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Abstract 

The current project investigated the possibility of designing aluminium based coatings focusing on the effect 

of composition, microstructure, and surface finish on the optical appearance and on the alkaline corrosion 

properties using titanium as the main alloying element. The main results and discussions of this work are 

presented in manuscript form as four appended papers communicated for journal publication. 

 

Aluminium is widely used in applications such as transportation, building, heat exchangers, packaging, and 

design products. Optical appearance after anodisation is a key aspect for many of these applications, but the 

use of recycled aluminium compromises this due to the presence of increased levels of impurity and alloying 

elements. Knowledge on how different alloying elements affect the optical appearance might therefore 

increase the applicability of recycled aluminium. 

It was investigated how the optical appearance is affected by the alloy composition, surface morphology, and 

the microstructure. Four commercial aluminium alloys were studied before and after polishing, etching, 

anodisation, and hot water sealing, giving an overview on how the alloy composition affects the appearance. 

It was found that the roughness after etching increases with higher amounts of alloying elements (especially 

iron and silicon). Proper polishing requires some alloy hardness, while alloy purity is required for a glossy 

appearance after anodisation. 

Magnetron sputtered aluminium based coatings containing up to 18 wt. % titanium were deposited, heat-

treated, and anodised. The microstructure of the as-deposited coatings was layered, and Al3Ti phases formed 

during the heat treatment. During anodisation, the heat-treated specimens containing Al3Ti phases turned 

dark, and the specimens were investigated as a model system on the optical effect of partially oxidised 

intermetallics and the subsurface morphology after anodisation. It was suggested, that the darkening of the 

anodised specimens happened due to roughness of the oxide-substrate interface causing light trapping and 

optical scattering and absorption by the partially anodised intermetallics in the anodised layer. 

 

The transport industry has a big share of the CO2 emission in the world, which can be decreased by reducing 

the weight of the vehicles itself. More than half of the weight of a car comes from steel, which can almost be 

reduced to half by replacing steel with aluminium. Unfortunately, aluminium corrodes heavily in the alkaline 

environments known e.g. from a brush less car wash (> pH 12). Today nickel salt sealing is used to protect 

e.g. aluminium wheel rims, but an alternative is needed due to environmental and health reasons. 

Investigations using the previously described magnetron sputtered Al-Ti coatings showed that 13 wt. % 

titanium and more improved the corrosion resistance at pH 13.5 and this was further improved by heat 
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treatment, especially at 400 °C and more. The improved corrosion properties were ascribed to structural 

relaxation, decreased galvanic potential differences in the microstructure, and protection from the network of 

the Al3Ti phases precipitated during the heat treatment. 

Laser surface cladding of aluminium containing up to 20 wt. % Ti6Al4V were studied focusing on the 

microstructure and the alkaline corrosion properties. Due to precipitation of large Al3Ti phases during the 

cladding process, the microstructure consisted of an almost pure aluminium matrix, which corroded 

preferentially when exposed to pH 13.5. Additional heat treatment did not break down the solidified 

microstructure and the corrosion properties were not improved.  
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Resume 

I dette projekt blev muligheden for at designe aluminiumsbaserede coatings undersøgt med fokus på hvordan 

den kemiske sammensætning og overfladens beskaffenhed påvirker den visuelle fremtoning og de basiske 

korrosionsegenskaber med titan anvendt som det primære legeringselement. De primære resultater og 

diskussioner fra dette arbejde præsenteres i form af i bilag som fire artikelmanuskripter indsendt til 

publikation i tidsskrifter. 

 

Anvendelsen af aluminium er bred, fra transportmidler, bygninger, varmevekslere og emballage til 

designprodukter. Den visuelle fremtoning efter anodisering er en vigtig karakter i mange af disse 

anvendelser, men brugen af genbrugsaluminium kompromitterer denne pga. tilstedeværelsen af store 

mængder urenheder og legeringselementer. Viden om hvordan forskellige legeringselementer påvirker den 

visuelle fremtoning kan derfor øge anvendeligheden af genbrugsaluminium. 

Det blev undersøgt, hvorledes den visuelle fremtoning påvirkes af legeringssammensætning, 

overflademorfologi og mikrostruktur. Fire handelslegeringer blev undersøgt før og efter polering, bejdsning, 

anodisering og forsegling med varmt vand, hvilket gav et overblik over, hvordan legeringssammensætning 

påvirker den visuelle fremtoning. Ruheden af overfladen efter bejdsning blev større ved øget mængde af 

legeringselementer (især jern og silicium). Behørig polering kræver nogen mængde af legeringshårdhed, 

mens legeringsrenhed kræves for at opnå en spejlende fremtoning efter anodisering. 

Fysisk pådampede Al-Ti coatings med op til 18 vægt-% titan blev deponeret, varmebehandlet og anodiseret. 

Mikrostrukturen efter pådampning var lagdelt og Al3Ti-faser blev dannet i løbet af varmebehandlingen. De 

varmebehandlede emner indeholdende Al3Ti-faser blev mørke under anodisering, og emnerne blev undersøgt 

som et modelsystem for hvordan den visuelle fremtoning påvirkes af delvist oxiderede partikler og 

morfologien mellem det anodiserede lag og metallet efter anodisering. Det blev foreslået at emnerne blev 

mørke pga. indfangning af lyset i det anodiserede lag pga. den ru grænseflade mellem det anodiserede lag og 

substratet og pga. absorption og optisk spredning i de delvist oxiderede partikler i det anodiserede lag. 

 

Transportindustrien står for en stor andel af verdens CO2-udledning, hvilket kan mindskes ved at reducere 

vægten af transportmidlerne. Mere end halvdelen af en bils vægt kommer fra stål, hvilket næsten kan 

halveres ved at udskifte stålet med aluminium. Desværre korroderer aluminium kraftigt under de basiske 

forhold der f.eks. kendes fra en børsteløs bilvask (> pH 12). I dag anvendes forsegling med nikkelsalte for at 

beskytte f.eks. aluminiumsfælge, men af miljø- og sundhedsmæssige årsager søges et alternativ. 
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Undersøgelser af de tidligere beskrevne fysisk pådampede Al-Ti coatings viste at 13 vægt-% titan og mere 

forbedrede modstandsdygtigheden ved pH 13.5 og denne var yderligere forbedret under varmebehandling, 

særligt ved 400 °C og over. De forbedrede korrosionsegenskaber blev tilskrevet strukturel afspænding, 

sænkede galvaniske potentialeforskelle i mikrostrukturen og beskyttelse fra netværket af Al3Ti-faserne, der 

blev udfældet i løbet af varmebehandlingen. 

Coatings med laser af aluminium indeholdende op til 20 vægt-% Ti6Al4V blev undersøgt med fokus på 

mikrostrukturen og de basiske korrosionsegenskaber. Pga. udfældning af store faser af Al3Ti under processen 

bestod mikrostrukturen af et næsten rent aluminiumsmatrix, der korroderede selektivt ved pH 13.5. 

Varmebehandling brød ikke den størknede mikrostruktur ned og korrosionsegenskaberne blev ikke forbedret 

ved dette.  
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 Introduction 1

Aluminium is widely used in applications such as transportation, buildings, heat exchangers, packaging, and 

design products. This emphasise that the use of aluminium is very versatile, since it can be made into many 

different semi products and many different production methods can be applied. During the primary 

production, the aluminium melt is purified; removing impurities such as iron and silicon, and subsequently 

alloying elements are added to the melt. This is done to achieve the desired properties of the final alloy.  

The amount of recycled aluminium is constantly increasing, since the melting process only requires 5 % of 

the original extraction process [1]. However, the recycling process makes it hard to control the amount of 

impurities and alloying elements in the final melt and final products. Therefore, increased use of recycled 

alloys has significant influence on various properties including optical appearance and corrosion properties. 

Measured by weight, steel is the most used material in the car industry, where the average car in USA 

consisted of 1100 kg steel in 2007 [2]. Various types of steels are used in the car industry [3], and with focus 

on weight reduction and passenger safety, the use of the stronger transformation induced plasticity (TRIP) 

steels [4] and other light steel structures have been in focus. Aluminium alloys are light and have the same 

strength-to-weight ratio as that of steel. Therefore, replacing steel with aluminium in a construction can half 

the weight [1]. This is particularly relevant in the transport industry, where a big part of the fuel consumption 

is due to transportation of the vehicle itself. 

 

The foci of this study are the visual appearance of anodised aluminium products as a function of alloy 

composition and surface finish, and using aluminium based model alloy coatings containing titanium to 

understand the effect of microstructure on the optical appearance and for alkaline corrosion properties for the 

automotive industry. 

1.1 Aluminium in design products 

The visual appearance of aluminium alloys both bare and after anodisation is an important property for 

design products such as the ones presented in Fig. 1.1. Repeatability of the optical appearance is extremely 

important, however, recycled aluminium alloys have resulted in unpredictable surface appearance due to 

microstructural heterogeneity consisting of intermetallic particles of impurity elements. Controlling colour 

tinges is therefore important e.g. by alloying additions and microstructural manipulation, based on an 

optimised method for creating surfaces with predictable appearance. A number of studies have investigated 

the effect of intermetallics on the optical appearance of anodised specimens, however, these are mostly 

limited to morphological differences of the interface between the anodised layer and the substrate and the 

incorporation of various intermetallics in the anodised layer. The exact effect of various steps in the creation 

process of the anodised layer in terms of optical appearance has been in less focus. Therefore, a deeper 

understanding of the influence from various factors on the optical appearance is essential for the efficient use 
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of recycled aluminium alloys in design and structural products, and for designing new easily recyclable 

alloys and aluminium based coatings.  

 

Fig. 1.1 – Bang and Olufsen products, a) BeoCom 2 telephones and b) BeoLab 4000 speakers. 

Colouring is normally done by absorption colouring using pigments or dyes to absorb parts of the white 

light, causing a colour to be perceived. In contrast with this are structural colouring (e.g. known from soap 

bubbles, rainbows, and the colours in the sky), where the microstructure of the material itself often gives 

deep, bright, and UV resistant colours. The creation of structural colours requires processes giving control of 

the microstructure that is not easy by regular production methods. The magnetron sputtering process allows 

creation of coatings with desired compositions, which cannot be created by the regular casting route used in 

the primary aluminium production. The technique enables the creation of unique appearances for e.g. high 

end design products, which can position a design company in a favourable position in the market. 

1.2 Aluminium in the automotive industry 

For weight reductions, the amount of aluminium in the transport industry is continuously increasing as seen 

in Fig. 1.2a, and Fig. 1.2b shows the distribution of aluminium in the cars today. Calculations from the 

European Aluminium Association [5] estimates that the weight of the cars today can still be reduced by 36 % 

by increased use of aluminium. Approximately 80 % of the aluminium used in cars today is made of cast 

alloys. For the body parts wrought aluminium alloys containing copper was previously used giving high 

strength but bad corrosion properties. More recently, alloys with magnesium, magnesium + silicon, and zinc 

+ magnesium have been the preferred types of alloys [6,7]. However, only few cars are made with 

aluminium as the main material, e.g. the Audi A8, which was the first mass-market car with a body of 

aluminium. 
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The use of aluminium is very beneficial in the automotive industry since weight reductions are one of the 

main factors to reduce fuel or power consumption. However, in the automotive industry all outer surfaces 

have to withstand the corrosive environments it is exposed to during the use phase, including saline and 

sulphur containing species. Furthermore, harsh alkaline chemicals are used e.g. in a brushless car wash 

causing aluminium alloys to corrode heavily. Today nickel salt sealing is used for alkaline protection of e.g. 

aluminium wheel rims, however, the automotive industry is pursuing a reasonable alternative, due to 

environmental and health reasons. Furthermore, the nickel salt sealing is not flawless above pH 12.  

1.3 Objective of the present study 

The present study consists of four parts: (i) understanding the optical appearance of anodised commercial 

aluminium alloys as a function of alloying elements and initial surface finishing, (ii) creating Al-Ti binary 

coatings by magnetron sputtering to investigate microstructure and appearance after heat treatment and 

anodisation, and investigation of alkaline corrosion resistance of Al-Ti coatings made using (iii) magnetron 

sputtering and (iv) laser surface cladding. A brief overview of the four parts is given below: 

Appearance of anodised commercial aluminium alloys:  

Effect of alloy composition and prior surface finish 

It was investigated how the optical appearance is affected by the alloy composition, surface morphology, and 

the microstructure. Four commercial aluminium alloys were studied before and after polishing, etching, 

anodisation, and hot water sealing, giving an overview on how the alloy composition affects the appearance. 

It was found that the roughness after etching increases with higher amounts of alloying elements in the alloy 

(especially iron and silicon). Proper polishing requires some alloy hardness, while alloy purity is required for 

a glossy appearance after anodisation. 

 

 

Fig. 1.2 – The use of aluminium in cars produced in Europe [5], a) the average aluminium content in cars since 1990 and  

b) the distribution of aluminium in European cars.  
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Magnetron sputtered aluminium based coatings containing up to 18 wt. % titanium were investigated. The 

microstructure of the as-deposited coating had a layered structure, and Al3Ti phases precipitated during the 

heat treatment. Furthermore, investigations focused on: 

Anodisation of sputter deposited aluminium-titanium coatings:  

Effect of microstructure on optical characteristics 

During anodisation, the heat-treated specimens containing Al3Ti phases turned dark, and the specimens were 

investigated as a model system on the optical effect of partially oxidised intermetallics and the subsurface 

morphology after anodisation. It was suggested, that the darkening of the anodised specimens happened due 

to roughness of the oxide-substrate interface causing light trapping and optical scattering and absorption by 

the partially anodised intermetallics in the anodised layer. 

Saline and alkaline corrosion resistance of aluminium-titanium coatings  

prepared by plasma magnetron sputtering 

Investigations of the magnetron sputtered Al-Ti coatings showed that 13 wt. % titanium and more improved 

the corrosion resistance at pH 13.5 and this was further improved by heat treatment, especially at 400 °C and 

more. The improved corrosion properties were ascribed to structural relaxation, decreased galvanic potential 

differences in the microstructure, and protection from the network of the Al3Ti phases precipitated during the 

heat treatment. 

 

Alkaline corrosion properties of laser cladded aluminium-titanium coatings 

Laser surface cladding of aluminium containing up to 20 wt. % Ti6Al4V were studied focusing on the 

microstructure and the alkaline corrosion properties. Due to precipitation of large Al3Ti phases during the 

cladding process, the microstructure consisted of an almost pure aluminium matrix, which corroded 

preferentially when exposed to pH 13.5. Additional heat treatment did not break down the solidified 

microstructure and the corrosion properties were not improved. 

1.4 Al-Ti coatings 

Creating bulk products of certain chemical compositions can be difficult and expensive, if not impossible. 

Instead, coatings can be applied to achieve the desired properties. Aluminium based coatings with titanium 

as the main alloying element was found useful based on two observations: 

1.4.1 Colouring Al-Ti coatings by scattering 

Titanium dioxide (TiO2) is the most used white pigment due to its low price, high index of refraction (> 2.5), 

and practically no absorption in the visible spectrum. While common pigment molecules are of sizes up to a 

few nanometres, regular TiO2 pigments are of sizes 200 nm – 300 nm [8]. It is therefore possible to absorb 

regular pigments into the pores of the anodised aluminium surface (usually 10 nm – 20 nm in diameter, 
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(described in section 2.2.2.4, page 12), whereas the same is not possible with white pigments. Instead, it 

might be possible to create an Al-Ti coating and grow titanium-rich particles by heat treatment, followed by 

anodisation, creating amorphous titanium oxides inside the anodised aluminium layer (Fig. 1.3). The 

scattering from the titanium oxide inclusions might therefore cause light scattering giving white or other 

colours depending on the sizes of the inclusions. 

 

Fig. 1.3 – Schematic showing the evolution of the microstructure and anodized layer for a 

Al-Ti coating, for the as-deposited coating, after heat treatment, and after anodisation [9]. 

1.4.2 Alkaline resistant Al-Ti coatings 

The use of titanium as an alloying element should improve the corrosion resistance due to the high passivity 

of titanium at all pH values as shown in Fig. 1.4 by the overlapping Pourbaix diagrams for aluminium and 

titanium. Aluminium is corroding in harsh acidic and alkaline conditions. On the other hand, titanium is 

stable in both acidic and alkaline conditions and might therefore be usable to protect aluminium from the 

alkaline chemicals applied in the automotive industry, requiring protection at pH 13.5 in a sodium hydroxide 

(NaOH) based solution. 

 

Fig. 1.4 - Overlapping Pourbaix diagrams for aluminium and titanium [10]. 
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1.4.3 Techniques for creating Al-Ti coatings 

Physical vapour deposition (PVD) by magnetron sputtering and laser surface cladding (LSC) are both 

coating processes, where the composition of the coating can be quite freely defined compared to regular 

casting processes creating wrought aluminium alloys. Creating thick anodisable coatings using the 

magnetron sputtering process is very expensive, but might be useful for high-end design products. For 

corrosion protection, the PVD process is useful to create controlled model systems and in some cases 

applicable, based on product type and cost considerations, while LSC is a rougher but cheaper production 

method.  

1.5 Overall structure of the thesis 

Chapter 2 presents a review of literature on aluminium, its alloys, the mechanical surface treatment and 

anodisation of these, and the recycling process. Additional focus is given to the optical appearance (section 

2.4) and the corrosion properties (section 2.5) of aluminium and its alloys. Chapter 3 describes the corrosion 

properties of titanium and the creation of titanium containing aluminium based coatings with focus on the 

PVD (section 3.3) and the laser surface processes (section 3.4). All materials and methods used are presented 

in chapter 4. The four appended papers are summarised briefly in chapter 5 and the entire study is wrapped 

up with an overall summary (chapter 6) and an outlook (chapter 7). The idea of chapter 5 is to keep the 

extent of the thesis down, while it is still reasonable to read the whole thesis in one continuous process. 

Therefore, results and discussions are mainly found within the appended papers. 
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 Aluminium 2

Aluminium is the most common metal in the Earth’s crust, with an expected supply of at least 400 years, 

even though aluminium is the second most used metal (after iron). Most of the aluminium is found in the 

bauxite rock (containing 30 % - 54 % alumina in different types of minerals), which is usually surface mined 

(opposite to underground mining), with very little waste at the mining site. The bauxite is refined into 

alumina (Al2O3) by the Bayer process, which in short includes sodium hydroxide at high pressure and 

temperature, several filtration and precipitation processes, and by passing the rest products through fluidized 

calciner at 1100 °C. The subsequent Hall-Heroult process puts a low voltage (3 V – 5 V) direct current of 

hundreds of thousands of amperes through the solution and liquid aluminium is then deposited at the cathode 

while carbon dioxide (CO2) is created at the anode. Since liquid aluminium has a higher density than molten 

cryolite it is possible to extract the molten aluminium from the bottom of the electrolytic cell while more 

alumina is added. The Bayer and the Hall-Héroult processes are almost equally energy demanding, requiring 

about 30 kWh/ton pure aluminium in total. After the Hall-Héroult process, the molten pure aluminium can be 

further purified and is subsequently added alloying elements and cast as blocks for later semi-product 

fabrication. Depending on the requirements for the specific semi-product the blocks can be further treated 

e.g. by heat treatment and for removal of the surface layer. Furthermore, one or more processes can be 

combined to minimise further secondary processing e.g. by continuous casting and strip casting. 

The optical and corrosion properties of aluminium alloys are closely related to the chemical composition and 

microstructure created during later production steps like casting, extrusion, heat treatment, polishing, etching 

and anodisation. A general introduction to aluminium alloys and surface treatments, including the 

anodisation process, are followed by a brief description of recycling of aluminium alloys and sections on the 

optical and corrosion properties of aluminium and its alloys.  

2.1 Aluminium alloys 

In the EN 573 and EN 1780 standards the aluminium alloys are divided into eight different series depending 

on the main alloying element(s). In these standards, the nomenclature of wrought alloys contains four digits 

and the nomenclature of cast alloys contains three digits, a decimal point and one digit. The first digit define 

the main alloying element(s), and thereby the series. The other digits define the chemical composition of the 

alloy in further details. Table 2.1 gives an overview of the eight series, the primary alloying elements and 

typical applications. 
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Table 2.1 – Classification of the aluminium alloy series according to the EN 573 and EN 1780 standards. 

Primary alloying element Wrought 
alloys 

Cast 
alloys 

Typical applications 

None (commercially pure) 1xxx 1xx.x Foils, sheets, decorative 

Copper 2xxx 2xx.x Aircraft industry 

Manganese 3xxx  Cans, buildings, radiators 

Silicon 4xxx 4xx.x Heat exchangers 

Magnesium 5xxx 5xx.x Cans, transportation, buildings 

Magnesium + silicon 6xxx  Transportation, buildings 

Zinc (+ copper) 7xxx 7xx.x Aircraft industry, radiators 

Other elements1 8xxx 8xx.x Foil, aircraft industry 
1 The 8xxx series is mainly lithium alloys, but also e.g. iron + silicon alloys. 

Grade of purity and the amount of secondary alloying elements vary significantly within each series. The 

following sections give an overview of the most important alloying elements, focusing on the wrought 

alloys, divided into work-hardenable and age-hardenable alloys. 

2.1.1 Work-hardenable wrought alloys 

Work-hardenable alloys (1xxx, 3xxx, 4xxx, 5xxx) are primarily strengthened by cold work, solid solution 

and dispersion strengthening. Therefore, the typical microstructure of these alloys contains an aluminium 

matrix with intermetallics and if applied, dispersion strengthening particles. 

The state of these alloys is normally denoted:  

 F: As fabricated, with no quality guarantee 

 O: Soft annealed  

 Hxx: Strain hardened, where the first digit indicates, whether the product is strain hardened without 

thermal treatment (H1), partially annealed (H2) or stabilized at a low temperature (H3). Second digit 

denotes the hardness from ¼ hard (Hx2) to extra hard (Hx9). 

The 1xxx series is commercially pure alloys of minimum 99.0 % purity. These alloys are soft, have high 

reflectance, and good corrosion properties. 

Manganese in the 3xxx series and Magnesium in the 5xxx series are both used for solid-solution 

strengthening.  

Silicon is both found as a common impurity and used as an alloying element in the 4xxx series. High 

concentrations of silicon is unwanted since more than 0.8 % affect the visual appearance [11] and silicon act 

cathodic to the aluminium matrix causing roughness during etching [12,13]. Aluminium silicate 

((AlO)2SiO3) has proven to increase the alkaline resistance of silicon-containing alloys.  
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2.1.2 Age-hardenable wrought alloys 

In age-hardenable alloys (2xxx, 6xxx and 7xxx), precipitates are grown over time (natural aging) or by heat 

treatment (artificial aging) to strengthen the alloy. When heat-treated, the alloy is denoted with a T followed 

by one to five digits, indicating the temper process. The typical microstructure of age-hardening alloys 

contains intermetallics and precipitates. 

2xxx and 7xxx alloys contain copper and zinc, giving high strength alloys e.g. for aircraft applications. The 

2xxx alloys are strengthened by CuAl2 and Al2MgCu precipitates. Due to the nobility of copper, the 

corrosion properties of the 2xxx alloys are bad. The 7xxx series contains zinc and magnesium to form MgZn2 

precipitates. Many 7xxx alloys contain zinc, magnesium, and copper for creation of CuAl2, Al2MgCu, and 

MgZn2 achieving increased strength [14]. 

In the 6xxx series, silicon and magnesium create magnesium silicide (Mg2Si) for hardening. The Mg2Si 

precipitates act anodic during etching, creating small pits with sizes similar to the original particle [12,13]. 

Nearly 75 % of aluminium extrusions are made of 6xxx alloys [15]. 

 

Iron is usually an unwanted but common impurity. Even at low concentrations, iron-rich phases have big 

effects on the surface microstructure, and might cause miscolouring e.g. in the form of streaks on the surface 

as known from extrusions. Iron-rich phases react cathodic to the aluminium matrix during etching [12,13] 

causing pits of sizes up to 10 m [12,16,17]. 

Titanium is found as an impurity but is also added in low amounts as a grain refiner in age-hardening alloys, 

forming Al3Ti precipitates pinning the grain boundaries during grain growth. 

2.1.3 Choosing wrought alloy series 

It can be hard to choose which aluminium alloy to use for at specific purpose, but Vargel [1] has given an 

overview, where parts of it are presented in Table 2.2. Notice that the evaluation for corrosion resistance is 

only valid for regular air, freshwater and seawater. 

Table 2.2 – Suggested parameters for choosing wrought aluminium alloy series [1]. 

 

Criteria 

Work-hardenable alloys 

   1xxx             3xxx            5xxx    . 

 Age-hardenable alloys 

   6xxx          2xxx             7xxx 

UTS (MPa) 50-100 100-260 100-340  150-310 300-450 320-600 

Decorative 
anodizing 

+ - +  + - - 

Corrosion 
resistance 

+ + ++  ++ - - 

Extrudability + + -  ++ - - 
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2.1.4 Cast alloys 

Cast alloys are generally created by recycled aluminium added high amounts of alloying elements e.g. 

silicon, decreasing the melting temperature. The casting process enables a freer product form than 

conventional production methods; however, they are not good for anodisation and are therefore often 

painted, lacquered or used in the unanodised form, making them vulnerable to wear and corrosion.  

2.2 Surface treatments of aluminium 

2.2.1 Mechanical surface treatment 

Various mechanical surface treatments are used for aluminium products. Blasting techniques like bead 

blasting (known from Apple products) are used for easy removal of scratches and homogenisation of the 

surface. The rough surface is subsequently etched before anodisation to remove the largest irregularities and 

oxides incorporated into the surface during blasting. Treatments like diamond turning and wheel polishing 

are used for a high gloss surface, which is only degreased before anodisation in order to maintain the glossy 

surface finish. Wheel polishing use a round cloth wheel fixed on a rotating machine, usually at more than 

1200 rpm [18], and a polishing wax is added containing e.g. alumina (Al2O3) as the abrasive agent. Alloying 

elements and previous mechanical treatments affect the hardness of the specimen and thereby the polishing 

properties. Harder specimens are in general tougher to polish, while softer specimens are heated more during 

the process. During wheel polishing, the temperature easily reach 200 °C and may locally rise up to 1000 °C 

[18]. Beilby [19] found that due to the heat development the peaks of the aluminium morphology are 

displaced into the valleys, creating an amorphous and/or very fine grained crystalline layer, which is now 

known as the Beilby layer [19,20]. The structure of the Beilby layer causes an unappealing appearance after 

anodisation and intense heat development during polishing should be avoided. 

2.2.2 The anodisation process 

A thin passivating oxide layer of alumina is formed on the surface when aluminium is exposed to oxygen. 

The oxide layer is impenetrable by the atmospheric oxide and is therefore passivating, causing the process to 

stop at an oxide thickness of 1 nm – 10 nm depending on the alloy and conditions of the surroundings. The 

alumina layer is transparent, hard, and resistant to wear and corrosion, however, due to the low thickness it is 

easily worn off. In the 1920’s the anodisation process (also called electrolytic oxidation) was invented, and is 

still today used for most wrought aluminium products, normally creating an oxide layer of 5 m – 25 m in 

thickness. The anodisation process is done in several steps as presented in Fig. 2.1. 

 



2 Aluminium 
 

13 

 

Fig. 2.1 - The steps involved in a normal anodisation process. 

2.2.2.1 Degreasing 

The natural oxide layer as well as oil, lubricants, and other greasing agents on the specimen surface are 

removed in a degreaser, which can be acidic or alkaline. Since alkaline agents normally stick to the surface, 

they are often used in order to avoid the specimen from drying in mid-air creating an oxide layer. Even small 

flaws in the degreasing step can cause the specimen to be discarded since the following process steps can 

enhance these flaws. 

2.2.2.2 Etching 

Etching is done to level out surface imperfections and gives a matt appearance. The etching step is therefore 

skipped when creating shiny surfaces as illustrated in Fig. 2.1. NaOH is often used due to its efficiency and 

the low price. The etching process can be very important for profiles and sheets, since both extrusion and 

rolling can cause big heterogeneity in the near surface area of the specimen. In these cases, the etching 

removes the near surface layer containing local composition differences, surface texture differences, and 

oxide containing particles [21–26]. Several alloying elements will be enriched in the near surface region 

during etching [21,27], depending on the behaviour of the intermetallics and dissolution of a specific element  

and etching temperature [21]. Impurities and alloying elements have big influence on the etching (Table 2.3), 

where cathodic iron rich phases has the largest effect and it has been found that the dissolution rate is 

proportional to the logarithm of the iron concentration [12]. It has also been found that the weight loss 

increase linearly with the Fe/Si ratio, which has been ascribed to the passivating properties of silicates. 

Table 2.3 – Electrochemical behaviour of intermetallic particles during alkaline etching [12,13]. 

Cathodic (predominant 
attack of matrix) ~ Electroneutral 

Anodic (predominant 
dissolution of particle) 

Al3Fe 
Al6(Fe,Mn) 

Al12(Fe,Mn)3Si 
Al9Fe2Si2 
Mg2Al3 
Al3Ti 

Al6(Mn,Fe) 
Al12(Mn,Fe)3Si 

Al7Cr 
Al3Ni 

Al6Mn 
Mg2Si 
Al2Cu 
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2.2.2.3 Desmutting 

The desmutting step in e.g. nitric acid (HNO3) removes smut, consisting of oxides, aluminium hydroxide 

(Al(OH)3), intermetallics, and alloying elements, created during the degreasing and / or etching steps. Since 

smut is mainly caused by the corrosion products of alloying elements formed during etching, pure alloys will 

only produce very little smut, whereas highly alloyed specimens will give a visible smut layer on the surface 

of the specimen depending on the alloying and impurity elements of the alloy.  

2.2.2.4 Anodisation 

The anodisation step is a controlled oxidation of the surface, creating an oxide layer using an electrochemical 

process, providing the driving force for extended growth of the oxide layer. Anodisation is common and used 

mainly on aluminium, but can also be performed on e.g. titanium, tantalum, and magnesium, where the 

specimen is connected as the anode. In the initiation of the anodisation process a uniform oxide layer is 

formed at the metal-electrolyte interface [28]. This layer will move into the metal while the upper parts will 

grow a porous structure as later described. The bottom of the anodised layer is therefore a very thin and 

compact oxide layer, called the barrier layer, which is about 1 nm/V in thickness [29]. There has been a lot of 

discussions on the creation and the effects of the barrier layer [18,29,30], however, this is not within the 

scope of this thesis. During the anodisation process oxygen ions will diffuse from the electrolyte through the 

barrier layer to the metal-oxide interface reacting with the metal (oxidation): 

  (1) 

 

Furthermore, aluminium ions will diffuse in the opposite direction to the oxide-electrolyte interface, reacting 

with the water: 

  (2) 

Aluminium, titanium or steel are often used as cathode with a cathodic reaction producing hydrogen gas in 

acidic electrolytes (reduction): 

  (3) 

Thus the overall reaction can be written as:  

  (4) 

The actual chemical composition and structure of the anodised layer is not fully understood. However, it is 

known that it is amorphous [31] and consists of alumina, aluminium sulphate (Al2(SO4)3) (depending on the 

anodising bath), and Böhmite (AlOOH). Others have also suggested pseudoböhmite [32], which is Böhmite 

with excess of water. 

After anodisation in e.g. sulphuric acid, the anodised surface consists of pores in hexagonally shaped cells 

with a central round pore perpendicular to the surface as illustrated in Fig. 2.2. The pores in a standard 
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anodisation are 10 nm – 20 nm in diameter and 5 m – 25 m in depth. The material will expand so that one 

third of the total anodised layer will be above the original surface.  

 

Fig. 2.2 – Ideal structure of an anodized layer (size of the pore is shown as an example). 

The anodisation starts at the surface and runs perpendicular into the specimen. Consequently, the upper 

surface of the anodised layer will be the part that has been exposed to the solution for the longest time. For 

longer anodisation processes this will create the powdering effect, where the pores do not have parallel walls, 

but are inclining away from the centre of the pore, moving towards the surface (Fig. 2.3) [11]. 

 

Fig. 2.3 - The powdering effect creating inclining pore walls as the thickness of the anodised layer increases. 

The alloy composition has effects on the anodisation behaviour, where intermetallic particles, behave 

electrochemically differently than the aluminium matrix (Table 2.4). Some phases like Mg2Si are known to 

be quickly oxidised, at rates faster than aluminium, whereas others like Al6Fe are known to oxidise at a lower 

rate than aluminium [12,13]. Therefore, e.g. Al6Fe can be found as only partially oxidised in the anodised 

aluminium layer [33]. Some particles such as Al3Ti are reported [12,13] to be unaffected by the anodisation 

and incorporated into the anodised layer. 
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Table 2.4 – Behaviour of intermetallic particles during anodisation in sulphuric acid [12,13]. 

Unchanged and 
incorporated into oxide 

film 

Oxidised and incorporated (or 
dissolved) at a rate comparable or 

slower than Al 

Oxidised and incorporated 
(or dissolved) at a rate 

faster than Al 

Si 
Al6(Mn,Fe) 

Al3Ti 

Al12(Mn,Fe)3Si* 
Al3Fe 
Al6Fe 

Al6(Fe,Mn) 
Al9Fe2Si2 

Al12(Mn,Fe)3Si* 
Mg2Al3 

Mg5Al8 

Mg2Si 
Al7Cr 
Al2Cu 

* Dependent on particle size. 

The structure of the anodised layer also depends on the electrolyte, voltage, current density, temperature, and 

time. These parameters will briefly be described below:  

The electrolyte ensures oxidation of the dissolved Al3+ ions. Sulphuric acid (H2SO4) is often used due to its 

efficiency and low price. But, other electrolytes like chromic acid (H2CrO4), boric acid (H3BO3) and oxalic 

acid (H2C2O4) are used alone or in combinations of two electrolytes and more [18,34]. With the use of 

different electrolytes, it is possible to change the properties of the final coating significantly, e.g. to create 

pores with diameters up to 150 nm – 200 nm. In general the pore characteristics change as follows: 

 The pore diameter and growth speed increase with increasing voltage, while the density of pores is 

decreased. 

