the Curriculum-
based University Course Timetabling and the Enrollment-based University Course Timetabling.

Courses which can be taken in combination, because they are needed to satisfy the degree
rules of the given study, are called curricula. Assigning courses to time slots based on this is
called Curriculum-based University Course Timetabling (Burke et al., 2012; Lach and Lübbecke,
2012). Enrollment-based University Course Timetabling is based on the enrollment data of each
individual student, and it is then determined where courses are placed in the timetable, such that
all students can attend the events in which they are enrolled (Cambazard et al., 2008; Nothegger
et al., 2012).

High School Timetabling: At high school the students are grouped in classes prior to the
timetabling problem (using Student Sectioning). The students of a class are usually grouped
together for all the mandatory courses. Essentially, the High School Timetabling problem is then
to allocate these classes to time slots, teachers and rooms, to satisfy the constraints of the problem
(Post et al., 2012a; Pillay, 2013).

The grouping of students to classes is one of the main differences between High School Time-
tabling and University Course Timetabling. Another difference is the assignment of teachers.
High school teachers often teach full time, whereas in universities the professors/lecturers usually
only teach one course. Hence the clashes constraints on the teachers as well as preferred teacher
constraints are added to the High School Timetabling problem.

3

Chapter 1. Introduction and Thesis Motivation 4

Examination Timetabling: The Examination Timetabling problem is the task of scheduling a
given number of exams to a limited number of time slots. Each course has one event representing
the exam. The problem is to avoid clashes in each student’s examination timetable, and to make
sure that they have sufficient preparation time for each exam (Qu et al., 2009; Müller, 2013).

Examination Timetabling and University Course Timetabling are the two most studied subjects
of education planning problems. It is often the Examination Timetabling problem at universities
which is discussed in the literature, and this is relatively close to the University Course Timetabling
(Schaerf, 1999). However, it is broadly accepted to distinguish between the two problems, due to
their characteristics (McCollum, 2007a). Firstly, there is only one exam for each course, where
there can be several lectures of the same course in University Course Timetabling, and secondly
there is variations in the constraints. In course timetabling, the universities pursue a compact
timetable, whereas the Examination Timetabling is often requested to be spread out. A student
cannot have two exams on successive days and the days between two exams are used as preparation
time. Furthermore, there can be more than one exam in a room whereas there can only be one
lecture in each room.

Student Sectioning: The previous mentioned educational planning problems are all considering
the problem of assigning some events to time slots. Student Sectioning resides outside this category
as this problem involves assigning students to sections and usually not times (de Haan et al., 2007;
Suyanto, 2010).

If courses have too many students than it is possible to fit into one class room, the courses
might be split into sections, i.e. copies of the same course with its own time slot, room and
teacher. Student Sectioning is the problem of assigning students to these sections of courses while
respecting the requests of the individual student. Some formulations of Student Sectioning are
also trying to assign the sections to clusters or blocks. This is used to avoid student clashes in the
timetable when the sections are allocated time slots.

At high schools the Student Sectioning problem is seen as a separate initial part of the High
School Timetabling problem (de Haan et al., 2007; Kristiansen and Stidsen, 2013a), whereas Uni-
versity Course Timetabling often has student sectioning incorporated into the timetabling problem
(Müller and Murray, 2010; Suyanto, 2010).

This thesis has been concentrated on High School Timetabling (Part II) and Student Sectioning
(Part III). Moreover, a Master’s Thesis project on Examination Timetabling has been supervised
(Schadegg, 2013). Further descriptions of the mentioned educational planning problems are pre-
sented in Chapter 2.

Meeting Planning Problem: Besides High School Timetabling and Student Sectioning, a new
type of planning problems has been introduced through the thesis; the Meeting Planning Problem.
Planning meetings can become a difficult puzzle, if the occurrence of meetings is large and the
meetings are interrelated.

At high schools the meeting planning problem can be used to schedule consultation meetings
between parents and teachers, or meetings between the students and their supervisors (Kristiansen
et al., 2013b). Rudová (2013) solves the Bachelor state examination problem which is quite similar
to the supervisor consultation timetabling problem.

The meeting planning problem can be used in various cases where a large number of meetings
in a crisscross pattern should be scheduled.

Part IV of this thesis is concentrated on the Meeting Planning Problem.

5 1.1. Motivation - the Danish High Schools

1.1 Motivation - the Danish High Schools

Due to a number of economic and educational reforms, managing the high schools in Denmark
has become increasingly complex, and as of January 1st 2007 the Danish high schools became
self-governing institutions. In 2009 an analytical report on the increased demand for IT on
self-governing educational institutions in Denmark was executed (McKinsey & Company, 2009).
Overall, 4,300 full-time equivalents (FTE) was used on student administration of the educational
institutions and 18% of these on timetabling problems. Moreover, the report observes that the
majority of the institutions use manual work during the process, either in spreadsheets or by hand.
It is concluded that by improving the IT at the high schools, a total gross efficiency potential can
be estimated at 346 million DKK, of which 29% comes from resource and scheduling problems.

Based on this information, a comparative analysis of timetabling planning systems for the upper
secondary educations in Denmark was conducted (Capgemini, 2010). The analysis lists the pros
and cons for each planning system and concludes that the existing systems are inadequate when
looking at the criteria stated in McKinsey & Company (2009) as requirements for a schedule
planning system.

1.2 Operations Research

Operations Research (OR) techniques will be used to study and solve the problems of this thesis.
OR is a discipline within applied mathematics and computer science and is widely used on plan-
ning problems, including education timetabling problems. OR on educational timetabling has been
widely used over the past 50 years (de Werra, 1985; Bardadym, 1996). Conferences and competi-
tions have focused on the problem, and hence contributed with an increase in publications. The
conferences include the International Conference on the Practice and Theory of Automated Time-
tabling (PATAT, 2013) and the Multidisciplinary International Scheduling Conference: Theory &
Application (MISTA, 2013).

Three international timetabling competitions (ITC) on educational timetabling have been or-
ganized. The first International Timetabling Competition (ITC2003) was regarding University
Course Timetabling (Paechter et al., 2002). The second, ITC2007, had three tracks. Two tracks
on University Course Timetabling (one curriculum-based and one enrollment-based) and one track
on Examination Timetabling (Gaspero et al., 2007; McCollum, 2007b; McCollum et al., 2010). The
third and latest competition (ITC2011) was focused on the XHSTT format of High School Time-
tabling (Post et al., 2011, 2012b).

Many of the problems of this thesis have been proven to be NP-hard and the following types
of methods are employed for solving them:

Heuristic solution methods: Heuristics are operational research techniques which seek good
solutions at a reasonable computational cost, but they do not guarantee optimality. A meta-
heuristic is a special case of heuristics which consists of a toplevel strategy that guides underlying
heuristics to be applied to many classes of problems. In many of the recent publications some sort
of hybridization of multiple heuristics are used as solution methods. These types of heuristics are
denoted hyper-heuristics (Burke et al., 2003). Using hyper-heuristics makes it possible to explore
a large part of the solution space and hence make it possible to solve classes of problems rather
than a few.

This thesis considers the hyper-heuristic Adaptive Large Neighborhood Search (ALNS) for solv-
ing the High School Timetabling problem of ITC2011 (Chapter 3), the Elective Course Student
Sectioning (Chapter 6) and the Consultation Timetabling Problem (Chapter 8). In ALNS, the
Large Neighborhood Search approach is extended using multiple insertion and removal methods
(Pisinger and Ropke, 2005) and has been used mainly on variants of Vehicle Routing Problems
(Ropke and Pisinger, 2006; Laporte et al., 2010; Ribeiro and Laporte, 2012).

Chapter 1. Introduction and Thesis Motivation 6

Exact solution methods: Solving a problem using an exact method makes it possible to is-
sue certificates for optimality or the quality of the solution. Exact solution methods can either
be of solving the mathematical model using a Mixed Integer Programming (MIP) solver, or by
using a number of different exact method approaches such as decomposition methods, dynamic
programming etc. If it is not possible to solve the problem to optimality, due to the problem
instance, the properties or given restrictions, exact methods can be able to provide bounds and
hence benchmark the performance of heuristics.

In this thesis, different exact methods have been applied. In Chapter 4 and 7 the XHSTT and
High School Student Sectioning are solved, respectively, using direct and sequential approaches,
and in Chapter 6 and 8 exact methods are used to benchmark the performance of the applied
meta-heuristics by solving the mathematical model directly, using a state-of-the-art MIP solver.
Chapter 5 and 9 use more advanced exact methods in term of decomposition and branching
techniques (Desrosiers and Lübbecke, 2005). Chapter 5 applies Dantzig-Wolfe decomposition in
a Branch-and-Price framework. Explicit Constraint Branching is used as a branching technique
(Appleget and Wood, 2000). In Chapter 9, Column Generation and Branch-and-Price are used
for solving the Generalized Meeting Problem.

Matheuristics: Matheuristics is a result of the combination of the two aforementioned ap-
proaches and hence enjoy the best of both worlds (Ryan, 2012). A matheuristic is a type of
hyper-heuristic where meta-heuristics and mathematical programming (MP) techniques are em-
bedded. By using MIP solvers or customized MIP algorithms, such as decomposition, in a heuristic
context, either as primary solvers or as sub procedures (Avella et al., 2007; Maniezzo et al., 2009;
Blum et al., 2011).

In this thesis, matheuristics have only been touched briefly in Chapter 6, where an MP insertion
technique is applied in the ALNS framework.

1.3 Contributions

Due to the idea of an Industrial Ph.D., the motivation and contribution of this thesis are two-fold:
Firstly, it is to contribute to the basic research knowledge on educational timetabling problems
within high schools. Secondly, to use operational research techniques to provide good decision
support tools to achieve better planning of the timetables.

1.3.1 Basic Research Contribution on Education Planning Problems

On the overall level, this Ph.D. project has contributed to the area of high school planning problems
by operation research techniques and developing methods that are able to solve the problems,
some implemented in administrative software. A number of promising results has been reached.
Highlights of the basic research contribution of each paper of this thesis are described below:

• (Kristiansen and Stidsen, 2013b): A comprehensive survey on educational timetabling. Gives
an overview of the different types of planning problems within the education sector, the
available benchmarks and related literature.

• (Sørensen et al., 2012): A contribution for the Third International Timetabling Competition
(ITC2011) An Adaptive Large Neighborhood Search algorithm is developed for the High
School Timetabling problem.

• (Kristiansen et al., 2013c): A Mixed Integer Programming (MIP) model for High School
Timetabling problems of the XHSTT format. It has been possible to provide lower bounds
on several instances and prove the optimality on few.

• (Kristiansen et al., 2011): Presents the Elective Course Planning problem. A Dantzig-
Wolfe decomposition in a Branch-and-Price framework is developed with Explicit Constraint

7 1.3. Contributions

Branching as one of the branching techniques. The algorithm is compared with an existing
solution approach and the results show that existing solution approach is insufficient in terms
of lacking constraints and performance.

• (Kristiansen and Stidsen, 2013a): A MIP model and an Adaptive Large Neighborhood Search
for the Elective Course Student Sectioning problem. The algorithm is tested on 80 real life
instances from Danish high schools and provides solutions close to optimal. The algorithm is
implemented in Lectio and hence available for the majority of the high schools in Denmark.

• (Kristiansen et al., 2013a): An Integer Programming model for the student scheduling prob-
lem of first year students at Danish high schools is presented. In High School Student Sec-
tioning, a student should be assigned a cohort and two elective courses given his requests.
Two exact solution methods are implemented, a direct and a sequential approach. The two
approaches are tested on 25 real life datasets.

• (Kristiansen et al., 2013b): The Consultation Timetabling Problem is presented and a MIP
model, containing two types of consultations, is created. Both types are of assigning students
and teachers to meetings given some requests. An Adaptive Large Neighborhood Search
algorithm is developed and tested on 200 real life datasets. The algorithm is implemented
in Lectio and hence available for the majority of the high school in Denmark.

• (Bagger et al., 2013): A MIP model is presented for the Generalized Meeting Planning
Problem and experimental results are conducted using Column Generation and Branch-and-
Price. The algorithm is tested on the data from Kristiansen et al. (2013b) and proves that
the heuristic approach provides results close to optimum.

1.3.2 Industrial Application

The role of an industrial Ph.D. is of bridging two worlds, the theoretical world of academia and
the practical world of industry. Having both an academic and a practical role has given an extra
dimension to the dissertation, a role I have found very challenging and rewarding.

The academic role is as part of the research team at the Operation Research section at DTU
Management, and the practical role is as part of the software company MaCom A/S. MaCom A/S
is a small company in Copenhagen with Lectio as their primary product. Lectio is a cloud-based
high school administration system which handles all sorts of administrative tasks for Danish high
schools, including the various planning problems. The majority of the high schools in Denmark
are using Lectio, hence MaCom A/S is indeed aware of the challenges the high schools are facing
and what they expect from the solutions to the planning problems.

The unique position at an industry partner has some advantage when doing research. Firstly is
the access to knowledge and the stakeholders. Having detailed knowledge of the planning problems,
and the possibility to discuss and evaluate on the problem with the stakeholders, are invaluable
benefits to have when solving practical planning problems. Secondly is the access to actual data.
When doing scientific research, access to real life data can be a rather difficult task, and often the
data is lacking in term of both quality and quantity. The industry position can give access to data
collected over several years, which in the best case are of an understanding quality.

Having the knowledge and the data of a selected problem, the challenge was to capture the
problem in a mathematical model which represent the complexity. As Lectio is used by the
majority of the Danish high schools it has been crucial that the models are generalized such that
they cover all the high schools.

Decision Support Software for the Danish High Schools

Burke et al. (2003) write that small companies are often not interested in getting the optimal
solutions for their planning problems. They are more interested in solutions which are;

good enough - soon enough - cheap enough.

Chapter 1. Introduction and Thesis Motivation 8

This quote is a criticism of companies not aiming at solving their problem to optimality. However,
when making decision support software applicable for several users, this quote is an excellent
description of the way of thinking.

• Good enough: The term optimality is often different from the operational researcher’s point
of view compared to the users. From an academic research point of view a problem can
be formulated as a mathematical problem and the goal is then often to solve this model
to optimality (or near optimality). However, the user might not find the solution optimal
as small changes might benefit the given high school, changes which are not obvious to
the developer. This is due to tacit knowledge of the particular high schools. The same is
applicable for the industrial role of this thesis.

Having the majority of the Danish high schools as a focal point makes it difficult, if not
impossible, to incorporate all the preferences of each single user. Hence the goal is to make
a generalized mathematical model and then provide good enough solutions to the users. The
users have the opportunity to customize the problems by changing some of the parameters.

• Soon enough: Soon enough denotes two things: the release date and the running time of the
algorithms. Development of decision support systems is a dynamic process, where feedback
from the users keeps the system up-to-date. Planning problems at educational institutions
are often only solved during a short single period each year and it is therefore important
that the software is accessible at this given time. At the high schools in Denmark, High
School Timetabling and Student Sectioning is solved in February and March, and this adds
some limits to the time-windows if feedback is wanted. When the software is available, the
running time of the algorithms should be relatively short. The algorithm is part of the
decision support system, and the users would often run the algorithms several times with
small changes, to get exactly the outcome preferred, hence long running time is seldom an
option.

• Cheap enough: The last issue is the price for the system. Public high schools in Denmark
have a limited budget hence the software system should be fairly cheap. This limits the
use of other commercial products such as state-of-the-art MIP solver as Gurobi or CPLEX
for the solution approaches. Using these commercial products can increase the price on the
system. The use of open-source MIP solvers or solving the problems using some sort of
heuristics is often an advantage.

Having created mathematical models and appertaining solution methods which meet the above
criteria is only a part of a successful practical implementation. The application needs to be
wrapped in a user-friendly interface, such that the user can easily figure out how to use the program
and how to make it solve their particular planning problem. In this thesis the implementation
process has included the solution methods, a SQL database for data handling and a GUI in the
framework of Lectio.

Furthermore, it should be remembered that creating decision support tools is an iterative pro-
cess. Based on communication and feedback from the users, the conceptual models of the problems
are constantly under development. It is important that the model, and hence the solutions are
always tailored to the customers’ needs and wants.

It has been the goal for all the projects of this thesis to provide optimal, or near optimal, so-
lutions to generalized planning problems such that, given the inputs from the high schools, we
are able to provide all the high schools with solutions of good quality within a reasonably time.
Two of the proposed solution methods for the planning problems considered in this thesis have
resulted in software applicable for the majority of the Danish high schools. This is the Consulta-
tion Timetabling Problem (Kristiansen et al., 2013b) and the Elective Course Student Sectioning
(Kristiansen and Stidsen, 2013a). The first version of Consultation Timetabling problem was
available as of May 2011, and the first version of Elective Course Student Sectioning was released
in January 2012.

9 1.4. Thesis outline

The other papers are more theoretical, or they remain to be integrated in a system. Chapter 7
shows that the High School Student Sectioning problem can be modeled as an Integer Programming
model and solved using a state-of-the-art MIP solver. The process is missing the first evaluation
of the conceptual model and the solutions, and a system implementation of it.

Chapter 3 has contributed to the company in a more indirect way. Using various Danish media,
MaCom A/S has stated the solution methods of the planning problems in Lectio were developed by
the finalists in the “World Cup of High School Timetabling”1. By competing in the International
Timetabling Competition (ITC2011) and finishing third has resulted in good public relations for
the company, as they can claim that the planning problems incorporated in Lectio have been
developed by researchers compatible at an international level.

1.4 Thesis outline

This thesis is divided into five parts and consists of eight papers. Part I motivates the relevance
and gives an introduction to the domain of this thesis. Part II investigates the High School
Timetabling problem. In Part III different Student Sectioning problems at Danish high schools
are studied and in Part IV the Meeting Planning Problem is presented. Finally, a conclusion is
given in Part V.

Part I: Introduction consists of three chapters. The current chapter contains the introduction
and motivation of the thesis. The introduction is relatively compact due to Chapter 2, which is a
technical report containing a survey on educational timetabling.

• Chapter 2: A Comprehensive Study of Educational Timetabling - a survey presents
a comprehensive study on the research of Educational Timetabling within the last decade.
Firstly the general concepts of Educational Timetabling are presented with previous surveys
and competitions. Secondly, the four major contributors of Educational Timetabling are
introduced; University Course Timetabling, High School Timetabling, Examination Time-
tabling and Student Sectioning. For each subject a description is given together with avail-
able benchmark data and relevant literature presented within the last decade. The paper
contains an appendix with all mentioned literature listed with subject and appertaining
comments. The work has been presented as follows:

– Technical report published at DTU Management (Kristiansen and Stidsen, 2013b).

Part II: High School Timetabling using the XHSTT format presents two papers on
the High School Timetabling Problem. High School Timetabling has been lacking some general
concepts and benchmark datasets. A group of researchers agreed on developing an XML format
for the problem together with new varied benchmark data sets (Post et al., 2012a). The format
was used for ITC2011. Both papers of this chapter are concerned with the solving of High School
Timetabling problems of the XHSTT format.

• Chapter 3: International Timetabling Competition 2011: An Adaptive Large
Neighborhood Search Algorithm presents a contribution to ITC2011. The created
algorithm is an Adaptive Large Neighborhood Search consisting of 9 insertion methods and
14 removal methods. The final algorithm contained 9 free parameters which were tuned
using the irace package. The algorithm received a third place and provided the best results
for four instances. The work was presented at the ninth International Conference on the
Practice and Theory of Automated Timetabling (PATAT2011).

1http://videnskab.dk/miljo-naturvidenskab/danskere-i-finalen-til-vm-i-skemalaegning

http://videnskab.dk/kultur-samfund/danskere-vinder-bronze-til-vm-i-skema

http://www.dtu.dk/Nyheder/2012/09/Webnyhed_DTU-vinder-VM-bronze-i-skemalaegning

http://gymnasieskolen.dk/vm-i-gymnasieskemaer

http://videnskab.dk/miljo-naturvidenskab/danskere-i-finalen-til-vm-i-skemalaegning
http://videnskab.dk/kultur-samfund/danskere-vinder-bronze-til-vm-i-skema
http://www.dtu.dk/Nyheder/2012/09/Webnyhed_DTU-vinder-VM-bronze-i-skemalaegning
http://gymnasieskolen.dk/vm-i-gymnasieskemaer

Chapter 1. Introduction and Thesis Motivation 10

– Extended abstract for Proceedings of the Ninth International Conference on the Prac-
tice and Theory of Automated Timetabling (PATAT), (Sørensen et al., 2012).

• Chapter 4: Integer Programming for the Generalized (High) School Timetabling
Problem presents the first exact solution method capable of handling an arbitrary instance
of the XHSTT format. The problem is formulated as a Mixed-Integer Programming (MIP)
model and solved using a two stage approach in a commercial general purpose MIP solver.
In the first stage a MIP model only containing the hard constraints is solved. In case of
optimality Stage Two is performed. In the second stage all the soft constraints are added
and the solution is warm-started with the solution from Stage One, and a constraint is added
to ensure that the optimal value of the first stage is kept.

The obvious advantage of Integer Programming over heuristic methods is the capability to
issue certificates of optimality, and the primary aim of this paper is to generate good lower
bounds for the different instances and hopefully prove optimality for some of them. The
approach was tested on the instances of ITC2011 and the XHSTT archive ALL INSTANCES.
The computational results show that the suggested approach is competitive with the methods
used at ITC2011. Furthermore, the results show that the approach is able to find previously
unknown optimal solutions for 2 instances of ALL INSTANCES, and proves optimality of 4
known solutions. For the instances not solved to optimality, new non-trivial lower bounds
were found in 11 cases, and new best-known solutions were found in 9 cases. The work has
been presented as follows:

– Submitted to Journal of Scheduling (Kristiansen et al., 2013c).

Part III: Student Sectioning Problems at High Schools presents three papers concerning
student sectioning problems at high schools in Denmark. The first two consider the Elective Course
Student Sectioning (or Elective Course Planning) of the 2nd and 3rd year high school students,
while the latter is concentrated on the first year students in High School Student Sectioning. For
all papers the problem is of assigning students to sections of courses such that no clashes exist.

• Chapter 5: Elective Course Planning. In the beginning of each school year the 2nd
and 3rd year students request some elective courses they would like to participate in next
to their mandatory courses. The Elective Course Planning is the problem of assigning the
students to course sections based on these requests while minimizing the number of classes
created. A Mixed Integer Programming model for the problem is created and three different
solution methods are applied; a direct MIP model solution, a MIP model solution with
Explicit Constraint Branching and a Branch-and-Price algorithm with Explicit Constraint
Branching. The Branch-and-Price framework is using Dantzig-Wolfe decomposition. The
solution methods are tested on 98 real-life instances from Danish high schools. The results
show that Explicit Constraint Branching is an interesting and efficient tool for solving this
problem, and the previous applied meta-heuristics could be improved significantly. Moreover
it was possible to establish optimal solutions for the majority of the instances within one
hour and a more fair distribution of the students is possible. The work has been presented
as follows:

– Published in European Journal of Operational Research (Kristiansen et al., 2011).

• Chapter 6: Elective Course Student Sectioning at Danish High Schools presents a
new MIP model for the Elective Course Planning problem, using the more appropriate name;
Elective Course Student Sectioning. The model from Kristiansen et al. (2011) is improved
such that it contains all necessary restriction including fairness distribution. The problem
is solved using an Adaptive Large Neighborhood Search algorithm. The algorithm contains
three types of removal heuristics and two types of insertion heuristics. Further three coupled
heuristics are embedded. The algorithm is tested on 80 real-life instances from Denmark

11 1.4. Thesis outline

and the performance is compared with solutions found using Gurobi. The results show
that, given the restricted solution time, ALNS on average finds solutions within 1% of the
optimum and it outperforms Gurobi on the large instances. The work has been presented
as follows:

– Accepted for publication in the special issue of Annals of Operations Research in collab-
oration with the 9th International Conference on the Practice and Theory of Automated
Timetabling (PATAT), (Kristiansen and Stidsen, 2013a).

• Chapter 7: High School Student Sectioning at Danish High Schools presents a
different student sectioning problem at Danish high schools compared to the Elective Course
Student Sectioning. When first year students are enrolled at a Danish high school, they have
requested a study line and two elective courses, a linguistic course (e.g. Spanish or French)
and an artistic course (e.g. Drawing or Media). The High School Student Sectioning problem
is bipartite. It is of assigning the students to cohorts given their study line requests, and it
is of assigning the students to elective course classes given the requests of these. A cohort is
a group of students having most of their mandatory courses together. The problem is solved
using a sequential approach. First the students are assigned to cohorts. Second the students
are assigned to elective course classes using the fixed solution from the first step. Finally
the entire problem is solved using the solutions from the first two steps as initial solution.
The approach is tested on 25 instances and the results show that the approach is only 0.5%
worse than the best found solution. The work has been presented as follows:

– Submitted to European Journal of Operational Research (Kristiansen et al., 2013a).

Part IV: Meeting Planning Problem presents two papers on the fairly new planning problem
within educational timetabling. The Meeting Planning Problem is the problem of assigning entities,
such as students and teacher, to meetings given some requests. The problem was first introduced
as the Consultation Timetabling Problem.

• Chapter 8: The Consultation Timetabling Problem at Danish High Schools is the
first paper presenting the Consultation Timetabling Problem. Two types of consultation
problems are presented. The first one is the Parental Consultation Timetabling Problem
(PCTP). Twice a year the high schools in Denmark offer the possibility for school meetings,
where the students (and their parents) meet the selected teachers for short meetings, to elab-
orate on the development of the student. The second consultation problem is the Supervisor
Consultation Timetabling Problem (SCTP). In the last year of high schools the students are
required to write a large study project and during this project it is required to have some
meetings with the respective supervisors.

The two consultation problems are modeled as one MIP model and an Adaptive Large
Neighborhood Search algorithm is applied for solving it. Computational results are obtained
using 300 real-life instances. The results show that the ALNS outperformed the previous
applied heuristic for the PCSP. (No previous method has been applied for SCTP.) Moreover
it is shown that the ALNS algorithm in average provides results within 5% from optimum
for both problem types. The work has been presented as follows:

– Published in Journal of Heuristics (Kristiansen et al., 2013b).

• Chapter 9: A Branch & Price Algorithm for the Generalized Meeting Planning
Problem presents a more generalized model of the Meeting Planning Problem. Instead
of meetings between student and teachers, the paper considers meeting between entities.
A Branch-and-Price (B&P) algorithm is presented and it has been tested on two different
meeting planning problems; the PCTP and the SCTP from Kristiansen et al. (2013b).

For both problems the developed B&P algorithm is tested on 100 real-world data examples
from Danish high schools. The B&P algorithm obtains an average gap of 2.32% for PCTP

Chapter 1. Introduction and Thesis Motivation 12

and 1.15% for SCTP. These are convincing results for effectiveness of the algorithm. It is
likely that there are many other problems where the Generalized Meeting Planning problem
is applicable, and where the described B&P approach therefore can be applied. The work
has been presented as follows:

– Submitted to Computers and Operations Research (Bagger et al., 2013).

Part V: Conclusion: The final part of the thesis contains some concluding remarks and sug-
gestions for future work.

13 Bibliography

Bibliography

J. Appleget and R. Wood. Explicit-Constraint Branching for Solving Mixed-Integer Programs,
chapter 14, pages 245–262. Springer Netherlands, 2000.

P. Avella, B. D’Auria, S. Salerno, and I. Vasilâev. A computational study of local search algorithms
for italian high-school timetabling. Journal of Heuristics, 13:543–556, 2007. ISSN 1381-1231.

N.-C. F. Bagger, M. Sørensen, S. Kristiansen, and T. R. Stidsen. A branch & price algorithm for
the generalized meeting planning problem. Computers & Operations Research, to appear, 2013.

V. Bardadym. Computer-aided school and university timetabling: The new wave. In E. Burke
and P. Ross, editors, Practice and Theory of Automated Timetabling, volume 1153 of Lecture
Notes in Computer Science, pages 22–45. Springer Berlin / Heidelberg, 1996.

C. Blum, J. Puchinger, G. R. Raidl, and A. Roli. Hybrid metaheuristics in combinatorial opti-
mization: A survey. Applied Soft Computing, 11(6):4135 – 4151, 2011. ISSN 1568-4946.

E. Burke, G. Kendall, J. Newall, E. Hart, P. Ross, and S. Schulenburg. Hyper-heuristics: An
emerging direction in modern search technology. In F. Glover and G. Kochenberger, editors,
Handbook of Metaheuristics, volume 57 of International Series in Operations Research & Man-
agement Science, pages 457–474. Springer US, 2003. ISBN 978-1-4020-7263-5.

E. K. Burke, J. Marec, A. J. Parkes, and H. Rudova. A branch-and-cut procedure for the udine
course timetabling problem. Annals of Operations Research, 194(1):71–87, 2012. ISSN 0254-
5330.

H. Cambazard, E. Hebrard, B. O’Sullivan, and A. Papadopoulos. Local search and constraint pro-
gramming for the post enrolment-based course timetabling problem. In PATAT2008: Proceed-
ings of the 7th International Conference on the Practice and Theory of Automated Timetabling,
2008.

Capgemini. uni-c - analyse af skemaplanlægningssystemer.
http://www.uvm.dk/Administration/It-og-digitalisering/Ambitioes-it/~/media/

UVM/Filer/Adm/PDF12/120113%20UNIC%20Analyse%20af%20skemalaegningssystemer.ashx

[Retrieved 28/11-2013], December 2010. Comparativ analyse of timetabling systems in
Denmark. Ordered by UNI-C and produced by the consulting firm Capgemini Danmark A/S.
In Danish.

P. de Haan, R. Landman, G. Post, and H. Ruizenaar. A case study for timetabling in a dutch
secondary school. In E. Burke and H. Rudova, editors, Practice and Theory of Automated
Timetabling VI, volume 3867 of Lecture Notes in Computer Science, pages 267–279. Springer
Berlin / Heidelberg, 2007.

D. de Werra. An introduction to timetabling. European Journal of Operational Research, 19(2):
151 – 162, 1985. ISSN 0377-2217.

J. Desrosiers and M. Lübbecke. Selected topics in column generation. G–2002–64, 34:1–34, 2005.

L. D. Gaspero, A. Schaerf, and B. McCollum. The second international timetabling competition
(itc-2007): Curriculum-based course timetabling (track 3). Technical report, School of
Electronics, Electrical Engineering and Computer Science, Queen’s University SARC Building,
Belfast, United Kingdom, 2007.

S. Kristiansen and T. R. Stidsen. Elective course student sectioning at danish high schools.
Annals of Operations Research, PATAT 2012 SI:To appear, 2013a.

S. Kristiansen and T. R. Stidsen. A comprehensive study of educational timetabling - a survey.
Technical Report 8, 2013, DTU Management Engineering, Technical University of Denmark,
November 2013b.

http://www.uvm.dk/Administration/It-og-digitalisering/Ambitioes-it/~/media/UVM/Filer/Adm/PDF12/120113%20UNIC%20Analyse%20af%20skemalaegningssystemer.ashx
http://www.uvm.dk/Administration/It-og-digitalisering/Ambitioes-it/~/media/UVM/Filer/Adm/PDF12/120113%20UNIC%20Analyse%20af%20skemalaegningssystemer.ashx

Bibliography 14

S. Kristiansen, M. Sørensen, and T. R. Stidsen. Elective course planning. European Journal of
Operational Research, 215(3):713 – 720, 2011. ISSN 0377-2217. doi: 10.1016/j.ejor.2011.06.039.

S. Kristiansen, A. Mason, and T. R. Stidsen. High school student sectioning at danish high
schools. European Journal of Operational Research, MISTA 2013:Submitted, 2013a.

S. Kristiansen, M. Sørensen, M. B. Herold, and T. R. Stidsen. The consultation timetabling
problem at danish high schools. Journal of Heuristics, 19(3):465–495, June 2013b.

S. Kristiansen, M. Sørensen, and T. R. Stidsen. Integer programming for the generalized (high)
school timetabling problem. Journal of Scheduling, Submitted 5/9-2013, 2013c.

G. Lach and M. Lübbecke. Curriculum based course timetabling: new solutions to udine
benchmark instances. Annals of Operations Research, 194:255–272, 2012. ISSN 0254-5330.

G. Laporte, R. Musmanno, and F. Vocaturo. An adaptive large neighbourhood search heuristic
for the capacitated arc-routing problem with stochastic demands. Transportation Science, 44
(1):125–135, 2010.

V. Maniezzo, T. Stützle, and S. Voß. Matheuristics: Hybridizing metaheuristics and
mathematical programming. Annals of Information Systems, 10, 2009.

B. McCollum. A perspective on bridging the gap between theory and practice in university
timetabling. In E. Burke and H. RudovÃ¡, editors, Practice and Theory of Automated
Timetabling VI, volume 3867 of Lecture Notes in Computer Science, pages 3–23. Springer
Berlin Heidelberg, 2007a. ISBN 978-3-540-77344-3. doi: 10.1007/978-3-540-77345-0 1. URL
http://dx.doi.org/10.1007/978-3-540-77345-0_1.

B. McCollum. International timetabling competition 2007.
http://www.cs.qub.ac.uk/itc2007/index.htm[Retrieved 28/11-2013], 2007b.

B. McCollum, A. Schaerf, B. Paechter, P. McMullan, R. Lewis, A. J. Parkes, L. D. Gaspero,
R. Qu, and E. K. Burke. Setting the research agenda in automated timetabling: The second
international timetabling competition. INFORMS Journal on Computing, 22(1):120–130, 2010.

McKinsey & Company. Analyse om øget anvendelse af it p̊a selvejende uddannelsesinstitutioner
under undervisningsministeriet - forslag til forbedringer af studieadministrative opgaver og
processer.
http://www.uvm.dk/Administration/It-og-digitalisering/Ambitioes-it/~/media/

UVM/Filer/Adm/PDF09/Finanslov_tilskud/AIT/090825_McK_rapport.ashx [Retrieved
28/11-2013], June 2009. Analysis on the increased use of IT in private institutions of
education under the Ministry of Education - suggestions for improvement of student
administrative tasks and processes. Ordered by UNI-C and produced by the consulting firm
McKinsey & Company. In Danish.

MISTA. Multidisciplinary international scheduling conference: Theory & application.
http://www.schedulingconference.org/[Retrieved 28/11-2013], 2013.

T. Müller. Real-life examination timetabling. In Proceedings of the tenth Multidisciplinary
International Scheduling Conference (MISTA2013), 2013.

T. Müller and K. Murray. Comprehensive approach to student sectioning. Annals of Operations
Research, 181:249–269, 2010. ISSN 0254-5330.

C. Nothegger, A. Mayer, A. Chwatal, and G. R. Raidl. Solving the post enrolment course
timetabling problem by ant colony optimization. Annals of Operations Research, 194(1):
325–339, 2012. ISSN 0254-5330.

http://dx.doi.org/10.1007/978-3-540-77345-0_1
http://www.cs.qub.ac.uk/itc2007/index.htm
http://www.uvm.dk/Administration/It-og-digitalisering/Ambitioes-it/~/media/UVM/Filer/Adm/PDF09/Finanslov_tilskud/AIT/090825_McK_rapport.ashx
http://www.uvm.dk/Administration/It-og-digitalisering/Ambitioes-it/~/media/UVM/Filer/Adm/PDF09/Finanslov_tilskud/AIT/090825_McK_rapport.ashx
http://www.schedulingconference.org/

15 Bibliography

B. Paechter, L. M. Gambardella, and O. Rossi-Doria. International timetabling competition
2003. http://www.idsia.ch/Files/ttcomp2002/oldindex.html[Retrieved 28/11-2013],
2002.

PATAT. International conference on the practice and theory of automated timetabling.
http://www.patatconference.org/[Retrieved 28/11-2013], 2013.

N. Pillay. A survey of school timetabling research. Annals of Operations Research, February
2013. ISSN 0254-5330.

D. Pisinger and S. Ropke. A general heuristic for vehicle routing problems. Computers &
Operations Research, 34:2403–2435, August 2005. ISSN 0305-0548.

G. Post, J. Kingston, A. Schaerf, L. D. Gaspero, and B. McCollum. International timetabling
competition 2011. http://www.utwente.nl/ctit/hstt/itc2011/[Retrieved 28/11-2013],
2011.

G. Post, S. Ahmadi, S. Daskalaki, J. Kingston, J. Kyngas, C. Nurmi, and D. Ranson. An xml
format for benchmarks in high school timetabling. Annals of Operations Research, 194:
385–397, 2012a. ISSN 0254-5330.

G. Post, L. D. Gaspero, J. H. Kingston, B. McCollum, and A. Schaerf. The third international
timetabling competition. In Proceedings of the Ninth International Conference on the Practice
and Theory of Automated Timetabling (PATAT 2012), Son, Norway, August 2012b.

R. Qu, E. Burke, B. McCollum, L. Merlot, and S. Lee. A survey of search methodologies and
automated system development for examination timetabling. Journal of Scheduling, 12(1):
55–89, 2009. ISSN 1094-6136.

G. M. Ribeiro and G. Laporte. An adaptive large neighborhood search heuristic for the
cumulative capacitated vehicle routing problem. Computers & Operations Research, 39
(3):728 – 735, 2012. ISSN 0305-0548.

S. Ropke and D. Pisinger. An adaptive large neighborhood search heuristic for the pickup and
delivery problem with time windows. Transportation Science, 40:455–472, November 2006.
ISSN 1526-5447.

B. K. . H. Rudová. Student scheduling for bachelor state examinations. In Multidisciplinary
International Scheduling Conference VI, 2013.

D. Ryan. It is time to enjoy the best of both worlds. In The 46th ORSNZ Conference, Victoria
University of Wellington, New Zealand, 10-11 December 2012.

S. Schadegg. Optimized exam timetabling for danish high schools. Master’s thesis, DTU
Management Engineering, 2013.

A. Schaerf. A survey of automated timetabling. Artificial Intelligence Review, 13:87–127, 1999.
ISSN 0269-2821.

M. Sørensen, S. Kristiansen, and T. R. Stidsen. International timetabling competition 2011: An
adaptive large neighborhood search algorithm. In Proceedings of the Ninth International
Conference on the Practice and Theory of Automated Timetabling (PATAT 2012), pages
489–492. SINTEF, 2012.

S. Suyanto. An informed genetic algorithm for university course and student timetabling
problems. In Proceedings of the 10th international conference on Artifical intelligence and soft
computing: Part II, ICAISC’10, pages 229–236, Berlin, Heidelberg, 2010. Springer-Verlag.
ISBN 3-642-13231-6, 978-3-642-13231-5.

http://www.idsia.ch/Files/ttcomp2002/oldindex.html
http://www.patatconference.org/
http://www.utwente.nl/ctit/hstt/itc2011/

Chapter 2

A Comprehensive Study of
Educational Timetabling
- a survey

Simon Kristiansen∗† Thomas R. Stidsen∗

∗Department of Management Engineering, Technical University of Denmark,
Produktionstorvet, Building 426, DK-2800 Kgs. Lyngby, Denmark

sikr@dtu.dk, thst@dtu.dk

†MaCom A/S
Vesterbrogade 48, 1., DK-1620 Copenhagen V, Denmark

1

Abstract Educational timetabling is one of the most researched subjects within the range of time-

tabling problems. There has been a significant increase in efficient planning problems within educational

timetabling the last couple of decades. In this paper we will highlight some of the main trends and research

achievements within educational planning problems. Furthermore it is an aim to make a differentiation

between the different planning problems. This survey is concentrated on the four main education planning

problems; University Course Timetabling, High School Timetabling, Examination Timetabling and Stu-

dent Sectioning. Firstly a presentation of educational timetabling and the main components is given. For

each problem a description is given with appertaining benchmark data and recent research. The literature

presented is mainly solution tested on real-life data or better yet implemented. Summarizing tables for

each section are presented to give an overall view of all the literature of this survey.

2.1 Introduction

Timetabling has been a challenging and important problem within operations research for several
decades and it still is. In Wren (1996) timetabling is defined as:

”Timetabling is the allocation, subject to constraints, of given resources to objects being placed
in space time, in such way as to satisfy as nearly as possible a set of desirable objectives.”

1Technical report at DTU Management, report 8, 2013 (Kristiansen et al. (2013b))

17

Chapter 2. A Comprehensive Study of Educational Timetabling 18

Due to the broad definition the timetabling problems covers various forms of real-world prob-
lems, including Employee Timetabling (e.g. Balakrishnan and Wong (1990) and Meisels and
Schaerf (2003)), Rostering Problems (e.g. Cheang et al. (2003) and Burke et al. (2004b)), Sports
Timetabling (e.g. Easton et al. (2003) and Kendall et al. (2010)) and Educational Timetabling
(e.g. Burke and Newall (1999), Meĺıcio et al. (2005) and Kristiansen et al. (2011)).

This survey will be concentrated on Educational Timetabling and the different problems within
this area. Educational timetabling encompasses problems such as University Course Timetabling,
High School Timetabling, Examination Timetabling and Student Sectioning, and is encountered
in all institutions in the educational system throughout the world and it is one of the mostly
studied timetabling problems from a practical viewpoint. The problems are very difficult and
important for the institutions, and several approaches have been used to create good and feasible
solutions. The purpose of this paper is to give a comprehensive overview of the different planning
problems within education timetabling with the recent developments and trends. Table 2.1 lists
the educational timetabling problem which we are going to discuss in this paper.

It should be mentioned that it is not attempted to perform any experimental comparison on
the different methods used, only to give and overview of the methods.

Furthermore, in the effort of producing an exhaustive review of all the planning problems in the
education system, we are conscious that some references have been left out and we will therefore
apologize in advance. However the goal is not to list all scientific papers on this subject, but to
create an overview which illustrates the different types of planning problems within the educational
system and the diversity of solution methods used on these problems.

Table 2.1: Educational timetabling problems

Problem Short description and latest survey

University Course Timetabling Aims to break university courses into sections, and assign
times, students and rooms. Either Curriculum-based or
Enrollment-based Course Timetabling.
McCollum (2006) motivates in bridging the gap between
theory and practice within University Course Timetabling

High School Timetabling Allocating classes to time slots, teachers and rooms to sat-
isfy the restrictions.
Pillay (2013) gives a definition and an overview of the High
School Timetabling problem.

Examination Timetabling Scheduling exams for students under the limited resources.
Qu et al. (2009) is a comprehensive study of Examination
Timetabling.

Student Sectioning Assigning student to sections of courses while respecting
the requests of the individual students.
There is no recent survey on Student Sectioning.

2.1.1 Previous Surveys and Competitions

The literature on educational timetable includes several surveys on educational timetables. A
briefly discussion of the scope of the surveys is given here sorted into chronological order:

Some of the earliest surveys include Schmidt and Ströhlein (1980), de Werra (1985) and
Junginger (1986). Schmidt and Ströhlein (1980) provide an annotated bibliography con-
taining more than 200 papers, and hence listing all the papers on the field up to 1979. de Werra
(1985) introduces the various problems within education timetabling and provides with differ-
ent models to the Class-Teacher Timetabling and Course Timetabling based on graph theory,
while Junginger (1986) describes the various software products implemented for solving school

19 2.1. Introduction

timetabling in Germany.
The first survey on Examination Timetabling was presented in Carter (1986). None of the

approaches mentioned in this survey was implemented in more than one institute. The survey was
updated in Carter and Laporte (1996) where the approaches used on Examination Timetabling
between 1986 and 1996 is summarized. The criteria for discussion of this paper, was that the
solution methods should either have been implemented in a real world application or tested on
real life data.

Bardadym (1996) considers computer-aided timetabling for high schools and universities from
1960 to 1995. The paper discusses the core items in the different problems and gives a small
discussion on open issues for future research within timetabling.

In Carter and Laporte (1998) the authors has changed their focus from Examination Time-
tabling to Course Timetabling. The major components of the University Course Timetabling
problem are described in details as well as a discussion of the primary solution methods used. The
paper summarize by listing up papers which contains approaches which are either implemented or
tested on real data.

In Schaerf (1999a) the difference between Course Timetabling and Examination Timetabling
is observed as being relatively small and that the problems could be modeled using the same model.
Various formulations of School Timetabling, Course Timetabling and Examination Timetabling
is surveyed along with the techniques used for solving the problems.

Burke and Petrovic (2002) give an overview of some of the recent developments that
have been carried out in the Automated Scheduling, Optimization and Planning Research Group
(ASAP) at the University of Nottingham.

Burke et al. (2004c) gives an introduction to the field of Educational and Sport Timetabling.
The paper discusses the application of graph coloring methods to the timetabling problems and
thereby highlights the fact that graph coloring have been an important part of timetabling prob-
lems in several decades.

McCollum (2006) provides information regarding research on University Course Timetabling
up to 2006. The aim is to motivate researchers to bridge the gap between research and practice
within University Course Timetabling. The paper rounds up by listing the major challenges
working within Examination Timetabling and University Course Timetabling.

Qu et al. (2009) is the far newest survey on Examination Timetabling. The basis of the paper
is Carter and Laporte (1996) and it is therefore concentrated on papers published between
1996 and 2009. The different algorithm approaches are classified and discussed. Furthermore the
paper renames the existing problem datasets to avoid a significant amount of confusion which
have been a problem for many years. The paper rounds off with an estimate on future research
direction within examination timetabling.

Pillay (2013) is the latest survey and the first survey concentrated only on school timetabling.
The survey gives a definition of the school timetabling, the different hard and soft constraints and
it gives a detailed overview on the solution methods used.

The book Automated Scheduling and Planning From Theory to Practice contains a chapter on
Educational Timetabling (Kingston (2013a)). The chapter gives a brief introduction to the
different educational planning problems.

Some conferences are dedicated to the art of timetabling, such as the International Conference
on the Practice and Theory of Automated Timetabling (PATAT (2013)) and the Multidisciplinary
International Scheduling Conference: Theory & Application (MISTA (2013)) Both conferences are
held every second year.

Besides the mentioned surveys and conferences there has been three International Time-
tabling Competitions (ITC) on educational timetabling problems. These competitions have
contributed to an increased focus on educational timetabling problems and thus the research
within.

The First International Timetabling Competition was held in 2003 (ITC2003) and was regarding
University Course Timetabling. The description of the problem can be found on the website of
the competition (Paechter et al. (2002)). The results were presented at PATAT in 2004.

Chapter 2. A Comprehensive Study of Educational Timetabling 20

The Second International Timetabling Competition of 2007 had three tracks; Enrollment-based
University Course Timetabling, Curriculum-based University Course Timetabling and Examina-
tion Timetabling (Gaspero et al. (2007), McCollum et al. (2010)) The winner of each track were
announced at PATAT in 2008. Problem description can be found at the competition website
(McCollum (2007)).

The third and most resent is the ITC2011 with focus on High School Timetabling (Post et al.
(2012c)) and the results were presented at PATAT in 2012. The problem description and compe-
tition rules can be found at the website of the competition (Post et al. (2011)).

The results of the different competitions are described later in this paper.

From the above listing, it is seen that there exist several excellent surveys on educational time-
tabling. This paper concentrates on articles tested on real data or better yet implemented. I.e.
it tries to follow the approach introduced in Carter and Laporte (1996) and Carter and Laporte
(1998). We try to restrict the paper to only contain newly published papers, i.e. papers published
since 2003, however we are aware that some of the educational problems are so sparse represented
in the literature that earlier papers might be considers for these problems.

The surveys and competitions described above are listed in Table 2.1 and Table 2.2 in 2.A.

2.1.2 Outline of the paper

The educational timetabling problems are in this survey divided into four main categories: Uni-
versity Course Timetabling, High School Timetabling, Examination Timetabling and Student Sec-
tioning. However, as aforementioned, other surveys have a different view and it can be discussed
whether some of the categories could be combined.

The article is organized as follows. In Section 2.2 a description of the general timetabling
problem in the education system is given. In the following four sections, each section treats their
own planning problem. University Course Timetabling problem is described in Section 2.3 and
High School Timetabling in Section 2.4. Section 2.5 elaborates on Examination Timetabling.
Finally Section 2.6 describes the Student Sectioning. The conclusion of this paper follows in
Section 2.7 and in 2.A all the literature for each problem are listed with appertaining comments.

2.2 Planning Problems and the Components

The definition timetabling is often used when solving problems with some form of personnel al-
location, such as University Course Timetabling. Due to the personnel allocations, many people
are affected by the timetables created. For the combined planning problems in the educational
system four main stakeholders are identified. Each with their own set of aims and wants.

• The administration: Solves the planning problems and sets the minimum standards that the
timetables must conform to. The capacity of the room, consecutive exams, etc.

• The students: This is by far the largest in volume of the four stakeholders. The students
seldom have much influence on the outcome of the different planning problems. And due to
the number of students involved it is difficult to declare what is the best timetable for the
students as they all might have different wants and needs.

• The teachers: The teachers have a little more influence on the outcome than the students
and they do also requests a compressed timetables. Furthermore they might have some
restrictions on which day and time they want to give lessons or exams.

• The departments/sections: Often only relevant for universities as the high schools rarely
are organized with departments or sections. The department can have some restrictions or
requests for the exam and course timetabling.

21 2.3. University Course Timetabling

For all the various planning problems some restrictions always apply, these are the so-called
”first-order conflicts”. E.g. no person can be at more than one place at any time. These first-
order constrains are always present in some form. Besides these constraints, there is a great
variation between the problems, but also within a given problem there is great variation due to
different universities, high schools and/or the Ministries of Education of the respective countries.
Hence the other constraints within educational timetabling are many and varied. In the following
some of the most common types are listed.

• Resource assignment: Resources are rarely preassigned to lectures and in these cases the
assigning of resources is a part of the decision problem. The most common resources to assign
are rooms. Some lectures prefer or require to be held in a particular class. Furthermore the
number of students in a given room must not exceed the capacity of the room.

• Continuity: Constraints that ensure that certain features of the timetables are constant or
predictable. E.g. lectures of the same course should be scheduled in the same room or at
the same time of days.

• Compactness: These constraints are designed to produce a more compact timetable for
both students and teachers. For the students a compact timetable is one with a low number
of idle time slots in between lectures. A teacher might prefer to have all his lectures in fewer
days and thereby have some days of.

• Spreading: Often used as contrary to compactness. Meetings should be spread out in time.
However it is also used on single meeting. If the same meeting should be repeated twice or
more times in the timetable it is often preferable if these similar meetings a spread out.

• Time assignment: These constraints are used for assigning meeting to a time. This can
be used to specify days on which teachers are unavailable or if one particular meeting must
take place after another one, e.g. exercises should be placed right after the corresponding
lectures. It is also used for meetings that should be held simultaneous.

These types of constraints are somewhat presented in educational timetabling as we will see in
the following sections.

2.2.1 Annual Cycle of Educational Timetabling Problems

Whether it applies to high schools or universities, all the planning problems at an educational in-
stitute are recurring annual administrative tasks. There are differences in the planning problems
that the various institutions have in their annual cycle, but in general the annual cycle of educa-
tional planning problems contains three main subjects; Student Sectioning followed by University
Course Timetabling or High School Timetabling and finally the Examination Timetabling. Figure
2.1 illustrates the annual cycle of planning problems of a typical educational institute.

For some institutes some of the planning problems might be combined or swap positions in the
cycle, or additional planning problems might be added to the cycle. At some universities Student
Sectioning is used before and after the course timetabling.

2.3 University Course Timetabling

University Course Timetabling problem is the task of assigning lectures of courses to time slots,
rooms and other resources, subject to constraints applied for the single student. The large size and
structure of universities often makes the problem of solving the course timetabling so complicated
that it is solved by several experts scattered across different faculties and departments. Due to
the complexity of the problem, it is quite common that the universities re-use the solution from
previous years when solving the problem.

Chapter 2. A Comprehensive Study of Educational Timetabling 22

Student Sectioning

University Course
Timetabling/
High School
Timetabling

Examination
Timetabling

Figure 2.1: A typical annual cycle of planning problems at an educational institute. Each year start-
ing with Student Sectioning, then Timetabling (either University Course Timetabling or High School
Timetabling) and finally the Examination Timetabling before repeating for the next school year.

The University Course Timetabling is often divided into two general approaches; the Curri-
culum-based University Course Timetabling and the Enrollment-based University Course Time-
tabling.

Courses which can be taken in combination, because they are needed to satisfy the degree rules
of the given study, are called curricula. And assigning courses to time slots based on this is called
Curriculum-based Course Timetabling. The problem consists of creating the weekly schedules of
lectures where conflicts between the courses are set accordingly to the curriculum specified by
the university. Gaspero et al. (2007) gives a short description of the Curriculum-based Course
Timetabling Problem applied for Track 2 of ITC2007. Several research papers have been working
on this university course approach (Eg. Burke et al. (2012); Cacchiani et al. (2013); Lü et al.
(2011); Lach and Lübbecke (2012)).

The second approach is the Post Enrollment-based Course Timetabling. Based on the enrollment
data of each individual student, it is determined where courses are placed in the timetable such
that all students can attend the events on which they are enrolled. This approach has been given
various names in the literature including the Class Timetabling Problem and Event Timetabling.
Lewis et al. (2007) gives a description of the Post Enrollment-based Course Timetabling Problem
applied for Track 3 of ITC2007. Papers working on the Post Enrollment-based Course Timetabling
include Cambazard et al. (2008); Ceschia et al. (2012) and Nothegger et al. (2012).

The two approached are not necessary mutually exclusive. The universities can use the curricu-
lum based approach in an early state to get the basic structure of the timetable, and then later
on use the enrollment-based approach to improve the timetable.

Though the literature often is divided into the two approaches, many of the constraints remain
the same. Below some of the most common constraints for University Course Timetabling are
listed.

• Primary hard constraints

– No 1st-order conflicts for students and teachers.

– Only one event is put into each room in any time slot.

– Rooms should satisfy all of the features required by the event.

• Primary soft constraints

23 2.3. University Course Timetabling

– The capacity of the room should be respected.

– Compact timetable of each student or curricula.

– Room stability. Lectures of same course should be assigned the same room.

– Time and/or room preferences.

2.3.1 International Timetabling Competition

In the First International Timetabling Competition in 2003 (ITC2003), the focus was Post Enroll-
ment-based University Course Timetabling. The winner became Kostuch (2004) with a Simulated
Annealing based heuristic.

The most recent competition on University Course Timetabling is the Second International
Timetabling Competition in 2007 (ITC2007) (McCollum et al. (2010)). The competition consisted
of three tracks where two were upon University Course Timetabling, with enrollment-based in
Track 2 and curriculum-based in Track 3. Track 1 treated the Examination Timetabling problem.

The winner of Track 2 was a team from Ireland solving the Enrollment-based University Course
Timetabling using a hybridized local search algorithm with a Constraint Programming approach
in a Large Neighborhood Search scheme to address the hardness of finding feasible solutions
(Cambazard et al. (2008)).

Track 3 was won by Tomáš Müller using a hybrid heuristic using three phases (Müller (2009)).
Firstly a feasible initial solution is found using an Iterative Forward Search algorithm. In phase
two the local optimum is found using a Hill Climbing algorithm and third phase is using Great
Deluge techniques. This heuristic solver was among the finalist for all three tracks, and won Track
1 and 3.

2.3.2 Benchmark Data

There is a major lack of benchmark data for University Course Timetabling. ITC2007 contains
datasets for both the Enrollment-based Course Timetabling and the Curriculum-based Course
Timetabling. The datasets are available at the website of the competition McCollum (2007).

• ITC2007 Track2 - Enrollment-based Course Timetabling
Twenty-four datasets are available; all were created using an automated problem generator
designed by the competition organizers, and all are known to feature at least one perfect
solution - that is, a solution with no hard or soft constraint violations. The drawback of this
benchmark is that it is generated data and not real-life.

• ITC2007 Track3 - Curriculum-based Course Timetabling
Twenty-one instances were released for this track. All instances are real data and come from
the University of Udine and for all instances there exists at least one feasible solution.

Bonutti et al. (2012) collects the twenty-one instances of ITC2007 and four instances from
Gaspero and Schaerf (2003) together with seven new instances mainly from Italian universities.
The datasets are all real cases from various universities, mainly from University of Udine. In the
following these datasets are denoted as one benchmark called The Udine benchmark data
UdineBenchmark (2013).

• The Purdue benchmark data
On the website of the educational scheduling system UniTime, there is access to real data
from the University of Purdue, United States. The benchmark consists of data sets for each
department and one for the combined problem of three years (PurdueBenchmark (2013)).

Chapter 2. A Comprehensive Study of Educational Timetabling 24

2.3.3 Recent Research

University Course Timetabling is one of the most researched subjects within educational time-
tabling. The last decade many of the used methodologies represent some sort of hybridization of
a number of techniques. In the following the scientific papers on University Course Timetabling
of the last decade are categorized into the main methodologies used.

Swarm Intelligence Algorithms

Swarm intelligence algorithms belong to the family of population based techniques. Based on
some sort of agents interacting locally with one another and with their environment. E.g. in Ant
Colony algorithms, the ants search the shortest path to food by laying pheromones on the way.
The shortest path is the path with the strongest level of pheromones.

In Socha et al. (2003) two different Ant Colony methods is used to solve the University Course
Timetabling; Ant Colony System and MAX-MIN Ant System. In each step of both algorithms,
every ant constructs a complete assignment of events to time slots using heuristics and pheromone
information. The timetables are then improved using a local search procedure.

Ant Colony is also the method used in Nothegger et al. (2012) to solve the Post Enrollment-based
Course Timetabling problem. The algorithm uses two distinct but relatively compact pheromone
matrices in combination with an effective procedure to exploit their information in the heuristic
solution construction. The algorithm was tested on the benchmark datasets from ITC2007 with
the same terms as the competition. It had the best solution for 11 out of the 24 instances compared
to the 5 finalists, including ties, which would have given a fourth place. However the algorithm
did show a large variation in the solution quality as it produced both the best and worst solution
for several instances.

In Turabieh et al. (2010) a simulation of a fish swarm is applied to the same University Course
Timetabling definition used in Socha et al. (2003). The idea of Fish Swarm Intelligent is to
simulate the behavior of fishes while searching for food. The movements of the fishes are based on
a Nelder-Mead simplex algorithm. Two types of local search were applied to enhance the quality
of the solution. A multi decay rate Great Deluge and a steepest descent algorithm. The same
method was later used to solve the Examination Timetabling problem (Turabieh and Abdullah
(2011b)).

Another Swarm Intelligence is the Particle Swarm optimization, which is used on University
Course Timetabling in Shiau (2011) and in Chen and Shih (2013). The Particle Swarm Intelligence
algorithm consists of a swarm of particles in the space. The position of a particle is indicated by a
vector which presents a solution and the movements of the particles are guided by their own best
known position in the search-space as well as the entire swarm’s best known position. Shiau (2011)
solves the course timetabling problems for a typical university in Taiwan by applying a hybrid
particle swarm optimization. Each particle is updated on the basis of continuous particle swarm
optimization formulas and local search. Chen and Shih (2013) evaluates on two different kind of
particle swarm heuristics used on the problem, an inertia weight version and a constriction version.
An interchange heuristic was applied to enhance the quality of the solution. The algorithms
were tested on a single dataset where the Constriction Particle Swarm with interchange heuristic
performed best.

Evolutionary Algorithms

Evolutionary algorithms do also belong to the family of population based techniques. The most
common evolutionary algorithm is the Genetic Algorithm. Genetic algorithms are search heuristic
that mimics the process of natural selection.

In Nurmi and Kyngas (2008) the Curriculum-based Course Timetabling problem is solved using
an evolutionary algorithm. Firstly the Curriculum-based Course Timetabling is turned into the
School Timetabling problem using a conversion scheme. The problem is then solved using a genetic
algorithm (Nurmi and Kyngas (2007)). The algorithm consists of one mutation operator and no

25 2.3. University Course Timetabling

recombination operators. The most important features of the algorithm are a greedy hill-climbing
mutation operator and a adaptive genetic penalty method.

Suyanto (2010) describes an informed generic algorithm for the University Course Timetabling
and Student Sectioning. Firstly a greedy heuristic creates some feasible solution were all the hard
constraints are satisfied. Then a directed mutation scheme is used to reduce the violations of the
soft constraints while keeping the solution feasible.

Local Search Algorithms

Local search based techniques are classified as meta-heuristics and the algorithms move from
solution to solution in the search space by applying local changes. Local search algorithms in-
clude methods such as Tabu Search, Simulated Annealing (SA) and Greedy Randomized Adaptive
Search Procedures (GRASP). Within educational timetabling local search has been widely used
and in the following some of the local search based techniques used on University Course Time-
tabling in the last decade are presented.

Gaspero and Schaerf (2003) propose a set of multi-neighborhood search strategies to improve
local search capabilities. It is showed how different neighborhoods operators can be combined. The
operators chosen are Tabu Search and Hill-Climber. The combinations used are neighborhood-
union, neighborhood-composition and token-ring search. A perturbation operator called ”kicker”
is used to help improve the search and hence avoid local optima. The algorithm is tested on four
real instances from the School of Engineering at Udine University.

Another neighborhood analysis is made in Lü et al. (2011). Four neighborhoods are investigated
based on three evaluation criteria: percentage of improving neighbors, improvement strength and
search steps. The neighborhoods in this paper is SimpleMove, SimpleSwap and two kinds of
KempeMove. To understand the behavior of the neighborhoods and the combinations, they are
tested using a steepest descent algorithm. To further evaluate the impact, a series of experiments
are conducted using three algorithms: Tabu Search, Iterate Local Search and Adaptive Tabu
Search.

Simulated Annealing is another local search algorithm. The idea is to search a wider area of
the search space by allowing the algorithm to accept worse moves with a higher probability in the
beginning of the search. The acceptance criterion is controlled with a temperature which decades
based on a cooling schedule. Kostuch (2004) participated in ITC2003 and won using a heuristic
based on Simulated Annealing. Firstly a feasible timetable is constructed, and the timetable is
then improved using SA.

Murray et al. (2007) transforms the University Course Timetabling problem at the Purdue
University into a constraint satisfaction and optimization problem (CSOP). CSOP consists of a
set of variables having finite domain, a set of hard constraints and an objective function. The
solver used an iterative forward search algorithm. The paper is a part of the research embedded
in the system UniTime.

In Ceschia et al. (2012) the Post Enrollment-based Course Timetabling problem is solved using
SA. The SA used is with probabilistic acceptance and a geometric cooling scheme. The algorithm
is tested on the benchmark of ITC2003, ITC2007 and the data used in Lewis and Paechter (2005).

Variable Neighborhood Search (VNS) algorithms are used to solve the Curriculum-Based Course
Timetabling in Nguyen et al. (2011). Eight Variable Neighborhood Search algorithms with different
implementing strategies were created. A basic VNS and seven popular variants, where the Fleszar-
Hindi extension of the basic VNS in general was the most effective in solving the 14 instances from
University of Science in Vietnam.

Chiarandini et al. (2006) uses a hyper-heuristic which combines various construction heuristics,
Tabu Search, Variable Neighborhood Descent and Simulated Annealing. The algorithm is divided
in two parts. In the first part construction heuristics are used to solve the hard constraints of
the problem. In the second phase the penalty of soft constraints are improved by first using
Variable Neighborhood Search, and then using Simulated Annealing. The authors make use of

Chapter 2. A Comprehensive Study of Educational Timetabling 26

the racing procedure, the F-race method, to automatically tune the parameters of the algorithm.
The algorithm is tested on the benchmark of ITC2003.

Graph Coloring Algorithms

In Burke et al. (2007) a graph-based hyper heuristic is developed for University Course Timetabling
and Examination Timetabling. A Tabu Search approach is employed to search for permutations of
graph heuristics which are used for constructing timetables. For the University Course Timetabling
the approach is tested on the datasets from ITC2007 and the results were competitive with the
previous approaches reported in the literature.

Many papers work with a two-phase approach for solving University Course Timetabling. A
construction phase and an improvement phase. Where most papers are concentrated on the
improvement phase, Azlan and Hussin (2013) focus on creating as good initial solutions as possible
to solve the Curriculum-based Course Timetable. Two different construction heuristics based on
Graph Coloring are created; largest degree and largest weighted degree. The two heuristics are
tested on the datasets from ITC2007 and both are able to find feasible solutions for most of the
cases. Largest weighted degree being the one performing best.

Exact Methods

The drawback of using some sort of heuristic to solve timetabling problems is the lack of capability
to issue certificates of optimality or the quality of the solutions found. This is made possible using
Integer Programming methods such as decomposition techniques.

The University Course Timetabling at Ohio University’s College of Business is solved in Martin
(2004) using Integer Programming (IP). The problem is solved using CPLEX.

In Daskalaki et al. (2004) an Integer Programming formulation for the University Course Time-
tabling is developed. The formulation is based on the timetabling problem in Engineering Schools
of Greek universities. It was possible to solve the single real case of the problem with success
using CPLEX. Daskalaki and Birbas (2005) use a two stage relaxation procedure to solve the
problem. In first stage the relaxation is performed and it concerns the constraints that ensure
consecutiveness for the multi-period sessions assigned to a given course. These constraints are
recovered during second stage where a subproblem for each day is solved for local optima.

Avella and Vasil’Ev (2005) describes a Branch-and-Cut algorithm for the University Course
Timetabling problem and two cutting planes are derived, Clique inequalities and Lifted Odd-Hole
inequalities, to tighten the initial formulation.

Qualizza and Serafini (2005) propose an Integer Programming approach based on Column Gen-
eration. Each column represents a weekly timetable of a single course. The master problem
then contains all the constraints referring to classroom occupancy and non-overlapping in time
of courses. Each subproblem contains the constraints related to a single course timetable and
hence creates weekly timetable for a single course. A Branch-and-Bound method is used to ensure
feasibility of the solution.

Al-Yakoob and Sherali (2007) takes its origin at Kuwait University. The paper formulates a
Mixed Integer Programming (MIP) model for the University Course Timetabling problem which
is able to design class timetables that have a number of desirables features related to minimizing
class conflicts, providing good patterns, and enhancing traffic flow. Moreover, gender policies are
considered when creating sections of courses.

Schimmelpfeng and Helber (2007) solves the University Course Timetabling problem at the
School of Economics and Management at Hannover University by modeling the problem as an IP
model and solved using a state-of-art MIP solver. An anonymous satisfactory survey among the
faculty was initiated and in general the response was positive.

In Lach and Lübbecke (2012) the Udine benchmark datasets on Curriculum-based Course Time-
tabling are solved using a two stage decomposition approach. The theoretical background of the
decomposition is given in Lach and Lübbecke (2008). The outline of the two stage decomposition

27 2.3. University Course Timetabling

is firstly to assign lectures to time slots (Stage1) and then assign rooms to the lectures (Stage
2). The approach has proven to be an effective method for solving the Curriculum-based Course
Timetabling.

Hao and Benlic (2011) generates lower bound for the ITC2007 benchmark data on the Curri-
culum-based Course Timetabling problem. They present a new partition-based approach based
on the divide and conquer principle consisting of three phases. Firstly, courses are partitioned into
a fixed number of subproblems using an iterative Tabu Search. In second stage the subproblems
are formulated as integer linear problems using the formulation of Lach and Lübbecke (2012).
And finally the subproblems are solved using an IP solver. Better lower bounds were found for all
instances except two. The found lower bounds can be used to estimate the quality of the solutions
obtained with some of the various heuristic approaches aforementioned.

In Burke et al. (2012) a Branch-and-Cut procedure is suggested for the Udine benchmark
datasets. The Integer Programming formulation is the same as for Burke et al. (2010b). The
procedure reduces the number of variables necessary to formulate the soft constraints. Using the
Branch-and-Cut it is possible to achieve good lower bounds must faster than solving the initial IP
model.

Cacchiani et al. (2013) is the latest research paper working on improvements of lower bounds on
the University Course Timetabling problem. The bounds are obtained by splitting the objective
function into two parts and formulate an integer linear programming models for both. The solution
of each is obtained by using a Column Generation procedure. The global bound is then obtained
by summing up the corresponding optimal values. By comparing the results with results from
previous research on the instances used at ITC2003 and ITC2007, it is proven that this method
is able to improve some best-known lower bounds and that for some instances the best known
solutions is indeed optimal (or close to).

Software systems

Only few systems which solve the University Course Timetabling have been published in detail.

Carter (2001) solves the Enrollment-based Course Timetabling for the University of Waterloo,
Canada, and has been used since 1985. The algorithm behind is a three-phase method. First, the
Student Sectioning problem is solved aiming at minimizing the number of pairs of sections with
students in common. Secondly, the sections are assigned time slots and finally the timetabling is
improved for each student using single student timetabling, where the timetable of each student
is improved individually.

Dimopoulou and Miliotis (2001) has created a system to solve the University Course Timetabling
and the Examination Timetabling at Athens University of Economics and Business. The course
timetabling problem is modeled and solved using a Branch-and-Bound based computer code. In
most of the tests performed the optimal solution was found in less than one minute.

