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Abstract

In order to respond to alterations in its environment, a cell has to integrate multiple input-cues and 
modulate its signaling networks accordingly, in order to elicit a specific response such as proliferation 
or apoptosis. This process becomes significantly altered during cancer development, with genomic 
modifications giving rise to differential protein dynamics, ultimately resulting in disease. The exact 
molecular signaling networks underlying specific disease phenotypes remain elusive, as the definition 
thereof requires extensive analysis of not only the genomic and proteomic landscapes within a 
particular tumor, but also the phenotypic response to perturbations. Thus, there is a critical need for an 
integrative global approach, which assesses a biological system such as cancer from several molecular 
aspects in an un-biased fashion. This thesis summarizes the efforts that were undertaken as part of my 
PhD in an attempt to positively contribute to this fundamental challenge.

The thesis is divided into four parts. In Chapter I, we introduce the complexity of cancer, and describe 
some underlying causes and ways to study the disease from different molecular perspectives. There is 
a nearly infinite number of biological aspects that would need to be understood to enable 
comprehensive treatment regimens specific to each patient (i.e. personalized medicine). However, in 
the approaches outlined in this thesis, we chose metastasis as a key process for interrogating the 
clinical potential of targeting cancer networks using Network Biology. Technologies key to this, such 
as Mass Spectrometry (MS), Next-Generation Sequencing (NGS) and High-Content Screening (HCS) 
are briefly described. In Chapter II, we cover how signaling networks and mutational data can be 
modeled in order to gain a better understanding of molecular processes which are fundamental to 
tumorigenesis. In Article 1, we propose a novel framework for how cancer mutations can be studied 
by taking into account their effect at the protein network level. In Article 2, we demonstrate how 
global, quantitative data on phosphorylation dynamics can be generated using MS, and how this can 
be modeled using a computational framework for deciphering kinase-substrate dynamics. This 
framework is described in depth in Article 3, and covers the design of KinomeXplorer, which allows 
the prediction of kinases responsible for modulating observed phosphorylation dynamics in a given 
biological sample. In Chapter III, we move into Integrative Network Biology, where, by combining 
two fundamental technologies (MS & NGS), we can obtain more in-depth insights into the links 
between cellular phenotype and genotype. Article 4 describes the proof-of-principle concept of how 
one can look at DNA mutations and protein dynamics in an integrative fashion. This has, for example, 
allowed us to investigate how mutations at the DNA level are propagated at the proteome level. 
Article 5 demonstrates how by taking a global, multi-platform approach, combined with extensive 
computational analysis, it is possible to gain a better understanding of colorectal cancer metastasis, 
and obtain potential clinical benefits.
Chapter IV briefly summarizes the findings of the thesis and closes by proposing some future 
directions based on the work that was presented.

Overall, the thesis aims to demonstrate the value of deploying several experimental platforms, each 
studying a different biological aspect, combined with in-depth computational analysis, in order to 
shed light on the fundamental molecular processes which underlie a complex disease like cancer and 
provide possible avenues for therapeutic intervention.
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Dansk Resumé

For at kunne respondere til ændringer i miljøet, en celle skal integrere adskillige input-signaler og 
herefter modulere dens signalnetværk for at fremkalde et specifikt respons som for eksempel celle-
deling eller apoptose. Denne proces ændres signifikant under cancer udvikling, hvorved genetiske 
modifikationer giver anledning til forskelige protein dynamikker, hvilket ultimativt kan resultere i 
sygdom. De eksakte molekylære signalnetværker som ligger til grunde for specifikke sygdoms 
fænotyper er stadig uafklaret, idet definitionen deraf kræver ekstensiv analyse, ikke kun på gen- og 
protein niveau i en tumor, men også det fænotypiske respons til perturbationer. Der eksisterer derfor et 
kritisk behov for en integrativ global tilgang, som uvildigt vurderer et biologisk system fra flere 
molekylære aspekter.  Denne afhandling opsummerer den indsats, der blev iværksat som en del af min 
ph.d., i et forsøg på at bidrage positivt til denne grundlæggende udfordring.  

Afhandlingen er opdelt i 4 dele. I kapitel I, introducerer vi til kompleksiteten af cancer og beskriver 
nogle af de underlæggende årsager og metoder til at studere sygdomen fra forskellige molekylære 
perspektiver. På trods af det næsten uendelige antal af biologiske aspekter som skal beskrives for at 
opnå en succesfuld behandling, har vi valgt metastase som en nøgle proces til at studere dens kliniske 
potentiale ved at bruge ”Network Biology”. Teknologier som kan opfylde dette, for eksempel Masse 
Spektrometri (MS), Next-Generation Sequencing (NGS) og High-Content Screening (HCS), er 
beskrevet. I kapitel II, dækker vi hvordan signalnetværker og mutations data kan moduleres til at opnå 
en bedre forståelse for de molekylære processer, som er fundamentale i tumorudvikling. I artikel 1, 
beskrive vi en ny ramme for hvordan cancer mutationer kan studeres ved at tage deres effekt på 
protein netværks niveau i betragtning. I artikel 2, demonstrerer vi hvordan globale, kvantitative data 
på fosforylerings dynamikker kan genereres ved at buge MS, og hvordan dette kan blive moduleret 
ved at bruge informatik rammer til at bestemme kinasesubstrat dynamikker. Denne ramme er 
beskrevet dybdegående i artikel 3, og dækker design af KinomeXplorer, som muliggøre forudsigelsen 
af kinaser, der modulerer observeret fosforylerings dynamikker i en given biologisk prøve.
I kapitel III, bevæger vi os ind i integrativ Network Biology, hvor, ved at kombinerer to 
grundlæggende teknologier (MS & NGS), kan vi opnå mere dybdegående indsigt i etableringen af 
fænotype fra genotype. Artikel 4 beskriver beviset-af-princippet på hvordan man kan se på DNA 
mutationer og protein dynamikker i en integrativ facon. Dette har for eksempel gjort det muligt at 
undersøge hvordan mutationer på DNA niveauet føres videre på protein niveau. Artikel 5 demonstrer 
hvordan, ved at tage en global, multi-platform tilgang kombineret med ekstensiv informatik analyse, 
det er muligt at opnå en bedre forståelse af kolon-endetarms cancer metastase, og opnå potentielle 
kliniske fordele. Kapitel IV opsummerer resultaterne af denne afhandling og afsluttes ved at foreslå 
fremtidige retninger baseret på det præsenterede arbejde. 

Overordnet, denne afhandling har til formål at demonstrere værdien af at bruge flere eksperimentelle 
platforme, hvoraf hver studerer et forskelligt biologisk aspekt, kombineret med dybdegående 
informatikanalyse til at belyse de grundlæggende molekylærer processer, som ligger til grunde for en 
kompleks sygdom som cancer og levere muligheder for terapeutisk intervention. 
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1. Introduction

Ever since its conceptual discovery as early as 3000 BC in ancient Egypt1, cancer has been eluding major scientific 
breakthroughs in terms of finding a cure. Despite large-scale efforts such as the ‘War on Cancer’2 in the 20th 
century, and estimated yearly research budgets as high as 14 billion Euros worldwide3, the disease continues to have 
a devastating effect on people’s health, with often lethal consequences. In this chapter, a breviloquent overview of 
cancer will be provided, focusing mainly on conceptual challenges that have arisen over the years and scientific 
approaches that have been developed in an attempt to tackle some of the many aspects of the disease. The process of 
metastasis, the spreading of the primary tumor through the body and growth in secondary organs, will be discussed, 
as this is the cause of over 90% of all cancer-related deaths4. The biology of colorectal cancer (CRC), the second 
leading cause of death from cancer among adults will be briefly explored. Additionally, the significance of moving 
from a pathway-centric interpretation of cellular signaling towards a more global signaling network approach will be 
highlighted. Finally, novel frameworks providing a platform from which to study several biological aspects will be 
introduced, with a special focus on Network Medicine and technologies fundamental to this, such as Mass 
Spectrometry, Next-Generation Sequencing, siRNA-based High Content Screening and computational modeling to 
allow the integration of different types of data. Together, it is envisioned that these genome-scale technologies will 
enable novel modeling approaches such as biological forecasting, which can predict cellular behavior based on in 
vitro and in vivo experimental data.

1.1 Cancer - a conceptual overview

Recently, Neanderthal fossils containing signs of cancerous growths have been described, which have been dated to 
more than 120,000 years ago5, underlining how long the disease has had a detrimental effect on life. The exact 
definitions of cancer are continuously being updated as our knowledge of this disease increases. However, over the 
last few decades, major strides have been made to shed some light on the mechanisms underlying the complexity of 
the disease. Many of the significant accomplishments have given us a better understanding of what biological 
components make up a tumor, and the importance of each of these aspects in constituting potential biological 
processes suitable for therapeutic intervention.

Even though every cancer appears, at least at the genetic level, unique6,7, it was proposed by Hanahan and Weinberg 
in as early as 2000, and re-iterated in 20118,9 that there are fundamental underlying traits that separate cancer cells 
from their healthy counterparts. While an extensive discussion of these hallmarks exceeds the scope of this chapter, 
it is important to consider the molecular mechanisms underlying these phenotypes. In other words, what is it that 
allows cancer cells to elude normal cellular control mechanisms and eventually grow and spread uncontrollably? As 
depicted in Figure 1, Hanahan and Weinberg defined six properties a cell must acquire in order to become malignant. 
Of these, the ability of cancer cells to sustain chronic proliferation is one of the most fundamental traits, and by 
overcoming the dependence on specific growth-promoting signals, cancer cells “become masters of their own 
destinies”9. This property can be considered the start of a cascade of tumor pathogenesis, where the five other 
hallmark traits can be acquired throughout tumor evolution, to eventually result in final metastatic and invasive 
disease. As will be explored more in-depth in Section 1.3.1, it is important to note that these attributes need not all 
occur in the same cell, as tumors often consist of heterogeneous populations of different cell types10,11. Within a 
tumor, the accumulation of mutations can occur via separate evolutionary paths, giving rise to genetically distinct  
sub-populations. Within these sub-populations, different cell types operate in a concerted way, where the phenotypic 
alterations of each cell type due to genomic alterations confers the required properties for e.g. tumor growth, 
sustenance and metastasis.
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1.2 Effectors of Cancer
While extensive strides have been made in terms of 
defining biological characteristics that drive a tumor  
cell towards malignancy, there is still great debate 
about the precise underlying causes at each stage. 
As will be discussed throughout this thesis, several 
biological phenomena may be fundamental to all 
human diseases, ranging from mutations occurring 
in the genome of the diseased cells6,10,12, through 
epigenetic regulation of DNA transcription13,14, to 
dysregulated protein network dynamics15-23. Whilst 
each of these may contribute individually, it is 
likely that a combination of these aspects is what 
ultimately drives cancer and adds to the complexity 
of understanding a given disease phenotype. For 
example, it is known that more than 50% of human 

melanomas contain an activating mutation in the BRAF kinase gene, where the valine in amino acid position 600 is 
substituted with a glutamate (BRAF V600E), which, through structural effects, renders the kinase constitutively 
active24. This permanent kinase signaling results in a constitutive activation of the Raf to mitogen-activated protein 
(MAP) kinase pathway, significantly increasing the rate of mitogenesis of these cells25. While inhibition of this 
mutant-specific variant of BRAF often results in a temporary response to treatment in the clinic26, resistance 
ultimately develops as the signaling networks normally utilizing the BRAF kinase pathway are re-wired to 
circumvent the BRAF inhibition27,28. Currently, the use of additional inhibitors to subsequently target the re-wired 
cellular signaling networks is being investigated, with some initial success29. This is a prime example of how 
mutations at the genome level exert their effect at the protein signaling level, and underlines the importance of 
investigating both genomic and proteomic aspects of a cell when trying to gain a thorough understanding of a given 
disease phenotype. In addition, while proteins are the cell’s functional effectors and almost exclusively the targets of 
small-molecule inhibitors and antibodies, understanding the underlying genomes can help pin-point appropriate 
protein targets and aid in elucidating molecular mechanisms of a particular disease. Especially considering the fact 
that “no single gene defect ‘causes’ cancer”12, understanding how proteins interact with one another in a signaling 
network through proteomic analysis can help prioritize which mutations may act in a coherent manner and should be 
further investigated in combination for therapeutic purposes 30. While the complexity is extremely high at the 
genomic level, given the similar phenotypic states of cancer cells (increased proliferation, migration etc.), the 
complexity might be less profound at the protein signaling network level. In other words, while the mutational 
landscapes might differ greatly between tumors, their functional impact on the signaling networks within the cell 
might be less varied, thereby eliciting a similar phenotype. This underlines the  need for assessing the impact of 
mutations at the protein level, which is explored further in Chapter 2.116, where we present a novel conceptual 
framework in which cancer signaling could be interrogated.

1.3 Tumor Complexity
Although the number of challenges in cancer research are virtually unlimited, there are three main concepts of tumor 
complexity that deserve special attention in the context of this thesis, as they highlight significant clinical challenges 
in the treatment of cancer. 

1.3.1 Tumor Heterogeneity
The first aspect is that of tumor heterogeneity, which highlights the fact that within a tumor, not all cells are equal 
(see Figure 2).  Different cellular clones often exist in unison, driven by independent evolutionary fates, each 
potentially displaying different phenotypes based on the genetic and proteomic landscapes they harbor. A leading 
theory, the cancer stem cell hypothesis, postulates that (some) cancers consist of a hierarchy of tumorigenic cancer 

Figure 1 - The Hallmarks of Cancer, as proposed by Hanahan 
and Weinberg8,9.
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stem cells (CSCs) and their non-tumorigenic counterparts, and that the cancer stem cell sub-population is 
fundamental for driving tumor growth and disease progression31-33. Original work conducted by Furth and Kahn in 
1937 established that, rather than a transmissible agent, a single cell from a mouse tumor was sufficient to induce 
cancer in a healthy recipient mouse34. Throughout the following decades, transplantation assays carried out by others 
revealed that  the frequency of cells which can initiate cancer varies greatly among different solid tumors and 
leukemias, but generally requires a low number of cells (103 to 107 cells)35-37. Subsequently, a series of experiments 
conducted by Pierce and colleagues showed that within malignant teratocarcinomas (germ cell tumors), highly 
tumorigenic cells exist that, as single cells, have the capacity to differentiate into several differentiated, non-
tumorigenic cell types38. With this, it was established that the maturation process of a tumor seems to occur in a 
similar manner to normal tissue development, with CSCs forming the foundation of a heterogeneous tumor 
population.
The concept of CSCs was thoroughly established through seminal work carried out by Dick and colleagues, where 
they showed that acute myeloid leukemia (AML) can be induced reliably in immuno-compromised mice, but only 
through implantation of cellular sub-populations displaying a CD34+CD38- phenotype (as sorted through 
Fluorescence-activated cell sorting, FACS)39. Additionally, they were able to investigate the frequency of CSCs, 
which was found to be one in every million tumor cells in AML. Later publications showed similar results in tumors 
originating from breast cancer40, brain cancer41 and colon cancer33, where a relatively low number of cells, 
displaying distinct cell-surface antigen profiles, were able to induce cancers in immunodeficient mice.
From a cancer treatment point of view, CSCs simultaneously pose both a challenge and an opportunity. On the one 
hand, CSCs have been attributed with increased resistance to treatment through, for example, quiescence 
mechanisms, increased expression of ATP-binding cassette transporter (ABC) drug pumps and anti-apoptotic 
proteins, and elevated resistance to DNA damage42-45. On the other hand, the notion of CSCs is clinically attractive, 
as it helps explain why patients with initially good treatment response and who have been declared ‘cured’, return to 
the clinic years later with recurring disease. In these cases, while the treatment successfully eradicated most of the 
tumor, a small number of CSCs may have survived and recolonized tumors both at the primary and metastatic sites. 
If one were able to target these CSC sub-populations specifically, this would potentially allow complete removal of a 
tumor. Early evidence of being able to specifically target CSCs is starting to emerge, with specific proteins having 
been related to the CSC phenotype, allowing directed therapeutic targeting of CSCs46-48. While additional research is 
required, these early results highlight the therapeutic potential that may be obtained. For further information about 
cancer stem cells, the reader is referred to previously published review articles11,31,32.

1.3.2 Tumor Micro-Environment
The second aspect this section will briefly touch upon is the role of the microenvironment, as extensive evidence has 
demonstrated that it is not only the tumor cells themselves which decide the fate of pathogenesis, but rather that it is 
the complex interplay of the tumor cells with their surrounding microenvironment and other cell types contained 
therein (see Figure 2). In healthy tissue, the stroma (consisting of extracellular matrix (ECM) and other cells such as 
endothelial cells, fibroblasts etc.)  is generally considered the supportive structure of a given tissue or organ, and 
maintains a natural barrier against tumorigenesis. When tumor cells appear however, this process initiates a cascade 
of changes, often resulting in the stroma becoming an environment that supports cancer progression. This involves, 
amongst others, the activation of fibroblasts and matrix remodeling, and additionally, micro-environmental stimuli 
such as hypoxia, acidity and growth factors will vary within a tumor, giving rise to additional heterogeneous cell 
populations, each adapted to their specific microenvironment. These micro-environmental factors are likely to affect 
both the signaling network states of tumor cells contained within, and may even select for specific DNA mutations 
that give certain sub-populations an evolutionary benefit depending on their surroundings. 
A particular cell type that has been associated extensively with cancer progression, and thereby merits scientific 
investigation, is the cancer-associated fibroblast (CAF). Where normal fibroblasts typically have a suppressive effect 
on tumorigenesis49, CAFs can significantly enhance tumor progression50. They distinguish themselves from normal 
fibroblasts by displaying increased proliferation levels, enhanced cytokine secretion, and elevated extracellular 
matrix production and increased contractility51. These differences result in extensive tissue remodeling, 
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predominantly around the tumor cells, 
driven extensively by e.g. elevated 
expression of matrix metalloproteases, 
pro-angiogenic factors, matrix cross-
linkers such as lysyl oxidase (LOX) and 
transglutaminases, and growth 
factors52,53. The clinical relevance of 
CAFs has been established in several 
ways. For example, the abundance of 
CAFs has been shown to be predictive of 
prognosis for both breast and pancreatic 
cancer54,55. Additionally, elevated matrix 
metalloprotease levels, which are secreted 
both by tumor cells and CAFs, have also 
been linked with increased tumor 
aggressiveness and poor prognosis56. 
Furthermore, CAFs have been associated 
with emerging treatment resistance57. For 
example in BRAF(V600E) cell lines, co-
cultured with CAFs, BRAF inhibition 
was overcome by secreted hepatocyte 
growth factor (HGF), which elicited 
increased phosphorylation of MET, a 
cognate receptor of BRAF58,59. This has 
also been observed in patients, where HGF 
expression levels positively correlated with 
reduced drug treatment response58. These studies highlight the importance of studying cancer cell signaling within 
the appropriate context, as the in vivo relevance of in vitro derived results will be limited.
To add to the complexity, the influence of the microenvironment on tumorigenesis is a bi-directional process. As was 
recently shown by Barker et al., lysyl oxidase-like 2 (LOXL2) is an enzyme secreted by tumor cells, which in turn 
activates the CAFs through integrin-mediated focal adhesion kinase activation. By blocking LOXL2, the authors 
reduced the activation of stromal host cells, and significantly decreased tumor cell invasion60. Similarly, Cox and 
colleagues investigated the effect of the microenvironment on the metastatic potential of a tumor61. They found that 
the expression of lysyl oxidase (LOX), an enzyme that catalyses the covalent crosslinking of Collagen I and which 
has been implicated in cell invasion and malignant progression53,62, is “favourable to colonization and growth of 
metastasising tumor cells”61. By specifically blocking LOX activity using an antibody, they were able to reduce the 
extracellular matrix (ECM) modifications that normally have an enhancing effect on tumor cell survival and 
metastasis. As LOX is secreted from the 4T1 cell line used in the study, this elegantly highlights the complex bi-
directional interplay of tumor cells and their surrounding microenvironment. Not only does the targeting of proteins 
secreted by the tumor cells seem like a viable therapeutic strategy though, as work by Luga and colleagues 
demonstrated that targeting CAF-secreted exosomes (using Cd81-specific siRNAs) has a beneficial effect on 
specifically suppressing lung metastases in a breast cancer model63. Combined, these results suggest that targeting 
both the tumor cells and surrounding stromal cells are attractive therapeutic strategies, and that more extensive 
investigation is merited to uncover additional molecular mechanisms driving tumorigenesis, both in tumor and their 
surrounding stromal cells.

In summary, these first two aspects underline the importance of moving away from viewing a tumor as a 
homogeneous population that can be treated as a whole, as it is evident that the complexity is much larger than 
initially assumed. Only by biologically characterizing the contribution of individual components that make up a 

Figure 2 - Schematic representation of the key cellular components of the tumor 
microenvironment and cellular components contributing to tumor heterogeneity. 
In invasive and metastatic tumor microenvironment, there is an increase in 
number of invasive cells, contributing to the overall tumorigenesis. Taken from 
Hanahan & Weinberg8,9.
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tumor, both separately and collectively and understanding how they can be therapeutically targeted, is it likely that 
cancer research will start fulfilling its promise of successful targeted therapies.

The third and final aspect of tumor complexity is the concept of cancer metastasis. Considering this is a large focus 
of Chapter 3.2, it deserves additional attention, which is why it will be discussed in more depth in the following 
section.

1.3.3 Cancer Metastasis
As was depicted above, the cascade of tumorigenesis often ends at the metastatic stage, at which point the tumor 
cells, after acquiring the necessary mutations and other phenotypic traits (e.g. invasiveness, enhance proliferative 
capacity etc.), have been able to colonize other organs within the body. This spread of cancer cells to other, often 
vital organs, is responsible for 90% of all cancer-related patient mortality, and, if targeted successfully, represents the 
hallmark with most therapeutic potential4. In this section, we will explore some of the underlying biological 
principles, challenges associated with characterizing metastatic cells and possible directions for gaining a better 
understanding of how to tackle metastatic disease.

The process of metastasis is often classified into a series of basic biological events, which are portrayed in Figure 3 
(adapted from64). The steps involve 1) local invasion, 2) intravasation (entry into the bloodstream), 3) extravasation 
(exit from the bloodstream) and 4) colonization of the distant tissue, from which further metastases can also be 
spawned65,66. While each of these steps represents a potential opportunity for therapeutic intervention to varying 
degrees, it is important to consider the origin of these traits and how tumor cells obtain these capabilities, as this 
may lay the foundation for successful prevention; this will be further explored in the next section. As previously 
explained, the concept of cancers consisting of a heterogeneous population of tumor and stromal cells has now been 
widely accepted, each cell lineage contributing to the development process. Furthermore, research conducted in the 
last decade has suggested that several oncogenic events during cancer development may contribute to the evolution 
of tumors. Especially the ability to resist growth suppression and bypass DNA-damage-checkpoints are critical 
properties, as this allows for the generation of genomic instability67-70 Particularly in the case of colorectal cancer 
(CRC) pioneering work by Vogelstein and colleagues was able to show that colorectal tumorigenesis largely relies 
on the linear accumulation of key mutations71. Through this, tumor cells are exposed to many evolutionary paths, 
some of which may give a specific sub-population e.g. a fitness advantage or the phenotypes required for metastatic 
progression. Additionally, the genetic and phenotypic diversity that thereby exists within a tumor may also explain 
why, despite millions of cells being shedded by a tumor into the blood stream every day, only a very small subset of 
these will successfully colonize distant tissue72-74. Part of the reason for this high attrition rate of distant organ 
colonization is the fact that healthy tissue generally provides an inhospitable environment for invading tumor cells, 
requiring a significant level of resilience to exist in metastatic tumor cells to overcome this. As originally postulated 
by Stephen Paget in 1889, the spread of metastasis is dependent on both the primary tumor (the ‘seed’) and the 
distant site (the ‘soil’)75. For an extensive review, the reader is referred to66, but it is interesting to note that the 
metastatic progression does indeed seem to depend on both the primary and secondary tissue sites4,76. Thus, it 
becomes clear that it is beneficial for a tumor to contain specific sub-populations of tumor cells, all bearing different 
pheno- and genotypes, allowing the successful growth of the primary tumor and distant metastases in their 
respective environments. Pioneering work conducted by Fidler and colleagues in the 1970s demonstrated that within 
a tumor, rare clones exist that, through evolutionary processes, had acquired the necessary properties which allowed 
them to drive metastatic progression72. Later work revealed that highly metastatic sub-populations displayed a 
higher level of genetic mutability than their non-metastatic counterparts from the same tumor, in addition to 
biological heterogeneity being observed both within a single metastasis (‘intra-lesional’ heterogeneity) and among 
different metastases (‘inter-lesional’ heterogeneity), which supports the link between metastasis and genetic 
instability/evolution66. Overall, these results seem to suggest that cancer progression is a function of heterogeneous 
cell populations being driven to evolve through sequential environmental stimuli and pressures4.
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1.3.4 ‘Drivers’ of Cancer Metastasis
The dysregulated proliferation of tumor 
cells was proposed as one of the hallmarks 
of cancer8, but the underlying processes of 
tumorigenesis towards a malignant 
metastatic phenotype is a combination of 
many intrinsic (e.g. genetic, epigenetic and 
protein dynamics) and extrinsic factors. A 
critical extrinsic factor which seems to 
specifically affect metastatic potential is, 
amongst those described in Section 1.3.2, the 
level of hypoxia within the tumor. Hypoxia 
is the lack of oxygen available to cells 
within a tumor, and already occurs in tumors only a few cubic millimeters in size. Therefore it is a common driver of 
tumor aggressiveness77. Hypoxia has been shown to promote the enrichment of sub-populations with a higher 
resistance to apoptosis, and the response involves the stabilization of hypoxia inducible factor-1 (HIF-1), which is a 
transcriptional complex promoting the expression of genes involved with angiogenesis, anaerobic metabolism and 
cell invasion and survival78. For example, HIF-1 induces the expression of CXCR4, a chemokine receptor, which 
has been demonstrated to promote renal cell carcinoma metastasis79. Additionally, the LOX enzyme mentioned 
above has been demonstrated to be regulated by HIF-1, increasing the rate of metastasis in a breast cancer mouse 
model53. Lastly, hypoxia has also been shown to increase the expression of Met kinase, which increases the rate of 
cell invasion mediated by HGF (which, as described above, is often secreted by CAFs)80.
Other evolutionary driving forces promoting metastatic progression include reactive oxygen species of nitrogen and 
oxygen. These are generated both by infiltrating inflammatory and rapidly proliferating tumor cells, and have been 
demonstrated to up-regulate the expression of metastasis-facilitating genes, and contribute to the genomic instability 
of cancer cells81. Lastly, as demonstrated by Paszek and colleagues, the physical alterations during tumor 
development give rise to tensional forces, which may result in integrin-clustering. Integrins are widely used for 
mediating the attachment between a cell and its surroundings, and the tensional forces give rise to ERK and Rho-
GTPase activation, thereby promoting tumor-cell proliferation and distorting tissue polarity82. This mechanical 
aspect has also been demonstrated by Cox and colleagues (briefly mentioned in Section 1.3.2), and subsequently by 
Baker et al., where increased tumor stiffness was linked to increased metastatic potential in a colorectal cancer 
model61,83. In both models, it was shown that Src kinase activity played a crucial role, and Focal Adhesion Kinase 
(FAK) was also implicated in the latter study, highlighting potential therapeutic targets to perturb the tumorigenic 
progression. Furthermore, these studies also elegantly highlight the possibility of studying intracellular molecular 
processes, which are occurring in response to extrinsic stimuli, to extract possible proteins that can be targeted with 
molecular intervention.

Despite a plethora of factors affecting the tumor aggressiveness at the primary site, other biological traits must be 
obtained as well, such as the capacity to initiate tumors at a remote site, alterations in cellular adhesion, resistance to 
extracellular death signals and the ability to migrate and invade. As an extensive discussion of these traits exceeds 
the scope of this chapter, the reader is kindly referred to the following publications:4,76,84. Nevertheless, it is 
important to consider the underlying molecular processes which facilitate these and the above-mentioned biological 
properties. Moreover, obtaining a more comprehensive understanding of which proteins seem to play a fundamental 
role in their development, and in particular which stages of development, is of critical importance, as they may each 
pose possible therapeutic targets. Kinases have been shown to be involved in many metastasis-promoting cell 
behaviors such as cell proliferation, migration, survival and invasion60,61,83,85-91], and thereby form attractive 
therapeutic targets92-95. In fact, it has recently been shown that kinases are the most frequently mutated proteins in 

Figure 3 - The process of metastasis, depicting the different 
biological processes tumor cells must undergo to successfully 
colonize distant tissue sites. Adapted from Erler & Giaccia64.
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tumors, underlining the potential therapeutic implications they 
represent96,97. Given the diversification that tumor cells 
undergo throughout metastatic progression, and the ubiquitous 
involvement of kinase signaling in cellular signal 
processing18,98-100, it is expected that kinase activities will be 
altered during this process as well. Therefore, obtaining a 
global overview of which kinases and other proteins are 
dysregulated during tumorigenesis is of great importance, also 
considering the plethora of inhibitors available for this group 
of proteins. As we explore extensively in Chapter 3.2, we have 
undertaken a genome-scale investigation and comparison of 
metastatic versus non-metastatic colorectal cancer cells, in an 
attempt to pinpoint specific proteins and kinases which may be 
fundamental to a metastatic phenotype, both at the genomic 
and protein network / kinase dynamics level. The technologies 
and conceptual frameworks which have been developed and 
improved in recent years, enabling this type of global 
characterization, will be briefly discussed in the final section of 
this chapter, after briefly discussing the biology of colorectal 
cancer below.

1.3.5 Colorectal Cancer

In Chapter 3.2, we describe a systems level approach to studying colorectal cancer metastasis in attempt to construct 
a metastasis-specific treatment strategy. Here, we will briefly explore the molecular basis of CRC to serve as a very 
brief summary of some of the milestones which have been achieved in the field. In the United States alone, every 
year 160,000 cases of CRC are diagnosed, giving rise to 57,000 mortalities annually and ranking the disease as 
second leading cause of cancer-related deaths101. The disease is generally described as originating from a benign 
adenomatous polyp, which through processes described above (genome instability, hypoxia etc.), can progress to a 
fully metastatic cancer. Patients that present with CRC at the clinic are classified into one of four stages, with Stage I 
and II tumors being confined to the colon, whereas Stage III and IV tumors have spread to the lymph nodes and 
further to other distant sites respectively102. Treatment of Stages I and II are generally curative through surgical 
excision, and 73% of Stage III tumors are curable by surgery combined with adjuvant chemotherapy103. For Stage 
IV tumors however, no cure is available and most patients succumb to the disease within 2 years102. As previously 
mentioned, genomic instability appears to be a fundamental requirement for the development of metastasis71. 
Chromosomal instability has been described as the most common type of genomic instability in CRC, which, by 
causing numerous changes in chromosomal copy number and structure, results in the physical loss of wild-type 
copies of tumor suppressor genes such as APC, TP53 and SMAD4104,105. Alternatively, subsets of CRC patients 
display inactivation of DNA mismatch repair genes such as MLH1, MSH2, TGFBR2, BAX and MYH, some of 
which are hereditary and others are acquired somatically106-111. Together, these genetic alterations give rise both to 
dysregulated signaling dynamics and increased susceptibility to further genetic modifications, which can both 
contribute to tumorigenesis.
Genetic modifications that are commonly associated with CRC can have both inactivating and activating effects on 
protein activity, with varying results on cellular signaling. For example, the activation of Wnt signaling, regarded as 
the first initiating event in CRC, is caused by a mutation in APC. APC is part of the β-catenin degradation complex 
(together with GSK3, axin and casein kinase 1112), which normally degrades β-catenin and prevents its nuclear 
localization where it binds to nuclear partners and creates a transcription factor leading to cellular activation113. After 
mutation of APC, entry of β-catenin into the nucleus cannot be prevented, thereby constitutively activating Wnt 

Genome-Level

Proteome-Level

Phenotype-Level

Figure 4 - The genotype-to-phenotype relationship, 
with protein signaling networks playing a critical role 
as a link between the two.
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signaling.  The resulting phenotypes (hyperproliferation, perturbed differentiation and migration114) have 
furthermore been demonstrated to be dependent on c-Myc, a transcription factor115,116. APC mutations have been 
described in both hereditary CRC (e.g. familial adenomatous polyposis, FAP) and somatic tumors, where both 
copies of APC are inactivated. Additionally, mutations in β-catenin have also been described in APC wild-type 
tumors, thereby rendering the protein resistant to the β-catenin degradation complex113,117,118. Other common tumor 
suppressor inactivations that have been described in CRC are TP53 and TGF-β, which are described as the second 
and third key genetic alteration for disease development respectively. Both TP53 alleles are inactivated in most 
tumors, which is often the result of a missense mutation which inactivates the transcriptional activity in one allele, 
and a 17p chromosomal deletion which results in the deletion of the second allele119-121. The loss of TP53 activity 
leads to a lack of cell-cycle arrest and a cell-death checkpoint, and intriguingly, the inactivation of TP53 is often 
related to the transition of the CRC from an adenocarcinoma to an invasive carcinoma122,123. TGFBR2 inactivating 
mutations are observed in approximately 30% of CRCs, and have a mainly somatic origin, resulting in distinctive 
frameshift mutations within its parent gene124. In approximately half of the CRCs, these mutations affect the kinase 
activity of TGFBR2, but mutations affecting targets downstream, such as SMAD2, SMAD3 or SMAD4 have also 
commonly been described, resulting in attenuated transcriptional control97,124-129. Mutations resulting in constitutive 
activation of specific signaling molecules have also been described, such as RAS and BRAF, which leads to hyper-
activated MAPK signaling24,130-132. Additionally, mutations affecting PI3K and causing constitutive activation have 
also been described in approximately 30% of all CRC patients, resulting in increased AKT and PAK4 signaling and 
subsequent cellular proliferation133,134. On average, Stage IV CRC tumors contain 76 mutated genes, but the large 
patient-to-patient variation has highlighted the significant genetic heterogeneity that exists within CRC105. This 
greatly hampers the functional interpretation of these mutations, and this aspect is explored in more detail in Chapter 
2.1.
Currently, treatment options for CRC is predominantly centered around chemotherapy, with the inherent toxic side-
effects, underlining the critical need for more targeted approaches. Initially, treatment consisted of 5-Fluoroacil (5-
FU, a thymidylate synthase inhibitor) in combination with leucovorin (LV, a 5-FU enhancing agent)135,136. 
Irinocetan, a topoisomerase I inhibitor was also investigated for treatment efficacy, as was Oxaliplatin, a DNA 
synthesis inhibitor. Subsequently, two main treatment regiments were developed, termed FOLFIRI (LV/5-FU/
irinocetan) and FOLFOX (LV/5-FU/oxaliplatin), which are both currently used in the clinic137-141. In patients with 
Stage IV CRC, these treatments prolong survival for approximately 6-9 months, and differ mainly in their toxicity 
profiles, with FOLFOX affecting the nervous system whereas FOLFIRI affects the gastrointestinal system142. Some 
early attempts at targeted therapy have been investigated, with monoclonal antibodies against VEGF-A 
(bevacizumab) and EGFR (cetuximab and panitumumab) having been investigated, but all with very limited 
efficacy143-147. Taken together, these results highlight the inherent complexity of studying and treating CRC, and 
highlight a critical need for more efficient therapies to be developed. To this end, we set out to gain a better 
understanding of the molecular landscapes that may underlie metastatic CRC, which is explored in depth in Chapter 
3.2.

2.0 Network Biology in Cancer 

2.1 Principles of Network Biology
The last decade has seen a considerable shift of moving away from a ‘one drug, one target’ approach148, as, 
especially in the case of complex diseases such as cancer, deploying highly specific compounds targeting a single 
molecular entity has led to extensive treatment failure149-151. Traditionally, the single-target approach focused 
primarily on individual ‘pathways’ that were found to have been dysregulated in disease. However, it has become 
increasingly clear that the proteins making up a specific pathway have many interactions outside their respective 
pathways, and it is therefore imperative to gain a better understanding of how individual pathways are assembled 
into higher order networks22. This aspect is further highlighted by the genetic complexity and heterogeneity of 
tumors, as the mutations spanning a large multitude of proteins will have a different effect on the protein dynamics, 
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yet still result in similar disease phenotypes. In other words, several genotypes can  give rise to the same phenotype, 
while a single genotype can also give rise to several phenotypes, depending on the cellular context. These 
‘genotype-to-phenotype’ relationships are one of the fundamental aspects the field of network biology is aiming to 
resolve, as, being the cellular effectors, protein signaling plays a critical role in defining the link between genotype 
and phenotype (see Figure 4)15,16,22,23,152,153. Rather than characterizing signaling pathways in isolation, it is therefore 
of vital importance to comprehensively measure genome-wide protein dynamics within the cell, as this allows the 
characterization of their global network structure and dynamics and how genomic information is propagated towards 
cellular phenotype21,22,154-156. Additionally, it has been proposed that it is not only individual protein species that 
make up a signaling network that can be therapeutically targeted; instead the structure and dynamics of a particular 
signaling network poses a powerful drug target by modulating the information flow through such a network23. This 
was further exemplified by work demonstrating that cells utilize the same protein network components for different 
cellular responses, and instead alter the network utilization of these to elicit a specific response. This highlights the 
importance of identifying how cellular networks are deployed specifically in a given disease condition, in order to be 
able to target the dynamics through disease-specific perturbations150,157,158. Furthermore, by measuring global protein 
dynamics within the cell, it enables a more comprehensive interrogation of how the effect of a perturbation affects 
the signaling network as a whole. The importance of this was first elegantly demonstrated through seminal work by 
Janes and colleagues in 2005159. The authors investigated whether the phosphorylation state of Jun-activate kinase 
(JNK) was indicative of pro-apoptotic or anti-apoptotic activity, and concluded that the phosphorylation state alone 
did not suffice to characterize the phenotypic effect of JNK. Instead, they were able to show that activation of JNK 
could lead to both apoptosis and proliferation, and that the outcome was dependent on the prior signaling network 
state at the time of activation. This landmark study conclusively proved that studying the activity of a single protein 
in isolation is not sufficient to accurately characterize its cellular role, and rather, that the contextual network it is 
operating within also needs to be interrogated in order to obtain a correct readout. Similarly, utilizing this contextual 
information allows the characterization of the signaling network rewiring that occurs in response to a perturbation, 
in order to target these altered network states with an additional perturbation. The power of this type of approach 
was demonstrated by Lee and colleagues in 2012, where they were able to greatly increase the level op apoptosis in 
breast cancer cells by designing a time-staggered combination treatment in a data-driven way89. More information 
about these principles can be obtained in Chapter 2.1 of this thesis16.

In addition to protein dynamics (i.e. expression levels) altering cellular phenotype, extensive research has 
demonstrated that post-translational modifications (PTMs), such as phosphorylation, also play a crucial role in 
controlling cellular behavior18,91,160,161. The importance of phosphorylation is further supported by the fact that by 
the year 2010, 149 inhibitors targeting 42 kinases (the ‘writers’ of phosphorylation modifications) have been 
subjected to clinical testing, highlighting the therapeutic potential of interfering with PTM signaling93. A significant 
challenge with deciphering phosphorylation based signaling however, is the derivation of kinase-substrate 
interactions. This is explored in depth in Chapter 2.3, but due to the highly transient nature of kinase-substrate 
interactions, it is inherently challenging to experimentally determine which kinase(s) is responsible for a given 
phosphorylation site. Therefore, generally, a combination of experimental and computational analysis is required, to 
which end algorithms such as NetPhorest and NetworKIN have been developed98,162,163. These algorithms allow, 
based on both experimentally determined linear motif preferences of kinases and their network contextual 
information, to predict which kinases are likely candidates for experimentally observed phosphorylation sites (see 
Figure 5). The linear motifs (specific sequence preference around the phosphosite)  are predicted by NetPhorest, and 
STRING (a protein-protein association database) adds the network contextual information on whether or not the 
kinase and substrate protein (containing the phosphorylation site) are known/predicted to interact in vivo. 
Combined, they are amongst the most comprehensive and accurate algorithms currently available compared to 
previously published frameworks164-167. The way these algorithms can be applied in order to study cellular signaling 
is extensively covered in Chapter 2.2, where we describe both how to generate global quantitative phospho-
proteomics data and the modeling thereof using the novel integrated KinomeXplorer framework to pin-point key 
kinases which may be fundamental to a given cellular phenotype.
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2.2 Tools to Enable Network Biology
In order to facilitate comprehensive sampling of the genotype-to-phenotype relationship, it is imperative that we can 
measure as many of the underlying properties (e.g. genome, epigenome, metabolome, proteome and cellular 
phenotypes)  as possible, in a global, unbiased manner. Subsequently, these different biological aspects can be 
integrated through an integrative model in order to establish causal relations that may exist between them. From a 
practical point of view, this generally means that large experimental and computational infrastructures are required, 
to allow the generation and analysis of the required large-scale datasets in a timely fashion. We will now briefly 
explore some of these technologies in the light of trying to decipher cellular signaling in cancer using a Network 
Biology approach.

In order to systematically assess the genomic landscapes within a tumor, next-generation sequencing (NGS) of 
DNA is the method of choice, as it allows the determination of sequence variants either within the complete genome, 
or only the protein-coding exome. This type of analysis results in a complete view of the genomic landscape that 
exists within a sample, and allows one to begin inferring which genes might play a role in a particular disease 
phenotype without any prior knowledge7,168. With the significant decrease in costs associated with having a genome 
sequenced over the last few years, more and more laboratories obtain the capability of conducting such experiments, 
which has led to an explosion in publications analyzing diseased genomes169-173. Nevertheless, a direct therapeutic 
impact that was expected to arise from these analyses has been rather limited30, and some reasons for this are 
explored in Chapter 2.1. One fundamental shortcoming of using genomic data alone is the fact that it does not allow 
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of a phosphatase). This increasewill in turn enhance
the association between phosphorylated sites and
proteins that contain the appropriate phospho-
binding domain (27). To model the bidirectional
signaling networks in EphB2+ and ephrin-B1+

cells, we used the NetworKIN and NetPhorest
algorithms [http://NetworKIN.info and http://
NetPhorest.info (28, 29)] to computationally re-
construct phosphorylation networks using prob-
abilistic contextual data in combination with
sequence models of kinase and phospho-binding
domain consensus motifs (28, 29). We identified
pTyr sites from singly phosphorylated peptides
common to the two cell types that exhibited

significant modulation after cell-cell contact (P <
0.05; Wilcoxon test). Accurate modeling of
phosphorylation networks requires contextual
information for both kinases and substrates (28).
Therefore, we developed four filtering steps to
restrict the predicted kinases and phospho-
binding proteins to those more likely to be
relevant for cocultured EphB2–ephrin-B1–
expressing HEK293 cells and to limit spurious
predictions: First, predicted kinases or phospho-
binding proteins were accepted only if they had
been previously identified by the qBidS or siRNA
screens (Fig. 4). Second, we required that kinases
and substrates, which were predicted to interact,

were similarly modulated (up, down, or none)
(Fig. 4, co-modulation). The activities of kinases
were determined by the modulation of their
activation loop phosphorylation sites and cor-
related to the phosphorylation of substrate sites.
Third, predictions were ranked and filtered on the
basis of their probability fromNetPhorest (Fig. 4)
(18, 29). We also analyzed the predicted kinase-
substrate-target relationships by overlaying a
HEK293-specific contextual network (Fig. 4)
(18). The latter was generated with proteins iden-
tified through qBidS, siRNA screening, or coim-
munoprecipitation with selected network proteins
(table S5) (18) as seed input data to the Search

Fig. 3. Functional siRNA
screening of EphB2- and
ephrin-B1–regulated cell
sorting. (A) EphB2+ cells,
which coexpress myris-
toylated GFP, weremixed
with ephrin-B1+ cells,
transfected with siRNA
pools, and grown to
100% density. The
number of GFP-positive
EphB2+ colonies was
used to determine the
effect of siRNAs on cell
sorting. Disruption of
EphB2 or ephrin-B1 ex-
pression by means of
siRNA inhibits colony
formation. (B) Proteins

A B

identified through siRNA screening as functionally important for cell sorting also tend to be asymmetrically phosphorylated. The
modulation of pTyr sites residing in proteins important for cell sorting that were identified in both EphB2+ and ephrin-B1+ cells
was compared. The number of OTP duplexes recapitulating a loss of cell sorting is shown to the left in red, followed by the gene
name, the identified pTyr sites, and the cellular function of the protein. The cell-specific modulation of each pTyr site is shown by
color code.

Fig. 4. Computational data integration and
network modeling. Systems-specific data integra-
tion was performed to construct network models.
All observed phosphorylation sites were first
processed by the NetPhorest algorithm (29) so as
to predict kinase-substrate relationships and SH2
and PTB domain interactions. These predictions
were subjected to several subsequent filtering
schemes: First, we required that tyrosine phospho-
rylation sites and the activation loop phosphoryl-
ation of their predicted kinases be comodulated
(red path). Second, predictions were filtered on the
basis of the probability score from Netphorest (blue
path). Proteins that were identified through qBidS
or siRNA screening or by coprecipitation were used
as input to the STRING resource to generate a
systems-specific protein-protein interaction network,
permitting contextual filtering (orange path) similar
to the NetworKIN algorithm (28). This enabled the
generation of cell-specific signaling networkmodels.
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Figure 5 -  Overview of the NetworKIN and NetPhorest workflows. By integrating motif-level predictions 
originating from Netphorest with protein contextual information from STRING, NetworKIN allows prediction of in 
vivo kinase-substrate interactions based on experimentally observed phosphorylation sites98,162,163.
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interpretation of how these mutations affect, or are utilized by, the cellular signaling networks. In other words, 
additional experiments are required for deducing which mutations have a functional impact, and are thereby 
functionally related to the disease phenotype174. For example, detecting a mutation at the DNA level does not 
guarantee that the mutation actually is expressed at the protein level, where it could exert an effect. Additionally, it 
may not be the mutations themselves which have a phenotypic effect, but rather, in case of kinases being affected by 
a mutation, the dysregulated phosphorylation-based signaling or network-rewiring that is caused by the mutation16. 
This underlines the need for actually being able to assess the protein dynamics of both the mutant proteins and their 
non-mutated network partners, and the dynamic phosphorylation networks which may be altered due to the genomic 
alterations. Additionally, the functional effect of a given mutation may only be apparent under specific cellular 
conditions, underlining the need for studying cellular behavior in response to several stimuli (e.g. growth factor 
stimulation, starvation, hypoxia or stromal co-cultures).

