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Preface

This thesis was prepared at the Department of Systems Biology, the Technical

University of Denmark, in fulfillment of the requirements for acquiring a Ph.D de-

gree. This thesis describes technical advances in the characterization and removal

of measurement error from gene expression profiles. This work was carried out at

the Center for Biological Sequence Analysis (CBS) under the supervision of David

W. Ussery and Karin Lagesen (University of Oslo). The thesis consists of four

background chapters and a collection of three research papers written during the

period 2011-2013.

Data used for this project can be obtained from: http://cmgfunc.20gbfree.com/

and online documentation of software and approaches can be found on http:

//github.com/cmgvesth/cmgfunc and http://biotoolscmg.wikia.com/.

Lyngby, January 2014

 

 

Tammi Vesth

http://cmgfunc.20gbfree.com/
http://github.com/cmgvesth/cmgfunc
http://github.com/cmgvesth/cmgfunc
http://biotoolscmg.wikia.com/
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Abstract

In November 2013, there was around 21.000 different prokaryotic genomes se-

quenced and publicly available, and the number is growing daily with another

20.000 or more genomes expected to be sequenced and deposited by the end of

2014. An important part of the analysis of this data is the functional annotation

of genes – the descriptions assigned to genes that describe the likely function of

the encoded proteins. This process is limited by several factors, including the

definition of a function which can be more or less specific as well as how many

genes can actually be assigned a function based on known functions.

This thesis describes the development of new tools for comparative functional

annotation and a system for comparative genomics in general. As novel sequenced

genomes are becoming more readily available, there is a need for standard analysis

tools. The system CMG-biotools is presented here as an example of such a system

and was used to analyze a set of genomes from the Negativicutes class, a group

of bacteria closely related to Gram positives but which has a different cell wall

structure and stains Gram negative, as the name indicates. The results of this

work show that genomes of this class have very little homology to other known

genomes making functional annotation based on sequence similarity very difficult.

Inspired in part by this analysis, an approach for comparative functional an-

notation was created based public sequenced genomes, CMGfunc. Functionally

related groups of proteins were clustered based on sequence domains so that each

group represented a protein function. Each function was then modeled using Arti-

ficial Neural Networks (ANN) and the model was evaluated based on its ability to

identify true positives and negatives, that is proteins with or without the function

of the model. The models were used to annotate a number of proteins without

functional annotations and predicted functions for 98% of the genes. Evaluation

of the precision of the method was performed, using data from the Critical As-

sessment of Functional Annotation (CAFA) project, and correct predictions were

made in about 60% of the cases.

This project has highlighted the difficulties and challenges in functional an-

notation and computational analysis of sequence data. It has provided possible

solutions for creating reproducible pipelines for comparative genomics as well as

constructed a number of functional models not based on sequence similarity. Al-

though much work is still left to be done, resources are flowing into the area of

sequence analysis and progress is being made every day. As such, many different

approach are being tried out and tested which will, in time, improve the knowledge

gained from sequencing genomes.
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Dansk resume

I november 2013 var der omkring 21.000 prokaryote genom sekvenser i offentlige

databaser og tallet vokser dagligt og det forventes at endnu 20.000 sekvenser vil

blive publiceret i løbet af 2014. En essential del af analysen af alle disse genom

sekvenser er den funktionelle annotering, den beskrivelse som forklarer hvilken

funktion genet har i cellen. Denne process ebregrænses af flere forskellige faktorer,

her iblandt definitionen af funktion, en definition der kan være mere eller mindre

specifik, samt hvor mange gener der rent faktisk kan tilknyttes en kendt cellulær

funktion.

Dette speciale beskriver udviklingen af nye værktøjer til funktionel annote-

ring og sammenligning af disse annoteringer mellem flere genomer samt general

sammenligning af genom sekvenser. I takt med at der foreligger flere og flere se-

kvenser vokser behovet for standard procedure i analysen af disse data. Systemet

CMG-biotools presenteres her som et exemple p̊a et s̊adant system og blev brugt i

analysen af genomer fra klassen Negativicutes, en gruppe organismer tæt beslægtet

med Gram positive organismer men har en anderledes cell væg komposition der gør

dem Gram negative, som navnet ogs̊a antyder. Resultatet af denne analyse viste

at denne klasse har meget lidt sekvens homologi med andre sekventerede genomer,

og da funktionel annotering ofte hviler p̊a netop sekvens homologi, besværligører

dette annoteringen.

Inspireret af denne problematik, startede udviklingen af an metode til funk-

tionel annotering baseret p̊a publiceret data, CMGfunc. Funktionelt relaterede

grupper af proteiner blev defineret ud fra konserverede protein domæner s̊aledes

at hver gruppe representerede en protein funktion. Hver funktion blev derefter

modeleret ud fra en neural netværk model og hver model blev evalueret ud fra

dens even til at genkende sande positiver og negativer, det vil sige, proteiner der

faktisk besad eller ikke besad den funktion some modellen representerede. Model-

lerne blev brug til at annotere en række protein uden kendt funktion og annoterede

98% af disse. Præcessionen af de funktionelle modeller blev estimeret ud fra data

fra projektet Critical Assessment of Functional Annotation (CAFA), og in 60% af

tilfældende forudsage CMGfunc modellerne den rigtige funktion.