Another system is UniTime. UniTime is an open-source comprehensive educational scheduling
system for universities. It offers both Curriculum-based and Enrollment-based Course Time-
tabling, as well as Examination Timetabling and Student Sectioning, and is used at several uni-
versities. The website of UniTime features all the papers published for the system (UniTime
(2013)).

Rudova and Murray (2003) is some of the earliest work of UniTime. Of later research Rudová
et al. (2011) solves the Post Enrollment-based Course Timetabling using the Iterative Forward
Search (IFS) algorithm described in Müller et al. (2005). In Müller and Rudová (2012) the
Curriculum-based Course Timetable is solved by transforming its model into the enrollment model
and using a local search algorithm for generating the corresponding enrollments. The algorithms
of both papers are implemented in UniTime.

All the references mentioned in this section are listed in Table 2.3 in 2.A.

Chapter 2. A Comprehensive Study of Educational Timetabling 28

2.4 High School Timetabling

High School Timetabling is the problem of allocating classes to time slots, teachers and rooms to
satisfy the hard and soft constraints. At the high schools the students are grouped into classes
prior to the timetabling problem. The students of the classes are usually occupied together for all
the lectures of their given class.

The most important components of the High School Timetabling problem are quite similar of
those of University Course Timetabling. However there are some significant differences. Firstly,
Student Sectioning is considered as part of the University Course Timetabling, whereas at the high
schools it is considered as a separate problem. Secondly we have the grouping of students. High
schools are timetabling classes, whereas at universities the students are often timetabled individ-
ually and at high schools clashes are not acceptable for the classes, whereas it can be acceptable if
some students have clashes at universities. Another difference is the use of teachers. At the high
schools the teachers are teaching full time, whereas the universities the teaching is often a small
part of the professors/lectures workload.

Some of primary hard and soft constraints of High School Timetabling are listed below:

• Primary hard constraints

– No 1-order conflicts. A student cannot attend two courses that are overlapping in time.

– Classes/events must be scheduled for the required number of times for each subject.

– Classes/events must be assigned a resource/room.

– Room capacity. Classes can only be assigned rooms of which the capacity suits the
class size

• Primary soft constraints

– Limit idle periods for student and/or teachers.

– Lessons spreading.

– Resource/times preferences

The XHSTT format, which is described in the next section, operates with 16 different constraints,
which can either be denoted hard or soft.

2.4.1 International Timetabling Competition

As mentioned the Third International Timetabling Competition (ITC2011) had the High School
Timetabling problem as topic. The concept of the idea was to increase the focus on High School
Timetabling and the XHSTT format. The competition was launched in October 2011 and features
three rounds.

1. In the first round of the competition the competitors should construct all-time-best solutions
to the instances of the XHSTT-2012 archive.

2. The second round of the competition will work on the instances of the XHSTT-ITC2011
archive and 15 hidden instances. The participant could use any programming language and
free third party software (excludes CPLEX, Gurobi etc.). A time limit of 100 seconds is
given.

3. Third round consists of constructing all-time-best solutions to the hidden instances.

Deadline for submission of the contribution was May 2012 and the results was announces at PATAT
in August 2012.

29 2.4. High School Timetabling

2.4.2 Benchmark Data

Access to public datasets of High School Timetabling has been very limited. Previously research
was done for new unique problems each time or on artificial instances. The first accessible real life
instances are the Beligiannis data sets.

• Beligiannis data sets - Greek high schools
The archive consists of 7 datasets from Greek high schools and is used in Beligiannis et al.
(2008). Each datasets contains a requirements matrix specifying the number of times each
teacher must teach each class.

Due to the lack of exchangeable benchmarks in a uniform format, a group of researchers agreed
on developing an XML-standard for the High School Timetabling problem, this resulted in the
XHSTT format.

• XHSTT
The project on creating XHSTT is described in the paper of Post et al. (2012a), and the
format was as mentioned used for ITC2011. The objective is to minimize the number of
violation of hard and soft constraints. The description of the format of XHSTT is available
at the homepage (Post (2013)) along with nearly 40 instances. An evaluator for instances is
available at at the web-page of Jeffrey Kingston (Kingston (2013b)).

2.4.3 Recent Research

Research articles on High School Timetabling are mostly limited to a single high school or a single
country. In this section we will look at some of the research papers which have been conducted.
For the High School Timetabling, the papers are categorized in order of the origin of the problems.
This does not necessary means that the problems at the different countries are not the same, but
that the solution methods only have been tested on instances of the given country.

Pillay (2013) is another comprehensive survey which is advised for additional details on pub-
lications on High School Timetabling. In Pillay (2013) the literature is categorized by the used
methodologies.

Country Specific Research

Australia
The Australian case is solved in Boland et al. (2008) by creating two integer linear programming
models to solve the course blocking and population problem.

Kingston (2005) solves seven instances of Australian high schools using a tilling algorithm with
hill-climbing. The problem is of allocating meetings (teachers and classes) to times. Resources are
added to the meeting using an alternating path algorithm. The XHSTT archive consists of three
instances from Australia and they are the only instances where teachers workload are constrained.

Brazil
The Brazilian case of School Timetabling is one of the most represented cases in the literature.
Filho and Lorena (2001) use a constructive genetic algorithm to solve two Brazilian high schools,
whereas Souza et al. (2003) use a greedy algorithm to find a good initial solution and then a Tabu
Search for improving this solution.

Santos et al. (2004, 2005) creates a Tabu Search algorithm with two different memory based di-
versification strategies. The papers show that the diversification strategies improve the robustness
of the Tabu Search.

In Bello et al. (2008) the High School Timetabling problem is treated as a Graph Coloring
problem and solved using a Modified Tabucol, where Tabucol is a Tabu Search for Graph Vertex
Coloring. The method was tested on five Brazilian high schools. Moura and Scaraficci (2010)
solves the High School Timetabling for three Brazilian high schools using a basic GRASP heuristic,
followed by a path-relinking improvement. Santos et al. (2012) present Column Generation as an

Chapter 2. A Comprehensive Study of Educational Timetabling 30

approach for establishing bounds for a set of datasets originating from Brazil. It was a Brazilian
team that won the ITC2011, Fonseca et al. (2012).

Currently, the XHSTT archive consists of seven datasets from Brazil.

Denmark
Denmark is one of the new entrants within High School Timetabling. Sørensen and Stidsen
(2013) is the first paper working on Danish high school and it describes a complex MIP model
of the problem and establishes computational results for 100 real-life instances using Adaptive
Large Neighborhood Search. The solution approach is implemented in cloud-based administrative
software and is available for the majority of all Danish high schools.

Sørensen and Dahms (2014) suggest a two-phase decomposition (created by Lach and Lübbecke
(2012)) for solving the high schools in Denmark. In the first stage lectures are assigned to time slots
and in the second stage rooms are assigned to the lectures. The results show that the approach is
more effective than solving the original IP model in terms of both the obtained solutions and the
obtained lower bounds.

At present four instances of Danish high schools are available in the XHSTT archive.

Germany
In Bufé et al. (2001) the German high schools are treated with an evolutionary heuristic. Firstly
an evolutionary algorithm searches the space of all permutations of the events from which the
high school timetable is created. The solution is then improved using local search with specific
mutation operators.

Lohnertz (2002) uses a hybrid approach with a combination of Tabu Search and Graph Vertex
Coloring. Whereas Wilke et al. (2002) uses a genetic algorithm for solving the German high school
timetabling.

A Tabu Search algorithm for the German timetabling problem is presented in Jacobsen et al.
(2006). The initial solution is created using a construction heuristic with a graph coloring algo-
rithm. The solution is then improved with the Tabu Search algorithm.

So far as we know none of the German instances are available in an online archive.

Greece
The Greek high schools are well researched and the XHSTT archive is presented with seven
instances from Greece.

In Valouxis and Housos (2003) constraint programming are used in combination with local
search for Greek high schools. Papoutsis et al. (2003) creates an Integer Programming model of
the problem and solves it using Column Generation.

In Beligiannis et al. (2008) an evolutionary algorithm has been created for the High School
Timetabling problem in Greece and this system has been extended with a user-friendly interface
(Moschopoulos et al. (2009)). In later work Beligiannis et al. (2009) implement a genetic algorithm
to solve the same case. Both algorithms is inherent adaptive, which means that the user is able
to assign weights to the different constraints. Both algorithms have been tested on seven real
timetables used at schools in the city of Patras and has been made available online (See Beligiannis
benchmark, Section 2.4.2).

In Raghavjee and Pillay (2009) and Raghavjee and Pillay (2010) a generic algorithm is used to
solve the high school timetabling problem in Greece and South Africa, respectively. The Greek
datasets are from the Beligiannis benchmark datasets.

Birbas et al. (2009) uses a hybrid approach to solve the problem at a secondary Hellenic school.
The first phase solves the Shift Assignment Problem where teachers are allocated to shifts, and
the second phase solves the High School Timetabling. Both phases are solved using Integer
Programming.

Zhang et al. (2010) uses a simulated based algorithm for the High School Timetabling problem.
The algorithm is tested on two sets of benchmark instances. One randomly created and one
real-life from Greece.

31 2.4. High School Timetabling

Valouxis et al. (2012) describe a two-phase approach based on MIP used to solve the Greek
case of the High School Timetabling problem. This includes two instances which are part of the
XHSTT project, which were both solved to optimality (solutions were found with an objective
value of 0).

Greece is represented in the XHSTT archive with seven instances.

Italy
Colorni et al. (1998) compares different solution methods for solving two Italian instances of the
High School Timetabling problem. The different methods tested are various versions of Simulated
Annealing and Tabu Search, and genetic algorithms with and without local search. The genetic
algorithm with local search and the Tabu Search based on temporary problem relaxations outper-
forms the other Simulated Annealing approach and handmade solutions. The genetic algorithm
with Tabu Search being the best.

Schaerf (1999b) has implemented a hybrid approach. After the initial timetable is created a
randomized non-ascendant search is applied to improve the solution. When no better solution can
be found, a Tabu search is applied. The two methods are repeated sequentially until there are no
further improvements of the timetable. The solution method is tested on one artificial school and
two Italian high schools.

Avella et al. (2007) uses a hybrid algorithm consisting of a Simulated Annealing for the initial
solution and Very Large Neighborhood Search for improvements. It is tested on two real life
instances from Italy.

Italy is represented with one instance in the XHSTT archive.

Netherlands
Post and Ruizenaar (2004) use a combination of clustering and Branch-and-Bound algorithms
to solve the school timetabling problem for a Netherlands secondary school. The first step is to
construct clusterschemes. A clusterscheme contains clusterlines with optional subjects that can
be taught in parallel. The second step is the Branch-and-Bound algorithm which constructs the
school timetable.

In de Haan et al. (2007) a three-phase approach is use to generate a timetable for a Netherlands
high school. The first phase constructs cluster schemes for optional subjects, in the second phase
a feasible schedule is constructing by assigning all lessons to time slots, such that there are no
clashes. Finally the third part makes improvements of the timetable.

Post et al. (2012b) presented a cyclic transfer algorithm for the High School Timetabling prob-
lem. The methods are tested on four Dutch high schools and one English high school.

In the XHSTT archive the Netherlands are represented with four instances.

Portugal
In Fernandes et al. (1999) the Portuguese High School Timetabling problem is solved using evo-
lutionary algorithms. The genes which cause hard constraint violations are denoted bad genes
and by introducing bad genes mutation it is possible to improve the algorithm in both speed and
solution. Meĺıcio et al. (2006) developed the software tool THOR. THOR consists of a graphical
user interface, an automatic scheduler and a relational database. The automatic scheduler is us-
ing a greedy algorithm to establish an initial solution and then improving that using Simulated
Annealing. The system is used by more than 100 Portuguese high schools.

Other country specific methods
Besides the mentioned countries, High School Timetabling has been briefly touched in other coun-
tries as well.

Wood and Whitaker (1998) solves the timetabling problem for secondary schools in New Zealand
where student requests are an important part of the problem formulation. The problem is formu-

Chapter 2. A Comprehensive Study of Educational Timetabling 32

lated as a non-linear goal program and solved in several stages using different heuristics such as
Simulated Annealing and the Hungarian assignment algorithm.

Yigit (2007) uses a hybrid genetic algorithm for solving the High School Timetabling problem
for the Technical and Vocational High Schools in Turkey.

In Ribic and Konjicija (2010) a two-phase approach to modeling the timetable problem is pre-
sented. In the first phase, the classes are allocated to days, and during the second phase, each
class in a day are allocated into time slots. The approach is tested on a test case from a Croatian
secondary school.

Nurmi and Kyngas (2007) use an extension of a hybrid hill-climbing genetic algorithm. The
extension of the algorithm is a Simulated Annealing for choosing periods ”intelligently”. The
algorithm is tested on data from Finnish high schools. Finland is represented in the XHSTT
archive with six instances.

The timetabling problem for the Vietnamese high schools were solved in Minh et al. (2010)
using a greedy algorithm for the initial solution and then improve the solution using Tabu Search.

The XHSTT-format

Most of the studies on High School Timetabling have resulted in successful solvers, however a big
drawback is that many of the papers have only been applied to one problem or one country. One
of the reasons for this is the lacking of benchmark data. Another reason is the desire of the single
school to get its own problem solved and hence the papers are not interested in a more general
approach. By the XHSTT format with corresponding benchmark datasets it is now possible to
model a single problem in a standard format and to tests the solution approach on several cases.

As mentioned ITC2011 considered the High School Timetabling problem based on instances of
the XHSTT format (Post et al. (2012c)). Four teams made it to the final round: The overall
winner (Team Goal) used Simulated Annealing and Iterated Local Search to perform local search
around a generated initial solution (Fonseca et al. (2012)). Participant from the University of
Nottingham (HySTT) used a method based on Hyper-heuristics (Kheiri et al. (2012)). Team
Lectio from Denmark used Adaptive Large Neighborhood Search (ALNS) (Sørensen et al. (2012))
and Romrös and Homberger (2012) (Team HFT) from Germany used an Evolutionary Algorithm.
The specification of ITC 2011 and the results are described in Post et al. (2013)

Pimmer and Raidl (2013) describe a ’timeslot-filling’ heuristic for XHSTT, which iteratively
fills selected timeslots with sets of events. Two state-of-the-art solutions were found for instances
of the archive XHSTT-2012.

Fonseca et al. (2013) have made some improvements on their work from ITC2011 which ex-
ceeds their previous work (Fonseca et al. (2012)). The new algorithm is a stagnation free Late-
Acceptance Hill Climping algorithm. By combining the new approach with the Simulated Anneal-
ing from Fonseca et al. (2012) it provides the best results for some XHSTT datasets of ITC2011.

Kristiansen et al. (2013c) is the first paper working on an exact method for solving problems
of the XHSTT format. The paper shows that the complex XHSTT format can be formulated as
a Mixed Integer Programming model and solved using the state-of-the-art MIP solver, Gurobi.
It was possible to find two new optimal solutions and prove optimality of four previously known
solutions. Furthermore, lower bounds were established for 11 datasets.

All the references mentioned in this section are listed in Table 2.4 and in Table 2.5 in 2.A.

2.5 Examination Timetabling

Examination Timetabling is the problem of scheduling a given number of exams to a limited
number of time slots. Each course has one event representing the exam. The main problem is to
avoid clashes in each student’s examination timetable and to make sure that they have sufficient
preparation time for each exam.

33 2.5. Examination Timetabling

It is mainly the university course timetabling which are discussed in the literature and in Schaerf
(1999a) the difference between Examination Timetabling and University Course Timetabling is
observed to be relatively small, as both is of assigning event/exams to time slots and resources.
However, it is broadly accepted to distinguish between the two due to the characteristics of the
examination timetabling. University Course Timetabling pursuit a compact timetable whereas
Examination Timetabling pursue more spreading between events for each student. The time
between two exams is the preparation time the student has for the next exam. Furthermore, there
is only one exam per course and there can be more than one exam in a single room. And a student
can only attend one exam a day.

Below is listed some of the most common constraints used in Examination Timetabling.

• Primary hard constraints

– 1-order conflicts cannot be accepted in Examination Timetabling.

– Resources needs to be sufficient for the examinations (e.g. room capacity, enough
rooms).

• Primary soft constraints

– Spreading versus compact.

– Time requirements. Exams can/cannot be in certain time slot.

– Consecutive exams.

– Resource requirements

– Limited number of students and/or exams in any time slot

– Ordering of exams must be satisfied

– Only exams with same length can be located in the same room in the same time slot

– Exams required taking place at the same time, on the same day or at the same location

– As early/late as possible

– Splitting the exams over similar locations

2.5.1 International Timetabling Competition

Aforementioned, the International Timetabling Competition in 2007 consisted, as mentioned, of
three tracks, where the first track was regarding Examination Timetabling (McCollum et al.
(2010)).

Eight datasets were given to the competitors, four were given immediately and four were given
two weeks before competition deadline. The solution methods submitted were then tested on four
hidden datasets. As mentioned in Section 2.3 it was the contribution of Müller (2009) that won
Track 1 and Track 3 of the competition. The algorithm was a hybrid heuristic consisting of three
parts, an Iterative Forward Search, a Hill Climbing and the Great Deluge techniques.

The datasets were provided by the EventMap research group and eight of the datasets are made
available as benchmark, at the ITC2007 website (McCollum (2007)).

2.5.2 Benchmark Data

As Examination Timetabling has a high research interest it had let to some establishment of
a variety of different benchmark problems. These benchmarks have made it possible to create
scientific comparison between different approaches to the Examination Timetabling and thereby
exchange of research achievements. The goal of this section is only to give a brief description of the
known benchmark of Examination Timetabling. This paper will use name of the benchmarks as
they were renamed in Qu et al. (2009) to prevent further confusion between papers. The majority
of the benchmarks are available online (ExamBenchmarks (2013)).

Chapter 2. A Comprehensive Study of Educational Timetabling 34

• The Toronto benchmark data
Carter et al. (1996) introduced a set of 13 real-world Examination Timetabling problem (3
from high schools and 10 from universities).

The Toronto benchmark data have two variants of objectives: 1: Minimize the number of
used time slots needed for the problem. 2: Minimize the average cost per student.

• The Nottingham benchmark data
In Burke et al. (1996) a modification of the objective on six of the data sets from Carter
et al. (1996) were introduced as benchmark along with the Examination Timetabling data
from 1994 at the University of Nottingham.
The objective is to minimize the number of students having two consecutive exams.

• The Melbourne benchmark data
Merlot et al. (2003) introduced two new datasets from the University of Melbourne at the
fourth conference of Practice and Theory of Automated Timetabling (PATAT2003). The
benchmark consists of two datasets which have two time slots for each of the five workdays.

The objective is to minimize adjacent exams on the same day or overnight.

• The Purdue benchmark data
The newest benchmark within Examination Timetabling is given by Müller (2013). Nine
datasets from Purdue University are introduced, and each dataset have 29 examination
periods, all 2 hours long. PurdueExamBenchmark (2013)

2.5.3 Recent Research

Within educational timetabling, Examination Timetabling is a much researched subject. Qu
et al. (2009) is an excellent survey of examination papers from 1996 to 2009 and we recommend
the reader to read this paper for additional details on the research of Examination Timetabling.

It is noted that one of the current trends in the literature of operations research is the use of some
sort of hybridization of different solution techniques. The same is applicable for the Examination
Timetabling.

In the following the literatures are divided into the same classification as used for University
Course Timetabling in Section 2.3, i.e. based on the main techniques used.

Swarm Intelligence Algorithms

Ant Colony algorithms has been used to solve Examination Timetabling in Dowsland and Thomp-
son (2005) and Eley (2007). In Dowsland and Thompson (2005) an Ant Colony algorithm based
on the ANTCOL algorithm for graph coloring from Costa and Hertz (1997) is developed to solve
the Toronto benchmarks. A number of enhancements and modifications to the algorithm are in-
troduced. These include an initialization method, using recursive Largest Degree and Saturation
Degree, and trail calculations. Eley (2007) compares the ANTCOL algorithm with the MAX-
MIN Ant System for University Course Timetabling from Socha et al. (2003). The algorithms are
tested on the Toronto benchmarks and it is showed that the ANTCOL system outperforms the
MAX-MIN Ant System.

In Turabieh and Abdullah (2011b) the Examination Timetabling problem is solved using the
Fish Swarm algorithm developed in Turabieh et al. (2010) for University Course timetabling.
The results show that the algorithm performs well on the Toronto benchmark datasets. In later
work of the same authors (Turabieh and Abdullah (2011a)) a Great Deluge algorithm within
an electromagnetic-like mechanism is employed for Examination Timetabling. This mechanism
method shares the same concepts as the Particle Swarm, where the position is changed based
on the total force that affects the particle in the search space. The algorithm was tested on the
Toronto benchmark and ITC2007 competition datasets.

Sabar et al. (2009) uses a honey bee mating algorithm to solve the Toronto Benchmark datasets.
The honey bee mating process is a typically swarm-based approach, were the algorithm is inspired

35 2.5. Examination Timetabling

by the process of the mating of honey bees. The queen (current best solution) leaves the nest
to perform a mating flight during which the drones (new solutions) follows the queen and mate
with her. In the beginning of the flight, the queen’s speed is high and therefore the probability
of mating is also high, which is also the case when the fitness of the drones is as good as the
queen’s. The queen then moves between different solutions in the solution space, according to
her speed, and mates with the drones. After a successful mating, a new brood is generated, the
fittest replaces the queen, and the rest become the new drones. Solutions show that the honey
bee mating algorithm can produce good quality solutions for the Toronto benchmarks.

Evolutionary Algorithms

Wong et al. (2002) present an exam timetable generator which implemented for Ecole de Technolo-
gie Superieure at the University of Quebec. The approach of the generator is a Generic Algorithm
to construct the exam timetable. A binary tournament selection is used to produce candidates for
the algorithm.

Mansour et al. (2011) developed an evolutionary heuristic based on the scatter search approach.
Scatter search operates on maintaining and evolving a population of small candidate solutions. It
is then possible to find good suboptimal solutions for the problem. The algorithm is compared
with other heuristics (genetic algorithm, Simulated Annealing, and 3-phase Simulated Annealing)
on real data of the Lebanese American University and the results shows that the adaptive scatter
search approach generates the best timetables.

Local Search Techniques

In Casey and Thompson (2003) a Greedy Randomized Adaptive Search Procedure (GRASP) is
used for solving the Examination Timetabling problem for the Toronto benchmark datasets. The
GRASP algorithm consists of a construction phase, where feasible timetables are created, and
an improvement phase. In the constructing phase a limited form of a Tabu Search and efficient
ordering of the exams are used. The improvement phase makes use of a neighborhood based
on Kempe chains and a limited form of Simulated Annealing. In order to enhance the solution
space the algorithm makes use of memory functions. The GRASP algorithm produced is simple
to understand and performs robustly across all the instances.

In Ahmadi et al. (2003) a hyper heuristic is developed with a Variable Neighborhood Search to
find good combinations of parameterized heuristics. Permutations of twelve low level heuristics
are employed to create solutions. Seven of the heuristic are exam selection, two time slot selection
and three room selection heuristics. The hyper-heuristic is tested on instances from University of
Nottingham.

Merlot et al. (2003) employ constraint programming to create a feasible initial solution for
the Examination Timetabling problem. To improve the solution Simulated Annealing and Hill
Climbing are used. The hybrid method has been tested on the University of Melbourne, two
variants of Toronto instances and the Nottingham benchmark.

Burke et al. (2004a) make used of two variants of local search; a time-predefined variant of
Simulated Annealing and an adaptation of the Great Deluge method. The Great Deluge has the
same advantage as Simulated Annealing by accepted worse moves during its run. The algorithms
are tested on the Toronto and Nottingham benchmarks and it is showed that the Great Deluge
approach was superior to the Simulated Annealing approach.

White and Xie (2001) developed a four phase Tabu Search called OTTABU. In each phase more
constraints are considered. The OTTABU algorithm was tested on the Examination Timetabling
problem at the University of Ottawa, Canada. The approach was extended in White et al. (2004)
where the Tabu lists are dynamically relaxed after a certain solution time with no improvements.
This extended approach was tested on the Toronto benchmark.

Abdullah et al. (2007) developed a Large Neighborhood Search based on the search methodology
originally developed in Ahuja et al. (2001). The key features of the approach are the combination
of the very large neighborhood tree-based structure with the technique of identifying improvement

Chapter 2. A Comprehensive Study of Educational Timetabling 36

moves by addressing negative cost partition-disjoint cycles. The approach was able to find some
new best solutions for the Toronto benchmarks. In Abdullah et al. (2010) a hybridized approach
of tabu-based and memetic algorithms is developed. The construction phase of the algorithm is
based on a saturation degree graph coloring heuristic and the improvement phase makes use of
the hybrid heuristic. A tabu list is used to penalize neighborhood structures that are unable to
generate better solutions after the crossover and mutation operators have been applied to the
selected solutions from the population pool.

In Caramia et al. (2008) four variant of a local search based algorithm are tested on the Toronto
benchmarks and compared with solution from other papers. The algorithm consists of three
building blocks; a greedy scheduler to find timetables with small length, a penalty decreaser to
reduce the penalty of a schedule without changing the length and a penalty trader to reduce
the penalty of a schedule by increasing the number of used time slots. The four variants are
different depending on the type of checkpointing used, and on whether bridging priorities were
used. The algorithms perform more robust than those of the comparison. The best variation
being a hybridization of an approach using adaptive checkpointing and bridging priorities with an
approach using constant checkpointing but no bridging priorities.

Pillay and Banzhaf (2009) suggest a hyper-heuristic with hierarchal combination of heuristics.
A Tabu Search is used to search the heuristic space for a heuristic list that produces the best
quality exam timetable. Each list contains two of the six low level heuristics. The algorithm is
tested on the Toronto benchmark and provides all instances with feasible timetables.

Gogos et al. (2012) developed a multi-stage algorithmic process to solve the datasets of ITC2007.
The top level heuristic is a GRASP and low level methods consist of several optimization algo-
rithms, heuristics and meta-heuristics. The approach has a construction phase and an improve-
ment phase. Each phase consists of stages that are consumed in a circular fashion.

Graph Coloring Algorithms

Graph bases methods are widely used on Examination Timetabling problems. The algorithms are
often hyper-heuristics where the lower level heuristics are graph coloring heuristics, such as largest
degree and saturation degree.

In Asmuni et al. (2005) a Fuzzy Logic algorithm was employed to order exams to be scheduled
based on graph coloring heuristics. The fuzzy weight of an exam is used to represent how difficult
it is to schedule. The method cannot compete with other solution methods on the Toronto
benchmark, but the potential of it is demonstrated. Different or more Fuzzy functions are needed
to be able to produce best known solutions. In later work of the same authors, a Fuzzy system
was developed to evaluate the quality of the exam timetables (Asmuni et al. (2007)). The quality
of exam timetables is measured considering two criteria: the average penalty per student and the
highest penalty imposed on any of the students.

Yang and Petrovic (2005) used a hyper-heuristic with a Case-Based Reasoning as high level
heuristics to choose graph heuristics to construct a feasible initial solution. A Great Deluge algo-
rithm is then employed to improve the solution. Burke et al. (2005) also make use of a Case-Based
Reasoning in a hyper-heuristic. Two different ways of hybridizing the low level graph heuristics
were compared for solving the Toronto benchmark data. One were Case-Based Reasoning is used
as higher level heuristic and one with a Tabu Search. The Tabu Search approach performed a
little better than the Case-Based Reasoning approach, however it was significant slower.

The Tabu Search as higher level heuristic for low level graph coloring heuristics were inves-
tigated once more in Burke et al. (2007). It was observed that the more different graph-based
heuristics used in the lower level the better the performance might by. The drawback is however
the enlargement of the search space which can influence the solving time. The approach was used
on both the Examination Timetabling and University Course Timetabling and in both cases it
was competitive with other solution methods from the literature.

The Examination Timetabling problem from Universiti Malaysia Pahang, Malaysia, is presented
in Kahar and Kendall (2010). The paper compares the Examination Timetabling problem at

37 2.5. Examination Timetabling

the university with known benchmark data, and two new constraint concerning splitting exams
into different rooms are introduced. When splitting an exam the rooms must be in the same
building (hard constraint) and the distance between the rooms should be as close as possible
(soft constraint). The algorithm presented in the paper is based on graph coloring heuristics and
produce superior solutions compared to the existing software at the university.

Sabar et al. (2012) developed a graph coloring constructive hyper-heuristic algorithm. At the
higher level of the hyper heuristic the difficulty level of examinations is calculated by using hy-
bridizations of four graph coloring heuristics. At the low level four graph coloring algorithms are
used; largest degree, saturation degree, largest colored degree and largest enrollment. The results
show that the approach is a simple and an efficient tool to produce competitive results for the
Toronto and the ITC2007 benchmark data.

Rahman et al. (2014) employ adaptive linear combinations of graph coloring heuristics with
a heuristic modifier to address the Examination Timetabling problem for the Toronto and the
ITC2007 benchmark data. The approach makes use of two graph coloring heuristics, largest
descent and saturation degree.

Other Heuristic Methods

This section contains literature which application method does not fit in the previous heuristic
categories.

In Petrovic and Bykov (2003) the multi-criteria called compromised programming is used. The
method requires the user to specify a reference solution. To improve the values of the reference
objectives a trajectory is drawn in the criteria space and a Great Deluge is conducted using the
specified trajectory. The criteria weights can be dynamically changed to guide the search, starting
from random points, towards the reference point.

Duong and Lam (2004) present a two phase heuristic for the Examination Timetabling problem.
In the first phase constraint programming is used to generate a feasible initial solution and in the
second phase a Simulated Annealing with Kempe chain neighborhood improves that solution. The
algorithm is tested on real data of Ho Chi Minh City University of Technology.

Ozcan et al. (2009) uses a late acceptance hyper-heuristic to solve the Toronto benchmark data.
Late acceptance strategy is a memory based technique that maintains the history of objective
values from the last L previous solutions. The new solution is compared to a previous solution
obtained at the L’th step and the acceptance decision is made accordingly. The results show that
Simple Random performs the best when combined with late acceptance as compared with the
other heuristic of the paper.

Abdullah et al. (2009) present a hyper-heuristic of an electromagnetic-like mechanism and the
Great Deluge algorithm. Electromagnetic-like mechanism is implemented to calculate the force
for each solution. The force value later will be used in the Great Deluge algorithm to calculate
the force decay rate.

Another hyper-heuristic for Examination Timetabling is the Monte Carlo based hyper heuristic
developed in Burke et al. (2010a). A number of new and previous suggested Monte Carlo based
selection hyper-heuristics are investigated on the Toronto benchmark data. As heuristic selection
methods a simple random algorithm, a greedy algorithm, a Choice Function algorithm and a
learning scheme are utilized. The hyper-heuristic make use of four low level heuristics.

In Demeester et al. (2012) a tournament based hyper-heuristic is presented. The hyper-heuristic
framework of Özcan et al. (2008) is extended using a tournament factor. At each iteration, the
selected heuristic generates a predefined number, namely the tournament factor, of random moves.
The low level heuristics are Simulated Annealing, Great Deluge and steepest descent. The hyper
heuristic is tested on the Toronto benchmark, the instances from ITC2007 and datasets from
KAHO Sint-Lieven, Belgium.

Anwar et al. (2013) propose a harmony search based hyper-heuristic method for the Examination
Timetabling. The harmony search algorithm is a fairly new meta-heuristic method inspired by
musical improvisation process. The algorithm of this paper employed harmony search algorithm
at the high level to evolve a sequence of improvement low-level heuristics. At the low level, two

Chapter 2. A Comprehensive Study of Educational Timetabling 38

different neighborhood structures are used. Swap and move. The algorithm is tested on the
ITC2007 benchmark

Exact Methods

The amount of research using some sort of exact methods, such as decomposition, is quite sparse
for Examination Timetabling.

In Qu and Burke (2007) a new decomposition technique is developed for the Examination
Timetabling. The idea is to decompose the problem into two sub-sets of events; a difficult and
an easy sub-set. In the first step the exams of the difficult set is ordered to find the best feasible
solution. In second step the solution from step one is fixed and the easy events are ordered. The
two steps are then repeated in a cycle. The approach was tested on the Toronto benchmark data.

Al-Yakoob et al. (2010) considers two exam related problems at Kuwait University; the Exami-
nation Timetabling problem and the proctor assignment problem. A Mixed Integer Programming
model has been created for both problem and solved using the State-of-art MIP solver CPLEX.
The results obtained by solving the MIP models are of significant improvements compared to the
existing manual approach at the given university.

Software Systems

Many of the systems mentioned in Section 2.3.3 are for both University Course Timetabling
and Examination Timetabling. In Dimopoulou and Miliotis (2001) the initial solution for the
Examination Timetabling is based on the University Course Timetabling. This is then adjusted
repeatedly by a heuristic approach.

The newest paper from the system UniTime on Examination Timetabling is Müller (2013). The
algorithm presented consists of several phases. A construction phase where a complete solution is
found using an Iterative Forward Search (Müller et al. (2005)). The next phase uses a Hill Climber
to find a local optimum. Once a solution cannot be improved further a Great Deluge technique is
used.

Other systems which only solves the Examination Timetabling problem includes Hansen and
Vidal (1995) and Thompson and Dowsland (1998).

Hansen and Vidal (1995) is a system for timetabling oral and written examinations at more
than 200 high schools in Denmark. The system uses a four phase process dealing with different
objectives using different techniques. Phase one is the subject draft which determine which exams
a student is assigned. Examination chains are generated in phase two. Phase three creates the
examination timetables and finally phase four assigns censorships to the exams.

Thompson and Dowsland (1998) create an Examination Timetabling system at Swansea Uni-
versity in Wales. The problem is divided in two phases both solved using Simulated Annealing.
The first phase seeks out a feasible solution and the second finds an improvement in terms of
meeting the secondary objectives and soft constraints.

All the references mentioned in this section are listed in Table 2.6 in 2.A.

2.6 Student Sectioning

The previous mentioned educational timetabling problems are all considering the problem of as-
signing some events to times. Student Sectioning usually resides outside this categorization as it
involves assigning students to sections and not times.

A course might be split into sections/classes, i.e. copies of the same course, each with its own
time, room and teachers. Student Sectioning is the problem of assigning students to sections of
courses while respecting the requests of the individual student. Some of primary hard and soft
constraints of Student Sectioning problems are listed below:

39 2.6. Student Sectioning

• Primary hard constraints

– No 1-order conflicts. A student cannot attend two courses that are overlapping in time.

– Limitations on class sizes.

– Resource limitation. E.g. only two Physic classes in each cluster.

• Primary soft constraints

– Equally distribution between sections of same course (spreading)

– Minimize the number of sections used.

2.6.1 Recent Research

Literature concerning Student Sectioning is very sparse, none of the previous surveys listed in
Section 2.1.1 use much effort on this research subject and in many papers where Student Sectioning
is mentioned the papers are on University Course Timetabling or High School Timetabling and
not specific on Student Sectioning.

The surveys of Carter and Laporte (1998) and Schaerf (1999a) provides a good overview of pre-
vious work within practical course timetabling and automated timetabling problems. Both papers
give a short description of student sectioning problem and some of the earliest work on the subject.
Kingston (2013a) makes a short description on the subject, however the book chapter only reefers
to few articles. Other surveys only briefly mentioned that many articles on timetabling problems
have a preprocessing problem of assigning students to classes.

Student Sectioning arises at both universities and high schools. In both cases it is often a
preprocessing problem for the timetabling problem.

Of the two cases, Student Sectioning at high schools is the least studied and are in general
smaller in size compared to university student sectioning. In de Haan et al. (2007) optional subject
for the students is used when constructing timetables at high schools in Netherlands, and cluster
schemes are created to maintain the students’ optional courses. Due to a new educational system
at the test case high school the program in the paper is only used operational for the Student
Sectioning (constructing the cluster schemes) and not on the timetabling.

Kristiansen and Stidsen (2013) use the comparative term electives. The problem is to assign
2nd and 3rd year students to electives given their requests while minimizing the number of classes
created and producing a fair distribution. An Adaptive Large Neighbor Search algorithm has been
created to solve the problem and the results are in average 0.5% from the best known lower bound.
The algorithm developed in Kristiansen and Stidsen (2013) is implemented in the cloud-based high
school administration software Lectio.

In Kristiansen et al. (2013a) the problem is concerned the first year students at Danish high
schools and is bipartite. First the students are grouped into cohorts in which they are going to
attend the same mandatory courses, secondly the cohorts are assigned time slots to satisfy the
students requests for two electives. The problem is solved using the MIP solver Gurobi.

There exist more papers on Student Sectioning at universities, however in many cases you must
search in papers on University Course Timetabling to find discussion on the subject, e.g Rudova
and Murray (2003) and Suyanto (2010).

Carter (2001) and Rudova and Murray (2003) describe a demand-driven timetabling where
student selections of courses are utilized to create a timetable that satisfy as many requests as
possible. In Carter (2001) the University Course Timetabling is created first by assigning time slots
to sections and the students is then assigned individually to the sections that maximizes timetable
satisfaction and balance section sizes. Rudova and Murray (2003) uses student course selections
to construct timetables that attempt to maximize the number of satisfied course requests.

In Sönmez and Ünver (2010) they make use of a bidding system. The students make bids
on which courses they want to participate in, and based on these bids the courses are placed in

Chapter 2. A Comprehensive Study of Educational Timetabling 40

class rooms which size reflects the number of bids for the given course. This paper looks on the
mechanisms within the course bidding.

The approach of using ”bidding/requests” and solving Student Sectioning as a subproblem to the
university course timetabling is the most common method. (Aubin and Ferland (1989); Sampson
et al. (1995); Robert and Hertz (1996))

In other papers the students are clustered to avoid conflicts between the students’ choices of
courses. Banks et al. (1998) formulates the timetabling problem as a Constraint Satisfaction
Problem (CSP) where the algorithm iteratively adds subset constraints to the CSP formulation.
Amintoosi and Haddadnia (2005) proposed a fuzzy clustering algorithm to create an initial sec-
tioning prior to timetabling a set of classes. The same approach is used in Alvarez-Valdes et al.
(2000). The students select course in an interactive process in the first phase and in the second
phase a Tabu search algorithm is used for constructing the timetable.

In Müller and Murray (2010) Student Sectioning is solved as a part of the University Course
Timetabling where it is considered during and after the creation of the timetabling. In Suyanto
(2010) used a two stage approach for solving the university course timetabling, where batch stu-
dent sectioning is done by allowing the first stage timetable to change.

All the references mentioned in this section are listed in Table 2.7 in 2.A.

2.7 Conclusion

This paper has been provided in in-depth survey on educational timetabling literature in the
last decade. The survey provides a comprehensive overview of methodologies used for each of
the four main subjects within educational timetabling problems; University Course Timetabling,
High School Timetabling, Examination Timetabling and Student Sectioning. For each planning
problem a description is given along with benchmarks and recent research.

It is possible to draw a few conclusions for the complete educational timetabling problems.
Firstly, within the last decade the amount of successful literature on this subject has been in-
creasingly and many of the used solution approach is of some kind of hybridization of multiple
heuristics.

Secondly, in many cases the quality of a solution is only compared to previous solutions and not
on the optimal or lower bound. The main approach is some sort of heuristic, it could be advantage
to research in the use of more exact methods to create some good lower bounds or better yet,
optimal solutions to the benchmark data.

Finally, there is still a problem of closing the gap between theory and practice. The different
planning problems are still in need of some generalized format and description and more benchmark
data from the real world. The XHSTT format for High School Timetabling is an excellent example
on a generalized description on a educational planning problem with corresponding benchmark
consisting of real world data from a range of countries.

2.A Summary Tables

This section contains summarization tables on the literature mentioned in each section, listed in
order of appearance in this survey. For each section, the references are sorted according to the year
of publication. Some of the mentioned papers in the tables might cover more than one subject
and these papers are therefore listed in all the corresponding tables.

Each table consists of the description of author(s), research area and comments.
First we have the tables related to previous surveys and competitions within educational time-

tabling in Table 2.1 and Table 2.2, respectively.
Table 2.7 lists all the papers related to Student Sectioning.

41
2.A

.
S

u
m

m
ary

T
ab

les

Table 2.1: Surveys on educational timetabling

References and
publication year

Title Research area Comments

Schmidt and Ströhlein
(1980)

Timetable construction – an annotated
bibliography

Timetabling Provide an annotated bibliogra-
phy including more than 200 en-
tries.

de Werra (1985) An introduction to timetabling Class-teacher and course
timetabling

Graph coloring and network
flows methods.

Junginger (1986) Timetabling in Germany–A Survey School timetabling Various software products imple-
mented in Germany.

Carter (1986) A Survey of Practical Applications of Ex-
amination Timetabling Algorithms

Examination timetabling Algorithms tested on real data or
implemented.

Carter and Laporte (1996) Recent developments in practical exami-
nation timetabling

Examination timetabling Algorithms tested on real data or
implemented from 1986 to 1996.

Bardadym (1996) Computer-aided school and university
timetabling: The new wave

Educational timetabling Computer-aided management
systems for timetabling.

Wren (1996) Scheduling, timetabling and rostering —
A special relationship?

Scheduling and timetabling Links scheduling, timetabling
and rostering.

Carter and Laporte (1998) Recent developments in practical course
timetabling

Course timetabling Algorithms tested on real data or
implemented.

Schaerf (1999a) A Survey of Automated Timetabling School, course and exam
timetabling

Classification of solution tech-
niques particularly from artificial
intelligence.

Burke and Petrovic (2002) Recent research directions in automated
timetabling

University timetabling
(course and exam)

Tries to explore approaches that
can operate at a higher level of
generality.

Burke et al. (2004c) Application to timetabling Class-teacher, course, exam
and sport timetabling

Application of graph coloring
methods to timetabling.

McCollum (2006) University Timetabling: Bridging the
Gap between Research and Practice

Latest survey on University
Course Timetabling.

Qu et al. (2009) A Survey of Search Methodologies and
Automated System Development for Ex-
amination Timetabling

Examination timetabling Algorithms from 1996 to 2009.
Presenting a definitive renaming
of different benchmark problem
datasets.

Pillay (2013) An Overview of School Timetabling Re-
search

School timetabling A standardized definition of the
problem in terms of problem re-
quirements, hard constraints and
soft constraints.

Kingston (2013a) Educational Timetabling - Book chapter introducing educa-
tional timetabling problems.

C
h

ap
ter

2.
A

C
o
m

p
reh

en
siv

e
S

tu
d

y
of

E
d

u
cation

al
T

im
etab

lin
g

42

Table 2.2: Competitions within Educational Timetabling

References Research area Comments

Kostuch (2004) University Timetabling Winner of the 1st International Timetabling
Competition 2002

Gaspero et al.
(2007)

University Timetabling and Exam Timetabling Overview of the competitions and the competi-
tors of the 2nd International Timetabling Com-
petition 2007

McCollum et al.
(2010)

Setting the Research Agenda in Automated Timetabling: The
Second International Timetabling Competition

Post et al.
(2012c)

High School Timetabling Overview of the competitions and the competi-
tors of the 3rd International Timetabling Com-
petition 2011

Table 2.3: University Course Timetabling

Authors Problem Comments

Carter (2001) A comprehensive course timetabling and student scheduling sys-
tem at the university of waterloo

Implemented at University of Waterloo and in
2001 it has been used successfully for 15 years.

Dimopoulou
and Miliotis
(2001)

Implementation of a university course and examination time-
tabling system

A system for University Course Timetabling and
Examination Timetabling at Athens University of
Economics and Business.

Socha et al.
(2003)

Ant Algorithms for the University Course Timetabling Problem
with Regard to the State-of-the-Art

-

Rudova and
Murray (2003)

University Course Timetabling with Soft Constraints A part of the UniTime systems publications. Us-
ing constraint logic programming.

Gaspero and
Schaerf (2003)

Multi-neighbourhood Local Search with Application to Course
Timetabling

Tested on the School of Engineering at Udine Uni-
versity.

Martin (2004) Ohio University’s College of Business Uses Integer Programming
to Schedule Classes

Solves the University Course Timetabling at Col-
lege of Business, Ohio University.

Daskalaki et al.
(2004)

An integer programming formulation for a case study in university
timetabling

Engineering School of Greek universities.

Kostuch (2004) Timetabling Competition - SA-based Heuristic Winner of ITC2002

Müller et al.
(2005)

Minimal Perturbation Problem in Course Timetabling Iterative Forward Search. Part of UniTime sys-
tem.

Avella and
Vasil’Ev (2005)

A Computational Study of a Cutting Plane Algorithm for Univer-
sity Course Timetabling

Branch-and-Cut method with two cutting planes.

Daskalaki and
Birbas (2005)

Efficient solutions for a university timetabling problem through
integer programming

A two stage relaxation procedure.

Continued on next page

43
2.A

.
S

u
m

m
ary

T
ab

les

Table 2.3 – continued from previous page

Authors Problem Comments

Qualizza and
Serafini (2005)

A Column Generation Scheme for Faculty Timetabling Column Generation with a Branch-and-Bound
method to ensure feasibility.

Chiarandini
et al. (2006)

An effective hybrid algorithm for university course timetabling Tested on the benchmark of ITC2003.

Lewis et al.
(2007)

Post Enrolment based Course Timetabling: A Description of the
Problem Model used for Track Two of the Second International
Timetabling Competition

Explanation of Post enrollment-based course
timetabling used for ITC2007 Track 3.

Al-Yakoob and
Sherali (2007)

A mixed-integer programming approach to a class timetabling
problem: A case study with gender policies and traffic consid-
erations

Incorporates gender policies in the University
Course Timetabling at Kuwait University.

Burke et al.
(2007)

A graph-based hyper-heuristic for educational timetabling prob-
lems

Tested on the benchmark of ITC2007.

Murray et al.
(2007)

Modeling and Solution of a Complex University Course Time-
tabling Problem

Transform the University Course Timetabling
problem at Purdue University into a constraint
satisfaction and optimization problem. Part of
the UniTime system.

Schimmelpfeng
and Helber
(2007)

Application of a real-world university-course timetabling model
solved by integer programming

Solves the problem at School of Economics and
Management at Hannover University.

Lach and
Lübbecke
(2008)

Optimal University Course Timetables and the Partial Transver-
sal Polytope

Theoretical background for a two stage decom-
position method for the University Course Time-
tabling.

Nurmi and
Kyngas (2008)

A Conversion Scheme for Turning a Curriculum-Based Time-
tabling Problem into a School Timetabling Problem

Transform the problem description of
Curriculum-Based Timetabling Problem from
ITC2007 to a school timetabling problem and
solves it using a genetic algorithm.

Cambazard
et al. (2008)

Local Search and Constraint Programming for the Post
Enrolment-based Course Timetabling Problem

Winner of ITC2007 Track 2.

Müller (2009) ITC2007 solver description: a hybrid approach Winner of ITC2007 Track 1 and 3.

Suyanto (2010) An informed genetic algorithm for university course and student
timetabling problems

-

Turabieh et al.
(2010)

Fish Swarm Intelligent Algorithm for the Course Timetabling
Problem

Applied to the definition of Socha et al. (2003).

Lü et al. (2011) Neighborhood analysis: a case study on curriculum-based course
timetabling

-

Rudová et al.
(2011)

Complex university course timetabling Newest research paper from UniTime on Post
Enrollment-based Course Timetabling.

Nguyen et al.
(2011)

Variable Neighborhood Search for a Real-World Curriculum-
Based University Timetabling Problem

Solves 14 instances from University of Science in
Vietnam.

Continued on next page

C
h

ap
ter

2.
A

C
o
m

p
reh

en
siv

e
S

tu
d

y
of

E
d

u
cation

al
T

im
etab

lin
g

44

Table 2.3 – continued from previous page

Authors Problem Comments

Shiau (2011) A hybrid particle swarm optimization for a university course
scheduling problem with flexible preferences

Solves the course timetabling at a university in
Taiwan.

Hao and Benlic
(2011)

Lower bounds for the ITC-2007 curriculum-based course time-
tabling problem

Generates lower bounds for the ITC2007 in-
stances.

Bonutti et al.
(2012)

Benchmarking curriculum-based course timetabling: formula-
tions, data formats, instances, validation, visualization, and re-
sults

Formulations and collection of the Udine bench-
mark.

Lach and
Lübbecke
(2012)

Curriculum based course timetabling: new solutions to Udine
benchmark instances

Uses the two stage decomposition of Lach and
Lübbecke (2008) to solve the Udine Benchmark.

Müller and
Rudová (2012)

Real-life curriculum-based timetabling Newest research paper from UniTime on
Curriculum-based Course Timetabling.

Burke et al.
(2012)

A branch-and-cut procedure for the Udine Course Timetabling
problem

Generates good lower bounds fast.

Ceschia et al.
(2012)

Design, engineering, and experimental analysis of a simulated an-
nealing approach to the post-enrolment course timetabling prob-
lem

Tested on the ITC2003 and ITC2007 benchmark
data.

Nothegger et al.
(2012)

Solving the post enrolment course timetabling problem by ant
colony optimization

Tested on the ITC2007 benchmark with mixed
results.

Chen and Shih
(2013)

Solving University Course Timetabling Problems Using Constric-
tion Particle Swarm Optimization with Local Search

-

Cacchiani et al.
(2013)

A new lower bound for curriculum-based course timetabling Lower bounds on the benchmark sets of ITC2003
and ITC2007.

Azlan and
Hussin (2013)

Implementing graph coloring heuristic in construction phase of
curriculum-based course timetabling problem

Tested on the benchmark of ITC2007.

Table 2.4: High School timetabling - XHSTT

Authors Problem Comments

Post et al.
(2012a)

An XML format for benchmarks in High School Timetabling The XHSTT format description.

Fonseca et al.
(2012)

A SA-ILS approach for the High School Timetabling Problem 1st place at ITC2011.

Kheiri et al.
(2012)

HySST: Hyper-heuristic Search Strategies and Timetabling 2nd place at ITC2011.

Sørensen et al.
(2012).

International Timetabling Competition 2011: An Adaptive Large
Neighborhood Search algorithm

3rd place at ITC2011.

Continued on next page

45
2.A

.
S

u
m

m
ary

T
ab

les

Table 2.4 – continued from previous page

Authors Problem Comments

Romrös and
Homberger
(2012)

An Evolutionary Algorithm for High School Timetabling 4th place at ITC2011.

Post et al.
(2013)

The Third International Timetabling Competition Description and results of ITC2011.

Pimmer and
Raidl (2013)

A Timeslot-Filling Heuristic Approach to Construct High-School
Timetables

Fonseca et al.
(2013)

Late Acceptance-Hill Climbing Applied to the High School Time-
tabling Problem

Improvements of Fonseca et al. (2012).

Kristiansen
et al. (2013c)

Integer Programming for the Generalized (High) School Time-
tabling Problem

IP model for the XHSTT format and creation of
lower bounds.

Table 2.5: High School timetabling - country based

Studies Subject Comments

Wood and
Whitaker
(1998)

Student Centred School Timetabling Solves the problem at Secondary schools in New
Zealand using Hill Climber and Hungarian As-
signment.

Colorni et al.
(1998)

Metaheuristics for High School Timetabling Solves two Italian high school instances. A ge-
netic algorithm with Tabu Search being the best.

Schaerf (1999b) Local search techniques for large high school timetabling problems Solves one artificial and two Italian high schools
using a hybrid heuristic with Tabu Search.

Fernandes et al.
(1999)

High school weekly timetabling by evolutionary algorithms High schools in Portugal.

Bufé et al.
(2001)

Automated Solution of a Highly Constrained School Timetabling
Problem - Preliminary Results

Using Tabu Search to solve the German high
school timetabling problem.

Filho and
Lorena (2001)

A Constructive Evolutionary Approach to School Timetabling Solves two Brazilian high schools.

Lohnertz (2002) A timetabling system for the German gymnasium Combines Tabu Search and Graph Vertex Color-
ing for German high school.

Wilke et al.
(2002)

A Hybrid Genetic Algorithm for School Timetabling German high school.

Souza et al.
(2003)

A GRASP-tabu search algorithm for school timetabling problems Brazilian high schools.

Valouxis and
Housos (2003)

Constraint programming approach for school timetabling Greek high schools.

Papoutsis et al.
(2003)

A column generation approach for the timetabling problem of
Greek high schools

Greek high schools.

Continued on next page

C
h

ap
ter

2.
A

C
o
m

p
reh

en
siv

e
S

tu
d

y
of

E
d

u
cation

al
T

im
etab

lin
g

46

Table 2.5 – continued from previous page

Studies Subject Comments

Santos et al.
(2004)

An Efficient Tabu Search Heuristic for the School Timetabling
Problem

Brazilian high schools.

Post and
Ruizenaar
(2004)

Clusterschemes in Dutch secondary schools Clusterschemes are constructed and a Branch-
and-Bound approach is then used for Dutch high
school timetabling problem.

Kingston (2005) A Tiling Algorithm for High School Timetabling Solves seven instances of Australian high schools.

Santos et al.
(2005)

A Tabu search heuristic with efficient diversification strategies for
the class/teacher timetabling problem

Uses memory based diversifications to improve
robustness in a Tabu Search. Brazilian high
schools.

Jacobsen et al.
(2006)

Timetabling at German Secondary Schools: Tabu Search versus
Constraint Programming

German high school.

Meĺıcio et al.
(2006)

THOR: A Tool for School Timetabling Describes the system THOR which in use by more
than 100 schools in Portugal.

Yigit (2007) Constraint-Based School Timetabling Using Hybrid Genetic Al-
gorithms

Solves the problem at the Technical and Voca-
tional High Schools in Turkey.

Nurmi and
Kyngas (2007)

A framework for school timetabling problem Finnish high schools.

de Haan et al.
(2007)

A Case Study for Timetabling in a Dutch Secondary School Solves the Dutch case from Post and Ruizenaar
(2004) using a three phase approach.

Avella et al.
(2007)

A computational study of local search algorithms for Italian high-
school timetabling

Using a hybrid heuristic with Variable Neighbor-
hood Search and Simulated Annealing on two
Italian high schools.

Bello et al.
(2008)

An Approach for the Class/Teacher Timetabling Problem using
Graph Coloring

Tested on five Brazilian high schools.

Boland et al.
(2008)

New integer linear programming approaches for course timetabling Australian high schools.

Beligiannis
et al. (2008)

Applying evolutionary computation to the school timetabling
problem: The Greek case

Greek high schools made available as benchmark
data.

Moschopoulos
et al. (2009)

A User-Friendly Evolutionary Tool for High-School Timetabling An user interface for the system created in Beli-
giannis et al. (2008).

Beligiannis
et al. (2009)

A genetic algorithm approach to school timetabling Solves the Beligiannis benchmark.

Raghavjee and
Pillay (2009)

Evolving solutions to the school timetabling problem Solves the Beligiannis benchmark.

Birbas et al.
(2009)

School timetabling for quality student and teacher schedules Solves a secondary Hellenic school. First by as-
signing teachers to shifts and then solving the
High School Timetabling problem.

Continued on next page

47
2.A

.
S

u
m

m
ary

T
ab

les

Table 2.5 – continued from previous page

Studies Subject Comments

Moura and
Scaraficci
(2010)

A GRASP strategy for a more constrained School Timetabling
Problem

Solves the Brazilian high schools Teacher-class as-
signment problem.

Zhang et al.
(2010)

A simulated annealing with a new neighborhood structure based
algorithm for high school timetabling problems

Tested on two set of benchmark instances. A ran-
domly generated and instances from Greek high
schools in Patras.

Santos et al.
(2012)

Strong bounds with cut and column generation for class-teacher
timetabling

Brazilian high schools Class-teacher assignment
problem.

Raghavjee and
Pillay (2010)

An informed genetic algorithm for the high school timetabling
problem

High schools in South Africa.

Minh et al.
(2010)

Using Tabu Search for Solving a High School Timetabling Problem High schools in Vietnam solved using Tabu
Search.

Post et al.
(2012b)

Cyclic transfers in school timetabling High school timetabling in the Netherlands and
England.

Ribic and
Konjicija (2010)

A two phase integer linear programming approach to solving the
school timetable problem

Croatian secondary school.

Valouxis et al.
(2012)

Decomposing the High School Timetable Problem Greek high schools.

Sørensen and
Stidsen (2013)

Integer Programming and Adaptive Large Neighborhood Search
for Real-World Instances of High School Timetabling

Implemented at available for more than 200 Dan-
ish high schools.

Sørensen and
Dahms (2014)

A Two-Stage Decomposition of High School Timetabling applied
to cases in Denmark

Using the approach of Lach and Lübbecke (2012)
on the Danish high school timetabling problem.

Table 2.6: Examination timetabling

References Problem Comments

Hansen and
Vidal (1995)

Planning of high school examinations in Denmark System for examination timetabling and censor-
ships assignment at Danish high schools.

Carter et al.
(1996)

Examination Timetabling: Algorithmic Strategies and Applica-
tions

Created the Toronto benchmark datasets.

Burke et al.
(1996)

A Memetic Algorithm for University Exam Timetabling Extended Carter et al. (1996) with the Notting-
ham benchmark datasets.

Thompson and
Dowsland
(1998)

A robust simulated annealing based examination timetabling sys-
tem

A system for handling exams at Swansea Univer-
sity, Wales.

White and Xie
(2001)

Examination Timetables and Tabu Search with Longer-Term
Memory

University of Ottawa, Canada.

Continued on next page

C
h

ap
ter

2.
A

C
o
m

p
reh

en
siv

e
S

tu
d

y
of

E
d

u
cation

al
T

im
etab

lin
g

48

Table 2.6 – continued from previous page

References Problem Comments

Dimopoulou
and Miliotis
(2001)

Implementation of a university course and examination time-
tabling system

A system for University Course Timetabling and
Examination Timetabling at Athens University of
Economics and Business.

Wong et al.
(2002)

Final exam timetabling: a practical approach Solve the examination problem at Ecole de Tech-
nologie Superieure, Montreal, Canada, and has
been in use since 2001.

Ahmadi et al.
(2003)

Perturbation based variable neighbourhood search in heuristic
space for examination timetabling problem

Tested on the Nottingham benchmark.

Merlot et al.
(2003)

A Hybrid Algorithm for the Examination Timetabling Problem Created the Melbourne benchmarks.

Petrovic and
Bykov (2003)

A Multiobjective Optimisation Technique for Exam Timetabling
Based on Trajectories

Tested on the Nottingham and Toronto bench-
marks.

Casey and
Thompson
(2003)

GRASPing the Examination Scheduling Problem Tested on the Toronto benchmarks.

Burke et al.
(2004a)

A time-predefined local search approach to exam timetabling
problems

Tested on the Nottingham and Toronto bench-
marks.

Duong and Lam
(2004)

Combining Constraint Programming and Simulated Annealing on
University Exam Timetabling

HoChiMinh City University of Technology, Viet-
nam.

White et al.
(2004)

Using tabu search with longer-term memory and relaxation to
create examination timetables

University of Ottawa, Canada.

Burke et al.
(2005)

Hybrid Graph Heuristics within a Hyper-Heuristic Approach to
Exam Timetabling Problems

Tested on the Toronto benchmarks.

Asmuni et al.
(2005)

Fuzzy Multiple Heuristic Orderings for Examination Timetabling Tested on the Toronto benchmarks.

Yang and
Petrovic (2005)

A Novel Similarity Measure for Heuristic Selection in Examination
Timetabling

Tested on the Toronto benchmarks.

Dowsland and
Thompson
(2005)

Ant colony optimization for the examination scheduling problem Tested on the Toronto benchmarks.

Abdullah et al.
(2007)

Investigating Ahuja–Orlin’s large neighbourhood search approach
for examination timetabling

Tested on the Toronto benchmarks.

Asmuni et al.
(2007)

A Novel Fuzzy Approach to Evaluate the Quality of Examination
Timetabling

Tested on the Toronto benchmarks.

Burke et al.
(2007)

A graph-based hyper-heuristic for educational timetabling prob-
lems

Tested on the Toronto benchmarks.

Eley (2007) Ant Algorithms for the Exam Timetabling Problem Tested on the Toronto benchmarks.

Continued on next page

49
2.A

.
S

u
m

m
ary

T
ab

les

Table 2.6 – continued from previous page

References Problem Comments

Qu and Burke
(2007)

Adaptive decomposition and construction for examination time-
tabling problems

Tested on the Toronto benchmarks.

Caramia et al.
(2008)

Novel Local-Search-Based Approaches to University Examination
Timetabling

Tested on the Toronto benchmarks.

Pillay and
Banzhaf (2009)

A study of heuristic combinations for hyper-heuristic systems for
the uncapacitated examination timetabling problem

Tested on the Toronto benchmarks.

Ozcan et al.
(2009)

Examination timetabling using late acceptance hyper-heuristics Tested on the Toronto benchmarks.

Abdullah et al.
(2009)

A Hybridization of Electromagnetic-Like Mechanism and Great
Deluge for Examination Timetabling Problems

Tested on the Toronto benchmarks.

Müller (2009) ITC2007 solver description: a hybrid approach Winner of ITC2007 Track 1 and 3.

Sabar et al.
(2009)

Solving Examination Timetabling Problems using Honey-bee
Mating Optimization

Tested on the Toronto benchmarks.

Burke et al.
(2010a)

Monte Carlo hyper-heuristics for examination timetabling Tested on the Toronto benchmarks.

Abdullah et al.
(2010)

A Tabu-Based Memetic Approach for Examination Timetabling
Problems

Tested on the Toronto benchmarks.

Kahar and
Kendall (2010)

The examination timetabling problem at Universiti Malaysia Pa-
hang: Comparison of a constructive heuristic with an existing
software solution

Universiti Malaysia Pahang, Malaysia.

Al-Yakoob
et al. (2010)

A mixed-integer mathematical modeling approach to exam time-
tabling

Kuwait University.

Mansour et al.
(2011)

Scatter search technique for exam timetabling Lebanese American University, Lebanon.

Turabieh and
Abdullah
(2011a)

An integrated hybrid approach to the examination timetabling
problem

Tested on Toronto benchmarks and the datasets
from ITC2007.

Turabieh and
Abdullah
(2011b)

A Hybrid Fish Swarm Optimisation Algorithm for Solving Exam-
ination Timetabling Problems

Tested on the Toronto benchmarks.

Sabar et al.
(2012)

A graph coloring constructive hyper-heuristic for examination
timetabling problems

Tested on Toronto benchmarks and the datasets
from ITC2007.

McCollum et al.
(2012)

A new model for automated examination timetabling Tested on the datasets from ITC2007.

Gogos et al.
(2012)

An improved multi-staged algorithmic process for the solution of
the examination timetabling problem

Tested on Toronto benchmarks and the datasets
from ITC2007.

Continued on next page

C
h

ap
ter

2.
A

C
o
m

p
reh

en
siv

e
S

tu
d

y
of

E
d

u
cation

al
T

im
etab

lin
g

50

Table 2.6 – continued from previous page

References Problem Comments

Demeester et al.
(2012)

A hyperheuristic approach to examination timetabling problems:
benchmarks and a new problem from practice

Tested on the Toronto benchmark, the ITC 2007
benchmarks and the examination timetabling
problem at KAHO Sint-Lieven (Ghent, Belgium).

Müller (2013) Real-life Examination Timetabling Purdue University datasets.

Anwar et al.
(2013)

Harmony Search-based Hyper-heuristic for examination time-
tabling

ITC2007 benchmark.

Rahman et al.
(2014)

Adaptive linear combination of heuristic orderings in constructing
examination timetables

Tested on Toronto benchmarks and the datasets
from ITC2007.

Table 2.7: Student sectioning

Author(s) Problem Comments

Aubin and
Ferland (1989)

A large scale timetabling problem Tested on data from a High School in Montreal,
Canada.

Sampson et al.
(1995)

Class scheduling to maximize participant satisfaction Using a local search heuristic and is able to meet
94% of the requirements at the Graduate School
of Business Administration at the University of
Virginia, USA.

Robert and
Hertz (1996)

How to decompose constrained course scheduling problems into
easier assignment type subproblems

Course timetabling with student requests.

Banks et al.
(1998)

A heuristic incremental modeling approach to course timetabling Constraints are added to the timetabling model
to avoid student conflicts. The students are indi-
vidually scheduled after complete timetabling.

Alvarez-Valdes
et al. (2000)

Assigning students to course sections using tabu search Used at the Faculty of Mathematics, University
of Valencia, Spain of the academic year 96/97.

Carter (2001) A comprehensive course timetabling and student scheduling sys-
tem at the university of waterloo

Implemented at University of Waterloo and in
2001 it has been used successfully for 15 years.

Rudova and
Murray (2003)

University course timetabling with soft Constraints Tested on a data for the fall semester 2001 at
Purdue University, USA.

Amintoosi and
Haddadnia
(2005)

Feature selection in a fuzzy student sectioning algorithm Tested on the Mathematical department of Sabze-
var University, Iran.

de Haan et al.
(2007)

A case study for timetabling in a Dutch secondary school Is used operationally only for constructing the
cluster schemes.

Sönmez and
Ünver (2010)

Course bidding at business schools Mechanisms within course bidding.

Continued on next page

51
2.A

.
S

u
m

m
ary

T
ab

les

Table 2.7 – continued from previous page

Author(s) Problem Comments

Müller and
Murray (2010)

Comprehensive approach to student sectioning for Purdue Uni-
versity, USA

Student sectioning during course timetabling and
batch sectioning after a complete timetable. Im-
plemented in the open source software UniTime.

Suyanto (2010) An informed genetic algorithm for university course and student
timetabling problems

Batch student sectioning within a sparse time-
tabling model.

Kristiansen and
Stidsen (2013)

Elective course student sectioning Implemented and used for the majority of the
Danish high schools from 2012 and forward.

Kristiansen
et al. (2013a)

High school student sectioning at Danish high schools Tested on 25 real life instances from Danish high
schools.

Bibliography 52

Bibliography

S. Abdullah, S. Ahmadi, E. Burke, and M. Dror. Investigating ahuja–orlin’s large neighbourhood
search approach for examination timetabling. OR Spectrum, 29:351–372, 2007. ISSN 0171-6468.
10.1007/s00291-006-0034-7.

S. Abdullah, H. Turabieh, and B. McCollum. A hybridization of electromagnetic-like mechanism
and great deluge for examination timetabling problems. In M. J. Blesa, C. Blum, L. Gaspero,
A. Roli, M. Sampels, and A. Schaerf, editors, Hybrid Metaheuristics, volume 5818 of Lecture
Notes in Computer Science, pages 60–72. Springer Berlin Heidelberg, 2009. ISBN 978-3-642-
04917-0.

S. Abdullah, H. Turabieh, B. McCollum, and P. McMullan. A tabu-based memetic approach for
examination timetabling problems. In J. Yu, S. Greco, P. Lingras, G. Wang, and A. Skowron, ed-
itors, Rough Set and Knowledge Technology, volume 6401 of Lecture Notes in Computer Science,
pages 574–581. Springer Berlin / Heidelberg, 2010.

S. Ahmadi, R. Barrone, P. Cheng, P. Cowling, and B. McCollum. Perturbation based variable
neighbourhood search in heuristic space for examination timetabling problem. In Multidisci-
plinary International Scheduling: Theory and Application (MISTA 2003), pages 155–171, Au-
gust 2003.

R. K. Ahuja, J. B. Orlin, and D. Sharma. Multi-exchange neighborhood structures for the capac-
itated minimum spanning tree problem. Mathematical Programming, 91(1):71–97, 2001. ISSN
0025-5610.

S. Al-Yakoob, H. D. Sherali, and M. Al-Jazzaf. A mixed-integer mathematical modeling approach
to exam timetabling. Computational Management Science, 7(1):19–46, 2010. ISSN 1619-697X.

S. M. Al-Yakoob and H. D. Sherali. A mixed-integer programming approach to a class timetabling
problem: A case study with gender policies and traffic considerations. European Journal of
Operational Research, 180(3):1028 – 1044, 2007. ISSN 0377-2217.

R. Alvarez-Valdes, E. Crespo, and J. M. Tamarit. Assigning students to course sections using
tabu search. Annals of Operations Research, 96(1-4):1–16, 2000. ISSN 0254-5330.

M. Amintoosi and J. Haddadnia. Feature selection in a fuzzy student sectioning algorithm. In
E. Burke and M. Trick, editors, Practice and Theory of Automated Timetabling V, volume 3616
of Lecture Notes in Computer Science, pages 147–160. Springer Berlin Heidelberg, 2005. ISBN
978-3-540-30705-1.

K. Anwar, A. Khader, M. Al-Betar, and M. Awadallah. Harmony search-based hyper-heuristic
for examination timetabling. In IEEE 9th International Colloquium on Signal Processing and
its Applications (CSPA), 2013, pages 176–181, 2013.