Recent developments in the field of Mass Spectrometry (MS)  have led to major improvements of what portion of the 
expressed proteome can be measured in a single experiment. Currently, it is possible to simultaneously detect and 
quantify the protein levels of almost the complete proteome and several tens of thousands of phosphorylation 
events175-181. Quantitative technologies such as SILAC or dimethyl labeling allow the direct comparison of specific 
proteins or e.g. phosphorylation sites between one or several proteomes, in order to determine the dynamic 
regulation thereof182,183. Their principle is based on utilizing stable isotopes to introduce an small mass difference 
into the peptides that exist within a given sample, which allows the mixing of samples very early on in the sample 
preparation. This mass difference is large enough for a high resolution mass spectrometer to determine the sample of 
origin, and through direct comparison of the peptide intensities originating from the respective samples, enables 
direct quantitation of these peptides. As the samples were mixed in the early stage of sample preparation, any 
difference in intensity will likely be due to a biological effect rather than a technical artifact. If used in combination 
with appropriate experimental design, this type of quantitative analysis enables the in-depth characterization of the 
dynamic regulation of protein signaling after a given perturbation such as inhibitor treatment, growth factor 
stimulation, mutations or altered growth conditions (e.g. hypoxia). This information can subsequently be used to 
determine the signaling networks that are fundamental to a given biological observation. We deployed the SILAC 
methodology in Chapter 3.2 to study the dynamic proteome differences between metastatic and non-metastatic cells, 
and describe how it can also be used in the characterization of patient samples184.
Additionally, as is described in-depth in Chapter 3.1, the use of genome-specific, rather than reference genome 
search databases for determining the proteins and phosphorylation sites present in a given sample, allows the 
accurate monitoring of the protein dynamics of specific mutations present in sample. Being able to quantitatively 
assess the information layer which exists between the genotype and phenotype has a distinct advantage, especially 
when considering that all small molecule inhibitors and antibody-based therapeutics used in the clinic today actually 
target proteins rather than genes. As was described above, these protein data need to be accurately modeled in order 
to establish potential signaling network models, but the near unbiased nature of MS experiments allows this to be 
done in a data-driven way with minimal a priori knowledge. Nevertheless, MS data only provides a “snapshot” of 
the cellular proteome at the time of the experiment, so experiments need to be designed appropriately to accurately 
assess the signaling networks fundamental to a particular biological effect.

In order to more directly characterize the role of key proteins in a given cellular phenotype, the use of genome-scale 
RNA interference (RNAi)  libraries in combination with High Content Screening (HCS) has been demonstrated in 
several species185-188. By perturbing the expression of a specific protein, and measuring an appropriate phenotypic 
readout (e.g. proliferation or cell migration), it is possible to globally assess and elucidate proteins which seem 
fundamental for a given biological state. This approach has been very powerful not only at the discovery phase of 
investigating potential therapeutic targets, but also at the stage of validating proteins determined by e.g. MS or NGS 
to be involved in a given disease phenotype189,190. One of the strengths that is fundamental to the success of RNAi-
based screening is the fact that they can be used as a highly specific substitute for often unavailable inhibitors. A 
caveat is that the link between RNAi and inhibitors is not always linear however, and requires careful validation191. 
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Nevertheless, by systematically knocking down genes in, for example, a kinome-wide or genome-wide fashion, a 
global assessment of the model system can be undertaken. Additionally, this can be done in a combinatory fashion, 
where multiple targets can be knocked down simultaneously to monitor synthetically lethal effects where a 
phenotypic readout is only obtained by the simultaneous knockdown of 2 or more genes192-195. Besides providing a 
more direct readout of the role of a particular protein in a given disease phenotype, it may also highlight proteins 
that were not detected by MS or genes that do not harbor a mutation, providing a complementary approach. 

By subsequently integrating the knowledge gained from the different platforms (MS, NGS and RNAi screening), 
several benefits can be obtained: 1) missing information in one dataset can be complemented by that from another, 
and 2), the different data types can act as validation sets for one another, and 3)  a comprehensive overview of how 
genomic information is propagated through the proteome to elicit a specific phenotype can be obtained. For 
example, a hit originating from an RNAi-screen is more likely to be a successful clinical target if MS evidence also 
suggests the protein-level (or phosphorylation dynamics) to be increased or if NGS has revealed there to be a 
mutation hitting the gene. In the case of point 1), if for example a given protein has not been observed by MS to be 
dysregulated in the diseased state, but the RNAi screen does confidently highlight the knockdown to result in a 
phenotype, it is likely to be an interesting candidate. Therefore, it is not only the genes and proteins which have been 
determined by all of the experimental methods to be of therapeutic interest, it is also the complementary nature of 
the technological platforms which allows for a more comprehensive interrogation of the biological model system. 
The lack of complete overlap between the different datasets does require an un-biased computational method for the 
data integration, and we will further explore a method we developed to this end in Chapter 3.2. Many different 
approaches for complex data modeling have been developed over the years, each with a unique, specific goal in 
mind196-200. Which approach is most suitable for which type of data depends on the precise biological question of 
interest, but most frameworks such as Partial Least Squares Regression (PLSR), Principal Component Analysis 
(PCA) or Artificial Neural Networks (ANNs) attempt to link a phenotypic readout (e.g. metastatic or not?) to 
observed experimental data (e.g. protein/phosphosite expression levels)  to derive which proteins may be relevant for 
follow-up studies. In our integrative approach, we are assessing the significance of a particular observation within its 
own dataset (e.g. how much is a specific protein / phosphosite regulated in comparison with all the other proteins we 
were able to quantify or how much is a particular kinase knockdown affecting cell numbers compared to all other 
kinases tested), and are therefore quantifying the position of each observation within the general distribution for that 
dataset. This enables us to classify the level of “surprise” (termed “energy”) of an observation within the type of 
experimental analysis, and combine it with the “energy” levels for that protein of interest detected by the other 
experimental analyses that were conducted. Ultimately, this results in an integrated “energy” value for each protein, 
which is indicative of its potential involvement of the biological phenotype under investigation.

Figure 6 - Conceptual workflow for conducting integrative network biology experiments. By interrogating a biological system 
from the genome (NGS), global proteome (MS) and phenotype (RNAi) perspective, we can systematically assess the role of 
particular gene mutations and proteins in a given disease. Through computational integration of these datasets in an un-biased 
manner, potential targets can be ranked based on the amount of evidence that is highlighting their importance.
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In conclusion, we advocate the in-depth interrogation of biological samples from several technological angles and 
biological perspectives, in order to accurately establish genotype-to-phenotype relationships (see Figure 6). Ideally, 
where possible, this should be conducted across several time-points and under different biological conditions, to 
interrogate the biological system as comprehensively as possible, as certain phenotypes or protein dynamics may 
only be revealed under highly specific biological conditions. Importantly, by taking a global, un-biased approach to 
interrogate a biological system, one allows the data to highlight which proteins and/or mutations are potentially 
fundamental to a specific disease phenotype. This requires the implementation of careful experimental design 
(tailored to the specific biological question of interest), strict Standard Operating Procedures (SOPs)  for stable and 
reproducible sample preparation conditions and continuous quality control to ensure data is generated consistently 
over the generally extensive period of time it takes to collect the data. The practical application of this integrative 
approach is demonstrated in Chapter 3.2 of this thesis, which, to the best of our knowledge, is the first 
comprehensive network biology-focused study of cancer metastasis. In line with the above-mentioned role of tumor 
sub-populations and the micro-environment, ideally this would be done in a cell-type-specific manner (e.g. tumor 
cells, CAFs, CSCs and other sub-populations), as this will partially deconvolute the complex interplay of the 
different cell types, and potentially allow for time-staggered, cell-type-specific combination therapies to be 
developed, thereby positively contributing to the “war on cancer”.
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Chapter II

Part I

Navigating Cancer Network Attractors for Tumor-
Specific Therapy
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dynamics of signaling networks and ultimately cellular phenotype. Next, 
we describe five general properties of cancer signaling networks (Fig. 1)  
and define five challenges in cancer network biology and propose 
strategies to overcome them (Fig. 2). By meeting these challenges, 
network biology may fundamentally advance not only basic biology 
but also patient treatment. Finally, we describe how a combination 
of relatively new technologies could become a potent cocktail for the 
discovery of network drugs, and we discuss the practical implementation 
of personalized and tumor-specific cancer therapy.

From genomic lesions to functional network perturbations
Tumor cells often harbor hundreds to thousands of genetic lesions. But 
based on the observation that some of these genetic lesions are repeat-
edly observed in several cancers (e.g., BRAF V600E, present in >50% 
of all malignant melanomas5), it has been hypothesized that only a few 
genetic lesions are causally implicated in cancer development (‘drivers’), 
whereas the majority have no functional consequences (‘passengers’)6.

Although this classification has had some use in identifying 
mutations that are highly prevalent, it is now apparent that a tumor 
is not, under any circumstances, a static and uniform population of 
malignant cells. Rather, it is a dynamic ensemble of subpopulations 
with different abnormalities undergoing molecular evolution7–9. 
Two fundamental principles of cancer signaling networks can explain 
why a binary driver/passenger classification may be too simplistic to 
accommodate the complex dynamic nature of tumors. First, different 
tumors can develop similar phenotypes by acquiring mutations in 
different proteins10, in what we term analogous mutations (Fig. 1a). 
Second, it has been shown that two different mutations not capable 
of causally driving cancer by themselves are able to do so when they 
appear in combination within the same cells or even within two 
neighboring cells11, in what could be described as two passengers 
becoming drivers or, as we refer to them, synthetic oncogenes (Fig. 1b).  
Thus, patient-to-patient heterogeneity can be driven by the presence 
of different mutations in the same or in different proteins that lead to a 
similar signaling state and phenotypic outcome.

Altogether, the intrinsic heterogeneity of tumors makes it a pressing 
challenge for cancer network biologists to develop tools to identify 
the extent to which combinations of cancer mutations affect protein 
function and cellular and phenotypic states (Fig. 2a,b). Even though 
several such tools have been developed (reviewed in ref. 12), existing 
methods are mainly based on protein structure and/or sequence 
conservation. This is at odds with recent findings that show that cancer 
mutations tend not to cluster on the most conserved protein regions. 
In kinases, for example, mutations typically hit the kinase activation 
segment, a functional, yet largely nonconserved protein region13. 

Navigating cancer network attractors for tumor-
specific therapy
Pau Creixell1, Erwin M Schoof1, Janine T Erler2 & Rune Linding1

Cells employ highly dynamic signaling networks to drive 
biological decision processes. Perturbations to these signaling 
networks may attract cells to new malignant signaling and 
phenotypic states, termed cancer network attractors, that 
result in cancer development. As different cancer cells reach 
these malignant states by accumulating different molecular 
alterations, uncovering these mechanisms represents a grand 
challenge in cancer biology. Addressing this challenge will 
require new systems-based strategies that capture the intrinsic 
properties of cancer signaling networks and provide deeper 
understanding of the processes by which genetic lesions 
perturb these networks and lead to disease phenotypes. 
Network biology will help circumvent fundamental obstacles 
in cancer treatment, such as drug resistance and metastasis, 
empowering personalized and tumor-specific cancer therapies.

Cells are constantly computing decisions based on the integration of 
different cues that reach them at various times. In contrast to single-
cell organisms, in multicellular organisms, cellular decisions should,  
ultimately, benefit the organism as a whole, even if that implies that an 
individual cell will have to decide to commit suicide. In line with this 
unique feature, signaling networks have evolved during multicellular 
evolution to allow cells to integrate cues and make decisions that ensure 
cooperative behavior between them. By hijacking these mechanisms, 
cancer cells escape cooperative rules and transition from a game gov-
erned by Nash equilibria1,2 between all cells into a new scenario where 
cancer cells decide their behavior purely based on their own benefit, 
or as phrased by Hanahan and Weinberg3, “become masters of their 
own destinies.” Given the central role played by signaling networks in 
the integration of cues to compute any cellular responses, we argue that 
cancer is not simply a disease with a genetic basis, but is one ultimately 
driven by perturbations at the signaling network level, and that both the 
‘cue-signal-response’ rules of cellular decision-making and the switch 
in strategy from cooperative to selfish are major, hitherto understudied, 
hallmarks of cancer3,4.

In this article, we dissect the strategies cancer cells use to become 
‘selfish’ and drive disease. We first review how genetic lesions can lead to 
altered protein function, which can result in changes to the structure and 
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An insightful example of how to explore 
this sequence-function relationship in protein 
domains was carried out by researchers in 
the Ranganathan and Yaffe laboratories who, 
using methods from statistical mechanics, 
generated synthetic WW domains de novo 
that maintained fold and function17,18. 
Further supporting a complex sequence-
function relationship, additional studies from 
the Ranganathan laboratory demonstrated 
that, in addition to protein architecture 
described as combinations of modules such 
as globular domains and linear motifs19–21, 
protein domains themselves often have well-
defined sectors formed by sparse networks of 
residues often linking spatially distant regions 
that contribute cooperatively but unequally 
to its function22,23. Although some targeted 
studies analyzing several cancer mutations in 
a single kinase have been conducted24, similar 
approaches to those used for WW domains 
should be pursued to generate high-throughput 
experimental studies of cancer mutations in the 
context of signaling networks. These would 
help gain a better understanding of which 
amino acid residues can be changed freely 
without affecting the protein and network 
function and, most importantly, which cannot.

From network perturbations to cellular 
phenotypes
The characterization of cellular signaling pro-
cesses has largely focused on identifying the 
function of individual genes and proteins. A 
notable exception is a landmark study25 on the 
context dependence of the Jun-activated kinase 
(JNK) in apoptosis. Before this work, para-
doxical results suggested that JNK had a pro- 
apoptotic function26, an anti-apoptotic func-
tion27 or even a lack of involvement in apopto-
sis28. The systematic approach undertaken by 
Janes et al.25 revealed that the phosphorylation 
status of JNK (and thus its catalytic activity) 
was not sufficient to determine apoptotic com-
mitment; instead, activation of JNK could lead 
to both apoptosis and proliferation depending 

on the cellular signaling network state at the time of activation. Thus, this 
work demonstrated that a protein’s cellular role is not a static property 
but rather can only be defined dynamically—that is, its role depends 
on the context of the network it is operating within. Similar context 
dependencies have been confirmed for other kinases, such as Erk and 
MK2. Because of this, which is referred to as the multivariate property 
of signaling networks (Fig. 1c), we suggest that it is essential to study 
cellular context at the systems level. 

Although these multivariate molecular networks seem to have evolved 
a complex structure that makes them robust against deletion of a few 
proteins29, they are highly dynamic. Thus, a more accurate description 
of signaling networks should take into account the fact that a single static 
network does not exist unchanged over time. Instead, a cell contains 
a dynamic ensemble of networks whose different permutations are 
manifested in the cell depending on the different cues the cell is presented 

Because cancer cells would obtain the greatest fitness advantage 
from mutations that target the most-functional residues, we reason 
that a better understanding of the functionality of protein residues 
would allow more accurate predictions of the consequences of cancer 
mutations. Functional residues have been defined as those residues 
required for a protein to perform its molecular function(s), in the 
sense that they cannot be freely changed without directly affecting 
the role(s) of the protein14. Here we extend this definition to include 
a more fine-grained and precise definition of protein function as 
an ensemble of protein features that together describe the different 
functional capabilities of proteins (e.g., ATP binding, substrate 
specificity, protein activation or phospho-tyrosine binding). This new 
definition would not only adapt well to current studies of sequence-
function associations15,16, but also lead to a better description of the 
effects of a mutation affecting such residues (Fig. 2a,b).

Figure 1  Properties of cancer signaling networks. (a) Analogous mutations. Two different tumors 
may achieve the same signaling and phenotypic outcome with two different mutations (b) Synthetic 
oncogenes. Mutations that are not oncogenic on their own can cooperate when appearing together 
to drive tumor formation11; by analogy to synthetic lethality, we call the genes harboring cooperative 
mutations, synthetic oncogenes. (c) Multivariate nature of signaling networks. The response of a cell to 
a specific cue depends on, and can only be predicted by taking into account, the state of the cellular 
signaling networks25. This dependency, known as the multivariate nature of signaling networks, is 
often neglected when classifying mutations and genes as oncogenes or tumor suppressors and cancer 
drivers or passengers. (d) Dynamic networks. Although signaling networks are often represented as 
static, it is clear that they are highly dynamic entities. Given that the role of signaling networks in 
computing cellular responses is highly dependent on it, and that cancer mutations will perturb it, this 
dynamic nature is a critical property of cancer signaling networks. (e) Signaling network landscapes. 
The different states that a signaling network occupies can be represented as a landscape (with stable 
steady states or attractors represented as valleys and unstable steady states represented as hills), where 
the cell constantly gets pushed by signaling cues31,32,39,40. These states drive cellular and disease 
phenotypes and represent network drug targets.
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with (Fig. 1d). This dynamic nature of signaling networks could, at least 
in part, explain why all mutant proteins do not seem to be expressed at a 
given point in time30, if a substantial part of the proteome is so dynamic 
that it is expressed only when the cell senses a specific cue.

Moreover, according to a general principle of complex systems 
introduced in the 1980s31,32, dynamic cellular networks can only exist 
in a finite number of states, owing to the constraints that interactions 
between nodes impose on one another. These network states can be 
represented as landscapes, where most-probable and least-probable 
states are represented as valleys and mountains, respectively (Fig. 1e). 
Cells are continuously exploring this landscape 
and are pushed from one state to another by 
different environmental or intracellular cues.

Implications for cancer research
The multivariate nature of signaling networks has 
profound implications for cancer research. Just as 
it is inaccurate to assign a static function (e.g., 
apoptotic or anti-apoptotic) to a single protein, 
it is clear that static interpretations of mutations, 
that is, driver or passenger mutations, are also 
misleading. For example, given that the pheno-
typic role of JNK strongly depends on network 
state, it is clear that a mutation in JNK (and thus 
probably any other mutation) should not be 
statically labeled as a driver or passenger or as 
an oncogene or tumor suppressor, as such clas-
sifications are context dependent (e.g., disease 
or cell-type specific). Several examples, such 
as Myc33 or WT1 (ref. 34) gene products that 
act as both tumor suppressors and oncogenes, 
support this idea. These results underscore the 
importance of assessing mutations based on their 
effects on signaling networks and of developing 
novel classification methods to do so. Along these 
lines, MAP2K4 (one of the protein kinases that 
can phosphorylate and activate JNK) has been 
shown to be recurrently lost or mutated in sev-
eral cancers35–38. These represent prime examples 
of mutations that may display ambivalent pheno-
typic impact similar to JNK.

Motivated by the example of MAP2K4 and 
many other mutated kinases38, we maintain 
that mutations capable of affecting signaling 
networks—which we call network-attacking 
mutations (Fig. 2c)—are more likely to affect 
phenotype than other mutations. Thus, we discuss 
a general strategy in which mutations in individual 
cancers are assessed based on, first, the likelihood 
they will affect protein function, and second, 
the cellular role of the signaling network that 
they are operating within (Fig. 3). Our strategy 
extends the concepts  introduced by Waddington 
and elaborated by Kauffman and Huang et 
al.31,32,39,40, where cancer mutations are turned 
into perturbations capable of reshaping these 
landscapes. We represent the cellular response 
or phenotype as another dimension where each 
network state (every point in the landscape) is 
constantly projected to and translated into a 
cellular decision or phenotypic outcome. 

We postulate that network-attacking mutations affect the cell not by 
perturbing how the signaling landscape is projected to the phenotypic 
dimension, but by changing the ensemble of dynamic networks that 
can be manifested in a cell and, in consequence, the number and 
stability of steady states in the signaling landscape, thus creating new 
attractor states that only cancer cells can occupy, also known as cancer 
network attractors (Fig. 3). This has additional implications for other 
mechanisms, such as oncogene and non-oncogene addiction41, where 
cancer cells would be trapped in cancer attractor states and could 
escape from them by reverting the genomic aberration that initially 
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Figure 2  Challenges in cancer network biology. (a) Functional consequences of cancer mutations. 
Using an ensemble of protein-function features (e.g., ATP binding, substrate specificity, activation 
of the protein kinase or phospho-tyrosine binding), which together represent a comprehensive 
description of a protein’s molecular functions, will enable more accurate and predictive evaluation 
of cancer mutations. (b) Modeling of disease networks. Although experimental and computational 
tools for modeling molecular networks exist, creating more comprehensive, sensitive and 
accurate new tools especially designed to model disease-associated networks still represents a 
big challenge in network biology. (c) Network-attacking mutations and cancer network attractors. 
Network-attacking mutations are mutations that lead to a new cellular phenotype by perturbing 
signaling networks either at the network structure or the network dynamics level. Network-
attacking mutations transform signaling networks, generating new possible network states by 
changing the number and/or stability of steady states in the signaling landscape31,32,39,40. These 
acquired signaling capabilities lead to alterations in the cell’s normal ‘cue-signal-output’ flow 
and thereby drive disease phenotypes (see Fig. 3 for further details). (d) Tumor subpopulations 
and micro-environment. The field is only beginning to comprehend the complex interactions that 
exist between different co-evolving tumor cell subpopulations and between those cells and the 
tumor microenvironment, both of which strongly influence tumor progression. (e) Network-aware 
and temporal drugs. As predicted by R.L. and Pawson66 several years ago, new pharmaceutical 
strategies that target networks instead of single proteins are becoming available47,48. We predict 
this trend will not only continue, but also include recent advances that highlight the possibility to 
‘cure’ networks using time- and order-dependent therapies68. In coming years, the discovery of 
resistant, metastatic, tissue or cell-specific networks could lead to an even greater advance in the 
field of network medicine (Fig. 5).
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Despite the fact that the number of known cancer network-attacking 
mutations is still relatively low, recent findings suggest that in-frame 
mutations are enriched on interaction interfaces57, which implies 
they are also likely to affect determinants of specificity. Moreover, 
many fusion proteins have been discovered that likely directly rewire 
or create new network states58. Given the rate at which cancer muta-
tions are being reported and the development of new computational 
methods for systematically identifying these mutations (Fig. 2b),  
we predict a steep increase in the number of network-attacking muta-
tions that will be uncovered in the coming years.

Personalized cancer network biology
Led by recent advances in sequencing technologies, the amount of data 
on cancer genome mutations is growing exponentially59. Current efforts 

caused the perturbed landscape. Given 
the high degree of determinism that exists 
between signaling networks, landscapes and 
phenotypes, we argue that network-attacking 
mutations are at the heart of all new decision-
making capabilities acquired by cancer cells. 
Consequently, in our view, the study of 
both network-attacking mutations and new 
attractor states acquired by cancer cells, that 
is, cancer network attractors, deserves the 
highest priority from the field. Such studies 
should be performed through systematic and 
quantitative sampling of cell dynamics at 
multiple levels (e.g., genomic or epigenetic, 
proteomic and phenotypic), followed by 
nonlinear interpolation and integrative 
computational modeling (Fig. 4).

The first network-attacking cancer mutation, 
described more than 15 years ago42, was a point 
mutation in the kinase domain of RET (M918T), 
which leads to a switch in peptide specificity. In 
line with their importance, network-attacking 
mutations have attracted more attention in 
recent years43–48. Moreover, information has 
been accumulating steadily about how specific-
ity in signaling networks and modular protein 
domains emerges49–51, leading to the defini-
tion of determinants of specificity in protein 
domains52,53. These determinants, sometimes referred to as  specificity-
determining residues, are residues that can lead to substrate specificity 
changes after mutation. Notably, direct mutagenesis of these determinants 
of specificity has been used to rewire the entire histidine kinase signal-
ing system in bacteria in a predictive manner54. Recent follow-up work 
indicates that mutations in determinants of specificity prevent cross-talk 
and allow protein family expansions55, in a process similar to the one 
powered by negative selection over Src homology 3 (SH3) protein domains 
that show similar specificity56. We propose that similar studies in human 
signaling networks, coupled with mapping of cancer mutations on these 
determinants of specificity, would shed new light on whether signaling 
rewiring is a general principle of oncogenesis and tumor progression, 
knowledge of which would in turn be critical as molecular therapies tar-
get proteins and their networks and not genes.

Figure 4  Traditional versus network biology 
approaches. In more traditional biological 
approaches, where only one or a few genes 
or proteins are sampled across a limited 
set of conditions, there has been limited 
success in deriving predictive models across 
conditions or cell types that would require 
comprehensive sampling. In contrast, 
network biology relies on systematic 
sampling across combinations of states 
that result in increased performance of a 
network model. Unlike classic approaches, 
in which the system is stimulated with 
single specific cellular cues (e.g., growth 
factor), in the network biology approach, the 
multivariate nature of signaling networks and 
the nonlinear relationship between signaling 
input and output can be successfully 
elucidated by interrogating the system with 
multiple orthogonal cues.

Traditional biology 
approach

Network biology 
approach

[S
tim

ul
i y

]

[Stimuli x]

High 
apoptosis

Sampling strategy - 
Comprehensive

Low 
apoptosis

Initial data set [S
tim

ul
i y

]

[Stimuli x]

Interpolation - 
Linear

[S
tim

ul
i y

]

[Stimuli x]

Sampling strategy - 
Model-driven

[S
tim

ul
i y

]

[Stimuli x]

Interpolation - 
Nonlinear

[S
tim

ul
i y

]

[Stimuli x]

Network
model

Cell
 fa

te 
A

Cell
 fa

te 
B

Signaling 
landscape

Phenotypic 
outcome

Signaling 
network

Network-attacking mutation
affecting network dynamics

Network-attacking mutation
affecting network structure

No 
cue

Cue

Cell
 fa

te 
A

Cell
 fa

te 
B

Cue

Cell
 fa

te 
A

Cell
 fa

te 
B

Cue

Mutation A Mutation BNo mutation

Cancer attractorCancer 
attractor

Cue

Genome

Wild type

Kinase

Substrates

A

B C

A

B C
P

A

B C
P

A

B C
P

A

B C

A

B CP

Figure 3  Network-attacking cancer mutations. Proteins are the key elements of signaling networks as a 
result of their ability to integrate external cues and direct the information flow toward a specific cellular 
outcome (e.g., epidermal growth factor (EGF) leading to proliferation or tumor necrosis factor alpha  
(TNF-a) leading to apoptosis). Network-attacking mutations affect the ‘cue-signal-output’ cellular 
information flow by affecting either the dynamics (middle), for example, by keeping proteins 
constitutively active, or the structure (right), by affecting protein specificity, of the signaling networks. 
Signaling networks can be represented as a landscape with the most likely network states represented 
as valleys (stable steady states or attractors) and the least likely network states as mountains (unstable 
steady states). Network-attacking mutations dysregulate signaling networks by perturbing the number 
and/or stability of steady states in the landscape, effectively creating new cancer-specific attractors that 
only cancer cells will be able to reach.
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from the Cancer Genome Atlas and Cancer 
Genome Project, now under the umbrella of the 
International Cancer Genome Consortium60, 
will facilitate the annotation and collection of 
cancer genome data. We foresee similar waves 
of technological progress and the generation 
of new consortiums in the cancer proteomics 
fields in the near future. The establishment 
of the Clinical Proteomic Tumor Analysis 
Consortium (http://proteomics.cancer.gov/pro-
grams/cptacnetwork),  and the implementation 
of new approaches61 and labeling techniques62 
optimized for patient samples are encouraging 
advances in this direction.

These advances, however, will need to 
be coordinated with new algorithmic and 
experimental high-throughput methods (e.g., 
high-content screening) capable of interpreting 
this flood of information because the functional 
interpretation of the data is currently the main 
bottleneck in the field of personalized cancer 
network biology. Computational integration 
of large quantitative data sets is also becoming 
increasingly important, and thus there is a 
growing requirement for supercomputing 
infrastructure with large algorithmic dynamic 
range (e.g., next-generation large shared memory systems). Benchmarking 
and validation of systematic workflows and algorithms is already receiving 
increasing attention through initiatives, such as the DREAM challenge63 
and IMPROVER64.

Two emerging areas in network biology that are likely to contribute to 
the future of cancer research are the study of cell-cell interactions (Fig. 2d)  
and drugs specifically designed to interfere with diseased network 
dynamics (that is, network drugs; Fig. 2e).

R.L. and collaborators65 studied cell-cell interactions by isotopically 
labeling two distinct subpopulations of cells, one expressing ephrin-B1+ 
and the other Eph-B2+, and carrying out a comprehensive phospho-
proteomic analysis. This strategy facilitated the first measurements 
of phosphorylation events during the interaction of two cell 
subpopulations. The proliferative behavior of cancer cells is still poorly 
understood in part because it is difficult to experimentally study the 
transmission of proliferative factors from one cell to its neighbors3. 
Therefore, we argue that a similar isotopic labeling strategy could 
be used to investigate the cooperation between cells with different 
oncogenic lesions that together (that is, synthetic oncogenes; Figs. 1b 
and 2d) lead to tumor formation11.

Combination drugs that interfere with disease networks (so-called 
network medicine66) have been shown to lead to a better response than 
single-hit therapies by causing secondary perturbations to signaling 
networks47,48,67. Recent work by the Yaffe laboratory represents a clear 
leap forward within the field of network medicine68,69. Following network 
modeling, Yaffe and colleagues68 managed to decode the signaling 
network dynamics that drive resistance to DNA-damaging chemotherapy. 
This information was used to sensitize otherwise resistant triple-negative 
breast cancer cells to conventional DNA-damaging chemotherapy by 
administering doxorubicin (Adriamycin, Doxil) and erlotinib (Tarceva) 
in an order- and time-dependent fashion. This could be considered the 
first example of temporal network drugs (Figs. 2e and 5).

We predict that personalized or even tumor-specific cancer therapy will 
become a reality in the foreseeable future, starting from early diagnosis of 
the disease, followed by next-generation sequencing, proteomic analysis, 

high-throughput profiling of phenotypic cell states in the tumor and 
design of patient-specific combinations of network drugs with resistance 
follow-up (Fig. 5). Relatively new techniques, such as single-cell and high-
depth sequencing70,71, imaging72 and cytometry time-of-flight73, could 
prove especially valuable for monitoring the number, properties and 
behavior of different tumor subclones (Fig. 2d). Ideally, network drugs, 
such as the aforementioned order- and time-dependent combination68, 
should then be chosen based on the interpretation of sequencing as well 
as the proteomic and phenotypic analysis of tumor cells and tested on 
the tumor-specific cell lines and xenograft model. The best-performing 
combination should ultimately be transferred back to the patient (Fig. 5).  
This whole process should take the shortest time possible to avoid 
the evolution of the tumor in the patient and the consequent loss of 
relationship between the primary tumor and the cell line. Tumor-
specific cell lines would be kept and treated with the same drugs used 
in the patient to monitor tumor evolution and treat for resistance 
and/or metastasis as soon as there is enough evidence of it (Fig. 5).  
Ideally, every patient and paired xenograft or cell line should have a 
complete electronic record showing the treatment history to facilitate 
retrospective and cross-disease studies74,75.

Conclusions
Although we have highlighted some of the challenges that still exist in 
cancer network biology, substantial progress is also being made. For 
example, the usage of patient-derived tumor tissue in animal xenograft 
models to test the response to particular drugs aimed at developing 
new personalized cancer therapy is rapidly becoming an established 
technology76. Surgical orthotopic implantation to transplant tumors 
taken directly from the patient to the corresponding organ of immu-
nodeficient mice77 is currently one of the most promising methods to 
enable drug screening in patients. In addition, new clinical trials, such 
as the MD Anderson T9 project78, are under way in which patients are 
given therapy that targets tumor-specific aberrations. Nevertheless, 
the implementation of the strategy depicted in Figure 5 would benefit 
from further developments in technology, funding and legislation. For 

Figure 5  Personalized cancer network biology. The goal of personalized cancer network biology is to 
be able to treat each tumor with the best combination of drugs tailored to that tumor. Ideally, early 
diagnosis should be followed by the development of tumor-specific cell lines and xenograft models, 
cancer genome sequencing, and proteomic and phenotypic analysis. Combinations of network drugs 
should then be tried in the tumor-specific cell line and xenograft model and eventually transferred 
back to the patient. Continuing to treat the tumor-specific cell culture with the same network drug 
combination as is used in the patient may be useful for understanding potential resistance and/or 
metastasis.
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example, generating models for cancer research that represent human 
patient diversity79 and mimicking the complexity of tumor microenvi-
ronments (J.T.E. and collaborators)80 remain extraordinary challenges 
(Fig. 2), and further research efforts and investments are required. 
As cancer biology becomes a ‘big data’ science, similar to physics, 
we expect to see more systematic, data-driven research efforts that 
will uncover and confront many of the tumor complexities that have 
remained elusive so far.

Despite recent predictions of >13 million cancer deaths in 2030 
(ref. 81), as discussed in this Perspective, we foresee that within this 
timeframe tumor-specific medicine will become a reality, thanks to 
a new generation of cancer network biologists who will hopefully 
overcome these challenges, positively contributing to the battle 
against this devastating disease and the significant reduction of patient 
suffering.
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UNIT 11.11Experimental and Computational Tools
for Analysis of Signaling Networks in
Primary Cells

Erwin M. Schoof1 and Rune Linding1

1Cellular Signal Integration Group (C-SIG), Center for Biological Sequence Analysis (CBS),
Department of Systems Biology, Technical University of Denmark (DTU), Lyngby, Denmark

Cellular information processing in signaling networks forms the basis of responses to
environmental stimuli. At any given time, cells receive multiple simultaneous input cues,
which are processed and integrated to determine cellular responses such as migration,
proliferation, apoptosis, or differentiation. Protein phosphorylation events play a ma-
jor role in this process and are often involved in fundamental biological and cellular
processes such as protein-protein interactions, enzyme activity, and immune responses.
Determining which kinases phosphorylate specific phospho sites poses a challenge; this
information is critical when trying to elucidate key proteins involved in specific cellu-
lar responses. Here, methods to generate high-quality quantitative phosphorylation data
from cell lysates originating from primary cells, and how to analyze the generated data
to construct quantitative signaling network models, are presented. These models can
subsequently be used to guide follow-up in vitro/in vivo validation studies. Curr. Protoc.
Immunol. 104:11.11.1-11.11.23. C© 2014 by John Wiley & Sons, Inc.

Keywords: phosphorylation � mass spectrometry � network biology � primary cell
signaling

CELL SIGNALING IN PRIMARY CELLS

Cellular responses to environmental stimuli are driven primarily by information pro-
cessing in signaling networks. Cells receive multiple input cues simultaneously at any
given time, and have to decide on appropriate cellular responses such as apoptosis, pro-
liferation, differentiation, or migration (Manning et al., 2002; Jorgensen et al., 2009).
Post-translational modifications (PTMs) are an important mechanism for cells to accom-
plish this, as they alter protein activity and interactions as required by a given cellular
response. For example, PTMs can direct and modulate the binding of protein domains
to a specific motif on a substrate protein (Pawson, 1995; Seet et al., 2006), thereby al-
tering the kinetics of a protein-protein interaction. Although many types of PTMs exist,
such as ubiquitination, acetylation, or methylation, phosphorylation events are among the
most extensively used by the cell. They largely govern cellular information processing,
and have been demonstrated to be involved in most fundamental biological and cellular
processes such as protein-protein interactions, enzyme activity, and immune response
(Miller and Berg, 2002; Cannons and Schwartzberg, 2004; Seet et al., 2006; Readinger
et al., 2009).

When considering phosphorylation-based signaling within the immune system, it is well
established that many immune responses are evoked through the activation of specific
receptors on the cell surface by, for example, ligand or antigen binding. These, in turn,
activate protein kinases to generate a cellular response through specific phosphorylation
network dynamics. For example, Syk, Tec, Src, and protein kinase C (PKC) family
kinases have extensively demonstrated to be involved in immune responses involving
T-cell activation upon antigen presentation (Monks et al., 1998; Isakov and Altman,
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2002; Miller and Berg, 2002). Due to its integral role in overall cellular functioning,
dysregulation of phosphorylation-based signaling often causes severe changes to the
cellular phenotype by evoking distinct alterations to normal cellular responses. This,
combined with their ubiquitous nature, implicates them in many human diseases, and
the modulation of their dynamics constitutes potential treatment targets (Shawver et al.,
2002; Tan et al., 2009; Fedorov et al., 2010; Lemmon and Schlessinger, 2010).

To establish causal relationships between observed phosphorylation events and their ef-
fects on signaling networks, one must decipher not only the kinase-phosphosite relation-
ships (i.e., which kinase(s) phosphorylate(s) which phosphorylation sites/substrates), and
which phosphatases and phospho-binding domains (e.g., SH2, BRCT, or PTB domains)
dephosphorylate and interact, respectively, with the observed phosphorylation sites. Ad-
ditionally, insight must be gained into the biochemical effects that the modification of
these sites exerts on the cellular signaling proteins and networks and, ultimately, how
these alter cellular phenotypes or behavior (Cantley et al., 1991; Pawson and Hunter,
1994; Pawson, 1995; Pawson and Kofler, 2009; Brognard and Hunter, 2011; Creixell
et al., 2012).

Here, methods to generate high-quality, quantitative phosphorylation data from cell
lysates originating from primary cells, such as monocyte-derived immature dendritic
cells, are described. The strategy for accomplishing this involves: (1) performing cell
lysis, protein digestion, and peptide labeling (see Basic Protocol 1); (2) separating the
peptides according to charge state, and allowing the fractions to be subsequently enriched
for phosphopeptides separately (SCX fractionation; see Basic Protocol 2); (3) performing
specific enrichment techniques that need to be deployed in order to boost the detection
of phosphopeptides (see Basic Protocol 3); (4) purifying samples for MS analysis (see
Basic Protocol 4); and (5) analyzing the generated data to construct quantitative signaling
network models, which can be used to guide follow-up in vitro/in vivo validation studies
(see Basic Protocol 5).

Several hurdles must be overcome when studying phosphorylation-based signaling (in
primary cells). First, the intrinsically low signal-to-noise ratio of phosphorylation events
due to their low abundance and low stoichiometry compared to non-phosphorylated
peptides (Jin et al., 2010) represents a challenge that significantly increases the complexity
of detecting these events. A second challenge is the transient nature of kinase-substrate
interactions, which, due to the high off-rate (koff) of a kinase-substrate interaction, often
renders it infeasible to determine experimentally the substrates of a particular kinase using
conventional affinity-based biochemistry methods such as tandem affinity purification
(TAP) or immunoprecipitation (IP) MS (Burckstummer et al., 2006; Dyson et al., 2011).
These approaches depend on stable interactions between the target proteins and the
antibody to separate the antibody-bound proteins from the cell lysate. In this manner, one
may be able to enrich for kinases and proteins bound to them, but this does not directly
translate to the kinase phosphorylating these proteins, as they may purely exist in a
scaffolding complex to bring the kinase in the appropriate cellular context for targeting
other substrates. Similarly, in vitro kinase reactions do not reflect the cellular context,
and thus the specificity in such assays and kinase peptide arrays do not accurately reflect
cellular specificity and often leads to large amounts of false positives (Obenauer et al.,
2003; Hjerrild et al., 2004). Kinases and substrates typically interact in a transient manner.
This makes cellular (or so-called in vivo) kinase-substrate interactions challenging or
impossible to capture by experimental methods alone (Linding et al., 2007).

While mass spectrometry (MS) is now able to identify and quantify thousands of phospho-
rylated residues from a single sample (Bodenmiller and Aebersold, 2010; Mohammed
and Heck, 2011; Monetti et al., 2011; Munoz and Heck, 2011), thereby providing a
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robust solution to the first aforementioned challenge (i.e., low signal-to-noise ratio), this
technique often cannot solve the aforementioned second challenge (i.e., identifying the
responsible kinases for these sites). Moreover, so-called Shokat kinases, which rely on a
modified ATP binding pocket within the kinase domain in an attempt to utilize labeled
ATP for identifying direct kinase substrates, in addition to their limited kinome-coverage,
cannot be readily deployed in primary cells, as the cells need to be stably transfected to
obtain the required kinase domain mutations (Shah and Shokat, 2003). This has led to a
large knowledge gap between the identification of phosphorylation sites and their regu-
lating kinases, information that is critical when attempting to elucidate kinase-substrate
networks. It has thus been demonstrated that a combination of computational and ex-
perimental approaches is required. Computational approaches have been developed to
address this issue, which, in combination with experimental techniques, can be deployed
to decrease the knowledge gap (Linding et al., 2007; Miller et al., 2008; Szklarczyk et al.,
2011).

GENERATING QUANTITATIVE PHOSPHO-PROTEOMICS DATA USING
MASS SPECTROMETRY

While immunoblotting using phospho-specific antibodies was originally one of the most
commonly used techniques to investigate phosphorylation events, the low-throughput
nature of this approach, combined with its confined character (phosphopeptide-specific
antibodies are required, biased by preconceived notions about which phosphorylation
sites/proteins are important), non-linear dynamic range, and inaccurate quantitation,
meant global quantitative approaches were desired. In the last decade, MS has been in-
creasingly deployed, as it is able to routinely identify and quantify thousands of proteins
in a single analysis, and is much more systematically biased (driven by protein stoichiom-
etry and technical design of the instrument), allowing such biases to at least partially be
corrected for (Callister et al., 2006; Prakash et al., 2007). Due to the low signal-to-noise
ratio of phosphorylated peptides compared to the non-phosphorylated peptides, specific
enrichment techniques need to be deployed in order to boost the detection of phos-
phopeptides. Several techniques exist for this, ranging from IP-based techniques using
broad-spectrum phospho-specific antibodies (e.g., against phospho-tyrosine peptides or
peptides with a simple motif, e.g., S/TQ for ATM/ATR kinases) to metal affinity-based
approaches such as immobilized metal affinity chromatography (IMAC) or titanium diox-
ide (TiO2; Kawahara et al., 1990; Tani and Suzuki, 1994; Posewitz and Tempst, 1999;
Pandey et al., 2000; Jiang and Zuo, 2001; Tanl et al., 2002; Larsen et al., 2005; Rikova
et al., 2007). These methods enable selective enrichment of phosphorylated peptides from
a peptide pool, thereby making them more readily detectable for the mass spectrome-
ter. An initial drawback of these approaches was the requirement of a relatively large
amount of starting material. This has subsequently been overcome by steadily increasing
enrichment efficiency as a result of technological developments, which currently makes
it possible to identify several thousands of phosphopeptides from a few hundred micro-
grams of starting material (Engholm-Keller et al., 2012; Zhou et al., 2013). This, in turn,
facilitates the investigation of the phosphorylation dynamics in biological systems where
a limited number of cells are available, such as primary cells, cancer stem cells, or blood-
circulating cells. Furthermore, sample fractionation techniques such as strong cation
exchange (SCX) (Mohammed and Heck, 2011), hydrophilic interaction chromatography
(HILIC) (McNulty and Annan, 2008), or electrostatic repulsion-hydrophilic interaction
chromatography (ERLIC) (Alpert, 2008) can spread the sample complexity across sam-
ple fractions, thereby facilitating greater phosphoproteome coverage by increasing the
time available for the mass spectrometer to find unique peptides.

Due to the highly dynamic nature of biological systems, phosphorylation-based signaling
networks, phosphoproteomes, or proteomes should not be conceptualized, interpreted,
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nor described as static entities. Gaining a deeper understanding of the dynamics within
signaling networks and how it relates to cell phenotypes is one of the major current
challenges in systems biology (Creixell et al., 2012). To this end, it is important to
elucidate the cellular information flow-through ensembles of signaling network states,
which can be accomplished by conducting, e.g., time-series experiments or dose-response
studies. The number and scale of time-points will depend on the system and biological
question at hand, but dynamic monitoring of the system will generally give much more in-
depth biological insight into the cellular processes driving a given phenotype (Janes et al.,
2005; Miller-Jensen et al., 2007; Kreeger et al., 2010). This also enables one to explore the
multivariate nature of cellular signaling (Linding, 2010; Jensen and Janes, 2012), which
is based on the notion that cells have to integrate many signaling cues simultaneously,
the responses to which are often non-linearly related to each other. This enables cells
to integrate the different stimuli and respond with appropriate quantitative phenotypic
outcomes. One can, for example, stimulate a biological system with a combination of
stimuli, i.e., chemical inhibitors, RNAi, antigens, or antibodies (Pedersen et al., 2010),
simultaneously or in a time-staggered manner for more comprehensive signaling network
models to be constructed (Saez-Rodriguez et al., 2009). These can subsequently guide
efforts to formulate so-called network-drugs, which target specific signaling network
states rather than individual proteins (Pawson and Linding, 2008; Erler and Linding,
2010; Creixell et al., 2012; Lee et al., 2012).