Dette projekt har belyst mulige løsninger p̊a udfordringerne indenfor sammen-

lignelig funktionel annotering og computer analyse af sekvens data. I dette arbejde

er der blevet udviklet en række forslag til reproducerbare analyse metoder samt

modeller til funktionel annotering. Selvom der stadig er udfordringer der skal tak-

les indenfor disse felter tilføres store resourcer til netop denne type analyse og det

er klart fremskridt i syne i takt med at mange nye metoder testes.
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Thesis aim and structure

This project was inspired from the author’s experience as a bachelor and then mas-

ter student in the comparative microbial genomics group (CMG) at the Center

for Biological Sequence analysis (CBS) at the Technical University of Denmark

(DTU). As the number of available genome sequences increases, roughly dou-

bling every year, questions are becoming more complex and the requirements for

analysis are changing. Historically, with only a few genomes sequenced, general

comparisons was the most common analysis, often with one genome per species;

however, with the explosion of sequence data, new expectations included distin-

guishing one isolate from another and identifying why one strain of a bacteria

is pathogenic while another is not. Further complicating the analysis was the

observation that often the strain-specific genes have no known function, based

on sequence homology with proteins of known function in the current databases.

From this background came some general questions: how can protein functions be

compared across many genomes? How can proteins with no sequence homology

be functionally annotated?

The primary goal of this project has been to develop methods for analyzing

sequences without homology to known and annotated sequences. Early on, it was

necessary to consolidate many of the tools that had been developed by the Com-

parative Microbial Genomics research group at CBS over the years. No system

for gathering these into a coherent system and working environment was avail-

able. Thus, the CMG-biotools was developed and was published in 2012 (see

Section 5.1 on page 31). This system was designed to include a wide range of tools

for comparative genomics of bacteria and to make these tools freely available and

user-friendly for researchers with no bioinformatic background. The project was

also a way of testing how computational analysis can be made reproducible and

publicly available for evaluation when publishing and different aspects are taken

into consideration, such as accessibility, reproducibility, speed and difficulty of use.

In summary, an important part of this project has been to focus on how to create

a user-friendly and computationally powerful bioinformatics pipelines.

The functional potential of bacteria can be used to group evolutionary simi-

lar organisms. The next project was carried out using a diverse set of publicly

available genome sequences with focus on the class Negativicutes, a group of bac-

teria closely related to Gram positives but which has a different cell wall structure

and stains Gram negative, as the name indicates. A set of 24 Negativicutes were

compared to a wide range of other bacterial genome sequences using sequence

similarity methods such as BLAST and 16S rRNA alignments as well as feature
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based methods such as Composition Vector Trees and DNA tetramer frequencies.

The metabolic potential of each genome was analyzed using the Kyoto Encyclope-

dia of Genes and Genomes (KEGG) in combination with Hidden Markov Models

(HMMs) (see Section 5.2 on page 48).

Construction of a pipeline for functional annotation of bacterial proteins is a

major part of this thesis. This involved evaluation of available public data, con-

struction of a functional scheme, clustering of functionally related proteins and

modeling of functions using Artificial Neural Networks (ANNs). The aim of this

work was to use a set of defined functions with a controlled vocabulary to investi-

gate the patterns found in large sets of data, and to model these functions. Data

was collected from public sources and as much data as possible was used in the

further modeling. This was of importance in order to ensure annotation of less

common sequences, a shortcoming of many sequence based methods. Proteins

were clustered based on shared functional or structural domains as obtained from

the Pfam-A database. Each cluster represent a function described by its domain

descriptions, GO terms and Pfam clan descriptions. Each sequence was translated

into a number of sequence and pattern based features, including chemical proper-

ties, signaling patterns and secondary structure. The aim of this process was to

add information to the domain identification already established in the clustering,

possibly improving the coverage of the modeling. The features of each sequence

in each functional cluster were used to train and test an ANN model for each

function. This work is presented in the manuscript in Section 5.3 on page 67.

This thesis begins with an introduction (Chapter 1), describing the field of com-

putational functional annotation, its challenges, advances and approaches. The

concept of function is discussed leading to the next chapter (Chapter 2) where

ways of describing a proteins function are presented. The section includes the de-

tection of genes in DNA sequences, protein domain models, proteins features such

as biochemical properties and chemical composition and gene ontologies. Chap-

ter 3 highlights different mathematical methods in prediction of function with a

focus on Artificial Neural Networks (ANN). A short discussion on data sharing,

management and distribution of work and research in bioinformatics is presented

in Chapter 4. Chapter 5 includes three manuscripts published during this project

illustrating different aspects in comparative genomics, functional annotation and

data handling in a the new Genomic Era. The final chapter (Chapter 6) presents

concluding remarks on the presented work as well as future perspectives.





1 CHAPTER 1. INTRODUCTION

1 Introduction

The field of genomics has undergone tremendous changes since GenBank was first

established in 1982. In the early 1980s, it would have taken more than a thousand

years to sequence the DNA (deoxyribonucleic acid) of an Escherichia coli genome,

and it would have taken several million years to sequence a human genome. Thus

at that time, due to the unreasonable time limit, sequencing the human genome

was not considered possible. In 1984, an effort was made to solve this problem

when the U.S. Department of Energy decided to invest $200 million per year, over

20 years, to increase the speed of DNA sequencing. This was more money than

previously spent on the Apollo space program, all going to research to improve

DNA sequencing speed. After only 10 years of investment, the speed of sequencing

had improved sufficiently to allow for the first two bacterial genome sequences to

be finished and published; Haemophilus influenzae [1] and Mycoplasma genetalium

[2], and a mere five years later, a draft of the human genome was published [3].