 Low current densities produce a soft, thin film with a high density of pores. 

 Pore diameter, cell wall thickness, and growth speed increase with temperature, whereas the pore 

density decreases.  

The thickness of the coating is often controlled by the anodisation time. All processes will have a maximum 

thickness where the powdering effect removes the outer surface of the anodised layer simultaneously with 

generation of new oxide at the bottom of the layer.  

The approximate total thickness of the layer formed during anodisation (H in m) can be calculated using the 

following formula [11]: 

  (5) 

where W is the anodic efficiency, T is the time in minutes, J is the total current in ampere, and F is the 

surface area in dm2. The current is affected by both temperature and voltage, while the anodic efficiency is 

normally ~ 65 %, but is also affected by temperature and voltage (and current).  
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2.2.2.5 Colouring of the anodised layer 

The colouring of aluminium is normally done in one of the following ways: 

 Absorption colouring is the cheapest, simplest and most common method, where the specimen is 

exposed to a dye by either dipping or spraying causing the dye to go into the pores. With absorption 

colouring a wide variety of colours is possible; however, many of these are not resistant to UV light. 

 For electrolytic colouring a metal or metallic salt is precipitated at the bottom of the pores. The 

variety of colours possible are less than for absorption colouring, however, the electrolytic colouring 

compounds are normally more resistant to UV light making the colouring more durable for outdoor 

use [35]. These colours are created due to light scattering and absorption, and depend on the size of 

the pores and the metal deposited [35]. 

 Integral colouring is used to colour the transparent anodised layer itself. Integral colouring is done 

during the anodisation step, where a special alloy is used or the electrolyte contains one or more 

organic acids that will colour the anodised layer [12]. The largest advantage of integral colouring is 

that anodisation and colouring are done in the same process step; however, it is expensive and offers 

only colours of light bronze to black. 

 Interference colouring is based on the electrolytic colouring process, creating UV resistant 

interference colours of grey, blue, green [36], and in some cases even yellow, red, and bronze 

[35,37]. The process runs in three steps: anodisation, electrochemical modification creating pore 

enlargement at the bottom of the pores, and metal (often tin) deposition in the pores [35–37]. The 

colours are created due to interference of waves reflected in the top part of the deposited metal and 

the substrate [35]. Fig. 2.4 illustrates the interference colouring mechanism, where two parallel 

closely situated rays of light (from the same light source) enter the anodised layer. One ray goes 

between the deposited volumes of tin and is reflected at the substrate-oxide interface. The other ray 

hits the top of a deposited volume of tin and is reflected back towards the surface. If the reflecting 

surfaces are parallel, the rays will still be parallel after the reflection, and therefore the rays will 

interfere if they are close to each other as illustrated in Fig. 2.4. The type of interference depends on 

the distance between the two reflecting surfaces and the wavelength of the light. Thus, the colour of 

the deposition depends on the height of the deposited tin volumes. Furthermore, the type of 

interference is also dependent on the incoming angle, causing the interference colouring to be 

iridescent (colour is angle dependent). The technique is not widespread and requires very good 

control of the process [36,37].  

Other non-commercial techniques have been reported to create colours by thin film interference in anodised 

aluminium products, which are described in section 2.4.7, page 30. 
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Fig. 2.4 – Principle of interference colouring of anodised specimens. 

2.2.2.6 Sealing 

In Europe, the most common type of sealing is hot water sealing, where the specimen is immersed into 

water at pH 5.5 – 6.5 at 92 °C – 98 °C, normally for a time span of about 2 min/ m [38]. During hot water 

sealing, the hard and brittle alumina is converted: 

  (6) 

The anodised layer will expand during the sealing closing the pores. This will avoid capillary forces dragging 

fingerprints, oil, and dirt into the pores as well as preventing dyes from leaving the pores. Furthermore, small 

particles can more easily stick to the porous surface compared to the sealed surface. The sealing of the 

specimen might affect the appearance, which is usually termed as sealing bloom; but this can be avoided by 

adding commercial sealing agents. In chemical reaction (6) presented above, the compound Böhmite 

(AlO(OH)) is created, however, the sealed structure is suggested by Bautista et al. [39] to be layered as 

illustrated in Fig. 2.5. The outer crystalline layer consists of Böhmite or pseudoböhmite, the intermediate 

layer is pseudoböhmite and the pores are filled with aluminium hydroxide (Al(OH)3) and pseudoböhmite 

[32,39].  

 

Fig. 2.5 – Surface structure of the anodised layer after hot water sealing [39]. 
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Steam sealing is running at 110 °C – 150 °C using a boiler inside a chamber. The growth rate is 2 to 4 times 

higher than hot water sealing, and the process is less sensitive to pH and impurities. 

Sealing is also done with chromates and nickel salts, which are described in 2.5.2, page 32 with focus on the 

corrosion properties of the different sealing techniques. 

2.3 Recycling of aluminium alloys 

Recycling of aluminium can be done by remelting aluminium scrap. Recycling of aluminium does therefore 

only require about 5 % of the initial energy consumption used for purifying the bauxite into the primary 

(initial) aluminium1. Apart from remelting the aluminium scrap, solid state recycling [6] has been tested, 

where the scrap is cleaned chemically and compressed at 200 MPa – 600 MPa, followed by extrusion at 450 

°C – 550 °C, creating good bonding of the material [6]. Whereas other materials are worn during the use 

phase due to wear and corrosion, only little of the aluminium is lost. Furthermore, refiners and recyclers 

expect 95 % of the incoming aluminium to return to the market again as aluminium ingots [40]. The 

properties of aluminium are unchanged during remelting, so it is in principle possible to achieve exactly the 

same properties when using secondary (recycled) aluminium as when using primary aluminium. However, 

due to alloying elements and impurities, the purity of aluminium alloys is often downgraded during 

recycling. Secondary aluminium is used e.g. as agent for deoxidation in the steel industry, wrought alloys 

(e.g. cans), and extruded profiles e.g. in the building industry, however, most secondary aluminium is used 

for cast products (e.g. for motor blocks) [40,41]. This is mainly due to the high purity requirements for 

wrought alloys. Cast alloys are alloyed to a much higher degree but do also have restrictions, especially 

regarding magnesium, which makes 5xxx and 6xxx alloys bad for secondary cast products. Since the need 

for wrought aluminium alloys is continuously increasing, a cost-effective purification process or more 

comprehensive alloy sorting is needed [41]. Additional contamination of recycled alloys are very hard to 

avoid and especially iron contamination are often found due to iron particles within the aluminium scrap and 

iron contamination during the machining process [42,43]. A good method for removing iron (and nickel), has 

not yet been developed [42].   

As Fig. 2.6 shows, the share of secondary aluminium is continuously increasing and today its share is about 

one third of the total aluminium production [40]. All secondary aluminium is used right away, and therefore 

scrap collection is the only way to increase the share of secondary aluminium further. Aluminium beverage 

cans consume 16 % of the total aluminium consumption. About 70 % of the aluminium beverage cans are 

recycled worldwide [40], where some of the leading countries are Brazil (97 %), Japan (93 %), and Sweden 

(91 %) [40]. The cans are easy to recycle due to the use of only two different alloys, which are well defined. 

                                                      

 

1 It should be noted that a part of the primary aluminium production is done in countries using green energy resources, 
such as hydropower in Norway and Iceland. The 95 % saved energy is therefore not directly comparable with the 
burden on the environment, even though it is still significant. 
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Fig. 2.6 – Global share of primary and recycled aluminium production [40]. 

In other industries, the recycling process is much more complex due to the use of several different alloys in 

the same product, and because several products are normally remelted simultaneously. The recycling process 

of e.g. a car follows several steps such as dismantling, shredding, magnetic removal of iron parts, sink-float, 

and Eddy current separation [6,40,41]. The aluminium scrap consists of both cast and wrought aluminium 

alloys. Sorting these from each other is possible by melting the cast parts (melt at a lower temperature), 

manual sorting by appearance, X-ray scanning, and appearance changes during chemical treatments. 

However, none of these are both easily applicable and cheap. Using laser-induced breakdown spectroscopy 

(LIBS), the surface is melted and optical emission spectroscopy is used for identification of the alloying 

elements [6,44], however, there can be problems when using LIBS on e.g. painted surfaces. Tests have 

shown that the LIBS technique can sort cast from wrought alloys with a correctness of >96 %, and eight 

different wrought alloys were sorted with a correctness of >95 % [45]. 

Now and in the future, secondary wrought aluminium alloys are expected to contain high amounts of 

alloying elements and impurities, which are hard to control rigorously. The effect of the different alloying 

elements on mechanical and corrosion properties and appearance is therefore important to understand in 

order to evaluate the need for sorting and purification during the recycling process for secondary wrought 

aluminium alloys. 
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2.4 Optical appearance of aluminium and its alloys 

The theory behind the optical appearance of aluminium and its alloys encompass several scientific fields of 

solid state optics. Only the most relevant aspects are in focus here. 

2.4.1 Electromagnetic waves 

The spectrum of electromagnetic waves visible to humans cannot be strictly defined since it varies slightly 

from person to person [46,47], but it is approximately from 380 nm (violet) to 760 nm (red) as illustrated in 

Fig. 2.7. Since the perceived colour is dependent on the spectrum of the light, the surrounding light, previous 

visual impressions among others, the colours in Fig. 2.7 should be understood as a guideline and not 

necessarily the perceived colours of the actual wavelengths.  

 

Fig. 2.7 - The electromagnetic spectrum.  

The energy and wavelength of an electromagnetic wave correlates as follows: 

 
 

(7) 

Where, h is Planck’s constant (4.136 x 10 15 eV·s), c is the speed of light (2.998 x 108 m/s in vacuum and 

approximately the same in atmospheric air), and  is the wavelength of the electromagnetic wave. As a 

consequence of the denoted relation, blue light with shorter wavelengths is of higher energy than the red 

light with longer wavelengths.  
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2.4.2 Scattering 

Particles of sizes smaller than about /15 [46] cause so-called Rayleigh scattering, as known from the colours 

of the human eye and from the blue and red colours of the sky as seen in Fig. 2.8. Scattering caused by 

particles in the size of the wavelength of the incoming electromagnetic wave and larger, is sometimes called 

Mie scattering2. This type of scattering is known from white objects like milk, snow, clouds, white paints, 

etc. 

2.4.2.1 Rayleigh scattering 

Rayleigh scattering happens due to electrons exited by absorbing a photon and subsequently reemitting a 

new photon of the same energy. For transparent materials the photons in the visible regime do not have 

enough energy to excite an electron; instead the energy is absorbed as vibrations and another photon is 

emitted. At the resonance frequency of the electrons most of the photons are scattered. The larger the 

difference between the energies of the incoming photons and the resonance frequency of the electrons in the 

material is the fewer photons are scattered. For most particles, the resonance frequency for Rayleigh 

scattering is in the UV regime of the electromagnetic spectrum, causing the waves of the shortest 

wavelengths of visible light to be scattered the most. Rayleigh scattering in the upper atmosphere scatters 

light of short wavelengths the most giving blue sky during the day and red light during sunrise and sunset 

since all the blue light is scattered away from the observing angle. In Fig. 2.8 a sunset over Isefjord is shown, 

at low angles the sunlight is orange, while at larger angles the sky is blue.  

 

Fig. 2.8 - Rayleigh scattering seen in the sky at a sunset over Isefjord. 

Rayleigh scattering is strongest perpendicular to the direction of propagation and does only have an effect 

when the particles are widely spaced, e.g. in the upper atmosphere. If the particles are packed more closely, 

                                                      

 

2 Gustav Mie (1869 – 1957) and sometimes others like Ludvig Lorenz (1829 – 1891) are credited for the so called 
(Lorenz-) Mie solution, describing the solution to Maxwell’s equations for scattering of electromagnetic waves when 
hitting a particle. 
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the scattering of the individual particles will be cancelled out by scattering from other particles and no effect 

is perceived. 

2.4.2.2 Mie scattering 

Larger particles scatter waves of all wavelengths almost equally in all directions and are therefore perceived 

as white. Most white colours are created in the same way: a transparent matrix of one index of refraction is 

containing a lot of randomly distributed transparent particles with another index of refraction. The larger the 

difference of indices, the stronger is the scattering. The most used white pigment is titanium dioxide (TiO2), 

since it is cheap and has a very high index of refraction (above 2.5) and practically no absorption in the 

visible spectrum. For milk the matrix is water and the scattering particles are transparent fat and protein 

particles [48]. Here the difference in indices of refraction is only up to about 0.1, giving a low-efficient 

white, which is most distinct in low fat milk, where a tint of blue or red can be experienced when examined 

near a bright light for scattered and transmitted light respectively. 

2.4.3 Reflection on a surface 

When a beam of light hits an opaque surface e.g. of a metal, the characteristics of the reflection is dependent 

on the material and the surface smoothness. At a microscopic level, reflections are defined as incoming angle 

equals outgoing angle. However, when observed in a more macroscopic manner the surface might not be as 

flat as it looks. If the surface is flat the reflection will be specular, while rough surfaces reflect in a more 

diffuse way. Reflections from materials can be described as a combination of these two types of reflections 

as presented in Fig. 2.9.  

In computer graphics a third type of reflection is often included for a better representation of the world. 

Phong [49] suggested the use of ‘ambient reflection’, i.e. the scattered light from the surroundings. He et al. 

[50] suggested a ‘directional diffuse’ reflection as seen in Fig. 2.9. This is to take into account that the 

reflections of many diffuse materials have directionality giving additional reflection intensity near the 

specular angle.  

Diffuse reflections in surfaces occur due to surface roughness and subsurface scattering of the light, whereas 

the directional diffuse reflection is only caused by surface roughness [50]. The diffuse reflection increases 

with surface roughness until a roughness magnitude comparable to the wavelength of light.  

 

Fig. 2.9 - Reflection from a surface divided into ideal specular, ideal diffuse and directional diffuse reflections [50]. 
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At an atomic scale, a reflection is an effect caused by scattering from all molecules in a media, however, this 

is in practice different for solid materials; where the atomic spacing is much lower than the wavelength of 

light. In this case it is only the top /2 layer that has a significant effect on the reflection, due to interference 

of scattering events happening deeper in the material [46]. Rays of light can be illustrated as wavefronts, so 

that a line illustrates several synchronised parallel waves. Fig. 2.10 illustrates the reflection of a wavefront, 

where only scattering from one atomic layer is included. The incoming wavefront is scattered subsequently 

in each surface atom (Fig. 2.10a-c), resulting in another wavefront away from the surface (Fig. 2.10d), where 

the incoming angle equals the outgoing angle.  

For a transparent medium, the absolute index of refraction refers to the speed of light in the medium: 

  (8) 

where c is the speed of light in vacuum and V is the speed of light in the medium. Materials having a larger 

absolute index of refraction are said to be more optically dense. If light reflects in a more optically dense 

material it is called an external reflection, and a 180 ° phase shift occurs for the reflected wave. Fig. 2.11 

illustrates the reflectivity of light as a function of the incident angle with respect to the normal of the surface. 

For an external reflection (dotted line) going from air (n=1.00) to anodised and sealed pure aluminium 

(n=1.60, this is an approximation explained in section 2.4.5, page 27). The reflectivity is about 5.3 %, for 

light reflecting perpendicular on the surface, and increase exponentially to 100 % when looking parallel to 

the surface. If the light reflects in a less optically dense material it is called an internal reflection. In Fig. 2.11 

it is found that the reflectivity for an internal reflection (full line) in the same media increases rapidly to 100 

% at the critical angle (~38.7 °), causing total internal reflection to happen with no loss of energy.  

 

Fig. 2.10 – Reflection on a surface, inspired by [46], a) incoming wavefront hit surface atoms,  

b-c) subsequent scattering by other atoms, and d) reflected wavefront. 
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Fig. 2.11 – Reflectivity for external (dotted line) and internal (full line) reflections, where n1 = 1.00 and n2 = 1.60. 

2.4.4 Optical properties of metals 

The valence band is the uppermost full energy band of the material, while the first partly or totally free 

energy band is called the conduction band. The energetic distance from the valence band to the conduction 

band is called the band gap and some of the fundamental optical properties of solids are defined by this. An 

incoming photon with sufficient energy will cause an electron in the valence band to jump to the conduction 

band leaving behind an electron hole. There are a lot of free energy levels at the band gap energy and higher, 

which means that all waves with energy of the band gap energy and more is much more disposed to 

absorption than waves below the band gap energy. Where all other materials have their uppermost energy 

band full, metals are defined as materials having the highest energy band only partly filled (Fig. 2.12b). 

Insulators (Fig. 2.12a) have big band gaps, while metals have very small or even no band gap [46]. 

Immediately after absorption, the electron can jump back to its original position, emitting a photon with the 

same energy level as the original one. This absorption and re-emission of new photons gives flat metals its 

reflective appearance, whereas some metallic powders appear black since reemitted photons are reabsorbed 

repeatedly causing none or very little light to leave the powder [47]. 
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Fig. 2.12 - Valence and conduction band of a) an insulator and b) a metal. 

Not all absorbed electrons are re-emitted, and therefore the index of refraction, N, of metals is defined as: 

  (9) 

Where n is the absolute index of refraction (defined in formula (8)),  is the imaginary unit and k is called the 

extinction coefficient or absorption index. An important fact for both n and k is that they are wavelength 

dependent. The reflectivity, R, defines the fraction of the incoming light reflected in a given material. If the 

light is falling perpendicular on a metal surface it is independent on polarisation, and the reflectivity can be 

calculated by: 

 
 

(10) 

The reflectivity spectre of silver, aluminium, titanium, copper and gold are found in Fig. 2.13. For most 

metals (e.g. silver and aluminium), n and k vary only slightly as a function of wavelength within the visual 

spectrum giving these metals a visually neutral grey appearance. However, the band gap energy of other 

metals like gold and copper is within the visual spectrum causing low reflectivity for shorter wavelengths 

(higher energies). The band gap of silver is found in the near visible UV part of the spectrum. 

 

Fig. 2.13 - Reflectivity of silver, aluminium, titanium, copper and gold. Data from [51]. 
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The uniform reflection spectrum of silver has caused it to be used for mirrors in optical parts of scientific 

products like astronomical telescopes. However, silver is very sensitive to sulphur causing it to corrode in 

polluted areas impairing the optical properties. Therefore, aluminium is being used more and more in this 

type of applications due to its good optical properties, and the corrosion resistance of the thin native oxide 

film [47].  

2.4.5 Optical appearance of aluminium alloys 

As presented in Fig. 2.13, pure aluminium has very high reflectivity. The optical ‘constants’ (n and k) of 

aluminium has been measured in several conditions, collected by Nyce and Skolnick [52]. At 632.8 nm, they 

found average values for aluminium evaporated onto sapphire (n = 1.60, k = 7.53), and electropolished 

polycrystalline aluminium (n = 1.72, k = 7.56) [52]. 

The optical constants of Al2O3 are n = 1.76 - 1.79 and k = 0 within the visible spectrum [53]. It has been 

found that the optical constants of porous anodised aluminium, are highly dependent on the porosity of the 

anodised layer and thereby the anodisation parameters. Shih et al. [54] calculated the effective values of n 

and k based on photospectrometry measurements for layers anodised in 15 % sulphuric acid with different 

current densities and temperatures. As presented in Fig. 2.14, it was found that when increasing the 

temperature and/or decreasing the current density, the pore density increased, which caused n to increase and 

k to decrease [54]. 

 
 

Fig. 2.14 – The n and k values as a function of 

anodisation parameters [54]. 

Fig. 2.15 – Features affecting the optical appearance of anodised 

aluminium. 

No literature has been found on the index of refraction for anodised and sealed specimens; however, as 

described in section 2.2.2.6, page 18, the sealed surface is expected to consist of pseudoböhmite and 

aluminium hydroxide with absolute refractive indices of ~1.65 (Böhmite) and ~1.57 respectively. 

Pseudoböhmite contains some excess of water compared to Böhmite. The absolute refractive index of 

anodised and sealed aluminium is estimated to be ~1.6 and almost constant in the visible spectrum. 

Furthermore, the absorption index is expected to be very low. 
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The visual appearance of anodised commercial aluminium alloys are affected by the morphology and optical 

properties of the anodised layer [12,55–57] and the substrate [12,16,22–24,58–64] as presented in Fig. 2.15. 

Akeret et al. [12] studied the effect of alkaline etching, brightening, and anodisation. It was found that the 

degree of cloudiness of the anodised layer depends on the degree of alloying, especially by iron and silicon. 

On the other hand, sufficiently small intermetallics such as Mg2Si and Mg2Al3 have only little effect on the 

appearance and the highest transparencies of anodised layers are found for high purity alloys and 6xxx 

(AlMgSi) alloys [12].  

Saito et al. [55,56] investigated 50 m oxide films on pure aluminium (99.99 %) and AA5052 (2.2 - 2.8 % 

Mg, < 0.5 % Fe, Cr, and Si) created at different current densities. It was found that the oxide film on 

AA5052 was darker, and that it darkened further with increased current density. The optical loss was 

ascribed to scattering loss, caused by holes created by dissolved alloying elements (e.g. Mg2Al3), and 

unoxidised aluminium in the oxide [55,56], which were identified by dissolving the oxide film, and it was 

thereby not further located in the anodised layer. The unoxidised aluminium was expected to be connected to 

the undissolved alloy constituents [55,56]. The amount of unoxidised aluminium increased with increasing 

current density, however, much of it could be oxidised by subsequent heat treatment [55,56]. Irregular cell 

structures were found around holes in the anodised layer, and were also ascribed to some optical loss. The 

loss happens mainly in the polarisation direction of the light parallel to the pores [55,56,65]. 

Tabrizian et al. [57] investigated high gloss diamond turned samples after heat treatment and anodisation. 

Heat-treated specimens had lower reflection intensity after anodisation compared to non-heated and anodised 

specimens. It was concluded that the oxide-substrate interface roughness had no effect on the appearance, but 

instead that inhomogeneity and imperfections in the anodised layer had the largest effect, especially the 

presence of silicon and Mg2Si [57]. Whether these particles were unchanged or oxidised during anodisation 

was not further investigated, however, as presented in Table 2.4, Mg2Si phases are preferentially oxidised or 

dissolved in an aluminium matrix during anodisation, while silicon particles are unchanged and incorporated 

into the anode film [12,13]. 

Other parts of the literature focus on miscolouring of extruded and rolled specimens with focus on the 

morphology of the interface between the anodised layer and the substrate. The optical properties of anodised 

aluminium is affected during mechanical treatments like extrusion, rolling, polishing, etc., and chemical 

treatments like etching, electropolishing, and anodisation. Fig. 2.16 gives an overview of the common 

surface structures that affect the optical appearance apart from regular surface roughness.  
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Fig. 2.16 – Surface structures affecting the visual appearance, created before or during etching and anodisation. 

Rolling creates a disturbed layer of fine grains, rolled-in oxides and finely distributed intermetallics, where 

especially incorporated oxides [22–24,58] and carbon from lubrications [58] cause absorption of light to a 

reflectivity level about 10 %-points lower than magnetron sputtered aluminium [24]. Grain boundary 

grooves created during etching increase the diffuse reflection on aluminium extrusions and are created by 

iron and Mg2Si intermetallics [16,59], and high angle grain boundaries [59,60]. Surface scallops have 

similar optical effects as grain boundary grooves and are created during etching and anodisation due to 

alloying elements such as iron and silicon, acting cathodic to the aluminium matrix [61,62]. Etching pits are 

created due to alloying elements, where phases acting anodic to the matrix (e.g. Mg2Si) cause pits of sizes 

similar to the particle [12,16], whereas phases acting cathodic to the aluminium matrix are excavated from 

the matrix and create pits of sizes up to 10 m [12,16,17]. Etching steps are created when the etchant or 

electrochemical dissolution of the surface is grain or subgrain orientation dependant, meaning that different 

textures will have different densities of etching steps [62,63]. Interference effects occur due to etching steps 

in a similar way as illustrated for interference colouring in Fig. 2.4, page 18. The largest effect on surface 

texture for aluminium extrusion profiles is the die design [63], however, also coarse intermetallics affect the 

surface texture [59,64]. 

For rolled and extruded specimens, the most important visual factor is a homogeneous appearance, and 

therefore a homogeneous distribution of the surface structures described above. It is important to control the 

alloy composition since all the structures mentioned above are affected by alloying elements. Proper etching 

can often prevent miscolouring of both rolled [21–24] and extruded [17,25] specimens due to removal of 

near surface heterogeneities.  

2.4.6 Visual appearance of recycled wrought aluminium alloys 

The demand for secondary wrought aluminium is increasing, and it is expected that recycled aluminium 

alloys contain higher amounts of impurities and alloying elements. Some elements such as magnesium seem 

to have much smaller effect on the appearance than others such as iron. Premendra et al. [58] found that 

rolled AA1050 showed a total reflectance of around 90 %, whereas recycling the same alloy caused higher 

concentrations of iron, silicon and manganese, and a total reflectance of  only 82 % was measured. 
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2.4.7 Structural colouring of aluminium 

Structural colours appear due to nano- and/or microstructures in the material itself. These colours do 

therefore not degenerate when exposed to UV light. Structural colours are known from e.g. soap bubbles 

(thin film interference), the sky (Rayleigh scattering), rainbows (dispersion), and CD’s (diffraction). 

Previous non-industrial studies [66–72] on structural colours in anodised aluminium have focused on thin 

film interference. 

The colour saturation of the structural colours has been found to be enhanced, when using a dark substrate as 

background [66,67]. Furthermore, Xu et al. [68] enhanced the colours of a thin barrier type anodised 

aluminium layer by etching away the substrate, having only the anodised film left. Van Gils et al. [66] 

studied thin film interference of barrier type anodised layers on aluminium and titanium, where the colours 

on titanium were more saturated, due to the substrate colour and the higher absolute refractive index of the 

TiO2 compared to Al2O3 [66]. 

Some techniques have been tested for creation of thin film interference, with easily tuneable colours. On an 

aluminium substrate, a thin silver layer was deposited, and subsequently a layer of aluminium, which were 

anodised making it transparent [69]. Nickel nanowires were grown in the pore bottoms, creating interference 

colours [70], and thin films of chromium or gold deposited on top of the anodised layer have also shown 

colourful reflection [71,72]. Liu et al. [67] alternated the current density during anodisation, creating 145 

layers of alumina of alternating porosities and therefore of different indices of refraction, giving clear and 

colourful reflections. 

2.5 Corrosion properties of aluminium and its alloys 

Aluminium is an amphoteric metal, corroding in strong acidic and strong alkaline conditions (as Al3+ and 

AlO2
- respectively) [73] as presented in Fig. 2.17. The figure is based on the thermodynamic calculations in 

the HSC Chemistry software [10], where the stability is calculated to be in the pH interval 4.7 – 9.7 for an 

Al-molarity of 10-6. Hydrargillite, which is the -phase of aluminium hydroxide (Al(OH)3) is the 

thermodynamically stable phase in water at room temperature, whereas Böhmite (AlOOH) is the 

thermodynamically stable phase at temperatures above 80 °C [38]. 
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Fig. 2.17 - Pourbaix diagram of aluminium in water [10]. 

Aluminium and aluminium alloys are in general resistant to uniform corrosion attacks in mild environments 

due to the naturally formed tenacious oxide film. In environments containing pitting agents such as chloride, 

pitting might happen due to local breakdown of the oxide film. The corrosion properties of aluminium alloys 

are mainly affected by the chemical composition and microstructure of the alloy. Work-hardenable alloys 

have in general good corrosion properties, whereas age-hardenable alloys are more corrosion prone. 

Intergranular corrosion of aluminium alloys largely depends on the microstructure of the alloys and the 

second phase particles in the microstructure such as at grain boundaries. Copper containing age-hardenable 

aluminium alloys can cause intergranular corrosion due to the precipitation of cathodic copper containing 

phases at the grain boundaries, while the adjacent part of the grain boundary forms a precipitate free zone 

with less amount of copper. In this case grain boundaries with copper containing precipitates act as cathode 

causing corrosion along the anodic precipitate free zone. Similar intergranular corrosion is also known from 

the cathodic iron-rich particles [74], while for 5xxx and 7xxx series, formation of anodic grain boundary 

precipitates initiate intergranular corrosion along the grain boundaries. Cathodic intermetallics such as iron- 

and copper-rich precipitates have also been reported to cause filiform corrosion [75].  

Aluminium and its alloys corrode normally by pitting in the neutral pH range, and experience uniform 

corrosion in more acidic and alkaline environments. Aluminium corrodes when exposed to many common 

acids, including phosphoric (H3PO4) and chromic (H2CrO4) acid, however, combining phosphoric and 

chromic acids stabilise the metallic aluminium surface. The corrosion rate is not necessarily connected to the 

pH value [1,76], e.g. in acetic acid (C2H4O2) and sodium disilicate (Na2O3Si) the corrosion rate decrease with 
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increasing concentration. Additionally, aluminium is inert to strong nitric acid (HNO3), but corrodes when 

the nitric acid is diluted. Alloys from the 5xxx series containing more than 4 % magnesium is known to have 

some resistance to sodium hydroxide (NaOH) and potassium hydroxide (KOH) [76], due to the higher 

migration rate of Mg2+ compared to Al3+ during anodisation, giving a high concentration of magnesium in 

the upper anodised layer [77].  

2.5.1 Corrosion properties of recycled aluminium alloys 

As previously stated, secondary aluminium alloys are often of lower purity compared to the primary alloys. 

The problematic sorting and refining processes cause the amount of unwanted alloying elements and 

impurities (especially iron [42,43]) to increase. Ambat et al. [78] investigated the corrosion properties of the 

deformed surface layer compared to the bulk of a rolled Al-0.4 Fe-0.3 Si-1.0 Mn alloy in 5 % NaCl at pH 3.0 

and 11.5. It was found that the deformed surface layer showed higher cathodic reactivity due to higher 

concentration of Fe- and Mn-rich phases [78]. Chino et al. [43] investigated extrusions of AA5083, where 

one was produced by solid state recycling. It was found that the secondary alloy contained almost three times 

as much iron (0.74 wt. %) as the primary alloy and that the suffered weight loss during immersion testing in 

3 wt. % NaCl solution was two times larger than that of the primary alloy [43].  

2.5.2 Alkaline corrosion protection of aluminium alloys 

Regular aluminium alloy surfaces and anodised aluminium surfaces have very little resistance in highly 

alkaline conditions, such as at pH 12 – 13 due to the amphoteric nature of aluminium. Both hot water sealed 

and steam sealed anodised aluminium surfaces consists of aluminium oxides, which are soluble in alkaline 

conditions, although corrosion properties under normal conditions are excellent [38]. 

Chromate sealing has previously been a popular sealing process together with chromium conversion 

coatings [79,80] due to the excellent passivating properties of chromium in alkaline media. Chromate sealing 

use either K2Cr2O7 or CrO3 to create aluminium oxydichromate (AlOHCrO4) or aluminium oxychromate 

((AlO)2CrO4) in the pores [38]. Chromate sealing has been used as base for paints, where cracks and holes in 

the paint are less problematic due to the instantaneous passivation of the chromium [81]. Due to 

environmental issues the chromate sealing is only used in industries with special authorisation e.g. for 

military use. 

Nickel salt sealing e.g. combining nickel acetate and nickel fluoride is currently used as sealing method e.g. 

in the automotive industry where alkaline corrosion protection is needed [38,82,83]. Nickel salt sealing 

shows good corrosion properties to at least pH 12 in NaOH, however, at higher pH values, the protection is 

not flawless. Due to environmental and health issues alternatives to the nickel salt sealing are needed. 

Sol-gel coatings use a colloidal solution (sol) to create an integrated network (gel). E.g. a metal salt can be 

used as a precursor reacting with an organic compound causing it to solidify on the surface during 

evaporation, creating a gel. Sol-gel creates an intermediate layer with good adhesion to both the substrate 
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and the top layer [84]. The main advantages of the sol-gel process is that it create an environmentally 

friendly coating on complex shaped products at low temperatures [85]. Sol-gel coatings have proven good 

corrosion protection of aluminium in saline and acidic [81,86–88] and in alkaline conditions [81,89,90]. 

Zhang et al. [89] used sol-gel to coat aluminium pigments with silica, which showed good results at pH 11 in 

a NaOH solution. Hirai et al. [90] used zirconium oxide sol-gel on commercially pure aluminium and found 

that the alkaline corrosion resistance increased by a factor of 24 – 50. However, no studies for pH-values 

above 11 have been found. It came up at the defence that Si-based sol-gel solutions are used for most 

German high-end cars [91].  

Literature studies on the use of titanium as protecting element using magnetron sputtering and laser surface 

cladding is given in sections 3.3.4, page 41 and 3.4.5, page 44 respectively. 
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 Creating aluminium-titanium coatings 3

Creating homogeneous bulk aluminium alloys with non-equilibrium composition is very difficult due to the 

formation of various microstructural phases during the solidification process. However, some surface coating 

methods can be used to create coatings with desired alloy compositions including non-equilibrium levels of 

alloying elements. In the current project aluminium coatings with up to 18 wt. % titanium was created as a 

model system for studying the optical scattering effects after heat treatment and anodisation, and the saline 

and alkaline corrosion protection in the as-deposited and heat-treated states. Physical vapour deposition 

(PVD) with focus on magnetron sputtering and laser surface processes with focus on laser surface cladding 

(LSC) are described in the following sections. The PVD process is expensive and normally used for making 

thin films and coatings, whereas the LSC process is much cheaper and used for making thicker coatings. 