In cell culture, a quantitative tool can easily be introduced through isotopic labeling,
commonly known as stable isotope labeling by amino acids in cell culture (SILAC) (Ong
et al., 2002). The principle in SILAC is the incorporation of non-radioactive isotopes
through several (typically four to seven) cell divisions to ensure full isotope incorporation.
While this is a very powerful approach for several cell types, it is not a suitable option for
primary cells, as they can only undergo a limited, pre-determined number of divisions
in culture, if any at all. Rather, a post-culture labeling method where proteins/peptides
are labeled after cell lysis is a more effective approach. Several techniques for this
exist, the primary ones being isobaric tag for relative and absolute quantitation (iTRAQ),
tandem mass tag (TMT), or stable isotope dimethyl labeling (Thompson et al., 2003;
Ross et al., 2004; Boersema et al., 2009). These labeling strategies all work based on the
principle of adding a small but detectable mass shift to the cellular peptides to be able to
mix, process, and subsequently analyze them together. The mass shift introduced by the
labeling can be detected by the mass spectrometer, and used to trace the sample origin of
a given peptide (e.g., to a specific time point, treatment condition, cell type, etc.). This
also enables direct comparison of the abundance of the differentially labeled peptides,
thus strengthening the quantitation of peptides. For simplicity, this unit focuses on the
dimethyl-labeling method. The only limitation of this method compared to iTRAQ or
TMT is that while the latter can be used to simultaneously label and compare up to eight
samples simultaneously, dimethyl labeling is limited to triplex analysis. This does suffice
for many experimental setups, however, and is comparable to the widely used SILAC
approach. In general, dimethyl labeling is recommended as an appropriate and powerful
default experimental approach for the study of signaling in primary cells, while more
complex analyses (comparing more than three samples) would benefit from iTRAQ or
TMT approaches.

Finally, this protocol focuses mainly on TiO2-based enrichment, which, given the rela-
tively higher abundance of phosphorylated serine (pSer) and threonine (pThr) residues
in comparison to tyrosine phosphorylation (pTyr), will produce a larger number of
pSer/pThr identifications than pTyr (Olsen et al., 2006). TiO2-based enrichment gives
rise to a significant global phosphoproteome coverage, while a fraction of the pTyr events
can still be captured using TiO2. However, pTyr enrichment using pTyr-specific anti-
bodies such as pTyr-100/1000 or 4G10 is highly recommended if one desires a specific
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focus on tyrosine kinases or pTyr signaling (Rikova et al., 2007; Jorgensen et al., 2009).
In this case, the appropriate experimental protocols that are supplied by the antibody
manufacturers are recommended. Nevertheless, despite the fact that TiO2-based enrich-
ment does not target tyrosine signaling specifically, it is still capable of identifying some
of these events (Olsen et al., 2006). It is also worth pointing out that due to the high
inter-connectedness of kinase-substrate signaling networks, pSer/pThr signaling events
can still give insight to a particular phenotype in cases where high pTyr involvement is
expected, as they are likely to also be utilized by the cell as “down-stream” effectors to
achieve a specific response (Samelson et al., 1986; Dustin, 2009).

BASIC
PROTOCOL 1

CELL LYSIS, PROTEIN DIGESTION, AND DIMETHYL LABELING

The following protocol can in principle be applied to any type of primary cells of
interest, and should be done immediately after the experimental aim has been achieved
(e.g., stimulation, mixing of cells, drug/antigen exposure) and preferably in a time-point-
dependent manner. The number of cells to start with depends on the availability, but
this protocol is optimized for protein amounts ranging from 2 to 24 mg of protein, or
�20 to 200 million cells. For an overview of the complete experimental workflow, see
Figure 11.11.1; this protocol focuses on cell lysis, protein digestion, and peptide labeling.

Materials

Cell line(s) of interest
Phosphate-buffered saline (PBS; Sigma, cat. no. P5368), ice cold
Modified RIPA buffer (see recipe), ice cold
Acetone, HPLC-grade (Sigma, cat. no. 650501), −20°C
Denaturation buffer (see recipe)
Bradford reagent (Sigma, cat. no. B6916)
Dithiothreitol (DTT; Sigma, cat. no. 43815)
Chloroacetamide (CAA; Sigma, cat. no. 22790)
Lysyl endopeptidase (Lys-C; Wako, cat. no. 129-02541; 0.5 μg/μl stock solution

made up in MilliQ water)
Triethyl ammonium bicarbonate (TEAB; Sigma, cat. no. T7408)
Trypsin (Sigma, cat. no. T6567; 0.5 μg/μl stock solution made up in 50 mM acetic

acid)
Trifluoroacetic acid (TFA; Sigma, cat. no. T6508)
Acetic acid (Fisher Scientific, cat. no. A35-500)
Dimethyl labeling solution (see recipe)

15- or 50-ml tubes
Sonicator
Refrigerated centrifuge
Axial rotator
SepPak C18 columns (Waters, cat. no. WAT020515)
10-ml syringe (polypropylene)

Additional reagents and equipment for Bradford assay (Bradford, 1976)

Perform cell lysis and digestion

1. Remove the cell medium and wash cells two times with ice-cold PBS to remove any
serum-containing medium. For adherent cells, pour out the medium, add �20 ml of
PBS for a 15-cm dish (use more or less according to culture vessel used), briefly
swirl by hand, and discard. Repeat this process two times. For non-adherent cells,
spin down cells 3 min at 300 × g, 5°C, in a 15-ml tube, remove the supernatant, and
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Figure 11.11.1 Experimental workflow overview, highlighting the key components of the sample
preparation procedure.
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add 10 ml of ice-cold PBS, pipetting up and down carefully. Repeat this process two
times.

2. Remove the PBS from the final washing step, add 1 to 2 ml ice-cold RIPA buffer per
10 × 106 cells; if working with adherent cells, scrape the plates, otherwise pipet the
cells and lysis buffer up and down until full lysis is achieved. Subsequently, transfer
lysate to a 15- or 50-ml tube on ice (depending on total lysate volume), and sonicate
on ice three times, 10 sec each time.

3. Centrifuge 20 min, full speed �4500 × g, 4°C.

4. Transfer supernatant to a clean 50-ml tube, and add ice-cold acetone (−20°C) to
a final concentration of �80% acetone. Place at −20°C and precipitate proteins
overnight.

5. Centrifuge 5 min at 2000 × g, 4°C, to pellet the proteins, and discard the acetone
by decanting, being careful not to disturb the protein pellet.

6. Add sufficient denaturation buffer to a final concentration of �5 to 10 mg/ml,
and leave for a few hours to overnight at room temperature on an axial rotator to
completely dissolve the protein pellet.

Determine protein concentration

7. Determine exact protein concentration using a Bradford assay (Bradford, 1976),
either in cuvette- or 96-well plate format.

8. Add 1:1000 (v/v) of 1 M DTT to achieve a final concentration of 1 mM, and incubate
1 hr at room temperature on an axial rotator.

9. Add 1:100 (v/v) of 500 mM CAA to achieve a final concentration of 5 mM, and
incubate 1 hr at room temperature in the dark on an axial rotator.

10. Check that the pH is 8, and add 1 μg of lysyl endopeptidase (Lys-C) per 100 μg
of protein (1:100). For larger amounts of protein (>10 mg), add 1 μg of Lys-C per
200 μg of protein (1:200). Incubate �4 to 5 hr at room temperature on an axial
rotator.

If the pH needs to be adjusted, use a very low volume of 1 M NaOH or HCl.

11. Dilute sample(s) 1:4 with 50 mM TEAB in water to reduce (Thio)urea concentration,
and check that pH is 8.0 to 8.5 (adjust, if necessary, with 1 M NaOH or HCl).

12. Add 1 μg of Trypsin per 100 μg of protein (1:100). For larger amounts of protein
(>10 mg), add 1 μg of Trypsin per 200 μg of protein (1:200). Incubate overnight at
room temperature on an axial rotator.

13. Add TFA to a final concentration of 2% (using 20% TFA stock solution) to de-
activate any remaining Trypsin, and centrifuge the acidified peptide mixture 5 min
at 2000 × g, 20ºC, to clarify and transfer the supernatant to a clean tube.

De-salt samples and perform dimethyl labeling (adapted from Boersema et al., 2009)

If dimethyl labeling is not to be performed, skip step 19, the other steps must be performed
for desalting purposes.

14. For each sample that is to be labeled, prepare a SepPak column by attaching a 10-ml
syringe to it, after having removed the plunger.

15. Add 5 ml of 100% acetonitrile to each syringe, and allow it to run through the
SepPak column by gravity. Biochemistry of
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If necessary and if no vacuum manifold is available, minimal pressure can be applied
by replacing the plunger into the top of the syringe, but never push the plunger down
beyond the rubber part sitting at the top of the syringe as this may put too much pressure
on the column. The whole SepPak/dimethyl labeling process takes between 2 and 4 hr for
optimal results.

16. Wash the SepPak column two times with 4 ml of 0.6% acetic acid solution each
time, again allowing gravity to pull solution through the column.

17. Load equal amounts of each sample (as previously determined by the Bradford assay)
onto their respective SepPak columns and allow gravity flowthrough; depending on
the sample volume this can take a while.

18. Wash the SepPak column with 5 ml of 0.6% acetic acid solution.

19. Flush each SepPak column with 1 ml of its respective labeling reagent, repeating
this procedure five times to ensure complete labeling.

Again, this process could take a while and should take at least 10 min to ensure complete
labeling.

20. Wash the SepPak column with 5 ml of 0.6% acetic acid solution.

21. Elute the labeled peptides from the SepPak column two times with 2 ml of 80%
acetonitrile plus 0.6% acetic acid, each time.

22. Mix the differentially labeled samples, and proceed to Basic Protocol 2 for SCX
fractionation, or Basic Protocol 3 if no SCX fractionation will be done (recom-
mended for protein amounts <2 mg) and the sample will be directly enriched for
phosphopeptides.

In this case, if one is interested in analyzing proteome samples, other fractionation
techniques such as gel-based fractionation (Schirle et al., 2003), HILIC fractionation
(McNulty and Annan, 2008), or Offgel fractionation (Michel et al., 2003; Hörth et al.,
2006) can be deployed to gain better proteome coverage.

BASIC
PROTOCOL 2

SCX FRACTIONATION

To spread sample complexity over several fractions, protein samples >2 mg are recom-
mended to be subjected to SCX fractionation. This will separate the peptides according to
the charge state, and allow the fractions to be subsequently enriched for phosphopeptides
separately, thereby gaining a better phosphoproteome coverage. This protocol covers
sample injection, running the gradient, and subsequent pooling of fractions.

This protocol has been adapted from Olsen and Macek (2009).

Materials

Sample
Acetonitrile, HPLC-grade (Sigma, cat. no. 34851N)
SCX buffer A (see recipe)
SCX buffer B (see recipe)
Loading buffer: 1%TFA and 2% acetonitrile in MS H2O

HPLC/FPLC system (e.g., GE Healthcare AktaMicro)
1-ml SCX column or equivalent (e.g., Resource S 1ml; GE Healthcare Resources)
2-ml microcentrifuge tubes

1. Load sample into the LC system as per manufacturer’s instructions.

2. Load the peptides onto an equilibrated 1-ml SCX column as per manufacturer’s
instructions, and elute the peptides into clean 2-ml microcentrifuge tubes over a
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30-min period using the following gradient: 1% to 30% SCX buffer B gradient,
followed by 5 column volumes of 100% SCX solvent B, and ending the gradient with
5 column volumes of 100% SCX buffer A to equilibrate the column.

Make sure to collect all of the sample, including the flow-through and final equilibration
fractions. Fractionation on the Resource S 1 ml column should be carried out at a flowrate
of 1 ml/min.

3. Pool some of the fractions according to their chromatographic peaks, while obtaining
about eleven pools of fractions, which can be individually enriched for phosphopep-
tides.

The flow-through (early fractions) consists mainly of multiply phosphorylated peptides
and will not bind to the SCX column; it is therefore recommended to pool, and sequentially
enrich this pooled fraction for phosphopeptides at least three times.

4. If desired, dispense proteome samples into aliquots to be able to compare the phos-
phoproteome with the proteome.

While exact amounts depend on the chromatography and amount of sample loaded, pipet-
ting 5 to 10 μl from each pooled fraction is generally sufficient, and one should aim to
have about six samples in total for MS analysis.

5. Acidify and reduce the acetonitrile concentration of the proteome samples with
100 μl of loading buffer, and keep for several hours at 4°C until the StageTipping
stage; process as soon as possible.

BASIC
PROTOCOL 3

TITANIUM DIOXIDE PHOSPHOPEPTIDE ENRICHMENT

This protocol covers the TiO2-based enrichment procedure that enriches samples for
phosphorylated peptides. These steps should be carried out at room temperature.

This protocol has been adapted from Thingholm et al. (2006) and Olsen and Macek
(2009).

NOTE: This protocol is intended for SCX-fractionated samples. For non-fractionated
samples, adjust step 3 to sequentially incubate the single sample three to five times
separately to enrich for the majority of the phosphopeptides.

Materials

TiO2 beads (GL Sciences, cat. no. 5020-75010)
TiO2 loading solution (see recipe)
SCX samples (see Basic Protocol 2)
SCX buffer B (see recipe)
TiO2 washing solution 1 (see recipe)
TiO2 washing solution 2 (see recipe)
Acidification buffer (see recipe)
TiO2 elution buffer 1 (see recipe)
TiO2 elution buffer 2 (see recipe)

Automated sample shaker (e.g., Eppendorf Thermomixer)
End-over-end rotator
Centrifuge
C8 StageTips (Thermo Fisher, cat. no. SP321)
10-ml luer-lock syringes and StageTip adaptor (Millian, cat. no. HAM-31330)
96-well PCR plates
Vacuum centrifuge with microplate rotor (e.g., Thermo Savant SC250)
Litmus paper
Vortex
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1. Make up the TiO2-bead slurry solution by mixing �1.5 mg TiO2 beads per sample
with 6 μl of TiO2 loading solution, and put on an automated sample shaker (e.g.,
Eppendorf Thermomixer at 1400 rpm) for 15 min at room temperature. For example,
when analyzing fifteen SCX fractions, mix 25 mg TiO2 beads with 100 μl of TiO2

loading solution.

2. Add 6 μl of the TiO2 slurry to each sample, keeping the beads well suspended
in the slurry in between sample loading, by briefly vortexing the slurry prior to
transferring 6 μl to each sample. Incubate 30 min with end-over-end rotation at
room temperature.

3. Centrifuge sample tubes 5 min at 2000 × g, room temperature, to pellet the TiO2

beads, and for the most concentrated fractions (the flow-through and single-peak
fractions, based on chromatography), transfer the supernatant to a clean tube and
re-incubate with an additional 6 μl of TiO2 slurry for 30 min. For all other fractions,
aspirate off the supernatant, resuspend pellet in 100 μl of SCX buffer B, and
transfer to a clean microcentrifuge tube. Keep at 4°C while the other samples
are incubating, repeating this process until the flow-through has been enriched three
to five times, each time storing the beads in a clean microcentrifuge tube for MS
sample preparation.

4. Centrifuge all samples 5 min at 800 × g, room temperature, and aspirate supernatant.

5. Resuspend beads in 100 μl TiO2 washing solution 1.

6. Centrifuge all samples 5 min at 800 × g, room temperature, and aspirate supernatant.

7. Resuspend samples in 50 μl TiO2 washing solution 2, and transfer each sample to a
separate C8 StageTip, pipetting sample onto the top of the pipet tip in order for the
beads to collect on top of the C8 filter.

8. Flick the sample down into the StageTip using a wrist motion, and push the TiO2

washing solution 2 through the filter using a syringe, leaving only the TiO2 beads
behind.

9. Pipet 40 μl of acidification buffer into one well for each sample of a 96-well PCR
plate, as this improves phosphopeptide stability. Elute the phosphopeptides into the
PCR plate (one well per C8 StageTip) using one application of 20 μl TiO2 elution
buffer 1, and one application of 20 μl TiO2 elution buffer 2.

10. Vacuum centrifuge samples for �55 min (time is dependent on the model of vacuum
centrifuge used), without heat, until the total volume for each sample is �20 μl.
While waiting for this step to complete, one can prepare the C18 StageTips for final
peptide purification before MS analysis according to Basic Protocol 4 (up to step 4).

11. Add 20 μl of acidification buffer, and check that pH <2 using litmus paper. In case
of high pH (due to, e.g., insufficient ammonia removal during SpeedVac), add an
additional 20 μl of acidification buffer until the pH is <2.

12. Cover the PCR plate, briefly vortex (not too vigorously), and centrifuge 1 min
(without vacuum) to get the entire sample down into the well.

BASIC
PROTOCOL 4

MASS SPECTROMETRY SAMPLE PREPARATION

Following completion of Basic Protocols 1 through 3, the samples are ready to be purified
for MS analysis using C18 StageTips (Rappsilber et al., 2007).

Materials

Methanol, HPLC-grade (Sigma, cat. no. 34860)
Buffer B (see recipe)
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Sample buffer (see recipe)
Samples (see Basic Protocol 1, 2, or 3)
Buffer A (see recipe)
Loading buffer (see recipe)

C18 StageTips (Thermo Fisher, cat. no. SP301)
10-ml luer-lock syringes and StageTip adaptors (Millian, cat. no. HAM-31330)
Vacuum centrifuge (e.g., Thermo Savant SC250)
Mass spectrometer with nanospray source (e.g., Thermo Fisher Q Exactive or

Orbitrap Fusion)

1. Clearly label each C18 StageTip for the sample that is to be loaded onto it.

2. Prime the StageTips with 20 μl methanol, flicking the StageTip down using a wrist
motion to get the liquid down into the C18 filter, and subsequently slowly pushing
through the liquid using a syringe. Always ensure that a small amount of liquid
remains on top of the filter to keep it from drying out.

If many samples are to be prepared, one can opt to use a microcentrifuge for spinning the
liquid through the C18 filter. In this case, place the StageTip into a pipet adaptor placed
inside an empty 2-ml microcentrifuge tube. Spin the tips at �800–1000 × g to allow the
liquid to spin through in �30 sec.

3. Push 20 μl of buffer B through the StageTips.

4. Wash StageTips two times with 20 μl sample buffer, each time.

5. Slowly push the previously prepared (phospho-) peptide samples through the
StageTips.

6. Wash the StageTips two times with 20 μl buffer A, each time.

At this stage, the samples can be stored at 4°C, as long as the C18 filter remains covered
in buffer A. For phosphopeptide samples, the StageTips should not be stored for longer
than 1 to 2 weeks, whereas proteome samples can be stored for weeks. Long-term storage
(several months) of both types of samples can be done at −80°C.

7. Just before MS analysis, elute the purified StageTips two times with 20 μl buffer B,
each time.

8. Vacuum centrifuge the eluted peptides for �15 min (time is dependent on exact model
of vacuum centrifuge) until �5 μl total volume remains, then add 5 μl loading buffer
and mix the sample well by pipetting up and down. Briefly vortex and spin down for
1 min to collect the entire sample in the bottom of the well.

9. Run 5 μl of each sample on a mass spectrometer with nanospray source according to
the manufacturer’s instructions.

For example, run 2-hr gradients on 15-cm columns, and 4-hr gradients on 50-cm columns
to gain optimal (phospho-) proteome coverage.

BASIC
PROTOCOL 5

ANALYZING PHOSPHORYLATION DATA AND CONSTRUCTING
QUANTITATIVE NETWORK MODELS

After generating the MS data, the raw spectra have to be searched against a protein
database in order to match them against possible peptides from which the observed
proteins and phosphorylation sites can be identified. Several search algorithms exist,
some of the most popular being MaxQuant, ProteomeDiscoverer/SEQUEST, and Mascot
(Link et al., 1999; Perkins et al., 1999; Cox and Mann, 2008; Cox et al., 2011). While
these algorithms can all identify and quantitate peptides and proteins, they have different
accuracies and specific requirements, of which an extensive discussion is beyond the
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scope of this unit. Here, focus is on MaxQuant, as it is a relatively user-friendly tool
that enables custom confidence thresholds to be set, is actively maintained (Cox and
Mann, 2008), and is free-of-charge. Moreover, if samples are not labeled, MaxQuant
allows one to conduct label-free quantitation. However, this approach suffers from lower
accuracy than labeling-based quantitation as it compares peptide abundances between
samples, which have been prepared and analyzed separately. Therefore, they are likely
to be affected by (slightly) different sample preparation and analysis conditions, which
gives rise to artificial experimental artifacts that will influence the data. If possible, one
should therefore opt for labeled approaches, but it may nevertheless still prove useful in
specific cases where labeled approaches are impossible (Cox and Mann, 2008).

As briefly introduced earlier, an important aim when constructing quantitative phos-
phorylation networks is to derive crucial kinase-substrate interactions, which may be
involved in the phenotype that one is investigating. An increased or decreased activity
of one or several kinase(s) involved in this phenotype will likely be manifested in mod-
ulated phosphorylation sites, which may show higher or lower abundance. Interpreting
phosphorylation site modulation allows for the determination of kinases that are differ-
entially active between experimental conditions. However, a common pitfall that must be
taken into account is the importance of distinguishing whether an increase of phospho-
rylation site abundance is due to the substrate protein having been phosphorylated more
(thereby indicating an increased level of kinase activity), or whether the substrate protein
was more abundant, thereby explaining the increased levels of the observed phospho-
peptide(s). In the case of trying to determine dysregulated kinase-substrate networks, the
latter would give rise to false conclusions and should be avoided where possible. This can
be controlled for by comparing the phosphorylation levels to the protein levels, which is
why it is critical to, in addition to the phosphoproteomic samples, analyze the proteome
samples as mentioned in Basic Protocol 1, step 22. This allows for the normalization of
the phosphorylation levels to their respective protein abundance, thereby more accurately
acting as a proxy for kinase activity (Wu et al., 2011a; see Fig. 11.11.3).

As mentioned above, inferring kinase activity from phosphorylation levels requires com-
putational analyses, which, based on sequence-motif information of the sequence window
around a given phosphorylation site combined with the signaling network context of the
kinase-substrate interaction, can predict likely kinases to have phosphorylated observed
phosphorylation sites. Several approaches have been published over the years, including
GPS (Xue et al., 2008), KinasePhos (Wong et al., 2007), NetPhosK (Miller and Blom,
2009), and Scansite (Obenauer et al., 2003), but here a methodology using NetPhorest
(Miller et al., 2008) and NetworKIN (Linding et al., 2007), which are developed in-house
and have now been combined into a framework known as KinomeXplorer (Horn et al.,
unpub. observ.), is described. The main reasons for using these two algorithms are (1)
they are kept up-to-date on a regular basis, thereby including the latest knowledge in
the field, (2) they have been benchmarked intensively to provide their users with accu-
rate modeling capabilities (Miller et al., 2008), (3) they generate probabilities for their
predictions, thus allowing probabilistic integration with other types of data and use of
confidence thresholds to filter results, and (4) they provide the user with a convenient Web
interface, enabling analysis of large datasets in a semi-automated fashion. Additionally,
NetPhorest and NetworKIN will generate predictions for other phospho-binding domains
interacting with observed phosphorylation sites, enabling more comprehensive modeling
to be conducted. Even though these algorithms do not have complete kinome coverage
(222 out of 538 at the time of writing), they have the highest coverage compared to
alternatives, and additional kinases will be included as the required data becomes avail-
able. Below, a computational workflow that allows for the construction of quantitative
phosphorylation signaling networks, potentially highlighting kinases of interest in the
biological phenomenon that is being investigated, is described. As the above-mentioned
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Figure 11.11.2 Modeling workflow overview, detailing the different steps required for constructing quantitative network
models that can be used to guide follow-up functional validation in the laboratory.

database-searching software packages provide extensive documentation, here, data anal-
ysis steps once the raw MS data has been searched are described and the user has the
lists of identified proteins and phosphorylation sites with their corresponding quantitative
ratios. See Figure 11.11.2 for an overview of the modeling workflow.

Materials

Desktop computer with Internet access
Mass spectrometry spectral matching software (e.g., MaxQuant or Proteome

Discoverer/SEQUEST)
R statistical software
Visual network editing software (e.g., Gephi.org or Cytoscape.org)

1. Conduct a database search for protein and phosphopeptide identification and quan-
tification. In a larger project, it is very useful to rely on a fixed database and release
version, e.g., ENSEMBL, to enable easy sequence tracking and mapping. Set the false
discovery rate (FDR) to 1% to minimize false-positive protein and phosphorylation
site identifications (Elias and Gygi, 2007).
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2. Filter out the identified phosphorylation sites with a localization probability <0.75,
as for these peptides, the exact position of the phosphorylated residue cannot be
assigned with reasonable accuracy (Beausoleil et al., 2006; Taus et al., 2011).

3. Transform the protein/phosphorylation site ratios to log2. This balances out the posi-
tive and negative ratios, as down-regulated proteins/phosphorylation sites would oth-
erwise have ratios between 0 and 1, whereas up-regulated proteins/phosphorylation
sites would have ratios from 1 to ∞.

Log2 transformation ensures a more accurate and direct comparison between up- and
down-regulated peptides.

4. Statistically test protein/phosphorylation site ratios for significance. Using the R
statistical software package, use the two-sided, unpaired Mann-Whitney Wilcoxon
test. Ratios that have a p value of <0.05 can be considered as significantly up/down
modulated, whereas ratios with a p value >0.85 should be considered as being non-
modulated (Jorgensen et al., 2009).

5. Where possible, normalize modulated phosphorylation site ratios with their respec-
tive parent protein ratios. Parent protein ratios ideally are determined from peptides
originating from the same protein that cannot contain a PTM (i.e., peptides without
serine, threonine, tyrosine, and methionine residues). If at least three unique peptides
are observed for a given protein, its ratio can be determined by taking the mean of all
unique peptide ratios. This is to ensure that an observed increase in phosphorylation is
due to an increase in kinase activity, rather than an increase in substrate protein. This
can be accomplished by dividing the phosphorylation site ratio by the protein ratio,
as this normalizes the phosphorylation abundance compared to the protein abundance
and filters out any phosphorylation site modulation only due to increased protein
abundance or degradation (see Fig. 11.11.3). Additionally, protein phosphorylation
stoichiometry should be investigated to gain a better perspective of the phosphoryla-
tion dynamics (Wu et al., 2011b). This is again to ensure that observed phosphopeptide
regulation is due to altered kinase or phosphatase activity, rather than altered protein
expression levels or protein degradation.

6. Once the significantly modulated phosphorylation sites have been accurately deter-
mined, the NetworKIN and NetPhorest algorithms can be accessed via the portal
KinomeXplorer.info to predict the modulating kinases. For this, it is required to know
the protein sequence and the absolute location of the phosphorylation site within the
protein, which can be extracted from the database search results. This information can
be submitted to the KinomeXplorer Website (http://www.kinomeXplorer.info), which
will generate all possible predicted kinases for the submitted phosphorylation sites.
Due to the probabilistic nature of the framework, confidence filtering of the results
can be done and one should only include predictions with a score >1. Additionally,
as there will generally be multiple predicted kinases for a particular phosphorylation
site, only the top scoring kinase and kinases having a probability within 30% of the
top scoring kinase should be included for further analysis.

7. To more accurately model the phosphorylation networks, it must be determined
which kinases have been experimentally observed in the MS experiment. This can be
achieved by, e.g., using the protein identification lists and a filtering method, either
through a scripting language (e.g., Python or Perl) or the VLOOKUP function in
Excel. At the time of writing, the KinomeXplorer framework has not included this
functionality, but this will be implemented shortly. By filtering the kinase predictions
to only include kinases that were experimentally observed in the cell type(s) that
was analyzed, more in vivo/in vitro relevance can be extended to the in silico predic-
tions. In cases where the phosphoproteome is sequenced enough (i.e., coverage of a
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Figure 11.11.3 Phosphorylation site ratio normalization based on protein abundance corrects for protein
abundance affecting phosphorylation site abundance, rather than regulated kinase activity. The examples
shown are: (A) a phosphopeptide that is down-regulated in the heavy labeled sample, whose parent pro-
tein is also down-regulated, should be considered as non-regulated. (B) A phosphopeptide that is down-
regulated in the heavy labeled sample, whose parent protein shows no regulation, should be considered as
down-regulated. (C) A phosphopeptide that is up-regulated in the heavy sample, whose parent protein is
down-regulated, should be considered as an increased up-regulated peptide.

representative subset of the kinome), this principle can be extended to only include
kinase predictions from kinases for which a so-called regulatory phosphorylation
site has been observed. This is based on the principle that many kinases have a
regulatory loop containing a specific residue that is required to be phosphorylated
for the kinase to be catalytically activated (or inactivated) (Jorgensen et al., 2009).
This will, in the near future, be a built-in function of KinomeXplorer, which will
help automate the data processing steps. The regulatory phosphorylation sites, which
have been annotated from the literature, can be extracted from public resources
such as PhosphoSitePlus (Hornbeck et al., 2012), but it should be noted that de-
ploying this extent of filtering stringency requires considerable depth of kinome
coverage in the phosphoproteome data and may not always be feasible. Further-
more, despite on-going efforts, knowledge about these regulatory phosphorylation
sites is somewhat limited, so their filtering cannot be applied at a kinome-wide
scale.

8. Once the set of kinase predictions has been filtered to include only experimentally
supported predicted kinases and their observed substrates, insight into enriched kinase
activity and altered signaling networks can be gained. For the former, it can be
investigated whether a specific group of kinases is predicted to be more active in one
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experimental condition than another, by dividing the total number of phosphorylation
sites a particular kinase is predicted for by the total number of phosphorylation
sites modulated in the same fashion (up/down). This allows for inter-kinase and inter-
experimental comparisons, and can elucidate key kinases, which may display different
activity levels. To extend this enrichment analysis to a more global (e.g., disease-
or condition-specific) level, enrichment should be calculated compared to kinase
enrichment in a large collection of known phosphorylation sites such as phospho.ELM
(Dinkel et al., 2011) or PhosphoSitePlus (Hornbeck et al., 2012), as this normalizes
experimental kinase activity enrichment to a global activity profile (Van Hoof et al.,
2009).

9. For a more visual representation and potential mechanistic insight into the signal-
ing network dynamics, an overview of the kinase-substrate interactions can be ob-
tained by importing the filtered predictions into a visual network editor such as
Cytoscape (Shannon et al., 2003) or Gephi (Bastian and Heymann, 2009). Here, spe-
cific color coding can be deployed to distinguish between up- and down-regulated
kinase-substrate interactions, which can often pinpoint specific kinases that become
differentially regulated under given experimental conditions or time-points. If one is
mainly interested in kinase-kinase networks, it is useful to draw up the networks of
kinases that are predicted to phosphorylate each other, together with the observed
substrates they are predicted to phosphorylate. This may allow for the elucidation of
a core kinase-substrate network, driven by the interaction of several kinases, which
may be involved in the phenotype under investigation.

REAGENTS AND SOLUTIONS
Use deionized, distilled water in all recipes and protocol steps. For common stock solutions, see
APPENDIX 2A; for suppliers, see APPENDIX 5.

Acidification buffer

1% trifluoroacetic acid (TFA; Sigma, cat. no. T6508)
5% acetonitrile, HPLC-grade (Sigma, cat. no. 34851N)
MilliQ H2O
Store up to 1 week at room temperature

Buffer A

0.1% formic acid, HPLC-grade (Fisher Scientific, cat. no. A117-50)
H2O, HPLC-grade (Sigma, cat. no. 39253)
Store up to 1 month at room temperature

Buffer B

80% acetonitrile, HPLC-grade (Sigma, cat. no. 34851N)
0.1% formic acid, HPLC-grade (Fisher Scientific, cat. no. A117-50)
H2O, HPLC-grade (Sigma, cat. no. 39253)
Store up to 1 month at room temperature

Denaturation buffer

6 M urea (Sigma, cat. no. 15604)
2 M thiourea (Sigma, cat. no. T7875)
10 mM HEPES, pH 8 (Sigma, cat. no. H4034)
Prepare fresh or store upto 6 months at −80°C
Never heat >25°C
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Dimethyl labeling solution (Boersema et al., 2009)

Volumes based on one sample that is to be labeled (adjust as necessary):
4.5 ml 50 mM sodium phosphate buffer, pH 7.5 (mix 1 ml of 50 mM NaH2PO4

with 3.5 ml of 50 mM Na2HPO4)
250 μl 4% (v/v) formaldehyde in MilliQ H2O (CH2O for light, CD2O for medium,

13CD2O for heavy)
250 μl 0.6 M cyanoborohydride in MilliQ H2O (NaBH3CN for light or NaBD3CN

for medium/heavy labels)
Store for maximum 24 hr at 4°C

Formaldehyde (CH2O) (37% (v/v), Sigma, cat. no. 252549)

Formaldehyde (CD2O) (20%, 98% D, Isotec, cat. no. 492620)

Formaldehyde (13CD2O) (20%, 99% 13C, 98% D, Isotec, cat. no. 596388)

Sodium cyanoborohydride (NaBH3CN) (Fluka, cat. no. 71435)

Sodium cyanoborodeuteride (NaBD3CN) (96% D, Isotec, cat. no. 190020)

Sodium dihydrogen phosphate (NaH2PO4) (Merck, cat. no. 1.06346)

Di-sodium hydrogen phosphate (Na2HPO4) (Merck, cat. no. 1.06580)

Loading buffer

1% trifluoroacetic acid (TFA; Sigma, cat. no. T6508)
2% acetonitrile, HPLC-grade (Sigma, cat. no. 34851N)
H2O, HPLC-grade (Sigma, cat. no. 39253)
Store up to 2 weeks at room temperature

Modified RIPA buffer

50 mM Tris·Cl, pH 7.5 (Sigma, cat. no. T3253)
150 mM NaCl (Sigma, cat. no. S7653)
1% NP40/IgePal (Sigma, cat. no. I8896)
0.5% Na-deoxycholate (Sigma, cat. no. D6750)
1 mM EDTA (Sigma, cat. no. E1644)
β-glycerophosphate (5 mM final concentration) (Sigma, cat. no. G9422), add fresh
NaF (5 mM final concentration) (Sigma, cat. no. S7920), add fresh
Na-orthovanadate (activated; Gordon et al., 1991; 1 mM final concentration)

(Sigma, cat. no. 450243), add fresh
Roche complete protease inhibitor cocktail (one tablet added fresh per 10 ml RIPA

buffer) (Roche, cat. no. 05 892 791 001)
Store up to 6 months at −20°C

Sample buffer

3% acetonitrile, HPLC-grade (Sigma, cat. no. 34851N)
1% trifluoroacetic acid (TFA; Sigma, cat. no. T6508)
H2O, HPLC-grade (Sigma, cat. no. 39253)
Store up to 2 weeks at room temperature

SCX buffer A

5 mM potassium dihydrogen phosphate (Sigma, cat. no. P9791)
30% acetonitrile, HPLC-grade (Sigma, cat. no. 34851N)
70% H2O, HPLC-grade (Sigma, cat. no. 39253)
pH 2.7 with TFA
Store up to 1 month at room temperature
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SCX buffer B

5 mM potassium dihydrogen phosphate (Sigma, cat. no. P9791)
350 mM potassium chloride (Millipore, cat. no. 1.04936.0500)
30% acetonitrile, HPLC-grade (Sigma, cat. no. 34851N)
70% H2O, HPLC-grade (Sigma, cat. no. 39253)
pH 2.7 with TFA
Store up to 1 month at room temperature

TiO2 elution buffer 1

5% ammonia solution (Emsure, cat. no. 1.05432.1000)
H2O, HPLC-grade (Sigma, cat. no. 39253)
Store up to 3 days at room temperature

TiO2 elution buffer 2

10% ammonia solution (Emsure, cat. no. 1.05432.1000)
25% acetonitrile, HPLC-grade (Sigma, cat. no. 34851N)
H2O, HPLC-grade (Sigma, cat. no. 39253)
Store up to 3 days at room temperature

TiO2 loading solution

20 mg/ml 2,5-dihydroxybenzoic acid (Sigma, cat. no. 85707)
5% trifluoroacetic acid (TFA; Sigma, cat. no. T6508)
30% acetonitrile, HPLC-grade (Sigma, cat. no. 34851N)
H2O, HPLC-grade (Sigma, cat. no. 39253)
Store up to 1 month at 4°C

TiO2 washing solution 1

40% acetonitrile, HPLC-grade (Sigma, cat. no. 34851N)
0.25% acetic acid, HPLC-grade (Fisher Scientific, cat. no. A35-500)
0.5% trifluoroacetic acid (TFA; Sigma, cat. no. T6508)
H2O, HPLC-grade (Sigma, cat. no. 39253)
Prepare fresh

TiO2 washing solution 2

80% acetonitrile, HPLC-grade (Sigma, cat. no. 34851N)
0.5% acetic acid, HPLC-grade (Fisher Scientific, cat. no. A35-500)
Store up to 1 week at room temperature

COMMENTARY

Background Information
The techniques described in this unit en-

able a biological system under investigation to
be modeled from the phosphorylation-based
signaling perspective, potentially highlighting
key proteins involved in a phenotype of
interest. By utilizing experimental data as
input for computational modeling, more
in-depth insight about the signaling networks
can be obtained, the results of which can be
used to drive follow-up validation studies.
In any data analysis approach involving
computational predictions, it is of vital
importance to experimentally validate (some
of) the predictions, as this helps ensure that

the predictions are biologically relevant and
helps to guide threshold settings. Any key
kinases determined in Basic Protocol 5, steps
8 and 9, should be used as input for guiding
subsequent experimental validation studies,
where the exact role of these kinases in
a given phenotype should be functionally
assessed by, e.g., RNAi or chemical inhibitor
experiments. This can give conclusive evi-
dence of whether or not a kinase or group of
kinases are required for a specific phenotype,
disease progression, or drug resistance
development (Bakal et al., 2008; Jorgensen
et al., 2009; Lee et al., 2012). Preferably,
this is also done in a time-staggered manner
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to monitor the cellular responses to a
perturbation/stimulation or combination
thereof, as this will elucidate a more complete
picture of the altered signaling dynamics
within the cell and enables one to tweak
the resulting model to higher accuracy. In
complex diseases such as cancer, but also
in immune response–dependent signaling,
this can give more insight into potential
treatment strategies, as better understanding
of the signaling networks is obtained. By
integrating computational and experimental
approaches, the strengths of both techniques
can be combined, facilitating some limitations
of either technique to be (partially) overcome.
Finally, the modeling capacities generated
by the KinomeXplorer (and underlying
NetworKIN and NetPhorest algorithms)
framework will grow with the availability of
additional kinase-substrate recognition and
kinase-substrate interaction data, enabling
one to extend established kinase-substrate
network models to a kinome-wide level.

Critical Parameters
The most critical parameter of the meth-

ods described include conducting different ex-
perimental steps in a swift yet cautious man-
ner, due to the labile nature of phosphorylated
peptides. Stationary waiting stages should be
kept to a minimum, as it is critical to have
the enriched samples analyzed as quickly as
possible. Additionally, due to the moderately
volatile nature of many of the buffers (mainly
acetonitrile- and ammonia-containing ones),
preparing fresh buffers is imperative and they
should be replaced as indicated. Additionally,
all of the reagents utilized should be of HPLC
quality to reduce contamination of the instru-
ment, and likewise gloves should be worn
throughout the protocol to minimize keratin
contamination of the sample.

Troubleshooting
In the case of inadequate quantitative data

generated, it should be investigated whether
this could be attributed to inefficient label-
ing. The simplest way of checking for this
is to run a small aliquot of the labeled sam-
ples individually, and to search for unlabeled
peptides (Boersema et al., 2009). If this is the
case, repeat Basic Protocol 1 until full labeling
is achieved. In the case of low phosphopro-
teome coverage, several possible causes can
be identified, and pinpointing the exact one(s)
becomes a challenge. Generally, it is vital to
ensure a quick lysis procedure with ice-cold

buffers and adequate protease and phosphatase
inhibitors as described above, to ensure the
preservation of the phosphorylated proteins.
Additionally, it is important to monitor pH
levels as indicated in the protocol, and to en-
sure that vacuum centrifugation is done cor-
rectly to eliminate organic solvents in the sam-
ple. Finally, in the case of lack of specificity
during the enrichment (i.e., a large number
of unphosphorylated peptides being detected),
make sure the washing steps are carried out ac-
curately, removing as much of the supernatant
as possible without disturbing the pellet.

Anticipated Results
Depending on the amount of starting ma-

terial, the number of unique phosphorylation
sites that can be identified should range be-
tween hundreds and tens of thousands. Using
this protocol in house, the authors identify be-
tween �1000 to 4000 unique phosphorylation
sites with <2 mg of starting material without
SCX fractionation, and �20,000 phosphory-
lation sites with 24 mg of starting material.
Results will vary, however, depending mainly
on the biological system under investigation,
instrument performance, and experience.

Time Considerations
Lysing of cells requires 1 hr and acetone

precipitation should be done overnight. Dis-
solving protein in denaturation buffer requires
between a few hours and an overnight incu-
bation. Reduction and alkylation require 1 day
and an overnight digestion. Dimethyl labeling,
SCX fractionation, and phospho-enrichment
require 1 day. Mass spectrometry depends on
the number of samples and gradient times.
Data analysis is dependent on the num-
ber of samples and computer performance;
it will require anywhere between days and
weeks.
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Network biology studies of the human kinome are  critical for systems-based 
pharmacology. Here we present KinomeXplorer, an integrated platform for modeling 
kinome signaling networks by combining sequence specificity with cellular context. 
This novel framework features a next-generation scoring scheme, resulting in broader 
coverage, a boost in accuracy and greater usability. Both  a local package and an 
interactive web interface allows investigation of predicted kinase–substrate 
interactions from human and yeast, as well as modeling human phosphatase–
substrate interactions.

      

Powerful tools for the computational analysis and integration of  complex biological data are 
increasingly lagging behind our ability to generate data. This is true across diverse 
technologies such as cell imaging, DNA sequencing and mass spectrometry and this in turn 
creates a bottleneck for predictive modeling of biological systems. Specifically, it has 
become routine to create large-scale phospho-proteomics datasets to elucidate the 
phosphorylation events associated with a given phenotype or disease condition such as 
cancer. In order to fully utilize the power of these large-scale datasets, tools are required to 
de-convolute the underlying intracellular signaling networks that mediate and respond to 
these phosphorylation events.

The residues phosphorylated by kinases not only have a direct effect on the substrate 
protein activity, they also create binding sites for modular phospho-binding domains, thereby 
giving rise to directionality and logic gating in cellular signaling networks1,2. Kinases and 
phospho-binding proteins typically interact with phosphorylation sites in a transient manner, 
making these interactions challenging or even impossible to be captured by cellular/in vivo 
experiments alone. Furthermore, it is difficult to design kinase perturbation experiments 
because the kinome-wide selectivity and specificity of many kinase inhibitors is unknown3,4. 
As a result, we lack knowledge on which of the approximately 540 human kinases 
phosphorylate a given site: of the 42,914 phosphorylation sites currently annotated in the 
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Phospho.ELM database5, only ~20% have been linked to a kinase. This proportion is swiftly 
decreasing as technological advances in mass-spectrometry-based phospho-proteomics 
accelerate our ability to identify phosphorylation sites, but not to determine which kinase(s) 
phosphorylate(s) them. In other words, we keep discovering new  regulatory players, but are 
unable to place them into the cellular signaling network at the same rate.

      
To systematically identify these dynamic interactions, computational methods must be 
deployed to guide experiments. We have shown that combining computer algorithms with 
quantitative mass-spectrometry is a powerful approach to validate kinase-substrate 
relationships6. Critically, we showed that kinase specificity can be described in terms of two 
main contributing elements: namely the recognition motif of  the individual kinase (e.g. -S/TQ- 
for the ATM kinase) and proteins that can be functionally associated with it (i.e. not just 
proteins that directly interact with the kinase). Thus, we previously developed two algorithms 
to predict kinases for experimentally identified phosphorylation sites, NetPhorest7 and 
NetworKIN6, which are extensively used by researchers worldwide8-16. NetPhorest analyses 
experimentally identified phosphorylation sites, and classifies them according to the linear 
motif  (peptide specificity) of  the kinases and phospho-binding domains. Consensus motifs 
have been shown to be useful in the development of kinase- or kinase-family- specific 
antibodies, or to detect biases arising from the enrichment procedures commonly used in 
phospho-proteomics, such as phospho-specific antibodies, IMAC or titanium dioxide 
(TiO2)17,18. Complementary to NetPhorest, NetworKIN models kinase-substrate interactions 
in an integrative manner by combining sequence specificity motifs from NetPhorest with 
contextual network information (e.g. protein-protein interactions) from STRING19. This 
database provides the contextual information we utilize to disambiguate between kinases 
sharing the same or a similar motif  (and thus are grouped into one NetPhorest classifier), in 
addition to adding more confidence to the NetPhorest predictions. The network context of 
kinases is critical, as exemplified by the discovery that the phenotypic role of JNK kinase 
depends entirely on the state of  the cellular signaling networks prior to its activation20. In 
other words, it is critical to assess the protein networks embedding kinases and how  these 
are dynamically modulated (e.g. through time or perturbations) in order to predict cell 
behavior21.
      