H. Asmuni, E. Burke, J. Garibaldi, and B. McCollum. Fuzzy multiple heuristic orderings for
examination timetabling. In E. Burke and M. Trick, editors, Practice and Theory of Automated
Timetabling V, volume 3616 of Lecture Notes in Computer Science, pages 334–353. Springer
Berlin / Heidelberg, 2005.

H. Asmuni, E. K. Burke, J. M. Garibaldi, and B. McCollum. A novel fuzzy approach to evaluate
the quality of examination timetabling. In E. Burke and H. RudovÃ¡, editors, Practice and
Theory of Automated Timetabling VI, volume 3867 of Lecture Notes in Computer Science, pages
327–346. Springer Berlin Heidelberg, 2007. ISBN 978-3-540-77344-3.

J. Aubin and J. Ferland. A large scale timetabling problem. Computers & Operations Research,
16(1):67 – 77, 1989. ISSN 0305-0548.

53 Bibliography

P. Avella and I. Vasil’Ev. A computational study of a cutting plane algorithm for university course
timetabling. Journal of Scheduling, 8:497–514, 2005. ISSN 1094-6136.

P. Avella, B. D’Auria, S. Salerno, and I. Vasilâev. A computational study of local search algorithms
for italian high-school timetabling. Journal of Heuristics, 13:543–556, 2007. ISSN 1381-1231.

A. Azlan and N. M. Hussin. Implementing graph coloring heuristic in construction phase of
curriculum-based course timetabling problem. In Computers Informatics (ISCI), 2013 IEEE
Symposium on, pages 25–29, 2013. doi: 10.1109/ISCI.2013.6612369.

N. Balakrishnan and R. Wong. A network model for the rotating workforce scheduling problem.
Networks, 20:25–42, 1990.

D. Banks, P. Beek, and A. Meisels. A heuristic incremental modeling approach to course time-
tabling. In R. Mercer and E. Neufeld, editors, Advances in Artificial Intelligence, volume 1418
of Lecture Notes in Computer Science, pages 16–29. Springer Berlin Heidelberg, 1998. ISBN
978-3-540-64575-7.

V. Bardadym. Computer-aided school and university timetabling: The new wave. In E. Burke
and P. Ross, editors, Practice and Theory of Automated Timetabling, volume 1153 of Lecture
Notes in Computer Science, pages 22–45. Springer Berlin / Heidelberg, 1996.

G. Beligiannis, C. Moschopoulos, G. Kaperonis, and S. Likothanassis. Applying evolutionary
computation to the school timetabling problem: The greek case. Computers & Operations
Research, 35(4):1265 – 1280, 2008. ISSN 0305-0548.

G. Beligiannis, C. Moschopoulos, and S. Likothanassis. A genetic algorithm approach to school
timetabling. Journal of the Operatio, 60:23–42, 2009.

G. Bello, M. Rangel, and M. Boeres. An approach for the class/teacher timetabling problem using
graph coloring. In In the proceedings of the 7th International Conference on the Practice and
Theory of Automated Timetabling. PATAT2008, 2008.

T. Birbas, S. Daskalaki, and E. Housos. School timetabling for quality student and teacher
schedules. J. of Scheduling, 12:177–197, April 2009. ISSN 1094-6136.

N. Boland, B. Hughes, L. Merlot, and P. Stuckey. New integer linear programming approaches
for course timetabling. Computers & Operations Research, 35(7):2209 – 2233, 2008. ISSN
0305-0548. Part Special Issue: Includes selected papers presented at the ECCO’04 European
Conference on combinatorial Optimization.

A. Bonutti, F. De Cesco, L. Di Gaspero, and A. Schaerf. Benchmarking curriculum-based course
timetabling: formulations, data formats, instances, validation, visualization, and results. Annals
of Operations Research, 194(1):59–70, April 2012. ISSN 0254-5330.

M. Bufé, T. Fischer, H. Gubbels, C. Häcker, O. Hasprich, C. Scheibel, K. Weicker, N. Weicker,
M. Wenig, and C. Wolfangel. Automated solution of a highly constrained school timetabling
problem - preliminary results. In E. Boers, editor, Applications of Evolutionary Computing,
volume 2037 of Lecture Notes in Computer Science, pages 431–440. Springer Berlin / Heidelberg,
2001.

E. Burke and J. Newall. A multistage evolutionary algorithm for the timetable problem. Evolu-
tionary Computation, IEEE Transactions on, 3(1):63 –74, apr 1999. ISSN 1089-778X.

E. Burke and S. Petrovic. Recent research directions in automated timetabling. European Journal
of Operational Research, 140(2):266 – 280, 2002. ISSN 0377-2217.

E. Burke, J. Newall, and R. Weare. A memetic algorithm for university exam timetabling. In
Selected papers from the First International Conference on Practice and Theory of Automated
Timetabling, pages 241–250, London, UK, 1996. Springer-Verlag. ISBN 3-540-61794-9.

Bibliography 54

E. Burke, Y. Bykov, J. Newall, and S. Petrovic. A time-predefined local search approach to exam
timetabling problems. IIE Transactions, 36(6):509–528, 2004a.

E. Burke, P. De Causmaecker, G. Berghe, and H. Van Landeghem. The state of the
art of nurse rostering. Journal of Scheduling, 7:441–499, 2004b. ISSN 1094-6136.
10.1023/B:JOSH.0000046076.75950.0b.

E. Burke, J. Kingston, and D. Werra. Application to timetabling. In J. Gross and J. Yellen,
editors, The Handbook of Graph Theory, chapter 5, pages 445–474. Chapman Hall/CRC Press,
2004c.

E. Burke, M. Dror, S. Petrovic, and R. Qu. Hybrid graph heuristics within a hyper-heuristic
approach to exam timetabling problems. In R. Sharda, S. Voß, B. Golden, S. Raghavan, and
E. Wasil, editors, The Next Wave in Computing, Optimization, and Decision Technologies,
volume 29 of Operations Research/Computer Science Interfaces Series, pages 79–91. Springer
US, 2005. ISBN 978-0-387-23529-5.

E. Burke, B.McCollum, A. Meisels, S. Petrovic, and R. Qu. A graph-based hyper-heuristic for
educational timetabling problems. European Journal of Operational Research, 176(1):177 – 192,
2007. ISSN 0377-2217.

E. Burke, G. Kendall, M. Mısır, and E. Özcan. Monte carlo hyper-heuristics for examination
timetabling. Annals of Operations Research, pages 1–18, 2010a. ISSN 0254-5330.

E. Burke, J. Marecek, A. Parkes, and H. Rudová. Decomposition, reformulation, and diving in
university course timetabling. Computers & Operations Research, 37(3):582–597, 2010b.

E. K. Burke, J. Marec, A. J. Parkes, and H. Rudova. A branch-and-cut procedure for the udine
course timetabling problem. Annals of Operations Research, 194(1):71–87, 2012. ISSN 0254-
5330.

V. Cacchiani, A. Caprara, R. Roberti, and P. Toth. A new lower bound for curriculum-based course
timetabling. Computers & Operations Research, 40(10):2466 – 2477, 2013. ISSN 0305-0548.

H. Cambazard, E. Hebrard, B. O’Sullivan, and A. Papadopoulos. Local search and constraint pro-
gramming for the post enrolment-based course timetabling problem. In PATAT2008: Proceed-
ings of the 7th International Conference on the Practice and Theory of Automated Timetabling,
2008.

M. Caramia, P. Dell’Olmo, and G. Italiano. Novel local-search-based approaches to university
examination timetabling. INFORMS JOURNAL ON COMPUTING, 20(1):86–99, 2008.

M. Carter. A survey of practical applications of examination timetabling algorithms. Operations
Research, 34(2):193 – 202, 1986. ISSN 0030364X.

M. Carter and G. Laporte. Recent developments in practical examination timetabling. In E. Burke
and P. Ross, editors, Practice and Theory of Automated Timetabling, volume 1153 of Lecture
Notes in Computer Science, pages 1–21. Springer Berlin / Heidelberg, 1996.

M. Carter and G. Laporte. Recent developments in practical course timetabling. In E. Burke and
M. Carter, editors, Practice and Theory of Automated Timetabling II, volume 1408 of Lecture
Notes in Computer Science, pages 3–19. Springer Berlin / Heidelberg, 1998.

M. Carter, G. Laporte, and S. Lee. Examination timetabling: Algorithmic strategies and appli-
cations. The Journal of the Operational Research Society, 47(3):373–383, March 1996.

M. W. Carter. A comprehensive course timetabling and student scheduling system at the university
of waterloo. In E. Burke and W. Erben, editors, Practice and Theory of Automated Timetabling
III, volume 2079 of Lecture Notes in Computer Science, pages 64–82. Springer Berlin Heidelberg,
2001. ISBN 978-3-540-42421-5.

55 Bibliography

S. Casey and J. Thompson. Grasping the examination scheduling problem. In E. Burke and
P. De Causmaecker, editors, Practice and Theory of Automated Timetabling IV, volume 2740
of Lecture Notes in Computer Science, pages 232–244. Springer Berlin / Heidelberg, 2003.

S. Ceschia, L. D. Gaspero, and A. Schaerf. Design, engineering, and experimental analysis of a
simulated annealing approach to the post-enrolment course timetabling problem. Computers &
Operations Research, 39(7):1615 – 1624, 2012. ISSN 0305-0548.

B. Cheang, H. Li, A. Lim, and B. Rodrigues. Nurse rostering problems–a bibliographic survey.
European Journal of Operational Research, 151(3):447 – 460, 2003. ISSN 0377-2217.

R.-M. Chen and H.-F. Shih. Solving university course timetabling problems using constriction
particle swarm optimization with local search. Algorithms, 6(2):227–244, 2013. ISSN 1999-
4893.

M. Chiarandini, M. Birattari, K. Socha, and O. Rossi-Doria. An effective hybrid algorithm for
university course timetabling. Journal of Scheduling, 9:403–432, 2006. ISSN 1094-6136.

A. Colorni, M. Dorigo, and V. Maniezzo. Metaheuristics for high school timetabling. Comput.
Optim. Appl., 9:275–298, March 1998. ISSN 0926-6003.

D. Costa and A. Hertz. Ants can colour graphs. Journal of the Operational Research Society, 48
(3):295–305, 1997.

S. Daskalaki and T. Birbas. Efficient solutions for a university timetabling problem through
integer programming. European Journal of Operational Research, 160(1):106 – 120, 2005. ISSN
0377-2217.

S. Daskalaki, T. Birbas, and E. Housos. An integer programming formulation for a case study in
university timetabling. European Journal of Operational Research, 153:117–135, 2004.

P. de Haan, R. Landman, G. Post, and H. Ruizenaar. A case study for timetabling in a dutch
secondary school. In E. Burke and H. Rudova, editors, Practice and Theory of Automated
Timetabling VI, volume 3867 of Lecture Notes in Computer Science, pages 267–279. Springer
Berlin / Heidelberg, 2007.

D. de Werra. An introduction to timetabling. European Journal of Operational Research, 19(2):
151 – 162, 1985. ISSN 0377-2217.

P. Demeester, B. Bilgin, P. Causmaecker, and G. Berghe. A hyperheuristic approach to examina-
tion timetabling problems: benchmarks and a new problem from practice. Journal of Scheduling,
15(1):83–103, 2012. ISSN 1094-6136.

M. Dimopoulou and P. Miliotis. Implementation of a university course and examination time-
tabling system. European Journal of Operational Research, 130(1):202 – 213, 2001. ISSN
0377-2217.

K. A. Dowsland and J. M. Thompson. Ant colony optimization for the examination scheduling
problem. Journal of the Operational Research Society, 56:456–438, 2005. doi: doi:10.1057/
palgrave.jors.2601830.

T.-A. Duong and K.-H. Lam. Combining constraint programming and simulated annealing on
university exam timetabling, 2004.

K. Easton, G. Nemhauser, and M. Trick. Solving the travelling tournament problem: A combined
integer programming and constraint programming approach. In E. Burke and P. De Caus-
maecker, editors, Practice and Theory of Automated Timetabling IV, volume 2740 of Lecture
Notes in Computer Science, pages 100–109. Springer Berlin / Heidelberg, 2003.

Bibliography 56

M. Eley. Ant algorithms for the exam timetabling problem. In E. K. Burke and H. Rudová,
editors, Practice and Theory of Automated Timetabling VI, volume 3867 of Lecture Notes in
Computer Science, pages 364–382. Springer Berlin Heidelberg, 2007. ISBN 978-3-540-77344-3.

ExamBenchmarks. Benchmark data sets in exam timetabling. http://www.cs.nott.ac.uk/

~rxq/data.htm[Retrieved 28/11-2013], 2013.

C. Fernandes, J. Caldeira, F. Melicio, and A. Rosa. High school weekly timetabling by evolutionary
algorithms. In Proceedings of the 1999 ACM symposium on Applied computing, SAC ’99, pages
344–350, New York, NY, USA, 1999. ACM. ISBN 1-58113-086-4.

G. Filho and L. Lorena. A constructive evolutionary approach to school timetabling. In E. Boers,
editor, Applications of Evolutionary Computing, volume 2037 of Lecture Notes in Computer
Science, pages 130–139. Springer Berlin / Heidelberg, 2001.

G. Fonseca, H. Santos, T. Toffolo, S. Brito, and M. Souza. A sa-ils approach for the high school
timetabling problem. In Proceedings of the Ninth International Conference on the Practice and
Theory of Automated Timetabling (PATAT 2012), 2012.

G. Fonseca, H. Santos, and T. Toffolo. Late acceptance-hill climbing applied to the high school
timetabling problem,. In Multidisciplinary International Scheduling Conference VI, 2013.

L. Gaspero and A. Schaerf. Multi-neighbourhood local search with application to course time-
tabling. In E. Burke and P. Causmaecker, editors, Practice and Theory of Automated Time-
tabling IV, volume 2740 of Lecture Notes in Computer Science, pages 262–275. Springer Berlin
Heidelberg, 2003. ISBN 978-3-540-40699-0.

L. D. Gaspero, A. Schaerf, and B. McCollum. The second international timetabling competition
(itc-2007): Curriculum-based course timetabling (track 3). Technical report, School of Electron-
ics, Electrical Engineering and Computer Science, Queen’s University SARC Building, Belfast,
United Kingdom, 2007.

C. Gogos, P. Alefragis, and E. Housos. An improved multi-staged algorithmic process for the
solution of the examination timetabling problem. Annals of Operations Research, 194(1):203–
221, 2012. ISSN 0254-5330.

M. Hansen and R. Vidal. Planning of high school examinations in denmark. European Journal of
Operational Research, 87(3):519 – 534, 1995. ISSN 0377-2217. doi: DOI:10.1016/0377-2217(95)
00227-8. Operational Research in Europe.

J.-K. Hao and U. Benlic. Lower bounds for the itc-2007 curriculum-based course timetabling
problem. European Journal of Operational Research, 212(3):464 – 472, 2011. ISSN 0377-2217.

F. Jacobsen, A. Bortfeldt, and H. Gehring. Timetabling at german secondary schools: Tabu
search versus constraint programming. In E. K. Burke and H. Rudova, editors, Proceedings of
the International Conference on the Practice and Theory of Automated Timetabling (PATAT
2006), pages 439–442, 2006. ISBN 80-210-3726-1.

W. Junginger. Timetabling in germany–a survey. Interfaces, 16(4):66–74, 1986. doi: 10.1287/inte.
16.4.66.

M. Kahar and G. Kendall. The examination timetabling problem at universiti malaysia pahang:
Comparison of a constructive heuristic with an existing software solution. European Journal of
Operational Research, 207(2):557 – 565, 2010. ISSN 0377-2217.

G. Kendall, S. Knust, C. Ribeiro, and S. Urrutia. Scheduling in sports: An annotated bibliography.
Computers & Operations Research, 37(1):1 – 19, 2010. ISSN 0305-0548.

http://www.cs.nott.ac.uk/~rxq/data.htm
http://www.cs.nott.ac.uk/~rxq/data.htm

57 Bibliography

A. Kheiri, E. Ozcan, and A. J. Parkes. Hysst: Hyper-heuristic search strategies and timetabling.
In Proceedings of the Ninth International Conference on the Practice and Theory of Automated
Timetabling (PATAT 2012), pages 497–499, 2012.

J. Kingston. A tiling algorithm for high school timetabling. In E. Burke and M. Trick, editors,
Practice and Theory of Automated Timetabling V, volume 3616 of Lecture Notes in Computer
Science, pages 208–225. Springer Berlin / Heidelberg, 2005.

J. H. Kingston. Educational timetabling. In A. S. Uyar, E. Ozcan, and N. Urquhart, editors,
Automated Scheduling and Planning, volume 505 of Studies in Computational Intelligence, pages
91–108. Springer Berlin Heidelberg, 2013a. ISBN 978-3-642-39303-7.

J. H. Kingston. The hseval high school timetable evaluator. http://sydney.edu.au/

engineering/it/~jeff/hseval.cgi [Retrieved 28/11-2013], Aug. 2013b.

P. Kostuch. Timetabling competition - sa-based heuristic. In PATAT 2004: Proceedings of the
5th International Conference on the Practice and Theory of Automated Timetabling, 2004.

S. Kristiansen and T. R. Stidsen. Elective course student sectioning at danish high schools. Annals
of Operations Research, PATAT 2012 SI:To appear, 2013.

S. Kristiansen, M. Sørensen, and T. R. Stidsen. Elective course planning. European Journal of
Operational Research, 215(3):713 – 720, 2011. ISSN 0377-2217. doi: 10.1016/j.ejor.2011.06.039.

S. Kristiansen, A. Mason, and T. R. Stidsen. High school student sectioning at danish high schools.
European Journal of Operational Research, MISTA 2013:Submitted, 2013a.

S. Kristiansen, M. Sørensen, M. B. Herold, and T. R. Stidsen. The consultation timetabling
problem at danish high schools. Journal of Heuristics, 19(3):465–495, June 2013b.

S. Kristiansen, M. Sørensen, and T. R. Stidsen. Integer programming for the generalized (high)
school timetabling problem. Journal of Scheduling, Submitted 5/9-2013, 2013c.

Z. Lü, J.-K. Hao, and F. Glover. Neighborhood analysis: a case study on curriculum-based course
timetabling. Journal of Heuristics, 17(2):97–118, 2011. ISSN 1381-1231.

G. Lach and M. Lübbecke. Optimal university course timetables and the partial transversal
polytope. In C. McGeoch, editor, Experimental Algorithms, volume 5038 of Lecture Notes in
Computer Science, pages 235–248. Springer Berlin / Heidelberg, 2008.

G. Lach and M. Lübbecke. Curriculum based course timetabling: new solutions to udine bench-
mark instances. Annals of Operations Research, 194:255–272, 2012. ISSN 0254-5330.

R. Lewis and B. Paechter. Application of the grouping genetic algorithm to university course
timetabling. In G. R. Raidl and J. Gottlieb, editors, Evolutionary Computation in Combinatorial
Optimization, volume 3448 of Lecture Notes in Computer Science, pages 144–153. Springer
Berlin Heidelberg, 2005. ISBN 978-3-540-25337-2.

R. Lewis, B. Paechter, and B. McCollum. Post enrolment based course timetabling: A description
of the problem model used for track two of the second international timetabling competition.
Cardiff Accounting and Finance Working Papers A2007/3, Cardiff University, Cardiff Business
School, Accounting and Finance Section, 2007.

M. Lohnertz. A timetabling system for the german gymnasium. In Proceedings of the fourth
international conference on the practice and theory of automated timetabling., 2002.

N. Mansour, V. Isahakian, and I. Ghalayini. Scatter search technique for exam timetabling.
Applied Intelligence, 34(2):299–310, 2011. ISSN 0924-669X.

http://sydney.edu.au/engineering/it/~jeff/hseval.cgi
http://sydney.edu.au/engineering/it/~jeff/hseval.cgi

Bibliography 58

C. H. Martin. Ohio university’s college of business uses integer programming to schedule classes.
Interfaces, 34(6):460–465, November 2004.

B. McCollum. University timetabling: Bridging the gap between research and practice. In in
Proceedings of the 5th International Conference on the Practice and Theory of Automated Time-
tabling, pages 15–35. Springer, 2006.

B. McCollum. International timetabling competition 2007. http://www.cs.qub.ac.uk/itc2007/
index.htm[Retrieved 28/11-2013], 2007.

B. McCollum, A. Schaerf, B. Paechter, P. McMullan, R. Lewis, A. J. Parkes, L. D. Gaspero,
R. Qu, and E. K. Burke. Setting the research agenda in automated timetabling: The second
international timetabling competition. INFORMS Journal on Computing, 22(1):120–130, 2010.

B. McCollum, P. McMullan, A. Parkes, E. Burke, and R. Qu. A new model for automated
examination timetabling. Annals of Operations Research, 194:291–315, 2012. ISSN 0254-5330.
10.1007/s10479-011-0997-x.

A. Meisels and A. Schaerf. Modelling and solving employee timetabling problems. Annals of
Mathematics and Artificial Intelligence, 39(1-2):41–59, 2003. ISSN 1012-2443.

F. Meĺıcio, P. Caldeira, and A. Rosa. Solving real school timetabling problems with meta-
heuristics. In Proceedings of the 4th WSEAS International Conference on Applied Mathematics
and Computer Science, pages 4:1–4:8, Stevens Point, Wisconsin, USA, 2005. World Scientific
and Engineering Academy and Society (WSEAS). ISBN 960-8457-17-3.

F. Meĺıcio, J. P. Calderia, and A. Rosa. Thor: A tool for school timetabling. In E. K. Burke
and H. Rudova, editors, Proceedings of the 6th International Conference on the Practice and
Teaching of Automated Timetabling (PATAT 2006), pages 532–535, 2006. ISBN 80-210-3726-1.

L. Merlot, N. Boland, and P. Hughes, B.and Stuckey. A hybrid algorithm for the examination
timetabling problem. In E. Burke and P. De Causmaecker, editors, Practice and Theory of
Automated Timetabling IV, volume 2740 of Lecture Notes in Computer Science, pages 207–231.
Springer Berlin / Heidelberg, 2003.

K. Minh, N. Thanh, K. Trang, and N. Hue. Using tabu search for solving a high school timetabling
problem. In N. Nguyen, R. Katarzyniak, and S.-M. Chen, editors, Advances in Intelligent
Information and Database Systems, volume 283 of Studies in Computational Intelligence, pages
305–313. Springer Berlin / Heidelberg, 2010.

MISTA. Multidisciplinary international scheduling conference: Theory & application. http:

//www.schedulingconference.org/[Retrieved 28/11-2013], 2013.

T. Müller. Itc2007 solver description: a hybrid approach. Annals of Operations Research, 172:
429–446, 2009. ISSN 0254-5330.

T. Müller. Real-life examination timetabling. In Proceedings of the tenth Multidisciplinary Inter-
national Scheduling Conference (MISTA2013), 2013.

T. Müller and K. Murray. Comprehensive approach to student sectioning. Annals of Operations
Research, 181:249–269, 2010. ISSN 0254-5330.

T. Müller and H. Rudová. Real-life curriculum-based timetabling. In Proceedings of the 9th
International Conference on the Practice and Theory of Automated Timetabling, PATAT2012,
2012.

T. Müller, H. Rudová, and R. Barták. Minimal perturbation problem in course timetabling. In
E. Burke and M. Trick, editors, Practice and Theory of Automated Timetabling V, volume 3616
of Lecture Notes in Computer Science, pages 126–146. Springer Berlin Heidelberg, 2005. ISBN
978-3-540-30705-1.

http://www.cs.qub.ac.uk/itc2007/index.htm
http://www.cs.qub.ac.uk/itc2007/index.htm
http://www.schedulingconference.org/
http://www.schedulingconference.org/

59 Bibliography

C. N. Moschopoulos, C. E. Alexakos, C. Dosi, G. N. Beligiannis, and S. D. Likothanassis. A user-
friendly evolutionary tool for high-school timetabling. In C. Koutsojannis and S. Sirmakessis,
editors, Tools and Applications with Artificial Intelligence, volume 166 of Studies in Computa-
tional Intelligence, pages 149–162. Springer Berlin Heidelberg, 2009. ISBN 978-3-540-88068-4.

A. Moura and R. Scaraficci. A grasp strategy for a more constrained school timetabling problem.
International Journal of Operational Research, 7:152–170(19), 2010.

K. Murray, T. Müller, and H. Rudová. Modeling and solution of a complex university course
timetabling problem. In E. Burke and H. Rudová, editors, Practice and Theory of Automated
Timetabling VI, volume 3867 of Lecture Notes in Computer Science, pages 189–209. Springer
Berlin Heidelberg, 2007. ISBN 978-3-540-77344-3.

K. Nguyen, Q. Nguyen, H. Tran, P. Nguyen, and N. Tran. Variable neighborhood search for a real-
world curriculum-based university timetabling problem. In Knowledge and Systems Engineering
(KSE), 2011 Third International Conference on, pages 157 –162, oct. 2011.

C. Nothegger, A. Mayer, A. Chwatal, and G. R. Raidl. Solving the post enrolment course time-
tabling problem by ant colony optimization. Annals of Operations Research, 194(1):325–339,
2012. ISSN 0254-5330.

K. Nurmi and J. Kyngas. A framework for school timetabling problem. In Proceedings of the 3rd
multidisciplinary international scheduling conference: theory and applications, pages 386–393,
2007.

K. Nurmi and J. Kyngas. A conversion scheme for turning a curriculum-based timetabling problem
into a school timetabling problem. In Proceedings of the 7th International Conference on the
Practice and Theory of Automated Timetabling (PATAT 2008), 2008.

E. Ozcan, Y. Bykov, M. Birben, and E. Burke. Examination timetabling using late acceptance
hyper-heuristics. In Evolutionary Computation, 2009. CEC ’09. IEEE Congress on, pages 997
–1004, may 2009.

B. Paechter, L. M. Gambardella, and O. Rossi-Doria. International timetabling competition 2003.
http://www.idsia.ch/Files/ttcomp2002/oldindex.html[Retrieved 28/11-2013], 2002.

K. Papoutsis, C. Valouxis, and E. Housos. A column generation approach for the timetabling
problem of greek high schools. The Journal of the Operational Research Society, 54(3):230–238,
2003.

PATAT. International conference on the practice and theory of automated timetabling. http:

//www.patatconference.org/[Retrieved 28/11-2013], 2013.

S. Petrovic and Y. Bykov. A multiobjective optimisation technique for exam timetabling based on
trajectories. In E. Burke and P. De Causmaecker, editors, Practice and Theory of Automated
Timetabling IV, volume 2740 of Lecture Notes in Computer Science, pages 181–194. Springer
Berlin / Heidelberg, 2003.

N. Pillay. A survey of school timetabling research. Annals of Operations Research, February 2013.
ISSN 0254-5330.

N. Pillay and W. Banzhaf. A study of heuristic combinations for hyper-heuristic systems for the
uncapacitated examination timetabling problem. European Journal of Operational Research,
197(2):482 – 491, 2009. ISSN 0377-2217.

M. Pimmer and G. R. Raidl. A timeslot-filling heuristic approach to construct high-school timeta-
bles. In L. Di Gaspero, A. Schaerf, and T. Stützle, editors, Advances in Metaheuristics, vol-
ume 53 of Operations Research/Computer Science Interfaces Series, pages 143–157. Springer
New York, 2013. ISBN 978-1-4614-6321-4.

http://www.idsia.ch/Files/ttcomp2002/oldindex.html
http://www.patatconference.org/
http://www.patatconference.org/

Bibliography 60

G. Post. Benchmarking project for (high) school timetabling. http://www.utwente.nl/ctit/

hstt/ [Retrieved 28/11-2013], Aug. 2013.

G. Post, J. Kingston, A. Schaerf, L. D. Gaspero, and B. McCollum. International timetabling com-
petition 2011. http://www.utwente.nl/ctit/hstt/itc2011/[Retrieved 28/11-2013], 2011.

G. Post, S. Ahmadi, S. Daskalaki, J. Kingston, J. Kyngas, C. Nurmi, and D. Ranson. An xml
format for benchmarks in high school timetabling. Annals of Operations Research, 194:385–397,
2012a. ISSN 0254-5330.

G. Post, S. Ahmadi, and F. Geertsema. Cyclic transfers in school timetabling. OR Spectrum, 34
(1):133–154, 2012b. ISSN 0171-6468.

G. Post, L. D. Gaspero, J. H. Kingston, B. McCollum, and A. Schaerf. The third international
timetabling competition. In Proceedings of the Ninth International Conference on the Practice
and Theory of Automated Timetabling (PATAT 2012), Son, Norway, August 2012c.

G. Post, L. Gaspero, J. Kingston, B. McCollum, and A. Schaerf. The third international time-
tabling competition. Annals of Operations Research, February 2013. ISSN 0254-5330.

G. F. Post and H. W. A. Ruizenaar. Clusterschemes in dutch secondary schools. Memorandum
1707, Department of Applied Mathematics, University of Twente, Enschede, 2004.

PurdueBenchmark. The purdue benchmark data. http://www.unitime.org/uct_datasets.

php[Retrieved 28/11-2013], 2013.

PurdueExamBenchmark. The purdue benchmark data. http://www.unitime.org/exam_

datasets.php[Retrieved 28/11-2013], 2013.

R. Qu and E. K. Burke. Adaptive decomposition and construction for examination timetabling
problems. In Proceedings of the 3rd multidisciplinary international scheduling conference: theory
and applications, 2007.

R. Qu, E. Burke, B. McCollum, L. Merlot, and S. Lee. A survey of search methodologies and
automated system development for examination timetabling. Journal of Scheduling, 12(1):55–
89, 2009. ISSN 1094-6136.

A. Qualizza and P. Serafini. A column generation scheme for faculty timetabling. In E. Burke and
M. Trick, editors, Practice and Theory of Automated Timetabling V, volume 3616 of Lecture
Notes in Computer Science, pages 161–173. Springer Berlin Heidelberg, 2005. ISBN 978-3-540-
30705-1.

R. Raghavjee and N. Pillay. Evolving solutions to the school timetabling problem. In Nature
Biologically Inspired Computing, 2009. NaBIC 2009. World Congress on, pages 1524–1527,
2009.

R. Raghavjee and N. Pillay. An informed genetic algorithm for the high school timetabling prob-
lem. In Proceedings of the 2010 Annual Research Conference of the South African Institute of
Computer Scientists and Information Technologists, SAICSIT ’10, pages 408–412, New York,
NY, USA, 2010. ACM. ISBN 978-1-60558-950-3.

S. A. Rahman, A. Bargiela, E. K. Burke, E. Özcan, B. McCollum, and P. McMullan. Adaptive
linear combination of heuristic orderings in constructing examination timetables. European
Journal of Operational Research, 232(2):287 – 297, 2014. ISSN 0377-2217.

S. Ribic and S. Konjicija. A two phase integer linear programming approach to solving the
school timetable problem. In Information Technology Interfaces (ITI), 2010 32nd International
Conference on, pages 651–656, 2010.

http://www.utwente.nl/ctit/hstt/
http://www.utwente.nl/ctit/hstt/
http://www.utwente.nl/ctit/hstt/itc2011/
http://www.unitime.org/uct_datasets.php
http://www.unitime.org/uct_datasets.php
http://www.unitime.org/exam_datasets.php
http://www.unitime.org/exam_datasets.php

61 Bibliography

V. Robert and A. Hertz. How to decompose constrained course scheduling problems into easier
assignment type subproblems. In E. Burke and P. Ross, editors, Practice and Theory of Auto-
mated Timetabling, volume 1153 of Lecture Notes in Computer Science, pages 364–373. Springer
Berlin Heidelberg, 1996. ISBN 978-3-540-61794-5.

J. Romrös and J. Homberger. An evolutionary algorithm for high school timetabling. In Proceed-
ings of the Ninth International Conference on the Practice and Theory of Automated Timetabling
(PATAT 2012), pages 485–488. SINTEF, 2012.

H. Rudova and K. Murray. University course timetabling with soft constraints. In Practice And
Theory of Automated Timetabling IV., pages 310–328, 2003.

H. Rudová, T. Müller, and K. Murray. Complex university course timetabling. Journal of Schedul-
ing, 14(2):187–207, 2011. ISSN 1094-6136.

N. R. Sabar, M. Ayob, and G. Kendall. Solving examination timetabling problems using honey-
bee mating optimization (etp-hbmo). In Proceedings of the 4rd multidisciplinary international
scheduling conference: theory and applications, 2009.

N. R. Sabar, M. Ayob, R. Qu, and G. Kendall. A graph coloring constructive hyper-heuristic for
examination timetabling problems. Applied Intelligence, 37(1):1–11, 2012. ISSN 0924-669X.

S. E. Sampson, J. R. Freeland, and E. N. Weiss. Class scheduling to maximize participant satis-
faction. Interfaces, 25(3):30–41, 1995.

H. Santos, L. Ochi, and M. Souza. An efficient tabu search heuristic for the school timetabling
problem. In C. Ribeiro and S. Martins, editors, Experimental and Efficient Algorithms, volume
3059 of Lecture Notes in Computer Science, pages 468–481. Springer Berlin / Heidelberg, 2004.

H. Santos, L. Ochi, and M. Souza. A tabu search heuristic with efficient diversification strategies
for the class/teacher timetabling problem. J. Exp. Algorithmics, 10, December 2005. ISSN
1084-6654.

H. Santos, E. Uchoa, L. Ochi, and N. Maculan. Strong bounds with cut and column generation
for class-teacher timetabling. Annals of Operations Research, 194(1):399–412, April 2012. ISSN
0254-5330.

A. Schaerf. A survey of automated timetabling. Artificial Intelligence Review, 13:87–127, 1999a.
ISSN 0269-2821.

A. Schaerf. Local search techniques for large high school timetabling problems. Systems, Man and
Cybernetics, Part A: Systems and Humans, IEEE Transactions on, 29(4):368 –377, jul 1999b.
ISSN 1083-4427.

K. Schimmelpfeng and S. Helber. Application of a real-world university-course timetabling model
solved by integer programming. OR Spectrum, 29:783–803, 2007. ISSN 0171-6468.

G. Schmidt and T. Ströhlein. Timetable construction – an annotated bibliography. The Computer
Journal, 23(4):307–316, 1980.

D.-F. Shiau. A hybrid particle swarm optimization for a university course scheduling problem with
flexible preferences. Expert Systems with Applications, 38(1):235 – 248, 2011. ISSN 0957-4174.

T. Sönmez and M. U. Ünver. Course bidding at business schools*. International Economic Review,
51(1):99–123, 2010. ISSN 1468-2354.

K. Socha, M. Sampels, and M. Manfrin. Ant algorithms for the university course timetabling
problem with regard to the state-of-the-art. In S. Cagnoni, C. G. Johnson, J. J. R. Cardalda,
E. Marchiori, D. W. Corne, J.-A. Meyer, J. Gottlieb, M. Middendorf, A. Guillot, G. Raidl,
and E. Hart, editors, Applications of Evolutionary Computing, volume 2611 of Lecture Notes in
Computer Science, pages 334–345. Springer Berlin Heidelberg, 2003. ISBN 978-3-540-00976-4.

Bibliography 62

M. Souza, N. Maculan, and L. Ochi. A grasp-tabu search algorithm for school timetabling prob-
lems. In M. Resende and J. de Sousa, editors, Metaheuristics: Computer decision-making, pages
659–672. Kluwer Academic Publishers, 2003.

M. Sørensen and F. H. W. Dahms. A two-stage decomposition of high school timetabling applied
to cases in denmark. Computers & Operations Research, 43:36–49, March 2014.

M. Sørensen and T. R. Stidsen. Integer programming and adaptive large neighborhood search for
real-world instances of high school timetabling. Annals of Operations Research, PATAT 2012
SI:Submitted Jan 21. 2013, 2013.

M. Sørensen, S. Kristiansen, and T. R. Stidsen. International timetabling competition 2011:
An adaptive large neighborhood search algorithm. In Proceedings of the Ninth International
Conference on the Practice and Theory of Automated Timetabling (PATAT 2012), pages 489–
492. SINTEF, 2012.

S. Suyanto. An informed genetic algorithm for university course and student timetabling problems.
In Proceedings of the 10th international conference on Artifical intelligence and soft computing:
Part II, ICAISC’10, pages 229–236, Berlin, Heidelberg, 2010. Springer-Verlag. ISBN 3-642-
13231-6, 978-3-642-13231-5.

J. Thompson and K. Dowsland. A robust simulated annealing based examination timetabling
system. Computers & Operations Research, 25(7-8):637 – 648, 1998. ISSN 0305-0548.

H. Turabieh and S. Abdullah. An integrated hybrid approach to the examination timetabling
problem. Omega, 39(6):598 – 607, 2011a. ISSN 0305-0483.

H. Turabieh and S. Abdullah. A hybrid fish swarm optimisation algorithm for solving examination
timetabling problems. In C. Coello, editor, Learning and Intelligent Optimization, volume 6683
of Lecture Notes in Computer Science, pages 539–551. Springer Berlin Heidelberg, 2011b. ISBN
978-3-642-25565-6.

H. Turabieh, S. Abdullah, B. McCollum, and P. McMullan. Fish swarm intelligent algorithm for the
course timetabling problem. In J. Yu, S. Greco, P. Lingras, G. Wang, and A. Skowron, editors,
Rough Set and Knowledge Technology, volume 6401 of Lecture Notes in Computer Science, pages
588–595. Springer Berlin Heidelberg, 2010. ISBN 978-3-642-16247-3.

UdineBenchmark. The udine benchmark data. http://satt.diegm.uniud.it/

projects/[Retrieved 28/11-2013], 2013.

UniTime. Unitime publications. http://www.unitime.org/publications.php[Retrieved 28/11-
2013], 2013.

C. Valouxis and E. Housos. Constraint programming approach for school timetabling. Computers
& Operations Research, 30(10):1555 – 1572, 2003. ISSN 0305-0548. Part Special Issue: Analytic
Hierarchy Process.

C. Valouxis, C. Gogos, P. Alefragis, and E. Housos. Decomposing the high school timetable
problem. In Practice and Theory of Automated Timetabling (PATAT 2012), Son, Norway,
August 2012.

G. White and B. Xie. Examination timetables and tabu search with longer-term memory. In
E. Burke and W. Erben, editors, Practice and Theory of Automated Timetabling III, volume
2079 of Lecture Notes in Computer Science, pages 85–103. Springer Berlin / Heidelberg, 2001.

G. White, B. Xie, and S. Zonjic. Using tabu search with longer-term memory and relaxation to
create examination timetables. European Journal of Operational Research, 153(1):80 – 91, 2004.
ISSN 0377-2217. Timetabling and Rostering.

http://satt.diegm.uniud.it/projects/
http://satt.diegm.uniud.it/projects/
http://www.unitime.org/publications.php

63 Bibliography

P. Wilke, M. Gröbner, and N. Oster. A hybrid genetic algorithm for school timetabling. In
B. McKay and J. Slaney, editors, AI 2002: Advances in Artificial Intelligence, volume 2557 of
Lecture Notes in Computer Science, pages 455–464. Springer Berlin / Heidelberg, 2002.

T. Wong, P. Cote, and P. Gely. Final exam timetabling: a practical approach. In Electrical and
Computer Engineering, 2002. IEEE CCECE 2002. Canadian Conference on, volume 2, pages
726 – 731 vol.2, 2002. doi: 10.1109/CCECE.2002.1013031.

J. Wood and D. Whitaker. Student centred school timetabling. The Journal of the Operational
Research Society, 49(11):1146–1152, Nov. 1998.

A. Wren. Scheduling, timetabling and rostering — a special relationship? In E. Burke and
P. Ross, editors, Practice and Theory of Automated Timetabling, volume 1153 of Lecture Notes
in Computer Science, pages 46–75. Springer Berlin / Heidelberg, 1996.

Y. Yang and S. Petrovic. A novel similarity measure for heuristic selection in examination time-
tabling. In E. Burke and M. Trick, editors, Practice and Theory of Automated Timetabling V,
volume 3616 of Lecture Notes in Computer Science, pages 247–269. Springer Berlin / Heidelberg,
2005.

T. Yigit. Constraint-based school timetabling using hybrid genetic algorithms. In R. Basili and
M. Pazienza, editors, AI*IA 2007: Artificial Intelligence and Human-Oriented Computing, vol-
ume 4733 of Lecture Notes in Computer Science, pages 848–855. Springer Berlin Heidelberg,
2007. ISBN 978-3-540-74781-9.

E. Özcan, B. Bilgin, and E. E. Korkmaz. A comprehensive analysis of hyper-heuristics. Intelligent
Data Analysis, 12:3–23, 2008.

D. Zhang, Y. Liu, R. M’Hallah, and S. Leung. A simulated annealing with a new neighborhood
structure based algorithm for high school timetabling problems. European Journal of Operational
Research, 203(3):550 – 558, 2010. ISSN 0377-2217.

Part II

High School Timetabling using
the XHSTT format

65

Chapter 3

International Timetabling
Competition 2011:
An Adaptive Large Neighborhood
Search algorithm

Matias Sørensen∗† Simon Kristiansen∗† Thomas R. Stidsen∗

∗Department of Management Engineering, Technical University of Denmark,
Produktionstorvet, Building 426, DK-2800 Kgs. Lyngby, Denmark

msso@dtu.dk, sikr@dtu.dk, thst@dtu.dk

† MaCom A/S
Vesterbrogade 48, 1., DK-1620 Copenhagen V, Denmark

1

3.1 Introduction

An algorithm based on Adaptive Large Neighborhood Search (ALNS) for solving the generalized
High School Timetabling problem in XHSTT-format (Post et al. (2012a)) is presented. This
algorithm was among the finalists of round 2 of the International Timetabling Competition 2011
(ITC2011). For problem description and results we refer to Post et al. (2012b).

3.2 Adaptive Large Neighborhood Search

Adaptive Large Neighborhood Search was first developed as a metaheuristic for the class of Vehicle
Routing Problems (Pisinger and Ropke (2005); Ropke and Pisinger (2006)). It has been applied for
few other problem classes as well, including Project Scheduling (Muller (2009, 2010)), Lot-sizing
(Muller et al. (2011)), Optimal Statistic Median Problem (Katterbauer et al. (2012)).

Recently we have developed a framework based on ALNS for solving combinatorial optimization

1Conference abstract published in proceedings of PATAT 2012 (Sørensen et al. (2012))

67

Chapter 3. International Timetabling Competition 2011 68

problems (written in C# 4.0). This framework is part of the commercial product Lectio2, where
it is used to solve various practical timetabling problems, see Kristiansen et al. (2011); Sørensen
and Stidsen (2012) and Kristiansen and Stidsen (2012).

The pseudo code for a general ALNS algorithm is given in Algorithm 1.

Algorithm 1: Adaptive Large Neighborhood Search

Candidate solution x, remove-methods Ω−, insert-methods Ω+
1

xbest = x2

while stop-criterion not met do3

x′ = x4

RemoveStrategy: select q as some quantity to be removed5

AdaptiveStrategy: select remove-method r ∈ Ω− and insert-method i ∈ Ω+
6

remove requests from x′ using r(q)7

insert requests into x′ using i8

AdaptiveStrategy: update performance indicators9

if c(x′) ≤ c(xbest) then10

xbest = x′11

AcceptStrategy: set candidate solution x to either x′, xbest or x itself12

return xbest13

The main points of the algorithm are described below in general terms.

• In each iteration, a remove and insertion method is chosen and applied to the candidate
solution. The combination of these methods defines the neighborhood of the algorithm,
hence there exists |Ω−| · |Ω+| different neighborhoods.

• RemoveStrategy: Governs the selection of q. This has major influence on how much com-
putational time each iteration requires.

• AdaptiveStrategy: Responsible for selecting remove and insertion methods in each itera-
tion, and updating their respective performance indicators of these method by some metric.

• AcceptStrategy: Determines which solution to use as candidate solution for next iteration.
This could in principle be any known solution, but is usually selected as either the current
candidate solution x itself, the newly produced solution x′, or the current best solution xbest.

3.3 Algorithm Setup for ITC2011

Here we describe our implementation of a ALNS algorithm for the XHSTT format. The choice of
ALNS strategies are briefly mentioned below. More details will be available in the full paper.

• RemoveStrategy: The remove and insertion methods deal with sub-events. q is defined as
the sum of the duration of the sub-events which are removed from the solution. We select q
as a random number, bounded by a percentage of the total duration of all instance events.

• AdaptiveStrategy: We have chosen a metric essentially based on two parameters for each
method; The number of times the method was part of an iteration which yielded a better
solution than the current one, and the relative gap between the current solution and the
resulting solution from applying the method.

• AcceptStrategy: An acceptance criteria borrowed from Simulated Annealing (SA) is used,
with the following additional property: If no new best solution has been found in a number
of iterations, the temperature is increased by a factor, and the candidate solution is set to

2 http://www.lectio.dk
Cloud-based administration system for high schools. Developed by MaCom A/S, Vesterbrogade 48 1., 1620 Copen-
hagen V, Denmark

69 3.4. Final Remarks

the best known solution. The intention is to allow more diverse exploring of the area around
the best known solution, in case the algorithm gets ’stuck’.

Let a move be a small perturbation on a solution. The following moves are used in this im-
plementation: Move Mse,t denotes the assigning of sub-event se to time t. Mr,er,se denotes the
assigning of resource r to event resource er on sub-event se. Furthermore we also implement the
corresponding unassign-moves, denoted M¬se,t and M¬r,er,se, respectively.

Using these moves a total of 9 insertion methods (all more or less based on the greedy principle,
e.g. regret heuristics (Potvin and Rousseau (1993); Sørensen and Stidsen (2012)), and 14 remove
methods (all based on some element of relatedness and an element of randomness) are implemented.
These methods are divided into three categories, based on what they (un-)assign: Only times, only
resources, or both times and resources.

An example of a remove method is the following, which removes sub-events from non-preferred
times: Given an XHSTT instance, and a solution S to this instance. Find all tuples 〈se, t〉 of S,
where sub-event se is assigned time t, and t is not a preferred time for sub-event se (see Prefer
times constraints, Kingston (2010)). Let the set of these tuples be denoted U . Select randomly a
subset of these tuples U ⊆ U such that the sum of the duration of all sub-events of the tuples in
U equals q. Perform an unassign time move M¬se,t for each of the tuples in U .

An example of an insertion method is the following: Let ∆(M) ∈ R be the profit of performing
move M on the solution at hand S. Select Mbest = arg minse,t(∆(Mse,t)), and if ∆(Mbest) ≤ 0,
apply Mbest to S and repeat, otherwise stop. This is a greedy method which assigns times to
sub-events, until no profitable move can be found.
In the full paper all insert/remove methods will be described in detail.

The final algorithm contains 9 free parameters, which were tuned for best performance using
the irace package (see López-Ibáñez et al. (2011); Birattari (2005)).

3.4 Final Remarks

This paper documents how Adaptive Large Neighborhood Search can be applied to problems in
XHSTT format.

The proposed algorithm was applied to all instances in archive XHSTT-ITC2011, and showed
competitive results in most cases (comparing to the best known solutions at that point in time).

ALNS has not been used much in the field of timetabling, but we see no reason to believe that
ALNS should not perform well on other (related) problems in this field.

Acknowledgements Thank you goes to Michael Herold for fruitful discussions concerning ALNS

strategies. Thank you to Manuel López-Ibáñez for help using the irace package. And finally thank you

to David Pisinger for advice on ALNS implementation.

Bibliography 70

Bibliography

M. Birattari. The Problem of Tuning Metaheuristics as seen from a Machine Learning Perspective,
volume 292 Dissertations in Artificial Intelligence - Infix. Springer, 1 edition, 2005.

K. Katterbauer, C. Oguz, and S. Salman. Hybrid adaptive large neighborhood search for the
optimal statistic median problem. Computers & Operations Research, 39(11):2679 – 2687, 2012.
ISSN 0305-0548.

J. H. Kingston. The hseval high school timetable evaluator, 2010. URL http://it.usyd.edu.

au/~jeff/hseval.cgi.

S. Kristiansen and T. R. Stidsen. Adaptive large neighborhood search for student sectioning at
danish high schools. In Proceedings of the Ninth International Conference on the Practice and
Theory of Automated Timetabling (PATAT 2012), 2012.

S. Kristiansen, M. Sørensen, and T. R. Stidsen. Elective course planning. European Journal of
Operational Research, 215(3):713 – 720, 2011. ISSN 0377-2217. doi: 10.1016/j.ejor.2011.06.039.

M. López-Ibáñez, J. Dubois-Lacoste, T. Stützle, and M. Birattari. The irace package: Iterated
racing for automatic algorithm configuration. Technical Report TR/IRIDIA/2011-004, Univer-
sité Libre de Bruxelles, IRIDIA, Av F. D. Roosevelt 50, CP 194/6 1050 Bruxelles, Belgium,
Februrary 2011. http://iridia.ulb.ac.be/irace.

L. Muller. An adaptive large neighborhood search algorithm for the resource-constrained project
scheduling problem. In MIC 2009: The VIII Metaheuristics International Conference, 2009.

L. Muller. An adaptive large neighborhood search algorithm for the multi-mode resource-
constrained project scheduling problem. l, Department of Management Engineering, Technical
University of Denmark Produktionstorvet, Building 426, DK-2800 Kgs. Lyngby, Denmark, 2010.

L. Muller, S. Spoorendonk, and D. Pisinger. A hybrid adaptive large neighborhood search heuristic
for lot-sizing with setup times. European Journal of Operational Research, Volume 218(Issue
3):614–623, 2011.

D. Pisinger and S. Ropke. A general heuristic for vehicle routing problems. Computers & Opera-
tions Research, 34:2403–2435, August 2005. ISSN 0305-0548.

G. Post, S. Ahmadi, S. Daskalaki, J. Kingston, J. Kyngas, C. Nurmi, and D. Ranson. An xml
format for benchmarks in high school timetabling. Annals of Operations Research, 194:385–397,
2012a. ISSN 0254-5330.

G. Post, L. D. Gaspero, J. H. Kingston, B. McCollum, and A. Schaerf. The third international
timetabling competition. In Proceedings of the Ninth International Conference on the Practice
and Theory of Automated Timetabling (PATAT 2012), Son, Norway, August 2012b.

J.-Y. Potvin and J.-M. Rousseau. A parallel route building algorithm for the vehicle routing and
scheduling problem with time windows. European Journal of Operational Research, 66(3):331 –
340, 1993. ISSN 0377-2217.

S. Ropke and D. Pisinger. An adaptive large neighborhood search heuristic for the pickup and
delivery problem with time windows. Transportation Science, 40:455–472, November 2006. ISSN
1526-5447.

M. Sørensen and T. R. Stidsen. High school timetabling: Modeling and solving a large number
of cases in denmark. In Proceedings of the Ninth International Conference on the Practice and
Theory of Automated Timetabling (PATAT 2012), pages 359–364. SINTEF, 2012.

http://it.usyd.edu.au/~jeff/hseval.cgi
http://it.usyd.edu.au/~jeff/hseval.cgi

71 Bibliography

M. Sørensen, S. Kristiansen, and T. R. Stidsen. International timetabling competition 2011:
An adaptive large neighborhood search algorithm. In Proceedings of the Ninth International
Conference on the Practice and Theory of Automated Timetabling (PATAT 2012), pages 489–
492. SINTEF, 2012.

Chapter 4

Integer Programming for the
Generalized (High) School
Timetabling Problem

Simon Kristiansen∗† Matias Sørensen∗† Thomas R. Stidsen∗

∗Department of Management Engineering, Technical University of Denmark,
Produktionstorvet, Building 426, DK-2800 Kgs. Lyngby, Denmark

sikr@dtu.dk, msso@dtu.dk, thst@dtu.dk

†MaCom A/S
Vesterbrogade 48, 1., DK-1620 Copenhagen V, Denmark

1

Abstract Recently the XHSTT format for (High) School Timetabling was introduced, which provides
a uniform way of modeling problem instances and corresponding solutions. The format supports a big
variety of constraints, and currently 38 real-life instances from 11 different countries are available. Thereby
the XHSTT format serves as a common ground for researchers within this area. This paper describes the
first exact method capable of handling an arbitrary instance of the XHSTT format. The method is based
on a Mixed-Integer linear Programming (MIP) model, which is solved in two steps with a commercial
general-purpose MIP solver. Computational results show that our approach is able to find previously
unknown optimal solutions for 2 instances of XHSTT, and proves optimality of 4 known solutions. For
the instances not solved to optimality, new non-trivial lower bounds were found in 11 cases, and new
best-known solutions were found in 9 cases. Furthermore the approach is shown to be competitive with
the finalist of Round 2 of the International Timetabling Competition 2011.

4.1 Introduction

The problem of scheduling lectures to time slots and/or resources at high schools is known as the
High School Timetabling (HST) problem. This is an important problem for high schools in many
countries, and a large amount of different solution approaches have been proposed, see the survey
Schaerf (1999).

It is well recognized that the specifications of the HST problem varies significantly depending
on the country of which the problem originates, and that the problem in general is hard to solve.
With the introduction of the XHSTT format (Post et al., 2012a), a large number of instances

1Submitted and under revision at Journal of Scheduling (2013)

73

Chapter 4. Integer Programming for the Generalized (High) School Timetabling Problem 74

from various origins became publicly available in standardized form. The format is based on
the Extensible Markup Language (XML) standard, and all instances are available online (Post,
2013b). One purpose of the format is to serve as a common test-bed for school timetabling, in an
attempt to promote research within this area. In this context, “school timetabling” denotes the
area covering high school timetabling and university course timetabling, as the format has also
been shown capable of modeling some instances of the latter problem (see Kingston (2013a) for
an overview of educational timetabling problems).

This paper describes the first exact method capable of handling an arbitrary instance of the
XHSTT format. The method is based on a Mixed-Integer linear Programming (MIP) model, which
is solved in two steps with a commercial general-purpose MIP solver. Computational results are
performed for all the real-life instances currently available. Thereby we are able to find previously
unknown optimal solutions, and prove optimality of already known solutions.

To the best of our knowledge, all previous solution methods for the XHSTT format have been
heuristic in nature. Therefore no proof of optimality has been made for any instance, except for
those instances where a solution with objective value 0 is known, since 0 is a trivial lower bound
for any XHSTT instance. The obvious advantage of Integer Programming (IP) over heuristic
methods is the capability to issue certificates of optimality. Therefore it is remarked that a big
advance within general-purpose MIP solvers has happened in recent years, see e.g. Bixby (2012).
Even though the MIP we will present is inevitable complex in nature, it will be shown that it
can be used to find optimal solutions for several instances of the XHSTT archive ALL INSTANCES.
For those instances where an optimal solution cannot be found, we are able to show a non-trivial
lower bound on optimum in the majority of cases. These are significant results for high school
timetabling in general.

The outline of this paper is as follows. Section 4.2 presents related literature. Section 4.3
presents the MIP model of XHSTT. Section 4.4 describes computational results. Finally, Section
4.5 concludes and describes future research possibilities.

4.2 Related Literature

The Third International Timetabling Competition (ITC2011) considered the HST Problem, based
on instances of the XHSTT format (Post et al., 2012b). Four teams were part of the final round:
The overall winner (Team Goal) used Simulated Annealing and Iterated Local Search to perform
local search around a generated initial solution (Fonseca et al., 2012). Participant from the Univer-
sity of Nottingham (HySTT) used a method based on Hyper-heuristics (Kheiri et al., 2012). Team
Lectio used Adaptive Large Neighborhood Search (ALNS) (Sørensen et al., 2012). Romrös and
Homberger (2012) (Team HFT) used an Evolutionary Algorithm. The results of the competition
can be found at the official homepage of ITC2011 (Post (2013a)).

Pimmer and Raidl (2013) describe a ’timeslot-filling’ heuristic for XHSTT, which iteratively fills
selected timeslots with sets of events. Two state-of-the-art solutions were found for instances of
the archive XHSTT-2012. Ter Braak (2012) presents a Hyper-heuristic and several other heuristics
for the XHSTT.

Valouxis et al. (2012) describe a two-phase approach based on MIP used to solve the Greek
case of the HST problem. This includes two instances which are part of the XHSTT project, and
which were both solved to optimality (solutions were found with an objective value of 0).

In terms of Integer Programming and HST problems not based on XHSTT, the following contri-
bution are mentioned: Santos et al. (2012) present a Column Generation approach for establishing
bounds for a set of datasets originating from Brazil. Birbas et al. (2009) present an approach for
Greek datasets where the Shift Assignment Problem is solved first, and the timetable is con-
structed on the basis on these work-shifts for teachers. The paper of Sørensen and Stidsen (2013)
describes a complex MIP of the Danish case of high school timetabling, and establishes computa-
tional results for 100 real-life instances. Avella et al. (2007) present an algorithm based on Very
Large-Scale Neighborhood search where the neighborhood is explored by a MIP, for Italian cases
of high school timetabling.

75 4.3. Problem Description and a Mixed Integer Programming Formulation

Table 4.1: Different constraint types in the XHSTT format (Post et al., 2012b)

Constraint Description

Assign Resource Event resource should be assigned a resource
Assign Time Event should be assigned a time
Split Events Event should split into a constrained number of sub-events
Distribute Split Events Event should split into sub-events of constrained durations
Prefer Resources Event resource assignment should come from resource group
Prefer Times Event time assignment should come from time group
Avoid Split Assignments Set of event resources should be assigned the same resource
Spread Events Set of events should be spread evenly through the cycle
Link Events Set of events should be assigned the same time
Order Events Set of events should be ordered
Avoid Clashes Resource’s timetable should not have clashes
Avoid Unavailable Times Resource should not be busy at unavailable times
Limit Idle Times Resource’s timetable should not have idle times
Cluster Busy Times Resource should be busy on a limited number of days
Limit Busy Times Resource should be busy a limited number of times each day
Limit Workload Resource’s total workload should be limited

4.3 Problem Description and a Mixed Integer Program-
ming Formulation

In this section a brief description of the specifications of the XHSTT format is given, and a MIP
model is formulated. The entire documentation of XHSTT is available at Post (2013b). We do
not intend to describe all properties of the format, but only those necessary to formulate the MIP.

An instance of XHSTT consists of times (denoted T in the following), time groups (denoted T G),
resources (denoted R), events (denoted E), event groups (denoted EG) and constraints (denoted
C). An event e ∈ E has a duration De ∈ N, and a number of event resources which we each denote
er ∈ e. An event resource defines the requirement of the assignment of a resource to the event,
and this resource can be specified to be preassigned. If the resource is not preassigned, a resource
of proper type must be assigned. Furthermore an event resource er can undertake a specific roleer,
which is used to link the event resource to certain constraints.

It is the job of any solver for XHSTT to decide how each event should be split into sub-events.
A sub-event se is defined as a fragment of a specific event e ∈ E , has a duration Dse ≤ De, and
inherits the requirement of resources defined by the event, such that each sub-event has the exact
same resource requirements as the event. Let SE denote the entire set of sub-events, and let se ∈ e
specify that sub-event se is part of event e. The total duration of all sub-events for event e ∈ E in
a solution cannot exceed De. In our model formulation we create the ’full set’ of sub-events with
different lengths, i.e. all possible combinations of sub-events for a given event can be handled.
E.g. if an event has duration 4, the set of sub-events for this event has the respective lengths
1, 1, 1, 1, 2, 2, 3 and 4. As a constraint it is then specified that the summed duration of the active
sub-events in a solution must equals 4. A sub-event is active if it is assigned a starting time or
a non-preassigned resource. An active sub-event is analogous to the concept of solution events
defined in the XHSTT documentation.

The times T are ordered in chronological order, and we let ρ(t) denote the index number of
time t in T . A time group T G defines a set of times, and we let t ∈ tg denote that time t is part
of time group tg.

Each constraint c ∈ C is of a specific type, and the set C can contain several constraints of the
same type. Each constraint applies to certain events, event groups or resources, and penalizes
certain characteristics of the timetable for these entities.

The following notation shorthand is made: By the notions e ∈ c, r ∈ c, eg ∈ c we denote that

Chapter 4. Integer Programming for the Generalized (High) School Timetabling Problem 76

constraint c ∈ C applies to event e ∈ E , resource r ∈ R, and event group eg ∈ EG, respectively.
The set of resources and times are both extended with a dummy-index, denoted the dummy-

resource rD and the dummy-time tD, respectively. These are necessary to ensure feasibility as we
create all combinations of sub-events for each event, and not all of these can be assigned a time or
the required resources without the duration of the active sub-events exceeding the duration of the
event. Thereby these dummy-elements in fact represent that an event resource is not assigned a
resource, and that a sub-event is not assigned a starting time, respectively.

4.3.1 Objective Function

Each XHSTT constraint penalizes timetables with certain characteristics, which contributes to the
objective function of the MIP. Each constraint c ∈ C has a set of point-of-applications (indexed
by p ∈ c). With each point-of-application is associated a set of deviations (indexed by d ∈ p),
and each deviation has a non-negative cost associated with it. How this cost is calculated depends
on the constraint type. The cost of a point-of-application is found on basis of the cost of the
deviations, and is influenced by an indication on the constraint whether the constraint is a hard or
a soft constraints, the weight of the constraint (ωc ∈ N) and an indication of which CostFunction
to use. For each constraint c ∈ C we let the variable sc,p,d ∈ N be the penalty value of the
deviation d ∈ p of the point-of-application p ∈ c. The set of point-of-applications and deviations
should be understood in an abstract context; E.g. depending on the type of the constraint, a
point-of-application could be an event, a resource, etc., and likewise for the deviations.

The objective of a solution consists of a value for both the hard constraints (denoted hard cost)
and a value for the soft constraints (denoted soft cost). Usually the objective value of a solution
is written as (hard cost, soft cost). The hard cost always takes priority over the soft cost, i.e.
solutions are first ranked on their hard cost, and secondly on the soft cost. How this type of
objective function is handled in context of a MIP is described in Section 4.3.4.

The cost of a constraint c ∈ C which contains slack variable sc,p,d is denoted f(sc,p,d),

f(sc,p,d) = ωc · CostFunction(sc,p,d) (4.3.2)

Five different types of CostFunction are allowed. The most trivial one is Sum, which simply sums
the penalty value of all deviations for all point-of-applications. In the following each CostFunction
is formulated in linear terms. Let the variable objc ∈ N0 denote the value of the of the CostFunction
of constraint c ∈ C.

• Sum: Sum the deviations.

objc =
∑

p∈c,d∈p

sp,d,c ∀c ∈ C (4.3.3)

• SumSquare: Sum the squares of the deviations.
To cope with this non-linear cost function, the variable sc,p,d,i ∈ {0, 1} is introduced, which
takes value 1 if the deviation d ∈ p of the point of application p ∈ c of constraint c ∈ C has
the penalty i ∈ I, and 0 otherwise. The objective value is defined as follows:

objc =
∑

p∈c,d∈p,i∈I

i2 · sc,p,d,i ∀c ∈ C (4.3.4)

However we also need to make sure that only a single integer value is selected,∑
i∈I

sc,p,d,i = 1 ∀c ∈ C, p ∈ c, d ∈ p (4.3.5)

The amount of elements in the set I determines the maximum possible penalty for a devi-
ation, and thereby influence the maximum possible penalty for a constraint. To maintain
optimality of the model, it is therefore important that the size of I is selected sufficiently
large. This is elaborated in Section 4.4.

77 4.3. Problem Description and a Mixed Integer Programming Formulation

• SquareSum: Square the sum of deviations.
The binary slack variable usquaresum

c,p,j ∈ {0, 1} is introduced, which takes value 1 if the point
of application p ∈ c of constraint c ∈ C has the deviation j ∈ J , and 0 otherwise.

objc =
∑

p∈c,j∈J
j2 · usquaresum

c,p,j ∀c ∈ C (4.3.6)

∑
j∈J

usquaresum
c,p,j = 1 ∀c ∈ C, p ∈ c (4.3.7)

∑
d∈p

sp,d,c =
∑
j∈J

j · usquaresum
c,p,j ∀c ∈ C, p ∈ c (4.3.8)

Like the set I, the size of the set J must be selected sufficiently large to maintain optimality,
see Section 4.4.

• SumStep: This penalizes by the number of positive deviations, irrespective of their value.
The binary variable usumstep

c,p,d ∈ {0, 1} is introduced, which takes value 1 iff sc,p,d > 0 for
constraint c ∈ C, point-of-application p ∈ c and deviation d ∈ p, and 0 otherwise.

objc =
∑

p∈c,d∈p

usumstep
c,p,d ∀c ∈ C (4.3.9)

M · usumstep
c,p,d ≥ sc,p,d ∀c ∈ C, p ∈ c, d ∈ p (4.3.10)

where M ∈ N is some sufficiently large number.

• StepSum: This CostFunction penalizes by investigating whether the constrain contains at
least one positive deviation. If this is not the case, the penalty is 0.
The binary variable ustepsum

c ∈ {0, 1} is introduced, which takes value 1 if there exists at
least one positive deviation for the constraint c ∈ C, and 0 otherwise.

objc = ustepsum
c ∀c ∈ C (4.3.11)

M · ustepsum
c ≥ sc,p,d ∀c ∈ C, p ∈ c, d ∈ p (4.3.12)

where M ∈ N is some sufficiently large number.

4.3.2 Mixed-Integer Programming Formulation

In this section the variables and the constraints of the MIP are described. As a basis for our
approach is the variable xse,t,er,r ∈ {0, 1}, which takes value 1 if sub-event se ∈ SE has been
assigned time t ∈ T as starting time and resource r ∈ er is assigned to event resource er ∈ se,
and 0 otherwise. To simplify notation, and to reduce the amount of non-zeros in the MIP, three
auxiliary variables are introduced which all ’inherits’ their values directly from xse,t,er,r. Let the
binary variable yse,t ∈ {0, 1} take value 1 if sub-event se ∈ SE has been assigned time t ∈ T as
starting time, and 0 otherwise. The variable vt,r ∈ N0 denotes the number of times resource r is
used in time t by any set of sub-events. Let variable wse,er,r ∈ {0, 1} take value 1 if sub-event
se ∈ SE is assigned resource r ∈ R for event resource er, and 0 otherwise.

Base Constaints

Besides all the constraints described in the specifications of the XHSTT, some basic constraints
are needed to ensure feasibility. First of all we need to make sure that a sub-event is assigned only
one starting time and that the number of resource assigned is exactly the same as the number of
event resources of the event.∑

t∈T ,r∈er
xse,t,er,r = 1 ∀se ∈ SE , er ∈ se (4.3.13)

Chapter 4. Integer Programming for the Generalized (High) School Timetabling Problem 78

The following constrains variable yse,t, and together with (4.3.13) ensures that a sub-event is not
spread across multiple times. We denote by |er|se the amount of event resources for event e of
sub-event se.∑

er∈se,r∈er
xse,t,er,r = |er|se∈e · yse,t ∀se ∈ SE , t ∈ T (4.3.14)

The link to variable vt,r is shown in eq. (4.3.16). For time t ∈ T and se ∈ SE is found the set of
possible starting-times for se which will cause resource r ∈ R to be used in time t ∈ T . Let the
set T start

se,t ⊆ T be the set of times which sub-event se lies in if it is assigned starting time t, i.e.

T start
se,t = {t′ ∈ T \ tD | ρ(t)−Dse + 1 ≤ ρ(t′) ≤ ρ(t)} (4.3.15)

∑
se∈SE,er∈se,t′∈T start

se,t

xse,t′,er,r = vt,r ∀t ∈ T \ tD, r ∈ R (4.3.16)

The link to variable wse,er,r looks as follows:∑
t∈T

xse,t,er,r = wse,er,r ∀se ∈ SE , er ∈ se, r ∈ er (4.3.17)

A sub-event cannot be assigned a start time if there is not enough continuous times after the start
time to fulfill the duration, ensured by the constraint:

yse,t = 0 ∀se ∈ SE , t ∈ T \ tD, ρ(t) +Dse − 1 > |T | (4.3.18)

Active Sub-events
As we create all possible sub-events for a given event, only a subset of these should be active in

the final solution. The binary variable use ∈ {0, 1} takes value 1 if sub-event se ∈ SE is active and
0 otherwise. Recall that a sub-event is active if its assigned a starting time, or if is assigned at
least one non-preassigned resource. Let the parameter PAer ∈ {0, 1} take value 1 if event resource
er has a preassigned resource, and 0 otherwise. The following constraints are imposed.∑

r∈er\rD

wse,er,r ≤ use ∀se ∈ SE , er ∈ se, PAer = 0 (4.3.19)

∑
t∈T \tD

yse,t ≤ use ∀se ∈ SE (4.3.20)

∑
t∈T \tD

yse,t +
∑

r∈er\rD

wse,er,r ≥ use ∀se ∈ SE , er ∈ se, PAer = 0 (4.3.21)

Constraint (4.3.21) is necessary to ensure events are not set as active, even though they do not
meet the required criteria.