Both techniques allow creation of metastable coatings with well-defined chemical compositions. The PVD 

coatings are applicable for expensive high end design products. Furthermore, it can be used as a test system 

and in some cases for production method for corrosion protection dependent on product type and cost 

considerations, whereas the LSC coatings might be usable for corrosion protection of larger products. 

3.1 Corrosion properties of titanium 

Titanium has a very high strength to weight ratio and is therefore often used for sports equipment such as 

rackets and golf clubs. Additionally, titanium has extraordinary corrosion properties, due to a tenacious 

instantaneously forming oxide film, so that it is normally the mechanical rather than corrosion requirements 

that define the wall thickness of titanium parts [76]. Previously, anodisation of titanium was recommended 

for corrosion protection, however, the anodised layer does not seem to improve the corrosion resistance of 

titanium [76,92]. 

A thermodynamically calculated Pourbaix diagram [10] is presented in Fig. 3.1, showing that titanium is 

resistant to corrosion for conditions from pH 0 – 14. Normally, it is expected that titanium is stable in an 

even wider regime. Some references [73,76,93] include regimes of Ti2+ and Ti3+ in strong acidic conditions at 

low potentials [93] and HTiO3
- at pH 12 and more [76]. Pourbaix [73] includes one diagram including 

anhydrous oxides with only acidic corrosion, and both acidic and alkaline corrosion when including 

hydroxides and hydrated oxides. Even though these phases are reported, the formation is expected to be very 

slow due to kinetics, and titanium is expected to be highly resistant at all pH conditions. 
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Fig. 3.1 – Calculated Pourbaix diagram for titanium in water with ion activity of 10-6 at 20 °C [10]. 

From various sources it can be found that titanium show very good resistance towards saline compounds and 

many common acids like hydrochloric acid (HCl) and H2SO4, however, e.g. hydrogen fluoride (HF) cause 

titanium to corrode heavily [76,92,93]. Titanium is normally protected in alkaline media, showing very low 

corrosion rates in NaOH, KOH and ammonium hydroxide (NH4OH), which increase with temperature and 

concentration [92,93] as found for NaOH in Table 3.1. It is important to notice that hydrogen evolution 

during exposure may cause hydrogen embrittlement, especially for pH > 12 and temperatures > 80 °C 

[92,93]. 

Table 3.1 - Corrosion rates of unalloyed titanium in NaOH solutions [92]. 

NaOH conc. (wt. %) Temperature (°C) Corrosion rate (mm/y) 

5-10 21 0.001 

40 66 0.038 

40 93 0.064 

50 38 0.002 

50 66 0.018 

50 121 0.033 

50-73 188 > 1.09 

73 110 0.051 

73 116 0.127 

73 129 0.178 

75 121 0.033 
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3.2 The Al-Ti system 

3.2.1 Al-Ti phase diagram 

The binary Ti-Al phase diagram is presented in Fig. 3.2, where the zone relevant for the coating composition 

used in the present study is marked in grey. The thermodynamically stable phases for titanium concentrations 

up to 20 wt. % are -Al and Al3Ti. The Al3Ti is strictly stoichiometric at 25 at. % titanium (37 wt. %). 

 

 

Fig. 3.2 - The binary Ti-Al phase diagram [94]. Fig. 3.3 – The D022 crystal structure [95]. White 

atoms: Al, dark atoms: Ti. 

The crystal structure of -Ti is hexagonal close-packed (HCP), while it is face-centred cubic (FCC) for 

aluminium. The Al3Ti phase has the D022 crystal structure [95–97] as presented in Fig. 3.3, which is based on 

two face-centred tetragonal (FCT) cells.

3.2.2 The use of titanium in aluminium alloys 

Quantities of up to 0.15 wt. % titanium is used as grain refiner in age-hardenable aluminium alloys due to the 

creation of small Al3Ti precipitates pinning the grain boundaries counteracting grain growth. Up to 1 wt. % 

titanium can be obtained in -Al near the melting temperature of aluminium, however, with 0.35 wt. % 

titanium, titanium rich phases will precipitate, even at cooling rates of 100 K/s [98].  

3.3 Physical Vapour Deposition 

The PVD process is running in a vacuum chamber containing the target from which material is sublimated 

(atomised) to cover everything in the line of sight, including the specimens. Therefore it is the chemical 

composition of the target(s) that defines the composition of the coating. The coating is mechanically bonded 

to the substrate and adjustments of the process can be necessary to achieve sufficient bonding. PVD coatings 

are made in thicknesses from a few nanometres to several microns; however, thicker coatings are time 
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consuming and cause stresses to build up, which can cause the coating to peel. PVD is a plasma process, and 

therefore the plasma creation in the chamber is briefly described. 

3.3.1 Plasma 

By raising the temperature of an atom/molecule the electrons will continuously move faster and above a 

level of temperature some electrons will be removed from their atom/molecule, creating an ionised gas, also 

called plasma, a term suggested by Langmuir in 1928 [99]. For PVD processes, a gas is led into a vacuum 

chamber where the plasma is created. The plasma consists of three types of particles: 

 Atoms and molecules (neutral) 

 Ions (positively charged) 

 Electrons (negatively charged) 

Although the degree of ionisation is often less than 0.1 %, the charged particles cause the plasma to be 

electrically conducting [11]. Plasma can be created both thermally as described above and by electrical 

discharges, sometimes called electrical ionisation. In electrical ionisation, the plasma is produced in an 

electric field between a positive anode and a negative cathode. Whenever an electron is removed from a 

neutrally charged atom/molecule, a negatively charged electron and a positively charged ion is formed. 

Electrons will be attracted by the anode and is likely to hit more atoms/molecules creating more ions and 

additional free electrons and thereby maintaining the plasma (Fig. 3.4a). Furthermore, ions will be attracted 

and collide with the cathode, creating additional free electrons [100]. Fig. 3.4b illustrates the voltage drop 

between the anode and the cathode. The charged particles are only accelerated when they are subjected to a 

field change, i.e. near the electrodes. The energy of the electron created when a positively charged ion bumps 

into the cathode is therefore critical regarding how many of the subsequent hit electrons that will have 

enough energy to maintain the plasma by hitting other electrons. Apart from hitting other particles, electrons 

lose energy by excitation of atoms/molecules, subsequently emitting a photon causing the plasma to light up. 

This energy is wasted in connection to the maintenance of the plasma. Notice that the actual potential in most 

of the plasma is positive (Fig. 3.4b), which is due to the fact that electrons have higher velocity and will 

therefore more often leave the plasma than the ions [11,100]. 
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Fig. 3.4 - Anode and cathode for electrical ionisation, inspired by [11].  

a) Initial electron causing subsequent electrons to be torn loose.  

b) Voltage drop over anode/cathode region. 

PVD processes are divided into reactive and non-reactive processes. In reactive processes the chamber is 

supplied with a gas, reacting with the target-gas atoms. This type of process is used for creation of e.g. 

titanium nitride (TiN) and titanium dioxide (TiO2). In the following part, focus will be on non-reactive 

magnetron sputtering. 

3.3.2 Magnetron sputtering 

In the magnetron sputtering process (Fig. 3.5) the ionized atoms in the plasma, (usually argon Ar+) is 

attracted to collision with a target at high speed sublimating the surface atoms of the target. It is the cathodes 

situated behind the targets that attract the argon ion, causing the collision with the targets.  

 

Fig. 3.5 – Illustration of chamber used for magnetron sputtering. 
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The amount of target atoms that are atomised per incident particle is called the sputtering yield or the sputter 

coefficient of the target material. The sputtering yield is element dependent and is plotted as a function of 

atomic number in Fig. 3.6.  

 
 

Fig. 3.6 - Sputtering yields when hit by argon ions at 500 

eV at an angle of 0 °. Data from [101]. 

Fig. 3.7 - Magnetic field lines and for  

magnetron sputtering [102]. 

Magnetron sputtering is increasing the deposition rate and ionisation efficiency in the plasma, while lowering 

the substrate heating effects compared to regular sputtering [103]. A magnetic field close to the target 

(cathode), perpendicular to the electric field is imposed by the electrodes as illustrated in Fig. 3.7 [102]. The 

magnetic field forces particles to circulate through the magnetic field instead of moving in a straight line to 

the anode [100]. The number of collisions is raised due to the elongated path and the plasma can therefore be 

maintained at a lower pressure. A conventional DC-diode sputter operates at 0.5 Pa – 10 Pa whereas 

magnetron sputtering can operate at 1 mPa – 1 Pa [11]. The reduced pressure leads to less contamination of 

the process and increases the mean free path of the target particles. This increase the speed and thereby the 

energy of the target particles when hitting the substrate giving a denser coating.  

One disadvantage of magnetron sputtering is low usage of the target, which is in general less than 30 %. 

However, this can be improved by applying an extra magnet in the centre of the cathode or unbalancing the 

magnets [102]. 

A bias voltage on the specimen holder can be applied, changing the charge of the specimens. This is used for 

sputter cleaning the specimens in the beginning of the process and for changing the energy of the surface 

layer during the coating process. 

3.3.3 Coating structure model 

The microstructure of the deposited film is dependent on the process parameters. For an overview, Thornton 

[104] made a structure model for oxygen free high thermal conductive copper (Fig. 3.8), which has shown to 

be valid for other systems as well.  



3. Creating aluminium-titanium coatings 
 

41 

 

Fig. 3.8 - The Thornton structure model showing microstructure of magnetron sputtered 

coatings as a function of argon pressure and substrate temperature [104]. 

The model is divided into three main zones and a transition zone, T, where the structure changes from 

columnar and porous, to a dense columnar, and to equiaxial as the substrate temperature increases. Later 

studies have revised and refined the structure model [103,105,106]. The zones are results of shadowing 

effects (zone 1), surface diffusion (zone 2), and bulk diffusion (zone 3) making them independent of the 

actual deposition technique [105]. Messier et al. [105] found that the T zone is a subzone of zone 1, however, 

later references keeps the T zone in their descriptions [11,100] and it is expected to be present since different 

grain boundaries become mobile at different temperatures [100]. It is known that gas pressure, gas 

composition, ionization degree, substrate bias and temperature all affect the coating quality [11], and it has 

therefore been discussed whether the y-axis should describe other or combined parameters and whether more 

dimensions are necessary for an accurate model [103]. 

3.3.4 Magnetron sputtered Al-Ti coatings 

The microstructure and mechanical properties of magnetron sputtered Al-Ti coatings have previously been 

investigated [107–110]. Sanchette and Billard [107] found that as-deposited Al-Ti coatings contain the -Al 

phase for titanium concentrations up to 40 wt. %. Others [108,110] have supported this finding, however, 

Oliviera et al. [110] found the change at 57 wt. % titanium. The fact that such large titanium concentrations 

is possible in supersaturated aluminium in as-deposited coatings were ascribed to that both crystal structures 

are closed packed (Al: FCC and Ti: HCP) and have similar atomic radii (Al: 0.143 nm and Ti: 0.146 nm). 

Amorphous structures was found for titanium concentration up to 60 wt. % [107] and 79 wt. % [110], above 

which supersaturated -Ti was found. In Fig. 3.9 is presented the different phases as found in [107], where 

the white intervals are amorphous phases with some amount of either -Al or -Ti. 
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Fig. 3.9 – Phases of magnetron sputtered Al-Ti coatings as a 

function of aluminium concentration (at. %) [107] 

Al-Ti coatings have been investigated after annealing at 600 °C for 1 h [110] and 2 h [108,109]. Hampshire 

et al. [108] found for titanium concentrations of 32 wt. % that during heat-treatment, the Al3Ti phase 

precipitated, as expected from the phase diagram (Fig. 3.2, page 37). Others have used the Al-Ti system to 

investigate the porous self-organising structures during anodisation varying the titanium concentration and 

voltage in sulphuric acid with and without hydrogen fluoride [111,112]. It was found that the pore size 

increases with the titanium concentration and the voltage [111,112]. 

Addition of titanium in magnetron sputtered aluminium coatings improves corrosion properties in both saline 

[107,113,114] and in 1 M hydrochloric acid (HCl) [115–118]. Akiyama et al. [117] found additionally that 

ternary systems of aluminium and titanium combined with especially chromium or nickel improved the 

results in 1 M HCl even further. No literature has been found on the alkaline corrosion properties of 

magnetron sputtered Al-Ti coatings.

3.4 Laser surface processes 

Three basic laser surface treatments are laser surface melting (LSM) [119], laser surface alloying (LSA) 

[119] and laser surface cladding (LSC) [120]. LSM and LSA will briefly be described; but, the main focus 

will be on LSC. 

During LSM a laser run over the surface line by line to melt the top surface layer of the specimen. The 

material instantaneously quenches the molten surface due to the large size (thermal mass) of the specimen 

compared to the size of the molten area. Quenching rates up to 1011 K/s [121] creates a nanocrystalline 

surface, improving mechanical and/or corrosion properties of the surface [119]. 

LSA is similar to LSM, however in this process one or more alloying elements are added in the form of 

powder or wire. In this way the top surface layer is alloyed to enhance mechanical or chemical properties 

[119]. 
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3.4.1 Laser surface cladding 

In LSC, the original product is coated with a layer of added material, so that none of the original surface is a 

part of the final coating surface. LSC is both used for initial coating production and for repairing products at 

a workshop or on site. Coating by LSC is an efficient way to achieve high quality coatings of thicknesses 0.2 

mm – 2.5 mm (typically 0.5 mm – 1.0 mm) with low porosity, few imperfections and very good adhesion by 

metallurgical bonding. LSC can be done on both flat surfaces and surfaces of more complex shapes. No 

excess clad material is needed and only the power needed for melting the upper substrate surface and the 

clad material is used. The clad material is only slightly diluted (1 % - 5 %) by the substrate material [122] 

and it is possible to incorporate e.g. oxide and carbide particles. The drawbacks of LSC are mainly the large 

initial investment and the restrictions described below. 

3.4.2 Substrate material 

All materials that can stand laser melting are in principle usable as substrate, however, high thermal 

conductivity is needed to ensure a strong bonding to the clad and metals are therefore often used. Most 

claddings are done on substrates of carbon-manganese and stainless steel, and to some extent alloys based on 

aluminium, titanium, magnesium, nickel and copper [122]. An unfortunate side effect when using aluminium 

as substrate material is, that aluminium has a tendency to warp (change shape) when heated above 200 °C. It 

is therefore important to keep the overall temperature at a minimum when using aluminium substrates, while 

the near surface temperature increases to the level needed for melting. 

3.4.3 Clad material  

The clad material is added by wire, foil or powder, where the powder can either be placed on the surface 

initially (predeposition) or be added through a nozzle during the process (codeposition). For coaxial 

codeposition [123] as illustrated in Fig. 3.10, the powder nozzle is situated around the laser, which has 

shown several advantages when cladding aluminium [124]. A shielding gas (e.g. argon) is often used, to 

ensure that atmospheric air does not react significantly with the clad. The inflow and geometry of the clad 

material should be adjusted to the specific process. LSC is usually done by codeposition of clad alloys based 

on cobalt, iron, nickel, titanium and silicon, where the chemical composition of the coating can be altered by 

mixing different powders. Not all materials can be combined, e.g. a large difference in thermal expansion 

coefficients might cause cracking during coating and cooling. 



3. Creating aluminium-titanium coatings 
 

44 

 
 

Fig. 3.10 – The laser cladding process with shielding gas 

and codeposition of powder. 

Fig. 3.11 - Laser surface cladded specimen with 

overlapping tracks. 

3.4.4 The laser 

The choice of laser is highly dependent on the application. CO2 lasers are used for large areas and thick 

coatings on specimens with a regular geometry, whereas diode or Nd:YAG lasers are suitable for precise and 

thin coatings on products with a complex geometry [122]. The laser power needs to be of a magnitude 

enabling the clad to melt, however, too high power will cause excess substrate to melt, creating unwanted 

diffusion and a larger heat affected zone beneath the coating. A laser power of at least 2 kW, with an 

interaction time of 1 s, and power density of approximately 100 W/mm2, is often used [122]. The shape of 

the laser beam and the heating pattern are also parameters that are necessary to consider. When cladding 

larger areas sequentially overlapping tracks are used as seen in Fig. 3.11.  

3.4.5 Laser cladding of Al-Ti coatings 

Some previous studies have investigated the LSC of aluminium and titanium, however, only with focus on 

titanium coatings containing up to 35 wt. % aluminium [125–127]. Others have used LSA to create 

aluminium surfaces containing titanium [128–131]. An -Al matrix containing Al3Ti intermetallics was 

found in LSA aluminium coatings containing 37 wt. % titanium [128] and when using a titanium wire on an 

99.5 % pure aluminium substrate [129]. LSA titanium on AA1200 [130] gave similar structures and 

additionally the AlTi phase was found, due to a higher titanium concentration as found from the phase 

diagram of Al-Ti (Fig. 3.2, page 37). Wendt et al. [129] found that the supersaturated -Al-phase contained 4 

wt. % titanium, whereas other studies [128,130] identified the -Al phase by XRD. 

LSM gives a fine microstructure with small grains improving the corrosion properties in some cases, 

whereas for LSA the alloying elements enable improved corrosion properties. However, for both LSM and 

LSA of aluminium, it has only been possible to find studies on corrosion properties in saline and acidic 

conditions [119,121,132–136]. LSC studies have only been found for saline and acidic conditions and for 

oxidation resistance [131,137,138] but none for alkaline corrosion protection. Watkins et al. [136] studied 

the effect of chromium, tungsten, zirconium, titanium and nickel in aluminium based clads. It was found that 

the best results were achieved with an Al-Ti-Ni system, where the pitting potential in 1 M NaCl increased by 
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450 mV compared to as-received AA2014 and 285 mV compared to a AA2014 specimen treated with LSM. 

Coatings containing Al-0.3TiO2-0.3SiO2 increased the corrosion potential and decreased the corrosion 

current density in a solution containing 3.5 wt. % NaCl [138]. 
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 Materials and methods 4

4.1 Materials 

4.1.1 Wrought aluminium specimens 

Four commercial alloys were studied to investigate the optical and microstructural effects of alloy 

composition during polishing, etching, anodisation, and hot water sealing. Specimens of 50 mm x 50 mm in 

size of AA1050, AA5754 and AA6082 of 1 mm sheet and Peraluman706 (P706) of 2 mm sheet were used 

for investigations reported in article 1. The chemical compositions of the alloys are presented in Table 4.1. 

Table 4.1 - Chemical composition of the investigated wrought aluminium alloys. 

 Mg Si Fe Cu Mn Zn Ti Cr V 

AA1050 0.05 0.25 0.4 0.05 0.05 0.05 0.03  0.05 

P706 0.3-0.8 0.2 0.2 0.03-0.1 0.05 0.05 0.03 0.02  

AA5754 2.6-3.6 0.4 0.4 0.1 0.5 0.2 0.15 0.3  

AA6082 0.6-1.2 0.7-1.3 0.5 0.1 0.4-1.0 0.2 0.1 0.25  

4.1.2 Polishing 

Hard wheel polishing was done with a glinse paste, M8005 from Lea, containing Al2O3 as abrasive agent. 

After polishing, a soft disc was used for finishing and removing excess paste. Specimens investigated in the 

as-polished state were cleaned by ethanol. All polishing was performed using the industrial polishing 

facilities at B&O. 

4.1.3 Magnetron sputtered coatings 

Several coatings were created by DC magnetron sputtering using an industrial-scale CemeCon800/8 machine 

(roughly illustrated in Fig. 3.5, page 39) with two cathodes. The chamber size was 700 mm x 600 mm x 600 

mm with the cathodes (targets) placed on each side of a centred planetary rotating table on which the 

specimens were mounted. The specimens were applied a constant bias voltage of -50 V, and was situated 

approximately 100 mm from the targets. Evacuation of the deposition chamber was done to a base pressure 

of 6 mPa. A constant argon flow of 200 SCCM (mL/min) was supplied during the sputtering process, 

causing a typical argon pressure of 500 mPa. Using a bi-metal thermometer, it was found that the 

temperature reached maximum temperatures of 150 °C – 200 °C during deposition. The thicknesses of the 

coatings were calculated and sporadically checked with cross section LOM and SEM investigations. All 

coating compositions were analysed by Energy-dispersive X-ray spectroscopy (EDS) in the Jeol SEM 

described in section 4.2.4. 
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4.1.3.1 Coatings with homogenous concentration 

For coatings with uniform compositions, substrates of AA465.0 (8 wt. % - 11 wt. % silicon and 2 wt. % - 4 

wt. % copper) with dimensions of 70 mm x 25 mm x 4 mm were used. Reference coatings of 25 m were 

deposited using two targets of aluminium (AA1050, 99.5 % pure), both running at 1000 W. Binary Al-Ti 

coatings were deposited using an aluminium target running at 2000 W, and a titanium (grade 1, 99.5 % pure) 

target with cylindrical aluminium pins of 10 mm in diameter inserted into the target, as illustrated in Fig. 3.5, 

page 39. The Ti-Al target power, titanium concentrations, and thicknesses of the coatings are presented in 

Table 4.2.  

Table 4.2 – Deposition power of the Ti-Al target and achieved  

titanium concentration (by EDS) and thickness of the deposited coatings. 

Ti-Al target power Achieved titanium concentration Coating thickness 

100 W 3 wt. % 11 m 

200 W 6 wt. % 11 m 

400 W 13 wt. % 21 m 

600 W 18 wt. % 20 m 

 

These specimens were heat treated according to Table 4.3 and subsequently cooled in air. After heat-

treatment blisters were found at the surface of the specimens for specimens heat treated at 400 °C and more, 

as seen in Fig. 4.1. The specimens were used for photospectrometry measurements as in article 2 and 

alkaline corrosion tests as in article 3. 

Table 4.3 – Heat treatment temperatures for coatings of various titanium concentrations. 

Temp. for 2 h 3 wt. % Ti 6 wt. % Ti 13 wt. % Ti 18 wt. % Ti 

200 °C   X  

300 °C X X X X 

400 °C   X  

500 °C   X  
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Fig. 4.1 – Cross section SEM image showing delamination of the magnetron sputtered film with 13 

wt. % titanium due to outgassing from the cast substrate during heat treatment for 2 h at 500 °C. 

4.1.3.2 Gradient coatings 

AA6401 (Table 4.4) substrates with dimensions of 220 mm x 40 mm x 5 mm were used for Al-Ti gradient 

coatings of varying composition along the length of the specimens. The coatings were deposited with the 

aluminium target running at 2000 W and the Ti-Al target running at 300 W, and the targets were displaced 

with respect to the centre of the chamber. This was done to achieve a varying deposition flux throughout the 

chamber, resulting in a coating of varying composition. These types of coatings are practical for screening 

experiments, since a single deposition creates several compositions. 

Table 4.4 - Chemical composition of AA6401. 

Mg Si Fe Cu Mn Zn Ti 

0.35-0.7 0.35-0.7 0.04 0.05-0.2 0.03 0.04 0.01 

 

Two gradient coatings were produced, and the compositions were measured at a lateral resolution of a 

centimetre. One specimen had concentrations of 5.0 wt. % - 15.4 wt. % titanium, and the coating thickness 

was found to increase with the aluminium concentration from 8 m to 17 m. This specimen was used for 

photospectrometry measurements after anodisation of the as-deposited coating (article 2) and saline and 

alkaline corrosion testing of the as-deposited film (article 3). 

The other gradient coating was investigated in detail using EDS, in order to investigate the composition 

homogeneity across the width of the specimen. Three measurements were done at three different points (nine 

in total) across the width of the specimen. The mean values were measured to 6.5 wt. % - 16.6 wt. % 

titanium almost linearly along the length of the specimen as seen in Fig. 4.2a. The deviation from the mean 

of the nine measurements across the specimen is presented in Fig. 4.2b. The maximum deviation was about ± 

0.4 wt. %-point titanium, with slightly higher concentrations measured in the right side, compared to the left 
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side of the specimen, when looked at with point 1 positioned downwards. This specimen was cut into four 

pieces of different concentration spans, which were heat-treated for 4 h at 500 °C and 600 °C and cooled in 

air followed by anodisation (article 2). Parts from this specimen were also used for detailed SEM, TEM, and 

scanning Kelvin probe force microscopy (SKPFM) investigations after heat treatment for 4 h at 600 °C and 

cooled in air (article 2 and 3). 

 

Fig. 4.2 – EDS measurements from Al-Ti gradient coating, a) titanium concentration per cm 

on gradient specimen, and b) Deviation from mean measurement in point. 

4.1.4 Laser surface cladded coatings 

LSC was done at VITO using substrates of AA6063, which were degreased and sand blasted as preparation 

for laser cladding. A powder mixture of 99.8 % pure aluminium and 5 wt. %, 10 wt. % and 20 wt. % of 

Ti6Al4V powder of sizes 45 m – 100 m, were fed at 4.8 g/min, 5.1 g/min and 5.2 g/min respectively for 

the different Ti6Al4V concentrations. The choice of Ti6Al4V was made due to the non-availability of pure 

titanium powder, and the maximum vanadium concentration of 0.8 wt. % was evaluated as acceptable. A 

Laserline diode laser with mixed wavelengths of 808 nm and 940 nm at 2.05 kW – 2.2 kW was used for 

cladding. A circular spot of 3.8 mm in diameter swept over the first six tracks at a speed of 1.0 m/min and 

afterwards at 1.3 m/min in order to limit dilution. Argon was used as transport and shielding gas. 

The laser cladded samples had a rough surface with clear tracks (Fig. 3.11), which were removed by milling 

and the specimens were subsequently polished in sequence until a final polish using a 1 m diamond 

suspension. Furthermore, a heat treatment for 10 h at 600 °C was done with the objective of homogenising 

the microstructure including the unmelted Ti6Al4V particles. The laser cladded specimens were 

subsequently used for microstructural studies and corrosion testing at pH 13.5 (article 4). 
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4.1.5 Anodisation process 

For the wrought aluminium specimens (article 1) and the big as-deposited gradient specimen (article 2), the 

anodisation was done at B&O in the following industrial setup normally growing an anodised layer of 

approximately 7 m in thickness:  

 Alkaline cleaning in AlfiClean from AluFinish at 60 °C for 2 min – 6.5 min with rough agitation.  

 Cleaning (in demineralised water) 

 Etching in 80 g/L NaOH and maximum 50 g/L aluminium at 60 °C for approximately 18.5 min (only 

for etched specimens).  

 Cleaning 

 Desmutting in 6 wt. % HNO3 at 27.5 °C – 28.0 °C for approximately 4 min.  

 Cleaning 

 Anodisation in 190 g/L H2SO4 and 5 g/L – 10 g/L aluminium at 17.9 °C, for about 30 min with mild 

agitation, at a constant voltage of 12.6 V ± 0.5 V and a current density of about 1 A/dm2.  

 Cleaning 

 Sealing in 2 g/L – 3 g/L AlfiSeal from AluFinish at 96 °C for 25 min.  

 Drying at 74 °C – 78 °C for 3 min – 5 min. 

 

Heat-treated magnetron sputtered Al-Ti coatings (article 2), were anodised at the in-house lab set up at DTU:  

 Ultrasonic cleaning in ethanol for 5 min.  

 Alkaline cleaning in AlfiClean from AluFinish at 60 °C for 2 min with agitation. 

 Cleaning  

 Desmutting in 69 % nitric acid at room temperature for 4 min.  

 Cleaning 

 Anodisation in 10 % H2SO4 at 18 °C for 20 min at 20 V ± 2 V. 

 Cleaning 

 Sealing in demineralised water at 96 °C for 20 min. 

4.2 Microstructural investigations 

4.2.1 Oxide thickness measurements 

Oxide thickness measurements (article 1) were done on a Nanocalc 2000 Thin film measurement system 

from Mikropack. The equipment calculates the oxide thickness based on thin film interference of infrared 

light in 25 points. Each specimen was measured at least two times, depending on consistency, giving a 

minimum of 50 measurements per specimen. 
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4.2.2 Deoxidising 

A deoxidising process was used to remove the oxide layer of the anodised wrought aluminium alloy 

specimens (article 1) for post anodisation substrate surface analysis. The specimens were exposed to a 

solution of 2 g/L H2CrO4 and 3.5 mL/L H3PO4 85 % at 60 °C – 70 °C for 40 min.  

4.2.3 Light optical microscopy (LOM) 

For initial observation of the microstructure as in article 4 and for surface morphology investigation of 

specimens a LOM Olympus GX41, using an Altra 20 Soft Imaging System was used. 

4.2.4 Scanning electron microscopy (SEM) and energy dispersive X-ray 
spectroscopy (EDS) 

Three different SEMs were used in this work depending on the level of resolution needed. An Inspect S from 

FEI with a tungsten filament was used for many low magnification images and EDS measurements with an 

Oxford Instruments 50 mm2 X-Max silicon drift detector (article 1). A JSM-5900 from JEOL with a LaB6 

filament was used for imaging and EDS measurements using the Oxford link ISIS analyser attached to the 

microscope (article 2-4). A field emission gun SEM, Quanta 200f from FEI was used for high magnification 

investigations and EDS measurements with an Oxford Instruments 80 mm2 X-Max silicon drift detector 

(article 3+4). 

4.2.5 Transmission electron microscopy (TEM) 

Detailed cross section TEM investigations were done using a Tecnai T20 G2 from FEI operating at 200 keV 

(article 2+3). Focused ion beam (FIB) milling and in-situ lift out of a lamella of 2 m in thickness was 

carried out using a FEI Quanta 200 3D DualBeam microscope equipped with a micromanipulator. 

Subsequently, a FEI Helios Nanolab DualBeam was used for lamella thinning.  

4.2.6 X-ray diffraction (XRD) 

The XRD technique was used for phase identification before and after heat treatment. The equipment used 

was two different D8 Discover XRD, Bruker AXS. A copper K 1 beam (1.54 Å) was used at grazing 

incidence of 2° and 5° to decrease the penetration depth of the X-rays. On both machines, the step size was 

0.03°, however, the step time was 192 s for the old machine (article 4) and 4 s for the new machine (article 

2+3). The 2  range of 20 ° - 85 ° was used for further analysis using the EVA Application software [139]. 

4.2.7 Glow discharge optical emission spectroscopy (GDOES) 

Radio frequency GDOES was done for chemical composition depth profiling on a GD Profiler 2 from 

Horiba Scientific. The argon pressure was set to 650 Pa and the process ran at a power of 35 W. The module 

and phase was set to 7.6 V and 3.8 V respectively.  
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Calibration accuracy of the GDOES process is highly dependent on the use of reference specimens 

(standards) and with the correct standards; it is possible to measure concentrations of accuracy level within 

10 ppm. However, in the present investigations, it was not possible to have correct standards and therefore 

the Al-Ti coatings were relatively compared using the variation in Voltage input in the spectrometer. The 

sputter rate of the specimen is dependent on both material and process parameters. For the parameters stated 

above, a sputter rate of ~30 nm/s was found based on profilometer measurements (Fig. 4.3). The bottom of 

the crater is mostly flat indicating that the process parameters are appropriate for the given material. Similar 

sputter rates were found for the anodised layer and the metallic magnetron sputtered coating. 

 

Fig. 4.3 - Profilometer measurements of sputter crater after 70 s of sputtering [9]. 

4.2.8 Atomic force microscopy (AFM) 

The AFM measurements were done for topographical analyses on a Park NX20 AFM from Park Systems 

(article 1). The equipment enables to program multiple measurements to be done subsequently due to a 

moving stage beneath the cantilever. Areas of 30 m x 30 m was scanned in intermittent and non-contact 

mode. The SPIP software [140] was subsequently used for first order linewise levelling and calculations of 

roughness parameters. For AFM measurements, the Rq (linewise) roughness parameter was used instead of 

the Sq (area) roughness parameter due to the line-wise nature of the measurements. The 6.1.0  and later 

versions of SPIP [140] has a function calculating all Rq values for all measured lines. Three roughness 

parameters were chosen for further analysis: 

 Rq is the root mean square-value of the deviation from the mean height in a line measurement. 

 Sdr is the percentage increase of the surface area compared to the ground area of a flat surface. 

 Sds is the summit (spike) density per m2. The Sds gives an indication whether two specimens with 

equal Rq and/or Sdr values have similar surface characteristics. A small Sds-value indicates a few 

bigger summits compared to many lower summits. 

4.2.9 Surface Kelvin probe force microscopy (SKPFM) 

Surface potential microscopy or SKPFM [141] is a non-contact scanning microscopy technique. The local 

surface potential is analysed based on local changes in the work function (energy needed to free an electron) 

difference between the sample surface and the scanning tip. A voltage is applied to the tip in order to cancel 

out electric forces related to work function differences. In this way the correction voltage is used to map 

changes of the surface potential when compared to the topography of the simultaneous AFM measurement. 
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The correction voltage is measured, so that the lower measured potential represents more noble areas and 

vice versa. The correction voltage is not directly comparable with the table values of various elements, but 

can be corrected using electrochemical experiments, however, this was not found necessary for the given 

purpose. 

A Multimode AFM from Bruker was used for combined AFM and SKPFM measurements using the 

Nanoscope software [142]. Tapping mode was used for a topography scan followed by surface potential 

difference measurement at a lift height of 35 nm, which were the smallest possible lift height without the tip 

touching the surface occasionally. The measurements were performed in areas of 10 m x 10 m from which 

areas of 5 m x 5 m were used for further analysis in the SPIP software [143]. 

4.3 Optical investigations 

4.3.1 Special photographic setup 

It is hard to take photographs of both diffusely reflecting and high gloss specimens in the same photographic 

setup with constant camera settings. The diffusely reflecting specimens require diffuse illumination and the 

camera should focus on the specimen surface. Whereas a high gloss specimen require something to be 

reflected in the specimen, and the camera should not focus on the specimen surface but at the reflection in 

the specimen. To enable visual comparison of specimens of various amounts of diffuse and specular 

reflection it was necessary to develop a special photographic setup, as presented in Fig. 4.4 (article 1). 