Here we present an integrated platform, KinomeXplorer (Fig. 1), which provides workflows 
that enable researchers to efficiently analyze phosphorylation-dependent interaction 
networks and aids them in designing follow-up perturbation experiments. The platform 
provides the next generations of NetworKIN and NetPhorest, conferring increased prediction 
accuracy through a completely novel Bayesian schoring scheme, broader kinome coverage, 
new  phosphatome coverage, and a completely re-designed unifying web interface. 
KinomeXplorer distinguishes itself from other network modeling tools such as ARACNE22 or 
SteinerNet23 by 1) using proteomics data rather than microarray expression data, and 2) by 
attempting to construct novel kinase-substrate interactions based on experimentally 
observed phosphorylation sites. To facilitate down-stream interpretation of generated 
predictions, they can be directly imported into network visualization and interrogation tools 
such as Cytoscape24. Lastly, the framework also integrates the new  KinomeSelector tool that 
helps the user select an optimal kinase panel in order to functionally perturb the predicted 
phosphorylation signaling networks. 
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NetPhorest was designed to incorporate new  training data as soon as it becomes available7, 
and we have thus retrained and benchmarked the algorithm with new  experimental data in 
the form of position-specific scoring matrices (PSSM) and phosphorylation sites for neural 
network training from the latest Phospho.ELM5 and PhosphositePlus database releases25. 
This has allowed us to expand the coverage from 179 human protein kinases to 222. We 
also added 22 human phosphatases, which covers around 60% of human tyrosine 
phosphatases. Additionally, the kinome-wide sequence specificity matrices for all kinases in 
the budding yeast (Saccharomyces cerevisiae) have been included26. The yeast version 
covers 71 of the 122 protein kinases, giving rise to a ~60% kinome-coverage. As only 111 
kinases have been isolated as active enzymes in vitro, this resulted in a de-facto coverage 
of 64%. Because the NetworKIN algorithm builds upon NetPhorest, the improvements 
described above have also expanded NetworKIN’s coverage to >40% of the human kinome. 
Additionally, due to the high sequence homology, the human versions of NetworKIN and 
NetPhorest can also be deployed on mouse data12,27. We reengineered the NetworKIN 
algorithm to further improve the performance and usability. To calculate the NetworKIN 
score, we combine the NetPhorest probability and the STRING-derived proximity score 
using the Naive Bayes method, which dramatically improved the prediction accuracy 
comparing to use of NetPhorest alone (Supplementary Fig 1 and Table 1). By adopting more 
sophisticated parameters to penalize long paths, NetworKIN is now  more reflective of 
cellular context. We also tackled a well-known but neglected problem in network biology that 
over-studied proteins cause biases to the network structure. To avoid this bias, we 
systematically penalize for the connectivity of the intermediated nodes when calculating the 
network-derived proximity matrix. This novel scoring system brings a significant increase in 
accuracy (p < 1015 over both NetPhorest and the original NetworKIN algorithm), which 
originates not only from adding more data, but also from completely re-writing the code from 
scratch and implementing a new  statistical framework (Supplementary Fig 1 and Table 1). In 
terms of  usability, the new  scoring scheme generates scores to represent how  likely the 
phosphorylation interaction occurs in a probabilistic manner, which facilitates the 
interpretation of the results. Specifically, predictions with a score higher than the theoretically 
neutral value of 1 are likely to be true, and the higher the score for a given kinase, the higher 
the likelihood it is indeed this kinase. This makes it possible to directly compare predictions 
from different kinases by enabling a single cutoff  for all kinases without normalization, which 
is critical when modeling global kinome networks. Overall this has resulted in a more 
powerful, accurate and intuitive scoring system which is easier to interpret and deploy, also 
for wet lab biologists. 

KinomeXplorer provides a landing page with a flow-type guide to the user of  which sub-
module to use for the specific task at hand. For example, if  the user is interested in kinase-
substrate predictions, it directs the user to the NetworKIN submodule. Furthermore, we have 
completely redesigned the web interface for both NetPhorest and NetworKIN to make them 
more intuitive, tightly integrated, and applicable for analyses of large-scale experimental 
phosphorylation data. The workflow  of the new  unified interface is highlighted in 
Supplementary Fig. 2 and text.

      

Finally, to guide the design of follow-up kinase perturbation studies, we have integrated the 
KinomeSelector resource (http://kinomeselector.jensenlab.org/) into KinomeXplorer, which 
provides an interface to construct kinase-panels for inhibition studies. The interface consists 
of a tree of the human kinome from which the user can select kinases to include in the 
panel. Additional kinases that fall within a user-customizable threshold are highlighted. 
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These additional kinases are considered likely targets of the same inhibitors and thus need 
not be screened separately. The final set of selected kinases and kinases similar to them 
can be downloaded. We also provide a pre-computed panel of 100 kinase inhibitors 
(covering 88% of the human kinome).

      

The structure and dynamics of  the cellular signaling networks that control cell behavior are 
to a large extent determined by the combined actions of  kinases, phosphatases and 
phospho-binding domains. While we can readily assess dynamics of  phosphorylation sites, 
our ability to model and predict the associated networks is a critical area to advance. The 
importance of  this is underlined by the fact that kinases are the target of  about 75% of 
current world-wide drug development programs28,29 for complex diseases, and it is 
increasingly evident that they must be targeted in combinations, as elucidated by network 
models30. Therefore, the improvements reported here on the new  integrated framework have 
attempted to further improve the framework as a crucial tool to monitor and model the 
networks of kinases and their substrates. The resource is shared with both industry and 
academic research communities and hosted at http://KinomeXplorer.info.
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Figure legends  
Figure1. (a) Score calculation scheme of the NetworKIN algorithm. The NetworKIN 
algorithm combines network proximity scores and NetPhorest probabilities based on network 
distances and peptide sequences respectively. The network proximity score is calculated by 
multiplying the confidence score of  each edge while penalizing for the length of the path and 
the connectivity of  intermediate nodes. NetPhorest probabilities are calculated using the 
trained kinase classifiers, based on the peptide sequences surrounding the phosphorylation 
site. Then the network proximity scores and NetPhorest probability are converted to 
likelihood ratios. These two likelihood ratios are combined to generate a unified likelihood 
ratio. (b) Penalty scheme for hub nodes and path length. Hubs are penalized proportional to 
their summed up connectivity, based on the confidence scores. Long paths are penalized by 
multiplying each edge with a correction factor, leading to an exponential correlation between 
length and final penalty. Hub and length penalty parameters are systematically determined in 
the NetworKIN benchmarking process. Line widths are proportional to the confidence score. 
(c) Conversion of Network proximity score and NetPorest probability to likelihood ratios. The 
likelihood conversion processes are conducted in a kinase specific manner. For each kinase, 
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data points from positive and negative training sets are collected and arranged by the 
network proximity score and NetPhorest probability. Then a sliding window  along the scores 
is used to calculate the likelihood ratios.

Supplementary Figure 1. Performance comparison of NetPhorest and NetworKIN (old and 
new  algorithms, highlighting the benefits of adding contextual information. Kinases that have 
a large enough validation set (at least 20 positive sites) and where STRING could contribute  
context were taken into consideration. When estimating the NetPhorest performance, we 
counted a prediction as true if  the kinase was part of the kinase family classifier from 
NetPhorest. The NetworKIN results show  that, by adding contextual information, we are able 
to disambiguate between the potential kinases of  one NetPhorest group without losing 
predictive performance. To evaluate only the effect of the new  scoring algorithm, the same 
NetPhorest engine and benchmark data set were used. It is important to note that while the 
improvement in AUC may appear modest, the corresponding improvement in practical 
accuracy is typically several fold.

Supplementary Figure 2. The workflow  of the KinomeXplorer web interface. (a) NetworKIN 
accepts sequences, Gene/Protein names or MaxQuant/ProteomeDiscoverer results as 
input. In case of names, the Reflect web-service is used to find the best matches in Ensembl 
v59 and the corresponding sequence will be taken. (b) Sites can be selected in multiple 
ways: 1) manually by clicking, 2) based on a predictor for phosphorylation probability, 3) 
known high/low-throughput sites extracted from KinomeXplorer-DB and 4) by uploading a 
file with a list of  sites. Predictions will only be made for the selected sites. (c) In the result 
page, multiple filtering possibilities are given: 1) filtering by minimum score, 2) filtering by 
maximum distance from the best scoring kinase for a given site, 3) filtering by tree (user 
must select which should be shown). For performance reasons, only the best five predictions 
are shown by default. (d) After having filtered the results, the user can download the result 
as displayed or select to retrieve the full set of predictions.

Supplementary Table 1. Benchmark of  the NetworKIN method. Kinases/phospho-binding 
domains with more than or equal to 10 known phosphosites are shown.
Supplementary Table 2. Dataset for training NetPhorest and NetworKIN.
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Supplementary text

   

Dataset

NetworKIN integrates two types of data; protein networks from STRING, which combines 
various types of  data based on quality scores in a way that higher quality data has larger 
weight. The other one consists of kinase-substrate and phospho-binding domain interactions 
which have been identified in cells and have been reported in public databases (e.g. 
PhosphoELM, PhosphositePlus and PhosphoGRID) and position specific scoring matrices 
(PSSMs) which were generated by peptide array experiments in collaboration with the 
Yaffe31 and Turk32 labs. The reported kinase-substrate relationships have been manually 
curated from literature mining of peer-reviewed reports of individual kinases and their 
phosphorylation of specific downstream proteins (part of  the Phospho.ELM effort), where the 
specificity of  the kinase-substrate relationships have been carefully tested and validated. In 
vivo phosphatase interactions were obtained from HuPho33. The quality of the PSSMs was 
assessed based on the performance of predicting experimentally observed substrates using 
a rigorous computational pipeline consisting of homology reduction, data partitioning, and 
cross-validation as previously described in detail7, and only high quality data entries were 
kept and deployed in the current release. All the peptide screening data and in vivo 
interactions used for training NetPhorest and NetworKIN are listed in Supplementary Table 
2.

Data organization for training

The NetPhorest pipeline organizes datasets based on phylogenetic trees. In the tree-based 
organization of  the training dataset, each node has positive and negatives sets. The data 
organization process starts from leaf nodes, which are individual kinases. For a kinase, the 
positive set consists of  substrates that are reported to be phosphorylated by this kinase, and 
the negative set consists of substrates that are reported to be phosphorylated by other 
kinases. Through the automated selection procedure of  the NetPhorest pipeline (as 
previously described7), positive and negative sets are assembled in a way that they are best 
distinctive. NetworKIN uses the same data organization to avoid overtraining. Peptide 
binding data is used only in NetPhorest pipeline.

Utilizing STRING context information in KinomeXplorer

In the KinomeXplorer framework, phosphorylation sites are firstly classified according to the 
binding motifs of the kinases in the NetPhorest atlas7, after which these classifications are 
refined by integrating data about the direct and indirect protein-protein interactions between 
the predicted kinase and its potential substrates, as this relationship is a good predictor for in 
vivo association. As data sources of relevant information are sparse, it is preferable to take 
meta-information as a refinement, thus we decided to select the STRING database as the 
source for our approach. STRING integrates many different sources of  information, including 
text-mining, pathway databases or co-expression into one probabilistic protein-protein 
association score, allowing us to accurately integrate the NetPhorest and STRING 
probabilities. As most kinase-substrate interactions are unknown, we extend the STRING 
coverage to include also indirect paths, which broadens the association information to e.g. 
scaffolding processes. When calculating indirect pathways, we penalize for the path lengths 
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as well as for the overall connectivity of  intermediate hubs (highly connected nodes). Finally, 
the score combination and likelihood transformation normalize for the biases introduced by 
the contextual data (namely study bias and network topology), as the weighting of context 
and motif  information is adjusted specifically for each kinase. Supplementary Fig. 1 
demonstrates the additional predictive power gained by the integration of contextual 
information.

Naive Bayes method  

We combine likelihood ratios which are derived from the NetPhorest probability and network 
proximity scores. The conversion of the NetPhorest probability and network proximity score 
was done in a kinase specific manner. To convert a score (either NetPhorest probability or 
network proximity) to a likelihood ratio, positive and negative sets were arranged in 
decreasing order by the score and a sliding window  was applied. The likelihood ratio was 
calculated as the probability of observing the value in the positive set divided by the 
probability of observing the value in the negative set:

Wn and Ws are windows covering a certain range of  NetPhorest probability and network 
proximity score of String19.
The unified likelihood (Lu) of a certain NetPhorest probability and a certain network proximity 
score was calculated as the product of Ln and Ls by the joint probability rule:

      

Parameter optimization

To determine the optimal combination of the two parameters used (penalty for path length 
and node connectivity), we benchmarked against the same collection of  known 
phosphorylation sites used to benchmark NetPhorest. To avoid overtraining we 1) use the 
partitioning of phosphorylation sites into training, test, and validation sets organized by the 
NetPhorest training pipeline, 2) use for each site the motif  score from the neural network that 
had the site in the test set, not the training set, 3) limit the information used from the 
STRING network19 to only indirect evidence paths, and 4) optimize the parameters on the 
test set. This ensures that parameter optimization is performed based on sites that were not 
used to identify the sequence specificity of the kinase in question (i.e. were not used for 
training the neural networks), and that the STRING network scores are not based on the 
same evidence that is recorded in Phospho.ELM5. It also ensures that the validation set has 
neither been used for the training of NetPhorest or for parameter optimization of NetworKIN; 
it is hence an independent set on which the predictive performance can be accurately 
assessed.

      

Web interface

The KinomeXplorer web service provides an interactive and intuitive user interface 
(Supplementary Fig. 2). The user provides either a set of sequences in FASTA format or a 
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list of  protein or gene names. This input is then mapped to the protein collection of the 
STRING database19, using either BLAST or the Reflect web service34 depending on whether 
the user submitted a set of  sequences or a list of  names. In case of  ambiguity, the user is 
asked to manually select the correct protein. If  the input proteins only contain 
phosphorylation-dependent signaling domains (such as kinase, SH2, or phosphatase 
domains), the user is given the option to skip directly to the results page and view  predicted 
substrates or binding partners of  these. Otherwise, the input proteins are assumed to be 
substrates, and the user is asked to select phosphorylation sites. This can be done by 
uploading a file with sites, manually selecting individual sites, or using KinomeXplorer-DB, 
an in-house database which integrates all known phosphorylation sites from the 
Phospho.ELM5, PhosphositePlus25, and PhosphoGRID35 databases. The web interface also 
integrates the NetPhos phosphorylation-site predictor36, which can be used to add sites that 
are likely to be modified and/or to remove selected sites that are unlikely to be 
phosphorylated. The latter feature can be used e.g. to filter out likely false positive 
phosphorylation sites from dated and less accurately curated large-scale data sets.

     
The KinomeXplorer web interface also provides a high-throughput section, which takes the 
output of  phospho-proteomics experiments. Users can either input tab-delimited phosphosite 
information or the output of peptide search engines such as MaxQuant and 
ProteomeDiscoverer . When working with this workflow  method, it is imperative to select the 
correct sequence database in the pull-down menu, that was used for assigning the 
phosphorylation site locations and protein identifiers to guarantee correct protein/
phosphosite determination.

The result page offers multiple options to filter the NetPhorest or NetworKIN predictions: The 
primary filtering step is done by an absolute and a relative score threshold. This allows the 
user to show  only predictions that score above a certain threshold and to hide predictions 
that score considerably worse than the best prediction for the same site. Additionally, one 
can select for which domain-classes (e.g. kinases or SH2 domains) results should be 
displayed. The user has the option to download either the filtered or the full set of  predictions 
for further analysis.

In case that a FASTA file is uploaded with the respective phosphorylation sites, the protein 
identifiers can be of  any nature, as the protein sequences will be mapped to STRING to 
guarantee correct protein matching. This is to accommodate the use of any sequence 
database of choice (e.g. UniProt, Ensembl). The supplied protein identifiers and 
phosphorylation site locations will also be used in the final output, to allow  the user to easily 
identify their experimentally determined phosphorylation events of interest. This applies to 
the general prediction section of  the KinomeXplorer web interface, and the downloadable 
package version as described below.

Local version of NetworKIN and NetPhorest

We also provide a local version of NetworKIN and NetPhorest in the Download section of  the 
web interface (http://networkin-beta.cbs.dtu.dk/download.shtml). The package contains a 
python script of  NetworKIN and NetPhorest and the ANSI-C source code of NetPhorest and 
data files. NetworKIN takes a FASTA and phosphosite file as input, and predicts kinases, 
phosphatases, and other phospho-binding domains for the supplied phosphosites. The 
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phosphosite file can be either a tab-delimited text file containing protein IDs, positions, and 
amino acids of  phosphorylated residues, or output of  MaxQuant and ProteomeDiscoverer. 
Proteins are mapped to corresponding nodes in the STRING network using sequences in 
the input FASTA file, not using identifiers. Therefore, in case where standard protein 
identifiers are ambiguous, use of local package is recommended as the supplied sequences 
will be mapped to STRING proteins through BLAST. The predicted substrate-kinase list is 
provided with additional information such as names, protein identifiers, description, and 
intermediate nodes in the STRING network. Similarly, NetPhorest takes the FASTA and 
phosphosite file supplied by the user, and predicts kinases, phosphatases and other 
phospho-binding domains for all the supplied phosphosites. Exact details for installation and 
running of the package are provided in the README.txt file.
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Network biology aims to predict phenotype from multi-scale models of cellular information processing, by 
integration of quantitative genome-scale data. While Mass Spectrometry enables comprehensive sampling of 
cellular (phospho-)proteomes, the use of wild-type reference sequences results in masking of mutation-associated 
signaling events. Here we present an integrative strategy combining MS with NGS exome sequencing to perform 
genome-specific proteomic analysis and make cancer cell-line search databases available to the community. 
Deploying the approach on several cancer cell lines, we uncover otherwise-hidden signaling networks spanning 
many kinase-substrate interactions and a direct correlation between the fraction of sequencing reads reporting a 
variant allele and the likelihood of a mutation to be observed by MS. Additionally, we find a significant increase 
in the number of mutant peptides detected by MS compared to wild-type, suggesting a potential up-regulation of 
mutant protein expression in cancer cells. In conclusion, we show that genome-specific proteomics experiments 
enable both orthogonal cross-validation of DNA mutations and monitoring of the dynamics of signaling networks 
specifically dysregulated through mutations.

The fields of proteomics and genomics provide complementary views that are essential to integrate in order to predict 
and understand cellular phenotypes. Next Generation Sequencing (NGS) can provide information about mutations 
occurring throughout the entire genome, and recent advances in the MS field have led to a significant portion of the 
expressed proteome to be readily observable1-5. Additionally, through optimized enrichment procedures, a large set of 
PTMs (such as phosphorylation, acetylation and ubiquitination) can be analyzed and quantified through MS based 
studies. Thus, by identification and quantitation of thousands of modified peptides in a single experiment, it is possible 
to globally monitor altered signaling dynamics of mutated protein entities in any given biological system. Combined, 
these technologies pave the way to genome-wide investigations of how mutations at the DNA level are propagated at 
the protein level, and how the cell may regulate their expression. This provides a starting point to make inferences about 
the functional effects of such lesions, thus shaping a far more complete picture of the functional impact of mutations 
than genomic or proteomic studies alone6. Before conclusions can be drawn about the expression of mutations at the 
protein level, and their potential role in altering cellular information processing, it is imperative they are directly 
observed experimentally. Here, we present a methodology for including prior knowledge about the genome of a 
biological system being probed when conducting mass spectrometry (MS) based proteomics studies. By opting for next-
generation DNA sequencing (as opposed to RNA-seq) as our sequencing technology, we expand the number of 
mutations we can explore to include genes not transcribed at any specific time or condition7. While custom search 
databases have been used in the past8-11, conducting exome-sequencing experiments in combination with global 
(phospho-)proteomics experiments to investigate the expression of mutations at the proteome level and the dynamic 
modulation of mutation-flanking phosphorylation sites in cancer cell lines has thus far not been demonstrated. 

Traditionally, the raw data produced by an MS experiment, representing the peptides present within a sample, is 
matched to a database of reference protein sequences, in order to identify the observed peptide spectra using 
hypothetical spectra derived from in silico digestions (Figure 1A, C & E). If a mutation occurs in these proteins 
however, the experimental spectra will not match with their theoretical spectra, leading to either misidentification or 
lack of identification of these proteins. As many mutations have been attributed to play a role in disease12-14, it is 
imperative that the protein dynamics associated with these mutations can be studied. Here, we demonstrate that through 
the use of exome-wide, genome-specific spectra databases, obtained from accompanying NGS experiments, we can 
improve the number of identified proteins and phosphorylation sites due to identification of the mutated proteins and 
peptides, paving the way for more accurate and comprehensive modeling of signaling networks (Figure 1B, D & F). 
Additionally, as the functional impact of a mutation can be fundamental to a given disease phenotype, monitoring the 
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dynamics of mutations and phosphorylation events flanking these mutations at the protein level is essential for a more 
thorough understanding of cellular disease mechanisms. As a proof of principle, we here deployed the HT-29, HeLa and 
MCF7 cancer cell lines. These commonly-used cancer cell lines have previously been broadly characterized in terms of 
copy number variation, mRNA expression, phospho-proteomics and morphology4,15-21. In the case of HeLa, even its 
full exome has recently been sequenced22. However, to date no study has tried to integrate global datasets originating 
from both MS and DNA sequencing on these cell lines, to investigate how mutations are propagated at the proteome 
level. We analyzed the cell lines through deep (phospho-)proteomic and genomic analysis. Using the Q-Exactive 
Orbitrap platform (Thermo Fisher Scientific) we identified, on average, 8,012 unique proteins and 10,008 unique Class I 
phosphorylation sites in the different cell lines (see Table 1 for details). Using the HiSeq platform (Illumina), we 
performed exome sequencing with an average depth of 80X and >95% of all reads at 10X or more. This resulted, on 
average, in the identification of 9,133 missense variants, equating to 5,317 altered mutated protein sequences with 
respect to the human reference genome (see Table 2 for details). 

The MS spectra generated by the proteomics experiments were searched using two variations of the Ensembl v68 
sequence database: one containing only the wild-type reference sequences, and one containing both the wild-type and 
detected mutant variants of the proteins. These sequence databases were constructed separately in a cell-line specific 
manner, to avoid an increase in false discovery rates due to expanding the search space unnecessarily23,24. The increase 
in the number of entries of the sequence databases was on average of 9.4%. When using the reference Ensembl 
database, we were generally able to identify less proteins and phosphorylation sites, compared to including the mutant 
variants within the search database. In total, we identified an average of 220 additional proteins and 418 confidently 
localized additional phosphorylation sites by utilizing the genome-specific information for analyzing the proteomics 
data instead of the reference Ensembl database (see Table 1 for details). This is a 3-4% increase in identifications 
compared to using the reference database alone, and more importantly, opens the possibility for looking at the dynamics 
of these mutant proteins and phosphorylation sites, which would have otherwise been rendered undetectable due to 
sequence variation. Additionally, the proteomics approach enables one to distinguish technical artifacts from real 
variants present in the genome of the biological samples being studied.

Next, we attempted to investigate a long-standing question of how mutations are propagated at the proteome level. We 
analyzed whether the variant allele frequency (VAF) originating from NGS data, could be correlated to the likelihood of 
observing the mutation in the proteomics data. From the distribution of peptides (Figure 2A) containing a mutation with 
a given fraction of reads reporting a variant allele, it is clear that, in all three cell lines, this measure is directly related to 
the expression rate of the peptides bearing this mutation. In other words, the higher the number of NGS reads of a given 
mutant allele, the higher the likelihood of identifying the mutant peptide using mass spectrometry, providing orthogonal 
validation whether a given mutation is present at the genomic level and also expressed at the proteome level. 

In order to investigate how many of the variant sites were actually expressed in the cells, we generated all possible 
tryptic peptides in silico, in order to see what percentage was observed. As can be seen in Figure 2B, while exact 
percentages vary slightly between the cell lines, overall we only observe an average of 3% of all possibly observable 
mutant peptides. Compared to the peptide coverage of the non-mutated proteome (1% on average), this percentage is 
significantly higher than expected by chance. This may suggest that mutant proteins show a higher degree of expression 
than wild-type proteins, rendering them more detectable in the MS experiment. Validation experiments in this regard are 
currently on-going, as this argues against what has previously been published in the literature; that mutant proteins 
show a lower degree of expression than wild-type proteins25.

By combining the two technologies as described, our method provides a platform to conduct orthogonal cross-
validation of mutations using NGS and MS data. More specifically, we investigated whether we could identify cases 
where there was disagreement between NGS and MS results. Focusing our attention on mutations with the highest NGS 
evidence of a homozygous mutation (mutations having a VAF of 1), we identified a few cases for which MS only 
identified the wild-type peptide (HeLa:6, MCF7:3, HT29:4). While we cannot conclude that this mutation is not present 
(the mutant peptide may have simply not been detected by the MS), we can conclude that these positions were 
incorrectly identified as homozygous mutations by the NGS data. Out of all the possible mutated peptides with a 
reported mutant allele frequency of 1, we detected 167 peptides in HeLa, 143 peptides in MCF7 and 109 peptides in 
HT29 in our MS data (Online Supplementary Table 1). As six, three and four of these peptides were found respectively 
only as wild-type variants, our data suggests an NGS error rate of incorrectly assigning mutations as homozygous at 
around 3%. Of the total number of identified proteins, an average of 261 (309 in HeLa, 219 in HT29 and 255 in MCF7) 
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were identified based on their mutated peptides (Online Supplementary Table 2). According to our sequencing results, 
the number of proteins containing at least one missense mutation, and therefore potential number of additional protein 
variants identifiable by MS, is on average 5,317 for the cell lines investigated in this study. It is well established that a 
single amino acid variant can have a significant impact on protein function (e.g.26,27), hence underlining the importance 
of being able to observe these mutant variants and study their dynamics in the cell at the protein level.

Additionally, we sought to investigate mutations hitting the region surrounding observed phosphorylation sites. These 
sites are of particular interest to labs trying to model kinase-substrate interactions, as they would be rendered 
unobservable using the conventional MS approach, excluding them from any subsequent modeling analysis. As the 
presence of these sites confirms the fact that kinases do interact with them, this underlines the importance of being able 
to monitor their dynamics experimentally. In total, we identified 86 mutated peptides with confidently localized 
phosphorylation sites using our genome-specific database (Online Supplementary Table 3). In order to assess the 
‘systems effect’ of identifying these genome-specific phosphorylation events, we reconstructed the signaling network 
models containing all cell line specific phosphorylation sites that would have been missed had we not used a genome-
specific proteomics approach. By computational modeling of the upstream kinases using NetworKIN28,29 (Figure 3), it 
seems that, in all three cell lines, several PKC-family members interact with a number of proteins harboring a mutation, 
indicating a potential involvement in transcriptional regulation, cell migration, and drug resistance30-33. Additionally, 
several cell cycle related kinases such as MAPK1, MAPK3 and CDK-family kinases seem to interact with a subset of 
mutated proteins, suggesting these mutations may affect cell cycle or mitosis related signaling in these cell lines. 
Furthermore, Casein Kinase 1 also interacts with several mutated proteins, which may decrease the cell-cell-adhesion 
dependence and TRAIL-induced apoptosis of these cell lines34,35. Finally, the modulation of mutation-specific 
phosphorylation events by PAK1 may underlie the pro-survival phenotype associated with this kinase36-39.
 
In this study, we have provided additional evidence for the importance of integrating different types of ‘omics data, in 
order to obtain an accurate foundation for the reconstruction of cellular signaling networks. Additionally, we have made 
all the FASTA files available for download (http://www.lindinglab.org/GSP/index.html), so that genome-specific 
searches can be conducted on commonly used cancer cell lines by the community. This resource will be kept up-to-date 
with newly sequenced cell lines as data is made available. Due to recent advances in MS technology, it is now possible 
to obtain deep coverage of the proteome and phospho-proteome, which can be complemented by exome-wide deep 
sequencing data. We have here generalized and extended the concept of taking into account systems-wide genome-
specific protein sequence information when conducting MS experiments, allowing the identity and dynamics of the 
mutant proteome to be investigated. In order to assess the functional impact of mutations at a systems level, MS is a key 
technology, as it allows the analysis of tens of thousands of proteins and phosphorylation sites from a single sample. 
Considering the ever improving dynamic range in mass spectrometry, the number of observed mutant peptides, while 
currently relatively modest though significant, will increase in future studies. We demonstrate that conducting genome-
specific proteomics experiments is now feasible, even in an un-targeted, global MS setting. It is likely that additional 
benefits could be gained by deploying a targeted MS approach. Targeted proteomics such as SRM40,41 may be the best 
proteomics strategy to monitor mutant peptides and proteins, as global approaches can currently not guarantee that this 
specific part of the proteome will be represented in the MS results due to the inherent dynamic range limitation. This 
also likely explains why a large proportion of the mutations reported by the sequencing data could not be observed in 
the global MS results.

Based on our comparison of experimentally observed wild-type versus mutant peptides, where we conclude that only 
~3% of all mutant peptides are currently observable, the total number of possibly observable mutant peptides can be up 
to 30-fold higher than reported in this study. Given the rapid progression in MS and NGS technology, the need for, and 
benefit of this method is likely to increase significantly in future personalized network medicine studies14,42,43, where 
patient samples can undergo NGS and MS experiments to study a disease from the genomic and proteomic perspective, 
in order to guide the best possible therapeutic strategies. Additionally, it will most likely prove useful in distinguishing 
between key mutations driving a given disease state, or mutations arising sporadically. In conclusion, through the 
method described here, one can use the knowledge gained from NGS experiments in order to improve the sensitivity 
and accuracy of MS experiments, rendering the two technologies a very powerful combination for investigating 
complex diseases such as cancer, diabetes or neurological illnesses. 
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FIGURE LEGENDS
FIG.1
A & B) Limitations of unspecific MS 
A) Conceptual overview of how a mutated protein is identified as a wild-type protein in an unspecific database search. 
Due to the lack of the mutated peptide in the reference database, only wild-type peptides are used for matching to the 
parent protein. B) Only when a genome-specific database is used, can the mutated peptide be matched to its parent 
sequence and is the correct variant of the protein identified.

C & D) Example of genome-specific mutant peptide identified with our approach. 
MS spectra of wild-type (E) and mutant (F) versions of the same peptide. The mutant peptide becomes identifiable due 
to using an HT-29-specific database for conducting the MS data search.

E & F) Unspecific versus Genome-specific MS approach.
As opposed to previous unspecific MS approaches (C), our genome-specific approach (D) allows for a sample-specific 
search of MS data by exome sequencing the sample and generating a specific database. This approach allows the 
identification of mutant proteins that would otherwise be hidden and avoids the mismatching of spectra caused by the 
absence of a given mutant gene in standard reference databases.

FIG.2
A) Comparison of reads reporting a mutant allele and MS observability.
As can be observed in this graph, the higher the fraction of reads that report a mutation, the higher the likelihood that 
this mutant peptide is observed in the MS data.
B) Mutant vs Wild-Type peptide coverage by MS
Boxplots showing fraction of mutated and wild-type peptides that were observed by mass spectrometry.

FIG. 3
Hidden (phospho-) proteome
Phosphorylation-based signaling networks that became apparent only when using the genome-specific approach. For all 
the mutation-flanking phosphorylation sites, modulating kinases were predicted using the KinomeXplorer framework, 
and the mutant phosphorylated proteins and upstream kinases are represented in red and blue respectively.

ACKNOWLEDGMENTS
We would like to thank members of the Linding Lab and the Erler Lab (BRIC, Denmark)  for useful input on the 
manuscript. This work was supported by the Lundbeck Foundation and the Human Frontier Science Program.

AUTHOR CONTRIBUTIONS
R.L. conceived the project. E.M.S., P.C., A.P. and R.L. designed the experiments. E.M.S., P.C. and A.P. performed the 
experiments. E.M.S., P.C., A.P., A.W.A and J.K. analyzed the data, and E.M.S., P.C., A.P. and R.L. wrote the paper. R.G. 
supervised the genomic analysis. R.L. oversaw the project. 

COMPETING FINANCIAL INTERESTS
The authors declare no competing financial interests.

74



REFERENCES

1.! Beck, M. et al. The quantitative proteome of a human cell line. Mol Syst Biol 7, 549 (2011).
2.! Geiger, T., Wehner, A., Schaab, C., Cox, J. & Mann, M. Comparative proteomic analysis of 

eleven common cell lines reveals ubiquitous but varying expression of most proteins. Mol Cell 
Proteomics 11, M111.014050 (2012).

3.! Munoz, J. & Heck, A. J. Quantitative proteome and phosphoproteome analysis of human 
pluripotent stem cells. Methods Mol Biol 767, 297-312 (2011).

4.! Nagaraj, N. et al. Deep proteome and transcriptome mapping of a human cancer cell line. Mol 
Syst Biol 7, 548 (2011).

5.! Wisniewski, J. R., Zougman, A., Nagaraj, N. & Mann, M. Universal sample preparation 
method for proteome analysis. Nat Methods 6, 359-362 (2009).

6.! Krug, K., Nahnsen, S. & Macek, B. Mass spectrometry at the interface of proteomics and 
genomics. Mol Biosyst 7, 284-291 (2011).

7.! Ku, C. S. et al. Exome versus transcriptome sequencing in identifying coding region variants. 
Expert Rev Mol Diagn 12, 241-251 (2012).

8.! Branca, R. M. et al. HiRIEF LC-MS enables deep proteome coverage and unbiased 
proteogenomics. Nat Methods 11, 59-62 (2014).

9.! Cheung, W. C. et al. A proteomics approach for the identification and cloning of monoclonal 
antibodies from serum. Nat Biotechnol 30, 447-452 (2012).

10.! Low, T. Y. et al. Quantitative and qualitative proteome characteristics extracted from in-depth 
integrated genomics and proteomics analysis. Cell Rep 5, 1469-1478 (2013).

11.! Sheynkman, G. M., Shortreed, M. R., Frey, B. L., Scalf, M. & Smith, L. M. Large-scale mass 
spectrometric detection of variant peptides resulting from nonsynonymous nucleotide 
differences. J Proteome Res 13, 228-240 (2014).

12.! Greenman, C. et al. Patterns of somatic mutation in human cancer genomes. Nature 446, 
153-158 (2007).

13.! Wong, K. M., Hudson, T. J. & McPherson, J. D. Unraveling the genetics of cancer: genome 
sequencing and beyond. Annu Rev Genomics Hum Genet 12, 407-430 (2011).

14.! Vogelstein, B. et al. Cancer genome landscapes. Science 339, 1546-1558 (2013).
15.! Imami, K., Sugiyama, N., Tomita, M. & Ishihama, Y. Quantitative proteome and 

phosphoproteome analyses of cultured cells based on SILAC labeling without requirement of 
serum dialysis. Mol Biosyst 6, 594-602 (2010).

16.! Kim, J. E., Tannenbaum, S. R. & White, F. M. Global phosphoproteome of HT-29 human 
colon adenocarcinoma cells. J Proteome Res 4, 1339-1346 (2005).

17.! Le Bivic, A., Hirn, M. & Reggio, H. HT-29 cells are an in vitro model for the generation of 
cell polarity in epithelia during embryonic differentiation. Proc Natl Acad Sci U S A 85, 
136-140 (1988).

18.! Petretti, T., Kemmner, W., Schulze, B. & Schlag, P. M. Altered mRNA expression of 
glycosyltransferases in human colorectal carcinomas and liver metastases. Gut 46, 359-366 
(2000).

19.! Reichelt, W. H., Liu, Y., Luna, L., Eigjo, K. & Reichelt, K. L. Early oncogene mRNA 
expression in HT-29 cells treated with the endogenous colon mitosis inhibitor pyroglutamyl-
histidyl-glycine. Anticancer Res 22, 991-996 (2002).

20.! Shadeo, A. & Lam, W. L. Comprehensive copy number profiles of breast cancer cell model 
genomes. Breast Cancer Res 8, R9 (2006).

21.! Yasui, K. et al. Alteration in copy numbers of genes as a mechanism for acquired drug 
resistance. Cancer Res 64, 1403-1410 (2004).

22.! Landry, J. J. et al. The genomic and transcriptomic landscape of a HeLa cell line. G3 
(Bethesda) 3, 1213-1224 (2013).

75



23.! Bunger, M. K. et al. Detection and validation of non-synonymous coding SNPs from 
orthogonal analysis of shotgun proteomics data. J Proteome Res 6, 2331-2340 (2007).

24.! Li, J. et al. A bioinformatics workflow for variant peptide detection in shotgun proteomics. 
Mol Cell Proteomics 10, M110.006536 (2011).

25.! Shah, S. P. et al. The clonal and mutational evolution spectrum of primary triple-negative 
breast cancers. Nature 486, 395-399 (2012).

26.! Davies, H. et al. Mutations of the BRAF gene in human cancer. Nature 417, 949-954 (2002).
27.! Songyang, Z. et al. Catalytic specificity of protein-tyrosine kinases is critical for selective 

signalling. Nature 373, 536-539 (1995).
28.! Linding, R. et al. Systematic discovery of in vivo phosphorylation networks. Cell 129, 

1415-1426 (2007).
29.! Linding, R. et al. NetworKIN: a resource for exploring cellular phosphorylation networks. 

Nucleic Acids Res 36, D695-9 (2008).
30.! Carey, I., Williams, C. L., Ways, D. K. & Noti, J. D. Overexpression of protein kinase C-alpha 

in MCF-7 breast cancer cells results in differential regulation and expression of alphavbeta3 
and alphavbeta5. Int J Oncol 15, 127-136 (1999).

31.! Johnson, C. L., Lu, D., Huang, J. & Basu, A. Regulation of p53 stabilization by DNA damage 
and protein kinase C. Mol Cancer Ther 1, 861-867 (2002).

32.! Lee, S. A., Karaszkiewicz, J. W. & Anderson, W. B. Elevated level of nuclear protein kinase C 
in multidrug-resistant MCF-7 human breast carcinoma cells. Cancer Res 52, 3750-3759 
(1992).

33.! Masur, K., Lang, K., Niggemann, B., Zanker, K. S. & Entschladen, F. High PKC alpha and 
low E-cadherin expression contribute to high migratory activity of colon carcinoma cells. Mol 
Biol Cell 12, 1973-1982 (2001).

34.! Dupre-Crochet, S. et al. Casein kinase 1 is a novel negative regulator of E-cadherin-based 
cell-cell contacts. Mol Cell Biol 27, 3804-3816 (2007).

35.! Izeradjene, K., Douglas, L., Delaney, A. B. & Houghton, J. A. Casein kinase I attenuates 
tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis by regulating the 
recruitment of fas-associated death domain and procaspase-8 to the death-inducing signaling 
complex. Cancer Res 64, 8036-8044 (2004).

36.! Coniglio, S. J., Zavarella, S. & Symons, M. H. Pak1 and Pak2 mediate tumor cell invasion 
through distinct signaling mechanisms. Mol Cell Biol 28, 4162-4172 (2008).

37.! Li, Q., Mullins, S. R., Sloane, B. F. & Mattingly, R. R. p21-Activated kinase 1 coordinates 
aberrant cell survival and pericellular proteolysis in a three-dimensional culture model for 
premalignant progression of human breast cancer. Neoplasia 10, 314-329 (2008).

38.! Porcu, G. et al. Combined p21-activated kinase and farnesyltransferase inhibitor treatment 
exhibits enhanced anti-proliferative activity on melanoma, colon and lung cancer cell lines. 
Mol Cancer 12, 88 (2013).

39.! Sun, J., Khalid, S., Rozakis-Adcock, M., Fantus, I. G. & Jin, T. P-21-activated protein 
kinase-1 functions as a linker between insulin and Wnt signaling pathways in the intestine. 
Oncogene 28, 3132-3144 (2009).

40.! Picotti, P., Bodenmiller, B., Mueller, L. N., Domon, B. & Aebersold, R. Full dynamic range 
proteome analysis of S. cerevisiae by targeted proteomics. Cell 138, 795-806 (2009).

41.! Wolf-Yadlin, A., Hautaniemi, S., Lauffenburger, D. A. & White, F. M. Multiple reaction 
monitoring for robust quantitative proteomic analysis of cellular signaling networks. Proc 
Natl Acad Sci U S A 104, 5860-5865 (2007).

42.! Creixell, P., Schoof, E. M., Erler, J. T. & Linding, R. Navigating cancer network attractors for 
tumor-specific therapy. Nat Biotechnol 30, 842-848 (2012).

43.! Pawson, T. & Linding, R. Network medicine. FEBS Lett 582, 1266-1270 (2008).

76



ONLINE METHODS

Sample preparation for sequencing and data analysis. HT-29, HeLa and MCF7 cells were obtained from ATCC and 
grown to 80% confluency in a T-75 flask, and DNA extraction was performed using reagents and instructions provided 
with the Qiagen QIAamp DNA Mini kit. 5 ug of purified DNA were sent to Roche Nimblegen for full exome 
sequencing using the SeqCap EZ Human Exome Library v3.0 capture kit. High-quality reads, with > 80x mean 
coverage and > 95% of exome bases at 10x coverage, were obtained from sequencing and aligned to the NCBI37 
reference human genome (version GRCh37) using the Burrows–Wheeler Alignment Tool. The alignment was refined by 
means of quality score recalibration and around indel realignment using Genome Analysis ToolKit package. SNP 
calling was performed with SAMtools package using default settings. Next, results were further filtered with VCFtools 
using standard default settings as well as a minimum 10x sequencing depth threshold set for SNP calling. The data was 
further analyzed with the help of SAMtools and BEDtools packages and custom-written Perl and Python scripts. 
Finally, fasta files for both wild-type and mutant protein sequences were generated using the Variant Effector Predictor 
(VEP) package from Ensembl. 

Sample preparation for (phospho-)proteomics. HT-29, HeLa and MCF7 cells (obtained from ATCC and regularly 
checked for mycoplasma contamination) were grown to ~80% confluency in 15cm dishes to provide enough starting 
material for the phospho peptide enrichment in duplicate (24mg per repeat). Cells were lysed with ice-cold modified 
RIPA buffer supplemented with Roche complete protease inhibitor cocktail tablets and ß-glycerophosphate (5mM), NaF 
(5mM), Na-orthovanadate (1mM, activated). Lysates were sonicated on ice and spun down at 4,400xg for 20mins at 
4°C. Proteins were precipitated over-night in ice cold Acetone at -20°C, and dissolved in 6M Urea, 2M Thiourea, 
10mM HEPES pH 8.0. Proteins were reduced with 1mM DTT for 1hr, and alkylated with 5.5mM Chloroacetamide for 
1hr, after which they were pre-digested with Lysyl Endopeptidase (Wako) at a 1:200 enzyme-to-protein ratio for 4hrs at 
room temperature (RT). Lysates were diluted 1:4 with 50mM Ammonium Bicarbonate, after which Trypsin (MS grade, 
Sigma)  was added at a 1:200 enzyme-to-protein ratio and left rotating over-night at RT. Enzymatic activity was 
quenched by adding TFA to a final concentration of 2%, after which the samples were clarified by spinning down at 
2,000xg for 5 minutes and desalted using 360mg SepPak columns (Waters WAT020515). Peptides were eluted using 2x 
2mL of 40% AcN, 0.1% TFA, and 1x 2ml of 60% Acetonitrile, 0.1% TFA. For the global, Titanium Dioxide (TiO2) 
based phospho peptide enrichment, the eluent was directly subjected to SCX fractionation, where peptides were 
separated over a 0-30% Buffer B gradient in 60 minutes at a 1ml/min flowrate (Buffer A: 5mM potassium dihydrogen 
phosphate, 30% Acetonitrile, pH2.7; Buffer B: 5mM potassium dihydrogen phosphate, 30% Acetonitrile, 350mM 
potassium chloride, pH2.7). The resulting fractions were pooled according to their chromatography into 11 final 
samples, which were enriched seperately for phosphorylated peptides. Six aliquots were taken at this point for the 
global proteome analysis. The TiO2 enrichment was conducted similarly to [Olsen et al., MSPP 2009], with several 
adjustments. For the TiO2 loading solution, 0.02g/ml dihydrobenzoic acid was dissolved in 30% Acetonitrile and 4% 
TFA, and the TiO2 beads were incubated in this solution for 15 minutes prior to peptide enrichment. Each pooled SCX 
fraction was enriched with 1.7mg of TiO2 beads suspended in 6ul of TiO2 loading solution, and left to rotate end-over-
end for 30 minutes at RT. The flow-through (early eluting fractions)  was enriched three times consecutively, whereas 
the single SCX chromatography peak peptide samples were enriched twice. Samples were spun at 2000xg for 5 minutes 
(RT), and pelleted beads were washed with 100ul SCX Buffer B. Subsequently, beads were pelleted again (2000xg, 
5minutes, RT) and washed with 100ul 40% Acetonitrile, 0.25% acetic acid, 0.5% TFA. Finally, pelleted beads were re-
suspended in 50ul 80% Acetonitrile, 0.5% acetic acid, and transferred to separate in-house packed C8 StageTips 
[Rappsilber et al., Nat Protoc 2007]. Liquid was spun through at 3000 rpm for 1 minute, after which the phosphorylated 
peptides were eluted with 1x 20ul 5% Ammonia and 1x 20ul 10% Ammonia, 25% Acetonitrile into a 96-well PCR 
plate, containing 20ul of 1% TFA, 5% Acetonitrile solution. Peptides were concentrated to a total volume of 10ul in an 
Eppendorf Speedvac, and acidified with 40ul of 1% TFA, 5% Acetonitrile, after which they were desalted on in-house 
packed C18 StageTips prior to LC-MS analysis. 

For LC-MS analysis, peptides were eluted from the StageTip with 2x 20ul 80% Acetonitrile, 0.1% Formic acid, and 
concentrated to 5ul final volume. The eluent was acidified with 1% TFA, 2% Acetonitrile and loaded onto a 50cm C18 
EasySpray column (Thermo, ES803), using the Thermo EasyLC 1000 uHPLC system and the column oven operating at 
45°C. Peptides were eluted over a 250 minute gradient, ranging from 6-60% of 80% Acetonitrile, 0.1% Formic acid, 
and the Q Exactive (Thermo) was run in a DD-MS2 top10 method. Full MS spectra were collected at a resolution of 
70,000, with an AGC target of 3e6 or maximum injection time of 20ms and a scan range of 300-1750 m/z. The MS2 
spectra were obtained at a resolution of 17,500, with an AGC target value of 1e6 or maximum injection time of 80ms. 
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Dynamic exclusion was set to 20s, and ions with a charge state < 2 or unknown were excluded. For the proteome 
samples, the settings were the same, except for a gradient time of 240mins, maximum MS2 injection time of 60ms and 
dynamic exclusion of 45s. 