The speed of DNA sequencing has continued to increase over the past ten years,

such that sequencing a bacterial genome is now both fast and inexpensive. As of

November 2013, there are about 21.000 different prokaryotic genomes sequenced

and publicly available, and the number is growing daily with more than 10.000

bacterial genomes expected to be sequenced and deposited in public databases

through 2014. Some projects focus on exploring the diversity of bacteria, ex-

amples are the Human Microbiome project1 and the Earth Microbiome project2.

However, many projects still focus on sequencing the same organism over and over

again, in order to infer functional and evolutionary knowledge; examples of this

include the 1.000 human genomes project3 or the Microbial Genome Program of

U.S. Department of Energy4 [4]. Complete genome sequences are available from

a number of online sources including NCBI GenBank [5], UniProt [6, 7] and the

The Genomes On Line Database [8]. These advances and initiatives will greatly

increase the amount of sequence data in the immediate future and though the

results of automated functional annotation systems should preferably be subject

1http://commonfund.nih.gov/hmp/index
2http://earthmicrobiome.org
3http://1000genomes.org
4http://microbialgenomics.energy.gov

http://commonfund.nih.gov/hmp/index
http://earthmicrobiome.org
http://1000genomes.org
http://microbialgenomics.energy.gov
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to some level of human review, the development of tools and standards in the field

will greatly help in setting up reasonable hypothesis for protein functions.

1.1 Functional annotation

Genome annotation can broadly be defined as the extraction of biological knowl-

edge from DNA sequences. Most of the DNA (roughly 90% or more) in a bacterial

genome encodes proteins, and it is the function of proteins which defines much of

the activity of an organism, either directly (such as enzymes) or indirectly (e.g.,

structural proteins). A major part of the process is first locating the genes - that

is, the prediction of protein encoding genes, as well as small non-coding RNAs

(ribonucleic acid), tRNAs, rRNAs and repeats. Once these genes have been iden-

tified, then their sequences are used as input for functional annotation. Functional

annotation has become a greater challenge as sequencing technology has moved

the emphasis of computational biology away from data production to data analy-

sis. With the sequence of each new genome, it has been estimated that anywhere

from 500 to 1.000 new genes of unknown function will be detected [9]; thus the

10.000 bacterial genomes sequenced in the year 2014 will result in 5 to 10 million

new protein sequences deposited in the public databases, with no known function.

The lack of knowledge about protein function and structure greatly limits the

knowledge gained from high-throughput sequencing technologies and presses the

bioinformatics field to develop new methods and standard procedures for func-

tional annotation. Furthermore, shortcomings in automated systems to reliably

replace manual curation of single genes and the difficulties in combining available

scientific data into meaningful functional descriptions is holding back the gener-

alization of genome annotation. Another limitation in functional annotation is

the accumulation of faulty annotations in databases still being used [9]. The main

reason for this is the commonly used tactic of relying on detecting sequence simi-

larities to already annotated genes when assigning a function to a newly sequenced

gene. This process is sometimes described as ‘’guilt-by-association” and involves

the transfer of annotation between genes with evidence of sequence similarity. In

trying to annotate a single gene using sequence similarity, often the best match

will be to a putative, probable, unknown or uncharacterized function, yielding the

search unhelpful in further investigation [10, 11]. Collectively, these issues repre-

sent the challenges and current status of large scale and comparable functional

annotation, and these must be addressed in order to gain the most information

from sequencing data.
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An often overlooked issue in annotation is the actual definition of the concept

function. As Freidberg described in 2006, the definition of a function varies based

on the context in which it is used [12]. Another way of looking at the ambiguity of

the protein function concept was laid forth by Galperin in 2010 [13]. He described

the problem as a matter of defining the word understand. As the aim of sequencing

DNA is to get greater understanding of biology, the process of assigning a function

to a gene or protein, becomes a question of what we understand by the word

function. The rest of this chapter will discuss the concept of protein function as

well as different levels of function.

1.2 Protein function

Several different systems for functionally annotating and grouping proteins have

been suggested. In 1993, Riley et al. proposed a six level system for func-

tional annotation of Escherichia coli [14], with functional groups like Intermediary

metabolism, Cellular processes and Cell structure. This system had the advantage

of being very high level and was used in other contexts for both bacteria and

eukaryotes [15, 16]; however, this method was developed before the first bacterial

genome was sequenced. In contrast, the Clusters of Orthologous Groups of pro-

teins (COGs) is a database of protein groups made from protein sequences encoded

in complete genomes [17]. Each COG consists of individual proteins from at least

three lineages and attempts to model domains conserved across evolution. COGs

are organized into functional categories such as RNA processing and modification

and Carbohydrate metabolism and transport with fifteen different levels of func-

tion. Unfortunately, COGs is no longer being updated. In spite of this, COGs

has been used in different contexts [18], such as in the MeGa system where is was

used for functional annotation in combination with InterPro [19].

The Enzyme Commission was set up by the International Congress of Bio-

chemistry in 1955 and constructed a standardized system for enzymes, based on

the chemical reactions they are involved in5). The EC numbers have six higher

levels with examples such as Oxidoreductase reactions, Transferase reactions and

Isomerase reactions. The system does not cover all protein functions but does

illustrate how, early on, there was a focus on a standardized system for functions

with identifiers as well as curated descriptions. Building on the same idea as EC,

the Gene Ontology Consortium6 was established in 2000 [20] and presented an

5http://www.chem.qmul.ac.uk/iubmb/enzyme/rules.html
6http://www.geneontology.org

http://www.chem.qmul.ac.uk/iubmb/enzyme/rules.html
http://www.geneontology.org
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even more elaborate system of functional levels and descriptions. The consor-

tium was originally launched as a collaborative project between three eukaryotic

model organism databases, but has since expanded to include many microbial

data sources as well [20, 21]. The ontology consists of three structured, controlled