 

  

Fig. 4.4 - Special photographic setup. Fig. 4.5 – The CIE-Lab colour space [144]. 

A big plate of polystyrene was illuminated by four lamps giving diffuse illumination of the specimen, which 

was placed on a photographers grey card. The grey card was not important for the setup as such however, 

since this is a new setup, it was applied to enable comparison of brightness and white balance of these 

pictures with pictures taken at a later point. A blue dice with white pips was taped onto a black box and 

situated so that it reflected in the specimen from the position of the camera. The dice was illuminated from 
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below so that it was easy to see the dice in high gloss specimens. The dice should not be too close to the 

sample, avoiding significant reflections in diffuse specimens, giving the appearance of the specimens a blue 

tint. The setting, zoom, and focus were maintained for the camera, Pentax K-30, and the white balance was 

calibrated using a piece of white printing paper. The camera was placed with some distance to the specimen 

(650 mm) using an aperture of f/40 to gain high depth of focus. The focus point was set at approximately 750 

mm from the camera so that both the specimen and the reflection of the dice were within the depth of field. 

The reflection angle of the dice was about 14 ° to the normal of the specimens. It is important that this angle 

is not too big since the specular reflection intensity increases at higher angles (Fig. 2.11, page 25), which 

might cause the diffusely reflecting specimens to reflect the dice more.  

4.3.2 Quantifying colour and brightness (the CIE-Lab colour space) 

Quantifying colours is not a straightforward process, since it is dependent on many different parameters, 

such as colour hue, saturation, and brightness. This can be done in several ways, where the CIE-Lab colour 

space [145] is based on the human vision and colour perception and standardised by the International 

Commission on Illumination (CIE). As illustrated in Fig. 4.5, the three parameters describe lightness, L* (0 – 

100), green to red colours, a*, and blue to yellow colours, b*. For a* = b* = 0 all neutral colours are achieved 

from black over grey to white, depending on the L*-value. 

In this study, the CIE-Lab values were used, as a value for ‘whiteness’ of specimens. RGB values were 

extracted from the pictures taken in the photographic setup described in section 4.3.1. For each pixel, the 

CIE-Lab values were calculated and mean values for the whole picture of the specimen was calculated. Since 

both the a* and the b* values were close to 0 for all specimens, the L*-values were taken as a quantification 

of the ‘whiteness’ of the specimens. 

4.3.3 Photospectrometry 

An integrating sphere coupled with an optical fibre was used for optical reflectance measurements (Fig. 4.6) 

as in article 1 and 2. A collimated beam from a light source (DH2000, Ocean Optics) was led into the 

integrating sphere at 8 ° to vertical. The specimen in the bottom of the sphere reflected the light, which was 

subsequently reflected multiple times in the highly reflecting white coating of the sphere until it was 

captured by an optical fibre leading the light to the photospectrometer (QE 65000 from Ocean Optics). The 

measurement was integrated over 20 s for the wavelength range of 300 nm – 800 nm and referenced against 

a high reflectivity NIST standard. 
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Fig. 4.6 – Integrating sphere photospectrometry setup. 

The specular reflection could be absorbed by using a black light trap. It was thereby possible to measure both 

the total reflectance (diffuse + specular) and only the diffuse reflectance, thus the difference between the two 

curves indicate the specular reflectance (Fig. 4.7). 

 

Fig. 4.7 – Photospectrometry measurements of a specimen for the total and the diffuse reflectance. 

4.3.4 Bidirectional reflectance distribution function (BRDF) 

Angle resolved photospectrometry was done with a BRDF [146] setup (Fig. 4.8), using the same light 

source, integrating sphere and photospectrometer as described in section 4.3.3. A collimating lens was used 

to lead the light onto the specimen, which was fixed at a goniometer to control the angle of incidence (45 °). 

The scattered light was measured around the specular angle (± 30 °), so that the directional reflectance of the 

specimen was characterised, instead of the integration of all angles as found for the integrating sphere setup. 
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Fig. 4.8 – Illustration of the BRDF setup used for measurements. 

The integrating sphere was introduced to the setup to achieve accurate data measurements. The beam of light 

was approximately 4 mm in diameter on the sample surface, and for a high gloss specimen, it was 

approximately 7 mm in diameter at the hole in the integrating sphere, which was 10 mm in diameter. 

Measurements were done for the visible wavelength range (380 nm – 760 nm). Calibration was done by 

removing the specimen and placing the integrating sphere, so that the light entered directly into it. Diffusely 

reflecting (etched) specimens gave a lower angular output and the integrating sphere was therefore situated 

29 mm from these, whereas for high gloss (polished) specimens the integrating sphere was situated 85 mm 

from the specimen. The measured intensities from etched and polished specimens were therefore not directly 

comparable, however, the reflectance characteristics were. Data were plotted in 3D plots with reflectance as 

a function of wavelength and detector angle s. Whereas for easier comparison at 550 nm, the BRDF formula 

was used and plotted on a logarithmic scale for better visualisation of low intensity signals: 

 
 (11) 

where Pi and Ps is the power of the incident and the measured scattered light respectively.  is the solid angle 

of the measured reflected light. s is the angle between the normal of the specimens and the angle at which 

the measurement was done, also called the scattered angle. 
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4.4 Corrosion experiments 

4.4.1 Anodic polarization test at neutral pH 

Neutral saline anodic polarisation tests were performed as localised tests using a DualscopeTM EC Microcell 

[147,148] (Fig. 4.9) for article 3. The setup has a stage for the specimen situated beneath a container with the 

electrolyte and reference and counter electrodes inside. The working electrode is the specimen connected 

electrically using a gold pin put on the specimen surface. A drop of the electrolyte can be kept at the tip of 

the capillary so that the droplet form on the surface and the droplet is connected through the capillary to the 

reservoir of electrolyte and reference and counter electrodes. The lateral resolution of the measurements 

depends on the tip diameter. More detailed description of the set up can be found elsewhere [147,148]. 

For the experiments using this set up, the specimens were polished locally just before the measurements 

using SiC paper #4000 followed by cleaning using deionised water in order to minimise the thickness of the 

native film on the surface. The tip diameter was approximately 1 mm and a Ag/AgCl reference electrode was 

used. An electrolyte of 0.1 M NaCl was used for measurements of an open circuit potential (OCP) for 400 s. 

Subsequently, anodic polarisation measurements were performed from 100 mV below the corrosion potential 

(Ecorr) until reaching a fixed current after pitting occurred. 

 
 

Fig. 4.9 – The microelectrochemical setup. Fig. 4.10 – The flat cell used for alkaline anodic 

polarization tests. 

4.4.2 Anodic polarization test at pH 13.5 

A flat cell setup (Fig. 4.10) was used for anodic polarisation tests in alkaline conditions (articles 3 and 4). 

The exposed area of the specimen was approximately 0.91 cm2 and the specimen was connected as working 

electrode. A Ag/AgCl reference electrode was used, while a platinum wire twisted around a glass ring was 

used as counter electrode. All experiments were performed at pH 13.5 using a solution of 4.6 g/L 

Na3PO4.12H2O, 0.131 g/L NaCl, and 12.65 g/L NaOH at room temperature. OCP ran for 3 min followed by 



4 Materials and methods 
 

59 

anodic potentiodynamic measurements running from 100 mV below the corrosion potential (Ecorr) with a 

sweep rate of 120 mV/min to anodic potentials and the experiments were stopped at +300 mV or +700 mV 

as no pitting was found even at higher potentials.  

4.4.3 Alkaline exposure experiment 

Alkaline exposure experiments were performed for 10 min exposure at room temperature in the same 

solution as described in section 4.4.2 (articles 3 and 4). The specimens were lacquered twice to ensure that 

only the Al-Ti coating was exposed. Subsequently, the specimens were cleaned in demineralised water, 

desmutted in 70 wt. % HNO3 for 4 min and cleaned again. The specimens were then taken to the SEM for 

further investigations. 
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 Summary of papers 5

The following sections provide summaries of the four papers appended in the form of manuscripts suitable 

for journal publication.  

5.1 Appearance of anodised aluminium: Effect of alloy composition and prior 
surface finish (article 1) 

Aluminium is used in many types of products due to its good mechanical properties and appealing 

appearance. However, the appearance of both etched and polished products can vary significantly for 

different alloys. The appearance of an anodised specimen depends on the topography and optical properties 

of the anodised layer, and the substrate surface, which are affected by impurities and alloying elements. This 

is particularly relevant for recycled alloys, where the uncontrolled chemical composition and increased 

amount of impurities can have large effects on the appearance. 

The effect of alloy chemistry (AA1050, Peraluman 706, AA5754, and AA6082) and surface finish was 

studied before and after the anodisation and sealing processes. Microstructure and surface topography were 

investigated using SEM, EDS and AFM. The optical appearance was studied using a special photographic 

setup, integrating sphere photospectrometry, and a BRDF setup. 

From AFM measurements, the Rq- and Sdr-values showed that the as-etched specimen of AA1050 was flat 

compared to the other alloys due to its high purity (99.5 %), whereas AA6082 showed the highest roughness 

after etching, due to high concentrations of iron and silicon. Photospectrometry showed that the specular part 

of the reflection increased with decreasing roughness of the as-etched specimens. For the as-polished 

specimens it was found that the AA1050 specimen was much rougher compared to the other specimens due 

to its softness, whereas AA6082 was flattest. 

SEM investigations showed a remarkable correlation between the morphology of the as-etched surface and 

the oxide-substrate interface after anodisation. Intermetallic particles and pits due to alloying elements were 

found in the oxide-substrate interface. BRDF measurements (Fig. 5.1) showed that the as-etched specimen 

had a broad intensity distribution at and near the specular region, whereas the as-polished specimen showed 

mainly reflectance near the specular region. 

No effect on morphology of the oxide and the substrate was found from the sealing process, however, the 

investigation using the photographic setup showed, that the reflection was more distinct after sealing, likely 

because the sealed pseudoböhmite is optically more homogeneous than the as-anodised layer. 

It was concluded that the intermetallic particles and pits as well as the topography of the oxide-substrate 

interface had big effects on the appearance. From the literature it was concluded that oxidised, partly 

oxidised, and unoxidised particles of alloying elements in the anodised layer only have been found to have 

effects on the appearance of high gloss polished specimens. 
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Fig. 5.1 – Angle resolved photospectrometry of P706 specimens with an angle of incidence of 45 ° of  

a) as-etched and c) as-polished specimens. 

5.2 Al-Ti coatings produced by magnetron sputtering (articles 2 and 3) 

Metastable magnetron sputtered aluminium coatings containing up to 18 wt. % titanium were created, 

followed by heat treatment at 200 °C – 600 °C. The microstructure was investigated by XRD, SEM, EDS, 

TEM, and GDOES. 

Cross section TEM investigations of the as-deposited film showed a layered structure with a periodicity of 

32 nm ± 4 nm (for 13 wt. % titanium) of alternating layers with low and high titanium concentrations due to 

the geometry in the deposition process. XRD identified only the -Al phase for the as-deposited coatings. 

After heat treatment at 400 °C and more, the layered structure dissolved and Al3Ti phases were formed. 

These coatings were further investigated in articles 2 and 3. 
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5.2.1 Anodisation of sputter deposited aluminium-titanium coatings: Effect of 
microstructure on optical characteristics (article 2) 

The use of coloured aluminium providing a combination of metallic lustre and colours is very popular. 

However, since white pigments are much bigger than pigments for other colours, it is not possible to 

incorporate white pigments into the anodised aluminium pores. In the present work, magnetron sputtered Al-

Ti coatings were created, followed by heat treatment in order to generate Al3Ti particles with the intention of 

forming local oxides of titanium simulating the use of TiO2 as pigments for white appearance. 

The optical properties were investigated by integrating sphere photospectrometry. The microstructural 

investigations summarised in section 5.2, were supplemented by additional TEM investigations of the 

anodised layer.  

Photospectrometry measurements of the as-sputtered, heat-treated, and the as-sputtered and anodised 

specimens showed that the reflectance decreased in all cases with the titanium concentration. For specimens 

containing 13 wt. % titanium, it was found that the reflectance decreased when increasing the heat treatment 

temperature. For specimens heat-treated for 4 h at 500 °C and 600 °C followed by anodisation it was found 

that the specimens turned dark or even black during anodisation. TEM investigations of the 1.2 m anodised 

and sealed layer showed fully and partially oxidised Al3Ti particles (Fig. 5.2) in the anodised layer and at the 

interface between the substrate and the anodised layer. In the aluminium matrix, the pore sizes were 

measured to 8 nm – 10 nm and it was found that the pores had collapsed during sealing. Small pores and 

pores of 25 nm – 35 nm was found in the oxidised Al3Ti particles, where the pores seemed unaffected by the 

sealing process. An area of expected unanodised aluminium was found behind a partially oxidised particle. 

The interface of the substrate and the anodised layer caused some absorption and was found to be very 

rough. It was expected that much of the light move inclined back towards the top of the anodised layer (Fig. 

5.3). Due to total internal reflection at the surface of the anodised layer, light trapping is expected to happen 

for some of the light. The partially oxidised Al3Ti particles work as scattering and absorption points, 

promoting the darkening of the specimen appearance. 

  

Fig. 5.2 – Cross section TEM image of partially and fully 

anodised Al3Ti particles were found in the anodised layer. 

Fig. 5.3 – Schematic showing the possible reasons for 

darkening after anodisation. 
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5.2.2 Alkaline corrosion resistance of aluminium-titanium coatings prepared by 
plasma magnetron sputtering (article 3) 

Aluminium is a key material for future green technology due to its high strength-to-weight ratio, especially 

in the transport industry were weight reduction can be directly translated into efficiency and reduction in fuel 

consumption. However, some of these products have to be able to withstand harsh alkaline conditions at pH 

13.5 due to the detergents used in e.g. a brushless car wash. In this study magnetron sputtered Al-Ti coatings 

were tested in saline and rough alkaline environments. 

Microstructural investigations are described in section 5.2. Anodic polarisation experiments, alkaline 

exposure studies, and SKPFM were used for corrosion analysis.  

Anodic polarisation tests in a 0.1 M NaCl solution of the as-deposited specimens showed increased pitting 

potential with 330 mV for 15 wt. % titanium compared to the pure aluminium coating. For specimens with 8 

wt. % titanium and below it was found that the anodic current increased compared to the pure aluminium 

coating, however, the performance improved in alkaline exposure studies. After heat-treatment, improvement 

was found for coatings of all concentrations. At 13 wt. % titanium and more, significant improvements were 

found in the corrosion experiments, especially after 2 h at 500 °C where the anodic current showed a 

reduction of 95 % compared to the as-deposited pure aluminium coating. Surface potential measurements 

(Fig. 5.4) showed potential differences for the as-deposited coating, which were slightly decreased after heat 

treatment for 2 h at 300 °C. After 4 h at 600 °C, the surface potential were homogeneous with precipitates of 

Al3Ti having decreased the potential differences even further. 

Improvement of the corrosion properties after heat treatment was attributed to the structural relaxation and 

slight decrease in the surface potential differences. At heat treatments of 400 °C and more, it was found that 

the homogenised matrix and Al3Ti precipitates reduced the galvanic potential difference further. 

Additionally, the network of Al3Ti phases was expected to provide protection of the surrounding matrix. 

 

Fig. 5.4 – SKPFM surface potential mapping of polished surfaces in areas of 5 x 5 m. Specimens containing 13 wt. % 

titanium for a) an as-deposited coating, and after heat treatment for b) 2 h at 300 °C, and c) 4 h at 600 °C. 
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5.3 Alkaline corrosion properties of laser cladded aluminium-titanium coatings 
(article 4) 

The wish for lightweight materials in the transport industry promotes the use of aluminium. However, the 

requirements for alkaline corrosion resistance are hard to accommodate for regular surface treatments of 

aluminium alloys. In this study laser surface cladding was used to create Al-Ti coatings, which were heat-

treated and investigated for alkaline corrosion resistance at pH 13.5. 

Laser surface cladding was used with a combination of pure aluminium powder and 5 wt. %, 10 wt. %, and 

20 wt. % of a Ti6Al4V powder. Subsequent heat treatment for 10 h at 600 °C was done to investigate 

changes in microstructure and corrosion properties. Microstructural analyses were done by LOM, SEM, 

EDS, and XRD, while corrosion properties at pH 13.5 were investigated by alkaline exposure tests and 

anodic polarisation measurements. 

LOM, SEM, and XRD investigations identified a heterogeneous microstructure of the clad with a 

supersaturated -Al matrix containing up to 1 wt. % titanium. Al3Ti phases and undissolved Ti6Al4V 

particles from the cladding process were found (Fig. 5.5). Heat treatment had no significant influence on the 

microstructure. For 5 wt. % and 10 wt. % Ti6Al4V the Al3Ti phases were mainly found to be equiaxial, 

whereas specimens containing 20 wt. % titanium showed a dendritic microstructure. Alkaline exposure tests 

showed that the matrix preferentially corroded, while the Al3Ti phases were protected (Fig. 5.6). Anodic 

polarisation tests at pH 13.5 showed no change in the Ecorr-value and only a slight decrease, when increasing 

the titanium content from 5 wt. % to 20 wt. %. 

  

Fig. 5.5 - EDS line scan of a big particle of a heat-treated 

specimen with 10 wt. % Ti6Al4V. The thick horisontal line 

follows the line of measurements. 

Fig. 5.6 – SEM image of as-cladded specimen with 20 wt. % 

Ti6Al4V after alkaline exposure test, showing preferential 

dissolution of the matrix. 
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Effect of alloy composition and prior surface finish on the optical appearance of the anodised layer on aluminium
alloyswas investigated. Four commercial alloys namelyAA1050, Peraluman 706, AA5754, andAA6082were used
for the investigation. Microstructure and surface morphology of the substrate prior to anodising were analysed
using scanning electronmicroscopy and atomic forcemicroscopy. The optical appearance of the anodised surface
with and without sealing was investigated using a photography setup, photospectrometry and bidirectional
reflectance distribution function. It was found that the roughness of the as-etched surface increases with the de-
gree of alloying due to second phase particlesmaking the reflectionmore diffused, and that the as-etched surface
morphology is similar to the oxide–substrate interface after anodising. Proper polishing is achieved onhard alloys
and the glossy appearance was kept for alloys of high purity. Sealingmade the specular reflection of themechan-
ically polished specimens more distinct.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Aluminium is widely used for decorative appearance, e.g. in the
automotive and building industries. Aluminium is easily coloured
during the anodisation process, however for a number of applications,
anodised aluminium is usedwithout colouring. Before anodising, alumin-
ium products can be etched for a matte finish or polished (chemically or
mechanically) for a high gloss finish. However, the appearance can vary
significantly when using different alloys even though the same process
parameters have been employed. Sulphuric acid anodisation results in a
transparent anodised layer, so that the optical appearance depends on
the optical properties and morphology of the anodised layer and the
subsurface substrate. Therefore, the microstructure of the substrate
plays a big role due to differences in the electrochemical behaviour of
second phase particles in the anodising bath based on their morphology,
size, and composition. Furthermore, differences in the dissolution of
microstructural components in the anodising bath can result in unex-
pected roughening of the subsurface morphology during etching and
anodisation. This is particularly important for the recycled alloys due to
the presence of higher amounts of intermetallic compounds, which

results in miscolouring of the anodised layer in the form of light or dark
streaks and unexpected darkening of the specimens after anodisation. It
has been known for many years, that high concentrations of certain
alloying elements may lead to miscolouring [1].

Many studies focus on streaks on extruded, etched, and anodised al-
uminium profiles [2–11]. Zhu et al. [10,11] reported that themorpholo-
gy of the oxide–substrate interface has the biggest effect on the optical
appearance for extruded, etched, and anodised profiles. The streaks ap-
pear (lighter or darker) due to inhomogeneity in the surface conditions
of the streaked area compared to the non-streaked area. The inhomoge-
neity introduced during the production of the billet and during the
extrusion process may be removed by proper etching [9,11]. Grain
boundary grooves, surface scallops, etching pits, and etching steps
have a great influence on the visual appearance. All of these effects are
created or affected by alloying elements and it can therefore be difficult
to control these effects when using recycled aluminium alloys. Grain
boundary grooves formed during the etching process are reported to
have strong effects on the visual appearance of anodised layer. Studies
have shown that the amount and depth of the grain boundary grooves
are affected by the iron and Mg2Si content [3,8] and amount of high
angle grain boundaries [6,8] since these are more susceptible to inter-
granular corrosion than strongly textured low angle grain boundaries.
Surface scallopsdecrease the reflectance in a similarway as grain bound-
ary grooves and are created during etching and anodisation due to
alloying elements such as iron and silicon, which are cathodic to the
matrix [5,12]. Etching pits created by particles acting anodic to the
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matrix (e.g. Mg2Si) are in size of the original particle [2,3]. Big pits of
sizes up to 10 μm are created around e.g. iron rich particles, which act
cathodic to the aluminiummatrix causing the particles to be excavated
during the etching process [2,3,11]. Etching steps appear because etch-
ants may attack crystal planes differently, causing interference effects
due to height differences of neighbouring grains. Texture differences
caused by the extrusion process can therefore cause streaks [4,5].
Karhausen et al. [4] state that the biggest factor on the texture for ex-
truded aluminiumprofiles is the die design and it is therefore not signif-
icantly alloy dependent. However, Zhu et al. [8,13] indicate that coarse
intermetallic particles affect the texture. Furthermore, the random
orientation of the grains increases with the iron concentration due to
a reduced dislocationmobility and restricted grain growth and rotation.

Other studies focus on the appearance of rolled aluminium [14–19].
Van Gils et al. [14] found that the rolled aluminium has approximately
10% lower reflectance compared to magnetron sputtered aluminium.
The major reason for reduced reflectance is a deformed layer near the
surface created during rolling measured to be between 1.2 μm and
2.9 μm in thickness on an as-received hot-rolled pure alloy containing
0.5 wt.% magnesium [15]. The absorption in the deformed layer is
mainly attributed to the incorporation of the oxides, and increases as
well with the amount of alloying elements [15,16,18]. Additionally,
Premendra et al. [18] found that the carbon from lubricants works as
light absorbing centres. It has been reported that texture differences
can cause streaks on rolled specimens [19]. Proper etching removes
incorporated particles and the deformed layer [14–17].

The optical properties of the anodised layer have also been studied
separately [2,20–23]. Akeret et al. [2] studied the optical effect of alka-
line etching, brightening and anodisation. It was found that small anodic
intermetallics such asMg2Si andMg2Al3 have little effect on the appear-
ance, whereas cathodic intermetallics, especially the ones rich of iron
and silicon have a large effect on the appearance [2]. Saito et al. [20,
21] studied anodised layers of 50 μm of thicknesses on pure aluminium
(99.99%) [20,21] and AA5052 (2.2–2.8% Mg, b0.5% Fe, Cr, Si) [20].
Extinction (the sum of absorption and scattering) was ascribed to
holes in the oxide from e.g. Mg2Al3 intermetallics (contradicting [2]),
unoxidised aluminium in the anodised layer, and irregular cell struc-
tures found near holes and unoxidised aluminium [20,21]. The amount
of unoxidised aluminium decreased with subsequent heat treatment
[20,21]. The loss happens mainly for the light polarised parallel to the
pores [20–22]. The highest transparency of anodised layers was re-
ported for high purity alloys [2,20] and 6xxx alloys (AlMgSi) [2],
whereas AA5052 had a significantly higher absorption within the
anodised layer compared to the anodised layer of a pure alloy [20].
Tabrizian et al. [23] found that high gloss diamond turned samples
that are heat-treated show lower reflectance after anodising com-
pared to non-heated and anodised specimens. Inhomogeneity and
imperfections in the anodised layer were reported to be the impor-
tant factors affecting the optical appearance [23], and that the
oxide–substrate interface roughness has no significant influence on
the visual appearance on the high gloss specimens. Furthermore, the
presence of silicon andMg2Si particles in the anodised layerwas report-
ed to have significant influence on the appearance. However, detailed
investigations of the particles within the anodised layer were not pre-
sented. It has previously been reported that Mg2Si phases are preferen-
tially oxidised or dissolved in an aluminium matrix during anodisation
[2,24].

The investigations in this paper emphasise the understanding of the
combination of alloy chemistry and surface finish, and the effect on
optical appearance before and after the anodisation and the sealing pro-
cess. The microstructure and surface morphology were investigated
using scanning electron microscopy and atomic force microscopy. The
optical appearance was characterized by using a specially designed
photography method, an integrating sphere for spectrally resolved
measurements and a bidirectional reflectance distribution function
(BRDF) system for measurements of angle-resolved reflectance.

2. Materials and methods

2.1. Materials

Specimens of 50mm×50mm in size of four different aluminium al-
loys (AA1050, AA5754, and AA6082) of 1mm sheet and the commercial
Peraluman 706 (P706) alloy from Alcan of 2 mm thick sheet were used
for investigations. The chemical composition of the alloys is presented
in Table 1 based on data sheets from the suppliers.

2.2. Polishing, etching, anodising, and sealing processes

Mechanical polishing was done by buffing on a hard wheel with a
polishing paste, M8005 from Lea, containing Al2O3 particles. Subse-
quently the specimens were polished on a soft disc for finishing and re-
moving excess paste. The specimens investigated in the as-polished
state were cleaned with ethanol for removing polishing wax residues.
All other specimens were cleaned using a commercial alkaline cleaner,
AlfiClean from AluFinish, with rough agitation at 60 °C for 2 min–
6.5min. Etchingwas done in 80 g/L NaOH andmaximum50 g/L alumin-
ium at about 60 °C for approximately 18.5 min. All specimens were
desmutted in 6 wt.% HNO3 at 27.5 °C–28.0 °C for approximately
4 min. Anodisation of the surface was carried out in a bath containing
190 g/L H2SO4 and 5 g/L–10 g/L aluminium at 17.9 °C, for about
30minwithmild agitation, at a constant voltage of 12.6 V and a current
density of about 1 A/dm2. The series of specimens which were both
polished and sealed were anodised 12.1 V. All the specimens are
anodised using an industrial scale anodisation setup at Bang & Olufsen,
Denmark. Sealing was done in water containing 2 g/L–3 g/L AlfiSeal
from AluFinish at 96 °C for 25 min. AlfiSeal was added to remove the
smut on the surface during sealing. The sealing was followed by 3 min
to 5 min drying at 74 °C–78 °C. All process steps except sealing and
drying, were followed by rinsing with demineralised water. The speci-
mens were divided into six series, where e.g. “as-etched” has been
etched and cleanedwith ethanol, “etched, as-anodised” has been etched,
anodised and cleaned with demineralised water, and “etched, sealed”
has been etched, anodised and sealed, as presented in Table 2.

2.3. Surface appearance by photography

To present the appearance of the specimens in a proper way, a spe-
cial photographic setupwas designed as presented in Fig. 1. The sample
was placed on a photographer's grey card used as a standard back-
ground. To ensure a homogeneous diffuse light on the specimen, four
lamps were placed pointing away from the specimen onto a plate of
polystyrene foam. A black box was positioned near the grey card and a
blue dice with white pips was taped onto it and illuminated from
below. The dice were positioned so that its reflection could be seen in
high gloss specimens by the camera.

Pictures were taken with a Pentax K-30, with the white balance
calibrated by placing a piece of printing paper in the position of the
specimens. All camera settings were identical for all pictures, and the
aperture was set to f/40 to gain high depth of focus. The camera was
positioned on a tripod about 650 mm above the table top and tilted at
an angle of about 14° to vertical. The focus point was set approximately
750 mm from the camera, i.e. between the specimen and the reflection
of the dice. Thus, both the reflection of the dice and the specimen are

Table 1
Chemical compositions (in wt.%) of AA1050, Peraluman 706, AA5754, and AA6082.

Alloy Al Mg Si Fe Cu Mn Zn Ti Cr V

AA1050 Bal. 0.05 0.25 0.4 0.05 0.05 0.05 0.03 – 0.05
P706 Bal. 0.3–0.8 0.2 0.2 0.03–0.1 0.05 0.05 0.03 0.02 –

AA5754 Bal. 2.6–3.6 0.4 0.4 0.1 0.5 0.2 0.15 0.3 –

AA6082 Bal. 0.6–1.2 0.7–1.3 0.5 0.1 0.4–1.0 0.2 0.1 0.25 –
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well within the depth of field (DOF) when using a small aperture and
both objects consequently appeared in focus.

Each sample was photographed both along and across the rolling
direction. As only minor differences were observed, all presented
pictures were taken along the rolling direction so that this is in the
vertical direction of the pictures. An area of 512 pixels × 512 pixels
(slightly smaller than the specimen) was selected for presentation
and CIE-Lab values calculations. The CIE-Lab colour space [25] is
based on the human vision and colour perception, represented by
lightness, L*, and the colour parameters a* and b*. For a* = b* = 0,
the colour is neutral (black/grey/white) depending on the L*-value.
The CIE-Lab values were calculated from the RGB values for each pixel
and a mean value was found for all pixels in each of the photographs
of the etched specimens to compare the L-values (whiteness) of the
specimens numerically.

2.4. Microstructural analysis

The thickness of the anodised layer was measured using a thin film
analyser (Nanocalc 2000 from Mikropack). Each value is an average of
50 measurements.

For microstructural analysis, a scanning electron microscope (SEM),
Inspect S fromFEI,wasused. Thismicroscopewas also used for chemical
composition analysis by energy dispersive X-ray spectroscopy (EDS). All
EDS measurements agreed well with the expected composition values
of thematrix and precipitates described in the literature, and are there-
fore not presented. The anodised specimens were coated with carbon
before SEM analysis. In order to investigate the substrate surface be-
neath the anodised layer, a deoxidizing process was performed using a
solution of 100 mL demineralized water containing 2 g chromic acid
and 3.5 mL phosphoric acid 85%. The solution was kept at 60 °C–70 °C
and the specimens were deoxidized for about 40 min.

Further topographical analyses of the as-etched and as-polished sur-
faces were performed using atomic force microscopy (AFM) on a Park

NX20 fromPark Systems. An area of 30 μm×30 μmwasmeasured in in-
termittent and non-contact mode. Subsequently, first order linewise
levelling was processed and roughness parameters were calculated
using the SPIP software [26]. Three parameters were chosen to illustrate
the surface roughness of the specimens: (i) Rq is the root mean square-
value of the absolute deviation from the mean height measured in one
line at a time (the presented values are the mean value of the Rq values
of the 512 lines measured, plotted with the standard deviation of the
mean), (ii) Sdr is the percentage increase of the surface area compared
to a completely flat surface, and (iii) Sds is the summit density, counting
the amount of summits (spikes) per μm2.

2.5. Photospectrometry

An integrating sphere coupled with a fibre optic spectrometer was
used for optical reflectance measurements. The setup was previously
described elsewhere [27]. A collimated beam from a light source (DH
2000 from Ocean Optics) enters the integrating sphere at 8° with re-
spect to vertical. The beam is reflected by the sample and goes subse-
quently through multiple reflections on the interior of the sphere and
is collected with an optical fibre coupled to a spectrometer (QE 65000
from Ocean Optics). Each reflectance spectrum was measured over the
wavelength range from 300 nm–800 nm using an average integration
time of 20 s. All spectra were referenced against a high-reflectivity
standard. The specular reflectance can be excluded using a black light
trap. Thereby, both the total reflectance (diffuse + specular) and only
the diffuse reflectance can be measured.

2.6. Bidirectional reflectance distribution function

For angle resolved reflectancemeasurements of etched and polished
samples, a bidirectional reflectance distribution function [28] (BRDF)
setup (Fig. 2) was used. While the integrating sphere setup quantifies
the total amount of light reflected from a surface, it does not provide
directional reflectance characteristics information of a surface. In BRDF
measurements, the incident angle can be fixed, while the detection
angle can vary continuously, allowing the measurements of light scat-
tering as a function of an angle. When the illumination angle equals
the detection angle, the specular reflectance dominates the reflectance
spectrum. In the current setup, the specimen was illuminated with a
collimated white light beam at an angle of incidence of θi = 45°. The
scattered light angle was measured over an angle range (θs) from
−30° to+30°with respect to the specular angle. An integrating sphere
coupled with a fibre optic spectrometer was introduced to the setup to
achieve an accurate data collection. The size of the collimated beam on
the surface of the specimen was about 4 mm and 7 mmwhen entering
the integrating sphere with an entrance hole of 10mm in diameter, en-
suring that all specular light was collected during BRDF measurements.

The BRDF spectra were measured over the visible spectral range
(380 nm–760 nm). Calibrationwas done by setting the direct light inci-
dent on the integrating sphere as a baseline for the measurements. The
integrating sphere was situated 29 mm from the specimen when mea-
suring the etched specimens and 85 mm from the specimen when

Table 2
Processes used for specimen series.

Polishing Cleaning Etching Desmutting Anodising Hot sealing

As-etched X X X
Etched, as-anodised X X X X
Etched, sealed X X X X X
As-polished X Xa

Polished, as-anodised X X X Xb

Polished, sealed X X X X X

a As-polished specimens were cleaned with ethanol.
b The polished, sealed series were anodised at 12.1 V instead of 12.6 V as the others.

Fig. 1. Special photographic setup.
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measuring the polished specimens. Therefore, the measured intensities
from the etched specimens are not comparable with themeasurements
of the polished specimens, but the reflectance distribution functions are
still comparable. The datawere plotted in a 3D plot with reflectance as a
function of wavelength and the detector angle (θs). For easier compari-
son of the different plots, a twodimensional plot of the data,was plotted
using the BRDF formula:

BRDF ¼ Ps=Ω
Pi cos θs

ð1Þ

where Pi and Ps is the power of the incident and themeasured scattered
light, respectively. Ω is the solid angle of the measured reflected light
and θs is the scattering angle, i.e. between the normal of the specimen
and the angle of detection, as shown in Fig. 2. For a better visualisation
of the low intensity signals, the function is plotted on a logarithmic
scale.