Computational analysis of MS data. In order to investigate the effect of using the HT-29-specific FASTA file as the 
MaxQuant (Version 1.2.7.4)  search engine database, we performed the raw data searches in three ways: 1)  standard 
Ensembl v.68 human FASTA, 2) standard Ensembl v.68 human FASTA + all possible single mutant proteins, and 3) all 
single possible mutant proteins only. The mass spectrometry proteomics data have been deposited to the 
ProteomeXchange Consortium (http://proteomecentral.proteomexchange.org) via the PRIDE partner repository 
[Vizcaino et al., NAR 2013] with the dataset identifier PXD000267. Variable modifications were set as Methionine 
oxidation, Protein N-term acetylation and Serine/Threonine/Tyrosine phosphorylation, and Cysteine 
carbamidomethylation was set as a fixed modification. FDR rates were set to 1%, and the ‘match between runs’ 
functionality was activated.
Results from the three independent searches were stored in a MySQL database, and all further analysis was done using 
scripts written in-house on our “CoreFlow” platform, based on the R statistical package, MySQL and Python. All code 
and data will be released to the public upon request. Search results filtering was based on phosphorylation localization 
probability >= 0.75 and a minimum MaxQuant peptide ID score of 50, in order to only use high confidence 
identifications. 
Peptide observability was calculated based on all possibly observable tryptic peptides originating from an in silico 
digest (minimum peptide length of 5 amino acids); the percentage of peptides observed was calculated using the 
following: peptides observed / total # of peptides observable x 100. For the percentage of Peptides Observed, the data 
size per bin of Variant Allele Frequency was between 8 and 97 with an average of 21, and the average of total peptides 
with possible mutation per bin was 800. We considered the data size to be sufficient for the estimation of the percentage 
of observed peptides. For the MS observability of the non-mutated peptides, we used sampling of the appropriate size 
from the set of all  `in-silico` digested peptides. The sample size was equal to the size of the data set of MS 
observability of the mutated peptides. To test for statistical significance of the difference in MS observability between 
the mutant and wild-type peptides, we applied a Wilcoxon statistical test, which does not rely on the assumption of 
normality or independence between data sets.
The NetworKIN modeling was based using an in-house up-to-date version of NetworKIN v3.0 (part of the novel 
KinomeXplorer framework, and the high confidence phosphorylation sites with a surrounding mutation were analyzed. 
Subsequently, kinase predictions were filtered to only include predictions with a score of 2 and higher in order to reduce 
false positives. The results were plotted in Cytoscape (http://www.cytoscape.org) [Shannon et al., Gen. Res., 2003]  for 
visual representation.

SUPPLEMENTARY REFERENCES:
Olsen, J et al., High accuracy mass spectrometry in large-scale analysis of protein phosphorylation. Mass Spectrometry 
of Proteins and Peptides, Volume 492, Chapter 7 (2009)
Rappsilber et al., Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for proteomics 
using StageTips. Nature Protocols 2 (8), 1896-906 (2007)
Shannon et al., Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome 
Research 13(11):2498-504
Vizcaino JA, et al. The Proteomics Identifications (PRIDE) database and associated tools: status in 2013. Nucleic Acids 
Res. 41(D1):D1063-9 (2013)
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Wild-Type Mutant + WT Wild-Type Mutant + WT Wild-Type Mutant + WT
Nr of Protein IDs 8,012 8,217 7,560 7,815 7,802 8,004
Nr of Phosphorylation Site IDs 7,484 7,868 14,848 15,440 6,439 6,718
Nr of Mutated Peptide IDs 0 350 0 237 0 274

HeLa HT29 MCF7
Table 1.

Table 2.

HeLa HT29 MCF7
Nr of Missense Variants 10293 8186 8922
Nr of Altered Protein Sequences 5832 4940 518179
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Abstract:
In order to respond to alterations in its environment, a cell has to integrate multiple input-cues and 
modulate its signaling networks accordingly, to elicit a specific response such as proliferation or 
apoptosis. This process becomes significantly altered during cancer development, with genomic 
modifications giving rise to differential protein dynamics, ultimately resulting in disease. The exact 
molecular signaling networks underlying specific disease phenotypes remains elusive, as the 
definition thereof requires extensive analysis of not only the genomic and proteomic landscapes 
within a particular tumor, but also the phenotypic responses to perturbations. Here, we set out to 
characterize the proteomic and genomic alterations required for a metastatic phenotype, in a pair of 
matched cell lines, SW480 and SW620. By subsequently subjecting the cell lines to a kinome-wide 
RNAi screen measuring cell proliferation, we pinpoint key kinases which are involved in the survival 
of metastatic cells. By perturbing these kinases using Sunitinib, we are able to specifically induce 
apoptosis both in vitro and in vivo. The clinical relevance of this inhibitor and our cell line-based 
model is assessed through global assessment of the proteomic and genomic landscapes in a panel of 
colorectal cancer patients. In conclusion, by deploying a network biology strategy on deciphering key 
molecular aspects of cancer metastasis, we find some novel potential clinical targets.

Introduction:
While extensive strides have been made in recent years in terms of defining biological characteristics 
(termed ‘Hallmarks’) that drive a tumor towards malignancy1, there is still great debate about the 
underlying causes. Several molecular processes are fundamental to all human disease, ranging from 
mutations occurring in the genome2,3, through epigenetic regulation of DNA transcription4,5, to 
dysregulated protein network dynamics6-12. While each of these may contribute individually, it is 
likely that a combination of these aspects is what ultimately drives disease and adds to the complexity 
of understanding a given disease phenotype. This ‘genotype-to-phenotype’ relation is one of the 
fundamental aspects network biologists are aiming to resolve, as, being the cellular effectors, protein 
signaling plays a critical role in defining the link between genotype and phenotype7,9,12,13.

Metastasis, the spread and colonization of the primary tumor to other, often vital organs, is 
responsible for 90% of all cancer-related patient deaths, and thus represents the hallmark with most 
therapeutic potential14. While the development of metastases is a multistep process, requiring the 
acquisition of several malignant phenotypic traits15, it is important to consider the origin of these. 
Extensive research has shown genomic instability to lay at the foundation of this16-18. However, what 
remains unclear is how the introduction of genomic variation leads to altered protein signaling 
dynamics, ultimately giving rise to the phenotypes required for metastatic progression.
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Here, we have undertaken a genome-scale investigation and comparison of metastatic versus non-
metastatic colorectal cancer cells, in an attempt to pinpoint specific proteins and kinases which may 
be fundamental to a metastatic phenotype (Figure 1). By taking an unbiased approach, both at the 
genome and proteome level, and deploying a multi-platform analysis including a kinome-wide RNA 
interference screen, we managed to identify many known and several previously unknown proteins 
which seem to drive the proliferation of metastatic cells specifically. To accomplish this, we have 
developed a computational framework for the global integration of these different datasets, and 
demonstrate the predictive power of our approach by validating the highlighted targets both in vitro 
and in vivo. Furthermore, we assess the clinical relevance of our cell-line based model by also 
globally assessing the genomic and proteomic landscapes of metastatic and non-metastatic patient 
tumors, and are investigating what percentage of metastatic colorectal cancer patients are likely to 
benefit from the inhibitors we tested in this study.

Results:
NGS analysis reveals different mutational landscapes
In order to characterize the impact of mutations which may play a role in the metastatic phenotype, 
we conducted full exome sequencing on the two cell lines using the Illumina HiSeq next-generation 
sequencing (NGS) platform, to determine which sequent variants are present in their genomes. In 
total, we identified 7,170 non-synonymous mutations, spanning 4,465 proteins in the SW480 cells, 
and 7,680 non-synonymous mutations covering 4,704 proteins in the SW620 cells (see Figure 2A for 
details). While there exists great overlap in the proteins which are affected by mutations (see Figure 
2B), there is still a significant number of proteins which are uniquely altered in each cell line (~12% 
in SW620, ~8% in SW480), and these cell lines should consequently not be considered isogenic, 
despite originating from the same patient. While it is possible that some of these mutations have been 
acquired after establishment of the cell lines, it is likely that a significant subset of them were part of 
the developmental process during tumorigenesis in the patient. These data support the commonly 
accepted notion that cancer is a developmental disease, with the acquisition of novel mutations over 
time contributing to tumor malignancy19,20

By comparing the genomic landscapes of the two cell lines, we were able to assess the likelihood of 
mutations occurring. Due to the current lack of being able to predict and quantify the potential 
functional impact of a given mutation, an alternative method of classifying which mutations are likely 
to play a role in the metastatic phenotype was needed. We thus investigated whether there is a 
correlation between the number of mutations a certain protein has at a particular time-point (i.e. in the 
SW480 cells), and the likelihood of additional mutations occurring on the same protein (i.e. in the 
SW620 cells). For this analysis, the genomic landscape of SW480 provides the relevant background 
to define the expected mutational state of a protein in SW620. Thus the information content of an 
NGS measurement in SW620 is based on the conditional probability distribution, P(xNGS,620|xNGS,480). 
We construct this distribution based on two empirical observations. First, the data displays an 
approximate linear relation between the average number of unique mutations observed  in SW620 and 
the number of mutations in SW480. Secondly, the distribution for the reduced quantity is well-
characterized by a Weibull distribution, the shape of which is defined by only one free parameter, ν. 
Remarkably, as depicted in Figure 2C, the ensemble of mutational data can be summarized using only 
two different values of this shape parameter. In all cases, where one or more mutations have been 
observed in SW480, the probability of another mutation appearing in the same protein are described 
by ν ≈ 0.56. However, if no mutations have been observed in SW480, the distribution for a mutation 
occurring on those proteins in SW620 follows a significantly different Weibull function (ν0 ≈ 0.49). 
These observations allow us to parametrize the required probability distribution to quantify the 
information content in observing a specific mutational state of a protein in SW620, and thereby use 
this measure as a proxy for quantifying potential involvement in metastatic progression. More details 
are listed in the supplementary text.
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Extensive research has demonstrated kinases to be involved in many metastasis-promoting cell 
behaviors such as cell proliferation, migration, survival and invasion21-29, and thereby form attractive 
therapeutic targets30-33. In fact, it has recently been shown that kinases are the most frequently mutated 
proteins in tumors, underlining the potential therapeutic implications they represent34,35. Given the 
diversification that tumor cells undergo throughout metastatic progression, and the ubiquitous 
involvement of kinase signaling in cellular signal processing36,37, it is likely that kinase activities will 
be altered during this process as well. Therefore, obtaining a global overview of which kinases and 
other proteins are dysregulated during tumorigenesis is of great importance. From our sequencing 
experiments, we found that 89 and 100 kinases harbored mutations in SW480 and SW620 
respectively, supporting the notion that additional kinases are affected by mutations during the process 
of tumorigenesis (Supplementary Table 1). However, the direct impact of these kinase-specific 
mutations on the disease phenotype remains to be established.

Mass Spectrometry highlights key altered proteins and phosphorylation sites in metastatic cells
In an attempt to determine the protein dynamics which may be fundamental to a metastatic phenotype, 
we characterized the global proteome and phospho-proteome of a matched pair of cell lines, SW480 
(non-metastatic) and SW620 (metastatic), using Mass Spectrometry (MS). These cell lines originate 
from the same patient, where the SW480 cell line was derived from the primary adenocarcinoma in 
the colon, whereas the SW620 cell line was derived from a lymph-node metastasis when the cancer 
recurred one year later and had metastasized38. Importantly, when injected into the spleen of mice, the 
SW620 cells cause metastatic growths to form in the liver, whereas the SW480 cells do not, 
demonstrating the metastatic potential of the SW620 cells. The challenge is to elucidate what 
biochemical networks drive these different phenotypes, and additionally, considering the extensively 
diverse role of phosphorylation events in cellular signal processing, we also opted to look at the global 
phosphorylation network structure8,9,27,36. To more accurately mimic the in vivo micro-environment 
these cells would normally be exposed to, we opted to grow them on a soft layer of collagen gel 
instead of plastic tissue culture dishes. We hypothesize that this exposes more in vivo-relevant 
signaling networks as the cells are free to migrate in multiple dimensions and are receiving more 
natural environmental stimuli. By using SILAC labeling39, we were able to mix the cell lysates early 
in the sample preparation workflow, thereby minimizing the experimental variation. Furthermore, this 
approach allowed us to conduct a direct comparison of protein and phosphorylation levels between 
the two cell lines, allowing the signaling networks to be analyzed quantitatively. To facilitate the 
comprehensiveness of the analysis, we used SCX fractionation, which, by reducing the sample 
complexity, enables greater depths of the (phospho-)proteome to be measured. Moreover, we 
complemented the TiO2 enrichment, which gives rise to large numbers of phosphorylated Serine and 
Threonine residues40, with phospho-Tyrosine specific enrichment using the pTyr-1000 antibody. In 
total, we identified 28,260 phosphorylation sites (see Figure 3C for details), of which we were able to 
quantify 14,699 between the two cell lines respectively. We also identified 9,070 proteins, of which 
5,683 were quantifiable. Additionally, we identified 271 kinases, enabling us to use protein data on 
more than half the kinome in our subsequent analyses. To ensure the quality of the data, we performed 
the experiment both with biological and technical repeats. Biological repeats were obtained by 
separately labeling and growing four sets of the cell lines, whereas the technical repeats were obtained 
by separately performing the SCX fractionation, phospho-enrichment and sample analysis on the 
Mass Spectrometer. As shown in Figure 2A, the correlation between two technical repeats was very 
high, underlining the accurate reproducibility of the analysis. In order to determine which proteins and 
phosphorylation sites were significantly regulated, we analyzed the distribution of the differences 
between the repeats for each observed peptide. As portrayed in Figure 2B, this distribution is very 
narrow, allowing us to set a relatively low threshold for determining significance. In fact, by selecting 
the 1% and 99% quantiles, we were able to use any ratios above ±1.43, while maintaining a 1% false 
positive rate. In other words, the quantitative data used for the final modeling was confidently 
determined to be measured above the technical variation which exists in any experiment. 
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A current limitation in many MS based studies is the use of a common reference sequence database, 
which resembles the genome (and inherently, the proteome) of an individual, rather than the exact 
genome of the sample which is being analyzed. As we have conducted exome sequencing on the cell 
lines, we were able to include the genome-specific mutations in our search database, and utilize this 
knowledge to assess the dynamics of these mutations at the protein level where they are able to exert 
an effect. While further investigation is currently on-going into the exact regulation of specific 
mutations, we have quantitative data on 740 proteins harboring at least one non-synonymous 
mutation, allowing us to compare their regulation between the metastatic and non-metastatic cells.

Kinome-wide RNAi screen pinpoints different kinases to be fundamental to cell survival
In an attempt to more directly assess the role of certain kinases in maintaining the metastatic 
phenotype, we investigated the effect of systematically knocking down each member of the human 
kinome (for an exact list, see Supplementary Table 2), and subsequently measuring alterations in 
proliferation. Despite the genome-scale nature of the NGS and MS studies, we opted to focus on the 
kinome in the functional screens due to their high clinical relevance. Currently, there are about 150 
small molecule kinase inhibitors under clinical investigation, and kinases are the focus of 
approximately 30% of all pharmaceutical research and development activities41, underlining their 
therapeutic potential.

As can be seen in Figure 3D, the effect of a given kinase knockdown generally resulted in a different 
response in the cell lines, suggesting that the two cell lines depend on a different set of kinases for 
their proliferation. In this plot, the nuclei counts are normalized to 100, where 100 represents the 
alteration of proliferation in response to a negative siRNA (with no expected effect). Thus, any value 
below 100 represents decreased cellular proliferation, whereas any value above 100 represents 
increased proliferation. For example, the genes highlighted in blue cause a significant reduction in cell 
number in the SW620 cells specifically, while not having much effect in SW480; likewise, the genes 
highlighted in red cause a significant reduction in cell number in the SW480 cell specifically, posing 
potentially specific therapeutic targets in these cell lines respectively. In contrast, the genes 
highlighted in purple cause a significant reduction in cell number in both cell lines, and would form 
candidates for non-specific targets in these cell lines. Interestingly, it appears that there are far fewer 
genes for which the knockdown increases proliferation in SW480 compared to SW620, but an 
explanation for this phenomenon remains elusive. Additionally, as portrayed in Figure 3E, it appears 
that the SW620 cells are more resistant to phenotypic changes, as represented by the shift of the RNAi 
effect distribution towards a nuclei count of 100 in comparison to SW480. These results are in line 
with the expectations originating from the widely accepted notion that metastatic cells have obtained 
much greater robustness required for e.g. surviving while in circulation14,20. Nevertheless, these 
results demonstrate that specifically targeting metastatic and non-metastatic cells is a possibility, 
which we aim to exploit both in vitro and in vivo. To facilitate the selection of metastasis-specific 
targets, we deployed a novel RNAi scoring scheme, where we calculate the ratios of a given kinase 
knockdown based on the normalized nuclei count in SW480 and SW620. For each gene, three unique 
siRNAs were used, and genes that had at least two active siRNAs were taken forward for the analysis. 
By subsequently dividing the SW620 normalized nuclei count with the SW480 one, we derive a ratio 
which depicts the selectivity of a particular knockdown. As shown in Figure 3F, a knockdown with a 
ratio below 1 represents a gene which induces apoptosis in the SW620 cells specifically, whereas 
ratios above 1 represent genes which would negatively affect the SW480 growth rate specifically. This 
ratio can subsequently be used directly to asses the therapeutic potential of the different kinases. In 
this table, we are highlighting the genes that seem to be most specific for SW620.
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Global Integrative Model
After generating all the data, several options were explored to facilitate a global integration, allowing 
to depict specific proteins which are likely to underlie the metastatic phenotype of SW620. As shown 
in Figure 4A, despite a significant overlap, the genes covered by each experimental approach are 
largely complementary. In order to avoid considerable biases by requiring a gene to have been 
observed in all three datasets, and rather, utilize the strength of the individual approaches, it was opted 
to integrate them based on information theoretical measures. The method is defined in depth in the 
supplementary material, and a conceptual overview is illustrated in Figure 4B. In principle, the 
approach relies on where a given datapoint falls within its respective distribution, and how much 
information is therefore contained in the measurement. We term this information ‘energy’. We include 
and integrate the following measures: the protein ratio and phosphorylation ratio from the phospho-
proteomics experiments, the nuclei ratio from the RNAi screen and the genomic information from the 
sequencing experiments. To account for missing values, we utilize the expected information as 
defined by the distributions of the individual datasets, and include an ‘entropy’ term, which allows 
setting the contributed information content of a particular dataset to 0 in case of a protein not having 
been observed. The terms originating from the individual datasets can subsequently be summed to 
represent the total ‘energy’ of a specific protein, which allows for a ranked hit list to be established 
(Figure 4C).

In vitro validation
After compiling our final target list, we set out to confirm whether the modulation of these targets 
using available small molecule inhibitors would have the expected effect (Figure 4D). To this end, we 
first conducted dose-response experiments, to determine appropriate dosing concentrations and drug 
effectiveness. As shown in Figure 5A, we ranged the dose from 100uM to 0.3nM, and determined 
each drug’s IC50 value. What is evident however, is that 1) not every drug was able to induce a 
significant reduction in cell number, and 2) not every drug had a physiologically relevant IC50 value. 
Only in the case of Dasatanib, Dovitinib, Foretinib, HG-9-91-01, Motesanib, MRT199665, Sunitinib, 
TAE684 and XL184 were we able to successfully establish EC50 values. Additionally, the difference 
in response between SW480 and SW620 was not always significant, indicating that not all drugs were 
able to specifically target the metastatic cells. Nevertheless, these experiments highlighted Sunitinib 
as a potential metastasis-specific drug, as a maximum response in SW620 was achieved at a dose of 
10uM, at which point the effect in SW480 had not yet been saturated. In fact, even at a dose of 
100uM, we still did not achieve a full response in SW480, hence suggesting a lack of full activity of 
this compound in this cell line. SW620 on the other hand, had an EC50 value of 3.6uM, making it a 
highly relevant drug for follow-up validation. Additionally, TAE684 also displayed a significant 
response, and was selected for follow-up experiments, as was Dasatanib, Foretinib, Motesanib, 
HG-9-91-01, MRT199665 and PP2. This last inhibitor was selected despite not showing a reasonable 
response, as it is the most specific inhibitor available for Fyn kinase, one of the top hits from our 
modeling approach.

Once it was established which inhibitors were able to induce a response when applied in isolation, we 
attempted to determine whether we could improve the effectiveness of Sunitinib by combining it with 
other inhibitors. As shown in Figure 5B,  we not only tested inhibitors in combinations, but also 
attempted to conduct combination treatment in a time-staggered fashion, as inspired by recent work 
by Lee and colleagues28. We depict the effect of both the single combination and the time-staggered 
combination treatment (pre-treatment for 24hrs, additional treatment for another 24hrs), but these 
inhibitor combinations did not seem to benefit from such a strategy. Nevertheless, the combination 
treatments did appear to have a beneficial effect, with increased apoptosis being observed in all the 
combinations except PP2 and HG-9-91-01.
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Patient sample analysis
In an attempt to assess the potential clinical relevance of our cell line-based findings, we undertook a 
global study of the genomic and (phospho-)proteomic profiles in a panel of patient samples. Samples 
originating from the four different Dukes’ stages (I - IV) were obtained, representing the 
tumorigenesis from non-metastatic to fully metastatic disease. The proteomics experiments were 
conducted quantitatively, with the SW480 cells being labeled with a medium label, the SW620 cells 
with a heavy label and the patient samples naturally representing the light label. In this manner we 
were able to directly quantify and compare the protein and phosphorylation levels to the two cell 
lines, and assess how representative they are when compared to a general patient population. As listed 
in Figure 6A, we managed to identify several thousands of non-synonymous mutations, proteins and 
phosphorylation sites across these samples, thereby representing a rich source of data for trying to 
decipher the genomic and proteomic players which define the disease phenotype in these patients. 
While extensive analysis is currently still on-going, it becomes evident from Figure 6B that patient 
heterogeneity is a severe obstacle in this analysis. Despite a large amount of proteins having been 
observed and quantified in all the samples (1634), it appears that they are not sufficient for classifying 
which stage a given tumor belongs to, as evidenced by a lack of clustering patterns. Similarly for the 
phosphorylation sites which were quantified across all 12 samples, there appears to be a lack of clear 
clustering patterns, thereby suggesting that the phenotype establishment in these patients is driven by 
a more complex interplay of these proteins, phosphorylation sites and mutations in their respective 
signaling network states. An in-depth analysis into this aspect is currently on-going, which will likely 
reveal which critical network attractors define the disease phenotype.

Mouse data
After the initial in vitro screens, we aimed to validate the relevance of the successful inhibitors in an 
in vivo setting. Both single and combination treatments were tested in a subcutaneous tumor 
implantation model. As shown in Figure 6C, from the single treatments, Sunitinib and Foretinib were 
able to reduce tumor growth significantly (Foretinib: p= 0.0065**, Sunitinib: p= 0.0006***) 
compared to vehicle treatment, whereas Dasatanib, Motesanib and TAE684 were unable to do so 
(Dasatanib: p=  0.4009, Motesanib: p= 0.2196, TAE684: p= 0.7705). P values were calculated from a 
linear regression analysis of the difference between treatment and vehicle. In the combination 
treatments (Figure 6C), all combinations demonstrated a significant reduction (Sunitinib + Dasatanib: 
p=  0.0098**, Sunitinib + Motesanib: p= 0.0014**, Sunitinib + Foretinib: p=  0.0034**, Sunitinib + 
TAE 684: p= 0.0009***), but none displayed greater effectiveness than Sunitinib alone (detailed in 
Figure 6D). This is in line with the effect of the single treatments, but it remains to be seen if there are 
beneficial effects in the longer term as experiments are still on-going. Data for the SW480 cells is also 
being generated, but currently unavailable as the subcutaneous tumors take much longer to establish. 
Based on the currently available data, it is planned to take Sunitinib and Foretinib forward into an 
intrasplenic metastasis assay, both as single and combination treatments, in order to appropriately 
assess their effectiveness in preventing metastatic tumor formation.

Discussion:
In this study, we have demonstrated the power of combining several technological platforms to assess 
different biological aspects, in an attempt to shed light on the roles and complex interplay of the 
genomic and proteomic levels of signal processing by the cell in ultimately deciding a phenotypic 
response. Our approach enables one to globally study the protein and phosphorylation dynamics, and 
to pursue the discovery of how genomic alterations may affect these. Additionally, by using genome-
specific search databases originating from the NGS experiments, we are able to monitor how 
mutations at the genome level are propagated to the proteome level and interrogate their dynamic 
modulation. This allows one to start deciphering how these mutations may be utilized by the cell for 
determining its phenotype. Despite the relatively low number of different mutations between the two 
cell lines, a high number of proteins and phosphorylation sites were detected with altered expression 
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levels. This seems to highlight the role of the proteome dynamics in establishing a particular 
phenotype. Furthermore, the value not only lies in the overlap of the approaches, but also in their 
complementarity, as a potential therapeutic candidate may not have been observed in all three of the 
datasets. For example, a gene harboring a specific mutation may play a critical role in the disease 
development, but may simply not have been observed using MS due to its inherent dynamic range 
limitation. MYO3A, MYLK3, WNK3 and PRKG2 (see Figure 4C) are good examples of these, as we 
only had genomic and phenotypic RNAi data on these kinases. Therefore, if MS had been deployed in 
isolation, they would not have been detected. Similarly, for e.g. Fyn, DCLK1 and TNIK, while we did 
not observe any mutations, we did observe a significant increase in protein expression and a 
significant decrease in cell number in the SW620 cells upon knockdown, thereby strongly suggesting 
their implication in maintaining SW620 cell viability. This would not have been detected through the 
use of NGS alone. Thus, an additional strength of this integrative approach is clearly signified by the 
use of an RNAi screen. By directly assessing the role of a particular gene in a phenotype of interest 
(in this case, the rate of proliferation of metastatic versus non-metastatic cells), we were able to 
extend greater relevance to a given MS or NGS observation. It is likely that, had we deployed a 
genome-wide RNAi screen, even more targets can be found, but we opted against this due to the 
general lack of well-characterized small molecule inhibitors to non-kinase protein targets. 
Additionally, as exemplified by the in vitro screen results, the inherent lack of specificity of small 
molecule inhibitors seems to hamper the direct translation of an RNAi-based observation to a clinical 
inhibitor. While some genes showed great promise in the RNAi screen, some of the inhibitors 
covering these kinases in their target-spectra failed to reproduce those results. Hence why it was 
preferable to use well-studied inhibitors with known kinase-specific inhibition profiles in this study42.

Based on both the in vitro and in vivo validation studies that were undertaken, Sunitinib seems to be a 
promising drug for treatment of metastatic colorectal cancer. It has been shown to have a broad target 
spectrum, to which some if its success may be attributed42. From the targets highlighted by our 
analysis, Sunitinib displayed a sub-micromolar affinity to 22 of them. Interestingly, Pfizer has also 
investigated its clinical potential in several clinical trials43,44. A Phase 3 clinical trial was halted 
prematurely, mainly due to toxicity effects, and we argue this was likely due to both inefficient patient 
selection and non-optimal treatment combination with current standard-of-care. For the former, it 
would be critical to assess the protein network signatures of the tumors to assess the likelihood of 
response to Sunitinib; for the latter, the combination of a broad spectrum kinase inhibitor with 
fluorouracil, leucovorin, and irinotecan seems to have given rise to additional toxicity-related adverse 
events and lack of concomitant response improvement 43. In the cell lines, we detected 76 Sunitinib 
protein targets, of which 48 were up-regulated in SW620 and 28 were up-regulated in SW480, 
providing a potential explanation for the positive response in SW620. In the patient samples analyzed 
in this study, on average, 34 target proteins of Sunitinib were detected, of which 15 displayed 
increased levels of expression compared to SW480. There was no clear visible trend with regard to 
more of these proteins to be up-regulated in later stages of tumor development however, again 
underlining the importance of assessing the dynamic proteomes of tumors before prescribing 
treatment. When comparing the cell lines proteomic profiles with the patient samples, a potential 
reason for the apparent lack of overlap could be attributed due to it being the primary tumor which is 
analyzed. While the primary tumor originating from the later tumor stages is known to have 
metastasized, the actual subpopulation within the primary tumor which is metastatic may however be 
rendered undetectable. One reason why SW620 is a powerful metastasis model system is due to its 
origin from a metastatic site, and we argue that one would therefore need to look at distant metastases 
in the patient as well, in order to gain a better understanding of the molecular networks in these. 
Nevertheless, our results indicate that the disease phenotype establishment in these patients is likely 
driven by a more complex interplay of their proteins, phosphorylation sites and mutational alterations 
than our initial analyses were able to capture. To this end, integration of publicly available datasets on 
the genomic landscapes of colorectal tumors will likely be vital, as it greatly extends the number of 
observations we can include in our model. Especially bearing in mind the accumulation of mutations 
throughout cancer development, it will be critical to assess a larger population of tumors, as based on 
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the numbers alone (Figure 6A,B), there does not appear to be a clear pattern in the samples we 
analyzed.

In conclusion, while additional analysis and experimental work is currently still on-going, our work 
thus far has demonstrated the value of generating and integrating several types of datasets, in order to 
assess different molecular mechanisms in depth. By taking a global approach, without much a priori 
knowledge,  and utilizing a novel unbiased integrative algorithm, we were able to pinpoint specific 
proteins which may be fundamental to metastatic survival, and validate our findings in vitro and in 
vivo. We demonstrate the importance of conducting in vivo validation, as not all our in vitro results 
were confirmed in vivo, thereby narrowing down the treatment options to potentially more clinically 
relevant ones. While not all the combination treatments were successful, a potential benefit may lie in 
being able to reduce doses for treatment, thereby reducing treatment side-effects. Additional 
metastasis-specific in vivo models are currently in progress, with the intra-splenic method being 
adopted to assess the efficacy of the described inhibitors in preventing metastatic growths. Overall, 
despite the seemingly infinite complexity of cancer, by focusing on one particular aspect and 
analyzing it in-depth, potential clinical benefit may be within reach.
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Figure legends:
FIG.1 Conceptual workflow of the study
Outline of the analysis pipeline workflow, highlighting the individual analyses to be done (exome 
sequencing and (phospho-)proteomics on both the cell lines and patient samples, and a kinome-wide 
RNAi screen measuring cell proliferation. This data is subsequently computationally integrated to 
result in a ranked hit list which are fundamental to metastatic cell survival. These hits are finally 
functionally validated in vitro and in vivo.

FIG.2 Next-Generation Sequencing Data
A) Table of number of mutations, mutated proteins and mutated kinases in the cell lines
B)  Venn diagram portraying the overlap of the mutated proteins between the two cell lines. Despite 
originating from the same patient, these are clearly not isogenic due to 12% and 8% unique proteins 
harboring a mutation in SW620 and SW480 respectively.
C) Weibull function plot of mutational landscape in SW620. In all cases, where one or more 
mutations have been previously observed in SW480, the probability of another mutation appearing in 
the same protein are described by ν ≈ 0.56 (solid line). However, if no mutations have been observed 
in SW480, the distribution for a mutation occurring on those proteins in SW620 follows a 
significantly different Weibull function (ν0 ≈ 0.49, dashed line). This measure is subsequently used as 
a proxy for quantifying potential involvement in metastatic progression.

FIG.3
A) Scatter plot showing the consistency of measurements over the two technical replicates
B)  Density plot highlighting the distribution of errors between two technical replicates. The quantiles 
are listed to show the ratio cutoffs for specific false positive rates.
C) Statistics from the mass spectrometry screen that was done on the cell lines.
D)  Scatter plot showing the normalized nuclei count in SW480 and SW620 for a specific kinase 
knockdown over the complete kinome screen. Genes specifically affecting SW620 and SW480 are 
highlighted in blue and red respectively, whereas genes affecting both the cell lines are highlighted in 
purple. The markers at 100 indicates no effect.
E) Density plot for visualizing the kinome-wide RNAi effects in both the cell lines. It is evident that 
SW480 is more susceptible to apoptosis induction, whereas SW620 is more resilient. The marker at 
100 indicates no effect.
F)  Table highlighting the top genes which significantly affect cell number specifically in SW620. The 
ratio, derived from dividing the normalized nuclei count in SW480 by SW620 is a measure of 
SW620-specific therapeutic potential.

FIG.4
A) Overlap of genes covered by the respective experimental approaches.
B)  Conceptual overview of global data integration model, where the total information content of each 
measurement is integrated to determine the global ‘energy’ of a given protein.
C)  The top hit list after the global data integration. Rows highlighted in green are covered by the 
inhibitors we selected for functional validation, yellow rows are proteins for which there were no 
available inhibitors and rows presented in red were tested unsuccessfully.
D)  Overview of kD / IC-50 values of the compounds for the top targets highlighted by the energy 
model. For inhibitors marked with *, values represent the remaining kinase activity at 1μM.

FIG.5
A) 12-point dose response curves for the selected inhibitors in both SW480 and SW620.
B) Combination and time-staggered treatment results of successful inhibitors, with results being 

highlighted for both cell lines.
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FIG.6
A)  Table presenting details on the mutation and proteomics data generated from the patient samples. 
Patients A through D represent Dukes’ Stage I-IV respectively, and we analyzed 3 samples per stage.
B)  Heatmaps highlighting lack of clustering between tumor stages, thereby suggesting that the tumor 
heterogeneity cannot be captured by the proteins and phosphorylation sites detected in a simple 
manner. Current analysis into this problem is still on-going.
C)  In vivo growth curves for single and combination treatments in mice implanted subcutaneously 
with SW620, highlighting Sunitinib and Foretinib as potent metastasis treatments. SW480 data is 
currently being generated.
D)  Detailed in vivo growth curves for the combination treatments, highlighting a lack of significant 
improvement over single Sunitinib treatment.
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Methods & Materials:
Sample preparation for Cell-line (phospho-)proteomics. SW480 and SW620 cells (regularly 
checked for mycoplasma contamination) were SILAC labeled over six passages, after which label 
incorporation was determined to be > 95%. Labeling was done as follows: two initial vials of SW480 
and SW620 were labeled heavy, and two initial vials of SW480 and SW620 were labeled light, in 
order to allow for a label-swap experiment and resulting in 4 biological replicates. The serum-starved 
cells were subsequently seeded at ~80% confluency on 1.25mg/ml collagen gel coated 15cm dishes, 
and left to settle for 24hrs. Cells were lysed with ice-cold modified RIPA buffer supplemented with 
4M Urea, Roche complete protease inhibitor cocktail tablets and ß-glycerophosphate (5mM), NaF 
(5mM), Na-orthovanadate (1mM, activated). Lysates were sonicated on ice and spun down at 4,400xg 
for 20mins at 4°C. Proteins were precipitated over-night in ice cold Acetone at -20°C, and dissolved 
in 6M Urea, 2M Thiourea, 10mM HEPES pH 8.0 at room temperature (RT). Protein concentrations 
were determined using Bradford, and heavy and light samples were mixed 1:1 (12mg each). 
Subsequently, the samples were reduced with 1mM DTT for 1hr, and alkylated with 5.5mM 
Chloroacetamide for 1hr, after which they were pre-digested with Lysyl Endopeptidase (Wako) at a 
1:200 enzyme-to-protein ratio for 4hrs at RT. Lysates were diluted 1:4 with 50mM Ammonium 
Bicarbonate, after which Trypsin (MS grade, Sigma) was added at a 1:200 enzyme-to-protein ratio 
and left rotating over-night at RT. Enzymatic activity was quenched by adding TFA to a final 
concentration of 2%, after which the samples were clarified by spinning down at 2,000xg for 5 
minutes and desalted using 360mg SepPak columns (Waters WAT020515). Peptides were eluted using 
2x 2mL of 40% AcN, 0.1% TFA, and 1x 2ml of 60% Acetonitrile, 0.1% TFA. 

For the global, Titanium Dioxide (TiO2) based phospho peptide enrichment, the eluent was directly 
subjected to SCX fractionation, where peptides were separated over a 0-30% Buffer B gradient in 60 
minutes at a 1ml/min flowrate (Buffer A: 5mM potassium dihydrogen phosphate, 30% Acetonitrile, 
pH2.7; Buffer B: 5mM potassium dihydrogen phosphate, 30% Acetonitrile, 350mM potassium 
chloride, pH2.7). The resulting fractions were pooled according to their chromatography into 11 final 
samples, which were enriched seperately for phosphorylated peptides. Six aliquots were taken at this 
point for the global proteome analysis. The TiO2 enrichment was conducted similarly to 45, with 
several adjustments. For the TiO2 loading solution, 0.02g/ml dihydrobenzoic acid was dissolved in 
30% Acetonitrile and 4% TFA, and the TiO2 beads were incubated in this solution for 15 minutes 
prior to peptide enrichment. Each pooled SCX fraction was enriched with 1.7mg of TiO2 beads 
suspended in 6ul of TiO2 loading solution, and left to rotate end-over-end for 30 minutes at RT. The 
flow-through (early eluting fractions) was enriched three times consecutively, whereas the single SCX 
chromatography peak peptide samples were enriched twice. Samples were spun at 2000xg for 5 
minutes (RT), and pelleted beads were washed with 100ul SCX Buffer B. Subsequently, beads were 
pelleted again (2000xg, 5minutes, RT) and washed with 100ul 40% Acetonitrile, 0.25% acetic acid, 
0.5% TFA. Finally, pelleted beads were re-suspended in 50ul 80% Acetonitrile, 0.5% acetic acid, and 
transferred to separate in-house packed C8 StageTips46. Liquid was spun through at 3000 rpm for 1 
minute, after which the phosphorylated peptides were eluted with 1x 20ul 5% Ammonia and 1x 20ul 
10% Ammonia, 25% Acetonitrile into a 96-well PCR plate, containing 20ul of 1% TFA, 5% 
Acetonitrile solution. Peptides were concentrated to a total volume of 10ul in an Eppendorf Speedvac, 
and acidified with 40ul of 1% TFA, 5% Acetonitrile, after which they were desalted on in-house 
packed C18 StageTips prior to LC-MS analysis. 

For the pTyr specific phospho peptide enrichment, the SepPak eluent (equating to 24mg of peptides) 
was concentrated in an Eppendorf Speedvac and stored at -80°C. pTyr specific enrichment was 
conducted with the pTyr-1000 antibody from CST, using the protocols provided by the manufacturer, 
and the samples were run as technical duplicates on the LC-MS.

Sample preparation for patient sample (phospho-)proteomics.
For the patient sample analysis, SW480 cells were labeled with a medium SILAC label and the 
SW620 cells were labeled heavy. After determining >95% label incorporation, the cells were lysed, 
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ammonia precipitated and dissolved in 6M Urea, 2M Thiourea and 10mM HEPES pH 8.0 as 
described above. Patient samples were obtained from the Aberdeen Tissue repository, following all 
applicable ethical guidelines. The flash-frozen patient samples underwent denaturation in a Denator 
instrument to prevent any protein activity during processing, after which they were lysed in 6M Urea, 
2M Thiourea and 10mM HEPES pH 8.0 using a Qiagen TissueRuptor. The lysates were sonicated on 
ice and spun down at 4,400xg for 20mins at RT. Protein concentrations of tissue and cell lysates were 
measured using Bradford, and mixed in a 1:1:1 ratio at 8mg each. The samples were reduced with 
1mM DTT for 1hr, and alkylated with 5.5mM Chloroacetamide for 1hr, after which they were pre-
digested with Lysyl Endopeptidase (Wako) at a 1:200 enzyme-to-protein ratio for 4hrs at RT. Lysates 
were diluted 1:4 with 50mM Ammonium Bicarbonate, after which Trypsin (MS grade, Sigma) was 
added at a 1:200 enzyme-to-protein ratio and left rotating over-night at RT. Enzymatic activity was 
quenched by adding TFA to a final concentration of 2%, after which the samples were clarified by 
spinning down at 2,000xg for 5 minutes and desalted using 360mg SepPak columns (Waters 
WAT020515). Peptides were eluted using 2x 2mL of 40% AcN, 0.1% TFA, and 1x 2ml of 60% 
Acetonitrile, 0.1% TFA. The eluent was concentrated in an Eppendorf Speedvac and stored at -80C. 
Due to the limited amount of protein available from the tissue samples, pTyr and TiO2 enrichment 
was conducted sequentially, where the dried-down peptides were subjected to pTyr enrichment 
according to manufacturers instructions with the pTyr-1000 antibody, after which the supernatant was 
diluted 1:10 with 0.1% TFA, made up to 2% TFA and purified on a SepPak again for subsequent TiO2 
enrichment and proteome analysis as described above.

LC-MS Analysis
For the cell line LC-MS analysis, peptides were eluted from the StageTip with 2x 20ul 80% 
Acetonitrile, 0.1% Formic acid, and concentrated to 5ul final volume. The eluent was acidified with 
1% TFA, 2% Acetonitrile and loaded onto a 50cm C18 EasySpray column (ThermoFisher, ES803), 
using the Thermo EasyLC 1000 uHPLC system and the column oven operating at 45°C. Peptides 
were eluted over a 250 minute gradient, ranging from 6-60% of 80% Acetonitrile, 0.1% Formic acid, 
and a Q Exactive (ThermoFisher) was run in a DDA-MS2 top10 method. Full MS spectra were 
collected at a resolution of 70,000, with an AGC target of 3e6 or maximum injection time of 20ms 
and a scan range of 300-1750 m/z. The MS2 spectra were obtained at a resolution of 17,500, with an 
AGC target value of 1e6 or maximum injection time of 80ms. Dynamic exclusion was set to 20s, and 
ions with a charge state < 2 or unknown were excluded. For the proteome samples, the settings were 
the same, except for a gradient time of 240mins, maximum MS2 injection time of 60ms and dynamic 
exclusion of 45s. 

For the patient sample LC-MS analysis, peptides were eluted from the StageTip with 2x 20ul 80% 
Acetonitrile, 0.1% Formic acid, and concentrated to 5ul final volume. The eluent was acidified with 
1% TFA, 2% Acetonitrile and loaded onto a 50cm C18 EasySpray column (ThermoFisher, ES803), 
using the Thermo EasyLC 1000 uHPLC system and the column oven operating at 45°C. Peptides 
were eluted over a 240 minute gradient, ranging from 6-60% of 80% Acetonitrile, 0.1% Formic acid, 
and an Orbitrap Fusion (ThermoFisher) was run in a DDA-MS2 top speed method with a 3s cycle 
time, and both HCD and ETD fragmentation was being deployed depending on the precursor peptide 
charge state and mass. This decision-tree method was based on 47. MS spectra were acquired in the 
Orbitrap at 120,000 resolution with a maximum IT of 20ms or AGC target value of 4e5. MS2 spectra 
were acquired in the Ion trap at 30,000 resolution with a maximum IT of either 80/120, 100/100 or 
200/200 ms (HCD/ETD) or AGC target value of 1e4. Precursor isolation window was set to 1.6Da, 
collision energy at 35%, and dynamic exclusion at 60s. 

Computational analysis of MS data. 
The resulting raw files were searched in MaxQuant Version 1.2.7.4 for the cell-line experiments, and 
MaxQuant 1.4 for the patient samples (due to lack of Orbitrap Fusion support in older version). All 
searches were conducted on SW480/SW620 specific database, where all protein sequence variants 
were included in addition to the wild-type Ensembl v.68 human FASTA sequences. The raw data have 

95



been deposited to the ProteomeXchange Consortium (http://proteomecentral.proteomexchange.org) 
via the PRIDE partner repository48 with the dataset identifier XXX. Variable modifications were set as 
Methionine oxidation, Protein N-term acetylation and Serine/Threonine/Tyrosine phosphorylation, 
and Cysteine carbamidomethylation was set as a fixed modification. FDR rates were set to 1%, and 
the ‘match between runs’ functionality was activated.
Results from the searches were stored in a MySQL database, and all further analysis was done using 
scripts written in-house on our “CoreFlow”  platform, based on the R statistical package, MySQL and 
Python. All code and data will be released to the public upon request. Phospho-peptide search results 
filtering was based on phosphorylation localization probability >= 0.75, minimum MaxQuant peptide 
ID score of 50 and a minimum number of unique MS observations of 3, in order to only use high 
confidence identifications. For determining quantitative protein ratios, for each protein we used the 
mean ratio of 3 unique peptides (with MaxQuant peptide ID score >=50) without any modifications. 

Sample preparation for sequencing and data analysis. SW480 and SW620 cells were grown to 
80% confluency in a T-75 flask, and DNA extraction was performed using reagents and instructions 
provided with the Qiagen QIAamp DNA Mini kit. 5 ug of purified DNA were sent to Roche 
Nimblegen for full exome sequencing using the SeqCap EZ Human Exome Library v3.0 capture kit. 
High-quality reads, with > 80x mean coverage and > 95% of exome bases at 10x coverage, were 
obtained from sequencing and aligned to the NCBI37 reference human genome (version GRCh37) 
using the Burrows–Wheeler Alignment Tool. The alignment was refined by means of quality score 
recalibration and around indel realignment using Genome Analysis ToolKit package. SNP calling was 
performed with SAMtools package using default settings. Next, results were further filtered with 
VCFtools using standard default settings as well as a minimum 10x sequencing depth threshold set for 
SNP calling. The data was further analyzed with the help of SAMtools and BEDtools packages and 
custom-written Perl and Python scripts. Finally, fasta files for both wild-type and mutant protein 
sequences were generated using the Variant Effector Predictor (VEP) package from Ensembl. 

For the patient samples, 25mg of tumor tissue was subjected to DNA extraction using reagents and 
instructions provided with the Qiagen QIAamp DNA Mini kit. 5 ug of purified DNA were sent to 
BeckmanCoulter Genomics for full exome sequencing using the SeqCap EZ Human Exome Library 
v3.0 capture kit and the Illumina HiSeq platform. The paired-end reads from Illumina HiSeq were 
mapped to the HG19 reference genome using BWA. Then Picard-tools was used to sort the output 
BAM file and mark duplicates. Local indel realignment and base quality score recalibration was done 
with GATK. The aligned reads were filtered based on mapping quality score using Samtools (MAPQ 
>= 30). GATK UnifiedGenotyper was used to detect variants. The final variant filtering was done 
using the VCF-annotate tool and a Python script developed in-house (read depth >= 10, root mean 
square mapping quality score >= 55).