vocabularies (ontologies) of functional descriptions (GO terms) as well as unique

identifiers constructed through manual annotation and combines data from several

databases and scientific literature. The different vocabularies cover three aspects

of gene product function: molecular function, biological process and cellular com-

ponents. The descriptions in GO are organized in a relational manner with a

”child-parent” relationships between different terms and this hierarchy allows for

annotation at varying levels of specificity. The system is currently the dominant

approach for computational work in functional annotation and is widely used in

annotation pipelines [22, 23, 24]. Systems like GO and EC are invaluable in the

automatic prediction of function but the ”guilt-by-association” method often em-

ployed in the use of these systems continues to add questionable predictions to

the annotation pool [25, 26]. These different annotation systems illustrate the dif-

ficulties in putting general terms and words to functions that were historically

analyzed and documented by laboratory experiments.

Another aspect of function is the context in which it is used. One use of

protein function is the inference of evolutionary relationships between organisms.

Accumulated sequence mutations have historically been used to investigated evo-

lutionary relationships, like using DNA sequences such as 16S rRNA, but in the

field of phylogenomics, conserved functions are used to infer these relationships

[27, 28]. In this field, comparative and automatic functional annotation is crucial

as evolutionary relationships are determined based on shared functions which can

only be accomplished when the annotation is standardized across genomes.

One example of a cellular function description in Escherichia coli K12 is the

ability to break down lactose. This function (using lactose rather than glucose

or another sugar as an energy source) is actually a combination of actions, re-

quiring the activation of a set of genes, including an enzyme to cleave the lactose

sugar, and a transporter to bring in more lactose. In E. coli, this function is

the result of a classic example of the operon structure, first proposed by François

Jacob and Jacques Monod more than 50 years ago [29]. The lac operon contains

genes encoding three structural proteins, and the genes are arranged in a series

which are co-transcribed [30]. Such an operon represents an overall function (use

of lactose and hence the name lac operon), although each of the three proteins

encoded in the operon have their own function, that can be described separately
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Figure 1.1: Escherichia coli str. K-12 substr. MG1655 lac operon annotations
on different levels. Each annotation type covers a different way of describing the
functions of the gene. Annotations were obtained from the PDB, UniProt and
SEED databases.

[26]. Figure 1.1 shows the operon from the Escherichia coli K-12 MG1655 genome,

and the different levels of annotation given by Gene Ontology, Pfam and the Pro-

tein Data Bank (Uniprot P00722: LacZ7,8, Uniprot C9QQT5: LacY9,10, Uniprot

7http://www.pdb.org/pdb/images/1jz2 bio r 500.jpg?bioNum=1
8http://pubseed.theseed.org/?page=Annotation&feature=fig|83333.1.peg.341
9http://www.pdb.org/pdb/images/1KQA bio r 250.jpg?bioNum=1

10http://pubseed.theseed.org/?page=Annotation&feature=fig|83333.1.peg.340

http://www.pdb.org/pdb/images/1jz2_bio_r_500.jpg?bioNum=1
http://pubseed.theseed.org/?page=Annotation&feature=fig|83333.1.peg.341
http://www.pdb.org/pdb/images/1KQA_bio_r_250.jpg?bioNum=1
http://pubseed.theseed.org/?page=Annotation&feature=fig|83333.1.peg.340
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P07464: LacA11,12). The beta-galactosidase protein contains four Pfam-A func-

tional domains: a sugar binding domain (PF02837), a TIM barrel (PF02836), the

small chain of dimeric beta-galactosidases (PF02929) and a domain family of gly-

cosyl hydrolases (PF00703). Using the search domain architecture function on the

Pfam-A web page13 reveals that although this domain combination is quite com-

mon (1.877 sequences in Pfam-A14 the more general combination of three domains

- sugar binding, barrel and glycosyl hydrolase is more common (3.034 sequences

in Pfam-A15). The other two proteins in the lac operon, shown in Figure 1.1 on

the preceding page also contain functional domains, and it is the combination

of functional domains which determine the functional capabilities. Another ex-

ample of function and domain relationships is the RuBisCo enzyme, one of the

most abundant enzyme in the world [31, 32]. The enzyme catalyzes the reaction

in the Calvin-Benson (CB) cycle, where the CO2 is condensed with a five-carbon

molecule [33]. So far, four different domain configurations exist for RuBisCo. Each

form has a different structure combining three different Pfam domains16). The

change in the number and size of subunits affects the catalytic activity, however

the function remains the same [33]. This multi-functionality is especially difficult

capture in the automatic annotation as there is no manual decision making on

which function is right or wrong for the current interest area. If function depends

on which question is being asked, then evaluating whether the correct function is

being predicted is difficult. These kind of problems require systems like GO which

allow for multiple functional descriptions for one protein and describes different

aspects of the functions such as where the protein works and in which pathway it

is involved.