The duration of active sub-events for a given event must be exactly the same as the total
duration of the event (by definition of a valid XHSTT solution),∑

se∈e
Dse · use = De ∀e ∈ E (4.3.22)

A number of constraints require that the value of a deviation V ∈ N should be within an upper-
limit Bc ∈ N and a lower-limit Bc ∈ N. This means that the penalty is defined as the amount

79 4.3. Problem Description and a Mixed Integer Programming Formulation

which the value of a deviation exceeds Bc or falls short of Bc. To simplify notation for these cases,
we introduce the function UBc,BcV , which is defined as follows:

s ≥ UBc,BcV ⇒
{

s ≥ V −Bc
s ≥ Bc − V

(4.3.23)

Thereby the slack-variable s is forced to take the actual value of the imposed penalty.
A resource is busy at some time if it attends at least one solution event at that time, and busy

at some time group if it is busy at one or more times within times of that time group. Let variable
qr,t ∈ {0, 1} take value 1 if resource r ∈ R is busy in time t ∈ T , and 0 otherwise. Similarly, let
the binary variable pr,tg ∈ {0, 1} take value 1 if resource r ∈ R is busy in time group tg ∈ T G,
and 0 otherwise. The values of the two variables are determined by the following constraints.

|SE| · qr,t ≥ vt,r ∀r ∈ R, t ∈ T \ tD (4.3.24)

qr,t ≤ vt,r ∀r ∈ R, t ∈ T \ tD (4.3.25)

pr,tg ≥ qr,t ∀r ∈ R, tg ∈ T G, t ∈ tg (4.3.26)

pr,tg ≤
∑
t∈tg

qr,t ∀r ∈ R, tg ∈ T G (4.3.27)

Constraints (4.3.24) and (4.3.26) establishes lower bounds for the variables qr,t and pr,tg, i.e.
ensures that these must take value 1 in case the resource is actually busy in the respective time/time
group. Constraints (4.3.25) and (4.3.27) are necessary to ensure that in case the resource is in fact
not busy in the respective time/time group, variables qr,t and pr,tg must take value 0.

In the following the constraint types of the XHSTT documentation are formulated one by
one. Each constraint type is described in brief terms, and we refer to Kingston (2013c) for more
details. The formulation of these constraints in terms of a Mixed-Integer Linear Programming
model has not been published before. We let the ’pseudo-set’ C̄ ⊆ C denote constraints of a
certain type depending on the context, for instance the set of all assign resource constraints.
Furthermore we in the following make use of the general slack variable sc,p,d, and will for each
type of constraint implicitly define a corresponding slack variable with the appropriate indices for
point-of-applications and deviations.

Assign Resources

Applies to: Events
Point-of-application: Event-resource
An Assign Resource constraint penalizes event resources that are not assigned resources. Specifi-
cally, the deviation at one point of application (an event resource with the appropriate role) is the
sum of the duration of the sub-events of the respective event which are not assigned a resource.
The cost of this constraint is given by:

De −
∑
se∈e

r∈er\rD

Dse · wse,er,r = sassignres
c,er ∀c ∈ C̄, e ∈ c, er ∈ e, roleer = rolec (4.3.28)

Assign Time

Applies to: Events
Point-of-application: Events
The assign time constraint penalizes sub-events which are not assigned times. The deviation at
one point of application is the total duration of those sub-events derived from a specific event that
are not assigned a time.

De −
∑

t∈T \tD
se∈e

Dse · yse,t = sassigntime
c,e ∀c ∈ C̄, e ∈ c (4.3.29)

Chapter 4. Integer Programming for the Generalized (High) School Timetabling Problem 80

Split Events

Applies to: Events
Point-of-application: Events
A Split Event constraint places limits on the number of sub-events that may be derived from a

given event, and on their duration. Let the parameters Bamount
c ∈ N and B

amount

c ∈ N denote the
minimum and maximum amount of sub-events which is used for a given event, respectively. And

let Bdur
c ∈ N and B

dur

c ∈ N be the minimum and maximum duration a sub-event can have for a
given event, respectively.

The cost of this constraint is given by the number of sub-events whose duration is less than Bdur
c

or greater than B
dur

c , and the amount by which the number of sub-events fall short of Bamount
c or

exceed B
amount

c . The following constraints are imposed:

U
Bamount
c ,B

amount
c

∑
se∈e

use ≤ sspliteventamount
c,e ∀c ∈ C̄, e ∈ c (4.3.30)

∑
se∈e

Bdur
c >Dse∨B

dur
c <Dse

use = sspliteventdur
c,e ∀c ∈ C̄, e ∈ c (4.3.31)

The full deviation for constraint c ∈ C̄ and event e ∈ c is given by sspliteventdur
c,e + sspliteventamount

c,e .

Distribute Split Event

Applies to: Events
Point-of-application: Events
The Distribute Split Event constraints set limits on the number of sub-events which may be derived
from an event. Let Dc ∈ N be the duration of the sub-events for which this constraint applies,
and let Bc and Bc be the minimum and maximum number of sub-events of duration Dc which
may be derived from a given event.

UBc,Bc
∑
se∈e

Dse=Dc

use ≤ sdistsplitevent
c,e,er ∀c ∈ C̄, e ∈ c (4.3.32)

Prefer Resources

Applies to: Events
Point-of-application: Event-resources
This constraint defines that an event resource has different preferences for certain resources. The
deviation is calculated by taking all the solution resources derived from the event resource that
are assigned a resource that is not one of the preferred resources, and summing the duration of
the sub-events that those resources lie in. Let r ∈ c denote a preferred resources.∑

se∈e
r/∈c,r 6=rD

Dse · wse,er,r = spreferres
c,er ∀c ∈ C̄, e ∈ c, er ∈ e, PAer = 0, roleer = rolec (4.3.33)

Prefer Times constraints

Applies to: Events
Point-of-application: Events
Like the Prefer Resources constraint, events might also have preferences for certain times. The
deviation is calculated for each event by summing the duration of all sub-events which is assigned
a time which is not one of the preferred time. The constraint has an optional duration-property,

81 4.3. Problem Description and a Mixed Integer Programming Formulation

denoted Dc ∈ N0. If this property is given, only sub-events of duration Dc are considered. Let
t ∈ c denote a preferred time.∑

se∈e
t/∈c,t6=tD
Dc=Dse

Dse · yse,t = sprefertime
c,e ∀c ∈ C̄, e ∈ c (4.3.34)

Avoid Split Assignments

Applies to: Evengroups
Point-of-application: Eventgroups
Each solution resource can only have one resource assigned. However, when an event is split into
sub-events, each of its event resources is split into several solution resources, and a different resource
may be assigned to each of these solution resources. This constraint penalizes the assignment of
different resource to these solution resources. The constraint examines all the solution resources
derived from those event resources, and calculates the number of distinct resources assigned to
them, ignoring unassigned solution resources. The deviation is the amount by which this number
exceeds 1. Let variable kc,eg,r ∈ {0, 1} take value 1 if event e is assigned to resource r with respect
to avoid split assignment constraint c, and 0 otherwise.∑

er∈e,PAer=0
rolec=roleer

wse,er,r ≤ kc,eg,r ∀c ∈ C̄, eg ∈ c, e ∈ eg, se ∈ e (4.3.35)

∑
r∈R

kc,eg,r − 1 ≤ savoidsplitass
c,eg ∀c ∈ C̄, eg ∈ c (4.3.36)

Spread Events

Applies to: Eventgroups
Point-of-application: Eventgroups
The Spread Event constraint has a deviation for each time group tg ∈ c ∈ C̄. Let Bc,tg and Bc,tg
be the minimum and maximum number of sub-events of a given event which can be placed in time
group tg of constraint c, respectively. The deviation for each time group is given by the amount
of which the number of sub-events for the given event which fall short of Bc,tg or exceeds Bc,tg.

UBc,tg,Bc,tg
∑

se∈e∈eg
t∈tg

yse,t ≤ sspreadevent
c,eg,tg ∀c ∈ C̄, eg ∈ c, tg ∈ c (4.3.37)

Link Events

Applies to: Eventgroups
Point-of-application: Eventgroups
A Link Event constraint specifies that some events should be assigned the same times. For each
event of a given event group we build the set of times that the sub-events derived from that event
are running (not just starting times). The deviation is then the number of times that appear in at
least one of these sets but not in all of them. Let variable oe,t ∈ {0, 1} take value 1 if at least one
sub-event of event e ∈ c ∈ C̄ is assigned to time t ∈ T , and 0 otherwise. Let variable leg,t ∈ {0, 1}
take value 1 if at least one event of event group eg ∈ c is assigned to time t ∈ T , and 0 otherwise.
Constraints (4.3.38) and (4.3.40) ensure that these variables take correct values. The slack of Link
Events constraints is defined in (4.3.41). Constraint (4.3.39) is necessary to restrict oe,t to take
value 1 in cases where the event is in fact not assigned to the particular time, which would avoid
the penalty given by constraint (4.3.41), if any.∑

t′∈T start
se,t

yse,t′ ≤ oe,t ∀e ∈ E , se ∈ e, t ∈ T \ tD (4.3.38)

Chapter 4. Integer Programming for the Generalized (High) School Timetabling Problem 82

∑
se∈e

t′∈T start
se,t

yse,t′ ≥ oe,t ∀e ∈ E , t ∈ T \ tD (4.3.39)

leg,t ≥ oe,t ∀eg ∈ EG, e ∈ eg, t ∈ T \ tD (4.3.40)

leg,t − oe,t ≤ slinkevent
c,eg,t ∀c ∈ C̄, eg ∈ c, e ∈ eg, t ∈ T \ tD (4.3.41)

Order Events

Applies to: Pair of events
Point-of-application: Pair of events
An Order Event constraint specifies that the times two events are assigned should be in order, such
that the first event ends before the second event starts. Let the parameters Bc ∈ N and Bc ∈ N
be the minimum and maximum number of times that may separate the two events, respectively.
Let (e, e′) ∈ c denote an EventPair which this constraint applies to. Let the variable hlast

e ∈ N
be the ordinal number of the latest time assigned to any sub-event of event e. Let the variable
hfirst
e ∈ N be the ordinal number of the first assigned to any sub-event of event e′. The deviation

is then given by the amount by which the difference between these two numbers exceeds Bc or
falls short of Bc.

ρ(t) · yse,t +Dse ≤ hlast
e ∀c ∈ C̄, e ∈ c, se ∈ e, t ∈ T \ tD (4.3.42)

|T | − (|T | − ρ(t)) · yse,t ≤ hfirst
e ∀c ∈ C̄, e ∈ c, se ∈ e, t ∈ T \ tD (4.3.43)

UBc,Bc(h
last
e′ − hfirst

e) ≤ sorderevents
c,(e,e′) ∀c ∈ C̄, (e, e′) ∈ c (4.3.44)

Avoid Clashes

Applies to: Resources
Point-of-application: Resources
These constraints specify that certain resources should have no clashes, i.e. they should not be
assigned two or more events simultaneously. The constraint produces a set of deviations at each
point of application (each resource). For each time a resource is assigned two or more solution
resources, there is one deviation with a value equal to the number of solution resources minus one.

vt,r − 1 ≤ savoidclashes
c,r,t ∀c ∈ C̄, r ∈ c, t ∈ T \ tD (4.3.45)

Avoid Unavailable Times

Applies to: Resources
Point-of-application: Resource
An Avoid Unavailable Times constraint specifies that certain resources are unavailable for all
events at certain times. The deviation is the number of unavailable times during which the
resource attends at least one solution event. t ∈ c denotes that t is an unavailable time for
constraint c ∈ C̄.∑

t∈c
qr,t = sunavailabletimes

c,r ∀c ∈ C̄, r ∈ c (4.3.46)

83 4.3. Problem Description and a Mixed Integer Programming Formulation

Limit Idle Times

Applies to: Resources
Point-of-application: Resources
A resource is idle at some time t ∈ tg wrt. time group tg if it is not attending any sub-events
at that time, but it is busy at some earlier time and at some later time in time group tg. The
Limit Idle Times places limits on the number of idle times a resources may have. Let the variables
hfirst
r,tg ∈ N and hlast

r,tg ∈ N indicate the ordinal number of the first and the last time, respectively,
where resource r ∈ R is busy in time group tg. Let |tg| denote the amount of times in time group
tg. Let the variable hr,tg ∈ N denote the number of idle times of resource r ∈ R in time group
tg ∈ T G.

|tg| − (|tg| − ρ(t)) · qr,t ≥ hfirst
r,tg ∀r ∈ R, tg ∈ T G, t ∈ tg (4.3.47)

ρ(t) · qr,t ≤ hlast
r,tg ∀r ∈ R, tg ∈ T G, t ∈ tg (4.3.48)

hlast
r,tg − hfirst

r,tg + 1−
∑
t∈tg

qr,t = hr,tg ∀r ∈ R, tg ∈ T G (4.3.49)

For each resource of the constraint the deviation is calculated as follows. Calculate the total
amount of idle times for all times tg ∈ c, and find the amount which this summed value falls short
of minimum Bc ∈ N or exceeds maximum Bc ∈ N. The deviation is then given by the sum of
these amounts.

UBc,Bc
∑
tg∈c

hr,tg ≤ sidletimes
c,r ∀c ∈ C̄, r ∈ c (4.3.50)

Cluster Busy Times

Applies to: Resources
Point-of-application: Resources
A Cluster Busy Times constraint limits the number of time groups during which a resource may
be busy. The deviation is given by the amount of by which the number of given time groups
during which the resource is busy falls short of minimum, Bc ∈ N, or exceeds maximum, Bc ∈ N.
Let tg ∈ c denote a time group which this constraint applies to.

UBc,Bc
∑
tg∈c

pr,tg ≤ sclusterbusy
c,r ∀c ∈ C̄, r ∈ c (4.3.51)

Limit Busy Times

Applies to: Resources
Point-of-application: Resources
The Limit Busy Times constraints places limits on the number of times a resource may be
busy within some time groups. These constraints produces a set of deviation at each point-
of-application, one for each given time group. The deviations are given by the amount by which
the number of times of the given time group that the resource is busy falls short of minimum, Bc
∈ N, or exceeds maximum Bc ∈ N.

−|tg| · (1− pr,tg) + UBc,Bc
∑
t∈tg

qr,t ≤ slimitbusy
c,r,tg ∀c ∈ C̄, r ∈ c, tg ∈ c (4.3.52)

Chapter 4. Integer Programming for the Generalized (High) School Timetabling Problem 84

Limit Workload

Applies to: Resources
Point-of-application: Resources
A workload of a solution resource is given by We,se,er = Dse·Ler

De
, where Ler ∈ N is the workload

of event resource er. The value is a floating-point number. A Limit Workload Constraint places
limits on the total workload of solutions resources that certain resources are assigned to. The
deviation of this constraint is the amount by which the total workload of the solution resources
assigned to that resource falls short of Bc ∈ N or exceeds Bc ∈ N, rounded up to the nearest
integer.

UBc,Bc
∑

e∈c,t∈T \tD
se∈e,er∈e

We,se,er · xse,t,er,r ≤ slimitworkload
c,r ∀c ∈ C̄, r ∈ c (4.3.53)

4.3.3 Mixed-Integer Programming Model

Given the definitions of all constraint types of XHSTT, and their respective slack variables, the
objective of the model can be stated as eq. (4.3.54), setting aside the fact that some constraints
are hard-constraints and some are soft-constraints.

z =f(sassignres
c,er) + f(sassigntime

c,e) + f(sspliteventamount
c,e + sspliteventdur

c,e) + f(sdistsplitevent
c,e,er)

+ f(spreferres
c,er) + f(sprefertime

c,e) + f(savoidsplitass
c,eg) + f(sspreadevent

c,eg,tg) + f(slinkevent
c,eg,t)

+ f(sorderevents
c,(e,e′)) + f(savoidclashes

c,r,t) + f(sunavailabletimes
c,r) + f(sidletimes

c,r) + f(sclusterbusy
c,r)

+ f(slimitbusy
c,r,tg) + f(slimitworkload

c,r)

(4.3.54)

The full MIP would therefore consists of minimizing z, subject to eqs. (4.3.13) to (4.3.53). However,
we take a different approach, as described in the next section.

4.3.4 Solution Approach

Even though it would be natural to simply input the MIP to a generic solver, a different approach
is taken, which takes advantage of the XHSTT objective function. In this approach, the model is
solved in two steps, denoted Step 1 and Step 2 in the following.

By the definition of the XHSTT objective, hard constraints always take priority over soft con-
straints. Therefore the following approach is taken for solving the model: In Step 1, a MIP is
build which only contains the hard constraints. This MIP is given as input to the MIP solver,
which is ran until the given time limit is reached, or until the model is solved to optimality. The
found objective value is the hard cost of the solution. In case the time limit is reached, all vari-
ables are fixed to their final value (i.e. the value they take in the best found solution), and all
the soft constraints are added to identify the true cost of the found solution. In case the MIP is
solved to optimality, Step 2 is performed: All soft constraints are added and the solution process
is warm-started from its previous state, with the time limit set to what remains of the original
time limit. Furthermore a constraint is added which ensures that the optimal value of the hard
cost is kept. Let zhard denote the sum of all slack variables belonging to the hard constraints. The
following constraint is added:

zhard = hard cost (4.3.55)

Now this extended MIP model is solved. The cost of the obtained solution, minus the hard cost
found in Step 1, is the value of the soft cost. Notice that the nature of this solution method
resembles lexicographic multi-objective optimization.

This approach takes advantage of the capability of MIPs to issue certificates of optimality. By
this we mean that focus is put on the hard constraints until a solution is found with the optimal

85 4.4. Computational Results

hard cost, and then we switch focus and consider the entire problem instance. If a heuristic
solution method was used the inevitable question would be: When has sufficient effort been put
into minimizing the hard cost?

4.4 Computational Results

This section presents computational results of the developed exact method, and has two primary
intentions:

• How does the MIP compete with the heuristics of the ITC2011 round 2? Thereby the
potential of this MIP approach can be evaluated on fair terms with well-performing heuristics.
This is the subject of Section 4.4.1.

• Are we able to improve the best-known solutions for some instances, or even solve them to
optimality? See Section 4.4.2.

All tests were run on a machine with an Intel i7 CPU clocked at 2.80 GHz and 12GB of RAM,
running Windows 8 64 bit. In all cases the commercial state-of-art MIP solver Gurobi 5.5.0 was
used. Two distinct sets of XHSTT instances have been used, both obtained from the XHSTT
website (Post, 2013b). All obtained solutions have been verified as being valid using the evaluator
HSEval (Kingston, 2013b).

As described in Section 4.3.1, an XHSTT objective consists of both a hard cost, and a soft cost,
usually denoted (hard cost, soft cost). In case a solution has a hard cost of value 0, the objective
is simply written as the soft cost, as is usually done in context of the XHSTT format.

As discussed in Section 4.3.1, the size of the sets I and J must be selected sufficiently high.
Notice further that if the size of these sets is selected high, it can have a big impact on the amount
of variables in the model. It would be possible to select these sizes based on the properties of
the constraints having CostFunction SumSquare or SquareSum, however this is a quite complex
operation as it must be derived based on each constraint-type. Instead we have selected |I| = 10
|J | = 10, such that the maximum possible penalty is 92 = 81. This means that we cannot claim
optimality for solutions with objective > 81. An easy fix for this issue is to simply perform a
re-run of Gurobi if a solution is claimed as optimal, with the size of the sets set to a higher value.
The same is applicable for lower bounds of value > 81. We consider this is an implementation
detail, and it will be seen that in practice it has no impact of the obtained results.

4.4.1 International Timetabling Competition 2011

This section compares the exact method with the results obtained by the finalists in Round 2
of ITC2011. In this round the solver for each participating team was tested on 18 previously
unknown instances from the archive XHSTT-ITC2011-hidden. The time limit for all instances
was nominated to 1000 seconds, but the organizers provided a tool to benchmark machines to
find the machine-dependent equivalent of this time limit. On our machine this amended to 772
seconds. The possibility to benchmark machines facilitates a fair comparison with the competitors
of ITC2011, except for the fact that the rules of ITC2011 did not allow the use of commercial
software, which conflicts with our use of Gurobi. The aim of this section is therefore to demonstrate
the potential of MIP in the context of timetabling (which is often overlooked), and not to claim
how our approach would have positioned itself in ITC2011.

In terms of solver parameters, default settings are used, except for the pseudo-parameter MIP-

Focus which is set to value 1, emphasizing that we are mainly interested in finding incumbent
solutions. Gurobi was only allowed to use a single CPU thread, as specified in the rules of ITC2011.

The participants of ITC2011 round 2 ran their algorithm 10 times on each instance, to eliminate
the stochastic impact on the results. Since we are interested in the average performance of each
participant for comparison, the following processing of the results was performed: For each instance
and each participant, calculate both the average hard cost and the average soft cost, and round

Chapter 4. Integer Programming for the Generalized (High) School Timetabling Problem 86

Table 4.1: Performance of the MIP using same running time as specified in ITC2011.
For each instance is listed the average solution found from each of the competitors of
ITC2011, and the solution obtained by the MIP formulations. The best solutions are
marked in bold. Objectives marked with ∗ are optimal solutions.

Instance GOAL HySST Lectio HFT Exact method

BrazilInstance2 (1, 62) (1, 77) 38 (6, 190) 46
BrazilInstance3 124 118 152 (30, 283) 39
BrazilInstance4 (17, 98) (4, 231) (2, 199) (67, 237) (5, 286)
BrazilInstance6 (4, 227) (3, 269) 230 (23, 390) 682
ElementarySchool 4 (1, 4) 3 (30, 73) 3
SecondarySchool2 1 23 34 (31, 1628) (1604, 3878)
Aigio 13 (2, 470) 1062 (50, 3165) (1074, 3573)
Italy Instance4 454 6926 651 (263, 6379) 17842
KosovaInstance1 (59, 9864) (1103, 14890) (275, 7141) (989, 39670) (3626, 2620)
Kottenpark2003 90928 (1, 56462) (50, 69773) (209, 84115) (8491, 6920)
Kottenpark2005A (31, 32108) (32, 30445) (350, 91566) (403, 46373) (2567, 53)
Kottenpark2008 (13, 33111) (141, 89350) (209, 98663) - (14727, 5492)
Kottenpark2009 (28, 12032) (38, 93269) (128, 93634) (345, 99999) (17512, 140)
Woodlands2009 (2, 14) (2, 70) (1, 107) (62, 338) (1801, 705)
Spanish school 894 1668 2720 (65, 13653) (1454, 11020)
WesternGreece3 6 11 (30, 2) (15, 190) 25
WesternGreece4 7 21 (36, 95) (237, 281) 81
WesternGreece5 0 4 (4, 19) (11, 158) 15

Avg. Ranking 1.72 2.67 2.50 4.44 3.61

both to nearest integer. These numbers then denote how this participant performed on this
instance.

Table 4.1 shows the obtained results. The value of “Avg. Ranking” was calculated as follows.
Each solution method was ranked 1 to 5 on each instance, 1 being the best, and the average of
these ranks was taken. According to this measure, the exact method of this paper is competitive
with the methods used at ITC2011. Notice in particular that the exact method performs well
on the smaller instances, and is generally not as competitive on the larger instances. On three
instances the exact method gave the best results.

4.4.2 Aiming at Optimality

In attempt to produce new (optimal) solutions, the XHSTT archive ALL INSTANCES was used,
which contains 38 non-artificial instances. According to the website, this archive “contains all
latest versions of the contributed instances”. For 10 of the instances, a solution with cost 0 is
already known, which constitutes an optimal solution by the definition of XHSTT. Hence these
instances are skipped in this test. Notice that ALL INSTANCES contains instances which originally
came from XHSTT-ITC2011-hidden, but due to bug-fixes in some of the instances, we consider
them as two separate sets of instances (by bug-fixes we mean altering of certain constraints, such
that objective values are incomparable). We refer to (Post, 2013b) for instance-statistics.

This test was performed with the following setup: Gurobi is allowed to use all CPU cores (which
is 8 in our case), and the time-limit is set to 24 hours for each instance. As initial solution for
each instance, the current best known solution is provided. Default parameter settings of Gurobi
were used. Table 4.2 shows the obtained results. A gap between an incumbent solution x and a

lower bound LB is calculated by |x−LB|
x .

For each instance a solution with XHSTT objective (H,S) is found, as well as a lower bound
(H,S). By the definition of our solution method, we only have a lower bound on the soft cost S
iff an optimal solution for the hard cost is known, i.e. H = H. If a lower bound or an objective
value is not found we write “-”. Notice that even though we give the current best known solution
as starting solution, Gurobi might still not find a solution for Step 1, usually in case the instance
in question is of huge size. In Table 4.2, both the gap for the hard cost and the soft cost is shown
(in case the required costs and lower bounds are available).

Table 4.2 shows that our method obtains better solutions for 8 instances. 4 instances was solved
to optimality, proving optimality of 3 previously known solutions and finding 1 new optimal

87 4.4. Computational Results

Table 4.2: Performance of the MIP on ALL INSTANCES. For each instance is listed the best previously
known solution “Best”, and for the solution found by our approach is listed the time used to solve
Step 1 “Time1”, the time used to solve Step 2 “Time2”. “Time” indicates the total solving time.
All times have seconds as unit. Furthermore the objective “Obj” and the lower bound “LB” is listed.
The percentage gap between the objective and the lower bound is divided into the gap for the hard
constraints “Gap1” and the gap for the soft constraints, “Gap2”. Objectives in bold denote new best
solution while optimal solutions are marked with ∗.

MIP solution method

Instance Best Time1 Time2 Time Obj LB Gap1 Gap2

AU BGHS98 (3, 494) >86400 - >86400 (3, 494) (-,-) - -
AU SAHS96 (8, 52) >86400 - >86400 (8, 52) (-,-) - -
AU TES99 (1, 140) >86400 - >86400 (1, 140) (0,-) 100.0 -
BR Instance1 42 0 >86400 >86400 40 28 0.0 30.0
BR Instance2 5 1 >86399 >86400 5 1 0.0 80.0
BR Instance3 47 1 >86399 >86400 26 19 0.0 26.9
BR Instance4 78 1 >86399 >86400 61 42 0.0 31.2
BR Instance5 43 1 >86399 >86400 30 10 0.0 66.7
BR Instance6 60 1 >86399 >86400 60 14 0.0 76.7
BR Instance7 122 1 >86399 >86400 122 22 0.0 82.0
DK Falkoner20121 (2, 23705) >86400 - >86400 (2, 23705) (0,-) 100.0 -
DK Hasseris20122 (293, 32111) >86400 - >86400 (293, 32111) (-,-) - -
DK Vejen20093 (20, 18966) >86400 - >86400 (20, 18966) (2,-) 90.0 -
UK StPoul 136 52 >86348 >86400 136 0 0.0 100.0
FI ElementarySchool 3 2 785 787 *3 3 0.0 0.0
FI HighSchool 1 1 >86399 >86400 1 0 0.0 100.0
FI SecondarySchool 88 1 >86399 >86400 88 77 0.0 12.5
GR UniInstance34 5 0 3 3 *5 5 0.0 0.0
GR UniInstance45 8 1 >86399 >86400 8 0 0.0 100.0
IT Instance1 12 1 4561 4562 *12 12 0.0 0.0
IT Instance4 78 12 >86389 >86400 62 27 0.0 56.5
XK6 Instance1 3 31 >86369 >86400 3 0 0.0 100.0
NL GEPRO (1, 566) >86400 - >86400 (1, 566) (0,-) 100.0 -
NL Kottenpark2003 1410 57 >86343 >86400 1410 (0,-) 0.0 -
NL Kottenpark2005 1078 88 >86312 >86400 1078 9 0.0 99.2
NL Kottenpark2009 9250 92 >86308 >86400 9035 160 0.0 98.2
ZA Woodlands2009 2 22 77878 77900 *0 0 0.0 0.0
ES School (3, 5966) 6525 >79875 >86400 357 322 0.0 9.8

1 Shorthand for instance FalkonergaardenGymnasium2012
2 Shorthand for instance HasserisGymnasium2012
3 Shorthand for instance VejenGymnasium2009
4 Shorthand for instance WesternGreeceUniversityInstance3
5 Shorthand for instance WesternGreeceUniversityInstance4
6 Kosova.

solution. Furthermore, 11 new non-trivial lower bounds and 7 new best solutions have been
established for the instances which were not solved to optimality.

Alternative Formulation

The Limit Idle Times constraint is known to be difficult for solvers to handle (Dorneles et al.
(2012)). In our formulation, this constraint is formulated using Big-M notation (constraints
(4.3.47) and (4.3.48)), which can provide bad LP-relaxation, which in turn might slow down
the solution process. Furthermore this constraint is part of most instances (29 of 38 instances in
the ALL INSTANCES archive), so an alternate formulation is proposed. The alternate formulation
uses variable hr,tg,t ∈ {0, 1} which takes value 1 if resource r ∈ R has an idle time in time t ∈ tg
in time group tg, and 0 otherwise. Constraints (4.3.47), (4.3.48) and (4.3.49) are replaced by

qr,t′ − qr,t + qr,t′′ − 1 ≤ hr,tg,t ∀r ∈ R, tg ∈ T G, t, t′, t′′ ∈ tg, ρ(t′) < ρ(t) < ρ(t′′) (4.4.3)

This yields more rows in the MIP; for each time group tg ∈ T G the amount of additional constraints
is
(|tg|

3

)
. Furthermore, there is a great possibility that the amount of variables increases due to

the extra dimension on the h variable. However, no Big-M notation is used.
Due to the possible big increase in the size of the model, this alternative formulation is only

tested on the smaller instances from archive ALL INSTANCES, skipping those instances in which the

Chapter 4. Integer Programming for the Generalized (High) School Timetabling Problem 88

Table 4.4: Performance of the alternative formulation on the smaller instances of archive
ALL INSTANCES. All the columns are defined in analogous way to Table 4.2, except for “ObjT4.2” and
“LBT4.2” which denote the objective value and the lower bound found in Table 4.2.

MIP alternative formulation

Instance Best ObjT4.2 LBT4.2 Time1 Time2 Time Obj LB Gap1 Gap2

BR Instance1 42 40 28 0 1918 1918 *38 38 0.0 0.0
BR Instance2 5 5 1 0 290 290 *5 5 0.0 0.0
BR Instance3 47 26 19 1 >86399 >86400 23 21 0.0 8.7
BR Instance4 78 61 42 1 >86399 >86400 61 49 0.0 19.7
BR Instance5 43 30 10 1 >86399 >86400 26 15 0.0 42.3
BR Instance6 60 60 14 1 >86399 >86400 59 18 0.0 69.5
BR Instance7 122 122 22 1 >86399 >86400 84 26 0.0 69.1
FI HighSchool 1 1 0 1 >86399 >86400 1 0 0.0 100.0
FI SecondarySchool 88 88 77 1 >86399 >86400 84 77 0.0 8.3
GR UniInstance41 8 8 0 1 >86399 >86400 8 0 0.0 100.0
IT Instance4 78 62 27 6 >86394 >86400 57 27 0.0 52.6
ES School (3, 5966) 357 322 44 >86356 >86400 357 330 0.0 7.6

1 Shorthand for instance WesternGreeceUniversityInstance4

optimal solution was found in the previous test (Table 4.2). Since the goal is to achieve is good
solutions as possible, we restart the procedure from the best found solution of Table 4.2 and run
it for additional 24 hours. This test-setup means that we cannot compare the performance of the
two formulations. Table 4.4 shows the obtained results. The table shows that this formulation
is capable of finding 2 new optimal solutions. For the instances not solved to optimality, 6 lower
bounds were improved, and new best solutions were found for 6 instances.

4.5 Conclusion

This paper has shown the first exact method for (High) School Timetabling instances in the
XHSTT format. A solution method which takes advantage of the structure of the objective
function of XHSTT has been proposed. For the most recent version of the archive ALL INSTANCES,
we were able to produce 2 new optimal solutions and prove optimality of 4 previously known
solutions. For 11 other instances, new non-trivial lower bounds were shown. For the instances not
solved to optimality, we were able to improve the best known solution in 9 cases.

Establishing optimal solutions and lower bounds is indeed a step forward for research within high
school timetabling, and for the XHSTT format in particular. This gives researchers a possibility to
compare their obtained solutions with an (optimal) lower bound, which is valuable for evaluating
the quality of solutions.

As subjects for future research the following are mentioned. The MIP could be used in context
of Two-Stage Decomposition (TSD), by first assigning times to events, and secondly assigning
resources to event resources. Thereby the resource-assignments are done subject to the times as-
signed to events. Such an approach was used with great success in the paper of Lach and Lübbecke
(2012) for the Curriculum-based University Timetabling Problem (the optimization problem used
in the International Timetabling Competition 2007), and by Sørensen and Dahms (2014) for the
real-world case of High School Timetabling in Denmark. In both of these papers, the TSD is
theoretically capable of producing near-optimal results, even though the problem is split into two
separate MIPs. However, the XHSTT case is possibly less suited for this type of decomposition
as instances might contain a majority of constraints related to resource assignments. Since the
assignments to times for events are performed in the first stage of the decomposition, and because
these assignments cannot be altered when the resource-assignments are performed, a TSD ap-
proach would possibly be heuristic in nature. Obviously, if an XHSTT instance have all resources
preassigned to event resources, a TSD would be unnecessary.

Our MIP formulation is exponential in size by the amount of sub-events in the instance, as all
possible combinations of sub-events are generated. A better formulation would be less dependent
on this amount. One could for instance solve the model iteratively, and ’inject’ new sub-events

89 4.5. Conclusion

in the model on-the-fly. Another possibility would be to consider a formulation which simulate
sub-events by an integer variable which define the lengths of each respective active sub-event.
Such improved formulations are subject for future research.

Bibliography 90

Bibliography

P. Avella, B. D’Auria, S. Salerno, and I. Vasilâev. A computational study of local search algorithms
for italian high-school timetabling. Journal of Heuristics, 13:543–556, 2007. ISSN 1381-1231.

T. Birbas, S. Daskalaki, and E. Housos. School timetabling for quality student and teacher
schedules. J. of Scheduling, 12:177–197, April 2009. ISSN 1094-6136.

R. E. Bixby. Optimization Stories, volume Extra of 21st International Symposium on Mathemat-
ical Programming Berlin, chapter A Brief History of Linear and Mixed-Integer Programming
Computation, pages 107–121. Journal der Deutschen Mathematiker-Vereinigung, August 19–24
2012.

M. Ter Braak. A hyperheuristic for generating timetables in the xhstt format. Master’s thesis,
University of Twente, June 2012.

Á. P. Dorneles, O. C. de Araújo, S. Maria-Brazil, and L. S. Buriol. The impact of compact-
ness requirements on the resolution of high school timetabling problem. In Congreso Latino-
Iberoamericano de Investigación Operativa, September 2012.

G. Fonseca, H. Santos, T. Toffolo, S. Brito, and M. Souza. A sa-ils approach for the high school
timetabling problem. In Proceedings of the Ninth International Conference on the Practice and
Theory of Automated Timetabling (PATAT 2012), 2012.

A. Kheiri, E. Ozcan, and A. J. Parkes. Hysst: Hyper-heuristic search strategies and timetabling.
In Proceedings of the Ninth International Conference on the Practice and Theory of Automated
Timetabling (PATAT 2012), pages 497–499, 2012.

J. H. Kingston. Educational timetabling. In A. S. Uyar, E. Ozcan, and N. Urquhart, editors,
Automated Scheduling and Planning, volume 505 of Studies in Computational Intelligence, pages
91–108. Springer Berlin Heidelberg, 2013a. ISBN 978-3-642-39303-7.

J. H. Kingston. The hseval high school timetable evaluator. http://sydney.edu.au/

engineering/it/~jeff/hseval.cgi [Retrieved 28/11-2013], Aug. 2013b.

J. H. Kingston. High school timetable file format specification: Constraints. http://sydney.edu.
au/engineering/it/~jeff/hseval.cgi?op=spec&part=constraints [Retrieved 28/11-2013],
Aug. 2013c.

G. Lach and M. Lübbecke. Curriculum based course timetabling: new solutions to udine bench-
mark instances. Annals of Operations Research, 194:255–272, 2012. ISSN 0254-5330.

M. Pimmer and G. R. Raidl. A timeslot-filling heuristic approach to construct high-school timeta-
bles. In L. Di Gaspero, A. Schaerf, and T. Stützle, editors, Advances in Metaheuristics, vol-
ume 53 of Operations Research/Computer Science Interfaces Series, pages 143–157. Springer
New York, 2013. ISBN 978-1-4614-6321-4.

G. Post. International timetabling competition 2011 results. http://www.utwente.nl/ctit/

hstt/itc2011/results/ [Retrieved 28/11-2013], Aug. 2013a.

G. Post. Benchmarking project for (high) school timetabling. http://www.utwente.nl/ctit/

hstt/ [Retrieved 28/11-2013], Aug. 2013b.

G. Post, S. Ahmadi, S. Daskalaki, J. Kingston, J. Kyngas, C. Nurmi, and D. Ranson. An xml
format for benchmarks in high school timetabling. Annals of Operations Research, 194:385–397,
2012a. ISSN 0254-5330.

G. Post, L. D. Gaspero, J. H. Kingston, B. McCollum, and A. Schaerf. The third international
timetabling competition. In Proceedings of the Ninth International Conference on the Practice
and Theory of Automated Timetabling (PATAT 2012), Son, Norway, August 2012b.

http://sydney.edu.au/engineering/it/~jeff/hseval.cgi
http://sydney.edu.au/engineering/it/~jeff/hseval.cgi
http://sydney.edu.au/engineering/it/~jeff/hseval.cgi?op=spec&part=constraints
http://sydney.edu.au/engineering/it/~jeff/hseval.cgi?op=spec&part=constraints
http://www.utwente.nl/ctit/hstt/itc2011/results/
http://www.utwente.nl/ctit/hstt/itc2011/results/
http://www.utwente.nl/ctit/hstt/
http://www.utwente.nl/ctit/hstt/

91 Bibliography

J. Romrös and J. Homberger. An evolutionary algorithm for high school timetabling. In Proceed-
ings of the Ninth International Conference on the Practice and Theory of Automated Timetabling
(PATAT 2012), pages 485–488. SINTEF, 2012.

H. Santos, E. Uchoa, L. Ochi, and N. Maculan. Strong bounds with cut and column generation
for class-teacher timetabling. Annals of Operations Research, 194(1):399–412, April 2012. ISSN
0254-5330.

A. Schaerf. A survey of automated timetabling. Artificial Intelligence Review, 13:87–127, 1999.
ISSN 0269-2821.

M. Sørensen and F. H. W. Dahms. A two-stage decomposition of high school timetabling applied
to cases in denmark. Computers & Operations Research, 43:36–49, March 2014.

M. Sørensen and T. R. Stidsen. Integer programming and adaptive large neighborhood search for
real-world instances of high school timetabling. Annals of Operations Research, PATAT 2012
SI:Submitted Jan 21. 2013, 2013.

M. Sørensen, S. Kristiansen, and T. R. Stidsen. International timetabling competition 2011:
An adaptive large neighborhood search algorithm. In Proceedings of the Ninth International
Conference on the Practice and Theory of Automated Timetabling (PATAT 2012), pages 489–
492. SINTEF, 2012.

C. Valouxis, C. Gogos, P. Alefragis, and E. Housos. Decomposing the high school timetable
problem. In Practice and Theory of Automated Timetabling (PATAT 2012), Son, Norway,
August 2012.

Part III

Student Sectioning Problems at
Danish High Schools

93

Chapter 5

Elective Course Planning

Simon Kristiansen∗† Matias Sørensen∗† Thomas R. Stidsen∗

∗Department of Management Engineering, Technical University of Denmark,
Produktionstorvet, Building 426, DK-2800 Kgs. Lyngby, Denmark

sikr@dtu.dk, msso@dtu.dk, thst@dtu.dk

† MaCom A/S
Vesterbrogade 48, 1., DK-1620 Copenhagen V, Denmark

1

Abstract Efficient planning increasingly becomes an indispensable tool for management of both com-

panies and public organizations. This is also the case for high school management in Denmark, because

the growing individual freedom of the students to choose courses makes planning much more complex.

Due to reforms, elective courses are today an important part of the curriculum, and elective courses are

a good way to make high school education more attractive for the students. In this article, the prob-

lem of planning the elective courses is modeled using integer programming and three different solution

approaches are suggested, including a Branch-and-Price framework using partial Dantzig-Wolfe decom-

position. Explicit Constraint Branching is used to enhance the solution process, both on the original IP

model and in the Branch-and-Price algorithm. To the best of our knowledge, no exact algorithm for the

Elective Course Planning Problem has been described in the literature before. The proposed algorithms

are tested on data sets from 98 of the 150 high schools in Denmark. The tests show that for the majority

of the problems, the optimal solution can be obtained within the one hour time bound. Furthermore the

suggested algorithms achieve better results than the currently applied meta-heuristic.

5.1 Introduction

Management of high schools in Denmark has become increasingly complex during the last decade,
due to a number of economical and educational reforms. Furthermore the high schools, 10th to
12th grade, became self-governing institutions as of 1/1 2007. Hence the administration of a high
school in Denmark has lately been given much more freedom to manage the high school. On the
other hand, the high school management now has a much higher economical responsibility and
the high schools can even become insolvent, which has indeed happened in a few cases. The by far
most important income for the high schools is the grant received from the government. Due to the
recent reforms, high schools receive this grant based on the number of students graduating. This
has forced the high school management to focus on attracting students, while reducing teaching

1Published in European Journal of Operational Research, volume 215, 2011

95

Chapter 5. Elective Course Planning 96

and administration costs. In this paper we present the Elective Course Planning Problem (ECPP),
which is of crucial importance for maintaining student contentment.

Due to the special structure of the Danish high schools, literature concerning the ECPP is very
limited. However, problems such as Course Timetabling and Student Sectioning have been looked
in to, see e.g. Tripathy (1984); Laporte and Desroches (1986); Erben and Keppler (1996); Rudova
and Murray (2003); Müller and Murray (2010). The problem in Tripathy (1984) is actually closely
related to the ECPP of this article, but does however lack many of the relevant constraints.

The International Timetabling Competition 2007 had two tracks focusing on course timetabling,
Post Enrolment based Course Timetabling and Curriculum based Course Timetabling. The first
track considers the problem of construction a timetable according to the choice of lectures of the
students (Lewis et al. (2007); Müller (2009)), while the second considers weekly scheduling of
lectures within a given number of rooms and time periods (Gaspero et al. (2007); Müller (2009)).
Neither of these problems matches the ECPP, which is the problem of fulfilling as many elective
course requests as possible. I.e. the ECPP is a matter of deciding which course requests should
be fulfilled, while the course timetabling problems of ITC2007 are concerned with constructing
a timetabling according to some predefined assignments to courses. Still, the ECPP does in fact
share several constraints with the mentioned problems, e.g. students can only attend one course
at a time. But as will be described in Section 5.2, the ECPP includes other important constraints
which are not part of any of the tracks of ITC2007. The timetabling part of the ECPP lies in the
fact that, even though the objective is to maximize the number of fulfilled course requests, the
course requests should be able to fit in a number of predefined time-blocks.

Both de Werra (1985) and Costa (1994) deals with the problem of first assigning teachers to
classes and then assigning classes to a schedule. However, in the Danish education system, the
ECPP must be dealt with before allocating teachers to classes. Müller et al. (2007) combines
University Course Timetabling and Student Sectioning in an online system based on an Iterative
Forward Search algorithm. Neither this combination of the two problems proves very resourceful
for the ECPP. There exist more practical based publications on solving problems concerning
Course Timetabling and Student Sectioning, but it seems none of these are directly related to the
ECPP.

Binzer and Kjeldsen (2008) is by far the most relevant source for this article, since it describes
the ECPP in detail, and solves the problem using both Tabu Search and GRASP. Both these
meta-heuristics rely on a complicated neighborhood, based on a number of simple moves. Binzer
and Kjeldsen (2008) points to the fact that the ECPP has features usually discarded in timetabling
literature. For instance, the ECPP is concerned with both optional assigning to time slots and
division of classes. Most literature is only concerned with one of these aspects.

Notice that Binzer and Kjeldsen (2008) applies heuristics. In this paper, exact solution meth-
ods will be attempted. To the best of our knowledge, no exact algorithm for the ECPP has been
described in the literature before.

There are two reasons why solving the ECPP to optimality is so crucial to the high schools.
First of all, each offered elective class costs app. 200,000 DKK (28,500 EUR) per year to com-
plete. These costs are fixed costs to be paid, no matter how many students are actually enrolled
in the course. If the school has too many courses running with a low number of students it will
hence inflict a heavy financial burden on the school. Secondly, if a student is not granted its
elective course requests, the student may decide to switch to another high school, which is highly
undesirable for the high school administration. Given these important trade offs it is natural that
the high schools devote significant resources to find good elective course plans. This is either
done manually (typically requiring 2 weeks of full time work) or using existing software solutions.
Today most of the high schools (87%) use the cloud-based MaCom Lectio software system for
all administrative purposes, and Lectio includes a solver for the ECPP, which is based on the
meta-heuristics from Binzer and Kjeldsen (2008). It should be mentioned that the solver in Lectio
is highly effective compared to the approach of solving it manually, however in this paper we will
show that better algorithms can be found.

The structure of this article is as follows: The ECPP is described in detail in Section 5.2. In

97 5.2. Problem Description

Section 5.3 a MIP model is presented. In Section 5.4 the ECPP MIP model is Dantzig-Wolfe
decomposed and a Branch-and-Price algorithm is designed. Furthermore, Section 5.4 presents an
alternative approach, Explicit Constraint Branching. In Section 5.5 the algorithm is compared to
an existing meta-heuristic for the ECPP, on real-life data from 98 Danish high schools. Finally a
conclusion is attempted in Section 5.6.

5.2 Problem Description

In Denmark there exists several types of upper secondary educations. The focus in this paper is
STX (Upper Secondary School Leaving Examination). STX is a broad general education and it
is the most common type of secondary education in Denmark. The education takes 3 years and
consists of 13 to 16 courses.

Once a student has chosen a type of upper secondary education, he needs to choose a study line
which fit his interests. Different high schools offer different study lines, so the students choice of
high school is somewhat correlated with the choice of study line. It is important to notice that
the students can choose free of charge among all Danish high schools. Each study line consists
of both a number of mandatory courses and a number of elective courses. When the student has
chosen a study line, he is assigned a so-called common class. A common class always consists of
students from the same study line. The idea is that courses should be taught in classes with as
many students as possible from the same common class, to facilitate the cooperation and social
interaction between students.

It should be noted that some courses have a duration of more than one year. This yields many
pre-assignment of students to classes, which from this point on will be known as existing classes.

The elective courses give the students some influence on the contents of their education. An
elective course can either be an upgrade of a mandatory course to a higher educational level, or it
can be a course with a subject the students has not been taught before. Furthermore the students
have the opportunity to select an elective course as their second priority. I.e. if an elective course
request is not granted, it is possible to assign the student to his second priority course instead.
The priority of elective course requests is however omitted in this article as the test data did not
contain information regarding priority. A solution-approach for the prioritized requests would be
to weight the requests based on their priority. In this article all requests are equally weighted.

5.2.1 Weekly Schedule

In a typical weekly schedule for a high school, each day consists of four modules where teaching
is performed. The ECPP is concerned with assigning so-called blocks to modules in the weekly
schedule. Blocks consist of a given number of classes teaching specific courses. The students
cannot be taught two courses simultaneously, so they must only be part of one class in each block.
Binzer and Kjeldsen (2008) refers to blocks as finished chunks of a time plan, which seems as a
proper description. Figure 5.1 illustrates how five different blocks are assigned to modules.

Figure 5.1: Assigning blocks to modules in a weekly schedule

Chapter 5. Elective Course Planning 98

The elective courses are placed in special blocks in the weekly schedule, e.g. the grey blocks in
Figure 5.1. The mandatory courses will hence be taught in the white blocks in the schedule of
Figure 5.1. As teaching of the mandatory courses and elective courses can be said to be independent
in the weekly schedule, we will in the remainder of the article ignore the problem of planning the
mandatory courses.

Ideally all elective course requests should be fulfilled. However this is usually unrealistic, not
only because of a number of resource limitations of the school, but also due to regulations enforced
by education policies. Some common resources limitations are:

• Availability of classrooms. The number of classrooms at the high school is limited. Further-
more some course subjects may require special classrooms, e.g. physics and music education.

• Availability of teachers. It is obvious that a block cannot contain more physics classes than
the number of physics teachers available. Furthermore teachers are limited to a certain
number of teaching lessons per week.

• Limitations on class sizes.

To model the resource limitations, the concept of subjects is introduced. Let each course be
associated with exactly one subject. Resource limitations can then be modeled by specifying a
maximum number of courses of a given subject in a block. It is hence assumed that no resource is
shared between subjects. This assumption is not too realistic, however it is necessary to compare
our results with the existing meta-heuristic algorithm. In a better modeling approach, constraints
for each resource should be part of the model. Although it should be noted that only few of the
98 obtained datasets actually specifies this maximum number of classes for any subject, so the
negative impact of this assumption is limited.

5.2.2 The Problem

The objective of the ECPP can be stated as follows: Fulfill as many elective course requests as
possible using a minimum number of blocks and a minimum number of classes, and assign all
existing classes to a block. This suggests that the problem is multi objective, where each of the
following is part of the objective:

• Minimize the number of created classes.

• Minimize the number of blocks used for elective courses.

• Maximize the number of elective course requests granted.

Due to compatibility with Binzer and Kjeldsen (2008), it is chosen to keep both the number of
created classes and number of blocks constant. Hence the objective is to maximize the number
of fulfilled student requests, given a choice of number of classes and blocks. A subject for future
research would be to model this with multiple objectives.

Due to resource limitations and limits on the both number of blocks and classes, our mathemat-
ical formulation will not guarantee that students are granted the required courses. Consider the
following case. A majority of the students in their first school year needs to choose either German
B or French B. If however only a single student chooses French B, then this student will in practice
never be granted his request, as no high schools will create a class with just one student. The high
school has a number of options in this scenario:

• Convince the student to select another course, e.g. German B, instead.

• Convince the student to select a different study line where French B is mandatory.

• Assign the student to a class teaching French B, but where all the other students are from a
different common class. Possibly even violate the upper limit on class size to fit the student
in.

99 5.3. Modeling of Elective Course Planning

• The student chooses another high school, which is able to fulfill his requests.

All of these options have a downside which we will not discuss. The point is that these special
scenarios cannot be taken into account by a mathematical model, as the possibilities are very
diverse and wide-ranging.

5.3 Modeling of Elective Course Planning

The ECPP is now formulated as an IP model which aims at maximizing the number of granted
course requests while respecting the conditions. For a particular high school there is a set of
students s ∈ S, a set of courses offered c ∈ C and a set of blocks b ∈ B. Each course belongs
to one of the subjects f ∈ F . The maximum number of classes of each subject f in a block is
given by SMf ∈ Z+. The relationship between course c and subject f is defined by SCc,f . Each
student chooses a set of elective courses which he or she wishes to follow, given by V sc ∈ {0, 1}
which takes value 1 if student s has chosen course c, and zero otherwise. For each class there is
a lower bound and an upper bound on the number of students, Lc ∈ Z and Uc ∈ Z respectively.
Naturally it applies that Lc ≤ Uc. The number of classes which can be established is given by the
number Q. Finally, there is a set of existing classes t ∈ T . Each existing class contain a set of
students Es,t ∈ {0, 1}, which takes value 1 if student s is part of existing class t, and 0 otherwise.
Ht
c ∈ {0, 1} is 1 if existing class t is teaching course c. The decision whether a student s should be

assigned to course c in a block b, is defined by the binary variable xsc,b. The number of necessary

elective course classes to form in block b of course c is given by the integer variable yc,b ∈ Z+.
Finally, the variable utb takes value 1 if existing class t is placed in block b, and 0 otherwise.

The entire MIP model for the ECPP is given in model (5.3.1).

IP Model for the ECPP (5.3.1)

max
∑
c,b,s

xsc,b (5.3.1a)

s.t.
∑
c

xsc,b +
∑
t

Es,t · utb ≤ 1 ∀ b, s (5.3.1b)∑
b

xsc,b ≤ V sc ∀ c, s (5.3.1c)∑
s

xsc,b ≥ Lc · yc,b ∀ c, b (5.3.1d)∑
s

xsc,b ≤ Uc · yc,b ∀ c, b (5.3.1e)∑
c,b

yc,b ≤ Q (5.3.1f)∑
c

SCc,f · yc,b +
∑
c,t

SCc,f ·Ht
c · utb ≤ SMf ∀ b, f, SMf > 0(5.3.1g)∑

b

utb = 1 ∀ t (5.3.1h)

xsc,b ∈ {0, 1} (5.3.1i)
yc,b ∈ N0 (5.3.1j)
utb ∈ {0, 1} (5.3.1k)

The objective simply sums up the number of student requests it was possible to satisfy. The
constraint (5.3.1b) ensures that no student is taught simultaneously in two classes, no matter if
the classes are elective classes or existing classes. Constraint (5.3.1c) ensures that a student is only
granted an elective course if requested, and each request is only granted once. The constraints
(5.3.1d) and (5.3.1e) sets the lower and upper bound respectively on the number of students in
elective course classes. Constraint (5.3.1f) limits the maximal number of elective course classes
which can be offered. Constraint (5.3.1g) ensures that the resource limit on subject f is respected.

Chapter 5. Elective Course Planning 100

Finally constraint (5.3.1h) ensures that all existing classes are placed in a block.
The ECPP has been proven NP-hard with a NP-complete decision problem in both Binzer and

Kjeldsen (2008) and, in a slightly varied form, in Kristiansen and Sørensen (2010), and the problem
contains more than 150.000 binary variables in several of the instances tested. Furthermore the
model also contains a great deal of symmetry, since blocks are interchangeable and students who
request identical courses are also interchangeable. Notice that all requests provide the same
contribution to the objective when granted. See Margot (2003) and Kaibel et al. (2007) regarding
solving large integer linear programs with much symmetry. We can not expect that we are able
to solve the model with a standard IP solver for problem of non-trivial size.

5.4 Solution algorithms

In this section we will describe a Dantzig-Wolfe decomposition of the ECPP and an alternative
approach where Explicit Constraint Branching is applied. Dantzig-Wolfe decomposition is a well-
known approach applied to hard optimization problems (see e.g. Vanderbeck (2000)). For an
introduction to Dantzig-Wolfe decomposition we refer to Dantzig and Wolfe (1960); Desrosiers
and Lübbecke (2005). The ECPP can be Dantzig-Wolfe decomposed in a number of different
ways. Decomposition by classes has been found to be most intuitive, i.e. a subproblem is formed
for each combinations of a course and a block. This decomposition is done partially, such that the
part of the model concerning existing classes is left as-is. A solution to a subproblem is hence a set
of students attending the given course in the given block. It will be shown that this decomposition
approach leads to subproblems which we are able to solve to optimality with a greedy algorithm.

5.4.1 The Master Problem

It is the job of the master problem to select those columns, generated by the subproblems, which
fulfills as many elective course requests as possible, while maintaining the necessary constraints.
Each column corresponds to a number of classes of a specific course given in a specific block. To
enumerate the columns, a new index for each course block pair (c, b), p ∈ Pc,b is used. For each
column a binary variable zpc,b ∈ {0, 1} is representing the usage of the corresponding column. If

a student s is assigned to the course c in block b in column p the constant As,pc,b ∈ {0, 1} is equal
to 1 and otherwise zero. The number of classes which is required for the course c in block b in
column p is given by the constant Dp

c,b ∈ Z+. With these definitions, the full master model (5.4.1)
is created.

Decomposed ECPP - Master Problem (5.4.1)

max
∑
c,b,s,p

As,pc,b · z
p
c,b (5.4.1a)

s.t.
∑
c,p

As,pc,b · z
p
c,b +

∑
t

Es,t · utb ≤ 1 ∀ b, s (5.4.1b)∑
b,p

As,pc,b · z
p
c,b ≤ V sc ∀ c, s (5.4.1c)∑

c,b,p

Dp
c,b · z

p
c,b ≤ Q (5.4.1d)∑

c,p

SCc,f ·Dp
c,b · z

p
c,b +

∑
c,t

SCc,f ·Ht
c · utb ≤ SMf ∀ b, f, SMf > 0(5.4.1e)∑

b

utb = 1 ∀ t (5.4.1f)∑
p

zpc,b ≤ 1 ∀ c, b (5.4.1g)

zpc,b ∈ {0, 1} (5.4.1h)

utb ∈ {0, 1} (5.4.1i)

101 5.4. Solution algorithms

The objective function of the master problem, like objective function (5.3.1a), calculates the
number of satisfied elective course requests. Constraint (5.4.1b) ensures that no student is taught
in two courses in the same block. Constraint (5.4.1c) ensures that an elective course request is only
satisfied once. Constraint (5.4.1d) ensures that no more than Q classes are established. Constraint
(5.4.1e) ensures that the resource limitations of subject f are not exceeded. Constraint (5.4.1f)
ensures that the existing classes are taught. Finally Constraint (5.4.1g) ensures that only one
non-zero zpc,b is applied for each pair (c, b). This is the convexity constraint.

The full master problem (5.4.1) is analogous to the direct model (5.3.1). Unfortunately the
master problem has an exponential number of variables, hence column generation is applied to
solve the relaxed master problem where the zpc,b variables and the utb variables are relaxed such

that zpc,b ∈ [0, 1] and utb ∈ [0, 1]. Now it is possible to start with a restricted master problem

where only a subset of zpc,b variables are used and more variables are only added if necessary.
The subproblem is described in Section 5.4.2, and is is dependent on the dual variables of the
constraints in model (5.4.1), see Table 5.2.

Table 5.2: List of dual variables and the corresponding bounds for the master problem

Constraint Dual variable Bound

(5.4.1b) αsb ≥ 0
(5.4.1c) βsc ≥ 0
(5.4.1d) γ ≥ 0
(5.4.1e) δb,f ≥ 0
(5.4.1f) ηt free
(5.4.1g) φc,b ≥ 0

5.4.2 Subproblem

A subproblem is defined for each combination of a block and a course, i.e. for each (c, b). Given
a course c and a block b the subproblem should find the set of students S′ ∈ S who is taught the
course c in block b with the maximal reduced profits. Notice that several classes of course c may
have to be given to teach the S′ students. Given a fixed block b and a fixed course c the binary
variable xs defines whether student s should be included into the set of students S′. The number
of classes which are required to teach the S′ students is defined by the integer variable y. With
these definitions we can now present the entire subproblem in model (5.4.3).

Decomposed ECPP - Subproblem (5.4.3)

max Cred
c,b = −

∑
s

(αs + βs −W s) · xs − (γ +
∑
f

δf) · y − φ (5.4.3a)

s.t. xs ≤ V s ∀ s (5.4.3b)∑
s

xs ≥ L · y (5.4.3c)∑
s

xs ≤ U · y (5.4.3d)

y ≤ Q (5.4.3e)
SCf · y ≤ SMf ∀ f, SMf > 0 (5.4.3f)
xs ∈ {0, 1} (5.4.3g)
y ∈ N0 (5.4.3h)

The objective function of the subproblem defines the reduced profit for the subproblem, given the
current value of the dual variables αsb, β

s
c , γ, δb,f and φc,b from the master problem. Constraint

Chapter 5. Elective Course Planning 102

(5.4.3b) ensures that only students who request the course c can be enrolled into S′. Constraint
(5.4.3c) ensures that enough students are enrolled to satisfy the minimal class size and constraint
(5.4.3d) ensures that no more students are enrolled than the maximal class size times the number of
classes. Constraint (5.4.3e) ensures that the no more than the maximal number of allowed classes
are created. Finally constraint (5.4.3f) ensures that the resource limitations are not exceeded.

5.4.3 Combinatorial solution of the Subproblem

It will now be shown that subproblem can be solved to optimality using a greedy algorithm with
a time complexity of O(|S| log(|S|)). This is possible due to the uniform knapsack structure of
constraint (5.4.3d), i.e. all students take up the same amount of space in each elective course
class. Therefore a greedy algorithm can be written by simply processing the students in order of
their contribution to the objective. So even though a lot of different subproblems exist, it will be
possible to solve these in an small amount of time. Remember that a course c and a block b is
given explicitly.

The objective of the subproblem is now divided in two parts. I.e. a part defined for each of
the variables xs and y. Let ps define the contribution student s makes to the objective if he is
included in the solution. It is not feasible to include student s in the solution if the student has
not requested course c. This is denoted by a contribution to the objective of −∞.

ps =

{
−(αs + βs −W s) V sc = 1

−∞ Otherwise
(5.4.4)

Likewise r is the contribution to the objective given by an increase of y by one.

r = −γ −
∑
f

δf (5.4.5)

By these definitions the objective can be written as

Cred
c,b =

∑
s

psxs + r · y − φ (5.4.6)

Notice that, by Table 5.2, r ≤ 0, whereas ps has unrestricted sign. This entails the following
observation: The objective of the subproblem is to find those students which maximizes

∑
s p

s,
while y should be selected as low as possible, i.e. the students should be fitted into as large classes
as possible. The maximal number of classes N which can be created for a course c and a block b
is given by equation (5.4.7).

N = min
(
Q,SMf̄

)
(5.4.7)

Given these definitions we are now ready to present a combinatorial algorithm for finding the
optimal set of students Sopt which corresponds to the optimal solution of the subproblem, see
Algorithm 8. The algorithm gradually builds up a set of students Sopt which constitutes an
optimal solution. First all the students with positive contributions ps are included, line 5-7. If the
number of student in the class S′ is below the lower class limit, extra students are added in line
8-13. Finally it is checked if the group of students in S′ will improve the current solution Sopt, if

103 5.4. Solution algorithms

yes S′ is included into the solution otherwise the algorithm terminates.

Algorithm 8: Revised Subproblem (c, b)

Input: ps, r
Output: Optimal set S′

Let s̄ denotes the student with highest ps value, not already included in Sopt ∪ S′1

y = 0, Sopt = {}2

while y < N do3

S′ = {}4

while |S′| < U and p(s̄) > 0 do5

Add s̄ to S′6

Update s̄7

if |S′| < L then8

Calculate n = |Sopt|+ |S′| − L · (y + 1)9

Let ŝ denotes the student with highest ps value, not included in Sopt ∪ S′10

while n < 0 do11

Add ŝ to S′12

Update n and ŝ13

if
∑
s∈S′ p

s + r > 0 then14

Sopt = Sopt ∪ S′15

y = y + 116

else17

STOP18

if
∑
s∈S′ p

s + r − φ > 0 then19

Add column of Sopt to master problem20

5.4.4 Solving the ECPP by Column Generation

The Dantzig-Wolfe decomposition of the ECPP, defined by the relaxed master problem from
model (5.4.1) and the subproblem model (5.4.3), is solved using the standard Column Generation
framework (see e.g. Barnhart et al. (1998)). A simple heuristic is used to find the initial feasible
solution. For each course/block pair, create a column which contains all the students which have
elected this course. As all constraints of the decomposed part of the problem are set packing
constraints, no columns are needed to ensure feasibility.

5.4.5 Explicit Constraint Branching

Explicit Constraint Branching (ECB) is a rather new technique used to improve the performance
of Branch and Bound algorithms. The idea is to divide the set of variables into smaller subsets
and explicitly add constraints to the problem, and possible also new variables. These additions
equip the model with additional structure which may provide superior branching. The approach
is generally used when the problem structure required for general constraint branching is lacking.
ECB is originally developed for standard MIP solving, see Appleget and Wood (2000).

Suppose a generic MIP is solved, with the integer variable xj ≥ 0, j ∈ J . Then let J ′ ⊆ J be a
subset of J and define integer coefficient αj for each j ∈ J ′ such that

∑
j αjxj must be integer in

any solution to the MIP. A branching scheme to this problem is derived from

∑
j∈J′

αjxj ≤ m or
∑
j∈J′

αjxj ≥ m+ 1 (5.4.9)

where m is any integer. This implies the following steps, which constitute ECB.

Chapter 5. Elective Course Planning 104

• Define the subsets of Jk of the index set J of integer variables.

• Define the integer coefficients αk,j for each k and for each j ∈ Jk.

• Define the general integer ECB variables yk for each k.

• Add the ECB constraints.∑
j∈Jk

αk,jxj − yk = 0 ∀ k (5.4.10)

Constraint branching is then performed by standard variable branching on the variable yk. It
should be mentioned that the subsets Jk can even be defined dynamically such that these are
updated in each iteration of the branching procedure. The idea is that the variables should be
roughly evenly divided such that in each subset there is equally many fractional variables, variables
with value zero and variables with value one. Moreover if none of

∑
j∈Jk xj is fractional then one

or some of the fractional variables should be moved between the subsets such that every sum is
fractional.

Keeping the subsets Jk static throughout the process is known as static ECB. The following is
the basic ECB constraint,

∑
j∈J

xj − yj = 0 (5.4.11)

which is simply defined over the entire set of variables J . In principle the ECB constraints can
be defined over the already existing indices in the model. This approach is applied to the basic
ECPP model (5.3.1), by the following steps:

• Define static ECB-constraint by∑
b

yc,b − oc = 0 ∀c (5.4.12)

where the ECB variable to be branched on is oc ∈ N0. I.e. oc is the number of classes
teaching course c. According to Appleget and Wood (2000) branching over this kind of
variable breaks some of the symmetry of the model.

• Solve the model with a standard MIP solver with branching priority for oc set to highest
among all variables.

Using ECB in a Branch and Price Context

ECB can indeed also be used in a Branch and Price framework, where branching is performed
on the master problem. Again we choose to apply constraints which are defined over the already
existing indices. For instance the following,

ρ
c
≤
∑
b,p

Dp
c,bz

p
c,b ≤ ρc, ∀c (5.4.13)

which defines a lower and an upper bound on the total number of classes teaching course c. Initially
ρ
c

= 0 and ρc = Q and branching is performed by changing these bounds. Suppose that for a
given c expression (5.4.13) takes the fractional value l. The tree is now split by the two conditions

ρ
c

= dle and ρc = Q (5.4.14)

ρ
c

= 0 and ρc = blc (5.4.15)

105 5.5. Results

which excludes the fractional solution from the feasible area, but maintains all integer solution.
Notice that condition (5.4.14) will potentially result in an infeasible MP. Therefore dummy columns
should be added such that feasibility is maintained. Another constraint which could be used exactly
the same way is the following∑

c,p

Dp
c,bz

p
c,b − rb = 0, ∀b (5.4.16)

which is the total number of classes being taught in each block. Yet another is∑
b,s,p

Ap,sc,bz
p
c,b − %c = 0, ∀c (5.4.17)

which is the total number of student being taught course c. A Branch and Price algorithm using
ECB will be tested in Section 5.5. Note that even if all ECB variables are integer it is not
guaranteed that the solution is in fact integral. Therefore a Branch and Price algorithm using this
form of ECB should also implement a second priority branching scheme, such as standard variable
branching. Note that imposing ECB constraints results in very little modification of the DWD.
The additional constraints are imposed on the MP, which results in new dual variables. However
it is trivial to incorporate this new dual variable in the revised subproblem. E.g. the dual variable
of constraint 5.4.13 is simply added to equation (5.4.5).

5.5 Results

In the previous sections we have suggested four different algorithms. In the initial tests the Branch-
and-Price algorithm without the ECB constraints had inferior performance and will hence not be
further tested. The remaining three optimization algorithms which we will test are:

• Solving the basic model (5.3.1) using a standard MIP solver.

• Solving the basic model (5.3.1) with both the basic ECB constraint (5.4.11) and constraint
(5.4.12), using a standard MIP solver.

• Branch and Price algorithm using equations (5.4.13) and (5.4.16) in an ECB branching
scheme, as described in Section 5.4.5.

The three algorithms are tested on datasets from 98 Danish high schools for the year 2008. The cur-
rent version of the high school administration system Lectio applies the meta-heuristic developed
by Binzer and Kjeldsen (2008). Given that the three suggested algorithms can achieve optimal
results, it is now possible to evaluate the efficiency of the meta-heuristic in Lectio. Tests are ran
on a notebook equipped with an Intel Core2 T7200 CPU @ 2 GHz, 4 GB of RAM, and running
Windows Vista 32bit. This particular CPU has 2 cores, which is irrelevant as no parallelization
has been implemented. The BnP algorithms have been implemented in Microsoft Visual C# using
.NET framework version 3.5. The direct models have been implemented in GAMS 22.6.149. For
all tests CPLEX 10.0 has been used as solver.

The number of elective course requests which can be fulfilled depends upon the choice of number
of blocks and the choice of number of classes. These quantities are attempted selected such that
they both are somewhat binding. In Binzer and Kjeldsen (2008) an inspection of dual bounds with
respect to number of elective classes is performed. The conclusion is that increasing the number
of elective course classes allows for granting more course requests, which is somewhat obvious.
However if the number of classes is selected very high, the elective course planning reduces into
the more simple matter of assigning students to blocks. A similar analysis could be made for
the choice of number of blocks. This motivates the following choice of the maximum number of
elective course classes available, see equation (5.5.1).