The BRDF function describes the angular distribution of scattered
light from surfaces. If the reflection from the sample surface is perfectly
diffused, the scattered light would follow the Lambert's model [28]. On
the other hand, a perfect specular surfacewould reflect light in the spec-
ular direction only.

3. Results

3.1. Appearance observed using special photography setup

The perceived optical appearance of the specimens photographed
using the special setup presented in Fig. 3 are shown as photographs
of the etched series of AA1050 specimens. Similar pictures were taken
for the other alloys, but are not presented as the appearance was
quite similar to AA1050. Instead, for numerical comparison the CIE-
Lab values [25] were calculated based on the photographs. It was found
that all specimens had almost the same colour (not presented) and the
L-values (lightness) are presented inTable 3. The as-etchedAA1050 spec-
imen had the lowest L-value (76.9) and the as-etched AA5754 specimen
had the highest L-value (89.9). All anodised specimens (middle and
right-hand column) showed quite similar L-values (80.8–84.9).

Photographs of the polished series of the four different alloys are
presented in Fig. 4. All as-polished specimens (Fig. 4, left-hand column)
showed high gloss, where AA1050 and AA5754 showed slight distor-
tions in the reflection compared to P706 and AA6082. For the polished,
as-anodised specimens, the reflection of the dice disappeared almost
completely for AA5754 (Fig. 4h) and was blurred out for AA6082
(Fig. 4k), whereas, for AA1050 (Fig. 4b) the pips of the dice were distin-
guishable and even more for P706 (Fig. 4e). For the polished, sealed

Fig. 2. Illustration of the BRDF setup used for measurements.

Fig. 3. Photographs of AA1050 specimens, a) as-etched, b) etched, as-anodised, and c) etched, sealed.
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specimens of AA1050, P706, and AA6082 (Fig. 4c, f, and l), the reflection
was more distinct compared to the unsealed samples (Fig. 4b, e and k).
For the polished, sealed specimens, P706 showed themost clear and dis-
tinct reflection of the dice.

3.2. Microstructural and surface morphology analyses

The measured anodised layer thicknesses are presented in Table 4.
The anodising process results in oxide thicknesses of 6.1 μm–9.1 μm,

and the thickness varied in general for the alloys from thinnest to
thickest in the order of P706, AA1050, AA6082, and AA5754. For the
as-anodised specimens (left-hand and right-hand column), the thick-
ness of anodised layer was more or less the same for etched and
polished specimens. For the etched specimens (left-hand and middle
column), it was found that a thicker anodised layer was measured
after sealing, which is caused by the expansion of the oxide during the
process into pseudoböhmite. The polished specimen show an opposite

Table 3
The L-values calculated from photographs.

As-etched Etched, as-anodised Etched, sealed

AA1050 76.9 82.0 80.8
P706 84.0 84.9 83.1
AA5754 89.9 82.2 84.8
AA6082 88.1 81.9 81.0

Fig. 4. Photographs of polished specimens, a–c) AA1050, d–f) P706, g–i) AA5754, and j–l) AA6082.

Table 4
Thickness (μm) of the anodised layer on various specimens.

Etched,
as-anodised

Etched, sealed Polished,
as-anodised

Polished, sealed

AA1050 7.0 7.4 6.6 6.2
P706 6.7 6.9 6.8 6.1
AA5754 8.4 9.1 8.3 7.7
AA6082 7.0 7.6 7.2 6.8
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effect, which is expected to be due to the lower voltage used for
anodisation of the polished and sealed specimens.

For microstructural analysis using SEM, all specimens were investi-
gated. It was found that the sealing did not change the microstructure
and therefore the images of the unsealed specimens are not presented.
The as-etched/as-polished and the carbon-coated anodised, sealed
surfaces were studied as well as the oxide–substrate interfaces after re-
moving the anodised layer. The SEM images of etched and polished
specimens are presented in Figs. 5 and 6, respectively.

As expected, the AA1050, as-etched specimen (Fig. 5a) had the
smoothest surface due to the high purity of the alloy, whereas the
AA6082, as-etched specimen (Fig. 5j) showed the roughest surface.
When comparing the as-etched surface (Fig. 5, left-hand column) and
the oxide–substrate interface (Fig. 5, right-hand column) it was found
that the morphology was rather similar. The surface of the anodised
layer (Fig. 5,middle column) showed that the structureswere somewhat

smoother compared to the as-etched surface and the oxide–substrate in-
terface. Many surface scallops are found especially for the highly alloyed
AA5754 (Fig. 5g–i) and AA6082 (Fig. 5j–l), where iron and silicon rich
particles induce the creation of scallops [5,12].

For the as-polished specimens, it was found that the intermetallic
particles were easily seen in the surface of P706, AA5754 and AA6082
(Fig. 6d, g and j), where only few were found in the surface of AA1050
(Fig. 6a). The scratches from the polishing process were clearly seen
for the as-polished specimens (Fig. 6, left-hand column). However, at
the oxide–substrate interface (Fig. 6, right-hand column), the polishing
tracks diminished and intermetallic particles were sticking out of
the surface and pits were found. The surfaces of the anodised layers
(Fig. 6, middle column) showed the presence of particles and shallow
marks from the polishing process.

For a detailed roughness characterization of the specimens after
surface treatment, AFM measurements were performed. In Fig. 7 the

Fig. 5. SEMmicrographs of etched specimens, a–c) AA1050, d–f) P706, g–i) AA5754, and j–l) AA6082.
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surface morphology of the as-etched specimens is presented. It was
found that the roughness was the lowest for pure AA1050 (Fig. 7a)
and roughest for AA6082 (Fig. 7d). Fig. 8 shows theAFMsurfacemorphol-
ogyof the as-polished specimens. For all specimens, clear polishing tracks
were found and P706, AA5754, and AA6082 (Fig. 8b–d) showed quite
smooth surfaces, whereas AA1050 (Fig. 8a) was significantly rougher
due to the softness of the alloy. For AA6082 (Fig. 8d), the surface showed
a lot of small particles in sizes of 60 nm to 160 nm in diameter sticking up
to 40 nm above the base. These particles were also found in SEM investi-
gations (not presented) and are expected to be Mg2Si particles as report-
ed in the literature [29,30]. Similar but smaller particles were found for
AA5754 of sizes about 1 μm in diameter and 25 nm in height.

Roughness parameters were calculated (Fig. 9) based on the mea-
surements presented in Figs. 7 and 8. For the as-etched specimens
(Fig. 9a), it was found that the AA1050 had the lowest and AA6082
had the highest Rq and Sdr values as expected from Fig. 7. Additionally,

AA6082 had a low Sds-value as it had high roughness giving only few
local peaks. For P706 and AA5754 the values of Rq are almost similar,
but the Sdr value was clearly lower for P706 than AA5754.When closely
investigated it was found that the P706 (Fig. 7b) showed many small
spikes giving it a high Sds value, whereas e.g. AA5754 had a zigzag struc-
ture with fewer spikes. For the as-polished specimens (Fig. 9b), it was
found that the AA1050 had by far the highest Rq value, as expected
when investigating Fig. 8, whereas, AA6082 showed the lowest Rq and
Sdr values. Both AA5754 and AA6082 had high amounts of particles in
the surface giving high Sds-values. The high Sds-value of P706 is caused
by the polishing tracks creating many local maxima.

3.3. Photospectrometry

Photospectrometry measurements were used to study the visual
appearance of the specimens. Solid curves in Figs. 10 and 11 represent

Fig. 6. SEM micrographs of polished specimens, a–c) AA1050, d–f) P706, g–i) AA5754, and j–l) AA6082.

34 M. Aggerbeck et al. / Surface & Coatings Technology 254 (2014) 28–41



the spectrum of the total reflectance including both specular and diffuse
reflectance, while the dotted curves are only the diffuse reflectance,
measured with a gloss trap in the specular light port. The difference
between the total (solid) and the diffuse (dotted) curves is therefore
an indication of the level of specular reflectance.

The photospectrometry results for the etched specimens are pre-
sented in Fig. 10. For AA1050 (Fig. 10a) and P706 (Fig. 10b) there
were some specular reflectance, which decreased after anodisation.
Negligible differencewas observed between the total and the diffuse re-
flectance for AA5754 (Fig. 10c) and AA6082 (Fig. 10d), meaning that
there was no measureable specular reflectance from these specimens.
For all as-etched specimens, the total reflectance decreased, whereas
the diffuse/total reflectance ratio slightly increased. No effect was regis-
tered from the sealing process in the visible spectrum; however, there
was a registered decrease in the reflectance around 340 nm for the
sealed specimens, which is expected to be due to absorption by the
pseudoböhmite layer. AA5754 had the flattest (most horizontal) curve
among the specimens and therefore the most neutral colour (white/
grey) both before and after anodisation and sealing.

Fig. 11 presents the photospectrometry measurements of the
polished specimens, where a much larger difference between total
(solid lines) and diffuse (dotted lines) measurements was found (as
expected) compared with the etched specimens (Fig. 10). In general it
was found that the total reflectancewas similar for all as-polished spec-
imens and it was more or less retained after anodisation. However, the
diffuse reflectance was clearly larger for anodised specimens, meaning
that the specular reflectance decreased when the specimens were
anodised. For AA1050 (Fig. 11a) and AA6082 (Fig. 11d), the sealing

process increased the specular reflectance compared to the as-
anodised specimens. Although only slightly, the AA5754 (Fig. 11c)
showed lower specular reflectance when sealed. The P706 alloy
(Fig. 11b) showed no significant change in the reflectance characteris-
tics when sealed and showed the highest specular reflectance when
sealed compared to the other alloys. Fringes due to the thin film inter-
ference were found in the reflectance spectra for some specimens.

3.4. Bidirectional reflectance distribution function

The angle resolved spectral reflectance of P706 specimens, which
were etched and polished both before and after anodisation are
shown in Fig. 12. It was found that the reflectance of the etched speci-
mens (Fig. 12a and b) had broad peaks with an intensity peak at the
specular angle. Large peaks at the specular direction andnarrow scatter-
ing characteristics can be seen for the polished specimens (Fig. 12c and
d). It was found that the reflectance peak values decreased at the spec-
ular angle for the anodised specimens compared to the as-etched
(Fig. 12a vs. b) and as-polished (Fig. 12c vs. d) specimens. The spectra
of the polished, as-anodised specimen showed interference fringes sim-
ilar to those found in the photospectrometry (Fig. 11b).

A line profile at 550 nmwas extracted from the BRDF images and is
shown in Fig. 13. The reflectance spectrum of the polished, as-anodised
specimen (Fig. 12d) has interference fringes, and at 550 nm the reflec-
tance of the polished, as-anodised specimen was in a trough, 5% points
below the nearby crests. The as-etched specimen reflected light in a
broad area over the measured angle range −30° to +30° from the
specular angle and a peak value of 4.1 sr−1. The etched, as-anodised

Fig. 7. Surface topography using AFM (30 μm × 30 μm) of as-etched specimens, a) AA1050, b) P706, c) AA5754 and d) AA6082.
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specimen showed a lower peak value (1.8 sr−1). However, the reflec-
tion distribution function broadens after anodisation. The as-polished
specimen showed measurable reflectance at approximately ±10°
from the specular angle with a peak value of 90.8 sr−1. At larger angles,
no signal was detected. The polished, as-anodised specimen showed
a narrow distribution with a specular peak value of 43.1 sr−1, but
the scattering of light at larger angles became more dominant after
anodising suggesting that the oxide layer introduces diffuse scattering.

4. Discussion

The difference in appearance of anodised aluminium specimens due
to prior surface finish such as polishing and etching is well-known and
is used commercially for various applications. On the other hand, the
less known synergistic effects of alloy composition and prior surface
finish are important for the decorative applications, where a reliable
finish and reproducible appearance are critical. The increased use of

Fig. 8. Surface topography using AFM (30 μm × 30 μm) of as-polished specimens, a) AA1050, b) P706, c) AA5754 and d) AA6082.

Fig. 9. Roughness parameters for a) as-etched specimens, and b) as-polished specimens.
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recycled aluminium alloys boost these effects due to the increased
amount of alloying elements. The results presented in this paper
show that the alloying elements have a big influence on the appearance
of the anodised surface due to the creation of certain surface structures.
Additionally, results show that the prior surface finish topography
is more or less maintained at the oxide–substrate interface after
anodisation. For a totally pure aluminium specimen, maintenance
of surface morphology after anodising is expected to result in only
negligible changes in the reflectance behaviour of the substrate before
and after anodisation. However, the reflectance is much more diffuse
for regular aluminium alloys after anodisation due to second phase
particles of the alloying elements creating pits or sticking out of the
substrate into the oxide as unchanged phases or partially oxidised.
More detailed discussions of the effects of various parameters are
presented below.

4.1. Effect of prior surface finish

It is well-known that etching is performed to roughen the surface of
the specimen, giving amatt finish. The results presented in Figs. 5, 7 and
10 show that the effect of etching on themicrostructure and appearance
after anodisation are alloy dependant. For the as-etched specimens,
there is a direct connection between the measured roughness parame-
ters, Rq and Sdr (Fig. 9a) and the degree of specular reflectance (Fig. 10).
The as-etched specimen of the 99.5% pure AA1050 is flat (Fig. 7a) and
shows the most specular reflectance (Fig. 10a) followed by P706

(Fig. 10b) and AA5754 (Fig. 10c) with very little specular reflectance,
while the roughest alloy, AA6082, shows no specular reflectance
(Fig. 10d). Looking at the effect of alloy compositions (Table 1), it is
found that the AA5754 is alloyed to the highest degreewithmagnesium
as the main alloying element. The AA6082 has higher silicon content
and slightly higher iron concentration limit and might also contain
more manganese compared to AA5754, supporting that iron and sil-
icon rich phases create rougher surfaces than magnesium containing
phases since magnesium is more reactive with NaOH than e.g. silicon
and iron [2].

The photograph of theAA1050, as-etched specimen (Fig. 3a) is quite
dark compared to all other specimens, as found in the calculated
L-values, (Table 3). The L-values calculated based on the photographs
of the etched specimens were compared to L-values calculated based
on the photospectrometry measurements of the etched specimens
seen in Fig. 10 (not presented). It was found that the values are directly
comparable for totallymatte specimens (Fig. 10c and d).Whereas, some
deviations were found for P706 with some specular reflectance and es-
pecially for AA1050 showingmore specular reflectance, probably due to
reflection of the black background (Fig. 10b and a respectively).

Polishing is done to achieve a high gloss surface finish. However, the
AA1050 is pure and therefore very soft, making it very hard to polish
without causing grooves during the polishing process (Fig. 8a), com-
pared to the harder P706, AA5754, and AA6082 (Fig. 8b–d). AA6082
was expected to have the hardest surface due to age hardening creating
Mg2Si phases [31], and shows the lowest Rq and Sdr values (Fig. 9b), and

Fig. 10. Photo spectrometrymeasurements of etched specimens, showing total reflectance (solid curves) and only diffuse reflectance (dotted curves), a) AA1050, b) P706, c) AA5754 and
d) AA6082.
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the lowest diffuse reflectance for the as-polished specimens (Fig. 11d).
Even though the specular reflectance of AA5754 (Fig. 11c) is as high as
for AA6082 (Fig. 11d), the reflection is found to be slightly distorted
(Fig. 4g) compared to P706 and AA6082 (Fig. 4a and d), but this has
not been investigated further.

The roughness measurements show Rq values above 175 nm for the
etched specimens (Fig. 9a) and below 13 nm for polished specimens
(Fig. 9b) for P706, AA5754, and AA6082. As expected, the etched speci-
mens have a dominant diffuse reflectance (Figs. 3 and 10), whereas the
polished specimens have a large specular reflectance (Figs. 4 and 11).
This is in agreement with reported literature [11] that the gloss of an
aluminium surface decreases as the roughness increases until a rough-
ness of about 200 nm.

The purity of AA1050 leads to a clear, relatively flat etched surface
(Fig. 7a) and the softness of the alloys causes an uneven polishing
(Fig. 8a). Comparing the roughness parameters of the as-etched and
as-polished AA1050 specimens (Fig. 9); it is found that the Rq value is
slightly higher for the as-polished specimen, and that the Sdr value is
bigger for the as-etched specimen.

From the photospectrometrymeasurements it is found that the total
reflectance of the as-etched specimens (Fig. 10) is higher than that for
the as-polished specimens (Fig. 11). It is expected that etching removes
oxides in the subsurface layer occurring during rolling [15,16], which
will not be completely removed during polishing, but the surfacemate-
rial will be smeared out. Additionally, it is found that the reflectance is
the highest for the pure alloys (Fig. 10a and b). However, the reflectance

of P706 is higher than that of AA1050, and the reflectance is higher for
AA5754 than for AA6082. In both cases, the higher reflectance alloy
has a higher concentration of magnesium but lower concentration of
iron and silicon.

4.2. Effect of anodisation

The SEM investigations of the etched specimens (Fig. 5) show that
there is a remarkable correlation between the topography of the as-
etched surface (left-hand column) and the oxide–substrate interface
after anodisation (right-hand column), as previously indicated by
Fratila-Apachitei et al. [12]. Thus, the original morphology has a signifi-
cant impact on the morphology of the oxide–substrate interface and
thereby the final appearance of the anodised aluminium specimen.
The SEM investigations of the as-polished specimens (Fig. 6, left-hand
column) show that the surfaces are flat with polishing grooves, which
are to some extent smoothened out in the oxide–substrate interface
(right-hand column). Furthermore, the oxide–substrate interface
showed pits and intermetallic particles sticking out from the substrate
into the oxide due to the difference in oxidation behaviour of the second
phases compared to the aluminium matrix. It is reported that the iron
and silicon rich particles are usually unaffected, while Mg2Si and other
active particles are partially or fully oxidised or dissolved during
anodisation [24]. The particles sticking out from the substrate into the
oxide are expected to have a large influence on the appearance of the
specimens, as described in previous studies [10,11]. The particles in

Fig. 11. Photo spectrometrymeasurements of polished specimens, showing total reflectance (solid curves) and only diffuse reflectance (dotted curves), a) AA1050, b) P706, c) AA5754 and
d) AA6082.
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the interface will cause diffuse scattering of light and therefore lower
the amount of specular reflectance for the anodised AA5754 and
AA6082 specimens compared to the purer AA1050 and P706, as seen
in the photographs (Fig. 4) and the photospectrometry measurements
(Fig. 11).

The BRDF results of the P706 specimens (Fig. 13) show that the
rough as-etched specimen reflects light over a wide angular range to
about ±30°. On the other hand the polished, as-anodised specimen
reflects still at lowmeasureable reflectance intensities at higher angles.
Since a smoother surface is found for the polished and anodised speci-
mens (Fig. 6e and f) compared to the as-etched specimen (Fig. 5d), it
is expected that the scattering of light occurring in the anodised layer
might be the reason for the broad reflectance characteristics of the
polished, as-anodised specimen.

Fringes are found in the photospectrometry measurements for the
polished and anodised specimens (Fig. 11) for specimens with
anodised layers up to 6.8 μm in thickness (Table 4), and are not seen
for anodised layers of 7.2 μm and more. This pattern is previously
found by Shih et al. [32], however they found that the fringes disap-
peared for AA1050 specimens at thicknesses of 2.5 μm and more [32].
Additionally, it is found that the polished, as-anodised, P706 specimen
(Fig. 11b) with 6.8 μm oxide shows much bigger fringes than the
polished, sealed, AA6082 specimen (Fig. 11d) with same oxide thick-
ness. It is expected that the impurities in the AA6082 oxide obstruct
the thin film interference due to scattering effects. Furthermore, the
morphology of the oxide–substrate interface has an effect on the inter-
ference fringes, as found for the etched and anodised specimens of P706
(Fig. 10b) of similar thickness (6.7 μm and 6.9 μm (Table 4)) showing
much smaller fringes.

Fig. 12. Angle resolved photospectrometry on P706 specimens with an angle of incidence of 45°. a) as-etched, b) etched, as-anodised, c) as-polished, and d) polished, as-anodised.

Fig. 13. BRDF measurements of alloy P706 measured at an incident angle of θi = 45° at
550 nm at angles of ±30° from the specular angle.
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For the etched P706 specimens, both the integrating sphere
(Fig. 10b) and the BRDF measurements (Fig. 12a and b) show that the
total reflectance decreases after anodisation. For the polished P706
specimens, the integrating sphere measurements (Fig. 11b) the total
reflectance is almost similar for the as-polished and the polished,
as-anodised specimen, while the diffuse reflectance is lower for the
as-polished specimen. Thus, it has the highest specular reflectance.
This is supported by the BRDF measurements (Fig. 13), where the as-
polished specimen shows a higher BRDF peak at and near the specular
region compared to the polished, as-anodised specimen. The BRDF of
the polished, as-anodised specimen shows broad reflectance character-
istics in the near specular region, supporting that the oxide layer in-
duces diffuse scattering of the light [20,21]. A larger diffuse reflectance
of the anodised specimens is also observed in the photographs of the
polished specimens (Fig. 4, middle and right-hand column), where the
bright light reflected by the plate of polystyrene is reflected in the spec-
imens. Less illumination of the plate of polystyrene had probably
reduced the diffuse reflectance seen in the photographs and thereby en-
hanced the appearance of the specular reflection for the polished
specimens.

4.3. Effect of sealing

Sealing of the anodised layer after anodisation did not create major
changes in the optical appearance of the etched specimens (Table 3
and Figs. 3 and 10). Additionally, the results of the SEM investigations
of the etched, as-anodised specimens are not presented, but the speci-
mens look identical to the images presented of the etched, sealed spec-
imens in Figs. 5 and 6. The photospectrometry measurements (Fig. 10)
of the etched, sealed specimens compared to the etched, as-anodised
(and polished, as-anodised) specimens showno difference in the visible
spectrum, but the presence of pseudoböhmite causes a dip in the reflec-
tance spectra at around 350 nm due to light absorption in the sealed
layer.

Looking at the photographs of the polished specimens it is found
that the sealing actually has an effect on the appearance of the speci-
mens. The polished, sealed specimens of AA1050 and P706 (Fig. 4c
and f) have a more distinct reflection, than the polished, as-anodised
specimens (Fig. 4b and e). It is expected that during the sealing, the
porous anodised layer is transformed into a much more optically uni-
form layer of pseudoböhmite and aluminium hydroxide (Al(OH)3)
[33,34] giving a more undisturbed and distinct reflection compared to
the unsealed specimens. It is noticed that the anodised layer of the
sealed specimens are thinner (Table 4) due to the lower anodisation
voltage of 12.1 V instead of 12.6 V as for the polished, as-anodised
specimens. However, the difference is considered insignificant as the
photospectrometry measurements (Fig. 11) show an almost identical
reflectance spectrum for the polished, as-anodised and the polished,
sealed specimens. The anodised layer has an effect on the appearance,
which is in agreement with other studies [2,20–23]. Zhu et al. [11]
found very little optical effect of the anodised layer but it is important
to notice that their studies were made on etched specimens. It is ex-
pected that the appearance of high gloss specimens is much more
sensitive to smaller variations in the appearance compared to those
of the etched specimens. Furthermore, it is hard to determine whether
the reflection of an etched specimen is distinct, due to the nature of the
diffuse reflection. Tabrizian et al. [23] studying high gloss specimens
found that the inhomogeneity and imperfections in the anodised layer
have a large effect on the optical appearance of anodised aluminium
specimens.

All polished specimens have almost the same total reflectance,
however the specular reflectance is higher for P706 and AA6082
after anodisation and sealing (Figs. 4c, f and 11b, d) compared to
AA1050 and AA5754 (Figs. 4i, l and 11a, c). The SEM images show
big amounts of particles and pits in the oxide–substrate interface
for the AA5754 and AA6082 specimens (Fig. 5i and l), which cause

the anodised specimens to show more diffused reflections (Fig. 4i
and l).

Comparing etched, sealed specimens, it is found that the degree
of alloying (Table 1) is correlated with the roughness after etching
(Fig. 7). As expected, an increase in the surface roughness results in an
enhanced diffuse scattering of light (Fig. 10a and d).

Comparing polished, sealed specimens, it is notable that some
alloying is necessary for gaining a proper polished flatness (Fig. 8). In
addition, a high alloy purity ensures a more specular reflection, since
only few particles and pits are present at the oxide–substrate interface
(Fig. 6f) [10,11], and only little absorption and scattering will occur in
the anodised layer [23]. It is found that for P706 the uniform
pseudoböhmite layer after sealing gives a distinct (Fig. 4f) and highly
specular reflectance (Fig. 11d).

The results presented in this paper show that alloying elements,
especially iron and silicon, have significant influence on the appearance
of both etched and polished, anodised aluminium specimens. The
alloying elements affect the optical properties of the anodised layer
making it less transparent, and change the surface and oxide–substrate
morphology during etching and anodisation. The knowledge achieved
here on the commercial alloys is particularly important when using
recycled aluminium alloys containing higher amounts of impurities
and alloying elements.

5. Conclusion

The appearance of commercial alloys AA1050, Peraluman 706
(P706), AA5754, and AA6082were investigated with focus on the effect
of etching, polishing, anodisation, and sealing. It was found that:

• The roughness andpercentage of diffuse reflectance caused by etching
increased with the degree of alloying. For pure and soft alloys, the
polishing was hard and resulted in a rougher surface compared to
specimens with a higher amount of alloying elements.

• BRDF measurements showed that the as-etched specimens show a
broad intensity distribution function of the scattered light at and
near the specular region, whereas the as-polished specimen exhibit
high reflectance near the specular angle. After anodisation, for both
etched and polished specimens, the fraction of diffuse light scattering
increases and this could be explained by the light scattering within
the anodised layer.

• A clear correlation was found between the topography of the original
surface and the topography of the oxide–substrate interface beneath
the anodised layer after anodising.

• Polished specimens alloyed to a higher degree lost their high gloss
appearance after anodisation due to particles and pits in the oxide–
substrate interface and heterogeneities in the oxide due to alloying
elements. The high purity alloy P706 with 0.3 wt.%–0.8 wt.% magne-
sium showed high gloss after polishing, anodisation and sealing due
to the high purity and the flat polished surface.

• Sealing made the reflection of the polished specimens more distinct
since the pseudoböhmite layer is optically more homogenous than
the porous as-anodised layer. Absorption was observed in the re-
flectance for sealed specimens at 350 nm due to absorption in the
pseudoböhmite layer.
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Magnetron sputtered coatings of aluminium containing up to 18 wt.% titanium were deposited on aluminium
substrates to study the effect of microstructure on the optical appearance of the anodised layer. The microstruc-
ture and morphology were studied using transmission electron microscopy (TEM), X-ray diffraction (XRD), and
glow discharge optical emission spectroscopy (GDOES), while the optical appearance was investigated using
photospectrometry. The microstructure of the coatings was varied by heat treatment, resulting in the precipita-
tion of Al3Ti phases. The reflectance of the anodised surfaces decreasedwith titaniumcontent in the as-deposited,
and heat-treated states, and after anodisation of the as-deposited coatings. Specimens turned grey or blackwhen
anodising after heat treatment. Partially anodisedAl3Ti phaseswere found in the anodised layer, and the interface
between substrate and anodised layer was rough, causing light trapping. Progressive darkening of the anodised
layer is assumed to be due to the synergetic effect of morphology of incorporated intermetallics and substrate
interface.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Anodised aluminium surfaces are widely used for decorative appli-
cations, often without colouring. The increased use of recycled alumin-
ium alloys makes it difficult to predict the appearance of the anodised
surface due to the presence of higher amounts of impurity elements
and second phase particles in the aluminium matrix. Therefore it is of
great interest to understand the optical effect of various elements and
second phase particles in the aluminium matrix, including those
which are not highly soluble in aluminium.

Magnetron sputtering is a process which can be used for synthesis-
ingnon-equilibriumcoating compositions,where the amount of various
elements can be precisely controlled. Therefore sputter coatings can be
used as a model system for studying the effect of alloying elements and
the resultingmicrostructure on various properties such as corrosion and
wear resistance, and optical appearance. Both crystalline and amor-
phous TiO2 are known to have high refractive indices, and therefore
titanium has been deposited to create anodised aluminium layers con-
taining TiO2 constituents.

For as-deposited coatings containing up to 40 wt.% titanium it has
been reported that the microstructure is comprised of a supersaturated
α-Al [1–3]. Hampshire et al. [4,5] investigated the microstructure and

mechanical properties of Al–Ti sputtered coatings in the as-deposited
form and after heat treatment for 2 h at 600 °C. Additionally, many au-
thors have studied the corrosion properties of Al–Ti coatings in saline [2,
6,7], acidic [8–11] and alkaline environments [12].

Studies on the optical properties of a sputtered aluminiumfilm show
that both the index of refraction, n, and the extinction coefficient, k, are
found to be affected by the sputtering parameters [13]. Wöltgens et al.
[14] investigated optical properties of magnetron sputtered Al–Ti films
of 80 nm thickness containing up to 13 wt.% titanium and found that
the reflectance decreases with the titanium concentration both for the
as-deposited film and after heat treatment.

Anodisation of Al–Ti coatings have been done in several studies [3,
15–18], finding the anodised layer to be amorphouswith few inclusions
of crystallineAl2O3 and TiO2 [3,15,17]. The oxide layer has approximately
the same Al–Ti ratio as the coating [3,15,17,18], and Ti4+ migrates at
rates, which aremaximum10% lower than that of Al3+ [15]. Anodisation
of Al–Ti coatings showed that the pore diameters and pore distance for
fixed potential [16,18] and the pore diameter for fixed current [3] in-
crease with the titanium concentration bothwith andwithout hydrogen
fluoride in the sulphuric acid electrolyte. The thickness of the anodised
layer was found to decrease significantly with increasing titanium con-
tent when the anodisation potential was kept constant [16,18].

The investigations in this paper usemagnetron sputtered Al–Ti coat-
ings containing up to 18 wt.% titanium as a model system to investigate
themicrostructural and optical effects of electrochemically stable titani-
um rich secondphase particles. The as-depositedmicrostructurewas al-
tered by heat treatment and the coatings were anodised in sulphuric
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acid. Microstructural investigationswere performed using transmission
electron microscopy, X-ray diffraction and glow discharge optical emis-
sion spectroscopy, while optical investigationswere performedwith re-
flectance analysis using an integrating sphere spectrometer setup.

2. Materials and methods

2.1. Materials and heat treatments

Coatings were deposited by DC magnetron sputtering using an in-
dustrial-scale CemeCon CC800/8 machine with a chamber volume of
70 cm × 60 cm × 60 cm, and two cathodes. The opposite placed cath-
odes faced the substrates which were mounted on a planetary rotating
table in the middle of the chamber to ensure a homogeneous deposi-
tion. The deposition chamber was initially evacuated to a base pressure
of 6mPa. During sputtering constant argon flow of 200 SCCM (mL/min)
was used, leading to a typical argon pressure of 500 mPa. The distance
between the targets and sample was about 100 mm, and the bias volt-
age on the substrates was fixed at −50 V. The maximum temperature
during deposition was between 150 °C and 200 °C, as measured by a
bi-metal thermometer during the deposition.

Specimens of homogenous compositionwere produced on substrates
of AA465.0 (8 wt.%–11 wt.% silicon and 2 wt.%–4 wt.% copper) with di-
mensions of 70mm×25mm×4mm. For comparison, AA1050 coatings
were produced using two AA1050 targets. Binary Al–Ti coatings were
produced using an AA1050 target and a titanium target (grade 1, 99.5%
purity) with cylindrical pins of 1 cm in diameter of AA1050. The
aluminium target was sputtered at a power of 2000 W, while the
titanium–aluminium target was sputtered at 100 W, 200 W, 400 W, and
600 W achieving titanium concentrations of 3 wt.%, 6 wt.%, 13 wt.%, and
18 wt.% (measured with energy dispersive X-ray spectroscopy (EDS)).
The coatings were 11 μm–25 μm in thickness. These coated specimens
were heat-treated for 2 h at 200 °C, 300 °C, 400 °C and 500 °C and subse-
quently cooled in air.

Al–Ti gradient coatings were produced on substrates of AA6401
(0.35wt.%–0.7wt.%magnesiumand 0.25wt.%–0.7wt.% silicon)with di-
mensions of 220mm×40mm×5mm. The targetswere displacedwith
respect to the centre of the sputter coating chamber. The aluminium tar-
get was sputtered at a power of 2000 W, while the Ti–Al target was
sputtered at a power of 300 W giving a gradually varying composition
along the length of the specimen. One specimen with titanium concen-
trations of 6.5 wt.%–16.6 wt.% was obtained and cut into pieces, giving
three specimens for each of four different concentration spans. The
specimens were analysed in the as-deposited state and after heat treat-
ment for 4 h at 500 °C and 4 h at 600 °C and subsequent air cooling. An-
other specimenwasmeasured to contain 5.0wt.%–15.4wt.% titaniumand
was anodised in the as-deposited state and subsequently analysed by
photospectrometry.

2.2. Anodisation

The specimens were rinsed with ethanol in an ultrasonic bath for
5 min before 2 min cleaning in 60 g/L AlfiClean from AluFinish at
60 °C. Desmutting was performed for 4 min in 69% nitric acid at room
temperature. Anodisation was carried out for 20 min in 10% sulphuric
acid at 13 °C–17 °C and a constant voltage of 18 V–19 V (the specimen
containing 8.4 wt.%–10.5 wt.% titanium, heat treated at 500 °C was in-
stead unintentionally anodised at 20 V–23 V, but gave the same appear-
ance). Subsequent sealing of the anodised specimenswas carried out in
demineralised water at 96 °C. All steps except sealing were followed by
recurring rinsing in demineralised water.