Though the link between protein sequence alignment and the function of a

reference protein is a fact, predicting function solely on sequence can be quite

unreliable [34]. A property of proteins that when known significantly strengthens

the prediction of function is the structure, which is obviously connected to pro-

tein function [35, 31]. While similar sequences produce similar structures, similar

structures might also be formed from very different sequences [35]. High resolu-

tion protein structures are traditionally obtained from experimental methods with

purified proteins. Obtaining structures through such methods as crystallography

and NMR are labour intensive and time consuming. However, predicting pro-

11http://www.pdb.org/pdb/images/1jz2 bio r 500.jpg?bioNum=1
12http://pubseed.theseed.org/?page=Annotation&feature=fig|83333.1.peg.339
13http://pfam.sanger.ac.uk/search#tabview=tab3
14http://pfam.sanger.ac.uk/protein/BGAL ECO57
15http://pfam.sanger.ac.uk/protein/Q19U06 9LACO
16http://pfam.sanger.ac.uk/family/PF00016

http://www.pdb.org/pdb/images/1jz2_bio_r_500.jpg?bioNum=1
http://pubseed.theseed.org/?page=Annotation&feature=fig|83333.1.peg.339
http://pfam.sanger.ac.uk/search#tabview=tab3
http://pfam.sanger.ac.uk/protein/BGAL_ECO57
http://pfam.sanger.ac.uk/protein/Q19U06_9LACO
http://pfam.sanger.ac.uk/family/PF00016
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tein structure computationally has proved to be equally difficult [36]. Methods

for predicting secondary structure include PSIPRED [37] and CPHmodels [38],

while methods for predicting local structural components include the prediction of

transmembrane helices (TMHMM [39]) and coiled-coils (COILS [40]). Neverthe-

less, combining structure and sequence based methods seem a promising approach

for improving computational functional annotation [36].

1.3 Comparative genomics

The advances in computational predictions of functions have been spurred on by

the increased amount of sequence data, driven by technological advances, how-

ever, further advances rely on the sequencing of multiple genomes of the same or

very similar organisms. The field of comparative genomics has shed new light on

the relationship between sequence and function. When comparing the genes or

proteins of similar organisms, differences and similarities highlight which parts of

the genomes are essential for the functions observed. As DNA sequencing and

computational methods yield significantly less functional information than could

be obtained by traditional experimental work, new information relies on detecting

the same pattern many times in many organisms.

Comparing sequences has also given rise to a number of databases and re-

sources containing functionally annotated groups of proteins found across multiple

genomes or even distinct genera [41, 42]. The HAMAP (High-quality Automated

and Manual Annotation of Microbial Proteomes) [43] resource is such a collection,

where protein families from many genomes are collected and manually annotated

based on strict similarity. This type of annotation has the ability to describe

well-characterized clusters of proteins as well as clusters of commonly identified

proteins without known functions. By comparing many genomes it is also possible

to identify proteins needed for specific pathways, as the same process might occur

in different organisms using a slightly different set of proteins and as such a more

general model for the construction of that pathway can be build.

Some functions are expected to be essential for microbial life; this includes

genes involved in replication and transcription as well as specific enzymes for es-

sential chemical processes. Though work is still being done trying to find computa-

tional methods for identifying such a set of universal genes [44], some functions are

proving to be more abundant than others with transposases being the most abun-

dant [31]. When working towards automated functional annotation it is important

to keep these biases in mind as mathematical models often assume a randomness
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which is not found in nature.

1.4 Resources

Many databases are available for obtaining complete genome sequences and in-

dividual protein sequences (SWISS-PROT [45], NCBI GenBank and RefSeq [5,

46], DDBJ [47], HAMAP [43]), protein domains (Pfam [48], InterPro [49], Prosite

[50], SMART [42]), clusters (COG [17], TIGRFAMs [51], PANTHER [52]), struc-

tures(SCOP [53], SeqHound [54]) and many other types of information. Many

of these are self-contained and not compatable with others, while other systems

integrate the information from several sources with different levels of manual in-

spection and curation. These resources offer a wide range of information for further

analysis and modeling, making them an important addition in the field of com-

putational biology. A process in getting to the full understanding of genetics will

commonly include the analysis of information from these databases.

In summary, what is protein function exactly? Based on the scientific publi-

cations and the variations in annotation systems and upper level functional cate-

gories, function clearly depends on the context in which it is used. On the other

hand, computational analysis of proteomes continues to find orthologous groups

of proteins conserved across many genera, and higher levels. Thus, functional

descriptions can be targeted towards these proteins.
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2 Describing proteins

The Oxford dictionary defines a protein to be ”any of a class of nitrogenous or-

ganic compounds which have large molecules composed of one or more long chains

of amino acids and are an essential part of all living organisms, especially as struc-

tural components of body tissues such as muscle, hair, etc., and as enzymes and

antibodies”.

Although this definition serves its purpose in many discussions, the description

is not sufficient in the area of biochemistry and microbiology. A protein, in these

fields, can be described by any number of chemical, structural, and physical pa-

rameters, as well as its influence on larger reactions, pathways and other proteins.

In fact, proteins were described this way up until recently when sequencing became

a tool in biochemistry. A protein, in bioinformatics, is the sequence of amino acids

encoded by a gene - a deoxyribonucleic acid (DNA) sequence in a genome (this

can be chromosomal, viral, or plasmid). This definition adds additional insecurity

as it involves the identification of a gene sequence in a larger DNA sequence, a

process that has its own errors and pitfalls. Once a gene has been identified, the

translation must be considered, as some organisms use different translation tables

than others, and there can be more than one place where the protein encoding

sequence can start and also end. The way proteins are used in bioinformatics often

requires more knowledge about the molecule than just the sequence. Depending on

the questions at hand, biochemical, structural and interaction information might

be required. Common topics studied using genome sequences include: detection of

genes involved in pathogenicity or disease [55, 56], detecting resistance genes [57],

identification of mutations resulting in specific phenotypes [58] and determining

species, genera or other group specific genes [59]. Each of these examples illus-

trates how a single gene or protein can be used and described in a different way

depending on the situation, a description different from the actual sequence of the

protein.