Chapter 5. Elective Course Planning 106

Q =

⌈∑
c

(∑
s V

s
c

Uc

)⌉
(5.5.1)

A choice on the number of blocks should also be made. The reason why |B| is not predefined is
because the high schools usually select this quantity using an ad-hoc procedure. The high school
administration will usually like to see solutions for several values of |B|. In the following we
attempt to derive a formula which selects a tight value for |B|. A tight value is preferred, as it
provides more interesting results. Let k1 denote the highest number of existing classes which a
single student is attending,

k1 = max
s

∑
t

Et,s (5.5.2)

At least k1 blocks should always be established to ensure feasibility. Let k2 denote the rounded
average number of courses pr. student,

k2 = Round

(∑
c,s,t(V

s
c + Es,t)

|S|

)
(5.5.3)

By inspection of the data, selecting the number of blocks equal to k2 yields an extremely tight
problem. Therefore it seems appropriate to always select a slightly higher value than this. We
have chosen to select the number of blocks using equation (5.5.4), such that the number of blocks
can never be lower than k2 + 1.

|B| = max(k1, k2 + 1) (5.5.4)

5.5.1 Performance

Table 5.5 contains the average running time and the gap for all problems. It should be noted that
for those problems not solved within one hour, 3600s is used for the calculation of the average
time. The table shows that in average Direct/w ECB performs best and BnP/w ECB performs
worst. Furthermore it is seen that Direct/w ECB in no cases provided a gap worse than 5%,
which is quite low. The BnP/w ECB generally performs bad, and even worse than the pure direct
model, which is disappointing.

Table 5.5: Running time and gaps for the algorithms

Direct Direct/w ECB BnP/w ECB

Average time 1373s 1121s 1523s
Average gap 0.9% 0.6% 2.8%∗

Max gap 7.0% 5.0% 29.0%
* Three problems did not result in a gap within one hour

Table 5.6 contains the percentage of problems solved to optimality within different time spans.
The number of solved problems are indicated in brackets.

The table also shows that Direct/w ECB clearly performs best, solving 50% of the data instances
in less than a minute.

Table 5.8 shows a comparison between the meta-heuristic which is currently applied to the ECPP
and the direct method with ECB from this paper. It is seen that the exact method does provide
a improvement. Even though the average difference is small it must be considered interesting
for the high schools to get access to a better approach. For some schools an improvement of
10 classes could be found, and for these high schools the accessibility for a better solution must

107 5.5. Results

Table 5.6: Percentage of solved problems

Time(s) Direct Direct /w ECB BnP /w ECB

¡ 60 45.9 % (45) 50.0 % (49) 35.7 % (35)
60 - 600 12.2 % (12) 12.2 % (12) 19.4 % (19)

600 - 1800 6.1 % (6) 8.2 % (8) 3.1 % (4)
1800 - 3600 1.0 % (1) 3.1 % (3) 1.0 % (1)

¿ 3600∗ 34.7 % (34) 26.5 % (26) 31.6 % (39)
* Problems not solved to optimality within one hour

Table 5.7: Results for a given set of real-life problems at Danish high schools.

No.of No.of No.of No. Assigned Assigned
student requests courses blocks Objective classes requests

Vejen 382 586 29 3 69572 36 586
Silkeborg 927 1789 65 5 208203 77 1786
Falkoner 421 1080 49 4 127690 66 1080
Vordingborg 415 1462 61 5 182790 68 1462
Alssund 385 650 31 5 64271 34 645
Holstebro 345 567 18 5 56700 29 567
Frederikssund 159 273 18 4 28690 18 273

Table 5.8: Comparison between Direct /w ECB and the Meta-heuristic solver.

Direct /w ECB Meta-heuristic Abs. diff Rel. diff

Average 27 28 1.1 2.9

be considered very important. It should be noted that the running time for the Meta-heuristic is
roughly 2 minutes whereas the running time for the Direct method with ECB is one hour. However
in empirical experiments performed in Kristiansen and Sørensen (2010) it is shown that for a small
sample of datasets, Direct /w ECB also performs better with a running time of 2 minutes. In the
majority of cases, a running time of 2 minutes actually provided the same best solution as with a
running time of 1 hour.

5.5.2 Extension

It is preferable if elective courses classes consist of students from the same common classes, as this
entails several benefits from a social point of view. This is done by extending the ECPP such that
it minimizes the total number of represented common classes while simultaneously maximizing the
number of granted elective course requests. The extension is added using the ε-constraint method
(Ehrgott (2000)), such that the problem is multi-objective. Given the result of the Direct/w
ECB algorithm, an extended model is formulated, using a new binary variable vkc,b ∈ {0, 1}. This
variable states whether any student from common class k is taught course c in block b. The
objective for the new model is then simply to minimize the total sum of common classes, see
equation (5.5.9).

min
∑
c

∑
b

∑
k

vkc,b (5.5.9)

Chapter 5. Elective Course Planning 108

Instead of the old objective function (5.3.1a), a new constraint on the number of granted elective
class requests is included, see equation (5.5.10).∑

c

∑
b

∑
s

W s
c · xsc,b ≥ ε (5.5.10)

Finally a link between the vkc,b variables and the xsc,b variables is given, see equation (5.5.11).

The matrix Gs,k is an incidence matrix which is 1 if student s is part of common class k and 0
otherwise. The following constraint ensures that if one common class is represented in a course in
a block, it is counted.

vkc,b ≥ xsc,b ∀ c, b, s, k,Gs,k = 1 (5.5.11)

The parameter ε defines the acceptable number of granted elective courses, compared to the
optimal solution of direct model, see equation (5.5.12).

ε = R ·
∑
c,b,s

x̄sc,b (5.5.12)

By adjusting the ratio R to different values we generate the results in Table 5.13. The closer to 1
the diverge percentage R is the less the extended solution differs from the original solution. The
table lists the objective solutions. The total number of represented common classes is shown in
brackets. Basic denotes the solution from the model without use of the extension.

Table 5.13: Performance test of common class extension

Objective

ID Basic R = 1.00 R = 0.95 R = 0.90 R = 0.75 R = 0.50

Avedøre 347 (54) 347 (39) 330 (32) 313 (29) 263 (21) 174 (12)
Esbjerg G. 417 (85) 417 (46) 397 (36)∗ 379 (33)∗ 313 (24) 209 (14)
Metropolitan 419 (65) 419 (52)∗ 399 (42)∗ 378 (37)∗ 315 (28) 213 (16)
Nordsjællands 155 (24) 155 (20) 148 (16) 140 (15) 117 (11) 78 (6)
Nærum 972 (190) 972 (115) 924 (89) 875 (76) 729 (52) 486 (29)
Rysensteen 313 (31) 313 (21)∗ 298 (19)∗ 282 (17) 237 (14) 159 (8)
Silkeborg 669 (195) 669 (111)∗ 636 (85)∗ 604 (72) 502 (46) 339 (22)
Skanderborg 384 (47) 384 (39) 365 (24) 346 (20) 288 (13) 201 (8)
Stenhus 1056(229) 1056 (144)∗ 1004 (109)∗ 951 (92) 792 (63) 528 (33)
Støvring 334 (58) 334 (36) 318 (31) 301 (27) 251 (19) 167 (11)
Aalborg 880 (182) 880 (139)∗ 836 (103)∗ 792 (88) 660 (60) 440 (33)
Aalborghus 370 (75) 370 (49) 352 (38) 334 (33) 280 (24) 189 (13)

Average 526 (103) 526 (68) 501 (52) 475 (45) 396 (31) 265 (17)
* Not solved to optimality within one hour

It is clearly seen that if the ratio R is low, fewer elective course requests are granted and less
common classes are represented. The most interesting result from this test are the difference
between Basic and R = 1.0. The number of granted elective course requests is the same, but there
is a big difference in the number of represented common classes. On average 103 common classes
are represented using the basic ECPP whereas with a diverge percentage of 1 only 68 common
classes are used. An improvement of 34%. For some of the larger data sets the improvement are
more than 40%. The reason that the extended model is able to improve the solution so significantly
is due to symmetry. As mentioned previously the ECPP contains a great deal of symmetry. The
extension takes advantage of this to swap students such that the number of represented common
classes are minimized while the number of granted requests remains high.

109 5.6. Conclusion

5.6 Conclusion

In this article we have demonstrated how a critical planning problem for the Danish high schools
can be optimized by applying three different approaches; Direct MIP approach, MIP with Explicit
Constraint Branching and Branch-and-Price with Explicit Constraint Branching. The algorithms
are tested on 98 data sets from different high schools of school-year 2008. The tests show that
Explicit Constraint Branching is an interesting tool. Furthermore, the tests reveal that the current
meta-heuristic algorithm can be significantly improved. Furthermore, we have shown that an
important secondary objective, minimization of the number of common classes, can improve the
solution substantially using the ε-constraint method. Finally it should be mentioned that currently
the approaches in this article are not implemented in any software tools accessible for the Danish
high schools. However, showing that the elective course planning can be improved has indeed
raised interest among several high schools.

Bibliography 110

Bibliography

J. Appleget and R. Wood. Explicit-Constraint Branching for Solving Mixed-Integer Programs,
chapter 14, pages 245–262. Springer Netherlands, 2000.

C. Barnhart, E. Johnson, G. Nemhauser, M. Savelsbergh, and P. Vance. Branch-and-price: Col-
umn generation for solving huge integer programs. Operations Research, 46:316–329, March
1998. ISSN 0030-364X.

S. P. Binzer and S. H. Kjeldsen. Metaheuristics for high school planning. Master’s thesis, IMM,
DTU, 2008.

D. Costa. A tabu search algorithm for computing an operational timetable. European Journal of
Operational Research, 76(1):98 – 110, 1994. ISSN 0377-2217.

G. Dantzig and P. Wolfe. Decomposition principle for linear programs. Operations Research, 8
(1):101–111, 1960.

D. de Werra. An introduction to timetabling. European Journal of Operational Research, 19(2):
151 – 162, 1985. ISSN 0377-2217.

J. Desrosiers and M. Lübbecke. Selected topics in column generation. G–2002–64, 34:1–34, 2005.

M. Ehrgott. Multicriteria Optimization. Springer, 2000.

W. Erben and J. Keppler. A genetic algorithm solving a weekly course-timetabling problem. In
E. Burke and P. Ross, editors, Practice and Theory of Automated Timetabling, volume 1153 of
Lecture Notes in Computer Science, pages 198–211. Springer Berlin / Heidelberg, 1996.

L. D. Gaspero, A. Schaerf, and B. McCollum. The second international timetabling competition
(itc-2007): Curriculum-based course timetabling (track 3). Technical report, School of Electron-
ics, Electrical Engineering and Computer Science, Queen’s University SARC Building, Belfast,
United Kingdom, 2007.

V. Kaibel, M. Peinhardt, and M. Pfetsch. Orbitopal fixing. In M. Fischetti and D. Williamson,
editors, Integer Programming and Combinatorial Optimization, volume 4513 of Lecture Notes
in Computer Science, pages 74–88. Springer Berlin / Heidelberg, 2007.

S. Kristiansen and M. Sørensen. The class packing problem. Master’s thesis, DTU-Management,
2010.

G. Laporte and S. Desroches. The problem of assigning students to course sections in a large
engineering school. Computers & Operations Research, 13(4):387 – 394, 1986. ISSN 0305-0548.

R. Lewis, B. Paechter, and B. McCollum. Post enrolment based course timetabling: A description
of the problem model used for track two of the second international timetabling competition.
Cardiff Accounting and Finance Working Papers A2007/3, Cardiff University, Cardiff Business
School, Accounting and Finance Section, 2007.

F. Margot. Exploiting orbits in symmetric ilp. Mathematical Programming, 98:3–21, 2003. ISSN
0025-5610.

T. Müller. Itc2007 solver description: a hybrid approach. Annals of Operations Research, 172:
429–446, 2009. ISSN 0254-5330.

T. Müller and K. Murray. Comprehensive approach to student sectioning. Annals of Operations
Research, 181:249–269, 2010. ISSN 0254-5330.

T. Müller, K. Murray, and S. Schluttenhofer. University course timetabling & student sectioning
system, 2007. Space Management and Academic Scheduling, Purdue University.

111 Bibliography

H. Rudova and K. Murray. University course timetabling with soft constraints. In Practice And
Theory of Automated Timetabling IV., pages 310–328, 2003.

A. Tripathy. School timetabling–a case in large binary integer linear programming. Management
Science, 30(12):1473–1489, 1984.

F. Vanderbeck. On dantzig-wolfe decomposition in integer programming and ways to perform
branching in a branch-and-price algorithm. Operations Research, 48:111–128, January 2000.
ISSN 0030-364X.

Chapter 6

Elective Course Student
Sectioning at Danish High Schools

Simon Kristiansen∗† Thomas R. Stidsen∗

∗Department of Management Engineering, Technical University of Denmark,
Produktionstorvet, Building 426, DK-2800 Kgs. Lyngby, Denmark

sikr@dtu.dk, thst@dtu.dk

† MaCom A/S
Vesterbrogade 48, 1., DK-1620 Copenhagen V, Denmark

1

Abstract The Elective Course Student Sectioning (ECSS) problem is a yearly recurrent planning

problem at the Danish high schools. The problem is of assigning students to elective classes given their

requests such that as many requests are fulfilled and the violation of the soft constraints is minimized.

This paper presents an adaptive large neighborhood search heuristic for the ESCC. The algorithm is

applied to 80 real-life instances from Danish high schools and compared with solutions found by using

the state-of-the-art MIP solver Gurobi. The algorithm has been implemented in the commercial product

Lectio, and is thereby available for approximately 200 high schools in Denmark.

Keywords: Education Timetabling; High School Timetabling; Student Sectioning; Elective
Course Planning; Adaptive Large Neighborhood Search; Integer Programming

6.1 Introduction

The purpose of this article is to describe the Elective Course Student Sectioning (ECSS) problem
and the solution methods used to solve it. ECSS serves as a pre-processing planning problem
for the actual high school timetabling in Denmark and is an important yearly recurrent planning
problem. The problem is concerned with assigning students to elective classes given their requests,
subject to various soft and hard constraints.

This paper is written in collaboration with the Danish software company MaCom A/S, whose
main product is the cloud-based high school administration system Lectio. Lectio is used by the
majority of all the Danish high schools. Due to the diversity of high schools, it is very important
that the problem is formulated such that it covers all the high schools and such that the solution
approach performs well for problems of different sizes and format.

1Accepted for publication in the special issue of Annals of Operations Research in collaboration with PATAT2012
- 9th International Conference on the Practice and Theory of Automated Timetabling. (2013)

113

Chapter 6. Elective Course Student Sectioning at Danish High Schools 114

In Section 6.2 the ECSS is described in detail with a literature review given in Section 6.3. In
Section 6.4 the problem is formulated as a Mixed Integer Programming problem and the complexity
of the problem is proven. The solution approach for the problem is explained in Section 6.5.
Parameter tuning and the performance results are presented in Section 6.7 and 6.8, respectively.
Finally Section 6.9 rounds up and concludes.

6.2 Problem Description

It takes three years to complete a high school education in Denmark and every year the high
schools need to create a timetable for the following year, hence they also need to solve the ECSS.
Each year the students request some elective courses which they want to attend along with their
mandatory courses. The problem is then to assign the students to elective classes given their
requests and assign these classes to some time slots. The main goal of the ECSS is to fulfill as
many of the students’ elective course requests as possible while minimizing the number of classes
created. The problem is of both educational and economical nature. First of all, the students
are planning their high school education such that they have the necessary merits for applying
for a university education afterwards. If a student is not granted his requests he might miss a
merit to get admission to his desired education. Secondly if a student is not granted his request,
it might entail that the student changes high school or drops out, and this imposes some economic
issues for the high school. The Danish high schools are self-governing and get a fee from the state
based on the number of students which finish an education at the high school, i.e. a significant
part of the high schools income is based on the students. It should be noted that the students
in Denmark can freely choose between high schools. Another aspect of the economic issues is the
creation of classes. For each created class there is a cost of approximately 27.000e p.a., i.e. it
is not enough to grant all the requests it is also very important for the high schools to keep the
number of created classes at a minimum.

A typically weekly schedule for a Danish high school consists of five days, each day divided into
a given number of time slots where the teaching is performed. Each time slot then consists of a
number of lectures and a student can of course only attend one course in each time slot. There
exist two types of time slots in the Danish high schools. Time slots for the mandatory courses
and time slots for the elective courses. This is due to the mandatory courses often being taught
in cohorts of students, i.e. a student of a given cohort has almost all his mandatory courses with
the fellow students from the same cohort. The elective courses are however mixed between these
cohorts, and hence it is more beneficial for the administration to have the elective classes in some
separate time slots. Figure 6.1 is an example of a typical weekly schedule containing five different
time slots for elective courses.

Monday Tuesday Wednesday Thursday Friday

8:15
9:45

10:00
11:30

12:00
13:30

13:45
15:15

Lunch break

Time1

Time2

Time3

Time4 Time5

Figure 6.1: An example of a weekly schedule with four time slots each day. Five time slots (gray colored)
are reserved for the elective courses whereas the mandatory courses are placed in remaining time slots
(white colored)

The time slots for elective courses are often chosen to be placed in the beginning or in the end of

115 6.3. Related Literatures

a day. This is to minimize the possibility of creating idle slots for students when creating the entire
timetable. Due to the dividing of the time slots into elective and mandatory, the elective course
planning can be seen as an independent part of the weekly schedule and therefore the mandatory
courses and their respective time slots are neglected in the remainder of this article. The problem
of assigning the mandatory courses is known as the classical High School Timetabling. (See e.g.
Sørensen et al. (2012) and Post et al. (2012))

A student has the possibility to make up to five first priority requests and declare some second
priorities if one of the first is not granted. Ideally all the students should be assigned their first
priorities for elective course requests. If a student is not granted his first priority requests, it
would be preferable if his second priority request is granted. However it should be a noted that
the outcome of the ECSS is an algorithm used in decision support software. If a student is not
granted one of his first priority requests, the high school administration wants to have a dialog
with the given student before assigning him to one of his second priorities. Hence we do only
consider the first priority requests of the students.

6.3 Related Literatures

As mentioned the ECSS serves as a pre-processing planning problem for High School Timetabling
(HSTT). The last couple of years more research have been done within HSTT and the third
International Timetabling Competition (ITC2011) treats the HSTT (see e.g. Post et al. (2012)
and Sørensen et al. (2012)). The ECSS is however not a very well researched area. Compared to
the problem of ITC2011, the ECSS is the matter of which students should be in which elective class,
whereas the high school timetabling is concerned with the construction of a timetable according to
some predefined classes. Many articles have been made within education timetabling and within
this research area ECSS is most related to Student Sectioning (Carter and Laporte (1998); Schaerf
(1999); Burke and Petrovic (2002); Pillay (2010)).

The literature on Student Sectioning is however mostly concerned the universities, e.g. Erben
and Keppler (1996); Rudova and Murray (2003); Müller and Murray (2010). In Müller and Murray
(2010) University Course Timetabling and Student Sectioning are combined and solved using the
Iterative Forward Search algorithm. Carter (2001) describes demand-driven timetabling where
student selections of courses are utilized to create a timetable that satisfies as many requests as
possible. In de Haan et al. (2007) optional subjects for the students are used when constructing
the high school timetabling in the Netherlands, and cluster schemes are created to maintain the
students’ optional courses. The optional subjects are similar to the elective courses of this paper.

Due to reform changes in the Danish education sector in 2007, the high schools in Denmark
became aware of the need of sufficient solution tools for their planning problems, hence also the
ECSS. The ECSS for the Danish high schools was first described in Kristiansen et al. (2011).
The article gives a good overview of the problem, and Dantzig-Wolfe decomposition and explicit
constraint branching is used for solving the problem. The approach however was only created to
clarify the performance of an earlier solution approach used in the software Lectio, and was hence
never released and the model misses some of the restriction which is incorporated in this article.
It did however prove that the previous solution method for the ECSS was inefficient and that
it lacked some restrictions including the fairness distribution which is described in the following
section.

6.4 Integer Programming Model

In the following the ECSS is formulated as a MIP model. The problem is a maximization problem
which aims at maximizing the number of granted elective course requests while minimizing the
violation of soft constraints and respecting the hard constraints. For the ECSS the high schools
have a set of students S, a set of offered courses E , a set of classes C and a set of time slots T . The
parameter Dc,e ∈ {0, 1} denotes whether elective class c is teaching course e and parameter Re,s

Chapter 6. Elective Course Student Sectioning at Danish High Schools 116

∈ {0, 1} indicates whether student s has requested elective course e or not. The decision whether
student s is assigned elective class c in time slot t is defined by the binary variable xs,c,t ∈ {0, 1},
whereas the binary variable yc,t ∈ {0, 1} takes value 1 if elective class c is assigned time slot t,
zero otherwise. ECSS is a timetabling problem and it belongs to the class of NP-hard problems
Welsh and Powell (1967). In the following the MIP formulation is divided into small sections.

6.4.1 Availabilities

It is not allowed to assign a student to a class of a course he has not requested, and it is obviously
not possible to assign a student to more than one elective class in each time slot. Neither is it
possible to assign a elective class to more than one time slot. The following constraints make sure
that these restrictions are maintained.∑

c,t

Dc,e · xs,c,t ≤ Re,s ∀ e, s (6.4.1)

∑
c

xs,c,t ≤ 1 ∀ t, s (6.4.2)∑
t

yc,t ≤ 1 ∀ c (6.4.3)

As the elective courses can have duration of more than one year some of the elective courses may
be a continuation from the previous school year. For these elective classes the students are locked,
i.e. the students which were assigned the elective class the previous year must be assigned the
class this year also. Let Ac,s ∈ {0, 1} take value 1 if student s is locked to elective class c, zero
otherwise. The following constraints are then imposed.

xs,c,t ≤ yc,t ∀ c, t, s, Ac,s = 0 (6.4.4)

xs,c,t = yc,t ∀ c, t, s, Ac,s = 1 (6.4.5)

6.4.2 Resource Limitations

There exists some resource limitation when solving the ECSS. Firstly, it is determined by the
Danish educational legislation, that the class size in high schools may not exceed 28 students.
This is to make sure that the students have the best possibly environment. However some elective
classes might have an even more restricted upper limit. For classes where the students are locked,
the upper class size is equal to the number of locked students, such that no new students can be
assigned to the given class. Let the parameter Uc ∈ N denote the upper class size for elective class
c. ∑

s

xs,c,t ≤ Uc ∀ c, t (6.4.6)

Furthermore, as the price for creating an elective class is approximately 27.000e p.a., a high
school often has an upper limit on how many classes they can afford to create each year. Let P
∈ N be the maximum number of classes which can be created in total.∑

c,t

yc,t ≤ P (6.4.7)

The limitation of classes which can be created of a given course is given by the set of classes C
and the parameter Dc,e.

There also exists some resource limitation on the number of elective classes with the same
subject which can be taught in the same time slot. Let F be the set of course subjects of a high
school. Each course is teaching a subjects, such as physics or chemistry, given by Kc,f ∈ {0, 1}.
Due to the limited resources on e.g. rooms and equipment, it is often not possible to assign all

117 6.4. Integer Programming Model

classes of a course to the same given time slot, e.g. if a high schools only have x physic class
rooms, it is not possible to assign more than x physic classes to a given time slot. Let Bf,t ∈ N
be the maximum number of elective classes of subject f which can be taught in time slot t. This
imposes the following constraints∑

c

Kc,f · yc,t ≤ Bf,t ∀ f, t, Bf,t > 0 (6.4.8)

6.4.3 Class Positions

Some elective classes cannot be assigned to the same time slot, e.g. two courses with the same
preassigned teacher are not allowed to share the same time slot. Let the parameter Jc,c′ ∈ {0, 1}
take value 1 if the elective classes c and c’ cannot be in the same time slot, zero otherwise. The
constraints are given by

yc,t + yc′,t ≤ 1 ∀ c, c′, t, Jc,c′ = 1 (6.4.9)

On the contrary some courses are forced to be placed in the same time slot. Let Le,e′ ∈ {0, 1}
denote whether classes of course e should be assigned the same time as classes of course e’. As
not all elective classes are being assigned to a time slot, a new variable is introduced such that
only the assigned classes are considered for this constraint. Let the binary variable he,t ∈ {0, 1},
take value 1 if course e is placed in time slot t. We then get the following constraints.

yc,t ≤ Dc,e · he,t ∀ c, e, t (6.4.10)

he,t = he,t′ ∀ e, e′, t, Le,e′ = 1 (6.4.11)∑
e

he,t ≤ 1 ∀, e, e′, t, Le,e′ = 1 (6.4.12)

6.4.4 Cohorts

When a student is enrolled at a high school he is assigned to a cohort. Many of the mandatory
courses in the Danish high schools are taught in classes exactly equal to a cohort. It has the
advantage that the students in a cohort are quite familiar with each other, and it makes it easier
to collaborate between mandatory classes of different subject, as the students attending the two
classes are the same. Hence it would also be beneficial to have as few cohorts representing in each
elective class. As the electives can be selected by all the students it is most unlikely that only
students from one cohort have requested a given elective. Figure 6.13 gives an example of the
handling of cohorts.

We want to minimize the number of cohorts represented in each created elective class. Let Q be
the set of cohorts for a high school, and let Is,q ∈ {0, 1} denotes whether student s is part of
cohort q or not. The decision variable zc,q ∈ {0, 1} indicates whether cohort q is represented in
elective class c, or not. There is no need to minimize the number of cohort represented in classes
where the students are locked, as these cannot be improved. Let parameter Ac ∈ {0, 1} denotes
whether elective class c is locked or not. This gives the following constraints.∑

t

Is,q · xs,c,t ≤ zc,q ∀ c, q, s, Ac = 0 (6.4.14)

Chapter 6. Elective Course Student Sectioning at Danish High Schools 118

Physics A (55 requests)
15 from 3A, 15 from 3B
11 from 3C, 12 from 3D

PhyA1(28)
11 from 3A
5 from 3B
8 from 3C
4 from 3D

PhyA2(27)
4 from 3A
10 from 3B
5 from 3C
8 from 3D

(a) Two classes with four cohorts represented
in each class. All possible cohorts are repre-
sented in both class.

Physics A (55 requests)
15 from 3A, 15 from 3B
11 from 3C, 12 from 3D

PhyA1(28)
15 from 3A
12 from 3D

PhyA2(27)
15 from 3B
11 from 3C

(b) Two classes with only two cohorts repre-
sented in each. Neither of the cohorts is repre-
sented in more than one class.

Figure 6.13: Two examples of representing cohorts in classes of same course. 55 students from four
different cohorts have requested Physics A as elective course. With an upper class size of 28, two classes
are needed to fulfill all requests. Figure 6.13(a) is the worst possible scenario where all possible cohorts
are represented in each class, whereas 6.13(b) is the best solution where only two cohorts are represented
in each class, i.e. no cohort is represented more than once.

6.4.5 Even Distribution

When having two classes of same course, it is then highly appreciated to have approximately the
same amount of students attending both classes. This is due to fairness of both the students and
the teachers. See Figure 6.15 for an illustration of two different distributions of students in two
classes of same course.

Physics A
(40 requests)

PhyA1
(28)

PhyA2
(12)

(a) The worst distribution

Physics A
(40 requests)

PhyA1
(20)

PhyA2
(20)

(b) The best distribution

Figure 6.15: Two examples of distribution of students in two classes of same course. 40 students have
requested Physics A as elective course and there is an upper class size of 28, i.e. two classes are needed
to fulfill all requests. Figure 6.15(a) is the worst possible scenario on distribution the students into the
classes, whereas 6.15(b) is the best.

We want to minimize the difference between the numbers of students in classes of same course.
Only unlocked assigned classes are considered. Let variable wc,c′ ∈ [0, 1] be the ratio of the
difference between c and c’, and let gc,c′ ∈ [0, 1] be a slack variable helping with determination
of the difference ratio. Let ρ(i) denote the ordinal number of i. The following constraints are
imposed

∑
t,s

xs,c,t −
∑
t,s

xs,c′,t ≤ gc,c′ · Uc ∀ c, c′, Dc,e = Dc′,e = 1,
Ac = Ac′ = 0, ρ(c) < ρ(c′) (6.4.16)

119 6.4. Integer Programming Model

∑
t,s

xs,c′,t −
∑
t,s

xs,c,t ≤ gc,c′ · Uc ∀ c, c′, Dc,e = Dc′,e = 1,
Ac = Ac′ = 0, ρ(c) < ρ(c′) (6.4.17)∑

t

(yc,t + yc′,t)− 2 + gc,c′ ≤ wc,c′ ∀ c, c′, Dc,e = Dc′,e = 1,
Ac = Ac′ = 0, ρ(c) < ρ(c′) (6.4.18)

(6.4.19)

6.4.6 Objective Function

ECSS is a maximization problem with a four layered objective. Firstly, and most important, we
want to maximize the number of granted requests. The three other parts are minimization parts
of the objective. We want to minimize the number of created elective classes and the number of
cohorts represented in each elective class. And we want to minimize the difference between the
numbers of students in classes of same course.∑

c,t,s

αc,s · xs,c,t −
∑
c,t

βc · yc,t − γ ·
∑
c,q

zc,q − δ ·
∑
c,c′

Uc · wc,c′ (6.4.20)

The weights vary with courses and students. The definition of the weights are given in Section
6.6.

The full MIP model of the ECSS is given in (6.4.21)

6.4.7 Full MIP Model for ECSS

max
∑
c,t,s

αc,s · xs,c,t −
∑
c,t

βc · yc,t − γ ·
∑
c,q

zc,q − δ ·
∑
c,c′

Uc · wc,c′ (6.4.21)

s.t.
∑
c

xs,c,t ≤ 1 ∀ t, s∑
c,t

Dc,e · xs,c,t ≤ Re,s ∀ e, s∑
t

yc,t ≤ 1 ∀ c∑
s

xs,c,t ≤ Uc ∀ c, t∑
c,t

yc,t ≤ P

xs,c,t ≤ yc,t ∀ c, t, s, Ac,s = 0
xs,c,t = yc,t ∀ c, t, s, Ac,s = 1∑
c

Kc,f · yc,t ≤ Bf,t ∀ f, t, Bf,t > 0

yc,t + yc′,t ≤ 1 ∀ c, c′, t, Jc,c′ = 1
yc,t ≤ Dc,e · he,t ∀ c, e, t
he,t = he,t′ ∀ e, e′, t, Le,e′ = 1∑
e

he,t ≤ 1 ∀, e, e′, t, Le,e′ = 1∑
t

Is,q · xs,c,t ≤ zc,q ∀ c, q, s, Ac = 0∑
t,s

xs,c,t −
∑
t,s

xs,c′,t ≤ gc,c′ · Uc ∀ c, c′, Dc,e = Dc′,e = 1,
Ac = Ac′ = 0, ρ(c) < ρ(c′)∑

t,s

xs,c′,t −
∑
t,s

xs,c,t ≤ gc,c′ · Uc ∀ c, c′, Dc,e = Dc′,e = 1,
Ac = Ac′ = 0, ρ(c) < ρ(c′)∑

t

(yc,t + yc′,t)− 2 + gc,c′ ≤ wc,c′ ∀ c, c′, Dc,e = Dc′,e = 1,
Ac = Ac′ = 0, ρ(c) < ρ(c′)

xs,c,t ∈ {0, 1}
yc,t ∈ {0, 1}

Chapter 6. Elective Course Student Sectioning at Danish High Schools 120

zc,q ∈ {0, 1}
wc,c′ ∈ [0, 1]
gc,c′ ∈ [0, 1]
he,t ∈ {0, 1}

6.5 Solution Methods

It has been chosen to use Adaptive Large Neighborhood Search (ALNS) for the ECSS. ALNS
is a hyperheuristic first described by Pisinger and Ropke (2005) and is an extension of Large
Neighborhood Search (LNS) (Shaw, 1998). Where most neighborhood search algorithms explicitly
define the neighborhood, LNS defines the neighborhood implicitly by a removal and an insertion
method. ALNS consists of several removal and insertion heuristics. The ALNS framework has the
advantage of having many different neighborhoods, such that the algorithm can be able to explore
a large part of the solution space, depending on the construction of the heuristics (Pisinger and
Ropke, 2005, section 4.3). The pseudo code for the ALNS algorithm as it is presented in Pisinger
and Ropke (2010) is shown in Algorithm 1.

Algorithm 1: Adaptive Large Neighborhood Search

Input: a feasible solution xs,c,t
solution xbest = x; π = (1, . . . , 1)1

repeat2

select a removal d ∈ Ω− and an insertion heuristic r ∈ Ω+ using π3

x′ = r(d(x))4

if c(x′) > c(xbest) then5

xbest = x′6

if accept(x′, x) then7

x = x′8

update π9

until stop-criterion met10

return xbest11

The set of removal and insertion heuristics are denoted Ω− and Ω+, respectively. The variable
π ∈ R which stores the weight of each removal and insertion heuristic is introduced in line 1.
Line 1 checks whether the new solution is better than the best known solution. c(x) denotes the
objective value of solution x.

In line 1 the solution is evaluated using an accept function. Finally, in line 1 the weights are
adjusted based on the performance of each removal and insertion heuristic.

ALNS has been used with success on various problems, especially in Vehicle Routing Problems;
see e.g. Ropke and Pisinger (2006); Laporte et al. (2010); Azi et al. (2010); Ribeiro and Laporte
(2012); Lei et al. (2011). Other problems such as Lot-Sizing (Muller and Spoorendonk (2010)),
Resource Constraint Project Scheduling (Muller (2009)), Home Health Care Problem (Steeg and
Schröder (2008)). Within educational timetabling problems ALNS has been applied with success
for Consultation Scheduling Problem (Kristiansen et al. (2013)) and High School Timetabling
(Sørensen et al. (2012), Sørensen and Stidsen (2013)).

6.5.1 Algorithm Setup

In the following we describe the main elements of the ALNS used for the ECSS. The user-controlled
parameters for the ALNS are tuned in Section 6.7.

Adaptive search strategy: The choice of the removal and insertion heuristic is governed by a
scoring scheme where each heuristic is assigned a weight which is updated due to its past behavior.

121 6.5. Solution Methods

The search is divided into segments of Nit consecutive iterations. Let πih be the measure of the
performance of heuristic h in segment i. In the first segment all heuristics are assigned the same

weight, πi0h = 1. The probability of choosing heuristic h in segment i is given by
πi
h′∑
h π

i
h

. After Nit

iterations the weights are adjusted according to the score obtained during the segment

πi+1
h = η · π̄

i
h

aih
+ (1− η)πih (6.5.2)

where η ∈ [0, 1] is the reaction factor and π̄ih is the number of times heuristic h has been used in
segment i. π̄ih is the observed weight of the heuristic h in segment i and this is updated in each
iteration the heuristic is used. Let x be the current solution and x′ be the new found solution.
The following scaling parameter for updating πih is introduced

π̄ih = π̄ih + 5min(σ·gap,1) (6.5.3)

where gap = c(x′)−c(x)
c(x) and σ ∈ R+ is a parameter which needs tuning.

Acceptance criteria: The accept criteria used in this paper is borrowed from Ropke and
Pisinger (2006) and is based on Simulated Annealing (SA). A solution, x is always accepted if
c(x) > c(xbest). However if c(x) ≤ c(xbest), x is accepted with the probability

exp

(
−c(x

best)− c(x)

T

)
(6.5.4)

where the temperature T is updated by T = dSA · T . Having dSA ∈]0, 1[as the cooling rate. The
initial temperature is selected using a temperature control parameter, wSA ∈]0, 1[, such that the
solution is accepted with probability of 0.5 if the solution is wSA percent worse than the initial
solution x0. Using an acceptance strategy where worse solutions can be accepted with a small
probability makes it easier to expand and change neighborhoods.

Stopping criteria: The selection of removal and insertion heuristics are repeated until one of
the following stopping criteria is met: (1) the running time exceeds the maximum running time
of 60 seconds; or (2) the number of iterations without any improvements in the objectives reaches
1,000.

6.5.2 Removal and Insertion Heuristics

In this section the removal and the insertion heuristics used for the ECSS are described. Let
m ∈ N be the number of classes which should be removed from a solution x and let C̄ ⊆ C be the
set of unassigned classes.

Random Removal Heuristic

The simple removal heuristic removes m elective classes with students from the solution. The
classes are selected at random. This heuristic tends not to give better solutions, but it helps
diversify the search. Furthermore a random removal which only removes classes which aren’t
locked, i.e. it does not remove classes which are a continuation from previous years.

Shaw Removal Heuristic

The general idea of Shaw removal heuristic is to remove parts of the solution which are somewhat
related, as it is expected that they then are reasonably easy to reshuffle, and then creating a new,
perhaps better solution (Shaw (1997),Ropke and Pisinger (2006)). Let the relatedness measure
between meeting i and j be defined by M(i; j) ∈ [0; 1], where a high level corresponds to much

Chapter 6. Elective Course Student Sectioning at Danish High Schools 122

relatedness between i and j. Algorithm 5 presents the pseudo code for the Shaw Removal heuristic
for the ECSS.

Algorithm 5: Shaw removal

Input: A feasible solution xs,c,t, m ∈ N, pshaw ∈ R+

class: c = a randomly selected class with students from xs,c,t1

set of classes : D = {c}2

while |D| < m do3

ĉ = randomly selected class from D4

L = all classes from xs,c,t not in D, sorted by similarity to ĉ5

choose a random number bpshaw ∈ [0, 1[6

l = element number bpshaw · |L|7

D = D ∪ L[l]8

remove the classes with students in D from xs,c,t9

The Shaw removal heuristic of this paper is based on the number of students which have re-
quested both course e of c and e’ of c’. Let Se indicates the students which have requested course
e. The relatedness measure is then the percentage of students which have requested both courses
of the two classes.

M(c, c′) =
|Se ∩ Se′ |

min(|Se|, |Se′ |)
where Dc,e = Dc′,e′ = 1 (6.5.6)

A high value of M means that the courses are much related.
Two Shaw heuristics for the ECSS is implemented. One sorted with increasing similarity, (i.e.

removing those most related), and one with decreasing similarity (i.e. of those related, remove
those less related).

Basic Greedy Insertion Heuristic

A basic greedy algorithm is implemented as one of the insertion heuristic for the ALNS. It simply
assigns a class with students to a time slot in order for contribution to the objective. The process
is repeated until no more classes with an improvement of the solution can be assigned.

The initial solution for the ALNS is constructed by means of a Basic Greedy Algorithm.

Regret-k Insertion Heuristic

The regret heuristic is a greedy algorithm with a look-ahead function incorporated, i.e. it tries to
improve the myopic behavior of the greedy heuristic. As the name indicates, the heuristic aims at
inserting the elective class which will be regretted most if not inserted at the given iteration. For
each of the unassigned elective classes c̄ ∈ C̄, the regret-2 heuristic calculates a regret value equal
to the difference in profit between two solutions in which c̄ is assigned to its best time slot and its
second best time slot. The unassigned class with the highest regret value, is the class which will
be regretted most if not inserted in its best time slot, hence this is inserted. Let okc̄ denote the
regret value by inserting class c into the kth best position. The regret value of c̄, rc̄, is given by

rc̄ =

k∑
h2

(o1
c̄ − okc̄) (6.5.7)

In each iteration the heuristic chooses to insert class c̄ according to maxc̄∈C̄{rc̄} For the ECSS, it
has been chosen to use at Regret-2, -3 and -4 as insertion methods.

Coupled Removal and Insertion Heuristic

In each iteration the ALNS heuristic chooses a removal and an insertion heuristic based on how
well the pair has been performing previously. However some of the removal and the insertion

123 6.6. Defining Weights

heuristics might not be a good matching due to the structure of the given heuristics. By pairing
some of the heuristics, we simple declare which given insertion heuristic a removal heuristic should
be paired with. For the ECSS we have created these coupled pairs, all only concerning students,
i.e. only removing and inserting students, not classes. The other previous mentioned heuristics is
concerning assigning/unassigning classes with students.

Three coupled pairs have been created. Let Ê be the set of courses where more than one class
is created for the given course.

• Remove all students from classes in Ê and insert them using a basic greedy algorithm.

• Remove all students from classes in Ê and insert them greedily based on cohorts.

• Remove all students from classes in Ê located in the same given time slot t̂ and insert them
greedily.

6.5.3 Using Mathematical Programming within ALNS

The performance of the ALNS algorithm is evaluated by comparing it with solutions found using
a state-of-the-art MIP solver (see Section 6.8). It can also be an advantage to include some math-
ematical programming (MP) techniques in the ALNS algorithm using a MIP solver. Heuristics
which embedded MP methods are known as matheuristics.

In this paper we will try to embed mathematical programming techniques within the ALNS by
introducing some new repair methods. We have only focused on the students as we did for the
coupled constraints. I.e. the method removes all assigned students or all students assigned to
classes in Ê. All the classes are fixed. If some students are not removed, they are locked to the
respective classes as well. Then by using a MIP solver we try to optimize the problem.

The performance of the ALNS with the MP techniques is evaluated in Section 6.8.2.

6.6 Defining Weights

The objectives of the problem are weighted in respect to each other, and the selection of the
weights in the implementation in Lectio and for this article has been greatly assisted by MaCom
A/S.

The profit of assigning a student to an elective course depends on the educational level of the
course. Let αc,s ∈ N denote the profit of assigning student s to class c. Then αc,s is given by

αc,s =

95 If the course level of c is at a basic level

100 If the course level of c is at a intermediate level

105 If the course level of c is at a advanced level

150 IfAc,s = 1

(6.6.1)

Notice that if the student is locked to the class the profit is quite high. This is to give preferential
treatments to the classes which are a continuation from the previous year.

The cost of creating an elective class depends on the minimum number of classes which is
necessary to fulfill all the requests for a given course. Let MINe ∈ Z+ be the minimum theoretical
number of classes needed to fulfill all requests for course e. The cost of creating elective classes is
then given by the following

βc =

{
150 ρ(c) > Mine where Dc,e = 1

80 otherwise
(6.6.2)

The cost of each represented cohorts in an elective class is given by

γ = 10 (6.6.3)

Chapter 6. Elective Course Student Sectioning at Danish High Schools 124

For each student for which the two classes differ from each other is penalized by

δ = 1 (6.6.4)

6.7 Parameter Tuning

For tuning the free parameters of the heuristic, the F-Race algorithm has been chosen (Birattari,
2005). A race algorithm sequentially processes data instances using a set of all possible parameter
configurations. After each iteration, the parameter configurations which are proven to be statisti-
cally inferior are eliminated from the set. In F-Race the Friedman Two-way Analysis of Variance
by Ranks is used for determining whether any of the parameter configurations are statistically
inferior. F-Race has previously been successfully used for parameter tuning for meta-heuristics
(see. e.g. Chiarandini et al. (2006); Pellegrini and Birattari (2007); Kristiansen et al. (2013)). The
drawbacks of F-Race are that all possible parameter configurations are considered, i.e. if many
parameters with a wide range of values exist, the F-Race becomes inefficient and impractical.
In Balaprakash et al. (2007) Iterative F-Race (I/F-Race) is introduced. I/F-Race uses a proba-
bilistic model on the set of parameter configurations, such that only a subset of the parameter
configurations is generated in each iteration.

In this paper a manually I/F-Race is used for tuning, i.e. after each iteration the new configu-
rations are manually created based on the results from the previous iterations.

Table 6.1 lists the best found parameter configurations. Data instances from 50 different Danish
high schools are used. For the SA based acceptance criteria two parameters are tuned. The
temperature control, wSA, and the decay parameter, dSA. Nit defines the number of iterations
between reset. For the ALNS scoring scheme, the tuned parameters are the reaction factor η and
the scale parameter σ. ξstart and ξend are the destroy percentage at the beginning and the end of
the running time, respectively. Lastly pshaw is the random indicator in the Shaw removal heuristic.

Table 6.1: Final values of tuned parameters, found by the F-Race algorithm with confidence level
α = 0.05.

Parameter wSA dSA Nit η σ ξstart ξend pshaw

Value 0.01 0.99 50 0.30 5000 0.30 0.0033 20

6.8 Performance

The purpose of this section is to evaluate the performance of the ALNS algorithm by comparing it
with an upper bound found solving the IP model in the state-of-art MIP solver Gurobi 5.01. Both
the ALNS and the Gurobi implementation was coded in C# 4.0 and all tests are performed using
nUnit 2.6 on a machine with an Intel i7-930@2.8GHz CPU and 12GB of RAM under the Windows
operating system. No parallelization has been implemented for improving the performance.

The ALNS algorithm for the ECSS presented in this article was launched for use in Lectio in
mid-January 2012 and is as mentioned available for approximately 200 different high schools in
Denmark. Up to this date over 500 data sets shared among the high schools, are available in the
Lectio database.

6.8.1 Performance of ALNS compared with Gurobi

The ALNS algorithm is evaluated on 80 data sets. The data sets are selected randomly, and should
cover all possible kinds of setups for the ECSS. The runtime is set to 60 seconds, which is the
running time selected upon conversations between MaCom A/S and the users of Lectio. In order
to reduce the eventual influence of stochastic behavior, 10 runs on each instance are performed.
The Gurobi solver is run for 1 hour, as we want to have good upper bounds.

125 6.8. Performance

The percentage gap between the solution found using ALNS and the upper bound is calculated
by UB−x̄ALNS

UB .
In Table 6.1 it is seen that the ALNS in average finds solutions less than 1% from optimum

and some of the big instances the ALNS outperforms the solutions found using Gurobi. Moreover
some of the instances are solved to optimality using ALNS. This is satisfying results.

Table 6.1: ALNS for the ECSS on 80 datasets compared with an upper bound using Gurobi 5.0.1. For
each dataset is listed the number of students ”|S|”, number of requests ”|R|” and number of courses ”|E|”,
which indicates the size of the given instance. For Gurobi is listed the final objective value, ”x”, the best
bound ”UB” and the reported gap between these. For the ALNS, the mean performance of the algorithm
over 10 runs, ”x̄” and column ”σ” is the standard deviation. Finally column ”Gap(%)” is the percentage
difference between ALNS and Gurobi.

Gurobi 5.01 ALNS

|S| |R| |E| x UB Gap[%] x̄ σ Gap[%]

Aabenraa 20 20 3 1630.0 1630.0 0.0 1630.0 0.0 0.0
Aalborg 212 539 16 79010.0 79010.0 0.0 79010.0 0.0 0.0
Aarhus1 341 471 34 67745.0 67745.0 0.0 67745.0 0.0 0.0
Aarhus2 338 481 28 59134.0 59451.0 0.5 59099.6 4.8 0.6
Aars1 219 365 23 39315.0 39315.0 0.0 39315.0 0.0 0.0
Aars2 220 585 29 65615.0 65615.0 0.0 65615.0 0.0 0.0
Alssund 183 338 17 32827.0 33003.0 0.5 32824.6 3.6 0.5
Bagsvaerd1 49 75 10 10350.0 10350.0 0.0 10350.0 0.0 0.0
Bagsvaerd2 110 152 21 20210.0 20210.0 0.0 20210.0 0.0 0.0
Broenderslev1 312 515 22 49458.0 49943.0 1.0 49292.6 158.6 1.3
Broenderslev2 312 514 22 49357.0 49835.0 1.0 49089.9 149.1 1.5
CPHWEST1 249 426 32 48405.0 48498.0 0.2 48405.0 0.0 0.2
CPHWEST2 251 480 33 56041.0 56057.0 0.0 56041.0 0.0 0.0
DetFrie1 49 49 3 7110.0 7110.0 0.0 7110.0 0.0 0.0
DetFrie2 112 112 3 10839.0 10839.0 0.0 10825.0 0.0 0.1
Dronninglund1 299 522 27 75495.0 75495.0 0.0 75495.0 0.0 0.0
Dronninglund3 297 519 25 75380.0 75380.0 0.0 75380.0 0.0 0.0
Esbjerg 595 789 34 90050.0 90713.0 0.7 90006.6 27.7 0.8
EUCNORD 335 735 45 95080.0 95089.0 0.0 94993.4 78.3 0.1
Falkoner1 421 1080 49 131264.0 131728.0 0.4 130877.7 66.9 0.7
Falkoner3 649 1666 85 241015.0 241015.0 0.0 240641.0 788.5 0.2
Falkoner4 537 1376 57 177440.0 177674.0 0.1 177368.2 25.3 0.2
Falkoner5 431 617 42 64789.0 65210.0 0.7 64763.2 5.3 0.7
Falkoner6 297 456 34 41395.0 41828.0 1.1 41373.4 4.2 1.1
Falkoner7 742 1656 76 215578.0 216076.0 0.2 215446.0 53.0 0.3
Falkoner8 446 1266 56 160169.0 160362.0 0.1 160083.9 63.3 0.2
Falkoner10 335 520 34 50782.0 51428.0 1.3 50756.8 13.3 1.3
Fjerritslev 456 822 71 113706.0 113716.0 0.0 113701.2 2.5 0.0
Frederikssund1 294 475 25 53300.0 53300.0 0.0 53300.0 0.0 0.0
Frederikssund2 193 351 18 51130.0 51130.0 0.0 51130.0 0.0 0.0
Greve1 306 922 31 102351.0 103436.0 1.1 102347.8 89.8 1.1
Greve2 306 892 31 99500.0 100689.0 1.2 98980.8 246.5 1.7
Gribskov1 394 648 33 71895.0 72000.0 0.2 71325.6 129.7 1.0
Gribskov3 220 474 24 46632.0 46747.0 0.3 45968.0 296.2 1.7
GUAasiaat 71 82 12 11820.0 11820.0 0.0 11820.0 0.0 0.0
Haderslev1 447 1034 37 112065.0 113494.0 1.3 110729.1 1160.8 2.5
Haderslev2 470 1063 64 150480.0 150490.0 0.0 150480.0 0.0 0.0
Hasseris1 400 508 21 54019.0 54074.0 0.1 53846.0 92.2 0.4
Hasseris2 400 508 21 50859.0 51035.0 0.4 50384.8 92.8 1.3
HoejeTaastrup1 241 416 19 41010.0 41014.0 0.0 40909.4 80.9 0.3
HoejeTaastrup3 233 380 17 55330.0 55330.0 0.0 55330.0 0.0 0.0
Holstebro1 93 202 9 29420.0 29420.0 0.0 29420.0 0.0 0.0
Holstebro2 626 912 35 111064.0 111577.0 0.5 111021.0 6.7 0.5
Holstebro3 93 202 9 29420.0 29420.0 0.0 29420.0 0.0 0.0
Horsens 380 662 33 96660.0 96660.0 0.0 96660.0 0.0 0.0
Koebenhavns 289 816 31 100920.0 100930.0 0.0 100842.2 39.9 0.1
KoebenhavnsTek 166 169 7 24790.0 24790.0 0.0 24790.0 0.0 0.0
Koege 369 546 31 79360.0 79360.0 0.0 79360.0 0.0 0.0
Kongsholm1 383 760 46 109570.0 109570.0 0.0 107661.0 1655.6 1.8
Kongsholm2 365 974 40 126975.0 128862.0 1.5 126381.3 717.6 2.0
Langkaer 503 795 51 113540.0 113540.0 0.0 113540.0 0.0 0.0
Mariagerfjord1 365 521 24 75670.0 75670.0 0.0 75670.0 0.0 0.0
Mariagerfjord2 382 611 29 88170.0 88170.0 0.0 88170.0 0.0 0.0
Middelfart 390 1332 61 170243.0 170558.0 0.2 169663.3 232.0 0.5
Munkensdam 482 6456 231 349400.0 349400.0 0.0 349400.0 0.0 0.0
Noerresundby 563 1456 55 180916.0 181614.0 0.4 180807.5 50.1 0.5
NZahles 189 271 20 31955.0 31958.0 0.0 31955.0 0.0 0.0
Oeregaard1 239 489 13 71510.0 71510.0 0.0 71510.0 0.0 0.0
Oeregaard2 547 826 27 96376.0 97212.0 0.9 96425.0 11.6 0.8

Continued on next page

Chapter 6. Elective Course Student Sectioning at Danish High Schools 126

Table 6.1 – continued from previous page
Gurobi 5.01 ALNS

|S| |R| |E| x UB Gap[%] x̄ σ Gap[%]

Risskov1 539 784 38 91856.0 92529.0 0.7 91941.6 2.8 0.6
Risskov2 258 480 20 48993.0 49733.0 1.5 49038.8 3.8 1.4
Roedovre 350 868 34 100907.0 101414.0 0.5 100871.6 13.4 0.5
RoskildeKatedral 383 1145 40 119565.0 128359.0 7.4 126507.0 185.8 1.5
RoskildeTek1 358 529 21 77670.0 77670.0 0.0 77670.0 0.0 0.0
RoskildeTek2 358 688 30 91518.0 91520.0 0.0 91500.0 0.0 0.0
Rybners1 238 313 15 32454.0 32457.0 0.0 32336.6 130.0 0.4
Rybners2 352 443 11 40462.0 41245.0 1.9 40423.2 5.1 2.0
RybnersGym 192 384 20 55600.0 55600.0 0.0 55600.0 0.0 0.0
Rysensteen 285 570 19 56198.0 56429.0 0.4 55803.4 141.5 1.1
Skanderborg 245 439 18 41782.0 42246.0 1.1 41787.6 10.3 1.1
Slagelse1 974 1660 54 158025.0 180308.0 14.1 177314.5 129.9 1.7
Slagelse2 751 1345 45 127620.0 150895.0 18.2 148045.5 277.4 1.9
Slagelse3 1272 2221 57 131200.0 234645.0 78.9 229250.5 308.0 2.4
Slagelse6 1261 2289 113 329730.0 329730.0 0.0 329730.0 0.0 0.0
Slagelse7 329 508 23 63830.0 63836.0 0.0 63824.8 6.4 0.0
Struer 534 805 42 103161.0 103170.0 0.0 103140.2 5.4 0.0
Taarnby 298 760 29 110490.0 110490.0 0.0 110490.0 0.0 0.0
Varde2 230 677 30 98680.0 98680.0 0.0 98680.0 0.0 0.0
Vejlefjord 100 226 35 29985.0 29985.0 0.0 29985.0 0.0 0.0
Viby 232 472 18 47438.0 47798.0 0.8 47451.0 1.7 0.7

Average 359.5 756.6 34.4 - - 1.7 - - 0.5
Max 1272.0 6456.0 231.0 - - 79.1 - - 2.3

6.8.2 Performance using ALNS with Mathematical Programming Tech-
niques

The MP methods are implemented as a repair method and as a hill climber, and both are tested
using a running time of 2 and 5 seconds. For the hill climber this means that the running time for
the ALNS is shortened by the running time of the hill climber such that the total running time
still is 60 seconds.

The performance of the ALNS with some MP solution methods embedded are shown in Table
6.2. For the MP methods Gurobi 5.0.1 is used. For each solution method is listed the average gap
and the max gap between the found solution and the best lower bound, taken over 80 datasets.

Table 6.2: Average performance using Gurobi and ALNS with different MP methods incorporated. The
average is taken over 80 different dataset. The second column is the performance using Gurobi 5.01 and
the third column is ALNS without any MP methods. Column 4 and 5 are average performance of the
ALNS with a MP repair method. And Column 6 and 7 are the average performance using ALNS with a
Hill Climber attached. Both tested with running time of 2 and 5 seconds

w. MP rep. w. MP rep w. MP HC w. MP HC w. MP rep
Gurobi 5.01 ALNS (2 sec) (5 sec) (2 sec) (5 sec) & HC (2 sec)

Average 1.7 0.5 0.6 0.7 0.5 0.5 0.6
Max 79.1 2.3 2.7 4.1 2.7 2.2 3.4

As it is seen all the different ALNS algorithms outperform Gurobi on the average performance.
This is due to the bad performance of Gurobi on the large instances. Furthermore, it is seen
that the pure performs better than many of the ALNS with MP methods. This is mainly due to
the running time and the scoring scheme. The running time has an important influence on the
solution results. As the running time for the algorithm is 60 seconds, the running time of the MP
repair methods cannot be too long. If it’s more than 2-5 seconds it makes a significant decrease
in the number of iterations we are able to perform. Yet, when having a low running time for the
MP repair method it may results in poor performance of large instances and the solutions might
not fulfill the acceptance criteria.

However, we can conclude that by embed some MP methods we might be able to improve the
ALNS algorithm. For the ECSS using a MP hill-climber of 5 seconds at the end, improves the
average performance a little.

127 6.9. Final Remarks and Outlook

6.9 Final Remarks and Outlook

In this paper the Elective Course Student Sectioning has been described in detail and formulated
as an MIP model. ALNS has proven to be a successful method to establish solutions to the
problem. The ALNS algorithm has been implemented in the Cloud-based software system Lectio
and is hence available for more than 200 Danish high schools. For testing the performance of
the ALNS algorithm, 80 real life instances from different high schools have been used. In average
ALNS finds solutions within 1% of the optimum and for large instances the algorithm outperforms
Gurobi, which is very satisfying results.

It was shown that for some of the instances it could be an advantage to embed some mathe-
matical programming techniques in the ALNS. However more testing is needed with open source
MIP solvers, as Gurobi is not a possibility as all the clients need a license.

Of future research within student sectioning at high schools it could be interesting to expand
the model such that it contains the creation of the cohorts.

Acknowledgments

The authors thank Michael Bigom Herold from MaCom A/S for kindly helping determining the
problem and setting the weights for the problem, and MaCom A/S for providing all the data.

Bibliography 128

Bibliography

N. Azi, M. Gendreau, and J.-Y. Potvin. An Adaptive Large Neighborhood Search for a Vehicle
Routing Problem with Multiple Trips. CIRRELT, 2010.

P. Balaprakash, M. Birattari, and T. Stützle. Improvement strategies for the f-race algorithm:
sampling design and iterative refinement. In Proceedings of the 4th international conference on
Hybrid metaheuristics, HM’07, pages 108–122, Berlin, Heidelberg, 2007. Springer-Verlag.

M. Birattari. The Problem of Tuning Metaheuristics as seen from a Machine Learning Perspective,
volume 292 Dissertations in Artificial Intelligence - Infix. Springer, 1 edition, 2005.

E. Burke and S. Petrovic. Recent research directions in automated timetabling. European Journal
of Operational Research, 140(2):266 – 280, 2002. ISSN 0377-2217.

M. Carter and G. Laporte. Recent developments in practical course timetabling. In E. Burke and
M. Carter, editors, Practice and Theory of Automated Timetabling II, volume 1408 of Lecture
Notes in Computer Science, pages 3–19. Springer Berlin / Heidelberg, 1998.

M. W. Carter. A comprehensive course timetabling and student scheduling system at the university
of waterloo. In E. Burke and W. Erben, editors, Practice and Theory of Automated Timetabling
III, volume 2079 of Lecture Notes in Computer Science, pages 64–82. Springer Berlin Heidelberg,
2001. ISBN 978-3-540-42421-5.

M. Chiarandini, M. Birattari, K. Socha, and O. Rossi-Doria. An effective hybrid algorithm for
university course timetabling. Journal of Scheduling, 9:403–432, 2006. ISSN 1094-6136.

P. de Haan, R. Landman, G. Post, and H. Ruizenaar. A case study for timetabling in a dutch
secondary school. In E. Burke and H. Rudova, editors, Practice and Theory of Automated
Timetabling VI, volume 3867 of Lecture Notes in Computer Science, pages 267–279. Springer
Berlin / Heidelberg, 2007.

W. Erben and J. Keppler. A genetic algorithm solving a weekly course-timetabling problem. In
E. Burke and P. Ross, editors, Practice and Theory of Automated Timetabling, volume 1153 of
Lecture Notes in Computer Science, pages 198–211. Springer Berlin / Heidelberg, 1996.

S. Kristiansen, M. Sørensen, and T. R. Stidsen. Elective course planning. European Journal of
Operational Research, 215(3):713 – 720, 2011. ISSN 0377-2217. doi: 10.1016/j.ejor.2011.06.039.

S. Kristiansen, M. Sørensen, M. B. Herold, and T. R. Stidsen. The consultation timetabling
problem at danish high schools. Journal of Heuristics, 19(3):465–495, June 2013.

G. Laporte, R. Musmanno, and F. Vocaturo. An adaptive large neighbourhood search heuristic
for the capacitated arc-routing problem with stochastic demands. Transportation Science, 44
(1):125–135, 2010.

H. Lei, G. Laporte, and B. Guo. The capacitated vehicle routing problem with stochastic demands
and time windows. Computers & Operations Research, 38(12):1775 – 1783, 2011. ISSN 0305-
0548. doi: DOI:10.1016/j.cor.2011.02.007.

T. Müller and K. Murray. Comprehensive approach to student sectioning. Annals of Operations
Research, 181:249–269, 2010. ISSN 0254-5330.

L. Muller. An adaptive large neighborhood search algorithm for the resource-constrained project
scheduling problem. In MIC 2009: The VIII Metaheuristics International Conference, 2009.

L. F. Muller and S. Spoorendonk. A hybrid adaptive large neighborhood search algorithm applied
to a lot-sizing problem. Technical report, DTU Management Engineering, 2010.

P. Pellegrini and M. Birattari. Implementation effort and performance. pages 31–45. 2007.

129 Bibliography

N. Pillay. An overview of school timetabling research. In Proceedings of the International Con-
ference on the Theory and Practice of Automated Timetabling, pages 321–335, Belfast, United
Kingdom, 2010.

D. Pisinger and S. Ropke. A general heuristic for vehicle routing problems. Computers & Opera-
tions Research, 34:2403–2435, August 2005. ISSN 0305-0548.

D. Pisinger and S. Ropke. Large neighborhood search. In M. Gendreau and J.-Y. Potvin, edi-
tors, Handbook of Metaheuristics, volume 146 of International Series in Operations Research &
Management Science, pages 399–419. Springer US, 2010. ISBN 978-1-4419-1665-5.

G. Post, L. D. Gaspero, J. H. Kingston, B. McCollum, and A. Schaerf. The third international
timetabling competition. In Proceedings of the Ninth International Conference on the Practice
and Theory of Automated Timetabling (PATAT 2012), Son, Norway, August 2012.

G. M. Ribeiro and G. Laporte. An adaptive large neighborhood search heuristic for the cumulative
capacitated vehicle routing problem. Computers & Operations Research, 39(3):728 – 735,
2012. ISSN 0305-0548.

S. Ropke and D. Pisinger. An adaptive large neighborhood search heuristic for the pickup and
delivery problem with time windows. Transportation Science, 40:455–472, November 2006. ISSN
1526-5447.

H. Rudova and K. Murray. University course timetabling with soft constraints. In Practice And
Theory of Automated Timetabling IV., pages 310–328, 2003.

A. Schaerf. A survey of automated timetabling. Artificial Intelligence Review, 13:87–127, 1999.
ISSN 0269-2821.

P. Shaw. A new local search algorithm providing high quality solutions to vehicle routing problems,
1997.

P. Shaw. Using constraint programming and local search methods to solve vehicle routing prob-
lems. In M. Maher and J.-F. Puget, editors, Principles and Practice of Constraint Programming
— CP98, volume 1520 of Lecture Notes in Computer Science, pages 417–431. Springer Berlin /
Heidelberg, 1998.

M. Sørensen and T. R. Stidsen. Integer programming and adaptive large neighborhood search for
real-world instances of high school timetabling. Annals of Operations Research, PATAT 2012
SI:Submitted Jan 21. 2013, 2013.

M. Sørensen, S. Kristiansen, and T. R. Stidsen. International timetabling competition 2011:
An adaptive large neighborhood search algorithm. In Proceedings of the Ninth International
Conference on the Practice and Theory of Automated Timetabling (PATAT 2012), pages 489–
492. SINTEF, 2012.

J. Steeg and M. Schröder. A hybrid approach to solve the periodic home health care problem.
In J. Kalcsics and S. Nickel, editors, Operations Research Proceedings 2007, volume 2007 of
Operations Research Proceedings, pages 297–302. Springer Berlin Heidelberg, 2008. ISBN 978-
3-540-77903-2.

D. J. A. Welsh and M. B. Powell. An upper bound for the chromatic number of a graph and its
application to timetabling problems. The Computer Journal, 10(1):85–86, 1967. doi: 10.1093/
comjnl/10.1.85. URL http://comjnl.oxfordjournals.org/content/10/1/85.abstract.

http://comjnl.oxfordjournals.org/content/10/1/85.abstract

Chapter 7

High School Student Sectioning at
Danish High Schools

Simon Kristiansen∗† Thomas R. Stidsen∗ Andrew Mason‡

∗Department of Management Engineering, Technical University of Denmark,
Produktionstorvet, Building 426, DK-2800 Kgs. Lyngby, Denmark

sikr@dtu.dk, thst@dtu.dk

† MaCom A/S
Vesterbrogade 48, 1., DK-1620 Copenhagen V, Denmark

‡Dept. of Engineering Science, University of Auckland
Auckland, New Zealand

a.mason@auckland.ac.nz

1

Abstract This article considers the High School Student Sectioning problem which is a recurrent

planning problem at Danish high schools. Based on the students’ choices of specializations and electives,

the students need to be partitioned into cohorts and these cohorts assigned to time slots for the electives.

The problem can be divided into two interconnected sub-problems: cohort creation and elective timetabling.

An integer programming (IP) model for each sub-problem is presented and two solution approaches are

suggested for solving the problem. In the first approach the two IP models are combined to produce a

single optimal model which is solved using a modern IP solver. Tests on 25 real life problem instances

show that the poor solutions generated using this approach make it unsuitable for use in a production

system. The second approach solves the two sub-problems sequentially to produce a high quality heuristic

initial solution for the combined model. Tests show that providing the solver with our heuristic starting

solution significantly improves the quality of the solutions found, resulting in a system that is suitable for

use by Danish high schools.

7.1 Introduction

High School Student Sectioning (HSSS) is a planning problem faced each year by high schools
in Denmark and is concerned with the partitioning of new students into cohorts and assigning
them to elective classes. This problem is of interest to the Danish software company MaCom A/S
who develop cloud-based high school administration software Lectio used by the majority of high

1Submitted for publication in European Journal of Operational Research

131

Chapter 7. High School Student Sectioning at Danish High Schools 132

schools in Denmark. As part of developing a new decision support tool for the HSSS problem,
MaCom A/S and the authors have developed a problem specification through discussions with
client schools. The HSSS problem definition we present here is the result of these discussions, and
meets the requirements of all the high schools as to the size and format of their specific problems.

The outline of this paper is to present the HSSS in detail in Section 7.2 and build an IP model
for the problem in Section 7.3. The solution methods are defined in Section 7.4. In Section 7.5
experiments and results for the HSSS are given. The conclusion and final remarks are given in
Section 7.6.

7.2 High School Student Sectioning

In Denmark, first year high school students have two means by which they can control the sub-
jects they wish to study. The first decision each student makes is to choose a specialization. These
specializations are divided into so-called Arts and Science specializations. Examples of Arts spe-
cializations include, ”English-German”, ”English-Music” and ”English-Science”, while the Science
specializations include ”Math-Physics” and ”Math-Chemistry”. Each student chooses exactly one
specialization, which then determines a set of mandatory subjects (and hence taught classes) that
all the students in that specialization need to take. Ideally, those students choosing the same
specialization would form a single cohort in that they would be timetabled as a single entity, and
thus take classes together. However imbalances in the numbers of students choosing each special-
ization means this is typically not possible, and so the first problem we face is to take, as input,
the students and their specialization choices, and to produce from this a partitioning of students
into cohorts that, wherever possible, group together those students with the same specialization
in one cohort. We formally define and formulate this cohort creation problem in Section 7.2.1.

The second decision a Danish student makes is to choose two electives. Each student must select
one Linguistic elective, such as ”French” or ”Italian”, and one Artistic elective such as ”Drama”
or ”Media”. There are a number of time slots (i.e. periods of time) in the week that are set aside
for the teaching of these electives. The second problem we face is to determine, for each student
cohort, the two elective time slots to use for the teaching of that cohort’s Linguistic and Artistic
electives. When two or more cohorts are assigned the same elective time slot, students from the
cohorts can be combined to form larger more efficient classes for each elective. Thus, this problem
seeks to assign cohorts to elective time slots to minimize the number of elective classes that need
to be run over the week. We address this elective timetabling problem in Section 7.2.2.

Thus, we see that the HSSS problem can be viewed as two sub-problems, the first being to
partition students into cohorts and the second being to create efficient elective timetables for
these cohorts. These two sub-problems are interconnected in that the efficiency of the elective
timetabling solution depends on the cohort partitioning chosen in the first sub-problem. We
consider the two sub-problems in detail in the next sections.