The as-deposited 5.0 wt.%–15.4 wt.% gradient sample was anodised
for 30 min in sulphuric acid at 12.6 V and hot water sealed in one
piece in an industrial setup described elsewhere [19].

2.3. Microstructural analysis

Phase identification was done by X-ray diffraction (XRD) mea-
surements on a Bruker D8 Discover diffractometer with a copper
Kα1 beam (1.54 Å) with grazing incidence at 2°. The measurements
were performed in a 2θ range from 20° to 100° (only 20° to 85° is
presented) with a step size of 0.03° and a step time of 4 s. Obtained
diffraction patterns were indexed using the EVA Application soft-
ware [20].

For detailed microstructural analysis, transmission electron mi-
croscopy (TEM) was performed using a Tecnai T20 G2 from FEI
operated at 200 keV. A Quanta 200 3D DualBeam microscope from
FEI equipped with a micromanipulator was used for focused ion
beam milling and in-situ lift out of a lamella of 2 μm thickness,
followed by thinning in a Helios Nanolab DualBeam from FEI. The
thickness of the TEM lamella made from the as-deposited coating
was 175 nm, whereas the heat-treated and anodised specimen
was milled to a thickness of 450 nm in the thickest area, while the
oxide layer was milled away faster than the rest of the specimen
and was therefore thinner. The final finishing of the lamella was
performed by ion milling (2 kV) with low energy to avoid unintend-
ed damage from the beam.

Composition depth profiling was done using radio frequency glow
discharge optical emission spectrometry (GDOES) on a GD Profiler 2
fromHoriba Scientific. The argonpressurewas set to 650Pa and thepro-
cess ran at a power of 35 W. The module and phase was set to 7.6 V and
3.8 V respectively.

2.4. Photospectrometry

For optical reflectance measurements, an integrating sphere setup
(described in details in Ref. [21]) with light from DH 2000 from Ocean
Optics using an optical fibre entering at 8° with respect to vertical was
used. Reflections from the sample surface were integrated within the
highly reflecting coated sphere and collected by an optical fibre con-
nected to a photospectrometer (QE 65000 from Ocean Optics). Mea-
surements were performed across a wavelength range of 380 nm–

760 nm over an integration period of 3 s. All spectra were referenced
against a NIST high reflectivity standard.

Fig. 1. Photographs of anodised specimens for, left: as-deposited, middle: 500 °C, and
right: 600 °C for specimens with a titanium concentrations of a) 6.5 wt.%–8.4 wt.%, and
b) 8.4 wt.%–10.5 wt.%.
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3. Results

3.1. Photographs

Fig. 1 shows the appearance of the anodised specimens of the lowest
titanium concentrations for the as-deposited specimens and after heat
treatment. For all titanium concentrations, anodisation after heat treat-
ment at 500 °C and 600 °C gave a homogenous dark grey, brown or
even black appearance. The as-deposited specimens showed a more reg-
ular light appearance after anodisation, and in some cases with colour
bands due to thin film interference [22,23]. The concentrations shown in
Fig. 1 are the measured titanium content on the as-deposited specimens.
Similar appearance was found for the other titanium concentrations.

3.2. Microstructural investigation

The TEM image of the as-deposited specimen containing 13 wt.% ti-
tanium (Fig. 2a) showed a layered structure with a general periodicity
of 32 nm±4 nmdue to the use of two different targets placed on oppo-
site sides of the rotating specimen. Layers with bright appearance were
mainly deposited from the AA1050 target with lower amounts of titani-
um, while the dark layers were rich in titanium. The bright layers of low
titanium concentration were measured to be 22 nm–30 nm and the
dark titanium rich layers were measured to 2.5 nm–9.5 nm depending
on which layer was measured and how the layer boundaries were de-
fined. Fig. 2b gives an overview of a specimen containing 10wt.% titani-
um that was heat-treated for 4 h at 600 °C followed by anodisation.
After heat treatment the layered structurewas dissolved and a homoge-
neously appearing matrix containing precipitates with an average size
of approximately 250 nm × 550 nm was formed. All precipitates were
of the same composition, and the difference in contrast is due to the ori-
entationwith respect to the electron beam. The average thickness of the
anodised layer was approximately 1.2 μm. The encircled part of Fig. 2b
shows an area with no particles, where the anodisation continued be-
tween two particles. The dark layer appearing at the oxide surface in

Fig. 2c is the platinum layer deposited for protection during the milling
and lift out process. Particles in the anodised layerwere found to be partly
or fully oxidised as presented in Fig. 2c and d. The pores originated from
the anodising process andweremeasured to be 8 nm–10 nm in diameter
in the aluminium matrix. The titanium-containing phases featured
both narrow and wider pores with diameters of the wider pores of
25 nm–35nm. Furthermore, the pores in the aluminium collapsed during
sealing, whereas both the narrow and thewide pores in the titanium-rich
particles seemedunaffected by the sealingprocess. A bright region behind
a particle (Fig. 2e) was expected to be unanodised metallic aluminium
[24–26], where Walmsley et al. [26] found similar areas behind partly
oxidised particles and identified these as unoxidised aluminium. Fig. 2f
shows a partly anodised particle in the oxide–substrate interface.

XRDmeasurements (Fig. 3) were used for phase identification of the
as-deposited film containing 12 wt.% titanium, after heat treatment for
4 h at 500 °C and 600 °C, and for a heat-treated and anodised specimen.
For the as-deposited specimen, only peaks for the α-Al phase were
found, whereas for the specimens heat-treated at 500 °C and 600 °C,
additional peaks corresponding to the Al3Ti phase were found. No
oxide containing phases were identified for the anodised specimen.

The GDOES measurements of an anodised specimen containing
7 wt.% titanium are presented with an overview and magnified view of
the lower intensity values (Fig. 4a and b respectively). From crater
depth measurements (not presented) the sputter rate was calculated to
be ~30 nm/s. In Fig. 4a and b, dotted lines indicate the interface between
the anodised layer and the sputtered coating and the coating-substrate in-
terface. The oxide-coating interface was at about 1.9 μm (~63 s) from the
surface, and the coating-substrate interfacewas at about 10.5 μm(~350 s)
from the surface. It is found that the aluminium and oxygen signals
stabilised briefly within the oxide layer. This was followed by increasing
signal for aluminium and decreasing signal for oxygen when closing in
on the interface between the anodised layer and the sputtered coating.
Presence of sulphur was attributed to the use of sulphuric acid in the
anodisation process and hydrogen containing species were expected
to be incorporated into the film both during anodisation and especially

Fig. 2. Cross section transmission electron microscopy images of a) as-deposited coating containing 13 wt.% titanium, and b–f) heat-treated and anodised specimen containing approxi-
mately 10 wt.% titanium.
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during sealing. The carbon peak at the surface was due to ethanol
cleaning just before the measurement. Mainly aluminium and titanium
were found in the sputtered coating. The oxygen concentration de-
creased and the magnesium concentration increased throughout the
sputtered coating, due to diffusion from the AA6401 substrate during
heat treatment.

3.3. Photospectrometry measurements

Photospectrometry measurements of the as-deposited coatings
(Fig. 5a) showed that the total reflectance decreased with increasing ti-
taniumconcentration. Additionally, it was found that the fraction of lon-
ger wavelengths increased with the titanium concentration i.e. the pure
aluminium coating had a slight blue tint, whereas the coatings contain-
ing 13wt.% and 18wt.% titaniumhad a red tint. In Fig. 5d the reflectance
of the as-deposited coatings is plotted at 600 nm as a function of titani-
um concentration (squares). Additionally, similar values for specimens
heat-treated for 2 h at 300 °C are plotted (circles). In both cases the
reflectance decreased with increasing titanium concentration. A series
of specimens containing 13 wt.% titanium was heat-treated at different
temperatures and the reflectance characteristics are presented in Fig. 5b
and the reflectance at 600 nm in Fig. 5e. The reflectance in general

remains constant for specimens heat treated for 2 h at 400 °C, while
the reflectance decreased after heat treatment at 500 °C (Fig. 5e). Fur-
thermore, as seen in Fig. 5b, the reflectance of the anodised specimen
heat treated at 500 °C was constant over the range of wavelengths,
whereas for other specimens, reflectance has increased towards red.
The as-deposited and anodised specimen showed large interference
fringes, making the plot harder to evaluate. Therefore, Fig. 5c presents
curves, which are smoothed by adjacent averaging in Origin, enabling
comparison of the reflectance. A decrease in the reflectance was found
from 450 nm towards lower wavelengths. The plot of reflectance at
600 nm (Fig. 5f) shows that the reflectance decreased with increasing
titanium concentration from8wt.% titaniumandmore. The oxide thick-
ness was measured by cross section SEM images (not presented) to be
3.8 μm for 5.0 wt.% titanium to 1.1 μm for 15.4 wt.% titanium.

4. Discussion

4.1. Microstructure and appearance of as-deposited coatings before and
after anodisation

The microstructure of the as-deposited coating was found to be al-
ternating layers of low and high content of titanium (Fig. 5a), which is
similar to the structure of magnetron sputtered coatings reported in
the literature with similar configuration of targets and rotation of spec-
imens [14,15]. Since no titanium-containing phaseswere formedduring
deposition (Fig. 3), the coating is expected to be supersaturatedα-Al, at
least in the aluminium-rich layers [1–3]. The reflectance of the speci-
mens is well correlated with the titanium concentration (Fig. 5b),
which is not expected, as the layered structure should negate the effect
of the titanium concentration. The penetration depth of light at 500 nm
(the depth where the radiation intensity is ~37% of the original incom-
ing intensity) is calculated to be approximately 6.6 nm for pure alumin-
ium and 16.5 nm for titanium. Furthermore, reflected light needs to
return to the surface, doubling the optical path. Since the alternating
layers had a period of 32 nm (Fig. 5a) for the specimen containing
13 wt.% titanium, it is not expected, that the light necessarily would
be affected by both aluminium- and titanium-rich layers for all of the
specimens. Furthermore, the measured layers are from different coat-
ings produced in different processes, so that it is not expected that the
same type of layer is at the surface for all specimens. The observed cor-
relation between titanium concentration and the reflectance has not
been explained. However, previous studies on Al–Ti coatings with a
layered structure with a periodicity of only 1.6 nm [14] showed similar

Fig. 3.X-ray diffractionmeasurements for coatings containing approximately 12wt.% tita-
nium in the as-deposited and heat-treated condition.

Fig. 4.Glow discharge optical emission spectroscopymeasurements of an anodised coating containing about 7 wt.% titanium on an AA6401 substrate, a) overview, b) samemeasurement
with expanded intensity-scale.
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behaviour, where the reflectance also decreased with the titanium
concentration.

After anodisation of the as-deposited coating,wide colour fringes due
to thin film interference [22,23]were observed (Fig. 5c). The oxide thick-
nesswas found to decreasewith titaniumconcentration as previously re-
ported [16,18]. The reflectance of the anodised specimen decreasedwith
the titanium concentration (Fig. 5c), whereas for a regular aluminium
alloy it is generally expected that the reflectance decreases with the
thickness of the anodised layer [23].

4.2. Microstructure and appearance of heat-treated coatings before and
after anodisation

Heat treatment of the specimensmodified the layered structure and
resulted in the formation of Al3Ti phases (Figs. 2b and 3). Previous work
identified Al3Ti phases to form for heat treatment at 350 °C andmore [5,
14], which corresponds well with the XRD results presented in Fig. 3.
From the GDOES measurement it was found that the magnesium dif-
fused from the substrate into the sputtered coating (Fig. 4b); however
nomagnesium containingphaseswere found in theXRDmeasurements
(Fig. 3), which might be due to the low concentration. Wöltgens et al.
[14] found that the reflectance and the resistivity of the film decreased
with the titanium concentration after heat treatments, as found in
Fig. 5d (circles). In Fig. 5b and e it is found that the reflectance increases
with heat treatment up to 300 °C followed by a decrease in the reflec-
tance at higher heat treatment temperatures. The same trend was
found for thin Al–Ti films [14], where the reflectance decrease from
around 210 °C, due to themuch lower thickness (80 nm) of the investi-
gated films. It is therefore expected that the precipitation and growth of
Al3Ti phases, caused by the heat treatment, cause the resistivity and the
reflectance to decrease.

Due to the passivating nature of titanium, Al3Ti particles are in most
cases only partially oxidised during anodisation. This creates a structure
with an oxidised upper part and a lowermetallic core (Fig. 2c and f). It is
known that anodised aluminium is amorphous [27] and that the
anodised Al–Ti coatings are amorphous with low amounts of crystalline
Al2O3 and TiO2 phases [3,15,17]. This is well supported by the lack of

oxide-containing phases in the XRDmeasurement of the anodised spec-
imen (Fig. 3). In general it is expected that the presence of intermetallic
particles in the anodised layer causes darkening [24,25,28–30]. Further-
more, previous studies have shown that similar darkening effects can be
created by holes within the oxide [31,32] and by very high substrate
roughness before anodisation [33]. Therefore, the darkening effect
might be due to various effects for different specimens.

4.3. The darkening mechanism

The surface structure consists of a matrix of anodised and sealed al-
uminium. The matrix contains partially oxidised Al3Ti particles with an
oxide and an unoxidised part. Furthermore, there is an interface be-
tween the anodised layer and the sputtered coating.

For the darkening effect to happen, some absorbing constituents are
expectedwithin the anodised layer. It has previously been reported that
metallic parts such as the aluminium substrate [13], unoxidised alumin-
ium [24–26] and the unoxidised part of intermetallic particles [34] all
absorb light. The anodised and sealed aluminium matrix, and the
oxidised part of the Al3Ti particles are expected to have only little
absorption.

Due to the low thickness of the oxidefilm (1.2 μm), additional effects
are expected, causing the light to travel longer in the medium and
thereby increasing the absorption of light. This can happen due to scat-
tering, causing light to move inclined and more parallel to the surface.
Scattering is expected to happen as surface scattering at the interface
between the anodised layer and the sputtered coating and in themetal-
lic part of the particles. Furthermore, changes in refractive indices of the
oxides will cause additional scattering. The interface between the
anodised layer and the sputtered coating was quite rough as observed
in Fig. 2b and c. In comparison to a rough surface in air, the subsurface
morphology appears optically larger when the background medium
(the anodised layer) has a refractive index larger than air. Since we
can expect a refractive index around 1.6 (the refractive index of the
main constituents are nBöhmite: ~1.65 and nGibbsite: ~1.57), the scattering
effects at the interface are comparable to the same structure enlarged by
1.6 in air.

Fig. 5. Photospectrometrymeasurements of a) as-deposited coatings, b) reflectance as a function of heat-treatment temperature for specimens containing 13 wt.% titanium, c) intensities
measured on as-deposited, anodised specimen, smoothed by adjacent averaging inOrigin. Reflectance values corresponding to 600 nmwavelength from a, b, and c are extracted and plot-
ted in d, e and f respectively.

142 M. Aggerbeck et al. / Surface & Coatings Technology 254 (2014) 138–144



A preliminary suggestion to the darkening mechanism is presented
in Fig. 6, where incoming light hits the subsurface interface and is partly
absorbed during surface scattering (reflection). For light returning to
the surface at angles larger than the critical angle, ~38.7° to the surface
normal (nanodised layer= 1.60), the light is experiencing total internal re-
flection in the interface of the anodised layer and the air without any
loss. Subsequently, the lightwill again be reflected by the subsurface in-
terface causing additional absorption. Most of the incoming light is
therefore expected to reflect back and forth between the top surface
of the anodised layer and the subsurface, denoted light trapping. Only
light returning to the surface at an angle smaller than the critical angle
will leave the oxide. Furthermore, the presented specimens contain ab-
sorbing particles inside the oxide causing the mean free path of a light
wave to be even smaller, and thereby causing both more absorption
and scattering.

The darkening effect is therefore expected to be caused by absorbing
and scattering constituents in the oxide layer and the roughness of the
interface between the anodised layer and the metallic sputtered coat-
ing. The described mechanism is yet to be verified, but all these factors
seem to contribute in a significant way.

The cross section TEM images (Fig. 2) show evidence of the presence
of local changes in oxide structures, metallic cores or shadow regions,
which all support the mechanisms explained above. Similar partially
oxidised intermetallics are found previously for silicon- [35,36], iron-
rich [37,38], and unidentified particles in AA6060 [26]. Presence of
impurities and alloying elements has been reported to darken the
anodised layer [24,25,28,30], and the effect might be due to an undis-
solved part of the particles absorbing and scattering the light [34]. Electro-
chemical oxidation of intermetallics in the anodisation bath depends on
its electrochemical behaviour, and a number of intermetallics in commer-
cial aluminium alloys are oxidised slower (e.g. Al3Fe and Al9Fe2Si2) or
faster (e.g. Mg2Al3 and Mg2Si) than the aluminiummatrix [28,39]. It has
been reported that Al3Ti particles are cathodic during etching and remain
unchanged and incorporated into the oxide film during anodisation [28,
39]. The parameters of the sulphuric anodisation are not specified in
Refs. [28,39] and therefore the rather high anodisation voltage in this
studymight have caused theAl3Ti particles to partly oxidise. Furthermore,
it has been reported that the electrochemical behaviour of some interme-
tallic particles is highly dependent on the particle size [28,39]. Similarly,
both fully and partly oxidised intermetallics are found in Fig. 2, where
the biggest particles are not fully oxidised. The pores are wider in the
Al3Ti particles as previously reported [3,16,18]. Habazaki et al. [15]
found that the migration rate of Ti4+ are up to 10% slower than the rate
of Al3+, which does not directly correlate with this picture, where there
seems to be a bigger difference in the oxidation rate; however, this can
be correlated to both particle size and the fact that this is Al3Ti particles
instead of metallic Ti as in [15].

It is known that surface structures such as grain boundary grooves
[40–42] and surface scallops [36,43] are formed due to alloying ele-
ments and impurities, and that these cause a decrease in the reflectance
of aluminium alloys. Since these surface structures are expected to
cause amore diffuse reflection from the interface between the anodised
layer and the sputtered substrate, it could also be caused by light trap-
ping. Results presented elsewhere [19] show that the total reflectance
of polished alloys is not decreased by anodisation, whereas the total re-
flectance of etched specimens decreased with relation to the previous
etching roughness [19]. This is in line with the proposed darkening
mechanism.

The results presented in this paper show that the addition of titani-
um into aluminium based magnetron sputtered coatings decreases the
reflectance of the specimen. After heat-treatment and anodisation the
specimens turned dark. It is suggested that the darkening mechanism
is caused by partially oxidised Al3Ti particles and a rough interface be-
tween the anodised layer and the sputtered coating. Controlling the
subsurface roughness and the amount of partially oxidised particles in
anodised layer of e.g. recycled aluminium alloys, might therefore be a
way to achieve the desired appearance in spite of high amounts of im-
purities and alloying elements.

5. Conclusions

Magnetron sputtered coatings containing up to 18 wt.% titanium
were investigated in the as-deposited formand after heat-treatment be-
fore and after anodisation. It was found that:

• A structure of alternating layers containing low and high amounts of
titanium was found, with α-Al as the only identified phase in the as-
deposited coatings. After heat treatment for 4 h at 600 °C, a homoge-
nous aluminium matrix and high concentrations of elongated Al3Ti
precipitates, with an average length of approximately 0.5 μm and an
aspect ratio of about 1:2, appeared.

• Photospectrometry measurements showed that the reflectance de-
creases with increasing titanium concentration for the as-deposited
specimens, for the specimens heat-treated for 2 h at 300 °C, and for
the as-deposited and anodised specimens.

• Coatings containing 6 wt.%–16 wt.% titanium that were heat-treated
for 4 h at 500 °C and 600 °C all turned dark grey, brown or black dur-
ing anodisation.

• Transmission electron microscopy of a specimen containing 10 wt.%
titanium showed an oxide film of 1.2 μm, containing many partially
oxidised Al3Ti particles with a metallic core. In some cases, expected
unoxidised aluminium was found behind the particles. Pores of
8 nm–10 nm in diameter were found both in the aluminium matrix
and in the Al3Ti particles, where additional pores of 25 nm–35 nm
in diameter were also found.
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Saline and alkaline corrosion resistance of aluminium-titanium  
coatings prepared by plasma magnetron sputtering 

M. Aggerbecka, K. Rechendorffb, K. Dirscherlc, R. Ambata 

The effect of microstructural changes by heat treatment up to 500°C on the corrosion properties of magnetron sputtered 
aluminium coatings containing up to 18 wt.% titanium was investigated in saline conditions and at pH 13.5. The coating 
microstructure was investigated using XRD, SEM, and TEM; while anodic polarization experiments, alkaline exposure 
studies, and scanning kelvin probe force microscopy were used for corrosion analysis. The alkaline corrosion re-
sistance was significantly improved with 13 wt.% titanium and additionally improved by heat treatment. The improved 
corrosion resistance after heat treatment were ascribed formation of Al3Ti precipitates, homogenization of titanium con-
centration, and structural relaxation.  

Abstract  

Keywords: A. Aluminium, A. Sputtered films, A. Titanium, B. Polarization, B. XRD, C. Alkaline corrosion 

1. Introduction 
Aluminium is a key material of future green technology 
due to its high strength-to-weight ratio. In a number of 
technological applications replacing steel with alumini-
um will result in significant weight reductions, which 
can be directly translated into efficiency and reduction 
in fuel consumption in the transportation sector. Howe-
ver, any material used in the automotive industry needs 
considerable corrosion resistance not only in usual mild 
to harsh corrosive conditions, but it also necessitates 
some level of corrosion resistance in highly alkaline 
conditions (up to pH 13.5) due to the alkalinity of the 
detergents used for automatic car wash.  Today nickel 
salt sealing [1] is often used in the automotive industry, 
but since nickel is an allergen, an alternative surface 
treatment needs to be found. Also the level of corrosion 
resistance provided by the nickel sealing is not faultless 
beyond pH 12. Therefore several alternative techniques 
have been tested for enhancing the corrosion resistance 
of aluminium, especially the sol-gel and the magnetron 
sputtering techniques. 

Sol-gel coatings on aluminium have shown to be protec-
tive in saline and acidic conditions [2–5], while others 
studied the improvement of the alkaline corrosion re-
sistance [5–7]. Akid et al. [5] studied the properties of 
combined polyanilin/sol-gel coatings in 3.5 % NaCl in 
neutral (pH 6.8), acidic (pH 3.5) and alkaline (pH 9.2) 

conditions. Significant improvement in neutral and 
acidic conditions was found; however, less promising 
results were achieved in alkaline conditions. Zhang et al. 
[6] coated aluminium pigments with silica and found a 
corrosion protection factor of 99.3 % in a NaOH soluti-
on at pH 11. Hirai et al. [7] found that zirconium oxide 
sol-gel coatings improved the corrosion properties of 
commercially pure aluminium significantly in a 10 wt. 
% NaOH solution. 

The magnetron sputtering technique enables the formati-
on of aluminium coatings with desired compositions of 
other alloying elements. Although, the process is not 
feasible for all applications due to cost and the limitation 
of the size and shape of the object that can be coated, the 
method can be effectively used for understanding the 
behaviour of various alloy compositions. Unlike conven-
tional processes such as casting, magnetron sputtering 
allows preparation of non-equilibrium coating composi-
tions and homogenous distribution of the alloying ele-
ments throughout the coating. 

Magnetron sputtered coatings of binary Al-Ti alloys 
have previously shown good corrosion resistance in sa-
line conditions [8–10]. Additionally, many different 
transition metals have been studied for protection in 1 M 
HCl [11] including several studies on Al-Ti coatings [12
–14]. Yan et al. [12] found that the time to natural oxide 
breakdown in 1 M HCl increased with the titanium con-
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centration. However, after oxide breakdown the anodic 
current was higher for coatings containing up to 70 wt. 
% titanium compared to pure aluminium coatings. Aki-
yama et al. [13] found that ternary sputter coatings con-
taining aluminium and titanium plus chromium, nickel 
or magnesium gave good results in 1 M HCl.  

In other studies, the mechanical properties of binary Al-
Ti coatings have been investigated after annealing at 600 
°C for 1 h [15] and 2 h [16,17] followed by investigati-
ons of the microstructure and mechanical properties. It 
was found that the microstructure, hardness, and surface 
friction varied with the alloy composition. Sun [18] an-
nealed thin titanium coatings on aluminium substrates 
and investigated the corrosion properties in the neutral 
salty conditions. These investigations showed that the 
heat treatment for 2 h at 550 °C enhanced the corrosion 
properties significantly. No literature has been found on 
the use of coatings containing aluminium and titanium 
for alkaline protection. However, previous tests in our 
laboratory  where excessive amounts of titanium and 
zirconium was used [19], showed good alkaline corrosi-
on protection. 

Investigations carried out in this paper are aimed at: (i) 
understanding the role of titanium content (3 wt. % to 18 
wt. %) on the neutral saline and the alkaline corrosion 
behaviour of aluminium and (ii) understanding how the 
microstructure of the coating including the precipitation 
of intermetallic phases during heat treatment affects the 
electrochemical and corrosion behaviour. Microstructu-
ral analyses were performed by X-ray diffraction 
(XRD), scanning electron microscopy (SEM), and trans-
mission electron microscopy (TEM) whereas corrosion 
properties were studied by alkaline immersion exposure 
testing and potentiodynamic polarization testing both at 
pH 13.5. Surface topography and surface potential prof-
iling was done by scanning kelvin probe force microsco-
py (SKPFM) measurements.  

2. Materials and methods 
2.1 Coating preparation using plasma magnetron 
sputtering 
Coatings were deposited by DC magnetron sputtering 
using an industrial-scale CemeCon CC800/8 machine 
with a chamber volume of 70 cm x 60 cm x 60 cm, and 
two cathodes. The opposite placed cathodes faced the 
substrates which were mounted on a planetary rotating 
table in the middle of the chamber to ensure a homoge-
neous deposition. The deposition chamber was initially 
evacuated to a base pressure of 6 mPa. During sputtering 
constant argon flow of 200 SCCM (mL/min) was used, 

leading to a typical argon pressure of 500 mPa. The di-
stance between the targets and sample was about 100 
mm, and the bias voltage on the substrates was fixed at -
50 V. The maximum temperature during deposition was 
between 150 °C and 200 °C, as measured by a bi-metal 
thermometer during the deposition. 

Deposition of reference coatings of aluminium 
(AA1050, 99.5 % pure) used two targets with 1000 W 
on each. Binary Al-Ti coatings were produced using one 
target of aluminium and one of titanium (grade 1, 99.5 
% pure) with cylindrical aluminium inserts of 1 cm in 
diameter. The aluminium target ran at 2000 W, while the 
titanium target ran at 100 W, 200 W, 400 W and 600 W, 
giving titanium concentrations of 3 wt. %, 6 wt. %, 13 
wt. % and 18 wt. % in the coatings. These coatings were 
deposited on cast aluminium samples (EN AC-46500, 8 
wt. % – 11 wt. % silicon and 2 wt. % – 4 wt. % copper) 
with dimensions 70 mm x 25 mm x 4 mm. Coating 
thickness was between 11 and 25 m.  

An AA6401 substrate with dimensions 220 mm x 40 
mm x 5 mm was coated with an Al-Ti gradient of va-
rying composition along the length of the specimen. An 
aluminium target running at 2000 W and the Ti-Al target 
previously described running at 300 W were displaced 
with respect to the centre of the chamber. Thereby the 
titanium content in the deposition flux varies throughout 
the chamber and the resulting coating on the relatively 
long substrate has a varying composition. This method is 
very practical for screening purposes, as a single deposi-
tion will give different compositions. The titanium con-
tent of the coating varied from 5 wt. % titanium in one 
end to 15 wt. % titanium in the other, with thicknesses 
of the coating varying from 17 m to 8 m. 

2.2 Heat treatment 
In order to alter the microstructure of the coatings, three 
series of heat treatments were performed: (i) 2 h at 300 °
C for coatings with compositions of pure AA1050, 3 wt. 
%, 6 wt. %, 13 wt. % and 18 wt. % titanium, and coa-
tings containing 13 wt. % was heat-treated for (ii) 2 h at 
200 °C, 300 °C, 400 °C, and 500 °C, and (iii) 4 h at 600 
°C from the gradient coating for high resolution SEM 
and SKPFM measurements. 

2.3 Microstructural analysis 
To identify phases formed during deposition and heat 
treatment, X-ray diffraction measurements were done on 
a Bruker D8 Discover diffractometer using a copper K 1 
beam (1.54 Å) running with grazing incidence of 5 °. 
The measurements ran from 20 ° to 100 °, however, only 
results from 20 ° to 85 ° are presented. The step size was 
0.03 ° with a step time of 192 s. The EVA Application 
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software [20] was used for analysing the results. 

For microstructural analysis, a SEM JSM-5900 from 
JEOL was used. Also EDS measurements for compositi-
on analyses were done using the Oxford link ISIS analy-
ser attached to the SEM. The microscope is equipped 
with a LaB6 filament which operated at 13 kV for both 
imaging and EDS analyses. High resolution back scatte-
red electron images were produced on a field emission 
gun SEM, Quanta 200f from FEI. 

TEM was used for detailed investigations of cross secti-
ons on a FEI Tecnai T20 G2 at 200 keV. A focussed ion 
beam on a FEI Quanta 200 3D DualBeam microscope 
was used for cutting and lifting out a specimen followed 
by milling in a FEI Helios Nanolab DualBeam. An as-
deposited film (13 wt. % titanium) was milled to a thick-
ness of about 175 nm and a film (10 wt. % titanium) 
heat-treated 4 h at 600 °C was milled to a thickness of 
450 nm in the thickest area, however, the oxide layer 
was milled at a higher rate and has therefore been thin-
ner. 

2.4 Anodic polarization test at neutral pH 
To test the corrosion properties of the as-deposited spe-
cimens in neutral pH conditions, a series of localised 
electrochemical polarization tests were performed. A 
DualscopeTM EC Microcell [21,22] was used with a 0.1 
M NaCl electrolyte at neutral pH conditions. The mea-
surements were performed on the as-deposited surface, 
which were polished locally using SiC paper #4000 and 
cleaned using deionized water prior to the experiment to 
remove the native oxide film. An Open Circuit Potential 
(OCP) monitoring for 400 s was followed by measure-
ments from 100 mV below the corrosion potential (Ecorr) 
until reaching a fixed current value after the pitting oc-
curred. The lateral resolution of the experiments is de-
pendent on the tip diameter. The results reported in this 
paper were carried out with a tip diameter of approxim-
ately 1 mm. The reference electrode used was Ag/AgCl. 
Two to six measurements were performed on each sam-
ple depending on the consistency of the results. 

2.5 Anodic polarization test at pH 13.5 
For studies of the corrosion properties in harsh alkaline 
conditions, an electrochemical flat cell was used for the 
potentiodynamic polarization measurements. The anodic 
polarization tests were performed using a solution con-
taining 4.6 g/L Na3PO4.12H2O, 0.131 g/L NaCl and 
12.65 g/L NaOH in deionized water (pH of the solution 
was 13.5). The exposed area of the specimen was 
approximately 0.91 cm2. A Ag/AgCl electrode was used 

as reference electrode and the counter electrode was a 
twisted platinum wire ring. The OCP measurements 
were carried out for 180 s followed by anodic potentio-
dynamic polarization measurements starting at 100 mV 
below the Ecorr-value to +300 mV vs. the Ag/AgCl refe-
rence electrode.  

2.6 Alkaline exposure test 
For additional corrosion testing, an alkaline immersion 
test was done for 10 min at room temperature in the al-
kaline solution described for the anodic polarization test 
at pH 13.5. The rest of the specimen was lacquered be-
fore the test in order to expose only the coated area and 
to avoid galvanic coupling of the coating and the sub-
strate. After alkaline exposure, the specimens were rin-
sed with deionized water and immersed into 70 wt. % 
nitric acid for 4 min to desmut the surface. The lacquer 
was removed mechanically and the samples were inve-
stigated for corrosion surface morphology using SEM. 

2.7 Topography and surface potential 
Topography and surface potential measurement using 
AFM/SKPFM were carried out on samples polished 
with diamonds of ¼ m in size. The SKPFM or surface 
potential microscopy [23] is a scanning probe microsco-
py technique running in non-contact mode. Monitoring 
local changes in the work function difference between 
the sample surface and the scanning tip provides infor-
mation about the local surface potential. For this purpo-
se, a voltage signal is applied to the tip in order to cancel 
out the electric forces related to the work function diffe-
rences. This correction voltage signal is recorded and 
provides a local mapping of changes in the surface po-
tential when superimposed on the topography data of the 
simultaneous AFM scan.  

A Multimode AFM from Bruker with Nanoscope soft-
ware v. 8.15 was used for combined AFM and SKPFM. 
The Multimode ran in tapping mode for the topographic 
scan, and was set to a lift height of 35 nm when measu-
ring the surface potential differences. This was the clo-
sest lift height possible without the tip touching the sur-
face occasionally. Areas of 10 m x 10 m were scan-
ned and a suitable area of 5 m x 5 m was chosen for 
further analysis in the SPIP software [24]. In the repor-
ted results, the correction voltage is measured, so that 
the lower measured potential represents more noble are-
as and vice versa.  