This project uses a set of pipelines and parameters to describe and cluster

protein sequences as accurately as possible. In an attempt to create a functional

annotation level that can be compared across several genomes, the first step is

to group the functionally related protein sequences and gather biologically useful

descriptions and quantifiable measures for their comparison and modeling. Hence
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the following sections will describe a number of different ways in which a protein

can be characterized and defined. The following sections describe a number of

different ways in which a protein can be characterized and defined.

2.1 Gene finding

Before any type of functional annotation can be assigned to a gene, the gene

must first be identified. This makes gene finding an essential part of the analy-

sis of proteins from DNA sequencing. Different approaches have been employed

to accomplish this task resulting in a range of algorithms including Glimmer [60],

GenemarkHMM [61], Prodigal (PROkaryotic DYnamic programming Gene-finding

ALgorithm) [62], Easygene [63] and Multivariate Entropy Distance (MED) [64].

Using different statistical models, such as Hidden Markov Models (HMMs), dy-

namic programming and entropy density profile models, they all rely on the mod-

eling of gene related signals such as the Pribnow box, Shine-Dalgarno sequence,

transcription factor binding sites, start (ATG, GTG, or TTG) and stop (TAG,

TAA or TGA) codons and codon potential. This approach is highly useful for

bacterial genomes as their coding density is very high, around 90% [60], making

the most limiting factor in gene prediction the identification of the correct read-

ing frame. Although most current gene prediction methods work relatively well

in genomes of low GC content, high GC genomes contain fewer stop codons and

more false open reading frames [62]. Because of this, a common mistake is the

prediction of too many genes. Furthermore, longer open reading frames in high

GC genomes contain more potential start codons creating a drop in accuracy of

the translation initiation site [62]. This work will not compare the performance of

these methods but will explain the method used in this work.

The gene finder used in this work is Prodigal version 2.0 (March 2010)[62].

The program was designed for prokaryotic genes, that is, bacterial and archaeal

genes. The algorithm was tested on the experimentally verified Ecogene dataset

and correctly identified the 3’ end of every single gene (excluding intron containing

genes). Another feature of this genefinder, especially valuable when working with

translated genes, is its accuracy at predicting translation initiation sites (96% of

the 5’ ends in the Ecogene data set) and its low false positive rate, usually below

5%. Last but not least, Prodigal is easy to use and is published under the General

Public License (GPL).

The genome sequences used in this project were all obtained from National

Center for Biotechnology Information (NCBI) GenBank and some contained un-
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known bases. These bases are a product of sequencing, where the actual base

cannot be identified but the length of the DNA stretch can still be established. In

these cases, a base can be represented by a number of unknown letters; X or N

is used to describe a completely unknown base (G, A, T or C) while other letters

such as the letter B means C, G or T , and the letter M can be either an A or C.

The ambiguous alphabet includes all possible 2 and 3 base combinations. Prodi-

gal includes an option that ignores reading frames across unknown DNA bases1

(option −m) and this was used in this project. The advantage of this choice is

the higher reliability of the genes obtained, as they will be completely described

by their sequence. The drawback is that some proteins might be left out. In this

project, protein sequences are used to describe the function of a protein, making

the actual sequence very important. For this reason, it was decided to not include

genes with ambiguous bases.

2.2 Sequence features

Recent developments have explored the option of classifying and predicting protein

function independently of sequence or structural alignments [65, 66, 67]. Instead

of making predictions based on actual amino acid sequence similarities, these

approaches use various sequence features to predict protein function or to clus-

ter proteins. Such features include parameters such as protein length, molecular

weight, number of atoms, amino acid composition, predicted secondary structures,

subcellular location, sequence motifs or highly conserved regions. Feature based

prediction was used as the backbone in a method presented by Lee et al. using

support vector machines and random forests to predict different protein functions

[68]. In this approach, 484 features were used and features were selected indepen-

dently for different functions. The approach suggested a number of new features

and proved highly successful in categorizing proteins into 11 different functional

classes (94-100%).

Sequence features is a term which here is used as any parameter which de-

scribes a biochemical, structural or component of a protein sequence. This way

of describing a protein offers the opportunity to compare very different protein

sequences by only looking at specific characteristics - features - in them. In this

work, the features used include a number of simple amino acid calculations, like

percentage of charged and aromatic amino acids as well as mathematical estima-

tions of physical characteristics like the extinction coefficient, which indicates how

1http://code.google.com/p/prodigal/source/browse/README

http://code.google.com/p/prodigal/source/browse/README
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much light a protein absorbs at a certain wavelength. The simpler features (such

as length and molecular weight of the protein) were calculated using the ExPaSy

ProtParam [69] pipeline (implemented in biopython2). Other features were calcu-

lated using more sophisticated models, such as Psort [70], which identifies signal

peptides and estimates the cellular location of the protein. Another set of fea-

tures were calculated using SignalP [71] which predicts the presence and location

of signal peptide cleavage sites in a amino acid sequence. The last set of features

came from the SEG procedure [72], identifying high and low complexity regions

in amino acid sequence. Figure 2.1 shows how information flows from amino acid

sequences into numerical parameters and are normalized by passing a protein se-

quence through a number of prediction programs and models to yield a feature

description of the protein sequence.

physico-
chemical 

properties

Sequence 
complexity

Subcellular 
localization 

Signal peptide 
cleavage sites

ProtParam SEG SignalPPsortb

Protein 
sequence

Prediction

Sequence 
feature

Numeric 
feature

Normalized 
feature

 0.002   0.002   91.988   0.095   0.014   0.040   ........   0.10  0   0   0   0   1   346   99.71

 0   1   1   0   0   0   0   1   1   0   0   0.4879   .......   0.182   0.0166   0.0289   0.1571   0.2010  

>proteinSequence 
MNEFMKKFSLTKPIIQAPMAGGITKPRLASAVSNQ   .......................   IRSLTEEISVKQLLNQLCQEDIKI

Figure 2.1: Sequence feature flow. Protein sequences, through series of feature
calculation programs, numeric vector and normalized vector.