It is important to note that the HSSS forms part of a larger timetabling process operated by
Danish high schools. The standard practice at these schools is to solve the student sectioning
problem before a full timetable is generated. Thus, we are not, in this work, concerned with
the timetabling of the non-elective classes, and indeed we do not know the actual times that the
elective time slots will occupy. These decisions will be made in a subsequent optimization process
that solves a general High School Timetabling Problem (Sørensen and Stidsen, 2013). This two-
stage process has been requested by the schools as their preferred approach for integrating the
optimization models as decision support tools into their larger decision making processes.

7.2.1 Partitioning to Create Cohorts

The first sub-problem is the partitioning of students to form cohorts. We define a cohort as a group
of students that will be timetabled as one entity for most of their taught classes. High schools
do not mix students from the Arts and Science specializations, and so the problem of creating
student cohorts comprises two independent problems, one for students with an Arts specialization

133 7.2. High School Student Sectioning

and one for students with a Science specialization. A school will typically specify the number of
Arts cohorts and the number of Science cohorts that need to be formed, and the minimum and
maximum number of students allowed in each cohort.

We seek a solution in which each cohort contains students from just one or a small number of
specializations. To formalize this, we say that a cohort contains a specialization if it includes one
or more students who have chosen that specialization. A cohort has a specialization count given
by the number of specializations it contains. The objective of our first sub-problem is to partition
the students to form cohorts that minimize the sum, over the cohorts, of the cohort specialization
counts.

Table 7.1 shows a possible solution for the Arts specializations for a representative high school.
This high school has specified that we need to form five Arts cohorts each containing no more than
30 students and no fewer than 15 students. Table 7.1 shows a solution for the Arts specializations
with a specialization sum of 7 over the 5 cohorts.

Table 7.1: An example of creating cohorts for students with Arts specializations. The upper limit on
cohort size is 30 students while the lower bound is 15. The number of students in each specialization is
given in the column marked ”#”, and the number in each cohort is shown in the ‘Cohort Size’ row. The
columns marked ”Coh1”, ”Coh2”, . . . , ”Coh5” give the numbers of students assigned to the 5 different
cohorts. The ‘Spec. Count’ row shows the specialization count for each chort.

Specialization # Coh1 Coh2 Coh3 Coh4 Coh5
English-German 18 18
English-Spanish 40 28 12
English-Music 9 9
English-Science 77 20 30 27
Cohort Size 28 30 29 30 27
Spec. Count 1 2 2 1 1

7.2.2 Elective Timetabling

As detailed above, as well as choosing either an Arts or Science specialization, each student chooses
one Linguistic elective and one Artistic elective. Each cohort must be assigned a single time slot
for their Linguistic elective and another single time slot for their Artistic elective. These time slots
are chosen from a set of predetermined Linguistic elective time slots and a set of predetermined
Artistic elective time slots, respectively. These assignments then determine the number of students
taking each elective in each time slot, which in turn determines the number of classes that must
be created for each elective in that time slot to meet specified maximum class sizes. Ideally, we
would assign all Arts electives to a single time slot, and all Science electives to another single
time slot. However, the number of classes that can be run in a single time slot for an elective is
limited, typically because of specialist classroom or teacher requirements. For example, if only two
classrooms are suitable for the Music elective, it is not possible to have more than two Music classes
in any one time slot. Thus, the elective timetabling sub-problem seeks an assignment of each cohort
to a Linguistic elective time slot and to an Artistic elective time slot to minimize the total number
of elective classes required while satisfying specified maximum class sizes and resource usage limits.
Note that unlike the first sub-problem, which could be split into separate sub-problems for the Arts
and Science specializations, this sub-problem must simultaneously consider all students across all
Arts and Science specializations.

An example of Artistic elective choices for a representative set of cohorts is given in Table 7.2.
With an upper limit on elective class size of 30 a theoretical minimum of 9 elective classes

are needed to fulfill the elective choices in Table 7.2. However this problem has a resourcing
constraint specifying that no more than two Media classes can be run simultaneously, and thus
this theoretical elective class count cannot be achieved. Table 7.3 shows a solution to the elective
timetabling problem in Table 7.2 in which we have satisfied the Media resourcing constraint by
creating 10 elective classes in total.

Chapter 7. High School Student Sectioning at Danish High Schools 134

Table 7.2: An example of Artistic elective choices with 4 different Artistic electives (Painting, Music,
Media, and Drama), 9 cohorts and a total of 224 students. The upper limit for class sizes is 30. The
numbers in brackets denote the theoretical minimum number of classes needed for each elective for the
number of students in that elective.

Cohort Painting Music Media Drama
Cohort 1 8 9 10 -
Cohort 2 7 3 11 9
Cohort 3 4 3 13 -
Cohort 4 11 3 6 10
Cohort 5 - - 27 -
Cohort 6 6 1 14 -
Cohort 7 3 5 9 3
Cohort 8 5 6 14 -
Cohort 9 7 2 14 1
Total 51(2) 32(2) 118(4) 23(1)

Table 7.3: An example of a possible solution to the example given in Table 7.2 using three elective time
slots (denoted #1, #2 and #3). The upper limit for class sizes is 30. The numbers in brackets are the
number of classes created for the given elective in the given time slot. The last row shows the total number
of students, and the total number of classes, for each elective.

Cohort Painting Music Media Drama

Time slot #1
Cohort 2 7 3 11 9
Cohort 4 11 3 6 10
Cohort 7 3 5 9 3
Cohort 9 7 2 14 1
#1 Total 28 (1) 13 (1) 40 (2) 23 (1)

Time slot #2
Cohort 1 8 9 10 -
Cohort 3 4 3 13 -
Cohort 6 6 1 14 -
Cohort 8 5 6 14 -
#2 Total 23 (1) 19 (1) 51 (2) -

Time slot #3
Cohort 5 - - 27 -
#3 Total - - 27 (1) -

Total 51 (2) 32(2) 118 (5) 23(1)

7.2.3 Related Work

There has been an increase in scientific research within Educational Timetabling and High School
Timetabling during the last decade, perhaps as a result of three international timetabling compe-
titions: University Timetabling in 2003 (Kostuch, 2004), University Timetabling and Examination
Timetabling in 2007 (Gaspero et al., 2007) and High School Timetabling 2011 (Post et al., 2012).
However, the main focus of these competitions has been general timetabling problems and not
student sectioning problems.

Those articles in the literature that address student sectioning mostly consider student sectioning
at universities. In these cases the university timetable is generated first, and once a timetable
has been developed, the object is to assign students to specific classes in order to minimize the
number of conflicts. Many of the articles suggest heuristic procedures that iterate between the
timetabling and the sectioning problem, see e.g. Carter and Laporte (1998) and Amintoosi and

135 7.3. Integer Programming Model

Haddadnia (2005). However in a few articles a more integrated process is proposed where the
student sectioning and the timetabling are solved as one problem. In Sönmez and Ünver (2010)
they make use of course bidding systems. The students make requests (bids) for courses they wish
to take. Based on these bids, the courses are allocated to classes and rooms in a way that reflects
the number of bids for each course. Another approach is detailed in Müller and Murray (2010)
where the timetabling and the sectioning problems are combined and solved using an Iterative
Forward Search algorithm. Both of these papers focus on the timetabling problem and use the
student sectioning part as guidance to the class and room allocation. Neither of these approaches
considers the full student sectioning problem, and thus these are heuristics that cannot guarantee
optimal solutions and give solutions of unknown quality.

The problem most closely related to our High School Student Sectioning Problem is the Elective
Course Planning Problem (Kristiansen and Stidsen, 2013). Both our and their problems are yearly
recurrent student sectioning problems at Danish high schools. In Kristiansen and Stidsen (2013)
the problem is to assign 2nd and 3rd year students to electives given their requests, while our
HSSS problem is concerned with the 1st year students and the partitioning of these students into
cohorts.

7.3 Integer Programming Model

In this section, we develop integer programming models for HSSS. Consider a set of students,
where each student has chosen one specialization from the set of specializations, S, indexed by
s ∈ S, and two electives (one Linguistic and one Artistic elective) from the set of electives, E .
To remove some of the symmetry in the problem we introduce the set of student groups, g ∈ G,
where a student group g is a set of students who have requested the same specialization and the
same two electives. In the first sub-problem of creating cohorts, we need to determine the number
of students from each group g ∈ G to assign to each cohort c ∈ C, where C is a set containing
a predetermined number of cohorts. For the second sub-problem, we have a set of time slots T
which are partitioned into two subsets, TLinguistic ∈ T and TArtistic ∈ T giving the available time
slots for the Linguistic and Artistic electives respectively. Each cohort c ∈ C must be assigned to
one Linguistic elective time slot t ∈ TLinguistic, and one Artistic elective time slot t′ ∈ TArtistic.

It is helpful to consider the full HSSS problem as a set of decisions that can be viewed as
generating a network such as that shown in Figure 7.1. These decisions include whether or not to
include an arc in the solution and, for some arcs, the flows of students that occur on the included
arcs. For the first sub-problem we let the decision variable xg,c ∈ {0, 1} take value one if any
students from student group g are assigned to cohort c, and zero otherwise. We also introduce the
flow variable x̄g,c ∈ N as defining the number of students from student group g assigned to cohort
c. In the second sub-problem the cohorts are assigned to time slots by letting variable yc,t,d ∈ {0, 1}
take value 1 if cohort c is assigned to time slot t for elective type d ∈ D, D = {Linguistic,Artistic},
and zero otherwise. As we will see shortly, the cost of a solution can be fully determined using
these decision variables.

As mentioned previously the two sub-problems of HSSS are interconnected, as the elective
timetabling sub-problem depends on the solution from the cohort creation sub-problem. However,
for ease of explanation, we next develop optimization models for these sub-problems in which we
assume these sub-problems are independent. These are then used to present a single model for
the full problem. Note that we will present a single cohort creation model that includes both
the Arts and Science specializations. This is required to develop the model for the full problem.
However, as noted earlier, each specialization can be treated independently if we are solving this
cohort creation sub-problem independently of the elective timetabling sub-problem.

7.3.1 Creating Cohorts

The first part of HSSS is the partitioning of students into cohorts, where we have to determine the
flow x̄g,c from each student group to each cohort, and a value for each associated binary variable

Chapter 7. High School Student Sectioning at Danish High Schools 136

G

g1

g2

g3

g4

g4

g6

C

c1

c2

c3

c4

c5

T

t1

t2

t3

t4

t5

t6

xg,c

x̄g,c

yc,t,d

Figure 7.1: Illustration of the network flow representation of a solution of HSSS. The nodes on the left
are the student groups, G. The student groups are divided into two subsets, those with arts specializations
{g1, g2, g3} and those with science specializations {g4, g5, g6}. Student groups from these different subsets
cannot be assigned to the same cohort. The second column lists the cohorts, C = {c1, c2, . . . , c5}, for the
problem. The third and last column lists the time slots, T , which are divided into subsets TLinguistic =
{t1, t2, t3} and TArtistic = {t4, t5, t6} giving the available Artistic and Linguistic elective time slots. Each
cohort must be assigned exactly one time slot for each elective type. Where an arc is shown from a student
group g to a cohort c, we have xg,c = 1 and a non-zero flow in this arc given by x̄g,c. Similarly, an arc is
shown from a cohort c to a time slot t for an elective type d for each yc,t,d =1.

xg,c that records if any non-zero flow occurs. To model each group’s choices, we let the parameter
Dg,s ∈ {0, 1} be 1 if student group g has chosen specialization s, and zero otherwise, and let the
Rg,e ∈ {0, 1} be 1 if student group g has chosen elective e, and zero otherwise. Let the parameter
Fg ∈ N be the size and hence the flow ‘supply’ of student group g, and let Ag,g′ ∈ {0, 1} be 1 if
the student groups g and g′ have chosen one Arts and one Science specialization, and thus are not
allowed to be placed in the same cohort.

Let U ∈ N and L ∈ N be the lower and upper limit respectively on the cohort size as specified
by the school. To ensure we can always find feasible solutions, even if these limits make the
problem infeasible, we introduce a dummy cohort c∅ with no capacity limits, where the flow going
into the dummy cohort, x̄g,c∅ , gives the number of students which cannot be placed into a cohort.
Note that this dummy cohort c∅ is not considered part of the set C of ‘real’ cohorts.

While our main goal is to minimize the specialization counts for the electives, the high schools
also see it as advantageous if we can reduce the number of electives and different student groups
represented in each cohort. To help model this in our objective, we introduce additional variables
to further characterize the composition of each cohort. Specifically, we let us,c ∈ {0, 1} and ze,c
∈ {0, 1} take value 1 if specialization s is represented in cohort c and if elective e is represented
in cohort c, respectively, and zero otherwise.

The objective seeks to minimize a weighted combination of the numbers of student groups
included in the cohorts, the number of unplaced students, the specialization counts for the cohorts,
and the number of electives in the cohorts. The associated weights, α, β, δ and σ, are addressed
more fully in Section 7.3.4.

137 7.3. Integer Programming Model

The sub-problem of creating cohorts can now be written as follows:

Cohort Creation (7.3.2)

min

α ·
∑

g∈G,c∈C
xg,c + β ·

∑
g∈G

x̄g,c∅

+ δ ·
∑

s∈S,c∈C
us,c + σ ·

∑
e∈E,c∈C

ze,c
(7.3.2a)

st∑
c∈C

x̄g,c + x̄g,c∅ =Fg ∀ g ∈ G (7.3.2b)

x̄g,c ≤ min[Fg, U] · xg,c ∀ g ∈ G, c ∈ C (7.3.2c)∑
g∈G

x̄g,c ≤U ∀ c ∈ C (7.3.2d)

∑
g∈G

x̄g,c ≥L ∀ c ∈ C (7.3.2e)

xg,c + xg′,c ≤ 1 ∀c ∈ C, g, g′ ∈ G,
g 6= g′, Ag,g′ = 1

(7.3.2f)

Dg,s · xg,c ≤us,c ∀ g ∈ G, c ∈ C, s ∈ S (7.3.2g)

Rg,e · xg,c ≤ ze,c ∀ g ∈ G, e ∈ E , c ∈ C (7.3.2h)

xg,c ∈ {0, 1} (7.3.2i)

x̄g,c ∈ N (7.3.2j)

us,c ∈ {0, 1} (7.3.2k)

ze,c ∈ {0, 1} (7.3.2l)

Constraints (7.3.2b) ensure that all students in a student group are assigned to a real or dummy
cohort. Constraints (7.3.2c) link the binary variables xg,c with the associated flows x̄g,c, ensuring
that the number of students x̄g,c from student group g assigned to cohort c is zero if xg,c = 0, and
otherwise x̄g,c cannot be greater that the upper cohort size U or the size Fg of the student group.
Constraints (7.3.2d) and (7.3.2e) make sure that the total flow into a cohort is between the lower
and upper permitted cohort sizes, L and U . Constraints (7.3.2f) make sure that students with
arts and science specializations are not placed in the same cohort. Finally constraints (7.3.2g) and
(7.3.2h) set the values for the variables us,c and ze,c and hence record if specialization s or elective
e is represented in cohort c, respectively.

7.3.2 Elective Timetabling

The second part of the HSSS is the elective timetabling problem where we want to assign each
cohort to one time slot for their Linguistic electives and one time slot for their Artistic electives.
Thus, our inputs include the cohorts produced from the first sub-problem. As mentioned before,
the decision variable yc,t,d ∈ {0, 1} determines whether cohort c is assigned time slot t ∈ T for
elective type d ∈ D, D = {Linguistic,Artistic}. (Note that electives of type d ∈ D can only
be assigned to time slots Td ⊆ T , and so many of these yc,t,d will be constrained to zero in our
model.) We let variable v̄e,t ∈ N be the number of classes needed for elective e in time slot t and
let variable ve,t ∈ {0, 1} take value 1 if elective e is represented in time slot t, and 0 otherwise. The
parameter Ke,t ∈ N denotes the maximum number of classes for elective e which can be created
in time slot t, where each class in elective e can take up to Ue ∈ N students. Note that schools
specify the exact number of elective time slots to be used for each elective type, and so we require
each of these elective time slots to be used by at least one cohort.

The objective of this sub-problem is to minimize the number of elective classes required and to
have only a few electives represented in each time slot, where these two objectives are weighted

Chapter 7. High School Student Sectioning at Danish High Schools 138

using the cost parameters γ and ω (which are discussed further shortly). This gives the following
model:

Elective Timetabling (7.3.3)

min γ ·
∑

e∈E,t∈T
v̄e,t + ω ·

∑
e∈E,t∈T

ve,t (7.3.3a)

st ∑
t∈Td

yc,t,d = 1 ∀ c ∈ C, d ∈ D (7.3.3b)

∑
c∈C

yc,t,d ≥ 1 ∀ t ∈ T , d ∈ D (7.3.3c)∑
g∈G

Rg,e · x̄g,c −M(1− yc,t,d) ≤ Ue · v̄e,t (7.3.3d)

∀ c ∈ C, e ∈ E , t ∈ T , d ∈ D
ze,c + yc,t,d − 1≤ ve,t ∀ e ∈ E , c ∈ C, d ∈ D (7.3.3e)

v̄e,t ≤Ke,t ∀ c ∈ C, t ∈ T (7.3.3f)

yc,t,d ∈ {0, 1} (7.3.3g)

v̄e,t ∈ N (7.3.3h)

ve,t ∈ {0, 1} (7.3.3i)

Constraints (7.3.3b) make sure that every cohort is assigned exactly one time slot for each elective
type. Constraints (7.3.3c) ensure that there is at least one cohort in each time slot, whereas
Constraints (7.3.3d) set the value for each variable v̄e,t given some appropriately chosen value
for M . Constraints (7.3.3e) force elective e to be run in time t (i.e. ve,t =1) if any cohort with
that elective is assigned to time slot t. Constraints (7.3.3f) ensure that the number of classes run
simultaneously for an elective at a given time is within its bound.

If this sub-problem is solved independently, then x̄g,c and ze,c are considered input parameters
with values given by the solution of the first sub-problem. However, as we discusss next, a single
model can also be formed by combing the two sub-models in which case x̄g,c and ze,c are decision
variables in the full model.

7.3.3 Full HSSS Model

Using the above definitions, we can create a ‘full HSSS model’ by combining the cohort creation
sub-problem (7.3.2) and the elective timetabling sub-problem (7.3.3). This full model contains
constraints (7.3.2b)-(7.3.2l) and (7.3.3b)-(7.3.3i) and seeks to minimize an expression given by the
sum of the expressions in (7.3.2a) and (7.3.3a).

7.3.4 Defining Objective Weights

The HSSS is a multi-objective problem containing six different objectives. These objectives are
weighted with respect to each other using a weighted sum. In Table 7.4 all the weights are listed
with symbol, priority and cost.

It should be noted that feedback from a user will be used by Lectio to tune these weights to best
reflect the particular needs of a school.

139 7.4. Solution Methods

Table 7.4: Objective weights each with symbol, priority and value

Weight Symbol Priority Value

Splitting student groups α Medium 10
Student not assigned β Very High 10000
Cost of created classes γ Medium 5
Specialization in cohort δ High 100
Course in cohort σ Low 2
Courses in time slot ω Low 1

7.4 Solution Methods

We want to test the models using two different solution methods. In the first ‘standard’ approach,
we use an off-the-shelf IP solver to solve the full HSSS model. In the second ‘sequential’ approach,
we solve the sub-problems in sequence to generate a good, but probably sub-optimal, heuristic
initial solution. We then solve the full HSSS model using an off-the-shelf solver, but provide our
heuristic solution as an initial incumbent solution. Our sequential heuristic is motivated by the
empirical observation that the sub-problems are easy to solve when considered separately. Thus,
our second solution method solves the HSSS problem using a sequential approach with three steps:

1. Solve the cohort creation sub-problem (7.3.2) for each specialization type, i.e. for Arts and
for Science. As this sub-problem can be solved for each type of specialization independently,
the two problems contain only a subset of the entire sub-problem.

2. Solve the elective timetabling sub-problem (7.3.3) using the fixed solution from the first step.
As the students are already assigned to cohorts the second sub-problem cannot rearrange
the students and hence the problem typically solves quickly.

3. Solve the full HSSS model using the solutions from the two previous steps as an initial
incumbent solution.

By using a sequential approach we can solve the two IP models separately and fast and hence
give a very good initial solution to the full combined model. It is therefore expected that the
sequential approach will perform better than the standard approach for a given maximum run
time. We note, however, that these methods are exact in that they will, if given sufficient time,
both produce optimal solutions.

7.5 Experiments and Results

Implementations of the two approaches were created in in C# on a machine with an Intel i7 CPU,
3.07 GHz and with 12GB ram under Windows 8, 64 bit operating system. We used the state-of-art
MIP solver Gurobi 5.5.0 with default parameter settings to solve the HSSS using the two different
approaches.

MaCom A/S wish to use our models for decision support, and thus require good solutions quickly.
They have set a maximum total running time of 60 seconds, and so, in the standard approach,
we simply return the best solution found within this time. Our sequential process requires this
running time to be divided between the steps. After some empirical experimentation, we found
that good solutions could be generated by allocating 8 seconds to the first step (being 4 seconds
for the sub-problem for each specialization), 2 seconds to the second step, and the remaining 50
seconds to the third step. The low running times allocated to the first two steps reflect the ease
with which these problems can be solved when considered separately.

We tested the two approaches using 25 real life data instances of varying sizes sourced from
Danish schools. These are listed in Table 7.5. To help benchmark our solutions, we generated
‘best known’ solutions for each instance using a modified form of our sequential approach in which,

Chapter 7. High School Student Sectioning at Danish High Schools 140

during step 3, Gurobi was allowed to run for 4 hours. This gave us a best known objective value
z̄, a best known lower bound, z̄LB, and the gap between these:

Gapz̄ = 100 · z̄ − z̄LB

z̄
, (7.5.1)

as shown in Table 7.5. These results show that these problems are hard for Gurobi to solve,
producing bound gaps averaging 10.4% and up to 19.4% even after 4 hours. Of the 25 problems,
only the two smallest problems (i.e. the two with the fewest students) were solved to optimality.

We next tested our standard approach in which the full HSSS is solved using Gurobi with a 1
minute maximum run time. Table 7.6 shows the results obtained using this standard approach.
The resulting solution qualities are reported using the apparent percentage error, Errst, measured
between the solution objective zst and the best known solution objective z̄:

Errst = 100 · z
st − z̄
zst

. (7.5.2)

A user of the system will not know z̄ or Errst, but instead must assess the solution quality using
a percentage bound gap Gapst calculated using only data found during the run. Thus, we also
report Gapst, given by

Gapst = 100 · z
st − LBst

zst
, (7.5.3)

where LBst is the lower bound reported by Gurobi at the end of the user’s run. Before Gurobi
solves the root node linear program, it uses heuristics to produce an initial integer solution giving
a ‘root node’ objective function value zst

RN. To assess the quality of Gurobi’s heuristics, we report
zst

RN, the root node lower bound LBst
RN, and the percentage gap at the root node given by

Gapst
RN = 100 · z

st
RN − LBst

RN

zst
RN

. (7.5.4)

Table 7.6 shows that solving HSSS using the standard approach gives poor performance pro-
ducing bound gaps averaging 23.5% and up to 77% after 1 minute. Moreover, these solutions have
apparent errors of 8.4% on average and as large as 73%. The quality of these solutions is too poor
and varying for this approach to be viable as a production system.

Next we consider our sequential approach, results for which are given in Table 7.7. We have
reported the same measures as used before, but note that the root node objective, now denoted
zseq

RN, is the objective function value of our heuristic solution (which Gurobi’s heuristics never
improved). Table 7.7 shows that our sequential approach produces solutions in 1 minute that
are significantly better than a standard Gurobi implementation can generate in the same time.
On average, our sequential approach reduces the average apparent error from 8.4% to 0.5%, and
the average gap from 23.5% to 16.4%. The worst case apparent error drops from 73.2% to 2.4%,
a significant improvement. Furthermore, our sequential method produces better initial solutions
than are produced by Gurobi’s pre-solve heuristics, reducing the root node gaps from 91.7% down
to 24.8%. This approach has achieved our goal of producing good quality solutions within a 1
minute time frame, and thus is suitable for use by the Danish schools.

7.6 Conclusion

In this article we have shown how the High School Student Sectioning problem can be modeled
as two separate, but interconnected, IP models. Two different approaches have been tested for
solving the problem within the specified 1-minute maximum run time. The first standard approach
is to solve and formulate a large IP model, while our second sequential approach decomposes the
problem into two sub-problems that are solved sequentially to give the IP solver an initial heuristic
solution. Testing on 25 real life instances has shown that the sequential approach significantly

141 7.6. Conclusion

Table 7.5: Specifications and best-known results for the 25 test instances. For each instance, this table
shows the number of students —St—, the number of student groups |G|, the number of specializations
|S|, the number of cohorts |C| and the number of Arts and Linguistic electives, denoted by |EA| and |EL|
respectively. Furthermore, we have listed the best known objective z̄, the best known lower bound z̄LB,
and the percentage gap between these Gapz̄.

Instance |St| |G| |S| |C| |EA| |EL| z̄ z̄LB Gapz̄

Allerod 212 54 8 9 3 4 6869 5941 13.5
Aurehoj 147 38 11 6 3 4 4907 4631 5.6
Birkeroed 213 46 8 9 4 3 6089 5459 10.3
Borupgaard 279 42 14 11 3 4 6015 4880 18.9
Christianhavns 164 54 10 7 5 4 6697 6090 9.1
Falkoner 114 36 8 5 5 3 4594 4594 0.0
Fredericia 254 58 12 10 4 4 7528 6574 12.7
Gefion 237 66 12 10 4 5 8288 7232 12.7
GlHellerup 309 59 8 12 3 4 7850 6324 19.4
Haslev 205 75 12 8 5 4 9117 8107 11.1
Herlev 151 42 10 6 3 3 5292 4988 5.7
Hjoerring 261 67 12 10 3 5 8497 7247 14.7
HojeTaastrup 192 55 11 8 5 4 6950 6202 10.8
Kolding 176 55 8 7 4 3 6823 6285 7.9
Mulernes 153 31 10 6 4 4 4231 3975 6.1
Oerestad 273 70 11 10 4 4 8842 7695 13.0
Ordrup 210 48 10 9 3 4 6291 5582 11.3
Roskilde 180 58 13 7 4 4 7133 6542 8.3
Rybners 172 52 10 7 4 4 6436 5943 7.7
Rysensteen 227 29 11 10 2 6 4380 3555 18.8
Skanderborg 191 64 11 8 4 5 7947 7052 11.3
SktAnnae 65 21 7 4 4 3 3031 3031 0.0
Stenhus 257 71 13 10 4 6 8969 8082 9.9
Svendborg 273 62 13 10 3 4 7992 6977 12.7
VestFyen 179 47 8 7 4 3 5961 5496 7.8
Average 203.8 52.0 10.4 8.2 3.8 4.0 10.4

Table 7.6: Performance of the standard HSSS approach using Gurobi with a maximum 60 second run
time. For each instance, the table shows the best known solution z̄ from Table 7.5, the final objective value
zst found after 1 minute, the final lower bound LBst, the gap between these Gapst, and the percentage
error Errst between the best known and final solutions. The root node objective zst

RN, root node lower
bound LBst

RN, and percentage gap Gapst
RN between these are also given.

Standard approach

Instance z̄ zst
RN LBst

RN GapstRN zst LBst Gapst Errst

Allerod 6869 77574 5625 92.7 7101 5635 20.6 3.3
Aurehoj 4907 56585 4040 92.9 4907 4182 14.8 0.0
Birkeroed 6089 75060 4830 93.6 6165 4919 20.2 1.2
Borupgaard 6015 122742 4545 96.3 6124 4600 24.9 1.8
Christianhavns 6697 59397 5660 90.5 6842 5672 17.1 2.1
Falkoner 4594 39999 3830 90.4 4594 4101 10.7 0.0
Fredericia 7528 113150 6090 94.6 7660 6100 20.4 1.7
Gefion 8288 95678 6880 92.8 17781 6880 61.3 53.4
GlHellerup 7850 135306 6125 95.5 10502 6127 41.7 25.3
Haslev 9117 79070 7820 90.1 9358 7821 16.4 2.6
Herlev 5292 59121 4420 92.5 5351 4550 15.0 1.1
Hjoerring 8497 108890 6975 93.6 9367 6977 25.5 9.3
HojeTaastrup 6950 67909 5800 91.5 7335 5821 20.6 5.2
Kolding 6823 53208 5730 89.2 6922 5759 16.8 1.4
Mulernes 4231 65141 3345 94.9 4256 3459 18.7 0.6
Oerestad 8842 128133 7280 94.3 9237 7283 21.2 4.3
Ordrup 6291 78054 5065 93.5 6544 5091 22.2 3.9
Roskilde 7133 65010 6100 90.6 7423 6120 17.6 3.9
Rybners 6436 65357 5475 91.6 6471 5543 14.3 0.5
Rysensteen 4380 84111 3160 96.2 4407 3242 26.4 0.6
Skanderborg 7947 73788 6700 90.9 8017 6705 16.4 0.9
SktAnnae 3031 6379 2265 64.5 3031 3031 0.0 0.0
Stenhus 8969 114138 7444 93.5 33411 7561 77.4 73.2
Svendborg 7992 122548 6505 94.7 8996 6505 27.7 11.2
VestFyen 5961 58485 4925 91.6 6092 4952 18.7 2.2
Average 91.7 23.5 8.4

outperforms the standard approach on a range of measures, and is producing solutions with an
average 16.4% optimality gap. Furthermore, our sequential approach gives solutions in 1 minute
that are only 0.5% worse on average than the best solutions found within 4 hours, suggesting that

Chapter 7. High School Student Sectioning at Danish High Schools 142

Table 7.7: Performance on the sequential HSSS approach using Gurobi. All the columns are defined in
an analogous way to those in Table 7.6.

Sequential approach

Instance z̄ zseq
RN LBseq

RN Gapseq
RN zseq LBseq Gapseq Errseq

Allerod 6869 6869 5625 18.1 6869 5638 17.9 0.0
Aurehoj 4907 4931 4040 18.1 4931 4116 16.5 0.5
Birkeroed 6089 6089 4830 20.7 6089 5162 15.2 0.0
Borupgaard 6015 122742 4545 96.3 6015 4617 23.2 0.0
Christianhavns 6697 6719 5660 15.8 6719 5711 15.0 0.3
Falkoner 4594 4846 3830 21.0 4594 4077 11.3 0.0
Fredericia 7528 7543 6090 19.3 7543 6312 16.3 0.2
Gefion 8288 8338 6880 17.5 8338 6906 17.2 0.6
GlHellerup 7850 7850 6125 22.0 7850 6129 21.9 0.0
Haslev 9117 9202 7820 15.0 9202 7845 14.7 0.9
Herlev 5292 5445 4420 18.8 5361 4604 14.1 1.3
Hjoerring 8497 8499 6975 17.9 8499 7006 17.6 0.0
HojeTaastrup 6950 7024 5800 17.4 7024 5874 16.4 1.1
Kolding 6823 6825 5730 16.0 6825 5774 15.4 0.0
Mulernes 4231 4260 3345 21.5 4260 3519 17.4 0.7
Oerestad 8842 8842 7280 17.7 8842 7308 17.3 0.0
Ordrup 6291 6291 5065 19.5 6291 5161 18.0 0.0
Roskilde 7133 7257 6100 15.9 7257 6167 15.0 1.7
Rybners 6436 6563 5475 16.6 6563 5525 15.8 1.9
Rysensteen 4380 84111 3160 96.2 4380 3296 24.7 0.0
Skanderborg 7947 8004 6700 16.3 8004 6707 16.2 0.7
SktAnnae 3031 3105 2265 27.1 3031 3031 0.0 0.0
Stenhus 8969 8969 7444 17.0 8969 7561 15.7 0.0
Svendborg 7992 8008 6505 18.8 8008 6546 18.3 0.2
VestFyen 5961 6107 4925 19.4 6107 4977 18.5 2.4
Average 24.8 16.4 0.5

the solution quality should meet the needs of the client schools. So in conclusion there is a huge
advantage to solving the HSSS problem using our sequential approach.

The new sequential approach developed in this article is currently implemented as a beta system
for Lectio. Our work has shown that we can model and solve this problem to deliver acceptably
good solutions within the specified 1-minute run time, and thus this optimization approach is now
ready for implementation as a new decision support tool within the Lectio system.

7.7 Acknowledgments

We would like to give our warm gratitude to MaCom A/S for their help in defining the High
School Student Sectioning problem and for providing us with data for testing. This research has
been partially supported by the European Union Seventh Framework Program (FP7-PEOPLE-
2009-IRSES) under grant agreement number 246647 and by the New Zealand Government as part
of the OptALI project.

143 Bibliography

Bibliography

M. Amintoosi and J. Haddadnia. Feature selection in a fuzzy student sectioning algorithm. In
E. Burke and M. Trick, editors, Practice and Theory of Automated Timetabling V, volume 3616
of Lecture Notes in Computer Science, pages 147–160. Springer Berlin Heidelberg, 2005. ISBN
978-3-540-30705-1.

M. Carter and G. Laporte. Recent developments in practical course timetabling. In E. Burke and
M. Carter, editors, Practice and Theory of Automated Timetabling II, volume 1408 of Lecture
Notes in Computer Science, pages 3–19. Springer Berlin / Heidelberg, 1998.

L. D. Gaspero, A. Schaerf, and B. McCollum. The second international timetabling competition
(itc-2007): Curriculum-based course timetabling (track 3). Technical report, School of Electron-
ics, Electrical Engineering and Computer Science, Queen’s University SARC Building, Belfast,
United Kingdom, 2007.

P. Kostuch. Timetabling competition - sa-based heuristic. In PATAT 2004: Proceedings of the
5th International Conference on the Practice and Theory of Automated Timetabling, 2004.

S. Kristiansen and T. R. Stidsen. Elective course student sectioning at danish high schools. Annals
of Operations Research, PATAT 2012 SI:To appear, 2013.

T. Müller and K. Murray. Comprehensive approach to student sectioning. Annals of Operations
Research, 181:249–269, 2010. ISSN 0254-5330.

G. Post, L. D. Gaspero, J. H. Kingston, B. McCollum, and A. Schaerf. The third international
timetabling competition. In Proceedings of the Ninth International Conference on the Practice
and Theory of Automated Timetabling (PATAT 2012), Son, Norway, August 2012.

T. Sönmez and M. U. Ünver. Course bidding at business schools*. International Economic Review,
51(1):99–123, 2010. ISSN 1468-2354.

M. Sørensen and T. Stidsen. Comparing solution approaches for a complete model of high school
timetabling. Technical Report 5.2013, DTU Management Engineering, Technical University of
Denmark, March 2013.

Part IV

Meeting Planning Problems

145

Chapter 8

The Consultation Timetabling
Problem at Danish High Schools

Simon Kristiansen∗† Matias Sørensen∗† Michael B. Herold† Thomas R. Stidsen∗

∗Department of Management Engineering, Technical University of Denmark,
Produktionstorvet, Building 426, DK-2800 Kgs. Lyngby, Denmark

sikr@dtu.dk, msso@dtu.dk, thst@dtu.dk

†MaCom A/S
Vesterbrogade 48, 1., DK-1620 Copenhagen V, Denmark

herold@macom.dk

1

Abstract In the different stages of the educational system, the demand for efficient planning is increas-

ing. This article treats the NP-hard Consultation Timetabling Problem, a recurrent planning problem

for the high schools in Denmark, which has not been described in the literature before. Two versions of

the problem are considered, the Parental Consultation Timetabling Problem (PCTP) and the Supervisor

Consultation Timetabling Problem (SCTP). It is shown that both problems can be modeled using the

same Integer Programming model. Solutions are found using the state-of-the-art MIP solver Gurobi and

Adaptive Large Neighborhood Search (ALNS), and computational results are established using 300 real-life

datasets. These tests show that the developed ALNS algorithm is significantly outperforming both Gurobi

and a currently applied heuristic for the PCTP. For both the PCTP and the SCTP, it is shown that the

ALNS algorithm in average provides results within 5% of optimum. The developed algorithm has been

implemented in the commercial product Lectio, and is therefore available for approximately 95% of the

Danish high schools.

8.1 Introduction

The Consultation Timetabling Problem (CTP) is a recurrent planning problem for the high schools
in Denmark, which concerns the creation of a schedule for student-teacher meetings, given the
students requests of teachers, subject to various soft constraints and resource constraints. The
problem has not been described in the literature before, but it shares some properties with other
problems within the educational sector, see Section 8.2.1. There exists several variants of the
problem. In this paper we consider the two most important versions for the Danish high schools,
namely the Parental Consultation Timetabling Problem (PCTP) and the Supervisor Consultation
Timetabling Problem (SCTP).

1Published in Journal of Heuristics, volume 19, 2013 (Kristiansen et al. (2013))

147

Chapter 8. The Consultation Timetabling Problem at Danish High Schools 148

This paper is written in cooperation with the Danish company MaCom A/S. MaCom A/S is
the developer of the cloud-based high school administration system Lectio, which handles all sorts
of administrative tasks for the high schools, including a GUI and a heuristic-based solver for the
PCTP. Through this cooperation we have access to real-life data for approximately 95% of all
Danish high schools, which constitutes thousands of datasets. We will provide computational
results for 300 of these datasets, which is a very big amount of real-life data compared to the
majority of scheduling literature.

Our task of this paper is to give a detailed description of the CTP, and model it using Integer
Programming. This model should support both the PCTP and the SCTP. To find solutions, both
a state-of-the-art MIP solver and an Adaptive Large Neighborhood Search (ALNS) heuristic is
attempted. These solution approaches are compared to the existing heuristic used in Lectio, and
the best approach is made available for all users of Lectio.

8.2 Consultation Timetabling Problem

In the following we describe the CTP in details, starting with specifications of the two versions of
the problem.

Parental Consultation Timetabling Problem: Once or twice a year the high schools invite
the students and their parents to participate in meetings with the teachers of the student. The
goal of these meetings is to allow the teachers to inform of the educational progress of the student,
and possibly address relevant problems. Parental consultations usually take place in the evening
of a normal work day, and each meeting generally has a duration between 5 and 15 minutes. The
order of events for parental consultations is the following: The high school administration selects
days where the meetings should take place, and for each day a feasible time-interval is chosen.
Each student (usually in collaboration with his parents) makes prioritized requests of groups of
teachers he would like to meet. Few of these teacher groups contain more than a single teacher,
because the student is taught by only one teacher in most classes. Usually the high school also
allows the students to request specific time intervals, within the overall time interval on each day,
where the student will be available for meeting teachers. Given the student’s choice of teachers
and time intervals, it is then up to the high school administration to decide which teachers a
student should meet, and when the meetings should take place.

Supervisor Consultation Timetabling Problem: In the last year of a high school education,
the students are required to make a large study project (Danish: Studieretnings Projekt). Each
student selects two subjects/courses as combined subject for his project, e.g. English and History.
Each student is then assigned two teachers whom will be his supervisors for the project. The
objective of the SCTP is to plan meetings between the students and their respective supervisors.
The goal of these meetings is for the supervisors to provide the student with some useful hints
for problem definition, literature research, etc. Typically supervisor consultations take place in
the daytime, where both the student and the corresponding teachers are located at the high school.

From a timetabling point of view, these two types of consultations are almost identical. For
both types, as many as possible of the meeting requests should be fulfilled, and both essentially
contain the same constraints. Therefore we will in this paper model both types of consultations
using the same Integer Programming model. In the remainder of this paper we refrain, as much
as possible, from distinguishing between the two variants of the problem, and will by CTP denote
the problem which is the superset of the PCTP and the SCTP.

In the following further details of the soft constraints of the CTP is given. These soft constraints
define various scheduling preferences for the students and teachers.

A contiguous streak of meetings for a teacher or student are from now on denoted a sequence.
A time slot is void for a teacher or student if the time slot is empty and no meetings are scheduled

149 8.2. Consultation Timetabling Problem

in either earlier time slots or in later time slots. A break for a student or teacher is defined as a
time slot which is not void, and which has no meetings assigned. Void time slots must be distin-
guished from breaks because they do not effect the density of a schedule. This is due to the fact
that students and teachers are not obligated to stay at the school throughout the entire duration
of the consultation. Given these definitions, we formulate the following soft constraints:

• It is attempted to achieve a solution where the positions of the granted meetings for a given
individual are placed in a sequence. I.e. for both students and teachers the number of breaks
should be minimized. This is to achieve a schedule with as little waiting time as possible.
However, for the students it is possible for the high school administration to declare whether
they need a break after each meeting. This is usually selected if there exists ”traveling” time
between the meeting rooms where the teachers are located. The CTP only takes consultation
meetings into consideration when determining a sequence, and not other activities.

• When assigning a meeting to a time slot, the availability of the student and teacher must
be taken into consideration. The high school administration decides whether this constraint
should be defined as a hard- or a soft-constraint. It is common that in case of SCTP,
this is defined as a soft-constraint as it is feasible for the students to leave classes to have
meetings with their supervisors. In case of the PCTP, this constraint is usually treated as a
hard-constraint, as a solution should respect activities such as meetings, study-trips, etc.

• It is undesirable for teachers to have too long sequences of meetings. Therefore a maximum
on the length of sequences for teachers is given (treated as a soft-constraint). This is not
required for the students, since they typically have a low number of requests.

• For a consultation which spans over several days it is desired that a student or a teacher
only have meetings in one of the days, such that they are not obligated to attend both. This
is especially critical for students, as they have a low number of requests.

• The high school administration prefers if the meetings are placed as close as possible to a
specific time slot on each day. This is usually selected as the first timeslot on each day.

Figure 8.1 shows an example of a consultation schedule on one day. The schedule contains 1 void
time slot, 2 breaks, and 7 consultations.

Void time slot Break Break

Time slots

Figure 8.1: Example of a feasible consultation schedule.

8.2.1 Literature Review

The CTP has, to the best of our knowledge, not been described in the literature before. However
there exist many types of related timetabling problems within the educational system, see Schaerf
(1999); Burke and Petrovic (2002); McCollum (2006); Pillay (2010) for overviews of this field.
Problems such as Course Timetabling and Student Sectioning have been looked in to, e.g. Tripathy
(1984); Erben and Keppler (1996); Carter and Laporte (1998); Müller and Murray (2010). Related
problems for Danish high schools include Kristiansen et al. (2011) and Kristiansen and Stidsen
(2012) regarding the Elective Course Planning Problem, and Sørensen and Stidsen (2012) regarding

Chapter 8. The Consultation Timetabling Problem at Danish High Schools 150

the timetabling problem. For all these problems it applies that they attempt to assign requests to
time slots in a given schedule.

The requirement for compact schedules is well known in educational timetabling. In Santos et al.
(2012) the Class-Teacher Timetabling Problem with Compactness Constraints is described. The
compactness is defined in terms of teacher ”holes”, which is equivalent to our definition of breaks.
The teacher holes are modeled with a linear IP, which entails the need for two auxiliary variables,
and three additional constraints. This approach can be directly applied to the CTP. de Haan et al.
(2007) specifies that the timetabling problem at Dutch high schools requires compact schedules
for both classes and teachers. This is addressed using heuristic methods. For Greek high schools
the situation is similar, see e.g. Birbas et al. (2009). Here the problem is handled using a MIP
solver for a complicated IP.

8.3 Integer Programming Model

The following IP model for the CTP aims at maximizing the number of granted meeting requests
and minimizing the violating of soft constraints, while respecting the hard constraints.

A consultation problem at a high school contains set of students S, a set of teachers T , a set of
teacher groups G, an ordered set of time slots B and a set of of days D. Vb,d ∈ {0, 1} takes value
1 if time slot b is part of day d, and zero otherwise.

The decision whether a student s is given a meeting with teacher group g in time slot b is
defined by the binary variable xs,g,b ∈ {0, 1}. The profit of meeting (s, g) in timeslot b is given by
αs,g,b ∈ R+. The basic objective function is therefore

max
∑
s,g,b

αs,g,bxs,g,b (8.3.1)

8.3.1 Unavailabilities

In some situations it can be allowed to interrupt other activities at the high schools to satisfy
a meeting request. Let Dt,b ∈ {0, 1} take value 1 if teacher t is not available (i.e. occupied by
other activities) in time slot b, and zero otherwise. Let Es,b ∈ {0, 1} be the completely analogous
parameter for the students. If a consultation meeting is placed in a time slot where either a student
or a teacher has some other activities, it is penalized by the following.

−
∑
s,g,b

(∑
t

δt ·Dt,b · Pg,t + δs · Es,b

)
xs,g,b (8.3.2)

If it is not allowed to interrupt activities this term is not added to the objective, and these
constraints take the form of hard-constraints by forbidding meetings of teacher t in time slot b if
Dt,b = 1, and likewise for student s in time slot b if Es,b = 1.

It is of course not allowed to assign a student to a consultation meeting with a teacher group, if
the student has not requested this teacher group. And is it not allowed for the student or teacher
to have more than one meeting in each time slot. This imposed the following constraints. The
parameter Pt,g ∈ {0, 1} takes value 1 if teacher t is in teacher group g, and zero otherwise. Rs,g ∈
{0, 1} takes value 1 if student s has requested teacher group g, and zero otherwise. Cs,b ∈ {0, 1}
takes value 1 if student s has requested time slot b.

∑
b

xs,g,b ≤ Rs,g ∀ s, g (8.3.3)∑
g

xs,g,b ≤ Cs,b ∀ s, b (8.3.4)

∑
s,g

Pg,t · xs,g,b ≤ 1 ∀ t, b (8.3.5)

151 8.3. Integer Programming Model

8.3.2 Undesirable breaks

One of the undesirable properties of the CTP is the breaks for both students and teachers. Let the
variables zs,d ∈ N and wt,d ∈ N be the number of breaks in day d for a student and for a teacher,
respectively. As we do not penalize void time slots as shown in Figure 8.1, we need to know when
a individual have his first and last meeting. Let variables ffirst

s,d and f last
s,d denote the timeslot of

the first and last meeting for student s, respectively. Let hfirst
t,d and hlast

t,d be the analogous variables
for teacher t. Let variable ns,b,d ∈ {0, 1} take value 1 if student s is placed in time slot b on day
d. The idle time slots for a student is then given by the following constraints

∑
g

Vb,d · xs,g,b = ns,b,d ∀ s, b, d, Vb,d = 1 (8.3.6)

f last
s,d − ffirst

s,d + 1−
∑
b

ns,b,d · (1 +HS) +HS = zs,d ∀ s, d (8.3.7)

|B|d − (|B|d − ord(b)) · ns,b,d ≥ ffirst
s,d ∀ s, b, d, Vb,d = 1 (8.3.8)

ord(b) · ns,b,d ≤ f last
s,d ∀ s, b, d, Vb,d = 1 (8.3.9)

The parameter HS ∈ {0, 1} indicates whether a student is required a break after each meeting,
zero otherwise. This parameter is selectable for the user of Lectio. We want to penalize the cost
such that it increases exponential on the number of breaks. The cost function is modeled as a
piece-wise linear function by introducing a new variable vss,d,j ∈ {0, 1}, where j ∈ 1, ...,m, which
takes value 1 if student s has j breaks in day d. This imposes the following constraints.∑

j

vss,d,j · ord(j) = zs,d ∀ s, d (8.3.10)

∑
j

vss,d,j = 1 ∀ s, d (8.3.11)

As for the teacher let variable pt,b,d ∈ {0, 1} take value 1 if teacher t has a meeting in time slot b
on day d. The cost for teacher breaks is also made as a piece-wise linear function, using the new
variable vtt,d,j ∈ {0, 1} The following constraints are imposed to denote the number of undesirable
breaks for a given teacher,

∑
g,s

Vb,d · Pg,t · xs,g,b = pt,b,d ∀ t, b, d, Vb,d = 1 (8.3.12)

|B|d − (|B|d − ord(b)) · pt,b,d ≥ hfirst
t,d ∀ t, b, d, Vb,d = 1 (8.3.13)

ord(b) · pt,b,d ≤ hlast
t,d ∀ t, b, d, Vb,d = 1 (8.3.14)

hlast
t,d − hfirst

t,d + 1−
∑
b

pt,b,d = wt,d ∀ t, d (8.3.15)∑
j

vtt,d,j · ord(j) = wt,d ∀ t, d (8.3.16)

∑
j

vtt,d,j = 1 ∀ t, d (8.3.17)

The contribution to the objective is as follows

−
∑
s,d,j

γs,j · vss,d,j −
∑
t,d,j

βt,j · vtt,d,j (8.3.18)

Chapter 8. The Consultation Timetabling Problem at Danish High Schools 152

8.3.3 Sequences

In connection with the undesirable breaks, the CTP also contains some needed breaks. For the
students it is often necessary to give them a break between each consultation meeting due to
traveling time between meeting rooms. This impose the following constraints.∑

g

(
xs,g,b + xg,b+1,s

)
≤ 1 ∀ s, d, b ∈ B\{b|BJ |}, HS = 1, Vb,d = Vb+1,d = 1 (8.3.19)

The teachers seldom change location during the consultation period, so travel time is not needed.
However, as mentioned it is undesirable for the teachers to have a long sequence of meetings, as
they need a break now and then. The maximum size of a sequence for a teacher is denoted Q ∈ N.
Let the variable yt,b,d ∈ {0, 1} take value 1 if time slot b is the start of a sequence of length greater
than Q on day d for teacher t. The following equation constraints this variable,

∑
s

b+Q∑
b′=b

Vb′,d=1

pt,b′,d − yt,b,d ≤ Q ∀ t, d, b ∈ B\{bj |j > |B| −Q}, Vb,d = 1 (8.3.20)

The contribution to the objective is given by

−
∑
t,b,d

ω · yt,b,d (8.3.21)

8.3.4 Day distribution

In case the consultation has more than one day it is preferred that each student and each teacher
only has meetings on a single day. ut,d ∈ {0, 1} and us,d ∈ {0, 1} denotes if teacher t or student s
has a meeting on day d, respectively. vt ∈ N and vs ∈ N denotes the number of days where teacher
t and student s have meetings, respectively. The number of days with meetings is punished in the
objective by

−
∑
s

ζs · vs −
∑
t

ζt · vt (8.3.22)

and is constrained by the following∑
g

Vb,d · xs,g,b ≤ us,d ∀ s, b, d (8.3.23)

∑
s,g

Vb,d · Pt,g · xs,g,b ≤ ut,d ∀ t, b, d (8.3.24)

∑
d

us,d − 1 ≤ vs ∀ s (8.3.25)∑
d

ut,d − 1 ≤ vt ∀ t (8.3.26)

The entire model for CTP is given in (8.3.27).

153 8.3. Integer Programming Model

8.3.5 IP model for CTP

Consultation Timetabling Problem IP (8.3.27)

max
∑
s,g,b

(
αs,g,b −

∑
t

δt ·Dt,b · Pg,t + δs · Es,b

)
· xs,g,b −

∑
s,d,j

γs,j · vss,d,j −
∑
t,d,j

βt,j · vtt,d,j (8.3.27a)

−
∑
t,b,d

ω · yt,b,d −
∑
s

ζs · vs −
∑
t

ζt · vt

s.t.
∑
b

xs,g,b ≤ Rs,g ∀ s, g (8.3.27b)∑
g

xs,g,b ≤ Cs,b ∀ s, b (8.3.27c)∑
s,g

Pg,t · xs,g,b ≤ 1 ∀ t, b (8.3.27d)∑
g

(
xs,g,b + xg,b+1,s

)
≤ 1 ∀ s, d, b ∈ B\{b|BJ |}, HS = 1, Vb,d = Vb+1,d = 1(8.3.27e)

∑
s

b+Q∑
b′=b

Vb′,d=1

pt,b′,d − yt,b,d ≤ Q ∀ t, d, b ∈ B\{bj |j > |B| −Q}, Vb,d = 1 (8.3.27f)

∑
g

Vb,d · xs,g,b = ns,b,d ∀ s, b, d, Vb,d = 1 (8.3.27g)

|B|d − (|B|d − ord(b)) · ns,b,d ≥ ffirst
s,d ∀ s, b, d, Vb,d = 1 (8.3.27h)

ord(b) · ns,b,d ≤ f last
s,d ∀ s, b, d, Vb,d = 1 (8.3.27i)

f last
s,d − ffirst

s,d + 1−
∑
b

ns,b,d · (1 +HS) +HS = zs,d ∀ s, d (8.3.27j)∑
j

vss,d,j · ord(j) = zs,d ∀ s, d (8.3.27k)∑
j

vss,d,j = 1 ∀ s, d (8.3.27l)∑
g,s

Vb,d · Pg,t · xs,g,b = pt,b,d ∀ t, b, d, Vb,d = 1 (8.3.27m)

|B|d − (|B|d − ord(b)) · pt,b,d ≥ hfirst
t,d ∀ t, b, d, Vb,d = 1 (8.3.27n)

ord(b) · pt,b,d ≤ hlast
t,d ∀ t, b, d, Vb,d = 1 (8.3.27o)

hlast
t,d − hfirst

t,d + 1−
∑
b

pt,b,d = wt,d ∀ t, d (8.3.27p)∑
j

vtt,d,j · ord(j) = wt,d ∀ t, d (8.3.27q)∑
j

vtt,d,j = 1 ∀ t, d (8.3.27r)∑
g

Vb,d · xs,g,b ≤ us,d ∀ s, b, d (8.3.27s)∑
s,g

Vb,d · Pt,g · xs,g,b ≤ ut,d ∀ t, b, d (8.3.27t)∑
d

us,d − 1 ≤ vs ∀ s (8.3.27u)∑
d

ut,d − 1 ≤ vt ∀ t (8.3.27v)

xs,g,b ∈ {0, 1}, yt,b,i ∈ {0, 1} (8.3.27w)
wt,d ∈ N, zs,d ∈ N (8.3.27x)
vtt,d,j ∈ {0, 1}, vss,d,j ∈ {0, 1} (8.3.27y)

ffirst
s,d ∈ N, f last

s,d ∈ N, hfirst
t,d ∈ N, hlast

t,d ∈ N (8.3.27z)
pt,b,d ∈ {0, 1}, ns,b,d ∈ {0, 1} (8.3.27aa)
us,d ∈ {0, 1}, ut,d ∈ {0, 1} (8.3.27ab)
vs ∈ N, vt ∈ N (8.3.27ac)

Chapter 8. The Consultation Timetabling Problem at Danish High Schools 154

8.3.6 Complexity

In the following a proof of NP-hardness is given by showing that a well known NP-hard problem,
the Graph Coloring Problem (GCP), is polynomially reducible to CTP.

An arbitrary instance of GCP consists of a graph G = (V,E) and a number of colors k. The
decision-version of the GCP asks the following: Does graph G admit a proper vertex coloring with
k colors, such that no adjacent vertices take the same color?

To answer this question we solve a CTP with parameters δt = δs = γs,j = βt,j = ω = ζs = ζt =
HS = 0, αs,g,b = 1, Cs,b = 1. This makes all constraints redundant, except for (8.3.27b), (8.3.27c)
and (8.3.27d). Further assuming every student has exactly one request,

∑
g Rs,g = 1 ∀s, makes

constraint (8.3.27c) redundant.
For each vertex v ∈ V in graph G, create a student s and a teachergroup g, and let the meeting

request (s, g) represent vertex v. The set of vertices is hence represented by a setting of parameter
Rs,g. If vertex v1 = (s1, g1) and vertex v2 = (s2, g2) are adjacent in graph G, create a teacher t
and assign it to both g1 and g2, i.e. Pg1,t = Pg2,t = 1. I.e. every teacher will have exactly two
meeting requests. Let the set of time slots B represent the set of colors (such that |B| = k).

Hence the GCP-instance is represented by the following CTP instance:

(8.3.28)

max
∑
s,g,b

xs,g,b (8.3.28a)

s.t.
∑
b

xs,g,b ≤ Rs,g ∀ s, g (8.3.28b)∑
s,g

Pg,t · xs,g,b ≤ 1 ∀ t, b (8.3.28c)

xs,g,b ∈ {0, 1} (8.3.28d)

Constraint (8.3.28b) specifies that each vertex (meeting request) can at most be assigned one color
(time slot). Constraint (8.3.28c) specifies that no teacher can be assigned more than one meeting
in each time slot, which specifies that no adjacent vertices can take the same color.

To answer the question whether G is k-colorable, solve the CTP instance (8.3.28) and check if
all meeting requests are assigned a time slot, i.e.

∑
b xs,g,b = 1∀s, g, Rs,g = 1. If so the answer is

yes, otherwise the answer is no. Hence the Graph Coloring Problem is polynomially reducible to
CTP, and CTP is therefore NP-hard.

8.3.7 Defining Weights

In the following the weights of the model are selected due to the preferences of the Danish high
schools. MaCom A/S has greatly assisted this process. Table 8.29 lists all the weights in the
model and their priority.
From analysis of previous consultations in the Danish high schools, it is noticed that the students
rarely request more than five teacher groups for consultations. And even though the students
have the opportunity to request more than five, they seldom use this option. From this analysis
it is chosen to stick the request with priority higher than five to the same weight. This gives the
following function for the request weights αs,g,b:

αs,g,b =

{
κb + 12− 2 · (i− 1) i ≤ 5

κb + 2 i ≥ 6
(8.3.30)

where i ∈ Z+ is the priority of request (g, s). Furthermore there is a set-point for each day given
by b∗d for which it is desired that the schedule plan for the given day is centered around. Let κb

155 8.3. Integer Programming Model

Table 8.29: Weight prioritizing

Weight Symbol Priority Value dependency

(Max) Request fulfilling αs,g,b Very High Priority of request (s, g)
in time slot b

(Min) Teacher holes βt,j High Amount of requests of
teacher t

(Min) Teacher sequence violation ω High N/A
(Min) Teacher activities interruption δt Medium N/A
(Min) Teacher multiple days ζt Medium N/A
(Min) Student holes γs,j High Amount of requests of

student s
(Min) Student activities interruption δs Medium N/A
(Min) Student multiple days ζs Medium N/A

denote the penalty for assigning a request to time slot b, defined by

κb = −
∑
d Vb,d·|b

∗
d−b|

|B| (8.3.31)

The cost of an undesirable break for a teacher, βt,j , is defined as follows,

βt,j =

0 j = 0

j j ≥ 1 ∧ SCTP
j1+ 1.5

ηt j ≥ 1 ∧ PCTP
(8.3.32)

where ηt is the number of requests for teacher groups where teacher t is a group member, ηt =∑
s,g Pg,t·Rs,g. I.e. βt,j depends on the number of requests for the given teacher t. The distribution

of βt,j is chosen such that a teacher which few students have requested is given a high penalty
for undesirable breaks. Likewise, a teacher with many requests has a low penalty for undesirable
breaks. This is due to the fact that teachers with many requests will most likely have a more
dense schedule, and are therefore not too picky about additional breaks. The reason why there
is a difference between the weights for the different consultations types is due to the consultation
interval. For the PCTP the consultation meetings are normally located in the evening, and hence
we want to penalize the undesirable breaks. The SCTP is typically taken place in the daytime,
i.e. the teachers are already at the high school, hence undesirable breaks are not that significant.
The weight of an undesirable break for a student γs,j is analogues,

γs,j =

{
0 j = 0

j1+ 2
ηs j ≥ 1

(8.3.33)

where ηs is the number of requests of student s.
The cost for violating the length of a sequence for a teacher is given by ω.

ω = 2 (8.3.34)

In our model of the CTP the high school administration selects if interrupting other activities of
the students or teachers is allowed. If this is not the case, the costs δt and δs are selected as in-
finitely high (implementation-wise the corresponding constraints are treated as hard-constraints).
If interrupting other activities are not allowed, these costs are selected as a constant value,

δt = δs =

∞ Interrupting activities not allowed

4 Interrupting activities allowed ∧ PCTP
1 Interrupting activities allowed ∧ SCTP

(8.3.35)

Chapter 8. The Consultation Timetabling Problem at Danish High Schools 156

Like for the undesirable break cost βt,j , we distinguish between the two consultations types. For
the PCTP it is expensive to interrupt other activities since it is held in the evening and hence
other activities are typically other types of meetings. The SCTP is held in the daytime, and it is
allowed to ’lent’ a student from a lecture for a small cost.

8.4 Adaptive Large Neighborhood Search

In this section a heuristic alternative to solving the IP-model (8.3.27) is described. The perfor-
mance of these two methods are compared in Section 8.6.

As the local search algorithm we have chosen to use the Large Neighborhood Search (LNS)
proposed by Shaw (1998). Most local search algorithms explicitly defines the neighborhood, but
the neighborhood in LNS is defined implicitly by a destroy and a repair method. The neighborhood
of a solution is then defined as the set of solutions that can be reached by first applying a destroy
method and then a repair method. In this article we will use Adaptive Large Neighborhood
Search (ALNS), in which the LNS is extended by multiple destroy and repair methods. ALNS
was first described in Pisinger and Ropke (2005), and has since been used with success on various
problems, especially variants of Vehicle Routing Problems (VRP), see e.g. Ropke and Pisinger
(2006); Laporte et al. (2010); Azi et al. (2010); Lei et al. (2011); Ribeiro and Laporte (2012). A
pseudo-code for the ALNS heuristic is shown in Algorithm 1.

Algorithm 1: Adaptive Large Neighborhood Search

Input: a feasible solution xsg,b
solution xbest = x; π = (1, . . . , 1)1

repeat2

x′ = x3

select destroy and repair methods d ∈ Ω− and r ∈ Ω+ using π4

select q ∈ N5

remove q requests from x′ using d6

reinsert removed requests into x′ using r7

if c(x′) > c(xbest) then8

xbest = x′9

if accept(x′, x) then10

x = x′11

update π12

until stop-criterion met13

return xbest14

The sets of destroy and repair methods are denoted Ω− and Ω+, respectively. The variable π,
which stores the weight of all destroy and repair methods, is introduced in line 1. Initially all
methods have the same weight. In line 1 the weight parameter π is used to select the destroy and
repair methods. In line 1 an accept function evaluates if the new solution should become the new
current solution. The accept function can be implemented in different ways. We have chosen to
implement a Simulated Annealing-like acceptance criterion, which will be described later.

An ALNS framework has the advantage of using different neighborhoods, such that the algorithm
hopefully explores a large part of the solution space. For more information regarding ALNS we
recommend Ropke and Pisinger (2006) and Pisinger and Ropke (2010).

8.4.1 ALNS Scoring Scheme

A central part of the ALNS algorithm is the scoring scheme of destroy and repair methods. A
scoring scheme can essentially be characterized by two central topics; 1) How to quantify the
performance of each heuristic. 2) The reaction factor, i.e. how sensitive is the selection process to
recent records of performance.

157 8.4. Adaptive Large Neighborhood Search

We adapt a scoring scheme based on the technical report of Muller and Spoorendonk (2010),
where performance is tracked by the percentage-wise gap between the new found solution and the
current solution. This scoring scheme has the advantage of having few parameters to tune, and us-
ing the gap between solutions seems as a intuitively good way of measuring heuristic performance.
Below the scoring scheme is explained in details.

Runs of the algorithm is divided into segments {t0, t1, . . . , tn} each consisting of Nit iterations.
Let πti be the weight of heuristic i in segment t. The probability of choosing heuristic i in segment

t is
πti∑
j π

t
j
. At the end of each segment t, the following update is performed for all heuristics,

πt+1
i = ρ

π̄ti
ati

+ (1− ρ)πti (8.4.2)

where ati is the number of times heuristic i has been selected in segment t. π̄ti is the observed
weight of heuristic i in segment t, which in each iteration is incremented depending on the quality
of the new found solution. ρ ∈ [0, 1] is the reaction factor. A high reaction factor means that the
weights of a segment will be very dependent upon the observed weights of the previous segment.

The observed weight π̄ti is updated in each iteration. Let x be the current solution, and x′ the
new found solution by applying neighborhood i. In the technical report Muller and Spoorendonk
(2010) the following formula is used,

gap =
c(x′)− c(x)

c(x)
(8.4.3)

π̄ti = π̄ti +mgap (8.4.4)

wherem is a constant. We will use a slightly changed version of this formula, since we have observed
that the gap formulated by (8.4.3) most often yields values of magnitude ±10−4, meaning that
the observed weight π̄ti will rarely change value of significant magnitude. Therefore we introduce
a scale parameter in the formula,

π̄ti = π̄ti +mmin(σ·gap,1) (8.4.5)

where σ ∈ R+ is a parameter that needs tuning. We fix m = 5 and rely on the parameter tuning
to set a suitable value for σ. The min-operator in the exponent of m is necessary to ensure the
weight stay within a reasonable interval, in case we hit an iteration where the scaled gap is big
and positive.

8.4.2 Request Removal

The ALNS heuristic for the CTP makes use of two different removal heuristics, each searching a
given removal neighborhood. The heuristics takes as input a given solution xs,g,b and an integer
q ∈ N. The output of the heuristics is the solution where q meetings have been removed. The
value of q is selected as a random number which satisfies,

3 ≤ q ≤ max

(
ξ ·
∑
g,s

Rs,g, 5

)
(8.4.6)

where ξ ∈]0, 1] is the maximum percentage of requests to remove. In accordance with Muller
(2009) we decay ξ over time, starting with a high value ξstart and ending with a smaller ξend.
Given the runtime of the algorithm, we divide it into 100 segments such that ξ is decreased by
ξstart−ξend

100 in each segment. This decay of ξ means that the size of the searched neighborhood is
progressively reduced. This has the advantage of only performing small changes towards the end
of the solution process, where we expect a good solution has been found.

Random removal

The simplest removal heuristic, which randomly removes q meetings from the solution. This simple
heuristic obviously has the effect of diversifying the search.

Chapter 8. The Consultation Timetabling Problem at Danish High Schools 158

Shaw removal

This removal heuristic was introduced in Shaw (1997, 1998) where it is used on the VRP. In this
section the heuristic is modified to suit the CTP. The general idea of the heuristic is to remove
meetings which are somehow related, since there is a good chance that such requests can swap
positions and possibly improve the solution. In this paper two factors determine if meeting i is
related to meeting j: Similarity between students, and similarity between teachers. Si and Ti
indicates the set of students and teachers of meeting i, respectively. Notice that a meeting always
contains exactly one student, i.e. |Si| = 1. Let the measure of relatedness between meeting i and
j be defined by M(i, j) ∈ [0, 1],

M(i, j) =
|Ti ∩ Tj |+ |Si ∩ Sj |
min(|Ti|, |Tj |) + 1

(8.4.7)

I.e. relatedness is the percentage of individuals which is shared between the meetings, such that a
high value ofM means that the meetings are very related. This simple formulation of relatedness
is done without any additional parameters. An alternative natural formulation would be to scale
the student-relatedness and teacher-relatedness by two independent parameters. However we have
chosen the shown formula due to its simplicity. An addition to the formula could be to introduce a
term which determines time slot relatedness, although it should be noted that relatedness between
slots is only directly relevant if there also exists some relatedness between students or teachers.

A pseudo code for Shaw removal is shown in Algorithm 8.

Algorithm 8: Shaw removal

Input: A feasible solution xs,g,b, q ∈ N, pshaw ∈ R+

request: r = a randomly selected meeting from xs,g,b1

set of requests : D = {r}2

while |D| < q do3

r = randomly selected meeting from D4

L = all meetings from xs,g,b not in D, sorted by decreasing similarity to r5

choose a random number ypshaw ∈ [0, 1[6

l = element number ypshaw · |L|7

D = D ∪ L[l]8

remove the meetings in D from xs,g,b9

To avoid the situation where the same meetings are removed over and over, the algorithm is
randomized. The level of randomness is controlled by the parameter pshaw ∈ R+, pshaw ≥ 1. This
means that pshaw somehow defines how random the element is chosen, where pshaw = 1 corresponds
to completely random.

8.4.3 Repair Heuristic

The repair heuristics are given a set of consultation meetings and a set of not granted meeting-
requests.

Basic greedy heuristic

A trivial algorithm for the CTP is a simple greedy algorithm which places one request at a time in
order of contribution to the objective. In each iteration of the algorithm this process is repeated
until no more requests which improves the solution can be inserted. Implementation wise the
algorithm suffers from cost-dependencies, since the contribution of inserting each request possibly
changes after each insertion. This is slightly optimized by only recalculating the cost of those
requests which the last insertion can possibly effect. I.e. recalculate the cost of those requests
which has the same student as the last insertion, or if the teacher group overlaps with the one of
the last insertion. This repair heuristic is used to create an initial feasible solution for the CTP.