Kinome-wide RNAi screen:
Cells were transfected with Silencer siRNAs (Life Technologies) using a ‘one-step’ method; siRNAs 
were diluted to 500nM in OptiMEM (Life Technologies) and mixed 1:1 with Lipofectamine 
RNAiMAX, also diluted in OptiMEM, such that each siRNA was mixed with 0.06μl of reagent for 
SW480 transfection and 0.08μl of reagent for SW620 transfection. The siRNA/transfection reagent 
mix was then incubated at room temperature for 15 minutes prior to being dispensed into collagen-
coated CellCarrier (PerkinElmer) plates. SW480 and SW620 cells were plated directly into the 
siRNA containing wells at a density of 4000 cells per well. Cells were then incubated with the 
siRNAs for 72 hours at 37°C, 5% CO2, 95% humidity before being fixed, stained and read on the 
Opera High Content Imaging reader (PerkinElmer). siRNAs were diluted 1 in 10 by the addition of 
cell culture medium giving a final, ‘in-assay’ concentration of 50nM.

Cells were fixed by the addition of 4% paraformaldehyde (Sigma), incubated at room temperature for 
15 minutes. Parafromaldehyde was then removed and cells were stained with Hoechst 34580 (Life 
Technologies) diluted to 2μg/ml in PBS. Cells were incubated for 1 hour, at room temperature, in the 
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dark before being washed and imaged. Cells were imaged on the Opera using a x20 water objective, 
405nm laser excitation and 450/50 band pass emission filter. Nuclei were detected using the Acapella 
image analysis software (PerkinElmer).

In vitro target validation screen:
Cells were plated at a density of 4000 cells per well and incubated overnight at 37°C, 5% CO2, 95% 
humidity. Compounds were diluted in PBS and then added to cells at a 1 in 5 dilution. Cells were 
incubated with compounds for 48 hours (at 37°C, 5% CO2, 95% humidity) before being fixed with 
4% paraformaldehyde, stained with Hoechst 34580 and imaged, as described previously.

Primary Subcutaneous Tumor Model.
Adult female immunodeficient CD1 nude mice (Charles River/SCANBUR, Denmark), 8 weeks old 
and weighing 22–27 g, were injected subcutaneously into the flank with either luciferase-expressing 
SW480
(4 × 106 cells) or SW620 (2 x 106 cells) resuspended in 100 μL Hanks Balanced Salt Solution 
(HBSS), using a 1-mL syringe and 30-gauge needle (n=4 tumours per treatment group, n=8 tumours 
vehicle). Mice
were then randomised into ten treatment groups. Single treatment groups included; Vehicle (2.5% 
DMSO, 80mM Sodium Citrate), Dasatanib (15 mg/kg), TAE684 (10mg/kg), Foretinib (100mg/kg), 
Motesanib
(100mg/kg) and Sunitinib (60mg/kg). Combination treatments included Sunitinib + Dasatanib, 
Sunitinib + TAE684, Sunitinib + Foretinib and Sunitinib + Motesanib at dosing concentrations stated 
above. Treatment involved daily oral gavage at stated doses (in 200uL volume) once palpable tumour 
size had reached 4mm3. Inhibitor stocks were solubilised in DMSO, aliquoted and stored at -80°C. 
Stock solutions
were diluted to working concentration fresh daily. Treatments continued for 4 weeks or until tumours 
reached a maximum allowed volume (0.90 cm3). Tumour volume and body weight of all mice were
measured twice weekly using callipers and scales respectively. All in vivo experiments were under 
authorization and guidance from the Danish Inspectorate for Animal Experimentation according to 
guidelines for the welfare and use of animals in cancer research.

Intrasplenic implantation Metastatic Model.
Adult female immunodeficient CD1 nude mice (Charles River/SCANBUR, Denmark), 8 weeks old 
and weighing 22–27 g, were anaesthetized (1:1:3 Hypnorm:Hypnovel:water); dose, 10 mL/kg). A 
small incision was made on the left side of the abdomen, and the spleen was exposed. Mice were then 
injected into the spleen with either luciferase-expressing SW480 or SW620 cells (2 × 106 cells per 
mouse per cell line; n =  8 mice per cell line), resuspended in 50 μL Hanks Balanced Salt Solution 
(HBSS), using a 1 mL insulin syringe, and 30-gauge needle. Mice were then randomly divided into 
treatment groups. Oral gavage of these mice with began on day 7 and was continued for 4-5 weeks. 
Once weekly, mice were
injected with 120 mg/kg luciferin and metastatic dissemination of the cells was monitored using IVIS 
Lumina II (Caliper Lifesciences, Runcorn, UK). Metastasis was monitored weekly and quantified by
measuring luminescent signal from each organ at the experimental endpoint. All in vivo experiments 
were under authorization and guidance from the Danish Inspectorate for Animal Experimentation 
according to guidelines for the welfare and use of animals in cancer research.
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Global data integration:

The data has been integrated based on information theoretical measures. Let

x

d

be the measurement of a given protein with respect to data of type d, rep-

resenting either the protein ratio (d = mass) or phosphorylation ratio (d = ph)

from the phospho-proteomics experiment, the nuclei ratio from the RNAi screen

(d = RNAi) or the sequential information (d = ngs) from the sequencing. The

information from the phospho-proteomics (d =mass,d =ph ) is collectively ref-

ered to as MS in figure 4. Specifically, x
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and x
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represent the log-ratio

of the peak-intensities between SW620 and SW480 for the protein concentra-

tion or phosphorylation concentration respectively. The overall phosphoryla-

tion state of a given protein is summarized in terms of the minimum, me-

dian and maximum ratios observed for all the different phosphorylated sites,
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). x

RNAi

represents the ratio of number

of nuclei in SW620 to SW480 as identified by the imaging analysis of the RNAi

screen. In all three cases, we use the median over biological repeats to define x.

For the sequencing part, we summarize the information in terms of the number

of mutations observed for a given protein in SW480, x

ngs,480

and the number of

unique mutations observed in SW620, x

ngs,620

.

We quantify the relevance of a protein in defining the metastatic state of

the cell, by the level of ‘surprise’ viz. information obtained from the protein

measurement in SW620 in comparison to the measurement of SW480. The in-
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mutational state of a protein in SW620. Thus the information content of a
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The information content pertaining to the combined observation,
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we set I(x

ph

) =

1

3

(I(x

ph�min

) + I(x

ph�median

) + I(x

ph�max

)). Furthermore,

to account for missing data we use the expected information (viz. entropy),

hI(x
d

)i =
´
I(x

d

)P (x

d

)dx

d

, for each x

d

as baseline, so that the final information

score (’energy’) is defined as E(x) =

P
d

E(x

d

), where E(x

d

) = I(x

d

)�hI(x
d

)i.
This implies that the ’energy’ of a missing component of x can simply be set to

zero, corresponding to the expected ’energy’ over P (x

d

).
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Dasatanib Dovitinib E7080 (IC50) Foretinib HG-9-91-01* KN-93 (IC-50) Linifanib Motesanib MRT199665* Pazopanib PP2 (IC-50) SU6656 (IC-50) Sunitinib TAE684 XL184 (IC-50)
MYO3A - - - - - - - - - - - - - - -
PXK - - - - - - - - - - - - - - -
STK36 210 - - 180 - - - - - 470 - - - 1400 -
TRIO - - - - - - - - - - - - - - -
FYN 0.79 440 - 88 - - - 2800 - 2700 5 170 520 1400 -
MYLK3 - 2 - 3000 - - - - - - - - 23 - -
PRKDC - - - - - - - - - - - - - - -
DCLK1 - - - - - - - - - - - - 370 4.9 -
WNK3 - - - - - - - - - - - - - - -
PRKG2 - - - - - - - - - - - - - 240 -
BMPR2 - 3100 - - - - 7800 - - - - - 570 3900 -
SIK3 - - - - 5 - - - 5 - - - - - -
TNIK 2000 24 - 210 - - 2800 - - 310 - - 25 1200 -
CAMK2B - - - - - 370 - - - - - - 1400 1900 -
ERN1 - - - - - - - - - - - - 600 180 -
NUAK1 - 240 - - 64 - - - 2 - - - 48 13 -
AURA17 - - - - - - - - - - - - - - -
NUAK2 - 130 - - - - - - - - - - 150 1.2 -
CDC42BPG 1200 - - 180 - - 8300 - - - - - - 9500 -
FLT4 - 580 5.2 1.5 - - 16 9.7 - 27 - - 50 170 6
EIF2AK1 - 250 - 980 - - - - - - - - - - -
STK35 770 - - 230 - - - 5400 - - - - 1300 260 -
CAMK2D - - - - - - - - - - - - 420 570 -
CAMKK1 - 3100 - 550 - - - - - - - - 420 50 -
MYLK4 - 80 - - - - - - - - - - 15 - -
LMTK3 - - - - - - - - - - - - - - -
DCLK3 - 1300 - - - - - - - - - - 110 14 -
NEK3 - - - - - - - - - - - - - - -
FES - - - 110 - - - - - 1400 - - 960 4.8 -
CAMK1 - - - 5900 90 - - - 61 2100 - - 970 1100 -
HUNK - 410 - 5400 - - - - - - - - 500 350 -
EGFR 120 - - 440 - - - 1300 - - 480 - 860 180 -
MAP3K13 5300 170 - 16 - - - - - - - - 95 57 -
HIPK3 - 5100 - 43 74 - 2300 - 98 - - - 41 6900 -
BRSK1 - - - - 86 - - - 88 - - - 3500 310 -
KDR 2900 68 - 12 - - 8.1 26 - 14 - - 1.5 940 0.035
TNK1 - - - 21 - - - - - - - - 680 1.8 -

* % activity remaining at 1um

HUGO ensembl_gene_id ENSP energy.total energy.siRNA energy.mut energy.ratio.mean energy.occ.on.median siRNA ratio.mean occ.on.median Ncommon Nonly480 Nonly620 N480 N620
MYO3A ENSG00000095777 ENSP00000265944 12.5184377 -1.267914698 13.7863524 0 0 0.984436999 NA NA 2 0 4 2 6
PXK ENSG00000168297 ENSP00000373222 11.68074491 -1.257883542 11.48007852 1.458549926 0 0.985269053 -1.390882625 NA 0 0 2 0 2
STK36 ENSG00000163482 ENSP00000295709 6.234818041 -0.313214213 6.511974147 0 0.034038843 0.910692539 NA -0.796122833 3 2 2 5 5
TRIO ENSG00000038382 ENSP00000339299 5.985000738 -1.405915217 6.471062514 0.291696434 0.23528193 0.960124387 1.075058325 2.143109323 0 0 1 0 1
FYN ENSG00000010810 ENSP00000346671 5.831757079 4.348756161 -0.333209043 1.566127903 0.08847236 0.802116451 2.03856975 1.672409421 0 0 0 0 0
MYLK3 ENSG00000140795 ENSP00000378288 5.775579072 -0.695483442 6.471062514 0 0 0.921336887 NA NA 0 0 1 0 1
PRKDC ENSG00000253729 ENSP00000313420 5.716079357 -0.055470573 6.471062514 -0.225273636 -0.147775654 0.904265132 -0.4029464 -0.366447775 0 0 1 0 1
DCLK1 ENSG00000133083 ENSP00000369223 5.587332765 -1.393405028 -0.333209043 3.311016771 1.541398877 0.956716446 -2.807691333 -4.52008751 0 0 0 0 0
WNK3 ENSG00000196632 ENSP00000364312 5.42165252 -1.049409994 6.471062514 0 0 0.933707323 NA NA 0 0 1 0 1
PRKG2 ENSG00000138669 ENSP00000378945 5.29364878 -1.177413734 6.471062514 0 0 0.939509558 NA NA 0 0 1 0 1
FYN ENSG00000010810 ENSP00000357667 4.806125932 4.348756161 -0.333209043 0.790578813 0 0.802116451 1.397338 NA 0 0 0 0 0
BMPR2 ENSG00000204217 ENSP00000363708 4.548149437 -1.292642033 6.471062514 0 -0.226697392 0.946278419 NA 0.663236732 0 0 1 0 1
SIK3 ENSG00000160584 ENSP00000364449 4.54194408 5.446020065 -0.253231502 0 -0.226690159 0.782853969 NA -0.057146056 1 0 0 1 1
SIK3 ENSG00000160584 ENSP00000390442 4.228176434 5.446020065 -0.253231502 -0.834250775 -0.096873679 0.782853969 0.255456715 1.158575831 1 0 0 1 1
TNIK ENSG00000154310 ENSP00000399511 4.123267801 1.042833913 -0.333209043 1.245989585 0.735779846 0.876653749 1.698119 4.200244732 0 0 0 0 0
CAMK2B ENSG00000058404 ENSP00000326375 3.918654327 4.25186337 -0.333209043 0 0 0.80412625 NA NA 0 0 0 0 0
ERN1 ENSG00000178607 ENSP00000401445 3.91844541 2.028056764 -0.333209043 2.223597688 0 0.847612362 -2.024685 NA 0 0 0 0 0
NUAK1 ENSG00000074590 ENSP00000261402 3.811445715 2.021758351 -0.333209043 0 0.863751243 0.847767572 NA -3.27918866 0 0 0 0 0
AURA17 ENSG00000188906 ENSP00000398726 3.722574759 -1.330541758 5.053116518 0 0 0.949186992 NA NA 1 0 1 1 2
NUAK2 ENSG00000163545 ENSP00000356125 3.539455817 0.920967694 -0.333209043 1.301253376 0.521928962 0.880106036 1.77632 2.930920406 0 0 0 0 0
CDC42BPG ENSG00000171219 ENSP00000345133 3.500757196 1.981238606 -0.253231502 -0.835339827 0.858291352 0.848778126 0.2385383 4.958262891 1 0 0 1 1
FLT4 ENSG00000037280 ENSP00000261937 3.470468224 3.723699726 -0.253231502 0 0 0.81470408 NA NA 1 0 0 1 1
EIF2AK1 ENSG00000086232 ENSP00000199389 3.291368538 4.446823013 -0.333209043 -0.822245432 0 0.800084674 0.3197245 NA 0 0 0 0 0
STK35 ENSG00000125834 ENSP00000370891 2.95843729 0.605345329 -0.333209043 2.686301004 0 0.88836859 -2.449177 NA 0 0 0 0 0
CAMK2D ENSG00000145349 ENSP00000339740 2.918316581 -0.727977016 -0.333209043 2.518435775 0.62389 0.922339566 2.8164385 3.723409875 0 0 0 0 0
CAMKK1 ENSG00000004660 ENSP00000371190 2.781590042 -0.202665991 -0.333209043 -0.588015005 1.362965735 0.90788672 0.56952105 6.565377813 0 0 0 0 0
MYLK4 ENSG00000145949 ENSP00000274643 2.725691163 3.058900205 -0.333209043 0 0 0.826791141 NA NA 0 0 0 0 0
LMTK3 ENSG00000142235 ENSP00000270238 2.266926686 2.600135728 -0.333209043 0 0 0.835259777 NA NA 0 0 0 0 0
DCLK3 ENSG00000163673 ENSP00000394484 2.089528569 2.422737611 -0.333209043 0 0 0.83879087 NA NA 0 0 0 0 0
NEK3 ENSG00000136098 ENSP00000339429 2.063516764 -1.386568088 -0.333209043 2.054202898 0.590036525 0.955508115 -1.9227755 -2.341083009 0 0 0 0 0
FES ENSG00000182511 ENSP00000410477 2.055900527 2.389109569 -0.333209043 0 0 0.839483821 NA NA 0 0 0 0 0
CAMK1 ENSG00000134072 ENSP00000256460 2.004825785 1.173799751 -0.333209043 1.164235077 0 0.87274919 1.613832 NA 0 0 0 0 0
HUNK ENSG00000142149 ENSP00000270112 1.987214086 2.210680448 -0.333209043 -0.234200318 0.144902735 0.843328148 0.7819447 -1.109884713 0 0 0 0 0
EGFR ENSG00000146648 ENSP00000275493 1.969033019 -1.403251083 -0.333209043 2.016326376 0.671570918 0.959145682 -1.89128875 -2.849136297 0 0 0 0 0
MAP3K13 ENSG00000073803 ENSP00000392223 1.85570125 2.188910293 -0.333209043 0 0 0.843818512 NA NA 0 0 0 0 0
HIPK3 ENSG00000110422 ENSP00000431710 1.788232143 2.121441185 -0.333209043 0 0 0.845372036 NA NA 0 0 0 0 0
BRSK1 ENSG00000160469 ENSP00000310649 1.753915358 2.087124401 -0.333209043 0 0 0.846182581 NA NA 0 0 0 0 0
KDR ENSG00000128052 ENSP00000263923 1.73108093 1.909506233 -0.178425303 0 0 0.85062344 NA NA 2 0 0 2 2
TNK1 ENSG00000174292 ENSP00000459799 1.578414413 1.417373481 -0.333209043 0.168927614 0.117190732 0.865132458 1.0067846 1.745366216 0 0 0 0 0
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No inhibitors available
Tested unsuccessfully
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Figure 4

105



[compound] (nM)
1 10 100 1000 10000 1 10 100 1000 10000 1 10 100 1000 10000

160
140
120
100

80
60
40
20

0

160
140
120
100

80
60
40
20

0

160
140
120
100

80
60
40
20

0

160
140
120
100

80
60
40
20

0

Dasatinib Dovitinib E7080 Foretinib

HG-9-91-01 KN-93 Linifanib Motesanib

MRT199665 Pazopanib PP2 SU6656

Sunitinib Malate TAE684 XL184

Color by
cell line

SW480
SW620

M
ed

ia
n 

N
or

m
al

is
ed

 N
uc

le
i N

um
be

r

time, pretreatment, concentration_1 (uM), concentration_2 (uM)

1 1 1 1 1 10
1 10 1 10 1

other Sunitinib Malate
24hrs pre-treatment

1 1 1 1 1 10
1 10 1 10 1

other Sunitinib Malate
24hrs pre-treatment

160.00

140.00

120.00

100.00

80.00

60.00

40.00

20.00
0.00

160.00

140.00

120.00

100.00

80.00

60.00

40.00

20.00
0.00

160.00

140.00

120.00

100.00

80.00

60.00

40.00

20.00
0.00

Dasatinib_Sunitinib Malate Foretinib_Sunitinib Malate HG-9-91-01_Sunitinib Malate

Motesanib_Sunitinib Malate MRT199665_Sunitinib Malate PP2_Sunitinib Malate

Sunitinib Malate_Sunitinib Malate TAE684_Sunitinib Malate

combo
time-staggeredM
ed

ia
n 

N
or

m
al

is
ed

 N
uc

le
i N

um
be

r

Color by
cell line

SW480
SW620

A)

B)

Figure 5
106



0 5 10 15 20Tx
Begin

0

50

100

150

200

250

Tu
m

ou
r v

ol
um

e (
m

m
3)

SW620 Single Growth Curves

V (n=8)
D (n=4)
T n=4)
M (n=4)
F (n=4)
S (n=4)

0 5 10 15 20Tx
Begin

0

50

100

150

200

250

Tu
m

ou
r v

ol
um

e (
m

m
3)

SW620 Combination Growth Curves

V (n=8)
SD (n=4)
ST (n=4)
SM (n=4)
SF (n=4)

0 5 10 15 20Tx
Begin

0

50

100

150

200

250

Days post implant

Tu
m

ou
r v

ol
um

e 
(m

m
3)

TCO-15 CRC SW620 Sunitinib/Dasatanib 
Growth Curves

V (n=8)
D (n=4)
S (n=4)
SD (n=4)

0 5 10 15 20Tx
Begin

0

50

100

150

200

250

Tu
m

ou
r v

ol
um

e 
(m

m
3)

TCO-15 CRC SW620 Sunitinib/Motesanib 
Growth Curves

V (n=8)
M (n=4)
S (n=4)
SM (n=4)

0 5 10 15 20Tx
Begin

0

50

100

150

200

250

Days post implant

Tu
m

ou
r v

ol
um

e 
(m

m
3)

TCO-15 CRC SW620 Sunitinib/Foretinib 
Growth Curves

V (n=8)
F (n=4)
S (n=4)
SF (n=4)

0 5 10 15 20Tx
Begin

0

50

100

150

200

250

Tu
m

ou
r v

ol
um

e 
(m

m
3)

TCO-15 CRC SW620 Sunitinib/TAE684 
Growth Curves

V (n=8)
T n=4)
S (n=4)
ST (n=4)

Days post implantDays post implantDays post implant

Days post implant

A1 A2 A4 B1 B2 B3 C1 C3 C4 D2 D3 D4
Nr of Quanti�able Class I Phosphorylation Site IDs: 7492 7585 3585 6923 4909 6219 5215 3237 8413 4179 4735 684

Nr of Quanti�able Protein IDs: 3374 3991 3011 3595 3279 3497 3543 2434 3538 3946 3187 2476

Nr of Non-Synonymous Mutations: 8929 9030 11586 8653 8836 5707 8832 9255 8771 9046 8838 9011

Nr of Mutated Proteins: 5295 5325 6426 5196 5232 3730 5247 5521 5201 5315 5155 5343

Compared to SW620 Compared to SW480
-ve

0

+ve

Protein level:
A
1

A
2

A
4

B
1

B
2

B
3

C
1

C
3

C
4

D
2

D
3

D
4

ENSP00000461074_reference_S812
ENSP00000357077_reference_S163
ENSP00000293328_reference_Y699
ENSP00000342493_reference_S46
ENSP00000216181_reference_S1943
ENSP00000367263:map.11/62292882/T:p.Q3003K:n.C9282A:c.Caa/Aaa:SIFTprediction.tolerated:PolyPhenScore.0_SW620_S210
ENSP00000381803_reference_Y187
ENSP00000447198_reference_S14
ENSP00000322926_reference_S427
ENSP00000376071_reference_S10
ENSP00000355569_reference_S444
ENSP00000362712_reference_S515
ENSP00000259237_reference_S267
ENSP00000225388_reference_S212
ENSP00000359518_reference_S195
ENSP00000316527_reference_S576
ENSP00000316527_reference_S578
ENSP00000362775_reference_S181
ENSP00000330074_reference_S18
ENSP00000268717_reference_S423
ENSP00000265056:map.3/127324967/A:p.R227H:n.G924A:c.cGt/cAt:SIFTprediction.deleterious:PolyPhenScore.0.354_SW620_S27
ENSP00000428589_reference_S143
ENSP00000378699_reference_Y15
ENSP00000361626_reference_S174
ENSP00000361626_reference_S165
ENSP00000223641_reference_S17
ENSP00000441625_reference_S662
ENSP00000217121_reference_S189
ENSP00000362638_reference_S104
ENSP00000261366_reference_S393
ENSP00000379133_reference_S87
ENSP00000461313_reference_Y103
ENSP00000261424_reference_S156
ENSP00000357283_reference_S22
ENSP00000449744_reference_S52
ENSP00000356110_reference_S181
ENSP00000361626_reference_S176
ENSP00000338718_reference_S339
ENSP00000347621_reference_S21
ENSP00000336721_reference_S697
ENSP00000225388_reference_S629
ENSP00000324422_reference_S267
ENSP00000228425_reference_S573
ENSP00000369757_reference_S236
ENSP00000369757_reference_S240
ENSP00000342112_reference_S342
ENSP00000262056_reference_S406
ENSP00000272203_reference_Y492
ENSP00000296129:map.3/45127515/C:p.D709G:n.A2261G:c.gAc/gGc:SIFTprediction.tolerated:PolyPhenScore.0_SW620_Y707
ENSP00000269305:map.17/7576921/A:p.P309S:n.C1115T:c.Ccc/Tcc:SIFTprediction.tolerated:PolyPhenScore.0.08_SW620_S315
ENSP00000337825_reference_Y192
ENSP00000387858_reference_S16
ENSP00000290341_reference_S181
ENSP00000228307_reference_Y118
ENSP00000381854_reference_Y780
ENSP00000342112_reference_Y185
ENSP00000428909_reference_S522
ENSP00000428909_reference_T514
ENSP00000387858_reference_S38
ENSP00000334229_reference_S295
ENSP00000261017_reference_S221
ENSP00000362638_reference_S22

A
1

A
2

A
4

B
1

B
2

B
3

C
1

C
3

C
4

D
2

D
3

D
4

ENSP00000342112_reference_S1259
ENSP00000411771_reference_Y46
ENSP00000462667_reference_Y89
ENSP00000379933_reference_S21
ENSP00000353660_reference_S116
ENSP00000293328_reference_Y699
ENSP00000357077_reference_S163
ENSP00000367263:map.11/62292882/T:p.Q3003K:n.C9282A:c.Caa/Aaa:SIFTprediction.tolerated:PolyPhenScore.0_SW620_S210
ENSP00000290341_reference_S181
ENSP00000269305:map.17/7576921/A:p.P309S:n.C1115T:c.Ccc/Tcc:SIFTprediction.tolerated:PolyPhenScore.0.08_SW620_S315
ENSP00000228307_reference_Y118
ENSP00000404179_reference_S1620
ENSP00000387858_reference_S16
ENSP00000261017_reference_S221
ENSP00000228425_reference_S573
ENSP00000330074_reference_S18
ENSP00000225388_reference_S212
ENSP00000376071_reference_S10
ENSP00000359518_reference_S195
ENSP00000361626_reference_S165
ENSP00000223641_reference_S17
ENSP00000384510_reference_S1796
ENSP00000261366_reference_S393
ENSP00000361626_reference_S176
ENSP00000265056:map.3/127324967/A:p.R227H:n.G924A:c.cGt/cAt:SIFTprediction.deleterious:PolyPhenScore.0.354_SW620_S27
ENSP00000362638_reference_S104
ENSP00000318195_reference_S67
ENSP00000268717_reference_S423
ENSP00000378699_reference_T14
ENSP00000378699_reference_Y15
ENSP00000263025_reference_Y204
ENSP00000322926_reference_S427
ENSP00000447198_reference_S14
ENSP00000296755_reference_S1400
ENSP00000296755_reference_S1396
ENSP00000441625_reference_S662
ENSP00000347621_reference_S21
ENSP00000334229_reference_S295
ENSP00000261424_reference_S156
ENSP00000336721_reference_S697
ENSP00000369757_reference_S236
ENSP00000369757_reference_S240
ENSP00000225388_reference_S629
ENSP00000447893_reference_S35
ENSP00000381803_reference_T185
ENSP00000381803_reference_Y187
ENSP00000324422_reference_S267
ENSP00000428909_reference_S522
ENSP00000428909_reference_T514
ENSP00000356110_reference_S181
ENSP00000449744_reference_S52
ENSP00000362638_reference_S22
ENSP00000357283_reference_S22

-ve

0

+ve

Phospho level:

A)

B)

C)      D)

Figure 6

107



Sample: Mutation Kinase0Effect
SW480 ENSP00000166244:map.1/22920150/G:p.Q525R:n.A1646G:c.cAg/cGg:SIFTprediction.tolerated:PolyPhenScore.0.15 hitsHtheHkinaseHproteinHEphA8HoutsideHitsHkinaseHdomain

SW480 ENSP00000166244:map.1/22927870/T:p.G936V:n.G2879T:c.gGg/gTg:SIFTprediction.deleterious:PolyPhenScore.0.506 hitsHtheHkinaseHproteinHEphA8HoutsideHitsHkinaseHdomain

SW480 ENSP00000216911:map.20/54961463/C:p.I57V:n.A437G:c.Att/Gtt:SIFTprediction.tolerated:PolyPhenScore.0.001 hitsHtheHkinaseHproteinHAurAHoutsideHitsHkinaseHdomain

SW480 ENSP00000220751:map.8/90784009/G:p.P228A:n.C996G:c.Cct/Gct:SIFTprediction.deleterious:PolyPhenScore.1 hitsHtheHkinaseHdomainHofHRIPK2

SW480 ENSP00000224764:map.10/88635779/A:p.P2T:n.C552A:c.Cct/Act:SIFTprediction.tolerated:PolyPhenScore.0 hitsHtheHkinaseHproteinHBMPR1AHoutsideHitsHkinaseHdomain

SW480 ENSP00000226094:map.17/66533655/G:p.L530S:n.T1877C:c.tTg/tCg:SIFTprediction.tolerated:PolyPhenScore.0 hitsHtheHkinaseHproteinHFAM20AHoutsideHitsHkinaseHdomain

SW480 ENSP00000233027:map.3/52797634/C:p.P225A:n.C876G:c.Cca/Gca:SIFTprediction.deleterious:PolyPhenScore.0.784 hitsHtheHkinaseHdomainHofHNEK4

SW480 ENSP00000240361:map.17/56659018/T:p.G1088D:n.G3349A:c.gGt/gAt:SIFTprediction.tolerated:PolyPhenScore.0.033 hitsHtheHkinaseHproteinHSgK307HoutsideHitsHkinaseHdomain

SW480 ENSP00000241453:map.13/28624294/A:p.T227M:n.C762T:c.aCg/aTg:SIFTprediction.deleterious:PolyPhenScore.0.803 hitsHtheHkinaseHproteinHFLT3HoutsideHitsHkinaseHdomain

SW480 ENSP00000259750:map.6/43230970/C:p.G623A:n.G1951C:c.gGc/gCc:SIFTprediction.tolerated:PolyPhenScore.0 hitsHtheHkinaseHproteinHTTBK1HoutsideHitsHkinaseHdomain

SW480 ENSP00000260404:map.15/40564576/T:p.P337L:n.C1436T:c.cCg/cTg:SIFTprediction.deleterious:PolyPhenScore.0.018 hitsHtheHkinaseHproteinHPAK6HoutsideHitsHkinaseHdomain

SW480 ENSP00000261170:map.12/14829893/C:p.F281L:n.T980G:c.ttT/ttG:SIFTprediction.tolerated:PolyPhenScore.0.02 hitsHtheHkinaseHproteinHHSERHoutsideHitsHkinaseHdomain

SW480 ENSP00000261937:map.5/180046344/C:p.H890Q:n.C2749G:c.caC/caG:SIFTprediction.deleterious:PolyPhenScore.0.32 hitsHtheHkinaseHdomainHofHFLT4

SW480 ENSP00000262811:map.19/18255359/A:p.G861S:n.G2581A:c.Ggc/Agc:SIFTprediction.tolerated:PolyPhenScore.0.001 hitsHtheHkinaseHproteinHMAST3HoutsideHitsHkinaseHdomain

SW480 ENSP00000263026:map.16/22269867/G:p.Q361R:n.A1556G:c.cAa/cGa:SIFTprediction.tolerated:PolyPhenScore.0 hitsHtheHkinaseHproteinHeEF2KHoutsideHitsHkinaseHdomain

SW480 ENSP00000263791:map.15/40265799/G:p.E556G:n.A1710G:c.gAa/gGa:SIFTprediction.tolerated:PolyPhenScore.0 hitsHtheHkinaseHproteinHGCN2HoutsideHitsHkinaseHdomain

SW480 ENSP00000263923:map.4/55972974/A:p.Q472H:n.A1712T:c.caA/caT:SIFTprediction.tolerated:PolyPhenScore.0.012 hitsHtheHkinaseHproteinHKDRHoutsideHitsHkinaseHdomain

SW480 ENSP00000263923:map.4/55979558/T:p.V297I:n.G1185A:c.Gta/Ata:SIFTprediction.tolerated:PolyPhenScore.0.999 hitsHtheHkinaseHproteinHKDRHoutsideHitsHkinaseHdomain

SW480 ENSP00000263955:map.2/197002262/T:p.I343N:n.T1315A:c.aTc/aAc:SIFTprediction.deleterious:PolyPhenScore.0.728 hitsHtheHkinaseHproteinHDRAK2HoutsideHitsHkinaseHdomain

SW480 ENSP00000264316:map.4/48115264/T:p.R45H:n.G220A:c.cGt/cAt:SIFTprediction.tolerated:PolyPhenScore.0 hitsHtheHkinaseHproteinHTXKHoutsideHitsHkinaseHdomain

SW480 ENSP00000265944:map.10/26446312/A:p.S956N:n.G3033A:c.aGt/aAt:SIFTprediction.tolerated:PolyPhenScore.0.003 hitsHtheHkinaseHproteinHMYO3AHoutsideHitsHkinaseHdomain

SW480 ENSP00000265944:map.10/26463043/T:p.T1284S:n.A4016T:c.Act/Tct:SIFTprediction.tolerated:PolyPhenScore.0.003 hitsHtheHkinaseHproteinHMYO3AHoutsideHitsHkinaseHdomain

SW480 ENSP00000270162:map.21/44837555/A:p.A615V:n.C1977T:c.gCc/gTc:SIFTprediction.deleterious:PolyPhenScore.0.031 hitsHtheHkinaseHproteinHSIKHoutsideHitsHkinaseHdomain

SW480 ENSP00000270162:map.21/44846016/T:p.G15S:n.G176A:c.Ggt/Agt:SIFTprediction.tolerated:PolyPhenScore.0.002 hitsHtheHkinaseHproteinHSIKHoutsideHitsHkinaseHdomain

SW480 ENSP00000275815:map.7/143088867/C:p.M900V:n.A2785G:c.Atg/Gtg:SIFTprediction.tolerated:PolyPhenScore.0 hitsHtheHkinaseHproteinHEphA1HoutsideHitsHkinaseHdomain

SW480 ENSP00000275815:map.7/143097100/G:p.V160A:n.T566C:c.gTg/gCg:SIFTprediction.tolerated:PolyPhenScore.0 hitsHtheHkinaseHproteinHEphA1HoutsideHitsHkinaseHdomain

SW480 ENSP00000278616:map.11/108183167/G:p.N1983S:n.A6333G:c.aAt/aGt:SIFTprediction.tolerated:PolyPhenScore.0.001 hitsHtheHkinaseHproteinHATMHoutsideHitsHkinaseHdomain

SW480 ENSP00000283109:map.5/96503523/T:p.G349R:n.G1114A:c.Ggg/Agg:SIFTprediction.tolerated:PolyPhenScore.0 hitsHtheHkinaseHproteinHRIOK2HoutsideHitsHkinaseHdomain

SW480 ENSP00000283109:map.5/96513471/C:p.S96C:n.C356G:c.tCt/tGt:SIFTprediction.deleterious:PolyPhenScore.0.987 hitsHtheHkinaseHdomainHofHRIOK2

SW480 ENSP00000288135:map.4/55593464/C:p.M541L:n.A1718C:c.Atg/Ctg:SIFTprediction.tolerated:PolyPhenScore.0.008 hitsHtheHkinaseHproteinHKITHoutsideHitsHkinaseHdomain

SW480 ENSP00000291281:map.19/47177913/G:p.V835A:n.T3261C:c.gTg/gCg:SIFTprediction.tolerated:PolyPhenScore.0 hitsHtheHkinaseHproteinHPKD2HoutsideHitsHkinaseHdomain

SW480 ENSP00000291823:map.19/40886993/T:p.R302Q:n.G1190A:c.cGg/cAg:SIFTprediction.tolerated:PolyPhenScore.0.007 hitsHtheHkinaseHdomainHofHHIPK4

SW480 ENSP00000295709:map.2/219544388/G:p.K295R:n.A1163G:c.aAg/aGg:SIFTprediction.tolerated:PolyPhenScore.0.016 hitsHtheHkinaseHproteinHFusedHoutsideHitsHkinaseHdomain

SW480 ENSP00000295709:map.2/219553468/T:p.R477W:n.C1708T:c.Cgg/Tgg:SIFTprediction.deleterious:PolyPhenScore.0.975 hitsHtheHkinaseHproteinHFusedHoutsideHitsHkinaseHdomain

SW480 ENSP00000295709:map.2/219555262/A:p.R583Q:n.G2027A:c.cGg/cAg:SIFTprediction.tolerated:PolyPhenScore.0.003 hitsHtheHkinaseHproteinHFusedHoutsideHitsHkinaseHdomain

SW480 ENSP00000295709:map.2/219559249/A:p.S801N:n.G2681A:c.aGt/aAt:SIFTprediction.tolerated:PolyPhenScore.0.002 hitsHtheHkinaseHproteinHFusedHoutsideHitsHkinaseHdomain

SW480 ENSP00000295709:map.2/219563602/A:p.R1112Q:n.G3614A:c.cGg/cAg:SIFTprediction.tolerated:PolyPhenScore.0.004 hitsHtheHkinaseHproteinHFusedHoutsideHitsHkinaseHdomain

SW480 ENSP00000297293:map.7/97822115/A:p.L780M:n.T2631A:c.Ttg/Atg:SIFTprediction.tolerated:PolyPhenScore.0.34 hitsHtheHkinaseHproteinHLMR2HoutsideHitsHkinaseHdomain

SW480 ENSP00000298910:map.12/40619082/A:p.R50H:n.G207A:c.cGc/cAc:SIFTprediction.tolerated:PolyPhenScore.0 hitsHtheHkinaseHproteinHLRRK2HoutsideHitsHkinaseHdomain

SW480 ENSP00000301178:map.19/41743861/G:p.N266D:n.A986G:c.Aac/Gac:SIFTprediction.tolerated:PolyPhenScore.0 hitsHtheHkinaseHproteinHAXLHoutsideHitsHkinaseHdomain

SW480 ENSP00000301831:map.3/41756965/T:p.V851I:n.G3014A:c.Gta/Ata:SIFTprediction.tolerated:PolyPhenScore.0.01 hitsHtheHkinaseHproteinHULK4HoutsideHitsHkinaseHdomain

SW480 ENSP00000301831:map.3/41756986/T:p.L844M:n.T2993A:c.Ttg/Atg:SIFTprediction.tolerated:PolyPhenScore.0.004 hitsHtheHkinaseHproteinHULK4HoutsideHitsHkinaseHdomain

SW480 ENSP00000301831:map.3/41831203/T:p.A715T:n.G2606A:c.Gct/Act:SIFTprediction.tolerated:PolyPhenScore.0.002 hitsHtheHkinaseHproteinHULK4HoutsideHitsHkinaseHdomain

SW480 ENSP00000301831:map.3/41841716/C:p.S640A:n.T2381G:c.Tcc/Gcc:SIFTprediction.tolerated:PolyPhenScore.0 hitsHtheHkinaseHproteinHULK4HoutsideHitsHkinaseHdomain

SW480 ENSP00000301831:map.3/41877414/C:p.K569R:n.A2169G:c.aAa/aGa:SIFTprediction.tolerated:PolyPhenScore.0.284 hitsHtheHkinaseHproteinHULK4HoutsideHitsHkinaseHdomain

SW480 ENSP00000301831:map.3/41952852/C:p.S348G:n.A1505G:c.Agt/Ggt:SIFTprediction.deleterious:PolyPhenScore.0.734 hitsHtheHkinaseHproteinHULK4HoutsideHitsHkinaseHdomain

SW480 ENSP00000306678:map.11/113266821/A:p.A239T:n.G809A:c.Gcg/Acg:SIFTprediction.tolerated:PolyPhenScore.0.324 hitsHtheHkinaseHdomainHofHSgK288

SW480 ENSP00000306678:map.11/113270015/C:p.G442R:n.G1418C:c.Ggc/Cgc:SIFTprediction.tolerated:PolyPhenScore.0 hitsHtheHkinaseHproteinHSgK288HoutsideHitsHkinaseHdomain

SW480 ENSP00000306678:map.11/113270828/A:p.E713K:n.G2231A:c.Gag/Aag:SIFTprediction.tolerated:PolyPhenScore.0 hitsHtheHkinaseHproteinHSgK288HoutsideHitsHkinaseHdomain

SW480 ENSP00000307235:map.2/88874891/A:p.A704S:n.G2412T:c.Gct/Tct:SIFTprediction.tolerated:PolyPhenScore.0.005 hitsHtheHkinaseHdomainHofHPEK

SW480 ENSP00000307235:map.2/88895123/C:p.Q166R:n.A799G:c.cAa/cGa:SIFTprediction.tolerated:PolyPhenScore.0 hitsHtheHkinaseHproteinHPEKHoutsideHitsHkinaseHdomain

SW480 ENSP00000308413:map.11/67202156/T:p.A420V:n.C1304T:c.gCc/gTc:SIFTprediction.tolerated:PolyPhenScore.0.01 hitsHtheHkinaseHproteinHp70S6KbHoutsideHitsHkinaseHdomain

SW480 ENSP00000309230:map.15/77450964/T:p.R1071K:n.G3491A:c.aGg/aAg:SIFTprediction.tolerated:PolyPhenScore.0.003 hitsHtheHkinaseHproteinHSgK269HoutsideHitsHkinaseHdomain

SW480 ENSP00000310722:map.8/57026229/A:p.A105S:n.G313T:c.Gct/Tct:SIFTprediction.deleterious:PolyPhenScore.0.999 hitsHtheHkinaseHdomainHofHMOS

SW480 ENSP00000317985:map.2/11359120/T:p.T431N:n.C1741A:c.aCt/aAt:SIFTprediction.tolerated:PolyPhenScore.0 hitsHtheHkinaseHproteinHROCK2HoutsideHitsHkinaseHdomain

SW480 ENSP00000319192:map.7/43664280/G:p.K362E:n.A1263G:c.Aag/Gag:SIFTprediction.tolerated:PolyPhenScore.0 hitsHtheHkinaseHproteinHDRAK1HoutsideHitsHkinaseHdomain

SW480 ENSP00000324560:map.12/132403161/G:p.T816A:n.A2797G:c.Act/Gct:SIFTprediction.tolerated:PolyPhenScore.0.002 hitsHtheHkinaseHproteinHULK1HoutsideHitsHkinaseHdomain

SW480 ENSP00000332454:map.21/43161357/C:p.M666V:n.A2061G:c.Atg/Gtg:SIFTprediction.tolerated:PolyPhenScore.0 hitsHtheHkinaseHproteinHANKRD3HoutsideHitsHkinaseHdomain

SW480 ENSP00000335347:map.14/103934488/C:p.F433S:n.T1298C:c.tTt/tCt:SIFTprediction.tolerated:PolyPhenScore.0 hitsHtheHkinaseHproteinHMARK3HoutsideHitsHkinaseHdomain

SW480 ENSP00000337451:map.3/89521664/A:p.R914H:n.G2966A:c.cGc/cAc:SIFTprediction.tolerated:PolyPhenScore.0.017 hitsHtheHkinaseHproteinHEphA3HoutsideHitsHkinaseHdomain

SW480 ENSP00000337451:map.3/89521693/C:p.W924R:n.T2995C:c.Tgg/Cgg:SIFTprediction.tolerated:PolyPhenScore.0 hitsHtheHkinaseHproteinHEphA3HoutsideHitsHkinaseHdomain

SW480 ENSP00000342105:map.12/68051420/A:p.H245N:n.C1146A:c.Cac/Aac:SIFTprediction.tolerated:PolyPhenScore.0.017 hitsHtheHkinaseHdomainHofHDYRK2

SW480 ENSP00000345083:map.17/21202191/A:p.P40T:n.C367A:c.Ccc/Acc:SIFTprediction.deleterious:PolyPhenScore.0.904 hitsHtheHkinaseHproteinHMAP2K3HoutsideHitsHkinaseHdomain

SW480 ENSP00000345083:map.17/21202237/C:p.R55T:n.G413C:c.aGa/aCa:SIFTprediction.tolerated:PolyPhenScore.0.032 hitsHtheHkinaseHproteinHMAP2K3HoutsideHitsHkinaseHdomain

SW480 ENSP00000345083:map.17/21203893/C:p.S68P:n.T451C:c.Tca/Cca:SIFTprediction.tolerated:PolyPhenScore.0.065 hitsHtheHkinaseHdomainHofHMAP2K3

SW480 ENSP00000345083:map.17/21203941/A:p.A84T:n.G499A:c.Gcc/Acc:SIFTprediction.tolerated:PolyPhenScore.0.371 hitsHtheHkinaseHdomainHofHMAP2K3

SW480 ENSP00000345083:map.17/21204187/T:p.R94L:n.G530T:c.cGg/cTg:SIFTprediction.deleterious:PolyPhenScore.0.662 hitsHtheHkinaseHdomainHofHMAP2K3

SW480 ENSP00000345083:map.17/21204192/T:p.R96W:n.C535T:c.Cgg/Tgg:SIFTprediction.deleterious:PolyPhenScore.0.996 hitsHtheHkinaseHdomainHofHMAP2K3

SW480 ENSP00000345083:map.17/21207834/T:p.T222M:n.C914T:c.aCg/aTg:SIFTprediction.deleterious:PolyPhenScore.1 hitsHtheHkinaseHdomainHofHMAP2K3

SW480 ENSP00000345083:map.17/21215557/A:p.R293H:n.G1127A:c.cGt/cAt:SIFTprediction.tolerated:PolyPhenScore.0.874 hitsHtheHkinaseHdomainHofHMAP2K3

SW480 ENSP00000345083:map.17/21217513/A:p.V339M:n.G1264A:c.Gtg/Atg:SIFTprediction.deleterious:PolyPhenScore.0.807 hitsHtheHkinaseHproteinHMAP2K3HoutsideHitsHkinaseHdomain

SW480 ENSP00000345133:map.11/64597506/C:p.Q1135R:n.A3404G:c.cAg/cGg:SIFTprediction.tolerated:PolyPhenScore.0.008 hitsHtheHkinaseHproteinHDMPK2HoutsideHitsHkinaseHdomain

SW480 ENSP00000345629:map.X/19482476/T:p.A192T:n.G574A:c.Gct/Act:SIFTprediction.tolerated:PolyPhenScore.0.408 hitsHtheHkinaseHproteinHMAP3K7HoutsideHitsHkinaseHdomain

SW480 ENSP00000348132:map.7/23811795/G:p.N621K:n.T1982G:c.aaT/aaG:SIFTprediction.deleterious:PolyPhenScore.0.713 hitsHtheHkinaseHproteinHSgK396HoutsideHitsHkinaseHdomain

SW480 ENSP00000350195:map.1/27687466/T:p.N622K:n.C2135A:c.aaC/aaA:SIFTprediction.tolerated:PolyPhenScore.0.013 hitsHtheHkinaseHproteinHMAP3K6HoutsideHitsHkinaseHdomain