The feature were selected based on their supposed connection with protein

function, their speed in calculation and numeric properties. They include both

high and low level features, that is parameters calculated using high-level models

and motifs as well as more simple counts and measures. The ProtParam features

include a number of simple counts, like amino acids, but also highlights potential

structures based on amino acids and half life prediction. Structure is known to

2http://biopython.org/w/index.php?title=ProtParam

http://biopython.org/w/index.php?title=ProtParam
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be connected to functional properties and the amount of time a protein is avail-

able after being produced also seems likely to have an influence on function. The

SignalP properties uses artificial neural networks to predict signal peptides in pro-

tein sequences. These signals are involved in moving proteins around to different

organelles in the cell, a property that could very well be related to the function

a protein serves. While SignalP returns value related to the potential of signal

peptides in a sequence, Psortb is used to estimate where the protein will be trans-

ported. The features of both Psortb and SignalP are calculated for Gram negatives

and positives separately as the organelles structure of the two cell types are differ-

ent. Biological protein sequences are very different from random strings of amino

acids [72] and contain repeated sequences or clusters of specific amino acids. A

measure of such patterns adds to the description of a sequence by defining how

much of the sequence will be important or unimportant for folding and function

prediction, as random sequences are more likely to be unimportant.

2.3 Sequence domains - Pfam

Protein domains have long been of interest in the field of functional annotation.

The reason for this interest partly stems from the functional nature of proteins.

The key to a protein’s function is often to be found not in the complete amino acid

sequence, but in a part, a domain, of the sequence. The domain might serve as a

specific binding site, or create a specific secondary or tertiary structure essential

for the proteins function. These characteristic domains have been used to build

models of functional or structural domains of proteins. These models make it

possible to compare essential sections of a protein, excluding sequence that might

add noise to a global alignment but serves no actual function. The construction

of such models have been done by a large number of database resources and are

rapidly becoming more used in protein clustering and functional annotation.

Protein motifs and domains identified by various methods are made accessible

in a variety of data collections. Most of these databases organize proteins into fam-

ilies according to their motifs and domains. Important examples include PFAM

[73], Superfamily [74], TIGRFAMs [75], Prosite [50], SMART 7 (Simple Modular

Architecture Research Tool) [42] and PANTHER (Protein Annotation Through

Evolutionary Relationship) [52]. Pfam, Superfamily, PANTHER, SMART and

TIGRFAM are based on Hidden Markov Models (HMMs) while Prosite consists

of weight matrices and short regular expressions corresponding to functionally or

structurally important residues.
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Hidden Markov Models (HMMs) are widely used in bioinformatics for identi-

fying sequence patterns. A hidden Markov model is a statistical model used to

estimate the probability of a specific pattern, here a sequence, given the model.

The most straightforward way of identifying a sequence pattern is to identify an

exact match, as when using the ”Find” function in a text editor. This approach

has the drawback of identifying only the exact match and does not allow for any

deviation. If you search for ATCGTGA the search will only return that one

pattern. A slightly more general pattern can be constructed using regular expres-

sions, which allow for a specific position in a pattern to take on several values,

say AT [CG]GTGA, indicating that position 3 could be C or G. This approach

can identify a slightly wider range of patterns than the exact match search. At

this point, it becomes relevant to talk about how, a search pattern is identified in

bioinformatics. Although exact match searches can be useful in the analysis of bio-

logical sequences, most often the patterns have too much variation to be identified

in this manner. Instead, multiple sequences with a desired pattern are compared

using multiple alignments and the resulting alignment describes the pattern on a

position to position basis. This approach indicates positions in the pattern which

are always conserved, some that can deviate to some extent and some that have

very little importance. When the patterns start taking this kind of complexity,

models are needed with a higher complexity level than regular expressions. Such

patterns can be described using Position Specific Scoring Matrices (PSSMs) which,

based on a multiple alignment, makes a probability distribution of each position in

the pattern. Although these models can describe parts of a pattern as irrelevant,

they are not good at detecting insertions and/or deletions in the patterns. For

this purpose, HMMs are used. On top of the probabilities of specific letters at

specific positions, an HMM can also detect patterns which have been interrupted

by inserted letters.

The HMM consists of two processes, namely, an invisible process of hidden

states and a visible process of observations. The hidden states form a Markov

chain, and the probability of the observation depends on the underlying state.

Modeling observations in one visible and another invisible layer, is commonly

used for many problems dealing with classifying observations into groups. Using

handwriting recognition as an example, the interest is to predict the desired letter

from the written structure. The model tries to recognize different parts of the

letter (states) that make up the entire letter (the observation) [76]. Since the actual

written letter varies substantially, the actual letter cannot be observed and must be

predicted from the written representation [77]. HMMs have traditionally been used
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for problems of pattern recognition, such as handwriting, speech recognition and in

bioinformatics to model specific sequence patterns. The method is a mathematical

approach which can be used to solve certain types of problems:

A) given the model, find the probability of the observations

B) given the model and the observations, find the state transition path; or

C) maximize either A or B by adjusting the models parameters.