159 8.4. Adaptive Large Neighborhood Search

Regret heuristics

The regret heuristic improves the basic greedy by incorporating a kind of look-ahead information
when selecting a request to insert. Informally speaking, the heuristic aims at inserting the request
which we will regret most if not inserted immediately. The regret heuristic has been used by
Potvin and Rousseau (1993) and Pisinger and Ropke (2005) for the Vehicle Routing Problems
with Time Windows. Let ckr denote the change in the objective value by inserting request r into
the kth best position. E.g. c2r denotes the change in the objective value by inserting request r in
the second best position. A Regret-2 heuristic will in each iteration choose to insert the request r
where the difference between best and second best position is largest, i.e.

r := arg max
r∈Rsg,c1r>0

(
c1r − c2r

)
(8.4.9)

The request r is inserted at its best position, so we restrict the heuristic to only look at requests
where the best position is actually feasible and yields a positive change in objective. This restric-
tion is necessary since the objective of the CTP contains both a minimization and a maximization
part, and we are not interested in inserting requests which have negative impact on the objective.
The heuristic can be extended by looking at k positions for each request. The request to insert is
then chosen according to

r := arg max
r∈Rsg,c1r>0

k∑
h=2

(
c1r − chr

)
(8.4.10)

We will in this paper incorporate the regret heuristic for several choices of k. The basic greedy
algorithm from the previous section is a Regret-1 heuristic due to the tie-breaking rules. For a
Regret-1 heuristic the most profitable request is inserted in each iteration. Most papers distinguish
between Regret-1 and other regret heuristic, however implementation wise they are not very
different. Setting k = |B| corresponds to the full Regret-k heuristic.

Even though the regret heuristic is designed for VRP, it seems well suited for the CTP due
to its assignment character. It seems valuable to attempt to predict which request is the most
critical to insert. By some basic tests, we have chosen to use Regret-2, Regret-3, and Regret-|B|
as insertion heuristics.

8.4.4 Algorithm Setup

According to Ropke and Pisinger (2006), using myopic repair heuristics, like those of this paper,
one may apply noise to the objective function to obtain a more efficient algorithm. By applying
noise, the repair heuristic will not always make the move that seems best locally. Ropke and
Pisinger (2006) support this by strong computational results. However, preliminary tests show
that, in our case, adding noise does not yield a more efficient algorithm. More precisely, noise
was added such that it was controlled by a linear-scale parameter, and excessive tuning on this
parameter yielded no convergence at all. I.e. this parameter had (close to) no impact on the
algorithm efficiency. A similar result for the Cumulative Capacitated Vehicle Routing Problem is
reported in Ribeiro and Laporte (2012).

In occurrence with Ropke and Pisinger (2006) we borrow an acceptance criteria from Simulated
Annealing. A solution x is always accepted if c(x) > c(xbest). If c(x) < c(xbest) then x is accepted
with probability

exp
(
− c(xbest)−c(x)

T

)
. In each iteration the temperature T is updated by T = dSAT , where 0 <

dSA < 1. Giving the temperature control parameter wSA, 0 < wSA < 1, T is initially selected such
that a solution is accepted with probability 1

2 if its change in objective is wSA percent worse than
the initial solution x0, i.e.

exp

(
− (c(x0)− (1− wSA) · c(x0))

T0

)
= 1

2 ⇒ T0 =
wSA · c(x0)

ln(2)
(8.4.11)

Chapter 8. The Consultation Timetabling Problem at Danish High Schools 160

This has the advantage of better adapting the temperature to each dataset.

Furthermore at the start of each segment (those of the ALNS scoring scheme), the current
solution is set to the current best.

8.5 Parameter Tuning

The proposed heuristic contains many free parameters. It is essential that these parameters are
tuned to achieve good performance, see e.g. Diao et al. (2003) and Adenso-Diaz and Laguna
(2006). Tuning of metaheuristics is usually done by rules-of-thumb and the researchers personal
experience. However some well performing automated algorithms have lately been introduced,
mainly ParamILS (Hutter et al. (2009)) and Race-algorithms (Birattari (2005)). In this paper
we will use the F-Race algorithm for tuning, as its implementation burden seems light, and it
has proven competitive for some heuristic methods, see Montero et al. (2010) and Pellegrini et al.
(2010).

The main idea of a race algorithm is to sequentially process a set of data instances using
all possible parameter configurations. In each iteration, the parameter configurations which are
statistically inferior are eliminated. The algorithm is ran until one parameter configuration remains
or the specified time limit is exceeded, see Algorithm 1. If more than one parameter configuration
remains once the algorithm terminates, the one which in average has performed best is selected.
The advantage of a race algorithm is that bad parameter configurations are eliminated early,
such that no more valuable computation time is spend on evaluating these. The racing algorithm
differs from most other tuning approaches in the sense that it only performs one algorithm run
per parameter configuration per data instances. This relies on the proof in Birattari (2005) where
it is shown that this is the optimal experimental setting in terms of variance of the estimated
performance.

Algorithm 1: Race Tuning

Input:
Θ: Set of parameter configurations
Texp: Computation time of each experiment
Ttotal: Time limit
α: Confidence level
i = 0, Sθ = Θ, Cθ = ∅1

while t < Ttotal AND |Sθ| > 1 do2

dataset = RandomSampled()3

foreach θ ∈ Sθ do4

Ciθ = EvalSolution(Texp, θ, dataset)5

i = i+ 16

Drop inferior parameter configurations from Sθ by statistical test, using confidence level α7

In a F-Race algorithm, the Friedman Two-way Analysis of Variance by Ranks test is used to
determine whether there is sufficient statistically evidence to eliminate parameter configurations
from future iterations. If this is the case, then post-tests are performed where pairwise comparison
between the best candidate and the remaining determines which configurations should be elimi-
nated, if any. The F-Race algorithm has been successfully used for tuning in a number of cases,
see e.g. Becker et al. (2006); Chiarandini et al. (2006); Pellegrini and Birattari (2007).

A problem of the described Racing algorithm, which applies to most tuning frameworks, is
the so-called full-factorial design, meaning that the full set of parameter configuration is initially
considered. This results in the F-Race becoming impractical and computational prohibitive, if
there exists a large number of parameters and each parameters can take a modest number of
values. This has been addressed in Balaprakash et al. (2007) by defining a probabilistic model on
the set of all possible parameter configurations, such that a small set of parameter configurations
is generated in each iteration of the tuning process. Elite configurations are used to update the

161 8.6. Performance

model to bias the search around high quality parameter configurations. This version of F-Race is
denoted Iterative F-Race (I/F-Race).

In this paper we use a simplified I/F-Race algorithm, where we start out with a small subset
of parameter configurations, and based on the Race-results of these we manually construct new
configurations, which are believed to be superior. One could think of this approach as a sort of
manual iterative F-Race. Table 8.2 shows the best found parameter configuration. It should be
mentioned that we set bSP = b0 and δs = δt =∞, since these are the most common values chosen
by the users. The datasets used are of the school year 2011/2012. wSA is the temperature control

Table 8.2: Final values of tuned parameters, found by the F-Race algorithm with confidence level
α = 0.05.

Parameter wSA dSA Nit ρ σ ξstart ξend pshaw

Value 0.01 0.99 100 0.50 1000 0.30 0.0033 20

parameter and dSA is the decay parameter for the SA based acceptance criteria. Nit defines the
number of iterations between resets. ρ and σ are reaction factor and the scale parameter for the
ALNS scoring scheme, respectively. ξstart and ξend are the destroy percentage in the beginning
and in the end of the running time. Finally, pshaw indicates how random the element is chosen in
the Shaw removal.

8.6 Performance

The goal of this section is to evaluate the performance of the developed solution methods, the
ALNS algorithm and solving the IP model. Also a comparison with the existing heuristic of
Lectio is made. All tests are performed using nUnit 2.6 in C# 4.0 on a machine with an Intel
i7-930@2.8GHz CPU and 12GB of RAM. No parallelization has been implemented.

8.6.1 Performance comparison between ALNS and Gurobi

In the following, the performance of the state-of-the-art MIP solver Gurobi 5.01 (currently top-
ranked in the MIP benchmark of Mittelman (2013)) and the implemented ALNS algorithm are
compared. For both the PCTP and the SCTP, 100 datasets from the school-year 2011/2012 are
selected from the database of Lectio.

In this experimental setup, the ALNS algorithm is run for 2 minutes. This low running time is
due to the following: 1) The schools does generally not expect an algorithm to run longer, as they
are usually not aware that it is a hard problem to solve. Some even believe the problem is trivial.
2) The ALNS ”tailors-off” after a while, i.e only minor improvements are seen on the best found
solution after the 2 minute mark.

The Gurobi solver is run for 1 hour, because we do not only want to evaluate the performance
in terms of best found IP solution, we also want a good upper bound for the instances.

In the performance tests it is not allowed to interrupt other activities for the PCTP, i.e. δt =
δs = ∞. For the SCTP interrupting activities is allowed. This is due to the fact that PCTP is
normally arranged in the evening while SCTP is during the normal work-hours.

From Table 8.1 it is seen that ALNS in average finds solutions 4% from optimum. Even though
ALNS has far lower running time than Gurobi, it finds better solutions in almost all cases.

Chapter 8. The Consultation Timetabling Problem at Danish High Schools 162

Table 8.1: Gurobi 5.01 and ALNS for the PCTP on 100 datasets. For each dataset is listed the number
of time slots ”|B|”, the total number of meeting requests ”

∑
R”, the average number of requests pr.

student, and the average number of requests pr. teacher. For Gurobi is shown the final objective value
”x”, the best bound found ”UB”, and the reported gap between these two. For ALNS, column ”x̄” is the
mean performance of the algorithm over 10 runs, and column ”σ” is the standard deviation for these runs.
Finally, column ”Gap” is the gap of mean performance and the upper bound found by Gurobi. The best
found solution is marked with bold for each instance.

Gurobi 5.01 ALNS

|B|
∑
R

∑
R
|S|

∑
R
|T | x UB Gap[%] x̄ σ Gap[%]

Alleroed 12 51 3.0 2.4 485.0 485.0 0.0 484.8 0.1 0.0
Alssund 18 84 2.5 4.0 850.6 850.6 0.0 849.4 0.6 0.1
Aurehoej1 18 537 4.0 9.9 3270.3 3774.3 15.4 3655.9 6.9 3.2
Aurehoej2 18 409 3.8 6.6 3033.1 3300.5 8.8 3219.5 3.9 2.5
Broenderslev 24 241 4.0 4.8 1656.2 1965.1 18.7 1905.6 3.0 3.1
CPHWEST 39 133 3.7 5.8 990.5 1124.7 13.5 1044.5 3.0 7.7
DetKristne 32 247 4.1 11.2 1553.3 1978.5 27.4 1830.9 4.9 8.1
Dronninglund1 30 108 4.9 7.7 726.0 801.5 10.4 782.0 4.1 2.5
Dronninglund2 30 94 4.1 8.6 636.6 672.7 5.7 664.5 0.6 1.2
Egedal 27 408 3.4 6.3 3143.5 3625.0 15.3 3558.2 3.7 1.9
Egaa 24 265 3.2 9.8 2101.7 2374.0 13.0 2318.5 7.7 2.4
Esbjerg1 24 345 3.9 9.6 2306.2 2465.3 6.9 2402.1 4.2 2.6
Esbjerg2 24 307 3.5 4.3 2117.6 2439.9 15.2 2314.3 2.4 5.4
Esbjerg3 24 255 3.8 9.4 1770.0 1888.1 6.7 1839.5 2.8 2.6
Esbjerg4 24 351 4.0 9.2 2493.8 2700.5 8.3 2612.3 4.5 3.4
Frederikssund 24 49 3.3 4.5 404.2 406.8 0.7 403.8 0.4 0.8
Frederiksvaerk 8 74 2.4 3.2 699.0 699.0 0.0 697.9 0.6 0.2
Gefion 18 479 3.1 7.2 3316.6 4248.9 28.1 3958.1 23.7 7.4
Gladsaxe 40 901 4.1 11.0 5516.0 7163.7 29.9 6950.7 15.1 3.1
Greve 18 336 4.5 4.4 2133.1 2535.9 18.9 2482.6 4.4 2.2
Haslev1 18 123 2.9 5.4 1051.5 1077.1 2.4 1060.2 0.5 1.6
Haslev2 18 122 3.2 4.2 983.5 1019.6 3.7 988.7 2.6 3.1
Herlufsholm1 24 143 4.3 14.3 853.1 918.9 7.7 894.5 1.2 2.7
Herlufsholm2 24 88 4.9 6.8 599.5 671.3 12.0 621.8 1.9 8.0
Herning1 27 118 3.8 3.6 0.0 0.0 0.0 0.0 0.0 0.0
Herning2 27 75 3.4 6.3 0.0 0.0 0.0 0.0 0.0 0.0
Herning3 27 140 3.7 4.5 2.0 2.0 0.0 2.0 0.0 0.0
Himmelev 34 453 3.7 8.4 3118.1 3736.1 19.8 3471.7 8.8 7.6
Hjoerring 30 179 3.8 2.1 751.2 1229.9 63.7 1009.2 15.3 21.9
HorsensGym 18 123 3.2 3.4 1131.5 1133.8 0.2 1129.4 1.1 0.4
HorsensStats 21 143 2.9 3.0 1217.8 1289.3 5.9 1253.8 1.9 2.8
Ikast-Brande 30 52 3.5 5.8 419.4 463.7 10.6 449.7 0.4 3.1
Johannesskolen1 24 165 4.5 7.9 1131.2 1296.8 14.6 1188.3 4.3 9.1
Johannesskolen2 24 97 3.7 7.5 701.4 786.3 12.1 743.9 5.0 5.7
Johannesskolen3 28 135 3.6 7.5 519.2 581.4 12.0 519.9 3.2 11.8
Kalundborg 27 299 3.0 4.8 2281.0 2587.0 13.4 2458.3 5.3 5.2
Kolding 18 80 3.5 4.0 721.4 725.2 0.5 721.0 0.2 0.6
Langkær1 18 52 3.5 2.6 471.1 471.1 0.0 470.6 0.3 0.1
Langkær2 18 90 3.5 3.8 788.9 814.6 3.3 805.9 0.5 1.1
Middelfart 27 223 3.1 6.2 1682.5 1923.6 14.3 1788.1 7.4 7.6
Morsoe1 27 105 3.9 10.5 768.8 834.2 8.5 804.2 3.2 3.7
Morsoe2 27 113 4.7 10.3 732.9 815.2 11.2 778.4 4.2 4.7

Continued on next page

163 8.6. Performance

Table 8.1 – continued from previous page
Gurobi 5.01 ALNS

|B|
∑
R

∑
R
|S|

∑
R
|T | x UB Gap[%] x̄ σ Gap[%]

Munkensdam1 21 256 3.6 4.7 1871.9 2251.6 20.3 2198.6 5.3 2.4
Munkensdam2 21 345 3.4 6.3 2352.8 2931.6 24.6 2846.8 6.7 3.0
NielsSteensens1 36 117 5.9 7.8 715.8 781.9 9.2 757.2 3.9 3.3
NielsSteensens2 30 328 7.5 17.3 1249.9 1764.9 41.2 1656.6 5.9 6.5
NielsSteensens3 30 365 7.9 20.3 1125.7 1895.7 68.4 1800.3 7.4 5.3
NielsSteensens4 30 234 6.7 13.8 1101.6 1230.0 11.7 1144.4 5.2 7.5
NielsSteensens5 30 263 6.3 17.5 1461.7 1634.2 11.8 1557.1 5.7 5.0
Noerre 18 422 2.7 7.8 3574.1 4031.6 12.8 3944.5 5.2 2.2
Nordfyns 23 192 2.6 6.6 1761.9 1863.5 5.8 1795.5 6.2 3.8
Nordsjaellands1 34 1187 6.4 25.3 6001.7 7018.5 16.9 6597.3 27.9 6.4
Nordsjaellands2 34 1038 6.6 23.1 2298.7 2626.1 14.3 2453.2 14.7 7.1
Nordsjaellands3 34 457 6.3 13.9 2225.4 2858.3 28.4 2634.7 7.8 8.5
Nordsjaellands4 34 163 4.9 9.6 1100.9 1210.0 9.9 1172.4 2.9 3.2
Nordsjaellands5 40 712 5.6 19.8 2543.1 4796.2 88.6 4460.5 16.6 7.5
Nordsjaellands6 34 780 6.1 19.0 2500.4 4899.0 95.9 4612.2 14.2 6.2
Nordsjaellands7 34 880 6.1 19.1 2763.3 3047.9 10.3 2894.5 6.3 5.3
Nordsjaellands8 34 23 1.6 3.3 242.1 242.1 0.0 241.9 0.3 0.1
Nordsjaellands9 34 949 6.2 22.1 3202.9 5519.0 72.3 5037.1 31.8 9.6
Nordsjaellands10 34 31 1.9 4.4 272.2 272.9 0.2 269.1 3.3 1.4
Nyborg 24 119 3.2 5.7 55.4 55.4 0.0 55.4 0.0 0.0
Nykoebing 24 182 3.0 3.2 1447.1 1502.2 3.8 1483.1 1.2 1.3
NZahles1 25 324 4.3 9.5 2116.2 2456.3 16.1 2365.7 5.5 3.8
NZahles2 24 301 4.1 8.9 2035.3 2280.1 12.0 2217.8 6.5 2.8
Odder 18 95 4.0 7.3 740.0 773.5 4.5 762.7 1.5 1.4
Odsherreds 21 193 3.4 5.0 1533.4 1619.6 5.6 1595.4 2.2 1.5
Risskov1 15 65 3.1 4.6 539.7 539.7 0.0 536.7 2.5 0.6
Risskov2 15 149 3.5 5.7 1263.2 1273.1 0.8 1256.9 2.9 1.3
Risskov3 15 181 3.7 6.2 1396.9 1406.8 0.7 1389.7 4.8 1.2
Roedkilde 18 266 3.6 9.2 2161.1 2352.9 8.9 2325.2 5.2 1.2
Roedovre 51 779 3.6 10.3 1513.8 2032.4 34.3 1661.7 20.1 22.3
Rosborg1 24 218 3.5 9.9 1742.7 1876.3 7.7 1827.9 5.4 2.7
Rosborg2 28 268 3.7 11.7 1960.9 2297.2 17.2 2223.3 11.4 3.3
Rosborg3 28 487 1.9 9.6 4568.5 4939.6 8.1 4750.0 10.1 4.0
Rosborg4 26 235 3.6 8.4 1713.8 2033.2 18.6 1960.4 11.1 3.7
Roskilde 48 263 3.7 6.4 1716.4 2251.7 31.2 2112.8 6.4 6.6
Rybners 24 267 3.1 6.9 1923.3 2472.3 28.5 2402.5 3.8 2.9
SanktAnnae 21 320 4.1 7.0 2115.0 2498.7 18.1 2381.6 5.6 4.9
Skive 36 220 3.6 12.9 1611.0 1903.2 18.1 1850.3 2.9 2.9
Slagelse 30 85 3.0 3.9 805.3 805.4 0.0 802.6 0.8 0.4
Solroed1 16 341 3.3 7.4 2418.2 2468.7 2.1 2436.8 6.1 1.3
Solroed2 16 415 3.4 7.2 3083.3 3317.9 7.6 3263.0 5.2 1.7
Soroe 24 369 3.7 8.2 2587.1 3111.2 20.3 2947.3 12.1 5.6
Soroe 33 335 4.2 5.6 1594.3 2649.3 66.2 2255.0 12.3 17.5
Stenhus 18 221 4.3 3.2 0.0 0.0 0.0 0.0 0.0 0.0
Stoevring 24 62 3.7 4.4 521.4 521.4 0.0 520.5 0.5 0.2
Struer1 30 237 3.3 4.4 1596.8 1801.2 12.8 1656.9 2.1 8.7
Struer2 30 333 3.3 8.8 2301.3 2790.8 21.3 2534.0 7.9 10.1
Svendborg1 18 96 2.1 2.9 991.4 991.4 0.0 991.1 0.2 0.0
Svendborg2 18 134 2.6 4.5 1289.0 1289.1 0.0 1288.0 0.3 0.1

Continued on next page

Chapter 8. The Consultation Timetabling Problem at Danish High Schools 164

Table 8.1 – continued from previous page
Gurobi 5.01 ALNS

|B|
∑
R

∑
R
|S|

∑
R
|T | x UB Gap[%] x̄ σ Gap[%]

Taarnby 36 791 4.6 11.0 4397.7 5918.0 34.6 5609.2 17.7 5.5
UCH 32 104 1.0 17.3 949.8 949.8 0.0 922.6 0.0 2.9
ViborgGym1 30 206 4.3 5.2 1367.7 1486.5 8.7 1434.0 2.6 3.7
ViborgGym2 30 149 4.4 5.3 1094.0 1146.6 4.8 1133.4 0.9 1.2
ViborgGym3 30 294 3.7 4.6 2153.6 2275.5 5.7 2211.7 1.8 2.9
ViborgHandel 30 324 4.2 18.0 2111.8 2615.9 23.9 2526.7 9.7 3.5
ViborgKatedral 40 337 4.8 11.2 1935.5 2516.5 30.0 2313.4 8.6 8.8
Vordingborg1 16 315 3.8 6.3 2222.0 2358.8 6.2 2304.3 2.8 2.4
Vordingborg2 16 239 3.3 5.6 1867.5 1950.0 4.4 1924.6 2.0 1.3

Average 26 279 3.9 8.3 14.8 4.0
Max 51 1187 7.9 25.3 95.9 22.3

Table 8.2 shows the performance for the SCTP.

Table 8.2: Gurobi and ALNS for the SCTP on 100 datasets. Columns are defined in analogous way to
Table 8.1. The average number of requests pr. student is not shown, as it is 1.0 in all cases.

Gurobi 5.01 ALNS

|B|
∑
R

∑
R
|T | x UB Gap[%] x̄ σ Gap[%]

Aabenraa 60 226 4.3 2461.2 2495.7 1.4 2387.5 3.3 4.5
Broendby1 21 69 3.8 677.3 707.3 4.4 683.2 2.8 3.5
Broendby2 14 69 4.3 770.2 779.5 1.2 768.6 1.0 1.4
Broendby3 24 62 3.4 609.0 632.8 3.9 614.8 1.3 2.9
Broenderslev1 69 115 3.5 1335.4 1340.9 0.4 1302.4 2.1 3.0
Broenderslev2 102 115 3.5 1253.4 1272.5 1.5 1236.0 1.6 3.0
Christianshavns 43 210 4.8 2329.7 2423.7 4.0 2223.7 4.4 9.0
Dronninglund1 100 134 4.2 1442.7 1481.3 2.7 1453.5 2.1 1.9
Dronninglund2 60 134 4.3 1553.3 1561.9 0.6 1537.5 2.8 1.6
Egaa 29 214 4.8 2257.5 2457.1 8.8 2376.2 4.0 3.4
Falkoner1 30 64 3.4 671.6 679.0 1.1 668.0 2.6 1.6
Falkoner2 37 206 4.2 2188.3 2345.6 7.2 2266.1 5.0 3.5
Falkoner3 30 64 3.4 664.9 672.3 1.1 664.9 0.0 1.1
Grenaa1 28 122 3.8 1280.7 1380.3 7.8 1325.4 3.1 4.2
Grenaa2 24 122 3.8 1249.2 1330.7 6.5 1290.3 3.8 3.1
Greve1 28 157 3.3 1575.1 1762.2 11.9 1693.3 3.2 4.1
Greve2 62 259 4.1 2805.4 3035.8 8.2 2913.5 7.4 4.2
Greve3 20 51 3.2 566.4 569.9 0.6 566.3 0.0 0.6
Gribskov1 74 182 4.1 1867.8 1914.6 2.5 1787.6 3.2 7.1
Herlev1 24 71 2.8 729.9 751.5 3.0 730.2 0.9 2.9
Herlev2 29 78 2.8 682.1 791.7 16.1 750.2 1.2 5.5
Hoeng1 21 66 3.5 607.9 686.5 12.9 621.5 0.4 10.5
Hoeng2 23 98 3.9 1029.8 1071.8 4.1 1038.5 2.2 3.2
Hoeng3 22 45 2.7 392.7 481.7 22.7 408.3 1.2 18.0
Hoeng4 23 56 2.6 589.1 612.4 4.0 589.2 1.8 3.9
Koebenhavns1 16 143 3.9 1239.8 1278.3 3.1 1242.0 6.1 2.9
Koebenhavns2 16 100 3.7 786.4 786.5 0.0 785.6 0.8 0.1
Koebenhavns3 16 100 3.7 725.8 725.9 0.0 725.8 0.0 0.0
Koebenhavns4 25 146 3.8 1402.3 1486.1 6.0 1424.6 0.8 4.3

Continued on next page

165 8.6. Performance

Table 8.2 – continued from previous page
Gurobi 5.01 ALNS

|B|
∑
R

∑
R
|T | x UB Gap[%] x̄ σ Gap[%]

Koege1 30 255 8.5 1348.2 2475.2 83.6 2333.2 10.3 6.1
Koege2 36 261 6.2 2381.3 2493.7 4.7 2045.7 5.2 21.9
Koege3 74 258 8.6 2775.1 2903.2 4.6 2622.9 5.0 10.7
Kolding1 24 219 5.0 2283.5 2430.9 6.5 2348.7 4.8 3.5
Kolding2 45 174 3.8 1934.9 2005.3 3.6 1908.8 4.1 5.1
Langkaer1 62 215 5.4 2195.8 2472.6 12.6 2239.4 7.8 10.4
Langkaer2 60 216 5.4 2351.0 2481.0 5.5 2240.1 9.3 10.8
Langkaer3 60 216 5.4 2359.1 2472.8 4.8 2258.3 6.6 9.5
Langkaer4 30 57 3.8 546.4 596.1 9.1 566.2 3.6 5.3
Langkaer5 56 217 5.6 2282.3 2493.5 9.3 2253.3 3.4 10.7
Langkaer6 62 56 3.7 631.5 652.6 3.3 629.2 0.7 3.7
Mariagerfjord1 29 123 4.0 1227.0 1387.2 13.1 1318.6 2.0 5.2
Mariagerfjord2 29 123 4.0 1269.0 1402.6 10.5 1345.3 4.0 4.3
Marselisborg1 22 102 3.4 1021.3 1087.4 6.5 1045.4 1.9 4.0
Marselisborg2 17 106 3.3 1036.2 1046.9 1.0 1035.4 1.0 1.1
Marselisborg3 22 105 3.9 1049.3 1156.3 10.2 1098.3 4.3 5.3
Marselisborg4 17 96 3.2 948.6 955.2 0.7 947.2 0.9 0.8
Munkensdam 43 191 5.6 2179.9 2203.8 1.1 2067.9 4.6 6.6
Nordfyns1 22 173 5.1 1871.9 1974.3 5.5 1926.6 1.6 2.5
Nordfyns2 21 173 5.2 1846.9 1975.6 7.0 1929.9 2.6 2.4
Nordfyns3 22 173 5.1 1831.5 1973.7 7.8 1908.1 2.1 3.4
Nordfyns4 21 173 4.1 1438.0 1538.2 7.0 1478.3 3.7 4.1
Noerresundby 31 303 4.7 2959.5 3437.4 16.2 3291.7 2.6 4.4
NZahles1 13 69 3.3 615.7 636.9 3.5 619.1 0.9 2.9
NZahles2 13 62 3.9 512.1 524.3 2.4 509.5 1.3 2.9
Odsherreds 49 119 3.8 1365.1 1372.6 0.6 1289.4 3.4 6.5
Oeregaard1 20 219 5.6 2257.3 2296.6 1.7 2258.1 5.6 1.7
Oeregaard2 20 213 5.0 1728.9 1778.5 2.9 1743.9 3.2 2.0
Oeregaard3 20 219 5.6 2327.5 2372.3 1.9 2340.2 3.3 1.4
Oeregaard4 20 219 5.6 2338.4 2373.5 1.5 2339.9 2.6 1.4
Risskov 36 215 6.1 2400.4 2427.4 1.1 2353.2 2.0 3.2
Roedkilde 18 230 4.4 2452.3 2534.1 3.3 2495.7 3.1 1.5
Rosborg1 22 257 4.9 2756.7 2895.6 5.0 2837.4 3.2 2.1
Rosborg2 22 257 4.8 2651.0 2860.6 7.9 2805.4 3.3 2.0
SanktAnnae1 23 149 3.6 1554.1 1675.1 7.8 1580.4 3.9 6.0
SanktAnnae2 24 165 3.8 1682.9 1850.2 9.9 1753.4 4.0 5.5
SanktAnnae3 17 21 2.6 197.9 197.9 0.0 197.9 0.0 0.0
SanktAnnae4 31 162 4.2 1359.0 1719.9 26.6 1598.9 3.6 7.6
Skanderborg1 57 232 3.9 2440.0 2640.1 8.2 2547.4 3.4 3.6
Skanderborg2 60 229 4.9 2369.5 2414.4 1.9 2320.4 3.4 4.1
Skive1 16 140 3.3 1417.5 1458.6 2.9 1430.9 3.8 1.9
Skive2 31 103 2.6 865.5 1062.6 22.8 995.5 2.5 6.8
Skive3 31 140 3.3 1189.7 1452.9 22.1 1372.7 4.4 5.8
Skive4 16 21 2.1 227.8 227.8 0.0 227.6 0.1 0.1
Skive5 16 98 3.0 960.9 972.9 1.3 960.7 0.9 1.3
Skive6 16 110 3.1 1106.9 1144.7 3.4 1119.3 2.0 2.3
Skive7 31 134 3.0 1152.9 1365.6 18.5 1284.6 3.2 6.3
Skive8 16 107 3.0 1006.8 1015.8 0.9 1007.1 0.9 0.9
Skive9 31 100 3.0 907.8 1034.9 14.0 983.0 4.6 5.3

Continued on next page

Chapter 8. The Consultation Timetabling Problem at Danish High Schools 166

Table 8.2 – continued from previous page
Gurobi 5.01 ALNS

|B|
∑
R

∑
R
|T | x UB Gap[%] x̄ σ Gap[%]

Soenderborg1 22 234 3.7 2105.1 2590.6 23.1 2475.3 4.9 4.7
Soenderborg2 22 236 3.4 2095.1 2703.9 29.1 2577.9 4.2 4.9
Soenderborg3 21 236 3.4 2452.5 2688.1 9.6 2597.3 4.0 3.5
Soenderborg4 22 235 3.4 1927.6 2681.3 39.1 2554.2 3.7 5.0
Solroed1 18 242 4.6 1935.5 2181.4 12.7 2130.3 6.8 2.4
Solroed2 20 22 1.8 228.6 228.6 0.0 228.6 0.0 0.0
Solroed3 17 22 1.8 223.3 223.3 0.0 223.3 0.0 0.0
Solroed4 54 243 4.6 2309.9 2562.4 10.9 2354.2 5.2 8.8
Solroed5 20 243 4.5 1555.0 2185.8 40.6 2054.9 8.0 6.4
Solroed6 17 215 4.2 1703.0 1835.0 7.8 1775.5 6.8 3.4
Solroed7 17 194 4.0 1599.6 1748.0 9.3 1679.2 2.6 4.1
Vejen1 10 41 2.4 424.2 424.2 0.0 424.2 0.0 0.0
Vejen2 19 126 3.8 1171.2 1225.0 4.6 1198.5 3.0 2.2
Vejen3 19 125 4.2 1172.1 1234.9 5.4 1204.6 2.4 2.5
Vejen4 19 125 4.2 1130.2 1205.3 6.6 1172.5 2.4 2.8
Viborg1 19 105 3.8 1004.3 1100.3 9.6 1034.2 0.6 6.4
Viborg2 49 187 4.4 2081.7 2153.0 3.4 2060.0 4.8 4.5
Viby1 20 124 3.7 1278.3 1279.4 0.1 1256.9 1.2 1.8
Viby2 13 93 5.2 957.5 957.5 0.0 957.5 0.0 0.0
Viby3 8 45 2.7 480.0 480.0 0.0 480.0 0.0 0.0
Viby4 16 93 5.2 1057.7 1057.7 0.0 1053.3 0.3 0.4
Viby5 21 123 3.7 1378.6 1378.8 0.0 1356.1 1.1 1.7

Average 30 148 4.1 7.7 4.1
Max 102 303 8.6 83.6 21.9

From Table 8.2 it is seen that ALNS in average finds solutions 4.1% from optimum for the SCTP.
This is lower than the average gap for Gurobi, which is 7.7%.

From Table 8.1 it is seen that ALNS outperforms Gurobi for the PCTP. For the SCTP, the
results are more blurred, but the ALNS still performs best in 70 out of 100 cases. What can also
be seen from Table 8.1 and 8.2 is that the standard deviation for the ALNS is low in all cases,
and the maximum gap obtained across all datasets is considerably lower than the maximum gap
which Gurobi obtains (even given the higher running time of Gurobi). This is important as the
customers of Lectio expects a consistent and stable solution procedure.

8.6.2 Performance comparison of ALNS and current heuristic of Lectio

The current algorithm in Lectio is an undocumented heuristic, which initially attempts to fulfill
every meeting request by assigning them to random time slots, and then attempts to find improving
solutions with a hill-climber embedded in a Simulated Annealing (SA) framework. This heuristic
does not support the SCTP. In this section, we compare the existing heuristic of Lectio with the
implemented ALNS algorithm.

The comparison of algorithms for the PCTP is done by adapting the objective of the ALNS so
it matches the one of the implemented SA algorithm, which yields the following changes:

• Since the SA algorithm attempts to fulfill all meeting requests, we set αsg to a huge value for
all meeting requests, effectively making the ALNS behave the same way.

• We set βt = γs = 2.

• The SA algorithm does not allow interrupting of activities, i.e. δt = δs =∞.

167 8.6. Performance

• The time slot set-point setting of the SA solver is broken, so we set κ = 0 and likewise for
the SA solver.

• The violation of sequence length for teachers is penalized in quadratic way. This means that
term (8.3.21) is now written as −

∑
t,b,d(yt,b,d)

ω
, and ω = 2.

We evaluate the algorithms on 100 randomly selected datasets for the school-year 2009/2010. The
reason a new batch of datasets is selected for this test is that the existing heuristic of Lectio does
not support all features mentioned in this paper. Due to customer requests, Lectio is continuously
developed, and this also effects the CTP. E.g. datasets from the school-year 2009/2010 does not
support features such as multiple days for a consultation.

Experience has shown that the SA algorithm needs long runtime to provide meaningful solutions.
We set runtime equal to 10 minutes, which is significantly higher than the preferable runtime of
the high schools, as described in Section 8.6.1. Furthermore, to reduce the influence of stochastic
behavior, we perform 10 runs on each dataset with each solver.

Table 8.3 shows the average performance, the standard deviation and the number of unassigned
requests of both algorithms. Recall that in this test both algorithms attempt to fulfill every
meeting request. However it cannot be guaranteed that the algorithms can find a solution which
satisfies this, nor that it even exists. Furthermore we compare the algorithms in the domain of
the SA algorithm, and in this domain it is only attempted to minimize the different costs, i.e.
no benefit is made from fulfilling meeting requests. This means it would not be fair to compare
solutions which does not have the same amount of unassigned requests, since additional fulfilled
requests will potentially yield additional cost of e.g. number of breaks, interrupted activities, etc.
Therefore we enforce the following criterion to determine whether the comparison of solutions for
a dataset is valid: The difference in the number of unassigned requests must lie in the interval
±1. This means the comparison of solvers in Table 8.3 is only approximate, however it can be
considered as a very good approximation, since a difference of one fulfilled meeting request will
have minor influence of the objective. Notice that the objectives are given in the domain of the
SA algorithm, which is of different magnitude than the objective of this article. This is due to the
fact that the undocumented heuristic aims at minimizing whereas the approach of this paper is to
maximize.

Given the average objective of the SA algorithm x̄SA and the average objective of the ALNS
algorithm x̄ALNS, and that the comparison of these two is valid, we compute the difference x̄SA −
x̄ALNS. For almost every instance where comparison is valid, the ALNS algorithm in average finds
a better solution. Furthermore the solutions from the ALNS algorithm has far lower deviation
than the SA algorithm, which are important, as the users of the algorithm will usually only run
the algorithm once.

Table 8.3: Comparison of performance of the SA algorithm and the ALNS algorithm. Each algorithm
is ran 10 times on each dataset. For each algorithm and each dataset is listed the mean objective ”x̄”,
standard deviation of objective ”σ”, and the number of unassigned meeting requests ”#UA”. Notice
that the objectives are given in the domain of the SA algorithm, which is of different magnitude than
the objective of this article. Those datasets where the number of unassigned requests differs between the
algorithms with more than ±1 are struck out, as this is not considered a fair comparison. Column ”Diff”
is the difference between mean objectives.

Lectio SA ALNS

x̄ σ #UA x̄ σ #UA Diff.

Aabenraa1 640.90 83.36 17.0 555.00 0.00 17.0 85.90
Aabenraa2 384.00 41.86 9.0 315.90 18.27 9.0 68.10
Aabenraa3 41.60 11.27 12.4 123.90 7.61 9.0 N/A
Aabenraa4 126.90 59.36 13.5 166.80 53.45 12.0 N/A
Aabenraa5 36.00 9.30 0.0 37.60 0.84 0.0 -1.60
Aabenraa6 0.00 0.00 60.0 0.00 0.00 60.0 0.00

Continued on next page

Chapter 8. The Consultation Timetabling Problem at Danish High Schools 168

Table 8.3 – continued from previous page
Lectio SA ALNS

x̄ σ #UA x̄ σ #UA Diff.

Aabenraa7 0.00 0.00 52.0 0.00 0.00 52.0 0.00
Aurehoej 283.30 37.99 12.8 165.70 12.72 12.0 117.60
Birkeroed1 542.10 88.05 40.2 171.70 37.57 35.5 N/A
Birkeroed2 493.80 88.41 30.1 92.40 19.21 29.5 401.40
Bjerringbro 2994.60 390.30 22.0 1393.20 16.90 22.0 1601.40
Borupgaard1 36.60 11.66 10.9 176.70 11.98 2.0 N/A
Borupgaard2 16.00 8.03 51.2 221.40 1.71 41.0 N/A
Borupgaard3 32.80 23.67 26.3 115.80 10.34 20.0 N/A
Broenderslev 154.40 51.04 0.0 22.20 6.96 0.0 132.20
CPHWEST 1244.40 38.56 0.0 1105.00 0.00 0.0 139.40
Esbjerg 0.00 0.00 407.0 0.00 0.00 407.0 0.00
Fjerritslev 2088.50 72.25 0.0 1904.20 6.34 0.0 184.30
Frederikssund1 330.40 39.98 0.0 257.70 6.34 0.0 72.70
Frederikssund2 436.40 22.85 0.0 340.00 4.59 0.0 96.40
Frederiksvaerk 25.90 1.85 34.0 25.00 0.00 34.0 0.90
GlHellerup1 130.90 29.37 4.0 29.50 5.78 4.0 101.40
GlHellerup2 268.70 36.58 1.0 88.60 12.95 1.0 180.10
Gefion 112.40 22.04 0.0 16.70 3.65 0.0 95.70
Gladsaxe 85.40 16.40 87.8 1034.00 37.54 27.0 N/A
Haderslev1 0.00 0.00 225.0 0.00 0.00 225.0 0.00
Haderslev2 0.00 0.00 185.0 0.00 0.00 185.0 0.00
Haslev1 1239.10 56.96 0.0 1181.00 0.00 0.0 58.10
Haslev2 0.00 0.00 51.0 0.00 0.00 51.0 0.00
Hasseris1 10.20 4.52 0.0 0.90 0.57 0.0 9.30
Hasseris2 68.80 18.94 0.0 14.90 2.56 0.0 53.90
Hasseris3 34.30 25.95 2.9 5.10 2.02 3.0 29.20
Hasseris4 11.10 6.23 0.0 0.10 0.32 0.0 11.00
Herlufsholm1 46.70 8.90 0.0 34.30 5.54 0.0 12.40
Herlufsholm2 86.30 14.35 1.2 60.20 4.05 0.0 26.10
Herlufsholm3 2.40 2.41 38.4 0.00 0.00 37.0 N/A
Herlufsholm4 267.30 32.27 3.3 176.90 9.80 2.0 N/A
Herlufsholm5 15.70 11.86 0.0 1.60 1.84 0.0 14.10
Herning1 843.30 119.31 1.0 632.10 9.00 1.0 211.20
Herning2 103.50 16.25 0.0 74.20 0.42 0.0 29.30
Himmelev 262.10 35.44 0.0 96.30 16.22 0.0 165.80
Horsens 17.20 7.50 2.0 6.50 1.35 2.0 10.70
Kongsholm 102.20 39.82 21.4 62.30 8.64 21.0 39.90
Langkaer 29.20 8.22 11.7 190.90 10.38 0.0 N/A
Mariagerfjord 190.00 52.75 0.9 89.00 17.58 1.0 101.00
Morsoe1 17.20 9.74 3.0 0.50 0.71 3.0 16.70
Morsoe2 44.00 21.91 0.0 2.70 1.42 0.0 41.30
Mulernes1 21.50 8.22 0.0 2.60 0.97 0.0 18.90
Mulernes2 27.60 12.51 0.0 1.30 1.16 0.0 26.30
NZahles1 97.40 28.46 2.2 64.50 0.71 2.0 32.90
NZahles2 111.20 35.32 0.9 72.60 6.10 0.0 38.60
NielsSteensen1 309.80 42.98 3.0 214.40 38.20 3.0 95.40
NielsSteensen2 124.10 24.92 0.0 90.50 22.65 0.0 33.60
NielsSteensen3 186.40 37.65 5.0 147.60 22.31 5.0 38.80
Nordsjaelland1 1036.30 74.52 4.0 652.20 55.28 4.0 384.10

Continued on next page

169 8.6. Performance

Table 8.3 – continued from previous page
Lectio SA ALNS

x̄ σ #UA x̄ σ #UA Diff.

Nordsjaelland2 69.50 2.17 586.0 68.50 1.58 586.0 1.00
Nordsjaelland3 1681.40 132.07 45.0 1927.20 191.16 45.0 -245.80
Nordsjaelland4 1627.80 135.70 65.7 2335.90 270.87 65.8 -708.10
Nordsjaelland5 1699.10 118.08 27.6 1104.40 76.82 27.0 594.70
Nordsjaelland6 1369.00 102.13 32.1 1109.90 61.44 32.0 259.10
Nordsjaelland7 1646.40 106.74 49.1 1567.70 87.35 49.0 78.70
Nordsjaelland8 2065.30 179.20 37.0 1736.00 93.59 37.0 329.30
Nyborg1 89.70 16.45 0.0 72.10 0.32 0.0 17.60
Nyborg2 93.50 23.75 0.0 51.00 1.49 0.0 42.50
Nyborg3 0.40 0.70 55.6 0.00 0.00 55.0 0.40
Nyborg4 14.40 6.75 3.0 1.50 0.85 3.0 12.90
Naerum 424.50 43.07 9.0 248.40 50.63 9.0 176.10
Noerresundby1 36.10 18.11 0.0 9.90 3.54 0.0 26.20
Noerresundby2 115.70 26.60 0.3 34.90 10.12 0.0 80.80
Odder 69.80 27.68 6.0 21.00 0.00 6.0 48.80
Oure 40.80 11.13 15.7 24.40 8.22 14.0 N/A
Paderup 141.50 15.81 0.0 75.50 4.48 0.0 66.00
Randers1 168.40 22.17 0.0 93.50 0.53 0.0 74.90
Randers2 244.00 77.90 0.0 10.80 3.79 0.0 233.20
Rosborg1 0.00 0.00 246.0 0.00 0.00 246.0 0.00
Rosborg2 2611.00 299.16 19.1 837.10 75.08 18.0 N/A
Roskilde 202.30 60.81 0.0 139.00 23.25 0.0 63.30
Rybners1 274.90 45.42 0.0 174.90 1.10 0.0 100.00
Rybners2 1043.80 67.33 15.0 789.10 4.15 15.0 254.70
Roedkilde1 10.90 4.84 0.0 2.00 1.33 0.0 8.90
Roedkilde2 19.30 7.48 7.0 12.00 2.67 7.0 7.30
Roedkilde3 57.10 11.75 0.0 6.80 2.35 0.0 50.30
SanktAnnae1 205.90 57.43 60.3 201.30 22.07 51.6 N/A
SanktAnnae2 0.00 0.00 7.0 0.00 0.00 7.0 0.00
Skanderborg1 3.50 1.65 0.0 0.00 0.00 0.0 3.50
Skanderborg2 35.40 34.59 0.9 5.80 3.79 1.0 29.60
Skive 176.50 47.52 18.0 89.00 25.05 18.0 87.50
Slagelse1 130.80 5.94 3.0 114.90 5.49 3.0 15.90
Slagelse2 29.70 19.44 0.2 3.50 2.55 0.0 26.20
Soroe 2117.10 111.78 14.5 883.20 49.02 13.5 1233.90
Stoevring1 17.50 4.93 0.0 2.70 1.42 0.0 14.80
Stoevring2 229.20 55.04 0.0 16.40 4.14 0.0 212.80
Stoevring3 260.60 71.41 0.0 14.30 2.36 0.0 246.30
Stoevring4 124.70 48.48 0.0 13.80 2.25 0.0 110.90
Stoevring5 65.90 22.83 6.0 10.30 2.54 6.0 55.60
Varde 867.40 152.80 10.0 326.20 9.46 10.0 541.20
Vejen 0.30 0.48 0.0 0.00 0.00 0.0 0.30
ViborgG 267.90 8.84 94.0 257.80 1.03 94.0 10.10
ViborgH 102.20 28.61 0.0 22.60 9.16 0.0 79.60
Viby 236.30 3.65 186.8 230.60 0.52 181.8 N/A

Average 431.53 47.78 33.9 319.50 20.14 32.5 133.60

By the computational tests of this section, it has been shown that the ALNS algorithm is the best

Chapter 8. The Consultation Timetabling Problem at Danish High Schools 170

solution procedure, of those considered in this paper, for the CTP. It outperforms both Gurobi
and the existing heuristic of Lectio in terms of both solution quality and reliability.

8.7 Final Remarks and Outlook

It has been shown how the CTP, an important real-life problem for the Danish high schools, can be
modeled using linear IP. ALNS has proven successful in establishing solutions for two versions of
the problem, the PCTP and the SCTP. Furthermore, F-Race has shown to be an efficient method
for tuning of the free parameters. The developed ALNS algorithm has been implemented in Lectio
and is hence available for 95% of the Danish high schools.

In case of the PCTP, it has been shown that the ALNS algorithm in average finds solutions which
are less than 4% from optimum. This average is taken over 100 real-life dataset, and therefore
we have high confidence in this result. Furthermore it has been shown that comparing with the
existing algorithm in Lectio, which is the only other known heuristic algorithm for the problem,
the ALNS algorithm is far superior. For 83 of the 86 datasets, ALNS finds better solutions, and in
many cases the solution quality of the ALNS is considerably better. For the remaining 14 datasets
a comparison was not considered fair.

The performance for the SCTP is also tested on 100 real-life dataset. For these datasets, it is
shown that the ALNS algorithm in average finds solutions less than 5% from optimum.

For both the PCTP and SCTP the average solution found by ALNS is better than the solutions
found by the state-of-the-art MIP solver Gurobi 5.01.

The main subject for further research is considered to be the use of Dantzig-Wolfe decomposition
and solution using Branch-and-Price. In this context, a column in the master problem could
represent a meeting-plan for a student or a teacher. This would move many constraints to the
subproblem, possibly giving a stronger IP formulation, which could lead to a more efficient IP-
based solution approach.

Another possibility for future research is to combine the two solution methods described, i.e.
using the MIP solver as a repair heuristic within the ALNS. Similar approaches are seen in Prescott-
Gagnon et al. (2009) and Muller et al. (2011), with competitive results.

171 Bibliography

Bibliography

B. Adenso-Diaz and M. Laguna. Fine-tuning of algorithms using fractional experimental designs
and local search. Operations Research, 54(1):99–114, 2006.

N. Azi, M. Gendreau, and J.-Y. Potvin. An Adaptive Large Neighborhood Search for a Vehicle
Routing Problem with Multiple Trips. CIRRELT, 2010.

P. Balaprakash, M. Birattari, and T. Stützle. Improvement strategies for the f-race algorithm:
sampling design and iterative refinement. In Proceedings of the 4th international conference on
Hybrid metaheuristics, HM’07, pages 108–122, Berlin, Heidelberg, 2007. Springer-Verlag.

S. Becker, J. Gottlieb, and T. Stützle. Applications of racing algorithms: An industrial perspective.
In E.-G. Talbi, P. Liardet, P. Collet, E. Lutton, and M. Schoenauer, editors, Artificial Evolution,
volume 3871 of Lecture Notes in Computer Science, pages 271–283. Springer Berlin / Heidelberg,
2006.

M. Birattari. The Problem of Tuning Metaheuristics as seen from a Machine Learning Perspective,
volume 292 Dissertations in Artificial Intelligence - Infix. Springer, 1 edition, 2005.

T. Birbas, S. Daskalaki, and E. Housos. School timetabling for quality student and teacher
schedules. J. of Scheduling, 12:177–197, April 2009. ISSN 1094-6136.

E. Burke and S. Petrovic. Recent research directions in automated timetabling. European Journal
of Operational Research, 140(2):266 – 280, 2002. ISSN 0377-2217.

M. Carter and G. Laporte. Recent developments in practical course timetabling. In E. Burke and
M. Carter, editors, Practice and Theory of Automated Timetabling II, volume 1408 of Lecture
Notes in Computer Science, pages 3–19. Springer Berlin / Heidelberg, 1998.

M. Chiarandini, M. Birattari, K. Socha, and O. Rossi-Doria. An effective hybrid algorithm for
university course timetabling. Journal of Scheduling, 9:403–432, 2006. ISSN 1094-6136.

P. de Haan, R. Landman, G. Post, and H. Ruizenaar. A case study for timetabling in a dutch
secondary school. In E. Burke and H. Rudova, editors, Practice and Theory of Automated
Timetabling VI, volume 3867 of Lecture Notes in Computer Science, pages 267–279. Springer
Berlin / Heidelberg, 2007.

Y. Diao, F. Eskesen, S. Froehlich, J. Hellerstein, L. Spainhower, and M. Surendra. Generic online
optimization of multiple configuration parameters with application to a database server. In
M. Brunner and A. Keller, editors, Self-Managing Distributed Systems, volume 2867 of Lecture
Notes in Computer Science, pages 79–93. Springer Berlin / Heidelberg, 2003.

W. Erben and J. Keppler. A genetic algorithm solving a weekly course-timetabling problem. In
E. Burke and P. Ross, editors, Practice and Theory of Automated Timetabling, volume 1153 of
Lecture Notes in Computer Science, pages 198–211. Springer Berlin / Heidelberg, 1996.

F. Hutter, H. Hoos, K. Leyton-Brown, and T. Stützle. Paramils: an automatic algorithm config-
uration framework. J. Artif. Int. Res., 36:267–306, September 2009. ISSN 1076-9757.

S. Kristiansen and T. R. Stidsen. Adaptive large neighborhood search for student sectioning at
danish high schools. In Proceedings of the Ninth International Conference on the Practice and
Theory of Automated Timetabling (PATAT 2012), 2012.

S. Kristiansen, M. Sørensen, and T. R. Stidsen. Elective course planning. European Journal of
Operational Research, 215(3):713 – 720, 2011. ISSN 0377-2217. doi: 10.1016/j.ejor.2011.06.039.

S. Kristiansen, M. Sørensen, M. B. Herold, and T. R. Stidsen. The consultation timetabling
problem at danish high schools. Journal of Heuristics, 19(3):465–495, June 2013.

Bibliography 172

G. Laporte, R. Musmanno, and F. Vocaturo. An adaptive large neighbourhood search heuristic
for the capacitated arc-routing problem with stochastic demands. Transportation Science, 44
(1):125–135, 2010.

H. Lei, G. Laporte, and B. Guo. The capacitated vehicle routing problem with stochastic demands
and time windows. Computers & Operations Research, 38(12):1775 – 1783, 2011. ISSN 0305-
0548. doi: DOI:10.1016/j.cor.2011.02.007.

B. McCollum. University timetabling: Bridging the gap between research and practice. In in
Proceedings of the 5th International Conference on the Practice and Theory of Automated Time-
tabling, pages 15–35. Springer, 2006.

H. Mittelman. Benchmarks for optimization software, 2013. URL http://plato.asu.edu/bench.

html.

T. Müller and K. Murray. Comprehensive approach to student sectioning. Annals of Operations
Research, 181:249–269, 2010. ISSN 0254-5330.

E. Montero, M.-C. Riff, and B. Neveu. An evaluation of off-line calibration techniques for evolu-
tionary algorithms. In Proceedings of the 12th annual conference on Genetic and evolutionary
computation, GECCO ’10, pages 299–300, New York, NY, USA, 2010. ACM. ISBN 978-1-4503-
0072-8. doi: 10.1145/1830483.1830540.

L. Muller. An adaptive large neighborhood search algorithm for the resource-constrained project
scheduling problem. In MIC 2009: The VIII Metaheuristics International Conference, 2009.

L. Muller, S. Spoorendonk, and D. Pisinger. A hybrid adaptive large neighborhood search heuristic
for lot-sizing with setup times. European Journal of Operational Research, Volume 218(Issue
3):614–623, 2011.

L. F. Muller and S. Spoorendonk. A hybrid adaptive large neighborhood search algorithm applied
to a lot-sizing problem. Technical report, DTU Management Engineering, 2010.

P. Pellegrini and M. Birattari. Implementation effort and performance. pages 31–45. 2007.

P. Pellegrini, T. Stützle, and M. Birattari. Off-line vs on-line tuning: A study on max–min ant
system for the tsp. In Swarm Intelligence, volume 6234 of Lecture Notes in Computer Science,
pages 239–250. Springer Berlin / Heidelberg, 2010. ISBN 978-3-642-15460-7.

N. Pillay. An overview of school timetabling research. In Proceedings of the International Con-
ference on the Theory and Practice of Automated Timetabling, pages 321–335, Belfast, United
Kingdom, 2010.

D. Pisinger and S. Ropke. A general heuristic for vehicle routing problems. Computers & Opera-
tions Research, 34:2403–2435, August 2005. ISSN 0305-0548.

D. Pisinger and S. Ropke. Large neighborhood search. In M. Gendreau and J.-Y. Potvin, edi-
tors, Handbook of Metaheuristics, volume 146 of International Series in Operations Research &
Management Science, pages 399–419. Springer US, 2010. ISBN 978-1-4419-1665-5.

J.-Y. Potvin and J.-M. Rousseau. A parallel route building algorithm for the vehicle routing and
scheduling problem with time windows. European Journal of Operational Research, 66(3):331 –
340, 1993. ISSN 0377-2217.

E. Prescott-Gagnon, G. Desaulniers, and L.-M. Rousseau. A branch-and-price-based large neigh-
borhood search algorithm for the vehicle routing problem with time windows. Networks, 54(4):
190–204, 2009. ISSN 1097-0037. doi: 10.1002/net.20332.

http://plato.asu.edu/bench.html
http://plato.asu.edu/bench.html

173 Bibliography

G. M. Ribeiro and G. Laporte. An adaptive large neighborhood search heuristic for the cumulative
capacitated vehicle routing problem. Computers & Operations Research, 39(3):728 – 735,
2012. ISSN 0305-0548.

S. Ropke and D. Pisinger. An adaptive large neighborhood search heuristic for the pickup and
delivery problem with time windows. Transportation Science, 40:455–472, November 2006. ISSN
1526-5447.

H. Santos, E. Uchoa, L. Ochi, and N. Maculan. Strong bounds with cut and column generation
for class-teacher timetabling. Annals of Operations Research, 194(1):399–412, April 2012. ISSN
0254-5330.

A. Schaerf. A survey of automated timetabling. Artificial Intelligence Review, 13:87–127, 1999.
ISSN 0269-2821.

P. Shaw. A new local search algorithm providing high quality solutions to vehicle routing problems,
1997.

P. Shaw. Using constraint programming and local search methods to solve vehicle routing prob-
lems. In M. Maher and J.-F. Puget, editors, Principles and Practice of Constraint Programming
— CP98, volume 1520 of Lecture Notes in Computer Science, pages 417–431. Springer Berlin /
Heidelberg, 1998.

M. Sørensen and T. R. Stidsen. High school timetabling: Modeling and solving a large number
of cases in denmark. In Proceedings of the Ninth International Conference on the Practice and
Theory of Automated Timetabling (PATAT 2012), pages 359–364. SINTEF, 2012.

A. Tripathy. School timetabling–a case in large binary integer linear programming. Management
Science, 30(12):1473–1489, 1984.

Chapter 9

A Branch & Price Algorithm for
the Generalized Meeting Planning
Problem

Niels-Christian Fink Bagger∗ Matias Sørensen∗† Simon Kristiansen∗† Thomas R. Stidsen∗

∗Department of Management Engineering, Technical University of Denmark,
Produktionstorvet, Building 426, DK-2800 Kgs. Lyngby, Denmark

nbag@dtu.dk, msso@dtu.dk, sikr@dtu.dk, thst@dtu.dk

†MaCom A/S
Vesterbrogade 48, 1., DK-1620 Copenhagen V, Denmark

1

Abstract Meetings form an important activity in modern society. Persons meet with other people
for business or pleasure, but usually a meeting rules out other meetings for the same persons at the same
time. Planning a large number of meetings hence present an important but difficult optimization problem.

The Meeting Planning problem comes in all kinds of different variations. In this article, we present

a Mixed-Integer Programming model which can model many of these variations and we also present a

Branch & Price algorithm which enables optimization of many types of meeting problems. The Branch

& Price algorithm is tested on two problems occurring in Danish high schools, the Parental Consultation

Timetabling Problem and the Supervisor Consultation Timetabling Problem, each represented by 100 real-

world datasets. The tests show that the Branch & Price algorithm performs well compared with a compact

Mixed-Integer Programming model and with an Adaptive Large Neighborhood Search algorithm.

9.1 Introduction

Meetings form an important activity in modern society, both in people’s business- and private life.
If the occurrence of meetings is large, and the meetings are interrelated, planning them becomes
a puzzle. In this article we will study the Generalized Meeting Planning problem.

Every day numerous secretaries have to solve the following planning problem: Find a meeting
time for a number of persons to meet. If the secretary is using a standard electronic calendar
system, there usually exists a function for finding the first time-interval where all persons are
available. This is a simple function and very useful for the meeting planners. If the secretary
has to plan more meetings, the function works as well, unless one or more of the persons have

1Submitted and under revision at Computers and Operations Research (2013)

175

Chapter 9. A Branch & Price Algorithm for the Generalized Meeting Planning Problem 176

to participate in several meetings. Then planning one meeting renders these persons unavailable
to participate in other meetings in the same time-interval, if we assume that a person can only
participate in one meeting at a time.

The problem of planning a number of meetings in time-intervals (time slots), some of which re-
quires the participation of the same person, is the Generalized Meeting Planning (GMP) problem.
We need to stress that the term meeting should be understood in its most general form: A meeting
consists of a number of entities meeting each other in a specific time-interval. The entities can be
managers, teachers and students, or any other type of resource attending the meetings.

There are naturally many variations of the GMP problem, both in the objective, i.e. what
should be achieved, and in the constraints, i.e. which extra requirements are there. On the other
hand, all GMPs share the same basic structure and a planning approach, i.e. optimization, for
one version of a GMP may benefit from approaches for other GMPs.

The Mixed-Integer Programming (MIP) model that we will present makes it obvious to apply
a Branch & Price (B&P) algorithm to find the optimal solution, due to an exponential number of
variables. This works by splitting the model in a master problem and a number of subproblems. The
Linear Programming (LP) relaxation of the master problem, denoted the Relaxed Master Problem
(RMP), will be solved using a Column Generation (CG) algorithm. To find integer solutions by
means of this LP relaxation, a Branch & Bound scheme is used, which thereby leads to a B&P
algorithm. B&P algorithms have been very successful for a large number of hard optimization
problems, e.g. Savelsbergh (1997); Mehrotra and Trick (2007). For an excellent introduction to
B&P we refer to Lübbecke and Desrosiers (2005).

This paper is based on a technical report Bagger (2012), in which a number of different ap-
proaches to the GMP problem are attempted. We will refer to this technical report for details on
various matters throughout this paper.

The outline of the paper is as follows. In Section 9.2 we will briefly survey previous approaches.
In Section 9.3 we define the GMP problem as a MIP model. We will test our approach on two
different variations of the GMP problem which are described in Section 9.4: The Parental Con-
sultations Timetabling problem in Section 9.4.1, and the Supervisor Consultation Timetabling
Problem in Section 9.4.2. The problems are formulated more generally as the Consultation Time-
tabling Problem. In both tests, we will use real-life data from a large number of Danish high
schools. Computational results are presented in Section 9.5. Finally we will give a conclusion in
Section 9.6.

9.2 Previous Approaches

The generalized version of the meeting planning problem considered is widely applicable, as the
required structure is simple; A number of meetings between entities (e.g. individuals) are to be
scheduled, and each entity can participate in multiple meetings. Hence both entity and meeting
are actually used as abstracts terms here, since their definitions are problem-specific. To the best of
our knowledge, the abstract form of this problem has not been considered before in the literature.
However, several well-described problem domains exist for which the GMP is applicable, especially
within timetabling problems in the educational sector.

In case of High School Timetabling, a meeting could be defined as a lecture, and entities could
be students, teachers, classes, or a combination of these. Santos et al. (2010) describes a Cut
and Column Generation algorithm for class/teacher timetabling at Brazilian high schools, where
the set of teachers is used as entities. Papoutsis et al. (2003) also uses teachers and entities, and
schedules for Greek high schools.

The field of University Timetabling is dominated by heuristic approaches. The problem is closely
related to graph coloring and many early approaches were based on graph coloring heuristics, but
recently meta-heuristics have gained the most interest Lewis (2008). However some researchers
have applied column generation approaches. Qualizza and Serafini (2005) describes an approach
where a column represents the assigning of time slots for a single course. Computational results
for a single problem instance shows convincing results.

177 9.3. A Mixed-Integer Programming model of the Generalized Meeting Planning problem

For Examination Planning many different approaches have been suggested, though most heuris-
tic. A survey by Qu et. al in Qu et al. (2006) considers the recent research applied in the field. Here
it is noted that decomposition methods have not attracted much attention. One of the reasons is
that some soft constraints cannot be evaluated in the decomposition and so global optimality may
be missed. Like for university timetabling, most of the early approaches applied graph-heuristics,
but lately methods such as Tabu Search (Di Gaspero and Schaerf, 2001; Pais and Amaral, 2008)
and Simulated Annealing Thompson and Dowsland (1996a,b) have gained attention. In Thomp-
son and Dowsland (1996a) it is mentioned that this method resulted in an implementation which
were used at University of Wales Swansea. Defining a single exam as a meeting between students
(usually only a single student) and a group of teachers would allow applying the terminology of
this paper.

In this paper we consider the case of the Consultation Timetabling Problem for high schools in
Denmark, which essentially consists of meetings between a group of teachers and a single student.
This problem is only described in the literature in Kristiansen et al. (2013).

9.3 A Mixed-Integer Programming model of the General-
ized Meeting Planning problem

There are numerous ways to model the GMP problem using MIP models. In Bagger (2012) a
number of these are presented, including a compact model (i.e. a model with a polynomially
limited number of variables and constraints). Here we will only present what is known as the
Entity Pattern model, as this performed best wrt. computational results.

An entity is a resource that has to participate in a number of meetings. Let the set of entities
which are part of the GMP problem be given by the set E, indexed by e ∈ E. Let further the set
of time slots be given by B, indexed by b ∈ B. Each meeting concerns a group g of entities which
should meet and which is part of a set of groups G, i.e. g ∈ G.

Given the three sets E, B and G, further data about the problem is given: αg,b is the profit of
scheduling a meeting g ∈ G to time slot b ∈ B. The incidence matrix Aeg defines the groups such
that Aeg = 1 if entity e ∈ E belongs to group g ∈ G and Aeg = 0 otherwise.

In the Entity Pattern model we will use two types of variables: The binary variable xg,b which
defines that group g ∈ G meets in time slot b ∈ B, and the binary variable λe,p which defines
whether the meetings of entity e ∈ E follows the patterns p ∈ P . A pattern is essentially a schedule
for an entity, which defines the time slots in which the entity is attending a meeting, but does not
explicit denote which meetings. The number of patterns for an entity may be exponential. We
will here assume to know the entire set of patterns Pe for each entity, and we will also assume
to know the cost βe,p for using entity pattern p ∈ Pe. Let incidence matrix Me,p

b take value 1 if
pattern p ∈ Pe does not allow a meeting in time slot b ∈ B.

The entire Entity Pattern model can now be formulated, see Model 1. This constitutes the
master problem in our CG formulation. The notation used is lazy; Let ∀a be shorthand for
∀a ∈ A, and let

∑
a be shorthand for

∑
a∈A.

Model 1 consists of one objective function and three types of constraints: The objective function
given by eq. (9.3.1a) weighs the two terms, the revenue for allocating a meeting and the revenue
of the entity pattern for each entity. What exactly is contained in the revenue term of the groups
α and the revenue term of the patterns β is dependent on the actual meeting planning problem.
In the settings we consider, different properties of the patterns are penalized, e.g. too many
consecutive meetings, idle time slots and so on. It is desired to minimize these penalties, so we
let β take non-positive values. The constraint in eq. (9.3.1b) ensures that each meeting can be
arranged at most one time. The constraint in eq. (9.3.1c) links the group allocation variables xg,b
with the entity patterns λe,p, i.e. ensures that an entity can only be assigned a time slot which
is allowed. Finally the convexity constraint given by eq. (9.3.1d) ensures that exactly one entity
pattern is chosen for each entity.

Of all the approaches attempted in Bagger (2012), Model 1 performed best in the tests and it

Chapter 9. A Branch & Price Algorithm for the Generalized Meeting Planning Problem 178

max
∑
g,b

αg,b · xg,b +
∑
e,p∈Pe

βe,p · λe,p (9.3.1a)

s. t.
∑
b

xg,b ≤ 1 ∀ g (9.3.1b)∑
g

Aeg · xg,b +
∑
p∈Pe

λe,p ·Me,p
b = 1 ∀ e, b (9.3.1c)

∑
p∈Pe

λe,p = 1 ∀ e (9.3.1d)

xg,b, λ
e,p ∈ {0, 1} (9.3.1e)

Model 1: Master problem of the pattern formulation.

indeed possess a number of features which makes it attractive:

1. Model 1 can be converted into a set-partition model. These models are very well studied
which means that the theory is well-developed and a number of good performing heuristics
are known.

2. The entity patterns can be generated in the subproblem when using a CG algorithm, hence
overcoming the problem of the exponential number of λe,p variables.

3. Relations between meetings for one entity in the entity pattern is handled in the subproblem
of the CG algorithm.

4. The xg,b variables can be used in a B&P algorithm, such that branching is performed only
on these variables. A proof of this will be given in Section 9.3.2.

5. Branching only on the xg,b variables does not change the structure of the subproblem, as
opposed to other branching schemes, facilitating a simpler B&P algorithm.

Because of the above reasons, we consider the entity pattern Model 1 a promising model. There
are however a couple of weaknesses which also deserves to be mentioned:

1. Any relation between entity patterns, i.e. between the meetings of different entities becomes
more cumbersome to model.

2. There is no definition of where the meetings should take place, e.g. allocation of meetings
to rooms. For simplicity we have chosen to ignore this issue in this paper.

9.3.1 Obtaining Dual Bounds

When solving the RMP problem a CG algorithm will be used. Using this approach only a subset
of the patterns are initially included in the model. In this case all the xg,b variables are initially
included in the RMP and one λe,p variable for each entity derived from an initial solution. This
problem is called the Restricted Master Problem and the dual information of the solution is used
to generate new variables (columns) to include in the model. When using CG to solve the RMP
a dual bound can be calculated in each iteration. Let υg, πe,b and µe be the dual variables of
the constraints (9.3.1b), (9.3.1c) and (9.3.1d) respectively. Consider some iteration of the CG
procedure and let (υg, π

e
b, µe) be the dual solution of the Restricted Master Problem. Then the

subproblem consists of finding the pattern with the highest reduced cost for each entity. For an
entity e the subproblem can be denoted in the following way:

zeSP(π, µ) = max

{
βe,p −

∑
b

πeb ·M
e,p
b − µe

∣∣∣∣ p ∈ Pe
}

(9.3.2)

179 9.3. A Mixed-Integer Programming model of the Generalized Meeting Planning problem

Let
(
x∗g,b, λ

e,p,∗
)

be the optimal solution to the RMP and let
(
xg,b, λ

e,p
, υg, π

e
b, µe

)
be the

primal-dual solution to the Restricted Master Problem in any iteration. Furthermore let the
optimal solution for the subproblem for entity e ∈ E given the dual solution be denoted zeSP(π, µ).
Lastly because of the strong duality theorem we have that:∑

g,b

αg,b · xg,b +
∑
e,p∈Pe

βe,p · λe,p =
∑
g

υg +
∑
e,b

πeb +
∑
e

µe (9.3.3)

So a bound on the gap between the optimal solution to the RMP and the current considered
solution in the Restricted Master Problem can be calculated:∑

g,b

αg,b · x∗g,b +
∑
e,p∈Pe

βe,p · λe,p,∗ −
∑
g

υg −
∑
e,b

πeb −
∑
e

µe ≤ (9.3.4)

∑
g,b

αg,b · x∗g,b +
∑
e,p∈Pe

βe,p · λe,p,∗

−
∑
g,b

υg · x∗g,b −
∑
e,b

πeb ·

∑
g

Aeg · x∗g,b +
∑
p∈Pe

λe,p,∗ ·Me,p
b

− ∑
e,p∈Pe

µe · λe,p,∗ = (9.3.5)

∑
g,b

(
αg,b − υg −

∑
e

Aeg · πeb

)
· x∗g,b +

∑
e,p∈Pe

(
βe,p −

∑
b

υeb ·M
e,p
b − µe

)
· λe,p,∗ (9.3.6)

The step from eq. (9.3.4) to eq. (9.3.5) is done by using eq. (9.3.1b), (9.3.1c) and (9.3.1d) since
they must hold for the optimal solution. The step from eq. (9.3.5) to eq. (9.3.6) is merely a rear-
rangement of the terms.