 

 



 
Article 3 

 4 

3. Results 
3.1 Microstructural investigation  

3.1.1 X-ray diffraction 
The results from XRD measurements used for phase 
identification are presented in Fig. 1. For both 3 wt. % 
titanium (Fig. 1a) and 13 wt. % titanium (Fig. 1b), the as
-deposited specimens showed only peaks corresponding 
to FCC aluminium and a silicon phase due to the silicon 
in the cast substrate alloy. After heat treatment of both 
specimens containing 3 wt. % and 13 wt. % titanium for 
2 h at 300 °C, the intensity of the peaks for aluminium 
was slightly decreased, and no additional peaks were 
found compared to the as-deposited specimens. For spe-
cimens containing 13 wt. % titanium, after heat treat-
ment at 400 °C, the aluminium and the silicon signals 
have strengthened, while the diffractogram showed ad-
ditional peaks corresponding to Al3Ti. Heat treatment at 
500 °C caused the signals for all the phases to increase 
showing relative volumetric increase of the phases. 

3.1.2 High resolution scanning electron microscopy 
Backscatter images showing the elemental distribution 
of the microstructure are presented in Fig. 2. The coa-
ting with 13 wt. % titanium, heat treatment for 2 h at 
300 °C (Fig. 2a) did not show significant change in 
compositional distribution.  After heat treatment for 2 h 
at 500 °C (Fig. 2b), microstructure showed phases of 
higher atomic number of sizes up to 0.5 m. When heat-
treated for 4 h at 600 °C (Fig. 2c), these phases of sizes 
up to 1.3 m were precipitated. The EDS measurements 
and EDS mapping of the microstructure after 600 °C 
heat treatment (not presented here) showed that the 
phase had higher titanium content in its composition 
pointing to Al3Ti as found from the XRD results. 

3.1.3 Transmission electron microscopy 
TEM investigations of the sputtered coating showed a 
columnar structure growing vertically upward from the 
substrate as presented in Fig. 3a, while Fig. 3b is a high 
magnification image of the interface between two co-
lumns. The structure of the coating was made of two 
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alternating layers at a period of approximately 32 ± 4 
nm and the directionality following the specific growth 
direction of the column. The bright layers showed 
widths of 22.0 nm – 30.0 nm and the dark layers were 
2.5 nm – 9.5 nm in width, both dependent on how the 
layer boundaries are defined. The bright layers were 
aluminium with lower amounts of titanium, whereas the 
dark layers were highly rich in titanium. Fig. 3c presents 
the microstructure of a specimen heat-treated for 4 h at 
600 °C, where a homogeneous matrix is found con-
taining precipitates of sizes from 150 nm x 50 nm up to 
1.3 m x 0.7 m. 

3.2 Corrosion investigation 

3.2.1 Anodic polarization test at neutral pH 
Fig. 4a shows the anodic polarization curves in a 0.1 M 
NaCl solution at neutral pH for different titanium con-
centrations. The Ecorr value did not show any specific 
trend with varying titanium concentration, but overall 
varied within a range of 150 mV. Addition of titanium 
reduced the corrosion current (icorr) value compared to 
pure aluminium, however no significant effect on the 
icorr value was found with increase in titanium concentra-
tion.  All the specimens showed an initial increase of the 
anodic current followed by a plateau region, where the 

height of the plateau region increased with the titanium 
concentration. The plateau current density also showed a 
general decrease (approximately half a decade) with 
increased titanium content. The breakdown potential 
shifted towards more positive values with increased tita-
nium concentration in the coating. Fig. 4b shows the 
breakdown potential as a function of titanium content. A 
clear trend was seen where the increased amount of tita-
nium in the coating increased the breakdown potential of 
the coating. The coating with 15 wt. % titanium had an 
Epit value approximately 330 mV higher than the pure 
AA1050 coating.  

3.2.2 Anodic polarization test at pH 13.5 
Fig. 5a shows the anodic polarization curves in alkaline 
solution at pH 13.5 for the as-deposited specimens. No-
ne of the curves showed any break down at potential 
values up to 300 mV vs. Ag/AgCl. Instead a long pla-
teau region was observed for all the specimens indica-
ting passivation. Overall, a decrease in anodic current 
was seen with increasing titanium concentration. Similar 
measurements were performed for the specimens with 
varying titanium concentration heat-treated at 300 °C 
and the specimens with 13 wt. % titanium heat-treated at 
varying temperatures. Although not shown, nature of the 
polarization curves were similar to Fig. 5a, therefore 
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summary of the data extracted from the polarization 
curves are presented in Fig. 5b and c. 

Fig. 5b shows a comparison of the anodic dissolution 
current just above the Ecorr value (-1400 mV vs. Ag/
AgCl). For the as-deposited specimens (points marked 
as squares), the anodic current showed a decrease with 
increasing titanium concentration. Additionally, heat 
treatment (points marked as circles) decreased the 
anodic current for all titanium concentrations. The 
anodic current was slightly lower for the pure alumini-
um coating than for the specimens containing 3 wt. % to 
8 wt. % titanium, while increased titanium concentration 
reduced the anodic current by almost one order of mag-
nitude after heat treatment. The anodic current for the as
-deposited pure aluminium coating (7.8 mA/cm2) com-
pared to the current found for the heat-treated specimen 
with 18 wt. % titanium (0.88 mA/cm2) corresponded to a 
decrease of about 88 %. 

Fig. 5c presents the anodic current at -1400 mV vs. Ag/
AgCl for specimens containing 13 wt. % titanium, as-
deposited and heat-treated for 2 h at 200 °C, 300 °C and 
500 °C. It was found that the heat treatment reduced the 
anodic current especially for samples heat-treated at 
higher temperatures. The as-deposited coating showed 
an anodic current of 4.4 mA/cm2, whereas the specimen 
heat-treated at 500 °C an anodic current of 0.43 mA/
cm2. This corresponds to a decrease of about 91 %. 

3.2.3 Alkaline exposure test 
Fig. 6 presents SEM images of the as-deposited surfaces 
with varying titanium concentration after the alkaline 
exposure test at pH 13.5. The surface of the AA1050 
coating (Fig. 6a) corroded significantly more than that 
found on titanium containing surfaces (Fig. 6b-d). 
Higher levels of alkaline corrosion and hemispherical 
pits were found all over the surface of the AA1050 coa-
ting compared to the titanium containing coatings. All 
the titanium containing surfaces showed fine etch pits, 
with the lowest density of pits for the 15 wt. % titanium 
specimen. The pit diameters were similar for 5 wt. % 

and 10 wt. % titanium, but smaller for 15 wt. % titanium 
and the pit depths decreased with increasing titanium 
content. 

Fig. 7 shows the effect of the alkaline test after heat tre-
atment for 2 h at 300 ºC on coatings with various titani-
um concentrations. For comparison, Fig. 8b shows the 
specimen containing 13 wt. % titanium with the same 
heat treatment. For pure AA1050 (Fig. 7a) the behaviour 
was similar to the as-deposited specimen (Fig. 6a). On 
the contrary for coatings containing titanium, corrosion 
was significantly decreased with both heat treatment and 
increased titanium content. While the specimen with 3 
wt. % titanium showed localized concentration of pits, 
increased titanium content caused more uniform distri-
bution of smaller pits. 

Fig. 8 presents SEM images of specimens containing 13 
wt. % titanium, heat-treated for 2 h at 200 ºC, 300 ºC, 
400 ºC, and 500 ºC. A significant improvement was 
found even for heat treatment at 200 ºC (Fig. 8a) compa-
red to the as-deposited specimen in Fig. 6d. This was 
further improved after heat treatment at 300 ºC, 400 °C, 
and 500 ºC as seen in Fig. 8b, c and d respectively. For 
specimens heat-treated at 400 °C and 500 ºC, an outgas-
sing from the cast substrates caused blisters to appear on 
the surface. 

3.2.4 Scanning kelvin probe force microscopy 
Fig. 9 and 10 respectively present the topography and 
SKPFM surface potential measurements of specimens 
containing 13 wt. % titanium. The measurements were 
done in a combined process and the topography for the 
areas represented in Fig. 9a-c therefore respectively cor-
responds to the surface potential for the areas presented 
in Fig. 10a-c. For the as-deposited specimen it was 
found that the specimen was smoothly polished (Fig. 9a) 
and that the potential differences (Fig. 10a) of the surfa-
ce was very inhomogeneous and with measured potenti-
al differences up to about 80 mV. Also the specimen 
heat-treated for 2 h at 300 °C was smoothly polished 
(Fig. 9b), but showed an inhomogeneous surface poten-
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tial distribution (Fig. 10b). A finer structure was found 
and the potential differences in general were decreased 
for the specimen heat-treated to 300 °C (Fig. 10b) com-
pared to the as-deposited specimen (Fig. 10a), with ma-
ximum difference in the potential of 64 mV. The speci-
men heat-treated for 4 h at 600 °C was also smoothly 
polished, however, with features of up to about ± 40 nm 
in height (Fig. 9c) with respect to the base. The surface 
potential was dramatically homogenised (Fig. 10c) com-
pared to the other measurements and dark features were 
found being cathodic to the matrix with a potential diffe-
rence of about 30 mV.  

4. Discussion 
It is well-known that pure aluminium has good corrosion 
properties in neutral conditions due to the native Al2O3 
layer on the aluminium surface. The oxide layer retains 
its passivity when subjected to environments within a 
pH range of about 4 to 9 [25]. Aluminium is an amp-
hoteric metal, and will therefore dissolve in highly 
acidic and alkaline conditions. In the acidic conditions, 
aluminium dissolves as Al3+ ions, while dissolving spe-
cies in the alkaline condition is aluminate ions (AlO2

-) 
[25].   
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Titanium has very good corrosion stability at high pH 
values [25] due to a tenacious and stable oxide film for-
med on the surface. However, conventional casting pro-
cessing allows only 0.15 wt. % titanium to be introduced 
into aluminium [26,27]. The magnetron sputtering pro-
cess on the other hand can be used for creation of alumi-
nium coatings with higher titanium concentrations as 
shown in the present investigation with titanium concen-
trations up to 18 wt. %. Overall the results show signifi-
cant improvement of the corrosion properties when in-
creasing the titanium content and that altering the micro-
structure by heat treatment improved the corrosion re-
sistance even further. The corrosion stability of the mi-
crostructure depends upon the local potential difference 
based on the relative distribution of titanium in the alu-
minium matrix either as elemental titanium or as preci-
pitated second phase particles.  

4.1 Microstructure of as-deposited coatings,  
effect of heat treatment and surface potential 
changes 
The cross section of the sputter coated layer (Fig. 3a) 
show a columnar structure with a directional growth of 
the film from the substrate with increasing width of the 
column towards the surface [28]. The XRD measure-
ments (Fig. 1) show that in the as-deposited samples 
(both 3 wt. % and 13 wt. % titanium), titanium is distri-

buted in the elemental form as no crystalline peak cor-
responding to titanium or titanium containing phases is 
found. This is expected since the sputter deposition pro-
cess was carried out at low temperatures (below 200 °C) 
and therefore no short range diffusion creating interme-
tallic phases is expected within the process time. The 
lack of one or more titanium-containing phases fits well 
with previous studies [10,15,16]. Sanchette and Billard 
[10] concluded that the as-deposited magnetron sputte-
red Al-Ti coatings are in the form of supersaturated -Al 
for titanium-concentrations up to about 40 wt. % and 
they found a quasi-amorphous phase up to 60 wt. % 
titanium. At higher titanium contents, a supersaturated 
HCP titanium phase was found. They concluded that 
similar packing structures (Al: FCC and Ti: HCP) and 
similar atomic radii (Al: 0.143 nm and Ti: 0.146 nm) are 
the reasons for such a high content of titanium is possib-
le in -Al. Oliviera et al. [15] found similar results, ho-
wever here the boundaries were found to be 57 wt. % 
and 79 wt. % titanium respectively. The TEM images of 
the as-deposited coating (Fig. 3a and b), show a micro-
structure consisting of alternating layers of low and high 
levels of titanium. The layers develop during the sputte-
ring process due to the planetary rotation table causing 
alternating flux from the aluminium target at high power 
and the titanium target with aluminium pins at a lower 
power. Additionally, the sputter yield (average number 
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of atoms ejected per incident ion) of titanium is about 
half that of aluminium. The local titanium concentration 
is therefore expected to be quite high in the dark alumi-
nium-titanium layers. However, since no titanium con-
taining phases are found (Fig. 1) in the dark layers (Fig. 
3a), it is expected that the local titanium concentration 
must be lower than 79 wt. % titanium [15]. The surface 
potential of the as-deposited specimen (Fig. 10a) sho-
wed significant heterogeneity attributed to the layered 
structure (Fig. 3a and b), while the random distribution 
of the higher and lower potential might be due to the 
fact that the preceding polishing reveals different parts 
of the layers. Therefore, the dark regions in the SKPFM 
potential map (Fig. 10) are expected to be due to partial 
appearance of dark layers shown by the TEM (Fig. 3), 
while the bright regions corresponds to bright layers. 

Heat treatment up to 300 °C only slightly change the 
microstructure, since no new phases are found by XRD 
(Fig. 1) or SEM (Fig. 2a). The only change in micro-
structure expected in this case is the short range move-
ment of titanium atoms giving rise to some level of ho-
mogenization (Fig. 10b). The decrease of the -Al phase 
peak for specimens heat-treated at 300 °C (Fig. 1a and 
b) implies that the as-deposited films are under stress 
and that the microstructural changes happening during 
heat treatment to some extent are attributed to recovery. 
This is supported by the SKPFM measurements, where 
the heterogeneity in the surface potential distribution is 
somewhat reduced (Fig. 10b) compared to the as-
deposited specimen (Fig. 10a).   

For specimens containing 13 wt. % titanium, the Al3Ti 
phase precipitates during heat treatments at 400 °C and 
500 °C (Fig. 1b), which fits well with the phase diagram 
of the binary Al-Ti system [27] and a previous study on 
Al-Ti coatings [16]. Use of titanium rich layers for the 
precipitation of the intermetallics have resulted in more 
uniformly distributed composition in the microstructure. 
In the SEM backscatter images, no particles are identi-
fied when heat-treated at 300 °C (Fig. 2a), but several 
appear after heat treatment at 500 °C (Fig. 2b), and the 
size has increased further after heat treatment at 600 °C 
(Fig. 2c and 3c). The XRD results (Fig. 1) supplemented 
with EDS and EDS mapping (not presented) support that 
these are in fact Al3Ti phases. In the SKPFM measure-
ment, for the specimen heat-treated at 600 °C (Fig. 10c) 
the dark more noble areas are in the same size range as 
the Al3Ti particles in the SEM image (Fig. 2c), making 
it reasonable to conclude that these are the Al3Ti par-
ticles. The reason for the lower amount of particles 
found in the SKPFM measurement compared to the 
SEM and TEM images (Fig. 2c and 3c) is due to the 
much smaller interaction volume of the scanning probe 

compared to the SEM (about 1.5 m penetration depth 
at an acceleration voltage of 13 kV in aluminium con-
taining 13 wt. % equally distributed titanium) and the 
thickness of the specimen used for TEM investigation. 

4.2 Variation of corrosion properties with change 
in microstructure  
Overall the corrosion properties of the coating improved 
with increasing concentration of titanium and with the 
microstructural changes due to heat treatment. Under 
saline conditions, although the corrosion current density 
did not show significant change, the effect of increased 
titanium concentration in the coating on corrosion per-
formance is evident from the reduced passive current 
density and significant shift in the pitting potential to-
wards more positive values (Fig. 4). For the as-deposited 
coatings, it is expected that the elemental titanium in the 
coating participates in the oxide formation, and the 
mixed oxide provide higher corrosion resistance than the 
oxide on the pure AA1050 coating. In general a similar 
behaviour is observed at pH 13.5; however, a slightly 
higher anodic current was measured for coatings con-
taining 3 wt. % to 8 wt. % titanium compared to the pure 
AA1050 coatings both for as-deposited and heat-treated 
specimens (Fig. 5b). However, the TEM images (Fig. 3a 
and b) and SKPFM measurements (Fig. 10a) show an 
inhomogeneous microstructure indicating regions of 
higher titanium concentration in the matrix, which is 
expected to act as cathodic regions, increasing the 
anodic current of the aluminium matrix. Heat treatment 
at 300 °C decreases the anodic current for all titanium 
concentrations and even for the pure AA1050 coating 
(Fig. 5b), which is expected to be due to the release of 
the residual stresses built up during the sputter coating 
process. During heat treatment, crystallisation and struc-
tural relaxation, can lead to reduced surface activity and 
thereby decreased corrosion rate [14,29]. Polarization 
curves in the alkaline solution further shows a long pla-
teau region, however the breakdown was not reached 
until a high potential value of 300 mV. The alkaline 
exposure studies (Fig. 6 and 7) of the titanium con-
taining coatings show corrosion by pitting, whereas the 
pure AA1050 coating is affected by both general corro-
sion and pitting corrosion. In the alkaline exposure stu-
dies, it is found that for both as-deposited coatings (Fig. 
6) and coatings heat-treated at 300 °C (Fig. 7) the corro-
sion resistance is improved with increased titanium con-
centration. This is in contradiction with the anodic pola-
rization tests (Fig. 5b) where the AA1050 specimen 
show lower anodic current than the specimens of low 
titanium content (3 wt. % - 8 wt. %). The difference in 
the anodic polarization test is within the uncertainty of 
the measurements, however, the behaviour might be 
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attributed to the fact that the anodic current of the lower 
titanium containing specimens might be concentrated at 
a few very deep pits instead of corroding the overall 
surface like general corrosion as found for the pure 
AA1050 coating (Fig. 6a and 7a).  

Fig. 5b shows that there is an initial increase in corrosi-
on rate with increased titanium until a threshold concen-
tration of ~8 wt. %, from where the corrosion rate drasti-
cally decreases with increase in titanium content. Com-
paring with the TEM observations (Fig. 3) of the as re-
ceived coatings and microstructure of the heat-treated 
specimens and SKPFM results (Fig. 10); the behaviour 
might be due to the balance between the amount of tita-
nium, distribution, and precipitation in decreasing the 
heterogeneity in the surface potential.  

As previously described, heat treatments at temperatures 
higher than 400 °C cause Al3Ti phases of considerable 
sizes to precipitate as seen in the XRD measurements 
(Fig. 1b), SEM images (Fig. 2b and c), TEM image (Fig. 
3c) and SKPFM measurements (Fig. 10c). The Al3Ti 
phases are quite uniformly distributed as seen in the 
SEM image (Fig. 2b), enabling the creation of a network 
of Al3Ti helping to reduce corrosion of the aluminium 
matrix when exposed to alkaline environments. Additio-
nally, the SKPFM measurement (Fig. 10c) shows that 
heat treatment at 600 °C cause the microstructure to 
homogenize and EDS measurements (not presented) 
show that the matrix still contains some titanium. It has 
previously been found that heat treatment improves the 
corrosion properties in neutral salt conditions for other 
Al-Ti coatings [18], and for sputtered Al-Cr coatings 
[29] in 0.1 M HCl, where it was found that the corrosion 
properties were improved for coatings containing 27 wt. 
% chromium, but that the corrosion rate increased when 
heat treating coatings containing 51 wt. % chromium. 
 

Structural relaxation decreasing the surface reactivity 
and a small decrease in potential differences in the struc-
ture are expected to be the main reasons for improve-
ment of the corrosion properties for specimens heat-
treated at 300 °C. A titanium concentration threshold 
between 8 wt. % and 13 wt. % titanium was established 
where the corrosion properties are improved compared 
to the pure AA1050 coating. For specimens containing 
13 wt. % titanium heat-treated at 400 °C and more it was 
found that homogenization of the matrix and exhaustion 
of the preferentially distributed cathodic titanium rich 
areas into nucleation of the weaker cathodic Al3Ti 
phases along with structural relaxation caused a signifi-
cant improvement in the corrosion properties.  
 

The results presented in this paper show that titanium 
might be usable for harsh alkaline corrosion protection 
of aluminium specimens using the magnetron sputtering 
technique. This technique has been used as a model sy-
stem, where the necessary titanium concentration and 
microstructure has been indicated, however, optimisati-
on is needed if using the magnetron sputtering tech-
nique.  

5. Conclusions 
Microstructural investigation of the as-sputtered 
aluminium coatings containing up to 18 wt. % 
titanium showed alternating layers of lower and 
higher titanium content attributed to the depositi-
on process. Heat treatments at 400 °C and more 
enabled the precipitation of Al3Ti phases well 
distributed in a homogenised matrix. 
TEM images and surface potential measurements 
showed an inhomogeneous distribution of titani-
um and corresponding heterogeneity in surface 
potential for the as-deposited coating. Heat treat-
ment for 4 h at 600 °C homogenized the surface 
potential distribution due to the precipitation of  
Al3Ti reducing the galvanic potential with the 
matrix.  
Anodic polarization tests of as-deposited films in 
a neutral salt solution showed an increase in pit-
ting potential with increase in titanium content. 
Overall a shift of 330 mV in pitting potential was 
found for the increase of titanium content from 0 
– 15 wt. %.  
Corrosion tests at pH 13.5 showed that the anodic 
current increased with increase in titanium con-
centration from 3 wt. % - 8 wt. % titanium, but 
decreased significantly above this concentration. 
Heat-treatment for 2 h at 500 °C of a coating with 
13 wt. % titanium showed an anodic current re-
duction of 95 % compared to as-deposited 
AA1050 coating. 
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Abstract
Purpose – The purpose of this paper is to study the use of titanium as a protecting element for aluminum in alkaline conditions.
Design/methodology/approach – Aluminum coatings containing up to 20 weight per cent Ti6Al4V were produced using laser cladding and were
investigated using light optical microscope, scanning electron microscope – energy-dispersive X-ray spectroscopy and X-Ray Diffraction, together
with alkaline exposure tests and potentiodynamic measurements at pH 13.5.
Findings – Cladding resulted in a heterogeneous solidification microstructure containing an aluminum matrix with supersaturated titanium
(�1 weight per cent), Al3Ti intermetallics and large partially undissolved Ti6Al4V particles. Heat treatment lowered the titanium concentration in
the aluminum matrix, changed the shape of the Al3Ti precipitates and increased the degree of dissolution of the Ti6Al4V particles. Corrosion testing
showed significant localized dissolution of the aluminum matrix.
Research limitations/implications – Increased titanium concentration and heat treatment gave improved alkaline corrosion properties. At pH
13.5, the Al3Ti phases were protected, while the aluminum matrix corroded.
Practical implications – For alkaline corrosion-protection of aluminum in the automobile industry, titanium might be useful at pH values below
13.5 or by using other coating techniques.
Originality/value – This is the first study testing the use of titanium as a protective element of aluminum in stringent alkaline conditions.

Keywords Aluminum, Titanium, Laser cladding, Microstructure, Alkaline corrosion

Paper type Research paper

1. Introduction
Aluminum alloys are important for current and future
lightweight structural applications. In the automotive
industry, weight reduction can be translated into energy
efficiency, and the use of aluminum alloys is growing rapidly
because of their high strength-to-weight ratio and reduced
cost caused by increased use of recycled materials. However,
both saline and highly alkaline corrosion resistance is an
important requirement for the automotive industry because of
the use of caustic compounds in automatic brushless washing.
Therefore, the short-term exposure (10 min) resistance of
aluminum alloys in saline pH 13.5 conditions is a prerequisite
for some applications.

Aluminum is an amphoteric metal, as the Pourbaix diagram
(Pourbaix, 1974) indicates, and as commercial aluminum

alloys usually have low concentrations of alloying elements,
these alloys are susceptible to corrosion in both acidic and
alkaline conditions. However, surface modification methods
such as laser cladding and laser alloying can produce
metastable surface layers with significantly higher proportions
of (for example) corrosion-resistant alloying elements.

For several years, surface properties have been improved
using laser surface treatments, including laser surface melting
(LSM) (Watkins et al., 1997), laser surface alloying (LSA)
(Watkins et al., 1997) and laser surface cladding (LSC)
(Pawlowski, 1999). Using LSM, fine non-equilibrium surface
microstructures are created by surface melting and fast
quenching. Using LSA, thin surface alloyed layers can be
created where the degree of alloying and coating thickness is
controlled by the laser treatment parameters. LSC is a method
for producing thicker surface layers (typically in the range of

The current issue and full text archive of this journal is available on
Emerald Insight at: www.emeraldinsight.com/0003-5599.htm

Anti-Corrosion Methods and Materials
62/1 (2015) 37–47
© Emerald Group Publishing Limited [ISSN 0003-5599]
[DOI 10.1108/ACMM-07-2013-1290]

The authors thank the Danish Agency for Science, Technology and
Innovation for their financial support of the IdeAl project. Thanks to all
partners in the IDEAL innovation consortium. Thanks to all employees at
DTU MEK, Materials and Surface Engineering who have helped with
experiments.

Received 30 July 2013
Revised 12 June 2014
Accepted 30 June 2014

37

D
ow

nl
oa

de
d 

by
 A

al
bo

rg
 U

ni
ve

rs
ite

t A
t 0

1:
46

 2
7 

Ja
nu

ar
y 

20
15

 (P
T)



0.5-1.0 mm), where the original surface is not a part of the
surface of the final coating. The coatings have a good
metallurgical bonding and small dilution with the substrate.
Thanks to low and local heat input, LSC is very well suited for
the treatment of heat-sensitive materials and components, as
deformation is limited and the heat affected zone is small.
Various feeding techniques can be used. However, the coaxial
deposition method (de Oliveira et al., 2005), situating the
powder nozzle supplying metallic-based powder around the
laser, has shown several advantages when cladding aluminum
(da Silva et al., 2012).

Aluminum coatings for corrosion protection using laser
surface treatments are reported in a number of publications,
focusing mainly on LSM and LSA, and mostly in connection
with acidic and saline conditions (Almeida et al., 1995;
Bonora et al., 1980; Ferreira et al., 1996; Hannour et al., 2001;
Li et al., 1996; McCafferty et al., 1982; Watkins et al., 1997,
1998, 1994). McCafferty et al. (1982) found that LSM of an
AA3003 (1.2 weight per cent Mn) improved the corrosion
resistance in both hydrochloric and sodium citrate solutions.
Moore et al. (1977) did not find any improvement in pitting
resistance using LSM of AA2024 with a CO2 laser. The
behavior was attributed to the presence of cracks and pores in
the laser-treated surface, (Bonora et al., 1980) studied a pure
aluminum alloy LSM-treated with a Q-switched ruby laser
with an energy density between 1 and 5 J/cm2 at an estimated
cooling rate up to about 1011 K/s. They found increased
corrosion potential, lower passive current density and an
unchanged pitting potential, although with a lower pitting
corrosion rate. Similar behavior has been reported by Hagans
and Yates (1989) using a Q-switched Nd:YAG laser with 5 ns
pulses at 4 mJ/pulse. The beneficial effect was attributed to the
amorphous aluminum surface created during the surface
treatment. McMahon (1994) reported a 100 mV increase in
pitting potential for laser-treated AA2014 (Al-4.6Cu-0.5Mg).
Li et al. (1996) showed that for LSM-treated AA2024-T351
in 3 weight per cent NaCl solution, the as-received surface
showed intergranular and pitting corrosion, while laser-treated
regions showed only pitting attack. The use of an excimer-type
laser enables increased surface absorption and shorter pulse
durations and has also shown promising results for aluminum
(Autric et al., 2000; Barnikel et al., 1996, 1997). Excimer
lasers have been used for improving corrosion properties of
AA2050 (Viejo et al., 2010) and for changing microstructures,
thereby modifying the cathodic reactivity of friction stir
welded AA7449 (Padovani et al., 2011).

Aluminum surface layers with alloyed transition metals
using LSA have been tested for corrosion protection (Watkins
et al., 1997) where systems containing molybdenum (Watkins
et al., 1994) and chromium (Almeida et al., 1995) increased
the pitting potential. Ferreira et al. (1996) added chromium to
AA7175 using LSA preventing crevice corrosion. Watkins
et al. (1998) studied the properties of LSA-treated aluminum
systems containing chromium, tungsten, zirconium, titanium
and nickel. It was found that the pitting potential in 1 M NaCl
was improved by 450 mV for an Al-Ti-Ni system compared to
as-received AA2014.

A number of investigations that are reported in the literature
on LSC (Ocylok et al., 2011; Xu et al., 2006) were related to
the effect on wear or high temperature oxidation resistance.

Yue et al. (2006) studied LSC coatings on AA7075 substrates
with powders containing Al-0.3TiO2-0.3SiO2, Al-0.17Cr2O3-
0.5SiO2 and Al-0.375CuO-0.375SiO2. It was found that the
coating with Al-0.375CuO-0.375SiO2 impaired the corrosion
properties, while the other two – especially the addition of
Al-0.3TiO2-0.3SiO2 – decreased the corrosion current density
and increased the corrosion potential in a 3.5 weight per cent
NaCl solution. The differences in corrosion properties were
attributed mainly to the lower potential differences between
the matrix and the titanium and chromium phases. Abboud
et al. (1994a), 1994b) have characterized the microstructure
and composition of clad Al/Ti systems, although only up to 35
weight per cent aluminum. In both studies, dendritic
structures of AlTi-intermetallics were found. No studies have
been found focusing on the alkaline corrosion resistance,
irrespective of the surface processing method.

The study presented here focused on the microstructure
and alkaline corrosion properties of LSC coatings of
aluminum, with titanium as a major alloying element, using a
combination of aluminum powder mixed with 5, 10 and 20
weight per cent of a Ti6Al4V powder for both as-clad and
heat-treated specimens. The aim of alloying with titanium was
to investigate the effect on the alkaline corrosion properties of
the resulting microstructure arising from the alkaline
corrosion stability of titanium. The microstructure of the
coatings was studied using light optical microscopy (LOM),
scanning electron microscopy (SEM), energy-dispersive X-ray
spectroscopy (EDS) and X-ray Diffraction. The alkaline
corrosion performance of the laser-clad layers was investigated
by exposure tests and using potential dynamic polarization
experiments, both at pH 13.5.

2. Materials and methods

2.1 Materials and laser cladding process
Commercial AA6063 substrates were degreased and sand
blasted and, subsequently, laser-clad using a powder mixture
of commercially pure aluminum of 99.8 per cent purity and a
powder of Ti6Al4V (45-100 �m particle size) at
concentrations of 5, 10, and 20 weight per cent. The cladding
was done with a Laserline diode laser with mixed wavelengths
of 808 and 940 nm at 2050 and 2200 W, respectively. The
spot diameter was 3.8 mm, and the cladding was performed at
a speed of 1,000 mm/min for the first six tracks and thereafter
1,300 mm/min to limit dilution. The powder containing 5, 10
and 20 weight per cent Ti6Al4V was fed at 4.8, 5.1 and
5.2 g/min, respectively. Argon was used as a transport and
shielding gas.

Heat treatment was carried out at 600°C in air for 10 hours.
The samples were ground and polished to a diamond
polishing level of 1 �m.

2.2 Microstructural analysis
Microstructural analysis of the as-clad and heat-treated
specimens was performed using an LOM Olympus GX41,
using an Altra 20 Soft Imaging System.

For further microstructural investigations, an SEM,
JSM-5900 from JEOL at 13 kV was used for imaging and EDS
measurements for compositional analysis. An EDS line-scan
was done on a field emission gun SEM, Quanta 200f from
FEI, at 15 kV.
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Phase identification was done using XRD measurements on
a D8 Discover from Bruker AXS with a copper K�1 beam at
grazing incidence of 5°. The measurements were done from
20to 160°; however, only results from 20 to 85° are presented.
The step size was 0.03° with a step time of 4 s. The results
were analyzed using the EVA Application 6.0.0.1 software
from SOCABIM.

2.3 Alkaline exposure tests at pH 13.5
Before alkaline exposure, the specimens were lacquered on all
sides apart from the laser-clad surface. This was done to
ensure that only the clad area was exposed to the solution and
no galvanic coupling to the substrate would influence the
results.

The alkaline resistance was tested in a solution containing
4.6 g/L Na3PO4.12H2O, 0.131 g/L NaCl and 12.65 g/L
NaOH in demineralized H2O, causing a pH of around 13.5.
After 10 min of exposure at room temperature, the specimens
were cleaned with demineralized water, de-smutted in 70
weight per cent nitric acid for 4 min and cleaned again with
demineralized water. After the test, the lacquer was removed,
and the specimens were investigated using the SEM.

2.4 Anodic polarization tests at pH 13.5
Potentiodynamic polarization experiments were done using a
flat cell for further studies of the corrosion properties in harsh
alkaline conditions. This was performed at pH 13.5 using the
same solution as for the alkaline exposure tests. The cell had
an exposed area of approximately 0.91 cm2 of the specimen,
which was connected as the working electrode. A twisted
platinum wire ring was used as counter electrode, and an
Ag/AgCl electrode was used as the reference electrode.
Initially, the Open Circuit Potential (OCP) of the specimen
was monitored for 3 min, followed by a potentiodynamic scan
starting at 100 mV below the OCP to �700 mV vs the Ag/
AgCl reference electrode, at a sweep rate of 120 mV/min.

3. Results

3.1 Microstructure analysis
The LOM images in Figure 1 present the microstructure of
the as-clad specimens, and Figure 2 shows the microstructure
after heat treatment. As-clad specimens with 5 weight per cent
Ti6Al4V (Figure 1a) had a microstructure with a matrix
containing small precipitates of up to 3 �m in diameter.
Additionally, large particles of about 20-50 �m in diameter
were observed. No excessive impact on the microstructure was
observed due to heat treatment of the 5 weight per cent
Ti6Al4V specimens (Figure 2a) when studied under the
LOM. However, SEM investigations presented later show that
the particles were changed into a more spherical form.

Specimens with 10 weight per cent Ti6Al4V (Figures 1b
and 2b) had a microstructure similar to the specimens
containing 5 weight per cent Ti6Al4V (Figure 1a).
Additionally, some precipitates had an elongated shape.