SW480 ENSP00000350195:map.1/27688633/A:p.T455I:n.C1633T:c.aCc/aTc:SIFTprediction.tolerated:PolyPhenScore.0.002 hitsHtheHkinaseHproteinHMAP3K6HoutsideHitsHkinaseHdomain

SW480 ENSP00000353452:map.3/123451773/C:p.L496V:n.C1768G:c.Ctg/Gtg:SIFTprediction.tolerated:PolyPhenScore.0.001 hitsHtheHkinaseHproteinHsmMLCKHoutsideHitsHkinaseHdomain

SW480 ENSP00000353452:map.3/123457893/A:p.P147S:n.C721T:c.Cca/Tca:SIFTprediction.tolerated:PolyPhenScore.0.011 hitsHtheHkinaseHproteinHsmMLCKHoutsideHitsHkinaseHdomain

SW480 ENSP00000354006:map.9/77397374/T:p.S1038Y:n.C3351A:c.tCc/tAc:SIFTprediction.deleterious:PolyPhenScore.0.619 hitsHtheHkinaseHproteinHChaK2HoutsideHitsHkinaseHdomain

SW480 ENSP00000354671:map.1/46476587/G:p.D388E:n.T1447G:c.gaT/gaG:SIFTprediction.tolerated:PolyPhenScore.0 hitsHtheHkinaseHproteinHMAST2HoutsideHitsHkinaseHdomain

SW480 ENSP00000354671:map.1/46493460/G:p.I659M:n.T2260G:c.atT/atG:SIFTprediction.tolerated:PolyPhenScore.0.491 hitsHtheHkinaseHdomainHofHMAST2

SW480 ENSP00000354877:map.17/19713740/T:p.V370M:n.G1627A:c.Gtg/Atg:SIFTprediction.tolerated:PolyPhenScore.0.001 hitsHtheHkinaseHproteinHULK2HoutsideHitsHkinaseHdomain

SW480 ENSP00000354991:map.18/56149099/C:p.I2157V:n.A6683G:c.Ata/Gta:SIFTprediction.tolerated:PolyPhenScore.0 hitsHtheHkinaseHproteinHAlphaK2HoutsideHitsHkinaseHdomain

SW480 ENSP00000354991:map.18/56202768/A:p.A1551S:n.G4865T:c.Gct/Tct:SIFTprediction.deleterious:PolyPhenScore.0.258 hitsHtheHkinaseHproteinHAlphaK2HoutsideHitsHkinaseHdomain

SW480 ENSP00000354991:map.18/56203074/A:p.P1449S:n.C4559T:c.Ccg/Tcg:SIFTprediction.deleterious:PolyPhenScore.0.904 hitsHtheHkinaseHproteinHAlphaK2HoutsideHitsHkinaseHdomain

SW480 ENSP00000354991:map.18/56204671/T:p.N916K:n.T2962A:c.aaT/aaA:SIFTprediction.deleterious:PolyPhenScore.0.731 hitsHtheHkinaseHproteinHAlphaK2HoutsideHitsHkinaseHdomain

SW480 ENSP00000354991:map.18/56204747/A:p.T891I:n.C2886T:c.aCc/aTc:SIFTprediction.tolerated:PolyPhenScore.0 hitsHtheHkinaseHproteinHAlphaK2HoutsideHitsHkinaseHdomain

SW480 ENSP00000354991:map.18/56204932/G:p.K829N:n.A2701C:c.aaA/aaC:SIFTprediction.deleterious:PolyPhenScore.0.824 hitsHtheHkinaseHproteinHAlphaK2HoutsideHitsHkinaseHdomain

SW480 ENSP00000354991:map.18/56204945/G:p.R825T:n.G2688C:c.aGa/aCa:SIFTprediction.tolerated:PolyPhenScore.0 hitsHtheHkinaseHproteinHAlphaK2HoutsideHitsHkinaseHdomain

SW480 ENSP00000354991:map.18/56204991/T:p.G810S:n.G2642A:c.Ggt/Agt:SIFTprediction.deleterious:PolyPhenScore.0.951 hitsHtheHkinaseHproteinHAlphaK2HoutsideHitsHkinaseHdomain

SW480 ENSP00000354991:map.18/56205262/C:p.H719Q:n.T2371G:c.caT/caG:SIFTprediction.tolerated:PolyPhenScore.0 hitsHtheHkinaseHproteinHAlphaK2HoutsideHitsHkinaseHdomain

SW480 ENSP00000354991:map.18/56247600/A:p.R136S:n.G622T:c.agG/agT:SIFTprediction.tolerated:PolyPhenScore.0 hitsHtheHkinaseHproteinHAlphaK2HoutsideHitsHkinaseHdomain

SW480 ENSP00000355304:map.14/102695693/C:p.Q398R:n.A1425G:c.cAg/cGg:SIFTprediction.tolerated:PolyPhenScore.0.001 hitsHtheHkinaseHproteinHMOKHoutsideHitsHkinaseHdomain

SW480 ENSP00000355583:map.1/233497978/T:p.K497N:n.G1752T:c.aaG/aaT:SIFTprediction.deleterious:PolyPhenScore.0.972 hitsHtheHkinaseHproteinHMLK4HoutsideHitsHkinaseHdomain

SW480 ENSP00000355966:map.1/211840498/C:p.N354S:n.A1200G:c.aAc/aGc:SIFTprediction.tolerated:PolyPhenScore.0.002 hitsHtheHkinaseHproteinHNEK2HoutsideHitsHkinaseHdomain

SW480 ENSP00000356087:map.1/206669465/T:p.P713L:n.C2511T:c.cCt/cTt:SIFTprediction.tolerated:PolyPhenScore.0.008 hitsHtheHkinaseHproteinHIKKeHoutsideHitsHkinaseHdomain

SW480 ENSP00000356130:map.1/205130413/G:p.C641R:n.T1952C:c.Tgt/Cgt:SIFTprediction.tolerated:PolyPhenScore.0 hitsHtheHkinaseHproteinHDustyHoutsideHitsHkinaseHdomain

SW480 ENSP00000356530:map.1/182551337/C:p.D541E:n.T1877G:c.gaT/gaG:SIFTprediction.tolerated:PolyPhenScore.0 hitsHtheHkinaseHdomainHofHRNAseL

SW480 ENSP00000356530:map.1/182554557/T:p.R462Q:n.G1639A:c.cGa/cAa:SIFTprediction.deleterious:PolyPhenScore.0.85 hitsHtheHkinaseHdomainHofHRNAseL

SW480 ENSP00000356745:map.1/169823718/C:p.Q567R:n.A1915G:c.cAa/cGa:SIFTprediction.tolerated:PolyPhenScore.0.116 hitsHtheHkinaseHproteinHSCYL3HoutsideHitsHkinaseHdomain

SW480 ENSP00000357494:map.6/117622233/T:p.D2213N:n.G6836A:c.Gac/Aac:SIFTprediction.tolerated:PolyPhenScore.0.009 hitsHtheHkinaseHdomainHofHROS

SW480 ENSP00000357494:map.6/117681543/A:p.P1136L:n.C3606T:c.cCa/cTa:SIFTprediction.deleterious:PolyPhenScore.0.995 hitsHtheHkinaseHproteinHROSHoutsideHitsHkinaseHdomain

SW480 ENSP00000357494:map.6/117687244/T:p.L936Q:n.T3006A:c.cTg/cAg:SIFTprediction.deleterious:PolyPhenScore.0.999 hitsHtheHkinaseHproteinHROSHoutsideHitsHkinaseHdomain

SW480 ENSP00000357615:map.6/116325142/T:p.G122R:n.G811A:c.Gga/Aga:SIFTprediction.tolerated:PolyPhenScore.0 hitsHtheHkinaseHproteinHFRKHoutsideHitsHkinaseHdomain

SW480 ENSP00000359424:map.10/101977883/T:p.V268I:n.G857A:c.Gta/Ata:SIFTprediction.tolerated:PolyPhenScore.0.005 hitsHtheHkinaseHdomainHofHIKKa

SW480 ENSP00000361025:map.9/136270538/G:p.L679R:n.T2143G:c.cTg/cGg:SIFTprediction.deleterious:PolyPhenScore.0.912 hitsHtheHkinaseHproteinHSgK071HoutsideHitsHkinaseHdomain

SW480 ENSP00000362139:map.1/38185723/T:p.R807Q:n.G2420A:c.cGg/cAg:SIFTprediction.deleterious:PolyPhenScore.0.792 hitsHtheHkinaseHdomainHofHEphA10

SW480 ENSP00000362139:map.1/38188740/T:p.V645I:n.G1933A:c.Gtc/Atc:SIFTprediction.tolerated:PolyPhenScore.0.005 hitsHtheHkinaseHdomainHofHEphA10
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SW480 ENSP00000362139:map.1/38188787/G:p.L629P:n.T1886C:c.cTg/cCg:SIFTprediction.tolerated:PolyPhenScore.0 hitsHtheHkinaseHproteinHEphA10HoutsideHitsHkinaseHdomain

SW480 ENSP00000362139:map.1/38227086/T:p.F281I:n.T841A:c.Ttc/Atc:SIFTprediction.tolerated:PolyPhenScore.0 hitsHtheHkinaseHproteinHEphA10HoutsideHitsHkinaseHdomain

SW480 ENSP00000362702:map.9/127088697/T:p.S199L:n.C811T:c.tCa/tTa:SIFTprediction.deleterious:PolyPhenScore.0.089 hitsHtheHkinaseHdomainHofHNEK6

SW480 ENSP00000364204:map.1/20977000/C:p.N521T:n.A1656C:c.aAt/aCt:SIFTprediction.deleterious:PolyPhenScore.0.007 hitsHtheHkinaseHproteinHPINK1HoutsideHitsHkinaseHdomain

SW480 ENSP00000364361:map.2/174128513/T:p.S531L:n.C1670T:c.tCg/tTg:SIFTprediction.tolerated:PolyPhenScore.0.001 hitsHtheHkinaseHproteinHZAKHoutsideHitsHkinaseHdomain

SW480 ENSP00000364860:map.9/94486321/T:p.V819I:n.G2654A:c.Gtc/Atc:SIFTprediction.tolerated:PolyPhenScore.0 hitsHtheHkinaseHproteinHROR2HoutsideHitsHkinaseHdomain

SW480 ENSP00000364860:map.9/94495608/C:p.T245A:n.A932G:c.Aca/Gca:SIFTprediction.tolerated:PolyPhenScore.0.002 hitsHtheHkinaseHproteinHROR2HoutsideHitsHkinaseHdomain

SW480 ENSP00000366488:map.9/71628207/C:p.H268D:n.C833G:c.Cat/Gat:SIFTprediction.tolerated:PolyPhenScore.0 hitsHtheHkinaseHdomainHofHPKACg

SW480 ENSP00000369126:map.13/37679268/T:p.D42E:n.C536A:c.gaC/gaA:SIFTprediction.tolerated:PolyPhenScore.0.004 hitsHtheHkinaseHdomainHofHCK1a2

SW480 ENSP00000369375:map.9/27183463/C:p.Q346P:n.A1479C:c.cAg/cCg:SIFTprediction.tolerated:PolyPhenScore.0 hitsHtheHkinaseHproteinHTIE2HoutsideHitsHkinaseHdomain

SW480 ENSP00000372035:map.13/21562832/T:p.G363S:n.G1493A:c.Ggc/Agc:SIFTprediction.tolerated:PolyPhenScore.0.005 hitsHtheHkinaseHproteinHLATS2HoutsideHitsHkinaseHdomain

SW480 ENSP00000372035:map.13/21562948/A:p.A324V:n.C1377T:c.gCg/gTg:SIFTprediction.tolerated:PolyPhenScore.0.031 hitsHtheHkinaseHproteinHLATS2HoutsideHitsHkinaseHdomain

SW480 ENSP00000373600:map.15/101606889/A:p.G1938D:n.G6172A:c.gGc/gAc:SIFTprediction.tolerated:PolyPhenScore.0.013 hitsHtheHkinaseHproteinHLRRK1HoutsideHitsHkinaseHdomain

SW480 ENSP00000381129:map.4/2990499/T:p.R65L:n.G537T:c.cGt/cTt:SIFTprediction.tolerated:PolyPhenScore.0.002 hitsHtheHkinaseHproteinHGPRK4HoutsideHitsHkinaseHdomain

SW480 ENSP00000381129:map.4/3006043/T:p.A142V:n.C768T:c.gCc/gTc:SIFTprediction.tolerated:PolyPhenScore.0.004 hitsHtheHkinaseHproteinHGPRK4HoutsideHitsHkinaseHdomain

SW480 ENSP00000381129:map.4/3015553/A:p.V247I:n.G1082A:c.Gta/Ata:SIFTprediction.tolerated:PolyPhenScore.0.669 hitsHtheHkinaseHdomainHofHGPRK4

SW480 ENSP00000382423:map.5/56177443/A:p.D806N:n.G2416A:c.Gat/Aat:SIFTprediction.tolerated:PolyPhenScore.0.111 hitsHtheHkinaseHproteinHMAP3K1HoutsideHitsHkinaseHdomain

SW480 ENSP00000382423:map.5/56177743/A:p.V906I:n.G2716A:c.Gtc/Atc:SIFTprediction.tolerated:PolyPhenScore.0 hitsHtheHkinaseHproteinHMAP3K1HoutsideHitsHkinaseHdomain

SW480 ENSP00000382544:map.22/19119751/T:p.T280M:n.C1431T:c.aCg/aTg:SIFTprediction.tolerated:PolyPhenScore.0.003 hitsHtheHkinaseHproteinHTSSK2HoutsideHitsHkinaseHdomain

SW480 ENSP00000383234:map.18/48190440/A:p.V38M:n.G1112A:c.Gtg/Atg:SIFTprediction.tolerated:PolyPhenScore.0.357 hitsHtheHkinaseHdomainHofHERK4

SW480 ENSP00000384442:map.1/1650787/C:p.H112R:n.A415G:c.cAt/cGt:SIFTprediction.tolerated:PolyPhenScore.0 hitsHtheHkinaseHproteinHCDK11bHoutsideHitsHkinaseHdomain

SW480 ENSP00000384442:map.1/1650797/G:p.C109R:n.T405C:c.Tgt/Cgt:SIFTprediction.tolerated:PolyPhenScore.0 hitsHtheHkinaseHproteinHCDK11bHoutsideHitsHkinaseHdomain

SW480 ENSP00000384442:map.1/1650832/G:p.V97A:n.T370C:c.gTt/gCt:SIFTprediction.tolerated:PolyPhenScore.0.013 hitsHtheHkinaseHproteinHCDK11bHoutsideHitsHkinaseHdomain

SW480 ENSP00000384442:map.1/1650845/A:p.R93W:n.C357T:c.Cgg/Tgg:SIFTprediction.deleterious:PolyPhenScore.0.999 hitsHtheHkinaseHproteinHCDK11bHoutsideHitsHkinaseHdomain

SW480 ENSP00000386135:map.9/90322023/A:p.S1346N:n.G4372A:c.aGt/aAt:SIFTprediction.tolerated:PolyPhenScore.0 hitsHtheHkinaseHproteinHDAPK1HoutsideHitsHkinaseHdomain

SW480 ENSP00000386213:map.2/171260787/A:p.V770I:n.G2451A:c.Gta/Ata:SIFTprediction.tolerated:PolyPhenScore.0.004 hitsHtheHkinaseHproteinHMYO3BHoutsideHitsHkinaseHdomain

SW480 ENSP00000386213:map.2/171356274/A:p.R1082K:n.G3388A:c.aGg/aAg:SIFTprediction.tolerated:PolyPhenScore.0.005 hitsHtheHkinaseHproteinHMYO3BHoutsideHitsHkinaseHdomain

SW480 ENSP00000386456:map.2/69741854/G:p.K509Q:n.A1902C:c.Aaa/Caa:SIFTprediction.tolerated:PolyPhenScore.0.002 hitsHtheHkinaseHproteinHAAK1HoutsideHitsHkinaseHdomain

SW480 ENSP00000389015:map.19/56047448/G:p.C72R:n.T252C:c.Tgc/Cgc:SIFTprediction.tolerated:PolyPhenScore.0 hitsHtheHkinaseHdomainHofHSgK069

SW480 ENSP00000391295:map.11/116728630/C:p.P1178R:n.C3531G:c.cCt/cGt:SIFTprediction.deleterious:PolyPhenScore.0.629 hitsHtheHkinaseHproteinHQSKHoutsideHitsHkinaseHdomain

SW480 ENSP00000398470:map.15/40477831/A:p.R363Q:n.G1242A:c.cGa/cAa:SIFTprediction.tolerated:PolyPhenScore.0 hitsHtheHkinaseHproteinHBUBR1HoutsideHitsHkinaseHdomain

SW480 ENSP00000400312:map.15/75130093/C:p.K445R:n.A1426G:c.aAg/aGg:SIFTprediction.tolerated:PolyPhenScore.0.098 hitsHtheHkinaseHproteinHULK3HoutsideHitsHkinaseHdomain

SW480 ENSP00000408695:map.17/64783081/A:p.V568I:n.G1728A:c.Gtc/Atc:SIFTprediction.tolerated:PolyPhenScore.0 hitsHtheHkinaseHdomainHofHPKCa

SW480 ENSP00000423665:map.1/205495233/T:p.T196M:n.C807T:c.aCg/aTg:SIFTprediction.deleterious:PolyPhenScore.0.423 hitsHtheHkinaseHdomainHofHPCTAIRE3

SW480 ENSP00000433548:map.12/990912/C:p.T1554P:n.A4660C:c.Acc/Ccc:SIFTprediction.tolerated:PolyPhenScore.0 hitsHtheHkinaseHproteinHWnk1HoutsideHitsHkinaseHdomain

SW480 ENSP00000433548:map.12/994487/C,A:p.C2004S:n.G6011C:c.tGc/tCc:SIFTprediction.tolerated:PolyPhenScore.0 hitsHtheHkinaseHproteinHWnk1HoutsideHitsHkinaseHdomain

SW480 ENSP00000433548:map.12/994487/C,A:p.C2004Y:n.G6011A:c.tGc/tAc:SIFTprediction.deleterious:PolyPhenScore.0 hitsHtheHkinaseHproteinHWnk1HoutsideHitsHkinaseHdomain

SW480 ENSP00000433548:map.12/998365/T:p.M2306I:n.G6918T:c.atG/atT:SIFTprediction.tolerated:PolyPhenScore.0 hitsHtheHkinaseHproteinHWnk1HoutsideHitsHkinaseHdomain

SW620 ENSP00000166244:map.1/22920150/G:p.Q525R:n.A1646G:c.cAg/cGg:SIFTprediction.tolerated:PolyPhenScore.0.15 hitsHtheHkinaseHproteinHEphA8HoutsideHitsHkinaseHdomain

SW620 ENSP00000216911:map.20/54961463/C:p.I57V:n.A437G:c.Att/Gtt:SIFTprediction.tolerated:PolyPhenScore.0.001 hitsHtheHkinaseHproteinHAurAHoutsideHitsHkinaseHdomain

SW620 ENSP00000220751:map.8/90784009/G:p.P228A:n.C996G:c.Cct/Gct:SIFTprediction.deleterious:PolyPhenScore.1 hitsHtheHkinaseHdomainHofHRIPK2

SW620 ENSP00000226094:map.17/66533655/G:p.L530S:n.T1877C:c.tTg/tCg:SIFTprediction.tolerated:PolyPhenScore.0 hitsHtheHkinaseHproteinHFAM20AHoutsideHitsHkinaseHdomain

SW620 ENSP00000233027:map.3/52797634/C:p.P225A:n.C876G:c.Cca/Gca:SIFTprediction.deleterious:PolyPhenScore.0.784 hitsHtheHkinaseHdomainHofHNEK4

SW620 ENSP00000240361:map.17/56659018/T:p.G1088D:n.G3349A:c.gGt/gAt:SIFTprediction.tolerated:PolyPhenScore.0.033 hitsHtheHkinaseHproteinHSgK307HoutsideHitsHkinaseHdomain

SW620 ENSP00000241453:map.13/28624294/A:p.T227M:n.C762T:c.aCg/aTg:SIFTprediction.deleterious:PolyPhenScore.0.803 hitsHtheHkinaseHproteinHFLT3HoutsideHitsHkinaseHdomain

SW620 ENSP00000256443:map.5/68530807/T:p.A2V:n.C108T:c.gCt/gTt:SIFTprediction.deleterious:PolyPhenScore.0.024 hitsHtheHkinaseHproteinHCDK7HoutsideHitsHkinaseHdomain

SW620 ENSP00000256458:map.3/10276163/A:p.D431E:n.T1383A:c.gaT/gaA:SIFTprediction.tolerated:PolyPhenScore.0 hitsHtheHkinaseHdomainHofHIRAK2

SW620 ENSP00000259750:map.6/43230970/C:p.G623A:n.G1951C:c.gGc/gCc:SIFTprediction.tolerated:PolyPhenScore.0 hitsHtheHkinaseHproteinHTTBK1HoutsideHitsHkinaseHdomain

SW620 ENSP00000260404:map.15/40564576/T:p.P337L:n.C1436T:c.cCg/cTg:SIFTprediction.deleterious:PolyPhenScore.0.018 hitsHtheHkinaseHproteinHPAK6HoutsideHitsHkinaseHdomain

SW620 ENSP00000261170:map.12/14829893/C:p.F281L:n.T980G:c.ttT/ttG:SIFTprediction.tolerated:PolyPhenScore.0.02 hitsHtheHkinaseHproteinHHSERHoutsideHitsHkinaseHdomain

SW620 ENSP00000261233:map.12/66605228/G:p.I147V:n.A860G:c.Ata/Gta:SIFTprediction.tolerated:PolyPhenScore.0.002 hitsHtheHkinaseHproteinHIRAK3HoutsideHitsHkinaseHdomain

SW620 ENSP00000261937:map.5/180046344/C:p.H890Q:n.C2749G:c.caC/caG:SIFTprediction.deleterious:PolyPhenScore.0.32 hitsHtheHkinaseHdomainHofHFLT4

SW620 ENSP00000262811:map.19/18255359/A:p.G861S:n.G2581A:c.Ggc/Agc:SIFTprediction.tolerated:PolyPhenScore.0.001 hitsHtheHkinaseHproteinHMAST3HoutsideHitsHkinaseHdomain

SW620 ENSP00000262848:map.X/3544520/G:p.I252T:n.T1110C:c.aTt/aCt:SIFTprediction.tolerated:PolyPhenScore.1 hitsHtheHkinaseHdomainHofHPRKX

SW620 ENSP00000263026:map.16/22269867/G:p.Q361R:n.A1556G:c.cAa/cGa:SIFTprediction.tolerated:PolyPhenScore.0 hitsHtheHkinaseHproteinHeEF2KHoutsideHitsHkinaseHdomain

SW620 ENSP00000263791:map.15/40265799/G:p.E556G:n.A1710G:c.gAa/gGa:SIFTprediction.tolerated:PolyPhenScore.0 hitsHtheHkinaseHproteinHGCN2HoutsideHitsHkinaseHdomain

SW620 ENSP00000263923:map.4/55972974/A:p.Q472H:n.A1712T:c.caA/caT:SIFTprediction.tolerated:PolyPhenScore.0.012 hitsHtheHkinaseHproteinHKDRHoutsideHitsHkinaseHdomain

SW620 ENSP00000263923:map.4/55979558/T:p.V297I:n.G1185A:c.Gta/Ata:SIFTprediction.tolerated:PolyPhenScore.0.999 hitsHtheHkinaseHproteinHKDRHoutsideHitsHkinaseHdomain

SW620 ENSP00000263955:map.2/197002262/T:p.I343N:n.T1315A:c.aTc/aAc:SIFTprediction.deleterious:PolyPhenScore.0.728 hitsHtheHkinaseHproteinHDRAK2HoutsideHitsHkinaseHdomain

SW620 ENSP00000264316:map.4/48115264/T:p.R45H:n.G220A:c.cGt/cAt:SIFTprediction.tolerated:PolyPhenScore.0 hitsHtheHkinaseHproteinHTXKHoutsideHitsHkinaseHdomain

SW620 ENSP00000265944:map.10/26355906/A:p.R319H:n.G1122A:c.cGt/cAt:SIFTprediction.tolerated:PolyPhenScore.0 hitsHtheHkinaseHproteinHMYO3AHoutsideHitsHkinaseHdomain

SW620 ENSP00000265944:map.10/26355992/G:p.I348V:n.A1208G:c.Att/Gtt:SIFTprediction.tolerated:PolyPhenScore.0 hitsHtheHkinaseHproteinHMYO3AHoutsideHitsHkinaseHdomain

SW620 ENSP00000265944:map.10/26357748/A:p.V369I:n.G1271A:c.Gtc/Atc:SIFTprediction.tolerated:PolyPhenScore.0 hitsHtheHkinaseHproteinHMYO3AHoutsideHitsHkinaseHdomain

SW620 ENSP00000265944:map.10/26446312/A:p.S956N:n.G3033A:c.aGt/aAt:SIFTprediction.tolerated:PolyPhenScore.0.003 hitsHtheHkinaseHproteinHMYO3AHoutsideHitsHkinaseHdomain

SW620 ENSP00000265944:map.10/26463043/T:p.T1284S:n.A4016T:c.Act/Tct:SIFTprediction.tolerated:PolyPhenScore.0.003 hitsHtheHkinaseHproteinHMYO3AHoutsideHitsHkinaseHdomain

SW620 ENSP00000265944:map.10/26463130/A:p.R1313S:n.C4103A:c.Cgt/Agt:SIFTprediction.tolerated:PolyPhenScore.0 hitsHtheHkinaseHproteinHMYO3AHoutsideHitsHkinaseHdomain

SW620 ENSP00000270162:map.21/44837555/A:p.A615V:n.C1977T:c.gCc/gTc:SIFTprediction.deleterious:PolyPhenScore.0.031 hitsHtheHkinaseHproteinHSIKHoutsideHitsHkinaseHdomain

SW620 ENSP00000270162:map.21/44846016/T:p.G15S:n.G176A:c.Ggt/Agt:SIFTprediction.tolerated:PolyPhenScore.0.002 hitsHtheHkinaseHproteinHSIKHoutsideHitsHkinaseHdomain

SW620 ENSP00000275815:map.7/143088867/C:p.M900V:n.A2785G:c.Atg/Gtg:SIFTprediction.tolerated:PolyPhenScore.0 hitsHtheHkinaseHproteinHEphA1HoutsideHitsHkinaseHdomain

SW620 ENSP00000275815:map.7/143097100/G:p.V160A:n.T566C:c.gTg/gCg:SIFTprediction.tolerated:PolyPhenScore.0 hitsHtheHkinaseHproteinHEphA1HoutsideHitsHkinaseHdomain

SW620 ENSP00000278616:map.11/108183167/G:p.N1983S:n.A6333G:c.aAt/aGt:SIFTprediction.tolerated:PolyPhenScore.0.001 hitsHtheHkinaseHproteinHATMHoutsideHitsHkinaseHdomain

SW620 ENSP00000283109:map.5/96503523/T:p.G349R:n.G1114A:c.Ggg/Agg:SIFTprediction.tolerated:PolyPhenScore.0 hitsHtheHkinaseHproteinHRIOK2HoutsideHitsHkinaseHdomain

SW620 ENSP00000283109:map.5/96513471/C:p.S96C:n.C356G:c.tCt/tGt:SIFTprediction.deleterious:PolyPhenScore.0.987 hitsHtheHkinaseHdomainHofHRIOK2

SW620 ENSP00000288135:map.4/55593464/C:p.M541L:n.A1718C:c.Atg/Ctg:SIFTprediction.tolerated:PolyPhenScore.0.008 hitsHtheHkinaseHproteinHKITHoutsideHitsHkinaseHdomain

SW620 ENSP00000291281:map.19/47177913/G:p.V835A:n.T3261C:c.gTg/gCg:SIFTprediction.tolerated:PolyPhenScore.0 hitsHtheHkinaseHproteinHPKD2HoutsideHitsHkinaseHdomain

SW620 ENSP00000291823:map.19/40886993/T:p.R302Q:n.G1190A:c.cGg/cAg:SIFTprediction.tolerated:PolyPhenScore.0.007 hitsHtheHkinaseHdomainHofHHIPK4

SW620 ENSP00000295709:map.2/219537590/T:p.G13V:n.G317T:c.gGc/gTc:SIFTprediction.deleterious:PolyPhenScore.1 hitsHtheHkinaseHdomainHofHFused

SW620 ENSP00000295709:map.2/219553468/T:p.R477W:n.C1708T:c.Cgg/Tgg:SIFTprediction.deleterious:PolyPhenScore.0.975 hitsHtheHkinaseHproteinHFusedHoutsideHitsHkinaseHdomain

SW620 ENSP00000295709:map.2/219555262/A:p.R583Q:n.G2027A:c.cGg/cAg:SIFTprediction.tolerated:PolyPhenScore.0.003 hitsHtheHkinaseHproteinHFusedHoutsideHitsHkinaseHdomain

SW620 ENSP00000295709:map.2/219562675/A:p.G1003D:n.G3287A:c.gGt/gAt:SIFTprediction.tolerated:PolyPhenScore.0.06 hitsHtheHkinaseHproteinHFusedHoutsideHitsHkinaseHdomain

SW620 ENSP00000295709:map.2/219563602/A:p.R1112Q:n.G3614A:c.cGg/cAg:SIFTprediction.tolerated:PolyPhenScore.0.004 hitsHtheHkinaseHproteinHFusedHoutsideHitsHkinaseHdomain

SW620 ENSP00000296084:map.3/133926324/T:p.R210K:n.G629A:c.aGa/aAa:SIFTprediction.tolerated:PolyPhenScore.0.001 hitsHtheHkinaseHproteinHRYKHoutsideHitsHkinaseHdomain

SW620 ENSP00000297293:map.7/97822115/A:p.L780M:n.T2631A:c.Ttg/Atg:SIFTprediction.tolerated:PolyPhenScore.0.34 hitsHtheHkinaseHproteinHLMR2HoutsideHitsHkinaseHdomain

SW620 ENSP00000298910:map.12/40619082/A:p.R50H:n.G207A:c.cGc/cAc:SIFTprediction.tolerated:PolyPhenScore.0 hitsHtheHkinaseHproteinHLRRK2HoutsideHitsHkinaseHdomain

SW620 ENSP00000298910:map.12/40707778/A:p.R1514Q:n.G4599A:c.cGa/cAa:SIFTprediction.tolerated:PolyPhenScore.0.043 hitsHtheHkinaseHproteinHLRRK2HoutsideHitsHkinaseHdomain

SW620 ENSP00000301178:map.19/41743861/G:p.N266D:n.A986G:c.Aac/Gac:SIFTprediction.tolerated:PolyPhenScore.0 hitsHtheHkinaseHproteinHAXLHoutsideHitsHkinaseHdomain

SW620 ENSP00000301831:map.3/41756965/T:p.V851I:n.G3014A:c.Gta/Ata:SIFTprediction.tolerated:PolyPhenScore.0.01 hitsHtheHkinaseHproteinHULK4HoutsideHitsHkinaseHdomain

SW620 ENSP00000301831:map.3/41756986/T:p.L844M:n.T2993A:c.Ttg/Atg:SIFTprediction.tolerated:PolyPhenScore.0.004 hitsHtheHkinaseHproteinHULK4HoutsideHitsHkinaseHdomain

SW620 ENSP00000301831:map.3/41831203/T:p.A715T:n.G2606A:c.Gct/Act:SIFTprediction.tolerated:PolyPhenScore.0.002 hitsHtheHkinaseHproteinHULK4HoutsideHitsHkinaseHdomain

SW620 ENSP00000301831:map.3/41841716/C:p.S640A:n.T2381G:c.Tcc/Gcc:SIFTprediction.tolerated:PolyPhenScore.0 hitsHtheHkinaseHproteinHULK4HoutsideHitsHkinaseHdomain

SW620 ENSP00000301831:map.3/41877414/C:p.K569R:n.A2169G:c.aAa/aGa:SIFTprediction.tolerated:PolyPhenScore.0.284 hitsHtheHkinaseHproteinHULK4HoutsideHitsHkinaseHdomain

SW620 ENSP00000301831:map.3/41925398/T:p.A542T:n.G2087A:c.Gct/Act:SIFTprediction.tolerated:PolyPhenScore.0 hitsHtheHkinaseHproteinHULK4HoutsideHitsHkinaseHdomain

SW620 ENSP00000301831:map.3/41952852/C:p.S348G:n.A1505G:c.Agt/Ggt:SIFTprediction.deleterious:PolyPhenScore.0.734 hitsHtheHkinaseHproteinHULK4HoutsideHitsHkinaseHdomain

SW620 ENSP00000301831:map.3/41960006/C:p.I224V:n.A1133G:c.Att/Gtt:SIFTprediction.tolerated:PolyPhenScore.0.002 hitsHtheHkinaseHdomainHofHULK4

SW620 ENSP00000301831:map.3/41996136/C:p.K39R:n.A579G:c.aAa/aGa:SIFTprediction.tolerated:PolyPhenScore.0.111 hitsHtheHkinaseHdomainHofHULK4

SW620 ENSP00000306678:map.11/113266821/A:p.A239T:n.G809A:c.Gcg/Acg:SIFTprediction.tolerated:PolyPhenScore.0.324 hitsHtheHkinaseHdomainHofHSgK288

SW620 ENSP00000306678:map.11/113270015/C:p.G442R:n.G1418C:c.Ggc/Cgc:SIFTprediction.tolerated:PolyPhenScore.0 hitsHtheHkinaseHproteinHSgK288HoutsideHitsHkinaseHdomain

SW620 ENSP00000306678:map.11/113270828/A:p.E713K:n.G2231A:c.Gag/Aag:SIFTprediction.tolerated:PolyPhenScore.0 hitsHtheHkinaseHproteinHSgK288HoutsideHitsHkinaseHdomain

SW620 ENSP00000307235:map.2/88874891/A:p.A704S:n.G2412T:c.Gct/Tct:SIFTprediction.tolerated:PolyPhenScore.0.005 hitsHtheHkinaseHdomainHofHPEK

SW620 ENSP00000307235:map.2/88895123/C:p.Q166R:n.A799G:c.cAa/cGa:SIFTprediction.tolerated:PolyPhenScore.0 hitsHtheHkinaseHproteinHPEKHoutsideHitsHkinaseHdomain

SW620 ENSP00000308413:map.11/67202156/T:p.A420V:n.C1304T:c.gCc/gTc:SIFTprediction.tolerated:PolyPhenScore.0.01 hitsHtheHkinaseHproteinHp70S6KbHoutsideHitsHkinaseHdomain

SW620 ENSP00000309230:map.15/77450964/T:p.R1071K:n.G3491A:c.aGg/aAg:SIFTprediction.tolerated:PolyPhenScore.0.003 hitsHtheHkinaseHproteinHSgK269HoutsideHitsHkinaseHdomain

SW620 ENSP00000310722:map.8/57026229/A:p.A105S:n.G313T:c.Gct/Tct:SIFTprediction.deleterious:PolyPhenScore.0.999 hitsHtheHkinaseHdomainHofHMOS

SW620 ENSP00000313420:map.8/48802984/C:p.A1301G:n.C3959G:c.gCc/gGc:SIFTprediction.deleterious:PolyPhenScore.0.761 hitsHtheHkinaseHproteinHDNAPKHoutsideHitsHkinaseHdomain

SW620 ENSP00000317985:map.2/11359120/T:p.T431N:n.C1741A:c.aCt/aAt:SIFTprediction.tolerated:PolyPhenScore.0 hitsHtheHkinaseHproteinHROCK2HoutsideHitsHkinaseHdomain

SW620 ENSP00000319192:map.7/43664280/G:p.K362E:n.A1263G:c.Aag/Gag:SIFTprediction.tolerated:PolyPhenScore.0 hitsHtheHkinaseHproteinHDRAK1HoutsideHitsHkinaseHdomain

SW620 ENSP00000322323:map.7/299881/G:p.N564D:n.A1921G:c.Aac/Gac:SIFTprediction.tolerated:PolyPhenScore.0.001 hitsHtheHkinaseHproteinHFAM20CHoutsideHitsHkinaseHdomain

SW620 ENSP00000324560:map.12/132403161/G:p.T816A:n.A2797G:c.Act/Gct:SIFTprediction.tolerated:PolyPhenScore.0.002 hitsHtheHkinaseHproteinHULK1HoutsideHitsHkinaseHdomain

SW620 ENSP00000332454:map.21/43161357/C:p.M666V:n.A2061G:c.Atg/Gtg:SIFTprediction.tolerated:PolyPhenScore.0 hitsHtheHkinaseHproteinHANKRD3HoutsideHitsHkinaseHdomain
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SW620 ENSP00000335347:map.14/103934488/C:p.F433S:n.T1298C:c.tTt/tCt:SIFTprediction.tolerated:PolyPhenScore.0 hitsHtheHkinaseHproteinHMARK3HoutsideHitsHkinaseHdomain

SW620 ENSP00000337451:map.3/89521664/A:p.R914H:n.G2966A:c.cGc/cAc:SIFTprediction.tolerated:PolyPhenScore.0.017 hitsHtheHkinaseHproteinHEphA3HoutsideHitsHkinaseHdomain

SW620 ENSP00000337451:map.3/89521693/C:p.W924R:n.T2995C:c.Tgg/Cgg:SIFTprediction.tolerated:PolyPhenScore.0 hitsHtheHkinaseHproteinHEphA3HoutsideHitsHkinaseHdomain

SW620 ENSP00000339299:map.5/14406071/A:p.A1611T:n.G4855A:c.Gct/Act:SIFTprediction.tolerated:PolyPhenScore.0 hitsHtheHkinaseHproteinHTrioHoutsideHitsHkinaseHdomain

SW620 ENSP00000342105:map.12/68051420/A:p.H245N:n.C1146A:c.Cac/Aac:SIFTprediction.tolerated:PolyPhenScore.0.017 hitsHtheHkinaseHdomainHofHDYRK2

SW620 ENSP00000345083:map.17/21202191/A:p.P40T:n.C367A:c.Ccc/Acc:SIFTprediction.deleterious:PolyPhenScore.0.904 hitsHtheHkinaseHproteinHMAP2K3HoutsideHitsHkinaseHdomain

SW620 ENSP00000345083:map.17/21202237/C:p.R55T:n.G413C:c.aGa/aCa:SIFTprediction.tolerated:PolyPhenScore.0.032 hitsHtheHkinaseHproteinHMAP2K3HoutsideHitsHkinaseHdomain

SW620 ENSP00000345083:map.17/21203893/C:p.S68P:n.T451C:c.Tca/Cca:SIFTprediction.tolerated:PolyPhenScore.0.065 hitsHtheHkinaseHdomainHofHMAP2K3

SW620 ENSP00000345083:map.17/21203941/A:p.A84T:n.G499A:c.Gcc/Acc:SIFTprediction.tolerated:PolyPhenScore.0.371 hitsHtheHkinaseHdomainHofHMAP2K3

SW620 ENSP00000345083:map.17/21204187/T:p.R94L:n.G530T:c.cGg/cTg:SIFTprediction.deleterious:PolyPhenScore.0.662 hitsHtheHkinaseHdomainHofHMAP2K3

SW620 ENSP00000345083:map.17/21204192/T:p.R96W:n.C535T:c.Cgg/Tgg:SIFTprediction.deleterious:PolyPhenScore.0.996 hitsHtheHkinaseHdomainHofHMAP2K3

SW620 ENSP00000345083:map.17/21207834/T:p.T222M:n.C914T:c.aCg/aTg:SIFTprediction.deleterious:PolyPhenScore.1 hitsHtheHkinaseHdomainHofHMAP2K3

SW620 ENSP00000345083:map.17/21215557/A:p.R293H:n.G1127A:c.cGt/cAt:SIFTprediction.tolerated:PolyPhenScore.0.874 hitsHtheHkinaseHdomainHofHMAP2K3

SW620 ENSP00000345083:map.17/21217513/A:p.V339M:n.G1264A:c.Gtg/Atg:SIFTprediction.deleterious:PolyPhenScore.0.807 hitsHtheHkinaseHproteinHMAP2K3HoutsideHitsHkinaseHdomain

SW620 ENSP00000345133:map.11/64597506/C:p.Q1135R:n.A3404G:c.cAg/cGg:SIFTprediction.tolerated:PolyPhenScore.0.008 hitsHtheHkinaseHproteinHDMPK2HoutsideHitsHkinaseHdomain

SW620 ENSP00000345629:map.X/19482476/T:p.A192T:n.G574A:c.Gct/Act:SIFTprediction.tolerated:PolyPhenScore.0.408 hitsHtheHkinaseHproteinHMAP3K7HoutsideHitsHkinaseHdomain

SW620 ENSP00000346667:map.X/54276067/T:p.S905N:n.G3153A:c.aGt/aAt:SIFTprediction.tolerated:PolyPhenScore.0.003 hitsHtheHkinaseHproteinHWnk3HoutsideHitsHkinaseHdomain

SW620 ENSP00000348132:map.7/23757162/C:p.Q71H:n.G332C:c.caG/caC:SIFTprediction.tolerated:PolyPhenScore.0.006 hitsHtheHkinaseHproteinHSgK396HoutsideHitsHkinaseHdomain

SW620 ENSP00000348132:map.7/23775454/A:p.E261K:n.G900A:c.Gag/Aag:SIFTprediction.tolerated:PolyPhenScore.0.034 hitsHtheHkinaseHproteinHSgK396HoutsideHitsHkinaseHdomain

SW620 ENSP00000348132:map.7/23775477/T:p.K268N:n.G923T:c.aaG/aaT:SIFTprediction.deleterious:PolyPhenScore.0.799 hitsHtheHkinaseHproteinHSgK396HoutsideHitsHkinaseHdomain

SW620 ENSP00000348132:map.7/23811795/G:p.N621K:n.T1982G:c.aaT/aaG:SIFTprediction.deleterious:PolyPhenScore.0.713 hitsHtheHkinaseHproteinHSgK396HoutsideHitsHkinaseHdomain

SW620 ENSP00000348472:map.3/58395863/G:p.K481R:n.A1551G:c.aAg/aGg:SIFTprediction.tolerated:PolyPhenScore.0.002 hitsHtheHkinaseHproteinHSlobHoutsideHitsHkinaseHdomain

SW620 ENSP00000348472:map.3/58410554/T:p.A535V:n.C1713T:c.gCa/gTa:SIFTprediction.tolerated:PolyPhenScore.0 hitsHtheHkinaseHproteinHSlobHoutsideHitsHkinaseHdomain

SW620 ENSP00000350195:map.1/27687466/T:p.N622K:n.C2135A:c.aaC/aaA:SIFTprediction.tolerated:PolyPhenScore.0.013 hitsHtheHkinaseHproteinHMAP3K6HoutsideHitsHkinaseHdomain

SW620 ENSP00000350195:map.1/27688633/A:p.T455I:n.C1633T:c.aCc/aTc:SIFTprediction.tolerated:PolyPhenScore.0.002 hitsHtheHkinaseHproteinHMAP3K6HoutsideHitsHkinaseHdomain

SW620 ENSP00000353452:map.3/123451773/C:p.L496V:n.C1768G:c.Ctg/Gtg:SIFTprediction.tolerated:PolyPhenScore.0.001 hitsHtheHkinaseHproteinHsmMLCKHoutsideHitsHkinaseHdomain

SW620 ENSP00000353452:map.3/123457893/A:p.P147S:n.C721T:c.Cca/Tca:SIFTprediction.tolerated:PolyPhenScore.0.011 hitsHtheHkinaseHproteinHsmMLCKHoutsideHitsHkinaseHdomain

SW620 ENSP00000354671:map.1/46476587/G:p.D388E:n.T1447G:c.gaT/gaG:SIFTprediction.tolerated:PolyPhenScore.0 hitsHtheHkinaseHproteinHMAST2HoutsideHitsHkinaseHdomain

SW620 ENSP00000354671:map.1/46493460/G:p.I659M:n.T2260G:c.atT/atG:SIFTprediction.tolerated:PolyPhenScore.0.491 hitsHtheHkinaseHdomainHofHMAST2

SW620 ENSP00000354877:map.17/19713740/T:p.V370M:n.G1627A:c.Gtg/Atg:SIFTprediction.tolerated:PolyPhenScore.0.001 hitsHtheHkinaseHproteinHULK2HoutsideHitsHkinaseHdomain

SW620 ENSP00000354991:map.18/56149099/C:p.I2157V:n.A6683G:c.Ata/Gta:SIFTprediction.tolerated:PolyPhenScore.0 hitsHtheHkinaseHproteinHAlphaK2HoutsideHitsHkinaseHdomain

SW620 ENSP00000354991:map.18/56202768/A:p.A1551S:n.G4865T:c.Gct/Tct:SIFTprediction.deleterious:PolyPhenScore.0.258 hitsHtheHkinaseHproteinHAlphaK2HoutsideHitsHkinaseHdomain

SW620 ENSP00000354991:map.18/56203074/A:p.P1449S:n.C4559T:c.Ccg/Tcg:SIFTprediction.deleterious:PolyPhenScore.0.904 hitsHtheHkinaseHproteinHAlphaK2HoutsideHitsHkinaseHdomain

SW620 ENSP00000354991:map.18/56204671/T:p.N916K:n.T2962A:c.aaT/aaA:SIFTprediction.deleterious:PolyPhenScore.0.731 hitsHtheHkinaseHproteinHAlphaK2HoutsideHitsHkinaseHdomain

SW620 ENSP00000354991:map.18/56204747/A:p.T891I:n.C2886T:c.aCc/aTc:SIFTprediction.tolerated:PolyPhenScore.0 hitsHtheHkinaseHproteinHAlphaK2HoutsideHitsHkinaseHdomain