If the RMP is dualized then, for a group g and a time slot b, one of the constraints that
are obtained is υg +

∑
eA

e
g · πeb ≤ αg,b. Since xg,b are non-negative variables then this means

that
∑
g,b

(
αg,b − υg −

∑
eA

e
g · πeb

)
· x∗g,b ≤ 0 thus removing this term from (9.3.6) provides an

upper bound. Now consider the coefficient of the λe,p,∗-variables in (9.3.6). These correspond
to the objective function of the subproblems in the current iteration of the CG algorithm. Since
zeSP(π, µ) is the objective value of the optimal pattern for the subproblem of entity e then each
coefficient must be bounded by this value, i.e.

∑
e,p∈Pe

(
βe,p −

∑
b

υeb ·M
e,p
b − µe

)
· λe,p,∗ ≤

∑
e

zeSP(π,w) ·

∑
p∈Pe

λe,p,∗

 (9.3.7)

As (9.3.1d) constrains
∑
p∈Pe λ

e,p,∗ to be one for each entity e then we can replace this sum by
one and so an upper bound on the optimal solution of the RMP can be calculated:

∑
g,b

αg,b · x∗g,b +
∑
e,p∈Pe

βe,p · λe,p,∗ ≤
∑
g,b

αg,b · xg,b +
∑
e,p∈Pe

βe,p · λe,p +
∑
e

zeSP(π, µ) (9.3.8)

This means that if all the subproblems are solved to optimality then we can obtain a dual bound
for the RMP in every iteration of the CG algorithm at a negligible computational cost. So in a
B&P algorithm this upper bound can be checked against the incumbent in each iteration of the
CG algorithm. If the bound gets below the incumbent in some iteration, the node can be fathomed
before all the columns are generated instead of putting off the fathoming until the node is solved
to optimality. The drawback of this approach is that we need to generate the optimal columns in
each iteration to get the correct bound. However this can be circumvented by replacing zeSP with
an upper bound on the subproblem (9.3.2). In our testing we will only add the optimal solutions
of the subproblem.

Chapter 9. A Branch & Price Algorithm for the Generalized Meeting Planning Problem 180

9.3.2 Branching in the Branch & Price Algorithm

Model 1 has the important feature that it is possible to only branch on the xg,b variables. This
simplifies the algorithm significantly because the standard B&P branching techniques can be
avoided. In the remainder of this section we will show that branching on only the xg,b variables
is indeed enough to obtain the optimal integer solution, i.e. that branching on the λe,p variables
is never necessary. To show this we will use the properties of perfect matrices Ryan and Falkner
(1988).

Definition. (Padberg (1974); Ryan and Falkner (1988)) An m×n zero-one set-partitioning poly-
hedron characterized by
{x|x ∈ Rn, Ax = e, x ≥ 0}

(
where e = (1, 1, . . . , 1)T

)
is said to be perfect if it has only zero-one

integral vertices.

Assume that in some node in the Branch & Bound tree the optimal solution to the RMP is
integral on the xg,b variables and that all the branching performed until this node has only been
done on the xg,b variables. Let xg,b be the solution and assume that all feasible patterns for the
entities are in the model. If the xg,b variables are substituted with the values xg,b in Model 1 then
the remaining problem will be as in Model 9.

max
∑
e,p∈Pe

βe,p · λe,p (9.3.9a)

s. t.
∑
p∈Pe

λe,p ·Me,p
b = 1−

∑
g

Aeg · xg,b ∀e, b (9.3.9b)

∑
p∈Pe

λe,p = 1 ∀e (9.3.9c)

λe,p ∈ {0, 1} (9.3.9d)

Model 9: Master problem of the pattern formulation given the integral solution xg,b.

Consider any entity e. If
∑
g A

e
g · xg,b = 1 for any time slot b then the corresponding constraint

and every pattern p ∈ Pe where Me,p
b = 1 can be removed from the model. Removing all the

constraints and patterns fulfilling the latter creates a zero-one set partitioning problem. Note that
the model is decomposable by the entities, i.e. the optimal solution for an entity is independent
of the remaining entities. The problem is very easy to solve since each entity can only be assigned
one pattern and each of the patterns can be deduced from the xg,b values. However since the
solution is based on the RMP it could be the case that fractional patterns were chosen and further
branching were needed on the λe,p variables.

To see if there exists an integral solution to the problem in Model 9, it could be checked
whether the set-partitioning polyhedron is perfect. However this might not be so easy to show
but, as mentioned earlier, since the problem is decomposable on the entities then subproblems can
be generated by decomposing Model 9 on the entities. If the set partitioning polyhedron of each of
these subproblems are perfect then the subproblems has integral optimal solutions meaning that
the overall problem has an integral optimal solution. To see that the subproblems are perfect we
need Definition 9.3.2 and Theorem 9.3.2.

Definition. (Padberg (1974); Ryan and Falkner (1988)) An m×k zero-one matrix Ak with k ≤ m
is said to have the property Πβ,k if:

• Ak contains a k × k non-singular submatrix Bk where all rows and columns sum to β.

• Every row in Ak which is not in Bk is either equal to a row in Bk or the sum of the row is
strictly less than β.

181 9.3. A Mixed-Integer Programming model of the Generalized Meeting Planning problem

Definition. (Padberg (1974); Ryan and Falkner (1988)) A perfect m× n zero-one matrix A does
not contain any m× k submatrix Ak where 3 ≤ k ≤ m with the property Πβ,k where β ≥ 2.

Consider the subproblem for any entity and let A be the corresponding zero-one matrix which
could look like the following:

A =

1 1 1 · · · 1
1 1 · · ·

1 1 · · ·
...

...
...

...
. . .

...
1 1 · · · 1

1 1 1 1 · · · 1

Note the last row in the matrix which corresponds to the convexity constraint for the entity and

thus has ones in all the columns. This row ensures that the matrix does not contain a submatrix
Ak with property Πβ,k.

Definition. A is a perfect matrix.

Proof of Claim 9.3.2. To prove that A is a perfect matrix we will show by contradiction that A
fulfills Theorem 9.3.2. Assume that there is a submatrix Ak of A with property Πβ,k and let Bk
be the corresponding k × k non-singular submatrix of Ak where all rows and columns sum to β.
Consider the last row r corresponding to the convexity constraint. We will give the following two
claims:

Definition. Row r cannot be one of the rows in the submatrix Bk.

Definition. Row r cannot be one of the remaining rows of Ak not in Bk.

Assuming that both Claim 9.3.2 and 9.3.2 are true then clearly they present a contradiction
thus Claim 9.3.2 must hold. This concludes that A is a perfect matrix. �

Proof of Claim 9.3.2. We know that row r sums to k in the matrix Ak since it has ones in all
columns. This means that if r is in Bk then all the other rows must also sum to k which can only
be done if they have ones in all columns as well. This contradicts that Bk is non-singular and so
r cannot be one of the rows in Bk. �

Proof of Claim 9.3.2. All the rows in Bk must sum to β which must strictly be less than k,
otherwise Bk would not be non-singular as mentioned in the proof of Claim 9.3.2. Since row r
sums to k then this contradicts the assumption that Ak had property Πβ,k as this would imply
that the sum of row r should be strictly less than β < k. Therefore the row r cannot be one of
the rows in Ak which is not in Bk. �

Since Claim 9.3.2 holds then if the xg,b variables are integral in the optimal solution for the
RMP in some node of the B&P tree then there exists an integral optimal solution for the RMP in
that node. The patterns that can be deduced from the xg,b variables are the only patterns that
can be used in an integral solution because of the convexity constraints and so these patterns must
be the optimal patterns to choose. This means that the branching can be done solely on the xg,b
variables, i.e. the subproblems do not need to be changed throughout the branching tree.

9.3.3 Branching Selection

When branching on a fractional xg,b variable, one problem is that the one-branch creates a more
restricted subproblem than the zero-branch. Therefore the B&P tree becomes very unbalanced.
This is a well-known issue. A way to circumvent this could for instance be to use constraint
branching as the Ryan-Foster branching method for which empirical studies has shown that this
approach performs well on set partitioning problems Ryan and Foster (1981). The branching is

Chapter 9. A Branch & Price Algorithm for the Generalized Meeting Planning Problem 182

performed by identifying two constraints r and s. Either these two constraints must be fulfilled by
the same variable or by different variables. So if arj and as,j are the coefficients associated with
the variable xj in the constraints r and s respectively then the branching is done in the following
way: ∑

j:arj=asj=1

xj = 0 ∨
∑

j:arj=asj=1

xj = 1

The difference between the Ryan-Foster branching and variable branching in this context only
occurs if two entities are in more than one group together. We cannot guarantee that this is true,
and for the tests performed in Section 9.4 this is rarely the case, so the majority of the Ryan-Foster
branching will result in branching on a single variable. Therefore we have decided to do a variable
branching instead.

So the choice resides on how to do the variable branching. A usual approach is to branch on
a variable x which is most fractional, i.e. a variable where the fractional part is closest to 0.5.
Another idea is to consider a subset of all the fractional variables as potential candidates for
branching, and then for each of these variables solve the relaxations of the two subproblems. This
branching scheme is known as strong branching and the candidates we will consider are the k
candidates which are closest to 0.65, as done by Røpke (Røpke, 2013). Instead of just solving the
relaxations of all the subproblems induced by the candidates, a more clever approach to speed up
strong branching is used, as described in Røpke (2012).

The main difference between our implementation and that of Røpke is the choice of the candi-
dates to consider. The k candidates which are closest to 0.65 are chosen to be considered when
branching. Røpke chose to set k = 30 in the beginning of the B&P algorithm and then at some
point lower k to 15 Røpke (2013). The reason for this is that it is usually more important to do
good branching decisions in the beginning of the B&P algorithm. Instead of choosing a depth of
the tree or a number of processed nodes to be the breaking point of when to lower k, we have
chosen to determine k based on the number of fixed variables. This is because when a variable
is fixed to zero then in most cases this is a very weak restriction and so two subproblems at the
same depth in the tree can have a great difference in the size of the problem in terms of non-fixed
variables. One thing to note is that when one of the xg,b is fixed to one then a lot of other variables
get fixed to zero. So when we calculate the number of fixed variables we will count every |B| − 1
variables which are fixed to zero as one variable fixed to one. This means that if in some node of
the B&P tree O is the set of variables fixed to one and Z is the set of variables fixed to zero then
the counted variable fixings is |O| + |Z|/(|B| − 1). Then for every tenth counted variable fixing,
we half the value of k beginning with 60.

9.4 Test Applications

In this section we describe two different applications of the GMP problem. Both of these appli-
cations originate from the Danish high school system, and the description of the problems given
in the following has shown to be applicable to hundreds of different high schools. Sections 9.4.1
and 9.4.2 describe the two test-applications, and Section 9.4.3 presents a subproblem in context of
GMP which can be used to solve both applications. In Kristiansen et al. (2013) it is shown that
both test-applications are NP-hard and since these are a special case of GMP this means that
GMP is NP-hard as well.

9.4.1 Parental Consultation Timetabling Problem

The first application is the Parental Consultation Timetabling Problem (PCTP). Few times a year,
the Danish high schools, 9th to 12th school year, offer the possibility for school meetings where the
parents together with the pupil meet selected teachers for short private meetings. The pupil and
the parents will choose a number of teachers they wish to meet. At a certain date, the booking
possibility is closed, and a secretary at the high school will use an optimization algorithm (see

183 9.4. Test Applications

Kristiansen et al. (2013)) to plan the meetings. At the day of the meeting, the parents and pupil
will come to the school, and the different teachers will be spread out in different class-rooms at
the school. The parents and the pupil are then given a schedule, for which teacher to meet in
which time slot. The parental meetings are often placed in the evening of a normal workday to
ease the attendance of the parents. Evening work is however more demanding for the teachers, so
compact schedules becomes important. The GMP problem can be used to find the best schedules
of both the parents and the teachers.

9.4.2 Supervisor Consultation Timetabling Problem

The second application is for Supervisor Consultation Timetabling Problem (SCTP). In the final
year for a student at a Danish high school, the student is required to do a large study project.
Each student selects two course subjects and thereby two teachers whom will be supervisors on
the project. During the project process, the students are required to attend a meeting with their
supervisors. These meetings are used to give the students some guidance for different parts for
the project, such as problem definition or literature research.

The planning of the SCTP is very similar to the PCTP, however in SCTP the students have
only one request for a meeting (where both supervisors attend). These meetings are normally
placed in the daytime, hence it is often necessary to interrupt the lectures for a given student.
However it is not allowed to assign a meeting during lunch breaks. As each student only has one
meeting the SCTP essentially consists of finding the best schedules for the teachers.

9.4.3 Generalized Meeting Planning Subproblem for the Consultation
Timetabling Problem

There are a number of requirements to be fulfilled for an entity pattern to be feasible for both
PCTP and SCTP:

• For entity e ∈ E the incidence matrix Ceb ∈ {0, 1} defines whether a meeting can take place
in time slot b. A teacher might be unavailable if he is occupied by other activities, such as
teaching.

• For each entity e ∈ E only a maximum number of meetings Qe in a row can be accepted.
This can either be a hard or soft constraint specified by HSe ∈ {0, 1}. If the constraint is
hard (HSe = 1) then a meeting cannot be scheduled after a sequence of Qe meetings. If the
constraint is soft (HSe = 0) then a sequence can be longer than Qe but at a cost of ωe times
the number of time slots that the sequence exceeds Qe.

We introduce the set of days, D, indexed by d ∈ D. The parameter Vb,d ∈ {0, 1} denotes
whether time slot b is at day d. Let υg, πe,b and µe be the dual variables associated with the
constraints (9.3.1b), (9.3.1c) and (9.3.1d), respectively. Let Ceb ∈ {0, 1} take value 1 if entity e is
available in time slot b, and 0 otherwise. Let mb ∈ {1− Ceb , 1} be a variable denoting whether the
entity does not have a meeting in time slot b. Let ffirst

d ∈ {0, 1} and f last
d ∈ {0, 1} indicate the

first and last time slot the entity has a meeting in day d ∈ D, respectively.
The cost function for idle time slots are modeled as a piece-wise linear function by introducing

the variable vd,j ∈ {0, 1}, where j ∈ {1, . . . ,m}, which takes value 1 if entity e has j idle time
slots in day d, and 0 otherwise. The variable yb,d ∈ R+ takes value 1 if the length of the sequence
starting in time slot b on day d exceeds Qe. Let variable ud ∈ {0, 1} take value 1 if the entity has
at least one meeting at day d, and 0 otherwise, and variable v ∈ R+ denotes the amount of days
the entity has scheduled meetings, minus one.

Model 1 shows the entire subproblem.
Constraints (9.4.1b) and (9.4.1c) are not essentially needed to get feasible patterns, however

they can help avoiding infeasible solutions. As an example say entity e1 is in two groups and that
the dual values make it attractive for entity e1 to have meetings in time slots 1 and 6. Assigning
meetings for e1 in these two time slots would create a lot of idle time slots in the schedule and

Chapter 9. A Branch & Price Algorithm for the Generalized Meeting Planning Problem 184

max(e, π, µ) −
∑
d,j

γed,j · vd,j −
∑
b,d

ωe · yb,d − ζe · v −
∑
b

πe,b ·mb − µe (9.4.1a)

s. t.
∑
b

xg,b ≤ Ae
g ∀ g (9.4.1b)

∑
g

Ae
g · xg,b +mb = 1 ∀ b (9.4.1c)

∑
g

b+Qe′∑
b′=b

Vb′,d ·Ae′
g · xg,b′ ≤ Qe′

∀HSe′ = 1, Vb,d = 1,
b≤|B|−Qe′−1,

d,e′ 6=e

(9.4.1d)

b+Qe∑
b′=b

Vb′,d ·mb′ ≥ 1
∀d, b ≤ |B| −Qe − 1,
HSe = 1, Vb,d = 1

(9.4.1e)

f last
d + b ·mb ≥ b ∀ b, d, Vb,d = 1

(9.4.1f)

ffirst
d − (|B| − b− 1) ·mb ≤ b ∀ b, d, Vb,d = 1

(9.4.1g)

f last
d − ffirst

d +

(
1 +

HSe

Qe

)
·
∑
b

Vb,d · (1−mb)−
∑
j

j · vd,j ≤ −
HSe

Qe
∀ d (9.4.1h)

∑
j

vd,j = 1 ∀ d (9.4.1i)

b+Qe∑
b′=b

Vb′,d ·mb′ + yb,d ≥ 1
∀d, b ≤ |B| −Qe − 1,
HSe = 0, Vb,d = 1

(9.4.1j)

mb + ud ≥ 1 ∀ b, d, Vb,d = 1
(9.4.1k)∑

d

ud − v ≤ 1 (9.4.1l)

xg,b, vd,j ∈ {0, 1} (9.4.1m)

mb ∈ {1− Ce
b , 1} (9.4.1n)

ffirst, flast, yb,d, ud, v ∈ R+ (9.4.1o)

Model 1: subproblem of the entity patterns formulation given the dual values {ve,b} and {we}.

therefore assigning meetings in time slot 2, 3, 4 and 5 (assuming these time slots are feasible for
the entity) would remove the idle time slots. This is an infeasible pattern as e1 is in two groups but
scheduled for six meetings. Constraints (9.4.1b) ensure that only requested meeting are assigned
and (9.4.1c) ensure that a group can only be placed at time slot b if that time slot is available
for the entity. Constraints (9.4.1f), (9.4.1g) and (9.4.1h) denote the number of idle time slots the
entity has at a given day. If an idle time slot is required after each sequence of meetings of size Qe
in (9.4.1h) (i.e. HS = 1) this is not counted as a idle time slot. Constraints (9.4.1i) are convexity
constraints ensuring that only one of the idle time slot variables is set to one.

Constraints (9.4.1d) and (9.4.1e) are the hard sequential constraints. If HSe = 1, a sequence
of meetings cannot exceed Qe. Constraints (9.4.1j) are the soft constraints of sequential meetings
(i.e. HSe = 0). The way the number of time slots that exceeds Qe in some sequence of length k
is computed by settings lower bounds of 1 on the first k−Qe of the yb,d variables. As an example
let an optimal solution for the entity have scheduled meeting in the time slots 1, 3, 4, 5, 6, 7, 8
and 10 which are all connected to day 1 and let Qe = 4 then the sequence 3, 4, 5, 6, 7, 8 exceeds
Qe by 2 meetings. This means that y3,1 and y4,1 both will get a lower bound of 1 and since they
are not bounded by any other constraint they will be set to 1 in the optimal solution. This means
that this sequence will be correctly penalized by 2 times ωe in the objective function. Constraints

185 9.5. Computational Results

(9.4.1k) and (9.4.1l) sets the values for the variables ud and v.

9.5 Computational Results

To evaluate the B&P algorithm we compare it with two other known solution approaches for both
the PCTP and the SCTP. These are described in detail in Kristiansen et al. (2013) as well as the
values of the different parameters of the model.

• Adaptive Large Neighborhood Search: This is a heuristic based on Adaptive Large Neighbor-
hood Search, which is currently used by many high schools in Denmark to solve both the
PCTP and the SCTP.

• Gurobi 5.0.1 : This denotes the performance of Gurobi v. 5.0.1 on a standard MIP model
(the formulation from Bagger (2012) where Gurobi performed best). The results reported
here are not the same ones used in Kristiansen et al. (2013) as new runs were performed to
obtain more information. Therefore small variations are seen in the data.

The implementation was done in C# 4.5 running on a Windows machine equipped with an Intel
i7 CPU clocked at 2.80GHz and with 12GB of RAM. Gurobi 5.0.1 was used as LP solver for the
master problem and as MIP solver for the subproblems (with default parameter settings). The
maximum running time for Gurobi and B&P was set to 1 hour, while the ALNS ran 10 times
with a time limit of 2 minutes (we report the average objective values). Thereby the comparison
is ’unfair’ in favor of Gurobi and B&P, which should be kept in mind throughout this section.

As a starting solution to the B&P algorithm we use a solution obtained by a single run of the
ALNS algorithm. Since the ALNS algorithm is stochastic, the B&P algorithm is also stochastic,
but for time reasons only a single run of the B&P algorithm was performed. It should be noted
that the deviation between solutions obtained by ALNS for the same datasets have experimentally
been shown to be low. Therefore the solutions obtained by the B&P algorithm are also expected
to have low deviation between them. The single run of ALNS to get the initial solution is included
in the reported running time for B&P.

All datasets have been obtained from the database of the commercial product Lectio, which is
used by hundreds of high schools in Denmark. Thereby all datasets represent a case of a real-world
optimization problem.

9.5.1 Parental Consultation Timetabling Problem

Table 9.1 shows the results obtained for the PCTP. Table 9.1 shows these results in summarized
format.

The most prominent numbers drawn from these results are the gap to the best upper bound.
This shows that the B&P algorithm in average is only 2.32% within optimum, which is slightly
worse than the ALNS algorithm, but far better than the solutions Gurobi provides. Furthermore
the B&P algorithm finds solutions within 5% from optimum for 92 instances.

Table 9.1: Summary of results for PCTP. ’Best obj’ denotes the amount of instances where the algorithm
provided the best objective value (including draws). ’Best UB’ denotes the amount of instances where
the algorithm found the best upper bound (including draws). Columns ’Gap ≤ q shows the amount of
instances for which the respective algorithm provided a gap ≤ q. ’Avg. Gap to best UB’ is found for each
algorithm by finding the best available UB for each instance, calculating the gap to the solution provided,
and averaging these gaps.

Best obj Best UB Gap = 0% Gap ≤ 2% Gap ≤ 5% Avg. Gap to best UB

ALNS 46 - - - - 2.31%
Gurobi 21 19 17 23 35 9.37%
B&P 54 94 16 54 92 2.32%

Chapter 9. A Branch & Price Algorithm for the Generalized Meeting Planning Problem 186

9.5.2 Supervisor Consultation Timetabling Problem

Also for the SCTP the B&P algorithm performs better than Gurobi, providing the best solution
in 68 cases. Also in terms of bounds, the B&P algorithm outperforms Gurobi as it finds the best
bound in 95 cases. On average, the B&P algorithm is 1.15% within optimum when comparing with
the best found bounds which is slightly better than the ALNS algorithm. This is also significantly
lower than the 7.13% obtained by Gurobi.

Table 9.2: Summary of results for SCTP. Columns are equivalent to those in Table 9.1.

Best obj Best UB Gap = 0% Gap ≤ 2% Gap ≤ 5% Avg. Gap to best UB

ALNS 37 - - - - 1.26%
Gurobi 16 14 10 22 42 7.13%
B&P 68 95 23 80 97 1.15%

9.6 Conclusion

In this paper we have presented a generalization of a whole family of planning problems, the
Generalized Meeting Planning problem. A Branch & Price algorithm has been presented which
were tested on two different versions of the Generalized Meeting Planning problem: The Parental
Consultation Timetabling Problem and the Supervisor Consultation Timetabling Problem. For
both problems the developed B&P algorithm is tested on 100 real-world data examples from Danish
high schools. The B&P algorithm on average obtains a gap of 2.32% for the Parental Consultation
Timetabling Problem and 1.15% for the Supervisor Consultation Timetabling Problem. These are
convincing results for effectiveness of the algorithm. We find it likely that there are many other
problems where the Generalized Meeting Planning problem is applicable, and the described B&P
approach therefore can be applied.

187
9.6.

C
on

clu
sion

Table 9.1: Computational results for 100 datasets for the PCTP problem. Column ’ALNS’ denotes the solution obtained by a problem-specific Adaptive Large
Neighborhood Search heuristic. For Gurobi the obtained lower- and upper bound (columns ’Obj’ and ’UB’ respectively) is shown, as well as the final gap. The
amount of required seconds is also shown. For the B&P algorithm, the final number of explored nodes in the B&P tree is shown, as well as the obtained bounds,
the final gap, and total run time. Note that a node is only counted as being explored after a branching has been performed, i.e. if the optimal solution is found
in the root node the number of explored nodes is 0. The best found solution is marked in bold, and the best found bound is marked with a ’*’.

Gurobi 5.0.1 B&P

Dataset |G| |B| |E| ALNS Obj UB Gap Time Nodes Obj UB Gap Time

Alleroed 51 12 38 484.8 485.0 *485.0 0.0 3 67 485.0 *485.0 0.0 167
Alssund 84 18 55 849.4 850.6 *850.6 0.0 503 112 850.4 850.8 0.1 >3600
Aurehoej1 537 18 189 3655.9 3429.4 3773.0 10.0 >3600 148 3660.7 *3763.0 2.8 >3600
Aurehoej2 409 18 170 3219.5 2976.6 3297.1 10.8 >3600 154 3219.3 *3272.0 1.6 >3600
Broenderslev 241 24 111 1905.6 1650.4 1965.2 19.1 >3600 88 1910.9 *1936.0 1.3 >3600
CPHWEST 133 39 59 1044.5 1001.8 1124.0 12.2 >3600 32 1041.4 *1067.8 2.5 >3600
DetKristne 247 32 83 1830.9 1455.6 1973.1 35.6 >3600 40 1829.5 *1900.2 3.9 >3600
Dronninglund1 108 30 36 782.0 744.0 801.5 7.7 >3600 210 783.9 *798.0 1.8 >3600
Dronninglund2 94 30 34 664.5 641.4 672.5 4.9 >3600 810 658.2 *671.8 2.1 >3600
Egaa 265 24 109 2318.5 2132.1 2374.0 11.4 >3600 140 2317.7 *2365.0 2.0 >3600
Egedal 408 27 186 3558.2 3091.5 3625.2 17.3 >3600 16 3568.3 *3608.4 1.1 >3600
Esbjerg1 345 24 124 2402.1 2333.5 2466.1 5.7 >3600 228 2403.5 *2440.3 1.5 >3600
Esbjerg2 307 24 160 2314.3 2119.4 2440.3 15.1 >3600 92 2315.6 *2365.7 2.2 >3600
Esbjerg3 255 24 94 1839.5 1801.8 1885.6 4.7 >3600 32 1837.8 *1860.1 1.2 >3600
Esbjerg4 351 24 126 2612.3 2451.6 2706.2 10.4 >3600 228 2616.7 *2657.2 1.5 >3600
Frederikssund 49 24 26 403.8 404.2 406.6 0.6 >3600 161 404.2 *404.2 0.0 1513
Frederiksvaerk 74 8 54 697.9 699.0 *699.0 0.0 22 168 699.0 *699.0 0.0 186
Gefion 479 18 220 3958.1 3309.4 4248.8 28.4 >3600 68 3920.6 *4175.6 6.5 >3600
Gladsaxe 901 40 302 6950.7 5443.7 7163.9 31.6 >3600 0 6944.2 *7142.7 2.9 >3600
Greve 336 18 152 2482.6 2192.9 2535.9 15.6 >3600 78 2474.3 *2532.6 2.4 >3600
Haslev1 123 18 65 1060.2 1058.0 1072.6 1.4 >3600 115 1061.3 *1061.3 0.0 475
Haslev2 122 18 67 988.7 977.2 1020.9 4.5 >3600 1512 989.8 *1004.4 1.5 >3600
Herlufsholm1 143 24 43 894.5 842.2 919.1 9.1 >3600 533 895.1 *905.1 1.1 >3600
Herlufsholm2 88 24 31 621.8 594.8 664.4 11.7 >3600 720 623.6 *633.1 1.5 >3600
Herning1 118 27 64 0.0 0.0 *0.0 0.0 0 0 0.0 *0.0 0.0 120
Herning2 75 27 34 0.0 0.0 *0.0 0.0 0 0 0.0 *0.0 0.0 120
Herning3 140 27 69 2.0 2.0 *2.0 0.0 0 0 2.0 *2.0 0.0 120
Himmelev 453 34 177 3471.7 3093.4 3735.0 20.7 >3600 10 3483.9 *3586.7 2.9 >3600
Hjoerring 179 30 132 1009.2 790.1 1231.4 55.9 >3600 0 999.2 *1178.3 17.9 >3600
HorsensGym 123 18 75 1129.4 1132.4 *1132.5 0.0 2544 467 1129.3 1133.8 0.4 >3600
HorsensStats 143 21 98 1253.8 1217.8 1286.3 5.6 >3600 802 1254.2 *1268.1 1.1 >3600
Ikast-Brande 52 30 24 449.7 448.5 458.6 2.3 >3600 169 449.7 *452.7 0.7 >3600
Johannesskolen1 165 24 58 1188.3 1136.3 1293.1 13.8 >3600 496 1187.1 *1212.3 2.1 >3600
Johannesskolen2 97 24 39 743.9 704.1 786.4 11.7 >3600 788 748.0 *761.7 1.8 >3600
Johannesskolen3 135 28 56 519.9 500.3 588.4 17.6 >3600 508 522.0 *548.2 5.0 >3600
Kalundborg 299 27 164 2458.3 2212.2 2592.0 17.2 >3600 66 2457.0 *2517.8 2.5 >3600
Kolding 80 18 43 721.0 721.4 723.2 0.2 >3600 998 721.1 *721.8 0.1 >3600
Langkær1 52 18 35 470.6 471.1 *471.1 0.0 309 269 471.1 *471.1 0.0 750
Langkær2 90 18 50 805.9 788.6 814.1 3.2 >3600 945 806.0 *810.0 0.5 >3600
Middelfart 223 27 109 1788.1 1653.9 1916.6 15.9 >3600 98 1784.6 *1821.5 2.1 >3600
Morsoe1 105 27 37 804.2 755.1 834.1 10.5 >3600 352 802.3 *824.2 2.7 >3600

Continued on next page

C
h

ap
ter

9.
A

B
ra

n
ch

&
P

rice
A

lgorith
m

for
th

e
G

en
eralized

M
eetin

g
P

lan
n

in
g

P
rob

lem
188

Table 9.1 – Continued from previous page
Gurobi 5.0.1 B&P

Dataset |G| |B| |E| ALNS Obj UB Gap Time Nodes Obj UB Gap Time

Morsoe2 113 27 35 778.4 715.1 815.0 14.0 >3600 300 773.0 *806.5 4.3 >3600
Munkensdam1 256 21 127 2198.6 1851.6 2252.1 21.6 >3600 74 2210.4 *2234.8 1.1 >3600
Munkensdam2 345 21 157 2846.8 2464.9 2930.1 18.9 >3600 42 2831.1 *2905.2 2.6 >3600
NielsSteensens1 117 36 35 757.2 704.3 781.8 11.0 >3600 38 757.4 *776.9 2.6 >3600
NielsSteensens2 328 30 63 1656.6 1414.6 1763.7 24.7 >3600 52 1655.3 *1728.0 4.4 >3600
NielsSteensens3 365 30 64 1800.3 1587.7 1895.6 19.4 >3600 50 1800.7 *1859.4 3.3 >3600
NielsSteensens4 234 30 52 1144.4 1086.9 1229.4 13.1 >3600 4 1146.3 *1191.0 3.9 >3600
NielsSteensens5 263 30 57 1557.1 1451.1 1632.9 12.5 >3600 110 1560.5 *1606.9 3.0 >3600
Noerre 422 18 209 3944.5 3469.9 4033.6 16.3 >3600 100 3952.3 *4011.7 1.5 >3600
Nordfyns 192 23 102 1795.5 1782.3 1858.8 4.3 >3600 412 1793.4 *1836.9 2.4 >3600
Nordsjaellands1 1187 34 232 6597.3 5867.3 7020.9 19.7 >3600 6 6565.1 *6971.6 6.2 >3600
Nordsjaellands2 1038 34 203 2453.2 2300.1 2624.8 14.1 >3600 50 2460.0 *2582.7 5.0 >3600
Nordsjaellands3 457 34 106 2634.7 2092.3 2858.0 36.6 >3600 8 2633.4 *2759.4 4.8 >3600
Nordsjaellands4 163 34 50 1172.4 1117.5 1209.8 8.3 >3600 92 1173.0 *1206.1 2.8 >3600
Nordsjaellands5 712 40 164 4460.5 3808.0 4801.9 26.1 >3600 4 4467.5 *4692.6 5.0 >3600
Nordsjaellands6 780 34 170 4612.2 4025.4 4897.2 21.7 >3600 16 4599.6 *4829.8 5.0 >3600
Nordsjaellands7 880 34 190 2894.5 2527.6 3048.3 20.6 >3600 22 2884.9 *3010.3 4.3 >3600
Nordsjaellands8 23 34 21 241.9 242.1 *242.1 0.0 6 21 242.1 *242.1 0.0 261
Nordsjaellands9 949 34 196 5037.1 4479.7 5518.7 23.2 >3600 12 5056.7 *5426.4 7.3 >3600
Nordsjaellands10 31 34 23 269.1 270.4 276.1 2.1 >3600 58 272.2 *272.2 0.0 479
Nyborg 119 24 58 55.4 55.4 *55.4 0.0 0 0 55.4 *55.4 0.0 120
Nykoebing 182 24 118 1483.1 1471.3 1495.2 1.6 >3600 661 1484.0 *1489.3 0.4 >3600
NZahles1 324 25 109 2365.7 1936.3 2456.2 26.9 >3600 44 2356.3 *2447.8 3.9 >3600
NZahles2 301 24 107 2217.8 2000.0 2280.1 14.0 >3600 68 2211.6 *2275.6 2.9 >3600
Odder 95 18 37 762.7 751.8 773.2 2.8 >3600 832 761.8 *772.6 1.4 >3600
Odsherreds 193 21 96 1595.4 1548.3 1619.7 4.6 >3600 24 1597.5 *1610.0 0.8 >3600
Risskov1 65 15 35 536.7 539.7 *539.7 0.0 577 212 539.7 *539.7 0.0 387
Risskov2 149 15 69 1256.9 1264.6 1272.0 0.6 >3600 1624 1248.6 *1270.2 1.7 >3600
Risskov3 181 15 78 1389.7 1402.7 *1406.5 0.3 >3600 1920 1391.1 1407.3 1.2 >3600
Roedkilde 266 18 103 2325.2 2218.2 2352.9 6.1 >3600 32 2321.1 *2352.7 1.4 >3600
Roedovre 779 51 291 1661.7 1482.8 2008.2 35.4 >3600 14 1683.7 *1812.1 7.6 >3600
Rosborg1 218 24 85 1827.9 1752.1 1876.2 7.1 >3600 522 1798.5 *1866.6 3.8 >3600
Rosborg2 268 28 95 2223.3 1972.9 2297.3 16.4 >3600 154 2229.4 *2273.5 2.0 >3600
Rosborg3 487 28 307 4750.0 4602.1 4938.2 7.3 >3600 124 4752.9 *4824.9 1.5 >3600
Rosborg4 235 26 94 1960.4 1643.4 2033.0 23.7 >3600 184 1967.7 *2015.7 2.4 >3600
Roskilde 263 48 113 2112.8 1663.0 2252.6 35.5 >3600 0 2107.7 *2171.1 3.0 >3600
Rybners 267 24 126 2402.5 1952.4 2473.4 26.7 >3600 34 2395.1 *2446.5 2.1 >3600
SanktAnnae 320 21 124 2381.6 2114.8 2499.1 18.2 >3600 48 2375.6 *2458.5 3.5 >3600
Skive 220 36 78 1850.3 1604.5 1903.2 18.6 >3600 34 1849.0 *1877.5 1.5 >3600
Slagelse 85 30 50 802.6 805.3 *805.3 0.0 337 164 802.3 805.4 0.4 >3600
Solroed1 341 16 148 2436.8 2397.5 2468.9 3.0 >3600 378 2426.7 *2468.3 1.7 >3600
Solroed2 415 16 182 3263.0 3140.2 3318.4 5.7 >3600 238 3256.1 *3315.8 1.8 >3600
Soroe1 369 24 145 2947.3 2648.0 3106.8 17.3 >3600 58 2957.9 *3042.5 2.9 >3600
Soroe2 335 33 139 2255.0 1615.9 2641.1 63.5 >3600 10 2247.6 *2441.3 8.6 >3600
Stenhus 221 18 121 0.0 0.0 *0.0 0.0 0 0 0.0 *0.0 0.0 120
Stoevring 62 24 31 520.5 521.4 *521.4 0.0 21 76 521.4 *521.4 0.0 335
Struer1 237 30 127 1656.9 1610.0 1794.2 11.4 >3600 160 1656.4 *1697.2 2.5 >3600
Struer2 333 30 138 2534.0 2094.3 2793.9 33.4 >3600 104 2532.5 *2637.4 4.1 >3600

Continued on next page

189
9.6.

C
on

clu
sion

Table 9.1 – Continued from previous page
Gurobi 5.0.1 B&P

Dataset |G| |B| |E| ALNS Obj UB Gap Time Nodes Obj UB Gap Time

Svendborg1 96 18 79 991.1 991.4 *991.4 0.0 35 1619 991.4 *991.4 0.0 >3600
Svendborg2 134 18 82 1288.0 1289.1 *1289.2 0.0 142 764 1288.2 1289.4 0.1 >3600
Taarnby 791 36 244 5609.2 4587.1 *5918.9 29.0 >3600 0 5622.2 5927.8 5.4 >3600

UCH 104 32 110 922.6 922.6 †*922.6 0.0 4 0 922.6 *922.6 0.0 143
ViborgGym1 206 30 88 1434.0 1348.6 1482.5 9.9 >3600 122 1437.9 *1467.2 2.0 >3600
ViborgGym2 149 30 62 1133.4 1101.2 1146.9 4.2 >3600 384 1134.4 *1138.1 0.3 >3600
ViborgGym3 294 30 143 2211.7 2081.2 2275.6 9.3 >3600 118 2210.0 *2236.0 1.2 >3600
ViborgHandel 324 30 95 2526.7 2160.1 2615.9 21.1 >3600 58 2537.4 *2614.2 3.0 >3600
ViborgKatedral 337 40 101 2313.4 1755.6 2516.6 43.4 >3600 8 2304.7 *2465.0 7.0 >3600
Vordingborg1 315 16 132 2304.3 2201.4 2353.5 6.9 >3600 38 2304.2 *2349.2 2.0 >3600
Vordingborg2 239 16 115 1924.6 1893.2 1949.4 3.0 >3600 436 1926.9 *1949.0 1.1 >3600

† A wrong upper bound was reported in Kristiansen et al. (2013).

C
h

ap
ter

9.
A

B
ra

n
ch

&
P

rice
A

lgorith
m

for
th

e
G

en
eralized

M
eetin

g
P

lan
n

in
g

P
rob

lem
190

Table 9.2: Computational results for 100 datasets for the SCTP. Columns have same meaning as in Table 9.1.

Gurobi 5.0.1 B&P

Dataset |G| |B| |E| ALNS Obj UB Gap Time Nodes Obj UB Gap Time

Aabenraa 226 60 279 2387.5 2111.1 †2490.8 18.0 >3600 0 2384.9 *2465.1 3.4 >3600
Broendby1 69 21 87 683.2 672.1 704.9 4.9 >3600 825 682.2 *689.7 1.1 >3600
Broendby2 69 14 85 768.6 770.9 779.4 1.1 >3600 2401 772.0 *772.4 0.0 >3600
Broendby3 62 24 80 614.8 603.9 633.7 4.9 >3600 669 617.7 *620.7 0.5 >3600

Broenderslev1 115 69 148 1302.4 1276.0 †*1341.7 5.2 >3600 0 1300.7 1347.2 3.6 >3600

Broenderslev2 115 102 148 1236.0 1142.4 †*1271.8 11.3 >3600 0 1234.9 1443.5 16.9 >3600

Christianshavns 210 43 254 2223.7 1723.3 †2386.1 38.5 >3600 44 2217.2 *2264.6 2.1 >3600

Dronninglund1 134 100 166 1453.5 1382.4 †*1480.7 7.1 >3600 0 1454.7 1668.1 14.7 >3600

Dronninglund2 134 60 165 1537.5 1530.2 †*1561.7 2.1 >3600 0 1539.8 1568.8 1.9 >3600
Egaa 214 29 259 2376.2 2228.1 2458.3 10.3 >3600 88 2380.4 *2408.5 1.2 >3600
Falkoner1 64 30 83 668.0 671.6 677.3 0.9 >3600 36 671.6 *671.6 0.0 216

Falkoner2 206 37 255 2266.1 2056.3 †2345.0 14.0 >3600 46 2265.2 *2297.4 1.4 >3600
Falkoner3 64 30 83 664.9 664.9 670.4 0.8 >3600 178 664.9 *664.9 0.0 554
Grenaa1 122 28 154 1325.4 1291.8 1379.6 6.8 >3600 164 1328.5 *1348.1 1.5 >3600
Grenaa2 122 24 154 1290.3 1264.9 1329.6 5.1 >3600 361 1295.9 *1306.7 0.8 >3600
Greve1 157 28 205 1693.3 1620.6 1761.3 8.7 >3600 428 1695.9 *1710.0 0.8 >3600

Greve2 259 62 322 2913.5 2627.9 †3035.3 15.5 >3600 0 2915.1 *3025.2 3.8 >3600
Greve3 51 20 67 566.3 566.4 570.7 0.8 >3600 8 566.4 *566.4 0.0 138

Gribskov1 182 74 226 1787.6 1269.7 †1912.1 50.6 >3600 0 1788.9 *1849.1 3.4 >3600
Herlev1 71 24 96 730.2 728.3 750.7 3.1 >3600 980 730.7 *734.0 0.4 >3600
Herlev2 78 29 106 750.2 729.5 792.7 8.7 >3600 442 750.7 *764.8 1.9 >3600
Hoeng1 66 21 85 621.5 605.6 688.0 13.6 >3600 4 621.8 *621.8 0.0 139
Hoeng2 98 23 123 1038.5 1036.0 1070.2 3.3 >3600 84 1041.4 *1041.4 0.0 298
Hoeng3 45 22 62 408.3 387.0 479.9 24.0 >3600 20 409.8 *409.8 0.0 167
Hoeng4 56 23 78 589.2 590.0 612.4 3.8 >3600 368 591.9 *591.9 0.0 721
Koebenhavns1 143 16 180 1242.0 1246.7 1273.4 2.1 >3600 1406 1243.5 *1256.4 1.0 >3600
Koebenhavns2 100 16 127 785.6 786.4 *786.5 0.0 197 2852 784.9 786.9 0.2 >3600
Koebenhavns3 100 16 127 725.8 725.8 *725.8 0.0 23 2672 725.8 *725.8 0.0 2991
Koebenhavns4 146 25 184 1424.6 1406.0 1486.1 5.7 >3600 842 1424.7 *1432.5 0.5 >3600
Koege1 255 30 285 2333.2 1039.0 2474.3 138.1 >3600 416 2357.1 *2388.2 1.3 >3600

Koege2 261 36 303 2045.7 1790.3 †2278.1 27.2 >3600 304 2056.8 *2075.2 0.9 >3600

Koege3 258 74 288 2622.9 2381.7 †2890.0 21.3 >3600 0 2621.3 *2809.1 7.2 >3600
Kolding1 219 24 263 2348.7 2287.1 2422.6 5.9 >3600 666 2354.3 *2364.0 0.4 >3600

Kolding2 174 45 220 1908.8 1727.2 †2003.2 16.0 >3600 28 1910.9 *1936.4 1.3 >3600

Langkaer1 215 62 255 2239.4 1661.7 †2465.4 48.4 >3600 0 2230.2 *2307.5 3.5 >3600

Langkaer2 216 60 256 2240.1 1746.1 †2477.1 41.9 >3600 0 2239.6 *2303.6 2.9 >3600

Langkaer3 216 60 256 2258.3 1950.4 †2470.4 26.7 >3600 0 2267.4 *2303.7 1.6 >3600
Langkaer4 57 30 72 566.2 562.5 594.5 5.7 >3600 398 573.4 *573.4 0.0 1128

Langkaer5 217 56 256 2253.3 1982.9 †2494.2 25.8 >3600 6 2252.3 *2299.1 2.1 >3600

Langkaer6 56 62 71 629.2 623.3 †652.0 4.6 >3600 128 629.1 *632.1 0.5 >3600
Mariagerfjord1 123 29 154 1318.6 1216.6 1385.9 13.9 >3600 266 1315.9 *1331.2 1.2 >3600
Mariagerfjord2 123 29 154 1345.3 1282.9 1401.3 9.2 >3600 172 1347.6 *1362.7 1.1 >3600
Marselisborg1 102 22 132 1045.4 1019.3 1090.3 7.0 >3600 1130 1044.5 *1053.4 0.8 >3600
Marselisborg2 106 17 138 1035.4 1035.4 1047.3 1.2 >3600 694 1037.1 *1037.1 0.0 995

Continued on next page

191
9.6.

C
on

clu
sion

Table 9.2 – Continued from previous page
Gurobi 5.0.1 B&P

Dataset |G| |B| |E| ALNS Obj UB Gap Time Nodes Obj UB Gap Time

Marselisborg3 105 22 132 1098.3 1076.3 1155.4 7.4 >3600 126 1106.0 *1106.0 0.0 524
Marselisborg4 96 17 126 947.2 948.0 952.9 0.5 >3600 327 947.7 *951.2 0.4 >3600

Munkensdam 191 43 225 2067.9 1741.7 †2201.2 26.4 >3600 14 2075.6 *2111.2 1.7 >3600
Noerresundby 303 31 367 3291.7 3131.4 3460.7 10.5 >3600 132 3304.5 *3320.1 0.5 >3600
Nordfyns1 173 22 207 1926.6 1884.0 1972.4 4.7 >3600 398 1930.3 *1940.3 0.5 >3600
Nordfyns2 173 21 206 1929.9 1905.6 1975.0 3.6 >3600 488 1929.4 *1945.9 0.9 >3600
Nordfyns3 173 22 207 1908.1 1870.5 1972.9 5.5 >3600 464 1911.8 *1924.5 0.7 >3600
Nordfyns4 173 21 215 1478.3 1452.7 1536.9 5.8 >3600 486 1478.6 *1499.8 1.4 >3600
NZahles1 69 13 90 619.1 615.6 634.8 3.1 >3600 4625 620.1 *620.5 0.1 >3600
NZahles2 62 13 78 509.5 511.7 522.4 2.1 >3600 5453 513.0 *513.1 0.0 >3600

Odsherreds 119 49 150 1289.4 1211.3 †1367.2 12.9 >3600 24 1291.0 *1305.7 1.1 >3600
Oeregaard1 219 20 258 2258.1 2257.3 2295.7 1.7 >3600 492 2259.3 *2289.9 1.4 >3600
Oeregaard2 213 20 256 1743.9 1749.4 1810.2 3.5 >3600 362 1774.0 *1798.0 1.4 >3600
Oeregaard3 219 20 258 2340.2 2311.5 2372.4 2.6 >3600 338 2343.2 *2361.5 0.8 >3600
Oeregaard4 219 20 258 2339.9 2325.0 2371.7 2.0 >3600 378 2334.1 *2363.1 1.2 >3600

Risskov 215 36 250 2353.2 2165.8 †2426.8 12.1 >3600 26 2352.6 *2389.7 1.6 >3600
Roedkilde 230 18 282 2495.7 2473.3 2534.6 2.5 >3600 790 2495.7 *2523.0 1.1 >3600
Rosborg1 257 22 310 2837.4 2787.5 2895.3 3.9 >3600 182 2839.7 *2893.3 1.9 >3600
Rosborg2 257 22 311 2805.4 2640.8 2859.4 8.3 >3600 182 2805.5 *2838.8 1.2 >3600
SanktAnnae1 149 23 191 1580.4 1539.7 1671.3 8.6 >3600 462 1584.5 *1599.6 1.0 >3600
SanktAnnae2 165 24 209 1753.4 1689.4 1844.9 9.2 >3600 250 1754.5 *1773.3 1.1 >3600
SanktAnnae3 21 17 29 197.9 197.9 *197.9 0.0 7 45 197.9 *197.9 0.0 142
SanktAnnae4 162 31 201 1598.9 1415.3 1718.0 21.4 >3600 108 1593.4 *1634.7 2.6 >3600

Skanderborg1 232 57 291 2547.4 2131.4 †2640.6 23.9 >3600 0 2545.4 *2588.6 1.7 >3600

Skanderborg2 229 60 276 2320.4 2000.8 †2414.4 20.7 >3600 0 2324.7 *2374.6 2.2 >3600
Skive1 140 16 182 1430.9 1420.9 1459.2 2.7 >3600 1088 1436.1 *1444.9 0.6 >3600
Skive2 103 31 143 995.5 856.3 1061.3 24.0 >3600 126 996.5 *1025.7 2.9 >3600
Skive3 140 31 182 1372.7 1307.0 1451.9 11.1 >3600 144 1373.1 *1401.6 2.1 >3600
Skive4 21 16 31 227.6 227.8 *227.8 0.0 12 24 227.8 *227.8 0.0 141
Skive5 98 16 131 960.7 963.6 971.7 0.8 >3600 234 959.1 *965.4 0.7 >3600
Skive6 110 16 145 1119.3 1111.6 1143.1 2.8 >3600 298 1115.3 *1131.1 1.4 >3600
Skive7 134 31 179 1284.6 1169.3 1365.8 16.8 >3600 114 1289.7 *1310.0 1.6 >3600
Skive8 107 16 143 1007.1 1005.7 1016.5 1.1 >3600 2423 1006.9 *1008.9 0.2 >3600
Skive9 100 31 133 983.0 959.0 1034.9 7.9 >3600 358 979.1 *1000.7 2.2 >3600
Soenderborg1 234 22 298 2475.3 2262.0 2590.4 14.5 >3600 104 2456.3 *2515.5 2.4 >3600
Soenderborg2 236 22 305 2577.9 2297.0 2701.0 17.6 >3600 118 2569.9 *2617.3 1.8 >3600
Soenderborg3 236 21 305 2597.3 2288.3 2686.6 17.4 >3600 222 2601.5 *2619.2 0.7 >3600
Soenderborg4 235 22 304 2554.2 2341.7 2679.2 14.4 >3600 102 2563.3 *2597.2 1.3 >3600
Solroed1 242 18 295 2130.3 1983.7 2180.6 9.9 >3600 646 2132.7 *2164.6 1.5 >3600
Solroed2 22 20 34 228.6 228.6 *228.6 0.0 0 0 228.6 *228.6 0.0 120
Solroed3 22 17 34 223.3 223.3 *223.3 0.0 0 0 223.3 *223.3 0.0 120

Solroed4 243 54 296 2354.2 736.6 †2565.5 248.3 >3600 2 2358.2 *2401.2 1.8 >3600
Solroed5 243 20 297 2054.9 1843.1 2187.6 18.7 >3600 578 2052.8 *2096.6 2.1 >3600
Solroed6 215 17 266 1775.5 1694.5 1833.5 8.2 >3600 846 1774.5 *1802.7 1.6 >3600
Solroed7 194 17 242 1679.2 1534.9 1744.7 13.7 >3600 1120 1676.5 *1703.5 1.6 >3600
Vejen1 41 10 58 424.2 424.2 *424.2 0.0 1 105 424.2 *424.2 0.0 137
Vejen2 126 19 159 1198.5 1184.2 1225.0 3.5 >3600 1182 1197.1 *1224.6 2.3 >3600

Continued on next page

C
h

ap
ter

9.
A

B
ra

n
ch

&
P

rice
A

lgorith
m

for
th

e
G

en
eralized

M
eetin

g
P

lan
n

in
g

P
rob

lem
192

Table 9.2 – Continued from previous page
Gurobi 5.0.1 B&P

Dataset |G| |B| |E| ALNS Obj UB Gap Time Nodes Obj UB Gap Time

Vejen3 125 19 155 1204.6 1186.9 1234.8 4.0 >3600 1110 1207.4 *1214.3 0.6 >3600
Vejen4 125 19 155 1172.5 1145.2 1206.0 5.3 >3600 285 1182.5 *1182.5 0.0 852
Viborg1 105 19 133 1034.2 1011.4 1099.6 8.7 >3600 403 1034.9 *1034.9 0.0 1518

Viborg2 187 49 230 2060.0 1778.8 †2152.4 21.0 >3600 4 2057.8 *2108.2 2.4 >3600

Viby1 124 20 158 1256.9 1255.0 †1279.1 1.9 >3600 582 1260.5 *1266.3 0.5 >3600
Viby2 93 13 111 957.5 957.5 *957.5 0.0 2 0 957.5 *957.5 0.0 122
Viby3 45 8 62 480.0 480.0 *480.0 0.0 1 14 480.0 *480.0 0.0 131

Viby4 93 16 111 1053.3 1053.5 †*1053.5 0.0 3 2 1053.5 *1053.5 0.0 125

Viby5 123 21 156 1356.1 1355.6 †1374.3 1.4 >3600 554 1356.7 *1364.6 0.6 >3600

† A wrong upper bound was reported in Kristiansen et al. (2013).

193 Bibliography

Bibliography

N.-C. F. Bagger. Generalized Meeting Planning using Mathematical Programming. Technical
report, DTU-Management, 2012.

L. Di Gaspero and A. Schaerf. Tabu search techniques for examination timetabling. In Practice
and Theory of Automated Timetabling III, pages 104–117. Springer, 2001.

S. Kristiansen, M. Sørensen, M. B. Herold, and T. R. Stidsen. The consultation timetabling
problem at danish high schools. Journal of Heuristics, 19(3):465–495, 2013. doi: 10.1007/
s10732-013-9219-9. URL http://dx.doi.org/10.1007/s10732-013-9219-9.

R. Lewis. A survey of metaheuristic-based techniques for university timetabling problems. OR
spectrum, 30(1):167–190, 2008.

M. E. Lübbecke and J. Desrosiers. Selected topics in column generation. Operations Research, 53
(6):1007–1023, 2005. ISSN 0030364x, 15265463.

A. Mehrotra and M. A. Trick. A branch-and-price approach for graph multi-coloring. Extending
the Horizons: Advances in Computing, Optimization, and Decision Technologies, pages 15–29,
2007.

M. W. Padberg. Perfect zero–one matrices. Mathematical Programming, 6(2):180–196, 1974. ISSN
00255610, 14364646.

T. C. Pais and P. Amaral. Managing the tabu list length using a fuzzy inference system: an
application to exams timetabling. In The 7th International Conference for the Practice and
Theory of Automated Timetabling, pages 1–6, 2008.

K. Papoutsis, C. Valouxis, and E. Housos. A column generation approach for the timetabling
problem of greek high schools. The Journal of the Operational Research Society, 54(3):230–238,
2003.

R. Qu, E. Burke, B. McCollum, L. T. Merlot, and S. Y. Lee. A survey of search methodologies
and automated approaches for examination timetabling. Computer Science Technical Report
No. NOTTCS-TR-2006-4, UK, 2006.

A. Qualizza and P. Serafini. A column generation scheme for faculty timetabling. In E. Burke and
M. Trick, editors, Practice and Theory of Automated Timetabling V, volume 3616 of Lecture
Notes in Computer Science, pages 161–173. Springer Berlin Heidelberg, 2005. ISBN 978-3-540-
30705-1.

S. Røpke. An era in vehicle routing research is coming to an end: the full solomon test set is solved
to optimality, October 2012. Presentation in Recent Research Results in Operations Research
at Department of Manegement Science at the Technical University of Denmark.

S. Røpke. Private communication, April 2013.

D. Ryan and J. Falkner. On the integer properties of scheduling set partitioning models. European
Journal of Operational Research, pages 442–456, 1988.

D. Ryan and B. A. Foster. Integer programming approach to scheduling. Computer Scheduling
of Public Transport, Urban Passenger Vehicle and Crew Scheduling: Papers Based on Presen-
tations at the International Workshop., pages 269–280, 1981.

H. Santos, E. Uchoa, L. Ochi, and N. Maculan. Strong bounds with cut and column generation for
class-teacher timetabling. Annals of Operations Research, pages 1–14, 2010. ISSN 0254-5330.
10.1007/s10479-010-0709-y.

http://dx.doi.org/10.1007/s10732-013-9219-9

Bibliography 194

M. Savelsbergh. A branch-and-price algorithm for the generalized assignment problem. Operations
Research, 1997.

J. Thompson and K. A. Dowsland. General cooling schedules for a simulated annealing based
timetabling system. In Practice and Theory of Automated Timetabling, pages 345–363. Springer,
1996a.

J. M. Thompson and K. A. Dowsland. Variants of simulated annealing for the examination
timetabling problem. Annals of Operations research, 63(1):105–128, 1996b.

Part V

Conclusion

195

Chapter 10

Conclusion

This thesis has highlighted some of the educational planning problems the high schools in Denmark
are struggling with. Three different research subjects have been followed in this thesis; High School
Timetabling, Student Sectioning and Meeting Planning Problems.

This chapter highlights the main contribution of the thesis by summarizing the conclusions of
the works herein, followed by some general thoughts on the current trends and future research
subjects within educational planning problems.
As aforementioned, the contributions of this thesis are two-fold; scientific contribution and prac-
tical contribution.

10.1 Scientific Contribution

In the first part of this thesis a comprehensive survey on educational planning problems was
presented. The survey presents the four main planning problems and the research conducted on
these; University Course Timetabling, High School Timetabling, Examination Timetabling and
Student Sectioning. This is the first survey on Student Sectioning.

The remaining of the thesis has been partitioned into three research directions;

High School Timetabling: This thesis has contributed with two scientific papers concerned
High School Timetabling on the XHSTT format.

An efficient Adaptive Large Neighborhood Search (ALNS) has been applied and submitted
as a contribution to the Third International Timetabling Competition in 2011 (ITC2011). The
algorithm was among the finalists and finished third.

Furthermore, an exact solution method for the XHSTT has been developed. A Mixed Integer
Programming (MIP) model has been created and made it possible to establish non-trivial lower
bounds on several instances and prove optimality of a few.

Student Sectioning: Three research papers have been conducted on Student Sectioning prob-
lems. The papers are concentrated on two different problems at the high schools in Denmark;
Elective Course Student Sectioning (ECSS) and High School Student Sectioning (HSSS).

ECSS is the problem of assigning 2nd and 3rd year students to elective course classes, based on
their requests. Two solution methods have been applied. The first method is based on Dantzig-
Wolfe decomposition in a Branch-and-Bound framework. This method proves that a previously
applied method is insufficient and the model is lacking some restrictions. A more comprehensive
MIP model has then been created for the ECSS and solved using an ALNS algorithm. This model
includes fairness distribution of the students and it is possible to provide solutions with an average
gap of 1% from optimum.

The second Student Sectioning problem at the Danish high schools is the problem of assigning
first year students to, 1) cohorts, given their study line requests, and 2) elective course classes,

197

Chapter 10. Conclusion 198

given the requests for these. This problem has been modeled as a bipartite network model and
solved using a state-of-the-art MIP solver. A sequential solution approach produces solutions with
an average of 16.4% optimality gap. Furthermore, the sequential approach gives solutions in one
minute that are only 0.5% worse on average than the best solutions found within four hours.

Meeting Planning Problem: A new educational planning problem has been presented in
this thesis, the Meeting Planning Problem. The problem is of assigning interrelated meetings to
a timetable. There exist two different meeting planning problems at the Danish high schools;
the Parental Consultation Timetabling Problem (PCTP) and the Supervisor Consultation Time-
tabling Problem (SCTP). One MIP model containing both consultation types has been created
and solved using ALNS. It has been possible to provide solutions with an average of 2.31% from
optimum for PCTP and 1.26% for SCTP.

A more generalized model of the Meeting Planning Problem is introduced and a Branch-and-
Price algorithm has been created as the solution method and tested on the consultation cases.

Operational Research Techniques: Various operational research techniques have been used
during the process of this thesis. Firstly, conceptual and mathematical models have been created
for all the planning problems of this thesis. Secondly, different exact and heuristic solution methods
have been applied with success.

Adaptive Large Neighborhood Search (ALNS) has been applied in all three research directions
of this thesis. ALNS is a type of hyper-heuristic, where multiple insertion and removal heuristics
are applied. The method is widely used on transportation problems, and through this thesis it
is shown that it is an efficient method for solving educational planning problems. In those three
cases where ALNS has been used, the results have been competitive and provided solutions close
to optimum.

The exact solution methods applied throughout this thesis have been some simple methods,
such as direct or sequential methods using a state-of-the-art MIP solver, and some more advanced
approaches, such as decomposition and Branch-and-Price. Branch-and-Price has been applied for
two different cases in this thesis; one using Dantzig-Wolfe and one using column generation. In
both cases the methods have provided solutions close to optimum. A relatively new interesting
branching technique, Explicit Constraint Branching, has been applied to enhance the solution
process.

10.2 Practical Contribution

From a practical point, the Ph.D. project has resulted in the following contributions in chronolog-
ical order:

• Consultation Timetabling Problem: An Adaptive Large Neighborhood Search algo-
rithm has been implemented in Lectio and made it possible for the users to solve both the
Parental Consultation Timetabling Problem and the Supervisor Consultation Timetabling
Problem. The algorithm was released in May 2011.

• Elective Course Student Sectioning: An Adaptive Large Neighborhood Search algo-
rithm was also the solution method chosen for the Elective Course Student Sectioning prob-
lem. A complete rewrite of the problem and the user interface has made it easier for the
users to access the problem. The algorithm was released in January 2012

• High School Timetabling: The research on High School Timetabling has not resulted in
a practical implementation, but contributed in a more indirect manner. MaCom A/S has
used the partitioning of the Third International Timetabling Competition in 2011 and the
resulting third place to create some positive publicity. Using various media, MaCom A/S
has stated the solution methods in Lectio have been developed by the finalists of the “World

199 10.3. Discussion and Directions of Future Research

Cup of High School Timetabling” . This has, among other things, resulted in collaboration
with Aarhus University concerning their timetabling problems.

• High School Student Sectioning: The research on High School Student Sectioning has
not yet resulted in practical implementation. However, it is proved that the problem can be
modeled and solved using operational research techniques instead of manual work, and this
has increased the interest from both MaCom A/S and from the high schools.

Moreover, a generic Adaptive Large Neighborhood Search framework has been implemented in
Lectio. This makes it easier to implement new heuristics for future planning problems.

10.3 Discussion and Directions of Future Research

This thesis presents a number of different educational planning problems which can all be investi-
gated further. There are many interesting directions of future research for each individual research
subject, and on educational planning problems in general. A few of these are presented in this
section.

The amount of research papers on High School Timetabling has increased significantly the past
decade, which is partly due to the XHSTT format. Many of the articles are concerned with heuris-
tic solution methods to improve best known solutions. With the created MIP model of XHSTT,
we have opened the area for more research using exact methods and creating lower bounds for the
instances of XHSTT. Some of the instances are so large and complex that more research is needed
to make it possible to establish bounds, and hence be able to measure the quality of the solutions.

Two Student Sectioning problems were presented and solved in this thesis. Elective Course
Student Sectioning at the Danish high schools must be considered a closed research subject, as we
are able to create solutions with an average gap of 1% from the optimum. For the High School
Student Sectioning problem, we were only able to provide solutions with an average of 16.4%
optimality gap and more research is needed to minimize this.

The research on the Meeting Planning Problem has presented a new research subject of educa-
tional planning problems. The Consultation Timetabling must also be considered a closed research
chapter as the results are quite close to optimum. However, the General Meeting Planning Prob-
lem and the methods used, could be adapted to other similar meeting planning problems, such as
Examination Timetabling.

The severity of the problems are varying. All the considered problems of this thesis contains
some form of symmetry, which can cause problems with closing the optimality cap. However, for
some of the problems this gap has been relatively small, and hence a minor detail. The most diffi-
cult problem of this thesis to solve, is the High School Timetabling problem of the XHSTT-format.
In addition a large quantity of symmetry, the XHSTT contains some rather complex constraints,
which had made it very difficult to obtain useful results for some of the instances.

One of the current trends of solution methods for educational planning problems, and operational
research in general, is hyper-heuristics. A hyper-heuristic method has the advantage of combining
multiple heuristics and hence benefit from the different techniques. It is likely that hyper-heuristics
are going to be more prevalent in operational research. In this thesis ALNS has proved to be an
efficient solution method for timetabling problems. By applying multiple removal and insertion
heuristics, which is the essence of ALNS, to timetabling problems, it makes it possible to search
the entire solution space. For achieving the best results with an ALNS algorithm, it is necessary
to create several different removal and insertion heuristics. Furthermore, tuning the parameters
of ALNS is crucial, as these are used for selecting heuristics and for acceptance of the solutions.

Chapter 10. Conclusion 200

ALNS is a strong hyper-heuristic and is definitely a solution approach to consider when solving
all kinds of planning problems, not just timetabling and routing problems.

For future research, it could be interesting to incorporated some symmetry breaking methods
within an ALNS framework. Another possible future research matter could be to use more exact
methods in a hyper-heuristic framework, by further developing the concept of hyper-heuristics and
matheuristics.

Seen from a broader perspective, the most challenging task within Educational Timetabling
is still the issue of closing the gap between theory and practice. One of the reasons for this is
the lack of universal formats and broad benchmark data. High School Timetabling will benefited
hugely from the introduction of the XHSTT format, which contains good varied benchmark data
instances from all over the world. The task of creating a universal format for a given planning
problem is a very complex and time-consuming task. However, this is essential if the goal is to
minimize the gap between theory and practice. Other educational planning problems such as
Universal Course Timetabling and Examination Timetabling do have benchmark data. However,
these are often only concentrated on a few universities. Student Sectioning does not have any
benchmark data at all.

10.4 Final Remarks

The work of this thesis highlights some of the educational planning problems, and the relevance
and importance of developing optimization methods in a decision support framework.

This thesis has investigated high school planning problems and methods for solving these in
terms of an operational research professional. The field of educational timetabling is an interesting
field within operational research, and there is still plenty of research to be done and insights to
gain on the subject, especially, on the task of closing the famous gap between theory and practice.

	Abstract
	Resumé
	Preface
	Acknowledgements
	List of Papers
	I Introduction
	Introduction and Thesis Motivation
	Motivation - the Danish High Schools
	Operations Research
	Contributions
	Thesis outline

	A Comprehensive Study of Educational Timetabling
	Introduction
	Planning Problems and the Components
	University Course Timetabling
	High School Timetabling
	Examination Timetabling
	Student Sectioning
	Conclusion
	Summary Tables

	II High School Timetabling using the XHSTT format
	International Timetabling Competition 2011
	Introduction
	Adaptive Large Neighborhood Search
	Algorithm Setup for ITC2011
	Final Remarks

	Integer Programming for the Generalized (High) School Timetabling Problem
	Introduction
	Related Literature
	Problem Description and a Mixed Integer Programming Formulation
	Computational Results
	Conclusion

	III Student Sectioning Problems at Danish High Schools
	Elective Course Planning
	Introduction
	Problem Description
	Modeling of Elective Course Planning
	Solution algorithms
	Results
	Conclusion

	Elective Course Student Sectioning at Danish High Schools
	Introduction
	Problem Description
	Related Literatures
	Integer Programming Model
	Solution Methods
	Defining Weights
	Parameter Tuning
	Performance
	Final Remarks and Outlook

	High School Student Sectioning at Danish High Schools
	Introduction
	High School Student Sectioning
	Integer Programming Model
	Solution Methods
	Experiments and Results
	Conclusion
	Acknowledgments

	IV Meeting Planning Problems
	The Consultation Timetabling Problem at Danish High Schools
	Introduction
	Consultation Timetabling Problem
	Integer Programming Model
	Adaptive Large Neighborhood Search
	Parameter Tuning
	Performance
	Final Remarks and Outlook

	A Branch & Price Algorithm for the Generalized Meeting Planning Problem
	Introduction
	Previous Approaches
	A Mixed-Integer Programming model of the Generalized Meeting Planning problem
	Test Applications
	Computational Results
	Conclusion

	V Conclusion
	Conclusion
	Scientific Contribution
	Practical Contribution
	Discussion and Directions of Future Research
	Final Remarks