The microstructure of as-clad specimens with 20 weight per
cent Ti6Al4V (Figure 1c) had a structure with elongated
dendrites extending up to about 5 �m in thickness. The large
particles were, in general, up to 100 �m in size. However, in

Figure 1 Optical micrographs of as-clad specimens

(a)

(b)

(c)

Notes: (a) 5 wt.% Ti6Al4V; (b) 10 wt.% Ti6Al4V; (c)  20 wt.%
Ti6Al4V
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some areas, particles had grown together covering a larger area.
Heat treatment (Figure 2c) caused the growth of new precipitates
and growth of the dendrites, both in length and thickness.

A backscatter image of an as-clad specimen is presented in
Figure 3a, showing the elemental distribution of the
microstructure. The small precipitates appear brighter than
the matrix, indicating that they have a higher atomic density.
Additionally, the core of the large particles has a significantly
higher atomic density than the small precipitates and, in some
cases, the outer layer of the larger particles. Figure 3b presents
a backscatter image of a heat-treated specimen. Here it was
observed that the size of the bright core was diminished,
leaving a thicker, less bright, outer layer around the core.

The EDS analysis results from the various areas of the
microstructure are presented in Table I. The compositions of
the different phases were in the same range for specimens of
different Ti6Al4V concentrations, both before and after heat
treatment. However, after heat treatment, silicon was detected

Figure 3 SEM backscatter image showing undissolved particles in
LSC specimens with 5 weight per cent Ti6Al4V. The bright cores
show undissolved Ti6Al4V

(a)

(b)

Notes: (a) As-clad; (b) heat-treated 

Figure 2 Optical micrographs of heat-treated specimens

(a)

(b)

(c)

Notes: (a) 5 wt.%Ti6Al4V; (b) 10 wt.%Ti6Al4V;
(c) 20 wt.%Ti6Al4V 
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at concentrations up to 3 weight per cent. This is expected to
be caused by diffusion from the substrate material as silicon
diffuses rapidly in the aluminum matrix. EDS mapping
(Figure 4) was done to support these measurements. From the
binary Al/Ti phase diagram (Massalski et al., 1986), �-Al and
Al3Ti (63 weight per cent Al) phases are expected after
solidification. The EDS results showed that the matrix was

pure aluminum (Figure 4b), with sporadic titanium
concentrations up to 1 weight per cent, especially in the
as-clad specimens. The intermetallic precipitates (the small
equiaxed phases and the elongated dendrites) consisted
mainly of aluminum, containing 20-40 weight per cent
titanium (Figure 4c) and up to 1.5 weight per cent vanadium
(Figure 4d).

The core of the large particles had the same composition as
the Ti6Al4V feedstock powder. The outer layer of these
particles contained 35-60 weight per cent titanium and 1-2
weight per cent vanadium. An EDS line scan of such a particle
is presented in Figure 5. Here, it was observed that the
chemical composition of the investigated particle was very
stable throughout the particle. The core had the
Ti6Al4V-composition, and the outer layer of the particle had
about 36 weight per cent titanium, 3 weight per cent to 4
weight per cent silicon and about 1.5 weight per cent
vanadium.

Table I Summary of EDS result from all specimens

Concentration (weight %) Al Ti V

Matrix 99-100 0-1� –
Intermetallic precipitates 60-80 20-40 0-1.5
Undissolved particles,
outer layer 40-60 35-60 1-2
Undissolved particles, core 6 90 4

Notes: * Ti in the matrix was mainly found in as-cladded specimens; in
addition, 3-4 weight per cent Si was identified after heat treatment

Figure 4 EDS mapping of as-clad specimen with 20 weight per cent Ti6Al4V after alkaline exposure test

α

(a) (b)

(c) (d)

Notes: (a) SEM image; (b) Al Ka; (c) Ti Ka; (d) V Ka

Alkaline corrosion properties

Martin Aggerbeck et al.

Anti-Corrosion Methods and Materials

Volume 62 · Number 1 · 2015 · 37–47

41

D
ow

nl
oa

de
d 

by
 A

al
bo

rg
 U

ni
ve

rs
ite

t A
t 0

1:
46

 2
7 

Ja
nu

ar
y 

20
15

 (P
T)



All XRD measurements showed the presence of �-Al and
Al3Ti phases, as illustrated in Figure 6. A metallic �-Ti phase
also was identified for specimens containing 10 weight per
cent Ti6Al4V, and especially for specimens with 20 weight per
cent Ti6Al4V.

3.2 Alkaline exposure test at pH 13.5
After 10-min exposure at pH 13.5, the lacquer was removed,
revealing the interface between the exposed and the
unexposed areas of the specimens. Figure 7a presents a top
view of this interface on the specimen with 20 weight per cent
Ti6Al4V. The bottom of the image is the unexposed zone, and
the top of the image is the exposed area. Studying the
interface, it was concluded that the precipitates and the
undissolved particles were unaffected by the alkaline solution.
However, the aluminum-based matrix had been etched away
so that the Al3Ti dendritic phases and the undissolved
particles were undermined. This effect is clear in Figure 7b,
which shows how the matrix was removed around a large
particle and beneath parts of its structure.

Figure 8 presents SEM images of as-clad specimens after the
alkaline exposure test. Figure 9 presents SEM images of the
clad specimens after heat treatment followed by the alkaline
exposure test. The as-clad specimens with 5 and 10 weight per
cent Ti6Al4V (Figure 8a and 8b) showed that the precipitates
were equiaxed flake-structures or dendrites, which changed
into more spherical shapes during heat treatment (Figure 9a
and 9b). As-clad specimens were etched in the matrix area,
showing features ranging from 2 to 4 �m. After the heat
treatment, corrosion of the matrix was more uniform. All
micrographs in Figures 8 and 9 show preferential dissolution
of the matrix around the Al3Ti intermetallics. However, this
was more pronounced for the heat-treated specimens. For
specimens with 5 and 10 weight per cent Ti6Al4V, the
preferential dissolution caused undermining and release of the
smaller intermetallics during the exposure. The growth of
intermetallic phases and the undermining of the intermetallics
during exposure to the alkaline solution are considered to be
the probable reasons for fewer particles being evident after
heat treatment.

3.3 Anodic polarization tests at pH 13.5
The results of the potentiodynamic measurements are
presented in Figure 10a for specimens with various
concentrations of Ti6Al4V in the as-clad and heat-treated

Figure 5 EDS line scan of a large particle of heat-treated specimen
with 10 weight per cent Ti6Al4V. The thick horizontal line follows
the line of the measurement

Core Outer layer Matrix

0

20

40

60
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100
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Figure 6 XRD measurements from 20° to 85° on LSC samples
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Figure 7 SEM images of as-clad specimen with 20 weight per cent
Ti6Al4V after alkaline exposure test
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Unaffected zone
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Tilt: 45°

Notes: (a) Interface between exposed and
unexposed zone; (b) Image taken at a tilted
angle showing matrix dissolution around the
particles and dendrites 
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Figure 8 SEM images of as-clad specimens after alkaline exposure
test

(a)

(b)

(c)

Notes: (a) 5 wt.% Ti6Al4V; (b) 10 wt.% Ti6Al4V; (c) 20 wt.%
Ti6Al4V

Figure 9 SEM images of heat-treated specimens after alkaline
exposure test

(a)

(b)

(c)

Notes: (a) 5 wt.% Ti6Al4V; (b) 10 wt.% Ti6Al4V; (c) 20 wt.%
Ti6Al4V
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conditions. It was observed that the Ecorr-value was
approximately 1475 mV vs the Ag/AgCl reference electrode
for all the specimens. The anodic corrosion current just after
the Ecorr-value (at �1200 mV vs the Ag/AgCl reference
electrode) and the plateau current (at �500 mV vs the Ag/
AgCl reference electrode) deduced from the polarization
curves are presented in Figure 10b and 10c, respectively.

At �1200 mV (Figure 10b), it was found that the current
decreased when the concentration of Ti6Al4V increased for
both the as-clad specimens (squares) and the heat-treated

specimens (circles). Additionally, heat treatment decreased
the corrosion current for the specimens with 10 and 20
weight per cent Ti6Al4V. Comparing the highest current (5
weight per cent Ti6Al4V, heat-treated) and the lowest
current (20 weight per cent Ti6Al4V, heat-treated), the
anodic current decreased from 13.3 to 10.9 mA/cm2, which
is a reduction of about 18 per cent.

Figure 10c illustrates the corrosion current at �500 mV
vs the Ag/AgCl reference electrode for the as-clad
specimens (squares) and the heat-treated specimens
(circles). The plateau current density did not show any
clear trend. However, a comparison of the lowest and
highest concentrations shows a decrease in the current
density from 7.8 to 4.2 mA/cm2, which is a reduction of
about 46 per cent.

4. Discussion
High purity aluminum has good corrosion properties in
neutral environments because of the natural oxide layer of
Al2O3 created on the surface when exposed. The passivity
of the surface is quickly rebuilt when damaged and can be
retained at pH-values of about 4-9. However, when
aluminum is exposed to a harsh alkaline environment, the
passive oxide layer is dissolved and re-passivation is slower,
causing aluminum alloys to corrode with the creation of
AlO2

� ions (Pourbaix, 1974). In contrast to this, titanium
has high stability at pH values from 0 to 14 as depicted by
the Pourbaix diagram (Pourbaix, 1974) because of its
tenacious oxide film. Therefore, the addition of titanium
was proposed to improve the alkaline corrosion resistance
of aluminum alloys. The maximum titanium concentration
in an aluminum matrix in equilibrium conditions at room
temperature is only up to 0.2 weight per cent, as the binary
Al-Ti phase diagram (Massalski et al., 1986) indicates.
Higher titanium concentrations in solid solution in
aluminum can be encountered after rapid cooling from
elevated temperature, such as after LSC with Al-Ti powder.

After LSC, microstructural investigations revealed an
aluminum matrix with up to about 1 weight per cent
titanium. The solidification of the melted powders resulted
in the precipitation of Al3Ti intermetallics. The
intermetallics were equiaxed for specimens containing 5
and 10 weight per cent Ti6Al4V and elongated dendritic for
the specimens containing 20 weight per cent Ti6Al4V.
Additionally, some of the particles from the Ti6Al4V
powder were not completely molten during the
laser-cladding process and were trapped in the partly
undissolved condition in the matrix.

No information was found from literature about the
microstructure of laser-clad Al-Ti coatings. However,
reported results on LSA of Al-Ti systems are consistent
with the present investigation (García et al., 2002; Mabhali
et al., 2012; Wendt et al., 2003; Xu et al., 2006). García
et al. (2002) treated titanium substrates with the aim of
producing titanium aluminides reinforced with hard
titanium nitrides. When the laser speed was kept at 300
mm/min, no nitride was found at the surface of the alloying
zone, giving 37 weight per cent titanium and 63 weight per
cent aluminum. Here a matrix of pure aluminum was
identified with dendrites of Al3Ti. Mabhali et al. (2012)

Figure 10 Polarization curves of LSC treated samples
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studied AA1200 with mixtures of nickel, titanium and SiC
powders. When using only titanium powder, a matrix of
pure aluminum and dendrites of Al3Ti was evident. Wendt
et al. (2003) treated aluminum using a titanium wire. A
supersaturated aluminum phase containing up to 4 weight
per cent titanium was identified, as well as dendrites of
Al3Ti. The reported results on the titanium concentration
in the �-Al matrix are based on only EDS measurements
(Wendt et al., 2003) or XRD measurements (García et al.,
2002; Mabhali et al., 2012). The EDS measurements
performed during this study (Table I) showed rather pure
�-Al with sporadic traces of titanium up to 1 weight per
cent, especially before heat treatment. Wendt et al. (2003)
did not provide many details on the experimental setup, but
the high titanium concentration of 4 weight per cent in the
aluminum matrix could be attributed to the processing
conditions (e.g. due to pulsed laser processing), leading to
a cooling rate that was higher than the one achieved during
the present experiments.

In the present investigation, heat treatment caused the
intermetallic phases of the 5 and 10 weight per cent Ti6Al4V
specimens to turn into more spherical shapes and the
dendrites of the 20 weight per cent Ti6Al4V specimens to
grow, smoothing their edges (Figure 8 and Figure 9). The
mechanism behind the growth of the dendrites was expected
to be the diffusion of titanium and vanadium from the matrix
and the partially undissolved particles during the heat
treatment procedure. Additionally, aluminum was expected to
diffuse into the large, partially undissolved particles of
Ti6Al4V.

The microstructures presented in this study were very
similar to the microstructures observed by Xu et al. (2006),
investigating the microstructure and wear properties of laser
cladding with Ti-Al-Fe-B coatings on AA2024. For titanium
concentrations of 19 and 28.5 weight per cent, Xu et al.
(2006) identified a matrix–dendritic microstructure of �-Al
and Al3Ti and larger particles with a core of almost pure
titanium.

In the present study, XRD measurements (Figure 6)
identified �-Al, Al3Ti, and an �-Ti phase. Additionally, the
EDS measurements (Table I and Figure 4) show a matrix of
almost pure aluminum and large particles with cores of
undissolved Ti6Al4V (Figure 3). The Al3Ti phase
corresponds to about 63 weight per cent aluminum and about
37 weight per cent titanium. EDS measurements on the small
Al3Ti intermetallic precipitates probably show higher
proportions of aluminum (60-80 weight per cent) because the
interaction volume of the electron beam of the EDS analysis
extended into the matrix. The lower concentration of
aluminum measured in the outer layer of large particles (40-60
weight per cent aluminum) may result from various factors.
The outer layer is not always pure Al3Ti, but it is mixed with
other intermetallic Al-Ti-phases (such as AlTi and AlTi3) or,
at some locations, even small volumes of metallic titanium.
Alternatively, the underlying structures contain more titanium
than is visible as the undissolved core may spread out beneath
the surface. However, the line scan (Figure 5) shows a very
stable titanium concentration close to the composition of
Al3Ti, with small increases at two areas.

After the exposure test of the as-clad specimens (Figure 8), it
was found that the �-Al phase corroded, whereas the Al3Ti phase
and other higher titanium-concentrated phases were much more
stable. This result is in agreement with the Pourbaix diagram
presented in Figure 11, combining the diagrams of aluminum
and titanium (Roine, 2002). The microstructure of the material
was highly heterogeneous, resulting in preferential dissolution of
the aluminum matrix, as would be expected because of the low
degree of supersaturation of titanium. On the other hand, if
titanium was distributed uniformly at atomic level or as Al-Ti
intermetallic phases, corrosion resistance is expected to be
higher, as found in the case of Al-Ti magnetron sputtered
coatings (Aggerbeck et al., 2012). Magnetron-sputtered coatings
produced a uniform distribution, and the heat treatment
generated a network of intermetallic phases, helping to reduce
the corrosion of the aluminum matrix under alkaline conditions.

The results presented in this paper have illustrated the
microstructural evolution during the LSC process and the
resulting corrosion behavior of the rapidly solidified coating.
The results of the polarization experiments were in agreement
with the exposure tests; the specimens were corroding heavily
at pH 13.5, even at the highest titanium concentration and
after heat treatment. Aluminum/titanium coatings might be
useful in the automotive industry for protection, e.g. in less
alkaline conditions (pH �13.5) or if applied using other
coating techniques causing a different microstructure than the
one presented.

5. Conclusions
● Laser surface cladding of aluminum and 5 to 20 weight

per cent Ti6Al4V powders resulted in a microstructure
containing �-Al, Al3Ti intermetallic equiaxed or
elongated dendrites and undissolved Ti6Al4V particles.

● Heat treatment made the intermetallic Al3Ti phases
exhibit more spherical shapes in the specimens
containing 5 and 10 weight per cent Ti6Al4V. For
specimens containing 20 weight per cent Ti6Al4V, heat
treatment caused thickening of the elongated dendrites.

Figure 11 Combined Pourbaix diagram for Al (thick lines) and Ti
(thin lines). Calculated by software (Roine, 2002)
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● Exposure tests in a pH 13.5 solution showed heavy
preferential dissolution of the �-Al matrix, while phases
of higher titanium concentrations were protected. After
10 hours at 600°C, corrosion around the Ti-richer
phases was more pronounced because of a lower degree
of titanium supersaturation in the aluminum matrix.

● Anodic polarization tests at pH 13.5 showed no change
of the Ecorr value, while slight decrease in the overall
current density was observed with increased titanium
concentration and heat treatment.
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 Overall discussion 7

This section provides overall discussions supplementing the work presented in the appended papers. It is 

divided into three parts focusing on the appearance of anodised aluminium (articles 1 and 2), microstructure 

of the produced aluminium-titanium coatings (articles 2-4), and alkaline corrosion properties of aluminium-

titanium coatings (articles 3 and 4). 

7.1 Appearance of anodised aluminium 

The increasing use of recycled aluminium alloys requires comprehensive knowledge on how various alloying 

elements, microstructure, and surface treatments affect the appearance of anodised aluminium. The work 

presented was conducted in order to understand the optical appearance of anodised commercial aluminium 

alloys (article 1) and sputtered coatings (article 2). This has given new insights especially on how the 

appearance of anodised aluminium is affected by the oxide-substrate interface, which is again determined by 

the alloy composition and surface treatment processes. This finding was supplemented by the suggested light 

trapping mechanism described in article 2 (Fig. 6). 

Studies in article 1 investigated the appearance of commercial alloys as a function of alloy composition and 

pre-treatments such as etching, polishing, anodisation, and hot water sealing. After removal of the oxide 

layer, it was possible to investigate the oxide-substrate interface. There was found clear correlation between 

the oxide-substrate interface roughness and the visual appearance of the specimen. For etched specimens 

with a higher degree of alloying, the roughness increased and therefore the specular reflection decreased. The 

total reflectance after anodisation of etched specimens seemed to depend on alloy purity. The appearance 

after anodisation of the polished specimens was affected by intermetallic particles and pits in the oxide-

substrate interface, which was created due to impurities and alloying elements. Furthermore, it was found 

that the total reflectance of the polished specimens was more or less the same before and after anodisation, 

whereas the total reflectance of the etched specimens decreased after anodisation. 

In article 2 the visual appearance of sputtered coatings of aluminium-titanium were investigated as a function 

of titanium concentration, heat treatment, and anodisation. After heat treatment and anodisation partly 

oxidised particles were found in the oxide layer. These partly oxidised particles are expected to have a 

significant effect on the appearance after anodisation of high gloss specimens. In article 2 an anodised layer 

of 1.2 m containing partially oxidised Al3Ti particles caused the specimen to turn black. Additionally, the 

interface between the anodised layer and the substrate was very rough. This caused the reflection of light to 

move inclined towards the specimen surface and light trapping was expected to happen.  

As presented in Fig. 2.13 on page 26, it is known that pure aluminium has a total reflectivity of more than 90 

%. Thus, for commercial aluminium alloys, the substrate is expected to absorb at least 10 % - 15 % of the 

incoming light due to alloying elements, surface structures, and defects. Additionally, it was found in article 

1 that the polished specimens had a higher total reflectance than the etched specimens after anodisation. 

Since the investigations after polishing and etching of the same alloys gave different reflectance 



7 Overall discussion 
 

120 

measurements, the increased absorption has to be caused by surface structures created during the etching 

process. As stated in article 2 both surface roughness and partially oxidised alloying elements can have big 

influence on the optical appearance. However, the amount of partially oxidised particles is expected to be 

approximately the same for etched and polished specimens of the same alloy. This indicates that light 

trapping caused by surface structures like grain boundary grooves and surface scallops are significant 

reasons for the decreased total reflectance after etching and anodisation in article 1. 

The suggested mechanism is that light enters the oxide layer and is partly absorbed and scattered by 

oxidised, partly oxidised, and unaffected alloying element phases (see Table 2.4 on page 16). A part of the 

light will go through the oxide layer and will be reflected in the substrate surface containing e.g. grain 

boundary grooves and surface scallops causing the reflected light to move inclined back towards to oxide 

surface. So even if the grain boundary grooves and the surface scallops do not absorb additional light 

compared to a pure aluminium substrate, the inclined reflection has a significant effect on the total 

reflectance due to the light trapping mechanism. The inclined light (of a certain inclination and flatter) will 

experience at least one internal reflection, however, more is possible. For each total internal reflection 

(which is loss-less) the light will be reflected at the substrate interface once more with a loss of at least about 

10 % for each reflection. 

The use of titanium dioxide as scattering particles in anodised aluminium products can neither be approved 

nor denied based on the date presented in article 2. Thus, anodisation of coatings or specimens containing 

aluminium and metallic titanium require additional focus on the anodisation process in order to ensure 

appropriate oxidation of the embodied titanium-containing phases. These phases should be fully instead of 

partly oxidised as found in article 2, Fig. 2. Other possibilities should be considered e.g. the incorporation of 

titanium dioxide particles into metallic aluminium or already anodised aluminium surfaces. Again this would 

require focus on the anodisation process in order to ensure proper oxidation all around the titanium dioxide 

particles, avoiding volumes of metallic aluminium absorbing and scattering the light [55,56]. 

7.2 Microstructure of the produced aluminium-titanium coatings 

The use of aluminium based alloys and coatings are highly interesting due to the use of aluminium for many 

commercial products with high requirements for both appearance and corrosion properties. Additionally, the 

coatings are also interesting when combining e.g. cast aluminium or polymer substrates with coatings. The 

microstructure of sputtered aluminium-titanium coatings was presented in articles 2 and 3, while the 

microstructure of LSC coatings was presented in article 4.   

Aluminium based coatings containing up to 18 wt. % titanium were produced by magnetron sputtering. The 

as-sputtered coatings had alternating layers of high and low titanium concentrations. From the XRD-

measurements (article 2, Fig. 3 and article 3, Fig. 1) it was found that the as-deposited layers only had the -

Al phase, which supported the existing literature [107,110]. During heat treatment, the microstructure aged 

into an inhomogeneous structure of an -Al phase and Al3Ti precipitates with sizes up to 1 m in diameter. 
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In the LSC process the self-quenching mechanism can cause amorphous and nano-crystalline 

microstructures. However, as presented in article 4 the microstructure of the aluminium-titanium coatings 

produced by LSC produced a cast structure with an -Al matrix containing Al3Ti phases (article 4, Fig.1 and 

2). The Al3Ti phases were of sizes of 3 m for the 5 wt. % Ti6Al4V specimens and were found to be larger 

for the specimens of higher Ti6Al4V-concentrations. 

It was found that the microstructures of the created aluminium-titanium coatings were highly different when 

comparing the sputtered and LSC specimens. Where the sputtered coatings precipitated during heat treatment 

from a basis of a nano-crystalline structure, the LSC coatings had a much coarser cast structure. For the 

aluminium-titanium system this was quite an important difference causing the corrosion properties (and 

probably also the optical properties) to be highly different in the two cases as described in section 7.3 below. 

Since the microstructure of the LSC specimens was rougher than expected, supplementary coatings were 

created using different parameters. However, due to time pressure, these were not investigated further. It 

might be possible to achieve a finer structure e.g. by causing a pulsed laser causing a higher quenching rate 

and thereby creating a finer microstructure. Additionally, a pulsed laser might reduce the heating of the 

specimen avoiding the specimen to warp as described in section 3.4.2 on page 43. 

7.3 Alkaline corrosion properties of aluminium-titanium coatings 

Nickel salt sealing is still used in the automotive industry in order to gain alkaline corrosion protection in 

NaOH solutions used e.g. in a brushless carwash. However, due to environmental and health issues, one or 

more alternatives are needed. The analysis of the alkaline corrosion resistance of aluminium-titanium 

coatings were analysed in articles 3 and 4. It was found that magnetron sputtered coatings might be 

applicable for alkaline corrosion protection, whereas the LSC specimens corroded heavily. 

Specimens coated by sputtering (article 3) showed quite good corrosion properties in saline solution in the 

as-deposited state where the pitting potential increased with the titanium concentration (article 3, Fig. 4). 

Additionally, the specimens were heat-treated and tested in rough alkaline conditions giving the best results 

with specimens containing 13 wt. % titanium and more. Heat treatment caused structural relaxation of the 

sputtered coatings, causing the corrosion properties of all coatings to improve by heat treatment at 300 °C. 

For specimens containing 13 wt. % titanium heat treated for 2 h at 500 °C, the corrosion properties were 

found to improve significantly both for alkaline exposure tests and anodic polarisation tests, both at pH 13.5. 

The improvement was scribed to structural relaxation, decrease in potential differences in the microstructure, 

and the protection of the aluminium matrix from the network of Al3Ti particles. 

Article 4 presents the investigations of the alkaline corrosion properties of aluminium-Ti6Al4V coatings 

created by LSC. It was found that the structure was very coarse and that this caused the -Al matrix to 

corrode preferentially in alkaline exposure test at pH 13.5 while the Al3Ti phases were anodically protected 

(article 4, Figs. 7 – 9). Thus, the used parameters did not provide sufficient cooling rate to achieve a uniform 

distribution of supersaturated titanium in -Al is hoped, instead Al3Ti phases precipitated. 
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As stated in section 7.2, the structure of the sputtered coatings was much more promising than the coatings 

produced by the LSC process. However, the sputtering process is quite expensive for larger specimens and 

therefore it will not always be a beneficial process. The results in article 3 indicate that a threshold between 8 

wt. % and 13 wt. % titanium could be sufficient to achieve satisfactory corrosion resistance. This could be 

used for developing new methods using other coating techniques or wet chemistry where titanium can be 

implemented e.g. during anodisation and/or sealing. 

Based on these observations the following requirements are proposed for aluminium-titanium specimens and 

coatings to create corrosion resistant coatings in rough NaOH-based alkaline conditions at pH 13.5: 

 The aluminium-titanium specimen or coating should have a titanium-concentration of at least 8 wt. 

%. 

 The process has to enable creation or growth of e.g. Al3Ti phases with sizes of maximum 1 m – 3 

m (the optimal size might be smaller than 1 m). 

 Stresses in the specimen/coating should be avoided (e.g. by stress relaxation during heat treatment). 

 Coatings require full coverage with no holes and good adhesion to the substrate. 

 

The use of titanium as a protective element in aluminium specimens and coatings has shown to have quite 

good perspectives in both saline and rough alkaline conditions. For alkaline corrosion protection at pH 13.5 

it was found that the corrosion properties are significantly changed by titanium concentration and by changes 

in the microstructure. Therefore, more work could develop into an industrial production line creating a 

satisfactory protecting coating.  
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 Conclusions 8

8.1 Appearance of commercial alloys 

The appearance of commercial alloys AA1050, Peraluman 706 (P706), AA5754, and AA6082 were 

investigated with focus on the effect of etching, polishing, anodisation, and sealing. It was found that: 

 The roughness and percentage of diffuse reflectance caused by etching increased with the degree of 

alloying. For pure and soft alloys, the polishing was hard and resulted in a rougher surface compared 

to specimens with a higher amount of alloying elements.   

 As-etched specimens show a broad intensity distribution function of the scattered light at and near 

the specular region, whereas the as-polished specimen exhibit high reflectance near the specular 

angle. 

 A clear correlation was found between the topography of the original surface and the topography of 

the oxide–substrate interface beneath the anodised layer after anodising.  

 Polished specimens alloyed to a higher degree lost their high gloss appearance after anodisation due 

to particles and pits in the oxide–substrate interface and heterogeneities in the oxide due to alloying 

elements.  

8.2 Microstructure of magnetron sputtered aluminium-titanium coatings 

Magnetron sputtered coatings containing up to 18 wt. % titanium were investigated in the as-deposited form 

and after heat-treatment before and after anodisation. It was found that:  

 A structure of alternating layers containing low and high amounts of titanium was found, with -Al 

as the only identified phase in the as-deposited coatings with inhomogeneous distribution of 

titanium.  

 After heat treatment for 4 h at 600 °C, a homogenous aluminium matrix and high concentrations of 

elongated Al3Ti precipitates appeared. 

 Anodisation of the heat-treated specimens created an oxide film of approx. 1.2 m containing many 

partially oxidised Al3Ti particles with a metallic core. In some cases, unoxidised aluminium was 

found behind the particles. 

Laser surface cladded coatings containing up to 20 wt. % Ti6Al4V were investigated in the as-deposited 

form and after heat-treatment. It was found that: 

 Coatings of aluminum and 5 wt.% to 20 wt.% Ti6Al4V powders resulted in a microstructure 

containing -Al, Al3Ti intermetallic equiaxed or elongated dendrites and undissolved Ti6Al4V 

particles. 

 Heat treatment made the intermetallic Al3Ti phases exhibit more spherical shapes in the specimens 

containing 5 wt.% and 10 wt.% Ti6Al4V. For specimens containing 20 wt.% Ti6Al4V, heat 

treatment caused thickening of the elongated dendrites. 
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8.3 Optical properties of magnetron sputtered aluminium-titanium coatings 

 The reflectance decreases with increasing titanium concentration for the as-deposited specimens, for 

the specimens heat-treated for 2 h at 300 °C, and for the as-deposited and anodised specimens.  

 Coatings containing 6 wt.%–16 wt.% titanium that were heat-treated for 4 h at 500 °C and 600 °C all 

turned dark grey, brown or black during anodisation.  

8.4 Corrosion properties of aluminium-titanium coatings 

Magnetron sputtered coatings: 

 Surface potential measurements showed heterogeneity in surface potential for the as-deposited 

coating due to the inhomogeneous distribution of titanium. Heat treatment for 4 h at 600 °C 

homogenized the surface potential distribution due to the precipitation of  Al3Ti reducing the 

galvanic potential with the matrix.  

 Anodic polarization tests of as-deposited films in a neutral salt solution showed an increase in pitting 

potential with increase in titanium content.  

 Corrosion tests at pH 13.5 showed that the anodic current increased with increase in titanium 

concentration from 3 wt. % - 8 wt. % titanium, but decreased significantly above this concentration. 

Heat-treatment for 2 h at 500 °C of a coating with 13 wt. % titanium showed an anodic current 

reduction of 95 % compared to as-deposited AA1050 coating. 

Laser surface cladded coatings 

 Exposure tests in a pH 13.5 solution showed heavy preferential dissolution of the -Al matrix, while 

phases of higher titanium concentrations were protected.  

 Anodic polarization tests at pH 13.5 showed no change of the Ecorr value, while slight decrease in the 

overall current density was observed with increased titanium concentration and heat treatment.  

 

 Both percentage and distribution of titanium have big influence on the corrosion properties, where 

the magnetron sputtering process seems more appropriate than laser surface cladding, at least with 

the tested process parameters. 
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 Outlook 9

The presented work could initiate new studies such as: 

9.1 Appearance of anodised aluminium alloys 

 A more detailed investigation of the structure of intermetallics incorporated in the oxide film and 

their effect on the appearance of the anodised layer. This could be with focus on the size and 

composition of phases based on alloying elements and impurities. These phases should be 

investigated after anodisation regarding partial and full oxidation and the interaction with the 

incoming light.  

 The effect of changing anodisation parameters to change the level of oxidation of the aluminium 

matrix and intermetallic particles. This work is quite extensive regarding both size and composition 

as stated above. 

 The suggested reason for the darkening of the specimens should be investigated further. This could 

be done by a series of experiments where separate oxide removal and substrate removal experiments 

are performed. Thereby, the optical properties of the anodised layer and the substrate can be 

investigated separately. The deoxidised specimen can be immersed into a liquid of the same 

refractive index as the anodised layer, in order to test the idea of light trapping without the partially 

oxidised particles. In this way the impact of both the partially oxidised particles and the light 

trapping mechanism can be explored further. 

 The incorporation of various types of intermetallics and oxide particles (such as TiO2, ZrO2, and 

CeO2) into metallic and subsequently anodised or post-anodised specimens should be investigated. 

This could be used for obtaining various appearances by modifying the structure of these particles in 

the anodised layer, which will influence the optical scattering effects. 

 Magnetron sputtering can be used to create alternating layers of Al2O3 and TiO2 to create strong 

colours with a protective layer on top for high-end design products. However, such a stack of layers 

is vulnerable to wear and an anodised aluminium layer on top of such a stack will be both protecting 

and transparent without affecting the colour of the stack. Initial tests have been made covering the 

stack with a thick metallic layer which was subsequently anodised. These specimens turned grey and 

dull after anodisation, however by calibration of the process parameters in both the sputtering and 

the anodisation process might make it work. 
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9.2 Alkaline corrosion properties of aluminium based coatings 

 Optimisation of the current magnetron sputtering process is necessary in order to find the titanium 

concentration and heat treatment and thereby microstructure to achieve satisfactory corrosion 

protection. The magnetron sputtering process is not relevant for e.g. the body of a car, due to the size 

limitations and cost of the sputtering process. However, for smaller consumer products and industrial 

products this process might be interesting. This could e.g. be for hood ornaments of high-end cars 

and other products of small sizes, which are exposed to rough environments. 

 The presented laser surface cladding coatings were much too coarse and unsatisfactory with regards 

to corrosion properties. However it is expected to be possible to tweak the cladding parameters in 

order to create finer microstructures by laser surface cladding. This could e.g. be by using a pulsed 

laser process. 

 Other coating processes should be considered. The following requirements are proposed for 

aluminium-titanium specimens and coatings to create corrosion resistant coatings in rough NaOH-

based alkaline conditions at pH 13.5: 

o The aluminium-titanium specimen or coating should have a titanium-concentration of at 

least 8 wt. %. 

o The process has to enable creation or growth of e.g. Al3Ti phases with sizes of maximum 1 

m – 3 m (the optimal size might be smaller than 1 m). 

o Stresses in the specimen/coating should be avoided (e.g. by stress relaxation during heat 

treatment). 

o Coatings require full coverage with no holes and good adhesion to the substrate. 

 Sealing processes using titanium and zirconium acetates and fluorides have been tested without 

satisfactory results at pH 13.5; however, results were well at pH 12.5 and might therefore be used for 

replacing nickel salt sealing in some cases. Further studies and optimisation of these sealing 

processes are required. 

 A cheap wet process is still needed to achieve satisfactory alkaline protection in the automotive 

industry. This project can therefore be used to set up some requirements for the results of such a 

process. 
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