SW620 ENSP00000354991:map.18/56204932/G:p.K829N:n.A2701C:c.aaA/aaC:SIFTprediction.deleterious:PolyPhenScore.0.824 hitsHtheHkinaseHproteinHAlphaK2HoutsideHitsHkinaseHdomain

SW620 ENSP00000354991:map.18/56204945/G:p.R825T:n.G2688C:c.aGa/aCa:SIFTprediction.tolerated:PolyPhenScore.0 hitsHtheHkinaseHproteinHAlphaK2HoutsideHitsHkinaseHdomain

SW620 ENSP00000354991:map.18/56204991/T:p.G810S:n.G2642A:c.Ggt/Agt:SIFTprediction.deleterious:PolyPhenScore.0.951 hitsHtheHkinaseHproteinHAlphaK2HoutsideHitsHkinaseHdomain

SW620 ENSP00000354991:map.18/56205262/C:p.H719Q:n.T2371G:c.caT/caG:SIFTprediction.tolerated:PolyPhenScore.0 hitsHtheHkinaseHproteinHAlphaK2HoutsideHitsHkinaseHdomain

SW620 ENSP00000354991:map.18/56247600/A:p.R136S:n.G622T:c.agG/agT:SIFTprediction.tolerated:PolyPhenScore.0 hitsHtheHkinaseHproteinHAlphaK2HoutsideHitsHkinaseHdomain

SW620 ENSP00000355304:map.14/102695693/C:p.Q398R:n.A1425G:c.cAg/cGg:SIFTprediction.tolerated:PolyPhenScore.0.001 hitsHtheHkinaseHproteinHMOKHoutsideHitsHkinaseHdomain

SW620 ENSP00000355884:map.1/220808825/T:p.Q410H:n.G1496T:c.caG/caT:SIFTprediction.tolerated:PolyPhenScore.0.94 hitsHtheHkinaseHproteinHMARK1HoutsideHitsHkinaseHdomain

SW620 ENSP00000355966:map.1/211840498/C:p.N354S:n.A1200G:c.aAc/aGc:SIFTprediction.tolerated:PolyPhenScore.0.002 hitsHtheHkinaseHproteinHNEK2HoutsideHitsHkinaseHdomain

SW620 ENSP00000356087:map.1/206669465/T:p.P713L:n.C2511T:c.cCt/cTt:SIFTprediction.tolerated:PolyPhenScore.0.008 hitsHtheHkinaseHproteinHIKKeHoutsideHitsHkinaseHdomain

SW620 ENSP00000356130:map.1/205130413/G:p.C641R:n.T1952C:c.Tgt/Cgt:SIFTprediction.tolerated:PolyPhenScore.0 hitsHtheHkinaseHproteinHDustyHoutsideHitsHkinaseHdomain

SW620 ENSP00000356530:map.1/182551337/C:p.D541E:n.T1877G:c.gaT/gaG:SIFTprediction.tolerated:PolyPhenScore.0 hitsHtheHkinaseHdomainHofHRNAseL

SW620 ENSP00000356530:map.1/182554557/T:p.R462Q:n.G1639A:c.cGa/cAa:SIFTprediction.deleterious:PolyPhenScore.0.85 hitsHtheHkinaseHdomainHofHRNAseL

SW620 ENSP00000356745:map.1/169823718/C:p.Q567R:n.A1915G:c.cAa/cGa:SIFTprediction.tolerated:PolyPhenScore.0.116 hitsHtheHkinaseHproteinHSCYL3HoutsideHitsHkinaseHdomain

SW620 ENSP00000357494:map.6/117622184/C:p.S2229C:n.C6885G:c.tCc/tGc:SIFTprediction.tolerated:PolyPhenScore.0 hitsHtheHkinaseHproteinHROSHoutsideHitsHkinaseHdomain

SW620 ENSP00000357494:map.6/117622188/G:p.K2228Q:n.A6881C:c.Aag/Cag:SIFTprediction.tolerated:PolyPhenScore.0 hitsHtheHkinaseHproteinHROSHoutsideHitsHkinaseHdomain

SW620 ENSP00000357494:map.6/117622233/T:p.D2213N:n.G6836A:c.Gac/Aac:SIFTprediction.tolerated:PolyPhenScore.0.009 hitsHtheHkinaseHdomainHofHROS

SW620 ENSP00000357615:map.6/116325142/T:p.G122R:n.G811A:c.Gga/Aga:SIFTprediction.tolerated:PolyPhenScore.0 hitsHtheHkinaseHproteinHFRKHoutsideHitsHkinaseHdomain

SW620 ENSP00000359424:map.10/101977883/T:p.V268I:n.G857A:c.Gta/Ata:SIFTprediction.tolerated:PolyPhenScore.0.005 hitsHtheHkinaseHdomainHofHIKKa

SW620 ENSP00000361025:map.9/136270538/G:p.L679R:n.T2143G:c.cTg/cGg:SIFTprediction.deleterious:PolyPhenScore.0.912 hitsHtheHkinaseHproteinHSgK071HoutsideHitsHkinaseHdomain

SW620 ENSP00000362139:map.1/38185723/T:p.R807Q:n.G2420A:c.cGg/cAg:SIFTprediction.deleterious:PolyPhenScore.0.792 hitsHtheHkinaseHdomainHofHEphA10

SW620 ENSP00000362139:map.1/38188740/T:p.V645I:n.G1933A:c.Gtc/Atc:SIFTprediction.tolerated:PolyPhenScore.0.005 hitsHtheHkinaseHdomainHofHEphA10

SW620 ENSP00000362139:map.1/38188787/G:p.L629P:n.T1886C:c.cTg/cCg:SIFTprediction.tolerated:PolyPhenScore.0 hitsHtheHkinaseHproteinHEphA10HoutsideHitsHkinaseHdomain

SW620 ENSP00000362139:map.1/38227086/T:p.F281I:n.T841A:c.Ttc/Atc:SIFTprediction.tolerated:PolyPhenScore.0 hitsHtheHkinaseHproteinHEphA10HoutsideHitsHkinaseHdomain

SW620 ENSP00000363708:map.2/203420712/A:p.S775N:n.G2863A:c.aGc/aAc:SIFTprediction.tolerated:PolyPhenScore.0.001 hitsHtheHkinaseHproteinHBMPR2HoutsideHitsHkinaseHdomain

SW620 ENSP00000364204:map.1/20977000/C:p.N521T:n.A1656C:c.aAt/aCt:SIFTprediction.deleterious:PolyPhenScore.0.007 hitsHtheHkinaseHproteinHPINK1HoutsideHitsHkinaseHdomain

SW620 ENSP00000364361:map.2/174128513/T:p.S531L:n.C1670T:c.tCg/tTg:SIFTprediction.tolerated:PolyPhenScore.0.001 hitsHtheHkinaseHproteinHZAKHoutsideHitsHkinaseHdomain

SW620 ENSP00000364860:map.9/94495608/C:p.T245A:n.A932G:c.Aca/Gca:SIFTprediction.tolerated:PolyPhenScore.0.002 hitsHtheHkinaseHproteinHROR2HoutsideHitsHkinaseHdomain

SW620 ENSP00000366488:map.9/71628207/C:p.H268D:n.C833G:c.Cat/Gat:SIFTprediction.tolerated:PolyPhenScore.0 hitsHtheHkinaseHdomainHofHPKACg

SW620 ENSP00000369375:map.9/27183463/C:p.Q346P:n.A1479C:c.cAg/cCg:SIFTprediction.tolerated:PolyPhenScore.0 hitsHtheHkinaseHproteinHTIE2HoutsideHitsHkinaseHdomain

SW620 ENSP00000372035:map.13/21562832/T:p.G363S:n.G1493A:c.Ggc/Agc:SIFTprediction.tolerated:PolyPhenScore.0.005 hitsHtheHkinaseHproteinHLATS2HoutsideHitsHkinaseHdomain

SW620 ENSP00000372035:map.13/21562948/A:p.A324V:n.C1377T:c.gCg/gTg:SIFTprediction.tolerated:PolyPhenScore.0.031 hitsHtheHkinaseHproteinHLATS2HoutsideHitsHkinaseHdomain

SW620 ENSP00000373600:map.15/101606889/A:p.G1938D:n.G6172A:c.gGc/gAc:SIFTprediction.tolerated:PolyPhenScore.0.013 hitsHtheHkinaseHproteinHLRRK1HoutsideHitsHkinaseHdomain

SW620 ENSP00000375986:map.6/161469774/A:p.R157H:n.G618A:c.cGt/cAt:SIFTprediction.tolerated:PolyPhenScore.0 hitsHtheHkinaseHproteinHMAP3K4HoutsideHitsHkinaseHdomain

SW620 ENSP00000378288:map.16/46773999/A:p.V180L:n.G654T:c.Gtg/Ttg:SIFTprediction.tolerated:PolyPhenScore.0.003 hitsHtheHkinaseHproteinHcaMLCKHoutsideHitsHkinaseHdomain

SW620 ENSP00000378945:map.4/82065465/T:p.G392S:n.G1291A:c.Ggt/Agt:SIFTprediction.tolerated:PolyPhenScore.0.999 hitsHtheHkinaseHproteinHPKG2HoutsideHitsHkinaseHdomain

SW620 ENSP00000380066:map.19/39100236/A:p.R336W:n.C1114T:c.Cgg/Tgg:SIFTprediction.deleterious:PolyPhenScore.0.391 hitsHtheHkinaseHproteinHHPK1HoutsideHitsHkinaseHdomain

SW620 ENSP00000381129:map.4/2990499/T:p.R65L:n.G537T:c.cGt/cTt:SIFTprediction.tolerated:PolyPhenScore.0.002 hitsHtheHkinaseHproteinHGPRK4HoutsideHitsHkinaseHdomain

SW620 ENSP00000381129:map.4/3006043/T:p.A142V:n.C768T:c.gCc/gTc:SIFTprediction.tolerated:PolyPhenScore.0.004 hitsHtheHkinaseHproteinHGPRK4HoutsideHitsHkinaseHdomain

SW620 ENSP00000381129:map.4/3015553/A:p.V247I:n.G1082A:c.Gta/Ata:SIFTprediction.tolerated:PolyPhenScore.0.669 hitsHtheHkinaseHdomainHofHGPRK4

SW620 ENSP00000382423:map.5/56177443/A:p.D806N:n.G2416A:c.Gat/Aat:SIFTprediction.tolerated:PolyPhenScore.0.111 hitsHtheHkinaseHproteinHMAP3K1HoutsideHitsHkinaseHdomain

SW620 ENSP00000382423:map.5/56177743/A:p.V906I:n.G2716A:c.Gtc/Atc:SIFTprediction.tolerated:PolyPhenScore.0 hitsHtheHkinaseHproteinHMAP3K1HoutsideHitsHkinaseHdomain

SW620 ENSP00000382544:map.22/19119751/T:p.T280M:n.C1431T:c.aCg/aTg:SIFTprediction.tolerated:PolyPhenScore.0.003 hitsHtheHkinaseHproteinHTSSK2HoutsideHitsHkinaseHdomain

SW620 ENSP00000383234:map.18/48190440/A:p.V38M:n.G1112A:c.Gtg/Atg:SIFTprediction.tolerated:PolyPhenScore.0.357 hitsHtheHkinaseHdomainHofHERK4

SW620 ENSP00000384442:map.1/1650787/C:p.H112R:n.A415G:c.cAt/cGt:SIFTprediction.tolerated:PolyPhenScore.0 hitsHtheHkinaseHproteinHCDK11bHoutsideHitsHkinaseHdomain

SW620 ENSP00000384442:map.1/1650797/G:p.C109R:n.T405C:c.Tgt/Cgt:SIFTprediction.tolerated:PolyPhenScore.0 hitsHtheHkinaseHproteinHCDK11bHoutsideHitsHkinaseHdomain

SW620 ENSP00000384442:map.1/1650832/G:p.V97A:n.T370C:c.gTt/gCt:SIFTprediction.tolerated:PolyPhenScore.0.013 hitsHtheHkinaseHproteinHCDK11bHoutsideHitsHkinaseHdomain

SW620 ENSP00000384442:map.1/1650845/A:p.R93W:n.C357T:c.Cgg/Tgg:SIFTprediction.deleterious:PolyPhenScore.0.999 hitsHtheHkinaseHproteinHCDK11bHoutsideHitsHkinaseHdomain

SW620 ENSP00000386213:map.2/171260787/A:p.V770I:n.G2451A:c.Gta/Ata:SIFTprediction.tolerated:PolyPhenScore.0.004 hitsHtheHkinaseHproteinHMYO3BHoutsideHitsHkinaseHdomain

SW620 ENSP00000386213:map.2/171356274/A:p.R1082K:n.G3388A:c.aGg/aAg:SIFTprediction.tolerated:PolyPhenScore.0.005 hitsHtheHkinaseHproteinHMYO3BHoutsideHitsHkinaseHdomain

SW620 ENSP00000386456:map.2/69741854/G:p.K509Q:n.A1902C:c.Aaa/Caa:SIFTprediction.tolerated:PolyPhenScore.0.002 hitsHtheHkinaseHproteinHAAK1HoutsideHitsHkinaseHdomain

SW620 ENSP00000389015:map.19/56041255/G:p.A298P:n.G930C:c.Gcc/Ccc:SIFTprediction.tolerated:PolyPhenScore.0.004 hitsHtheHkinaseHdomainHofHSgK069

SW620 ENSP00000389015:map.19/56047448/G:p.C72R:n.T252C:c.Tgc/Cgc:SIFTprediction.tolerated:PolyPhenScore.0 hitsHtheHkinaseHdomainHofHSgK069

SW620 ENSP00000391295:map.11/116728630/C:p.P1178R:n.C3531G:c.cCt/cGt:SIFTprediction.deleterious:PolyPhenScore.0.629 hitsHtheHkinaseHproteinHQSKHoutsideHitsHkinaseHdomain

SW620 ENSP00000398470:map.15/40477831/A:p.R363Q:n.G1242A:c.cGa/cAa:SIFTprediction.tolerated:PolyPhenScore.0 hitsHtheHkinaseHproteinHBUBR1HoutsideHitsHkinaseHdomain

SW620 ENSP00000400312:map.15/75130093/C:p.K445R:n.A1426G:c.aAg/aGg:SIFTprediction.tolerated:PolyPhenScore.0.098 hitsHtheHkinaseHproteinHULK3HoutsideHitsHkinaseHdomain

SW620 ENSP00000408695:map.17/64783081/A:p.V568I:n.G1728A:c.Gtc/Atc:SIFTprediction.tolerated:PolyPhenScore.0 hitsHtheHkinaseHdomainHofHPKCa

SW620 ENSP00000423665:map.1/205495233/T:p.T196M:n.C807T:c.aCg/aTg:SIFTprediction.deleterious:PolyPhenScore.0.423 hitsHtheHkinaseHdomainHofHPCTAIRE3

SW620 ENSP00000427235:map.4/151177340/T:p.P747S:n.C2239T:c.Cct/Tct:SIFTprediction.tolerated:PolyPhenScore.0 hitsHtheHkinaseHproteinHDCLK2HoutsideHitsHkinaseHdomain

SW620 ENSP00000427235:map.4/151177341/G:p.P747R:n.C2240G:c.cCt/cGt:SIFTprediction.tolerated:PolyPhenScore.0 hitsHtheHkinaseHproteinHDCLK2HoutsideHitsHkinaseHdomain

SW620 ENSP00000433548:map.12/990912/C:p.T1554P:n.A4660C:c.Acc/Ccc:SIFTprediction.tolerated:PolyPhenScore.0 hitsHtheHkinaseHproteinHWnk1HoutsideHitsHkinaseHdomain

SW620 ENSP00000433548:map.12/994487/C:p.C2004S:n.G6011C:c.tGc/tCc:SIFTprediction.tolerated:PolyPhenScore.0 hitsHtheHkinaseHproteinHWnk1HoutsideHitsHkinaseHdomain

SW620 ENSP00000433548:map.12/998365/T:p.M2306I:n.G6918T:c.atG/atT:SIFTprediction.tolerated:PolyPhenScore.0 hitsHtheHkinaseHproteinHWnk1HoutsideHitsHkinaseHdomain
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RefSeq&Accession&Number Gene&Symbol GeneID
NM_000020 ACVRL1 94
NM_000051 ATM 472
NM_000061 BTK 695
NM_000075 CDK4 1019
NM_000142 FGFR3 2261
NM_000180 GUCY2D 3000
NM_000208 INSR 3643
NM_000215 JAK3 3718
NM_000222 KIT 3815
NM_000245 MET 4233
NM_000294 PHKG2 5261
NM_000314 PTEN 5728
NM_000321 RB1 5925
NM_000455 STK11 6794
NM_000459 TEK 7010
NM_000546 TP53 7157
NM_000548 TSC2 7249
NM_000875 IGF1R 3480
NM_000906 NPR1 4881
NM_000907 NPR2 4882
NM_000932 PLCB3 5331
NM_000933 PLCB4 5332
NM_001001671 FLJ16518 389840
NM_001001716 NFKBIB 4793
NM_001001852 PIM3 415116
NM_001003786 LYK5 92335
NM_001003787 LYK5 92335
NM_001003788 LYK5 92335
NM_001004023 DYRK3 8444
NM_001004105 GRK6 2870
NM_001005862 ERBB2 2064
NM_001005915 ERBB3 2065
NM_001006665 RPS6KA1 6195
NM_001006932 RPS6KA2 6196
NM_001006943 EPHA8 2046
NM_001006944 RPS6KA4 8986
NM_001007071 RPS6KB2 6199
NM_001007156 NTRK3 4916
NM_001007792 NTRK1 4914
NM_001008910 STK16 8576
NM_001009565 CDKL4 344387
NM_001011664 CSNK1G1 53944
NM_001012331 NTRK1 4914
NM_001012418 LOC340156 340156
NM_001013703 EIF2AK4 440275
NM_001014431 AKT1 207
NM_001014796 DDR2 4921
NM_001014833 PAK4 10298
NM_001015878 AURKC 6795
NM_001018046 FLJ23074 80122
NM_001018066 NTRK2 4915
NM_001024401 SBK1 388228
NM_001024660 HAPIP 8997
NM_001024847 TGFBR2 7048
NM_001025105 CSNK1A1 1452
NM_001025242 IRAK1 3654
NM_001025243 IRAK1 3654
NM_001025778 VRK3 51231
NM_001031741 FLJ32685 152110
NM_001031812 CSNK1G3 1456
NM_001032296 STK24 8428
NM_001033582 PRKCZ 5590
NM_001037343 CDKL5 6792
NM_001079 ZAP70 7535
NM_001080395 custom
NM_001105 ACVR1 90
NM_001106 ACVR2B 93
NM_001184 ATR 545
NM_001203 BMPR1B 658
NM_001204 BMPR2 659
NM_001211 BUB1B 701
NM_001237 CCNA2 890
NM_001238 CCNE1 898
NM_001258 CDK3 1018
NM_001259 CDK6 1021
NM_001260 CDK8 1024
NM_001261 CDK9 1025
NM_001274 CHEK1 1111
NM_001278 CHUK 1147
NM_001292 CLK3 1198
NM_001315 MAPK14 1432
NM_001319 CSNK1G2 1455
NM_001348 DAPK3 1613
NM_001429 EP300 2033
NM_001433 ERN1 2081
NM_001522 GUCY2F 2986
NM_001556 IKBKB 3551
NM_001570 IRAK2 3656
NM_001616 ACVR2 92
NM_001619 ADRBK1 156
NM_001626 AKT2 208
NM_001654 ARAF1 369
NM_001664 RHOA 387
NM_001699 AXL 558
NM_001715 BLK 640
NM_001726 BRDT 676
NM_001744 CAMK4 814
NM_001759 CCND2 894
NM_001760 CCND3 896
NM_001786 CDC2 983
NM_001791 CDC42 998
NM_001798 CDK2 1017
NM_001799 CDK7 1022
NM_001892 CSNK1A1 1452
NM_001893 CSNK1D 1453
NM_001894 CSNK1E 1454
NM_001896 CSNK2A2 1459
NM_001904 CTNNB1 1499
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NM_001949 E2F3 1871
NM_001950 E2F4 1874
NM_001982 ERBB3 2065
NM_002005 FES 2242
NM_002019 FLT1 2321
NM_002020 FLT4 2324
NM_002031 FRK 2444
NM_002082 GRK6 2870
NM_002093 GSK3B 2932
NM_002110 HCK 3055
NM_002227 JAK1 3716
NM_002228 JUN 3725
NM_002253 KDR 3791
NM_002314 LIMK1 3984
NM_002344 LTK 4058
NM_002350 LYN 4067
NM_002376 MARK3 4140
NM_002401 MAP3K3 4215
NM_002419 MAP3K11 4296
NM_002446 MAP3K10 4294
NM_002447 MST1R 4486
NM_002497 NEK2 4751
NM_002503 NFKBIB 4793
NM_002524 NRAS 4893
NM_002530 NTRK3 4916
NM_002576 PAK1 5058
NM_002577 PAK2 5062
NM_002578 PAK3 5063
NM_002595 PCTK2 5128
NM_002596 PCTK3 5129
NM_002609 PDGFRB 5159
NM_002610 PDK1 5163
NM_002611 PDK2 5164
NM_002612 PDK4 5166
NM_002613 PDPK1 5170
NM_002645 PIK3C2A 5286
NM_002646 PIK3C2B 5287
NM_002648 PIM1 5292
NM_002649 PIK3CG 5294
NM_002660 PLCG1 5335
NM_002661 PLCG2 5336
NM_002730 PRKACA 5566
NM_002731 PRKACB 5567
NM_002732 PRKACG 5568
NM_002737 PRKCA 5578
NM_002738 PRKCB1 5579
NM_002739 PRKCG 5582
NM_002740 PRKCI 5584
NM_002741 PKN1 5585
NM_002742 PRKCM 5587
NM_002744 PRKCZ 5590
NM_002745 MAPK1 5594
NM_002746 MAPK3 5595
NM_002747 MAPK4 5596
NM_002748 MAPK6 5597
NM_002750 MAPK8 5599
NM_002751 MAPK11 5600
NM_002752 MAPK9 5601
NM_002754 MAPK13 5603
NM_002755 MAP2K1 5604
NM_002757 MAP2K5 5607
NM_002758 MAP2K6 5608
NM_002759 PRKR 5610
NM_002760 PRKY 5616
NM_002821 PTK7 5754
NM_002880 RAF1 5894
NM_002881 RALB 5899
NM_002929 GRK1 6011
NM_002944 ROS1 6098
NM_002953 RPS6KA1 6195
NM_002958 RYK 6259
NM_002969 MAPK12 6300
NM_003010 MAP2K4 6416
NM_003137 SRPK1 6732
NM_003151 STAT4 6775
NM_003152 STAT5A 6776
NM_003153 STAT6 6778
NM_003157 NEK4 6787
NM_003159 CDKL5 6792
NM_003160 AURKC 6795
NM_003161 RPS6KB1 6198
NM_003177 SYK 6850
NM_003215 TEC 7006
NM_003242 TGFBR2 7048
NM_003318 TTK 7272
NM_003328 TXK 7294
NM_003331 TYK2 7297
NM_003384 VRK1 7443
NM_003390 WEE1 7465
NM_003496 TRRAP 8295
NM_003503 CDC7 8317
NM_003565 ULK1 8408
NM_003576 STK24 8428
NM_003582 DYRK3 8444
NM_003583 DYRK2 8445
NM_003600 STK6 6790
NM_003618 MAP4K3 8491
NM_003656 CAMK1 8536
NM_003674 CDK10 8558
NM_003684 MKNK1 8569
NM_003688 CASK 8573
NM_003691 STK16 8576
NM_003804 RIPK1 8737
NM_003821 RIPK2 8767
NM_003831 RIOK3 8780
NM_003845 DYRK4 8798
NM_003852 TIF1 8805
NM_003913 PRPF4B 8899
NM_003942 RPS6KA4 8986
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NM_003948 CDKL2 8999
NM_003952 RPS6KB2 6199
NM_003954 MAP3K14 9020
NM_003957 STK29 9024
NM_003985 TNK1 8711
NM_003992 CLK3 1198
NM_003993 CLK2 1196
NM_003995 NPR2 4882
NM_004071 CLK1 1195
NM_004073 PLK3 1263
NM_004091 E2F2 1870
NM_004119 FLT3 2322
NM_004196 CDKL1 8814
NM_004197 STK19 8859
NM_004203 PKMYT1 9088
NM_004217 AURKB 9212
NM_004226 STK17B 9262
NM_004302 ACVR1B 91
NM_004304 ALK 238
NM_004327 BCR 613
NM_004329 BMPR1A 657
NM_004333 BRAF 673
NM_004336 BUB1 699
NM_004380 CREBBP 1387
NM_004383 CSK 1445
NM_004384 CSNK1G3 1456
NM_004409 DMPK 1760
NM_004422 DVL2 1856
NM_004423 DVL3 1857
NM_004431 EPHA2 1969
NM_004438 EPHA4 2043
NM_004440 EPHA7 2045
NM_004441 EPHB1 2047
NM_004442 EPHB2 2048
NM_004443 EPHB3 2049
NM_004444 EPHB4 2050
NM_004445 EPHB6 2051
NM_004448 ERBB2 2064
NM_004517 ILK 3611
NM_004556 NFKBIE 4794
NM_004560 ROR2 4920
NM_004570 PIK3C2G 5288
NM_004573 PLCB2 5330
NM_004579 MAP4K2 5871
NM_004586 RPS6KA3 6197
NM_004606 TAF1 6872
NM_004612 TGFBR1 7046
NM_004635 MAPKAPK3 7867
NM_004672 MAP3K6 9064
NM_004690 LATS1 9113
NM_004714 DYRK1B 9149
NM_004721 MAP3K13 9175
NM_004734 DCAMKL1 9201
NM_004755 RPS6KA5 9252
NM_004759 MAPKAPK2 9261
NM_004760 STK17A 9263
NM_004836 EIF2AK3 9451
NM_004850 ROCK2 9475
NM_004935 CDK5 1020
NM_004938 DAPK1 1612
NM_004954 MARK2 2011
NM_004958 FRAP1 2475
NM_004963 GUCY2C 2984
NM_004972 JAK2 3717
NM_004985 KRAS2 3845
NM_005012 ROR1 4919
NM_005030 PLK1 5347
NM_005043 MAP2K7 5609
NM_005044 PRKX 5613
NM_005104 BRD2 6046
NM_005109 OSR1 9943
NM_005157 ABL1 25
NM_005158 ABL2 27
NM_005160 ADRBK2 157
NM_005163 AKT1 207
NM_005204 MAP3K8 1326
NM_005211 CSF1R 1436
NM_005225 E2F1 1869
NM_005232 EPHA1 2041
NM_005235 ERBB4 2066
NM_005246 FER 2241
NM_005248 FGR 2268
NM_005252 FOS 2353
NM_005255 GAK 2580
NM_005307 GRK4 2868
NM_005308 GRK5 2869
NM_005356 LCK 3932
NM_005359 SMAD4 4089
NM_005372 MOS 4342
NM_005391 PDK3 5165
NM_005400 PRKCE 5581
NM_005402 RALA 5898
NM_005406 ROCK1 6093
NM_005419 STAT2 6773
NM_005424 TIE 7075
NM_005433 YES1 7525
NM_005465 AKT3 10000
NM_005546 ITK 3702
NM_005569 LIMK2 3985
NM_005592 MUSK 4593
NM_005627 SGK 6446
NM_005633 SOS1 6654
NM_005734 HIPK3 10114
NM_005762 TRIM28 10155
NM_005781 ACK1 10188
NM_005813 PRKCN 23683
NM_005881 BCKDK 10295
NM_005884 PAK4 10298
NM_005906 MAK 4117
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NM_005923 MAP3K5 4217
NM_005975 PTK6 5753
NM_005990 STK10 6793
NM_006035 CDC42BPB 9578
NM_006180 NTRK2 4915
NM_006182 DDR2 4921
NM_006206 PDGFRA 5156
NM_006213 PHKG1 5260
NM_006251 PRKAA1 5562
NM_006252 PRKAA2 5563
NM_006255 PRKCH 5583
NM_006256 PKN2 5586
NM_006257 PRKCQ 5588
NM_006258 PRKG1 5592
NM_006259 PRKG2 5593
NM_006281 STK3 6788
NM_006282 STK4 6789
NM_006285 TESK1 7016
NM_006293 TYRO3 7301
NM_006296 VRK2 7444
NM_006301 MAP3K12 7786
NM_006343 MERTK 10461
NM_006374 STK25 10494
NM_006482 DYRK2 8445
NM_006483 DYRK1B 9149
NM_006484 DYRK1B 9149
NM_006575 MAP4K5 11183
NM_006609 MAP3K2 10746
NM_006622 PLK2 10769
NM_006648 PRKWNK2 65268
NM_006712 FASTK 10922
NM_006724 MAP3K4 4216
NM_006742 PSKH1 5681
NM_006852 TLK2 11011
NM_006871 RIPK3 11035
NM_006875 PIM2 11040
NM_006879 MDM2 4193
NM_006880 MDM2 4193
NM_006882 MDM2 4193
NM_006904 PRKDC 5591
NM_006908 RAC1 5879
NM_007064 HAPIP 8997
NM_007118 TRIO 7204
NM_007170 TESK2 10420
NM_007174 CIT 11113
NM_007181 MAP4K1 11184
NM_007194 CHEK2 11200
NM_007199 IRAK3 11213
NM_007271 STK38 11329
NM_007296 BRCA1 672
NM_007301 BRCA1 672
NM_007303 BRCA1 672
NM_007313 ABL1 25
NM_007314 ABL2 27
NM_007315 STAT1 6772
NM_007371 BRD3 8019
NM_012119 CCRK 23552
NM_012224 NEK1 4750
NM_012290 TLK1 9874
NM_012395 PFTK1 5218
NM_012424 RPS6KC1 26750
NM_012448 STAT5B 6777
NM_013233 STK39 27347
NM_013254 TBK1 29110
NM_013302 EEF2K 29904
NM_013355 PKN3 29941
NM_013392 NRBP 29959
NM_013993 DDR1 780
NM_013994 DDR1 780
NM_014002 IKBKE 9641
NM_014006 SMG1 23049
NM_014215 INSRR 3645
NM_014226 RAGE 5891
NM_014238 XM_290793 8844
NM_014264 PLK4 10733
NM_014299 BRD4 23476
NM_014326 DAPK2 23604
NM_014365 HSPB8 26353
NM_014370 STK23 26576
NM_014397 NEK6 10783
NM_014413 HRI 27102
NM_014496 RPS6KA6 27330
NM_014572 LATS2 26524
NM_014586 HUNK 30811
NM_014602 PIK3R4 30849
NM_014683 ULK2 9706
NM_014720 SLK 9748
NM_014791 MELK 9833
NM_014826 CDC42BPA 8476
NM_014840 ARK5 9891
NM_014911 AAK1 22848
NM_014916 LMTK2 22853
NM_014975 MAST1 22983
NM_015000 STK38L 23012
NM_015028 KIAA0551 23043
NM_015076 CDK11 23097
NM_015092 SMG1 23049
NM_015112 MAST2 23139
NM_015148 PASK 23178
NM_015191 SIK2 23235
NM_015375 RIPK5 25778
NM_015518 DKFZP434C131 25989
NM_015690 STK36 27148
NM_015716 MINK 50488
NM_015905 TIF1 8805
NM_015906 TRIM33 51592
NM_015978 TNNI3K 51086
NM_015981 CAMK2A 815
NM_016123 IRAK4 51135

114



NM_016151 TAO1 9344
NM_016231 NLK 51701
NM_016269 LEF1 51176
NM_016276 SGK2 10110
NM_016281 JIK 51347
NM_016440 VRK3 51231
NM_016457 PRKD2 25865
NM_016507 CRK7 51755
NM_016508 CDKL3 51265
NM_016542 MST4 51765
NM_016653 ZAK 51776
NM_016733 LIMK2 3985
NM_016735 LIMK1 3984
NM_017433 MYO3A 53904
NM_017449 EPHB2 2048
NM_017490 MARK2 2011
NM_017525 HSMDPKIN 55561
NM_017572 MKNK2 2872
NM_017593 BMP2K 55589
NM_017662 TRPM6 140803
NM_017672 TRPM7 54822
NM_017719 SNRK 54861
NM_017771 PXK 54899
NM_017886 FLJ20574 54986
NM_017988 FLJ10074 55681
NM_018343 RIOK2 55781
NM_018401 STK32B 55351
NM_018423 STYK1 55359
NM_018492 TOPK 55872
NM_018571 ALS2CR2 55437
NM_018650 MARK1 4139
NM_018890 RAC1 5879
NM_018979 PRKWNK1 65125
NM_019884 GSK3A 2931
NM_020168 PAK6 56924
NM_020247 CABC1 56997
NM_020328 ACVR1B 91
NM_020341 PAK7 57144
NM_020397 CAMK1D 57118
NM_020421 ADCK1 57143
NM_020439 CAMK1G 57172
NM_020526 EPHA8 2046
NM_020529 NFKBIA 4792
NM_020547 AMHR2 269
NM_020630 RET 5979
NM_020639 RIPK4 54101
NM_020666 CLK4 57396
NM_020680 SCYL1 57410
NM_020761 raptor 57521
NM_020778 MIDORI 57538
NM_020791 KIAA1361 57551
NM_020922 PRKWNK3 65267
NM_021055 TSC2 7249
NM_021056 TSC2 7249
NM_021133 RNASEL 6041
NM_021135 RPS6KA2 6196
NM_021158 TRIB3 57761
NM_021574 BCR 613
NM_021643 TRIB2 28951
NM_021872 CDC25B 994
NM_021913 AXL 558
NM_022051 EGLN1 54583
NM_022740 HIPK2 28996
NM_022963 FGFR4 2264
NM_022965 FGFR3 2261
NM_022972 FGFR2 2263
NM_022975 FGFR2 2263
NM_023031 FGFR2 2263
NM_023106 FGFR1 2260
NM_023110 FGFR1 2260
NM_023111 FGFR1 2260
NM_024046 MGC8407 79012
NM_024652 LRRK1 79705
NM_024876 ADCK4 79934
NM_025052 FLJ23074 80122
NM_025144 LAK 80216
NM_025164 KIAA0999 23387
NM_025195 TRIB1 10221
NM_030662 MAP2K2 5605
NM_030906 STK33 65975
NM_030952 SNARK 81788
NM_031267 CDC2L5 8621
NM_031268 PDPK1 5170
NM_031272 TEX14 56155
NM_031414 STK31 56164
NM_031417 MARK4 57787
NM_031464 RPS6KL1 83694
NM_031965 GSG2 83903
NM_031966 CCNB1 891
NM_031988 MAP2K6 5608
NM_032017 MGC4796 83931
NM_032028 STK22D 83942
NM_032037 SSTK 83983
NM_032237 FLJ23356 84197
NM_032294 CAMKK1 84254
NM_032387 PRKWNK4 65266
NM_032409 PINK1 65018
NM_032430 KIAA1811 84446
NM_032435 KIAA1804 84451
NM_032454 STK19 8859
NM_032538 TTBK1 84630
NM_032844 MASTL 84930
NM_032960 MAPKAPK2 9261
NM_033015 FASTK 10922
NM_033018 PCTK1 5127
NM_033019 PCTK1 5127
NM_033020 TRIM33 51592
NM_033115 MGC16169 93627
NM_033116 NEK9 91754
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NM_033118 MYLK2 85366
NM_033126 PSKH2 85481
NM_033141 MAP3K9 4293
NM_033266 ERN2 10595
NM_033360 KRAS2 3845
NM_033379 CDC2 983
NM_033532 CDC2L2 985
NM_033534 CDC2L2 985
NM_033537 CDC2L2 985
NM_033550 TP53RK 112858
NM_044472 CDC42 998
NM_052827 CDK2 1017
NM_052841 STK22C 81629
NM_052843 OBSCN 84033
NM_052853 ADCK2 90956
NM_052947 HAK 115701
NM_052984 CDK4 1019
NM_052987 CDK10 8558
NM_053006 STK22B 23617
NM_053029 MYLK 4638
NM_053030 MYLK 4638
NM_053031 MYLK 4638
NM_053056 CCND1 595
NM_057735 CCNE2 9134
NM_057749 CCNE2 9134
NM_058195 CDKN2A 1029
NM_058197 CDKN2A 1029
NM_058243 BRD4 23476
NM_080823 SRMS 6725
NM_080836 STK35 140901
NM_130436 DYRK1A 1859
NM_130438 DYRK1A 1859
NM_133378 TTN 7273
NM_133379 TTN 7273
NM_133432 TTN 7273
NM_133494 NEK7 140609
NM_133646 ZAK 51776
NM_138293 ATM 472
NM_138370 LOC91461 91461
NM_138923 TAF1 6872
NM_138957 MAPK1 5594
NM_138980 MAPK10 5602
NM_138981 MAPK10 5602
NM_138982 MAPK10 5602
NM_138993 MAPK11 5600
NM_138995 MYO3B 140469
NM_139013 MAPK14 1432
NM_139014 MAPK14 1432
NM_139021 ERK8 225689
NM_139032 MAPK7 5598
NM_139034 MAPK7 5598
NM_139046 MAPK8 5599
NM_139047 MAPK8 5599
NM_139062 CSNK1D 1453
NM_139069 MAPK9 5601
NM_139070 MAPK9 5601
NM_139078 MAPKAPK5 8550
NM_139158 ALS2CR7 65061
NM_139209 GRK7 131890
NM_139266 STAT1 6772
NM_139276 STAT3 6774
NM_139354 MATK 4145
NM_139355 MATK 4145
NM_144610 FLJ25006 124923
NM_144617 HSPB6 126393
NM_144624 KIS 127933
NM_144685 HIPK4 147746
NM_145001 STK32A 202374
NM_145109 MAP2K3 5606
NM_145110 MAP2K3 5606
NM_145161 MAP2K5 5607
NM_145185 MAP2K7 5609
NM_145203 CSNK1A1L 122011
NM_145259 ACVR1C 130399
NM_145319 MAP3K6 9064
NM_145331 MAP3K7 6885
NM_145332 MAP3K7 6885
NM_145333 MAP3K7 6885
NM_145686 MAP4K4 9448
NM_145687 MAP4K4 9448
NM_145862 CHEK2 11200
NM_145906 RIOK3 8780
NM_145910 NEK11 79858
NM_152221 CSNK1E 1454
NM_152461 ERN1 2081
NM_152534 FLJ32685 152110
NM_152619 MGC45428 166614
NM_152649 FLJ34389 197259
NM_152720 NEK3 4752
NM_152756 MGC39830 253260
NM_152835 LOC149420 149420
NM_152881 PTK7 5754
NM_152883 PTK7 5754
NM_153005 RIOK1 83732
NM_153047 FYN 2534
NM_153048 FYN 2534
NM_153361 MGC42105 167359
NM_153498 CAMK1D 57118
NM_153500 CAMKK2 10645
NM_153710 C9orf96 169436
NM_153809 TAF1L 138474
NM_153827 MINK 50488
NM_153831 PTK2 5747
NM_170663 MINK 50488
NM_170693 SGK2 10110
NM_170709 SGKL 23678
NM_171825 CAMK2A 815
NM_172079 CAMK2B 816
NM_172081 CAMK2B 816
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NM_172083 CAMK2B 816
NM_172115 CAMK2D 817
NM_172127 CAMK2D 817
NM_172128 CAMK2D 817
NM_172171 CAMK2G 818
NM_172206 CAMKK1 84254
NM_172226 CAMKK2 10645
NM_173174 PTK2B 2185
NM_173176 PTK2B 2185
NM_173354 SNF1LK 150094
NM_173500 TTBK2 146057
NM_173575 STK32C 282974
NM_173598 KSR2 283455
NM_173641 FLJ33655 284656
NM_173655 DKFZp434C1418 285220
NM_173677 FLJ40852 285962
NM_174922 ADCK5 203054
NM_174944 C14orf20 283629
NM_175866 KIS 127933
NM_176795 HRAS 3265
NM_176800 PRPF4B 8899
NM_177559 CSNK2A1 1457
NM_177560 CSNK2A1 1457
NM_177990 PAK7 57144
NM_178170 NEK8 284086
NM_178432 CCRK 23552
NM_178510 ANKK1 255239
NM_178564 LOC340371 340371
NM_181093 PACEX1 57147
NM_181358 HIPK1 204851
NM_181690 AKT3 10000
NM_181870 DVL1 1855
NM_182398 RPS6KA5 9252
NM_182472 EPHA5 2044
NM_182493 LOC91807 91807
NM_182644 EPHA3 2042
NM_182687 PKMYT1 9088
NM_182691 SRPK2 6733
NM_182692 SRPK2 6733
NM_182734 PLCB1 23236
NM_182779 DVL1 1855
NM_182797 PLCB4 5332
NM_182811 PLCG1 5335
NM_182925 FLT4 2324
NM_182982 GRK4 2868
NM_198268 HIPK1 204851
NM_198269 HIPK1 204851
NM_198291 SRC 6714
NM_198393 TEX14 56155
NM_198435 STK6 6790
NM_198437 STK6 6790
NM_198452 PNCK 139728
NM_198465 NRK 203447
NM_198578 LRRK2 120892
NM_198794 MAP4K5 11183
NM_198828 LOC375449 375449
NM_198892 BMP2K 55589
NM_198973 MKNK1 8569
NM_199054 MKNK2 2872
NM_199289 NEK5 341676
NM_199462 RIPK5 25778
NM_201282 EGFR 1956
NM_201284 EGFR 1956
NM_201567 CDC25A 993
NM_203281 BMX 660
NM_203351 MAP3K3 4215
NM_206961 LTK 4058
NM_207189 BRDT 676
NM_207519 ZAP70 7535
NM_207578 PRKACB 5567
NM_212503 PCTK3 5129
NM_212530 CDC25B 994
NM_212535 PRKCB1 5579
NM_212539 PRKCD 5580
NM_213560 PKN1 5585
NM_213662 STAT3 6774
XM_001131586 custom
XM_001131886 custom
XM_038150 MAST3 23031
XM_039796 KIAA0551 23043
XM_042066 MAP3K1 4214
XM_047355 KIAA1765 85443
XM_055866 LMTK3 114783
XM_058513 LRRK2 120892
XM_291277 DKFZp761P0423 157285
XM_370878 KIAA2002 79834
XM_380173 MGC39830 253260
XM_496653 DKFZp434C1418 285220
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Chapter IV - Concluding remarks

In this thesis, we have shown some early results of targeting cancer biology using an integrative Network Biology 
approach. By analyzing different cellular aspects using various technological platforms (e.g. MS, NGS and HCS), a 
more in-depth view of cellular signaling can be obtained. This knowledge can subsequently be used for driving 
functional validation studies. We have demonstrated some conceptual and technological advancements which 
facilitate this process, ranging from how mutations should be interpreted functionally, through generating and 
modeling phospho-proteomic data, to integrating NGS and MS data to study the propagation of mutations at the 
protein level. Finally, we demonstrate the value of these approaches by attempting to apply them to the clinically 
severe problem of colon cancer metastasis. Due to the ubiquitous nature of phosphorylation based signaling in 
cellular decision making, we decided to focus mainly on this type of signaling, and thereby, the protein kinases, for 
which a great arsenal of available small molecule inhibitors and antibodies exists. 

I predict that over the next years, MS and NGS technologies will become more prevalent in the clinic, as they have 
great potential in guiding therapeutic strategies in patients based on their tumors’ protein signaling network states 
and genotypic profiles. Before this becomes feasible however, the large costs associated with these types of global 
screens will need to be significantly reduced. Additionally, while NGS allows the interrogation of the complete 
genome, Mass Spectrometry still needs to be improved in term of specificity. For example, while in Article 2 we 
describe how to generate phospho-proteomic data, it is uncertain where the upper limit lies in terms of numbers of 
phosphorylation sites which are being utilized by the cell. Given that KinomeXplorer-DB, a manually curated 
collection of published human phosphorylation sites based on Phospho.ELM201 and PhosphoSitePlus202, contains 
~64,000 sites, our detection of ~30,000 in Article 5 is not even half way, and it is very likely that the total number of 
phosphorylation sites is much greater. Of course the phospho-proteome of a cell is dependent on cellular context, 
and our data only represents a snapshot of the phospho-proteome at a resting state while growing on collagen. 
Therefore, this data is still useful for modeling kinase-substrate interactions, as it highlights kinases which display 
enhanced activity under “normal” growing conditions, especially when used in combination with predictive 
algorithms such as KinomeXplorer. Advancements in this field are consistently on-going, resulting in greater 
coverage of cellular phospho-proteomes, and we are likely to see this pattern continue203. A current limitation of 
KinomeXplorer is that it does not possess comprehensive kinome-coverage in human, leading to a subset of 
phosphorylation sites to either be predicted for wrongly, or not at all, but large-scale efforts of closing this 
knowledge gap are currently on-going by systematically assessing the specificity of all kinases contained in the 
human kinome.
An improvement in sensitivity will also benefit our suggested approach of combining NGS and MS data, as this will 
lead to a greater number of mutations to be able to be monitored dynamically at the protein level. This will help start 
inferring function to certain mutations, as the regulation of them at the protein level may reveal whether they are 
involved in a specific disease phenotype or not. Alternatively, targeted MS using SRM204,205 is likely to provide an 
advantage in this respect, as it allows the selective monitoring of mutated peptides in a complex sample.
Finally, a genome-wide assessment of cancer cell lines, including genome-wide RNAi screens are likely to reveal 
many more protein candidates with therapeutic potential, through which clinical benefit can possibly be obtained. 
We envision the approach we chose in Article 5 to be applicable to most cancer types, and additionally, different key 
cellular players in cancer development can likely undergo similar investigations. For example cancer-associated 
fibroblasts or cancer stem cells are likely to be defined by specific proteomic and genomic landscapes, and the 
elucidation thereof through an integrated approach should highlight key proteins which could be subjected to 
therapeutic interventions.
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