Using HMMs to locate sequence patterns is a problem of type A. The Pfam

database is widely used in many areas of bioinformatics and are part of several

annotation pipelines including the Institute for Genome Sciences (IGS) Standard

Operating Procedure for Automated Prokaryotic Annotation [22] and the J. Craig

Venter Institute (JCVI) standard operating procedure for annotating prokaryotic

metagenomic shotgun sequencing data [24]. Systems like FACT, functional anno-

tation transfer between proteins with similar feature architectures [12] and CD,

Conserved Domain Database for the functional annotation of proteins [41] use

Pfam for clustering proteins according to functions and structures.

In the work presented here, Pfam is used for domain identification, protein

clustering and description. Pfam is a collection of multiple sequence alignments

and profile hidden Markov models (HMMs) and each HMM represents a protein

family or domain. Pfam consists of two different databases, Pfam-A and Pfam-B.

Pfam-A is a collection of protein family alignments which are constructed semi-

automatically using HMMs. Sequences that are not covered by Pfam-A are clus-

tered and aligned automatically, and included in Pfam-B. These families have no

annotation or reference and their alignments are not manually checked by a cu-

rator. Pfam-A families have permanent accession numbers and contain functional

annotation and cross-references to other databases, while Pfam-B families are re-

generated at each release and are unannotated. Pfam-A (version 26.0, November

2011) contains a total of 13.672 domains constructed from 12.650.879 sequences

obtained from SWISS-Prot and SP-TrEMBL and Pfam-A covers 77% of NCBI

data (11.087.249 sequences).

A Pfam-A family HMM is based on a subset of proteins belonging to that

group, the full set is called the full alignment while the subset is referred to as

the seed alignment [78]. Initially, protein families were manually constructed from

several data sources including Swissprot, Prosite, BLAST results or published

alignments. A selection of sequences from each family was used to build a seed

alignment for each group and a HMM was constructed (using HMMER3 software)

and used to search SwissProt. If the search returned all the members in the initial

set, a full alignment was constructed and evaluated. The alignment would have
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to conserve all the known features for the initial protein family to be considered

well performing. If the full alignment was found good both seed and full were

stored for the family. If the seed HMM did not locate all the initial members,

the missing sequences were added to the seed to make sure that the HMM would

pick up those sequences as well. Maintaining Pfam includes the update of full

alignments by automatically collecting sequences which match the HMM with a

set threshold.

Some Pfam-A families represent structural domains, like a helix-turn-helix mo-

tif, while others describe a binding site for a specific molecule, like a cellulose

binding domain. It is therefore not surprising that one protein may contain sev-

eral Pfam domains. The function of a protein is in our work determined by the

combination of domains it contains, this combination is here called an architecture.

The Pfam database also describes the concept of an architecture, and defines it

as the exact order of domains found in a protein. In this work, this definition

was changed slightly, disregarding the order and looking only at the presence or

absence of a domain in a protein. Another possibility for domain combinations, is

the repetition of a domain in a sequence; again, these duplicates are included in

the Pfam definition, but excluded in this work. Figure 2.2 shows the definition of

an architecture as defined for this work.

1 domain match

2 domain match 
and re-ordering

Domain 
duplication

2 domain match 
one duplication

Protein amino acid sequence Different Pfam-A domains

Architetcure Domain identification

Figure 2.2: Different types of domain architectures as defined in this work.

Pfam-A contains manually curated and verified data which offers a set of func-

tional domains with a very high information level. This information has made it

possible to create Pfam clans. Clans are defined as domains likely to share a com-

mon origin, with evidence in tertiary structure or common sequence motifs. As
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such, these domains are separate sequence patterns, but likely serve similar func-

tions. Although Pfam does offer clan HMMs, these were not used in this work;

instead Pfam clans were used to further classify proteins after the prediction of

Pfam domains. Architectures were connected to clans by single linkage. Thus, if

a domain in the architecture could be connected to the clan the architecture was

connected to that clan. When an architecture could be connected to several clans,

the architecture was assigned to both clans. The Pfam domains and clans were

used in this project for its high level information quality due to manual curation

as well as connections to other databases and short but precise functional descrip-

tions, useful for biological analysis though not essential for computer analysis of

annotations.

2.4 Ontologies - Gene Ontology

The amounts of data being collected due to improved sequence technology has

put pressure on developing standardized methods and terms to describe the data.

Large amounts of data require automatic information retrieval and merging to be

of use, and sets of large data must be described in similar ways in order to compare

one set to another. This is not only important in terms of extrapolating biological

information from sequences but also for evaluating the sequencing technologies.

Sources like InterPro [49] and UniProt [7] try to incorporate data from many

different sources, creating a nuanced and comprehensive picture of each sequence

in the database. The resource can be useful for individual gene investigation, but

fall short when comparing many proteins. The Gene Ontology (GO) system [20]

is a widely used option for comparing functional categories and is used by several

annotation pipelines (IGS [22], SIFTER [79], DOE-JGI [23], JCVI [24]) as well as

being part of both InterPro and UniProt entries.

The structure of GO is a type of graph and each GO term is connected to

other terms through a relationship. The relationships are directed, for example,

a mitochondrion ”is an” organelle, but an organelle is not a mitochondrion. The

GO structure does not allow for cyclic relationships and is therefore called an

acyclic graph. Like a hierarchy, each child term is more specific and parent terms

less precise, but unlike a hierarchy, a term may have more than one parent term.

Another key feature of GO is its description of function as having three distinct

aspects, incorporated in three different ontologies: cellular component, molecular

function, and biological process. Molecular function terms represent activities,

rather than molecules or complexes, that perform the actions, and do not specify
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where the action takes place. Examples of individual molecular function terms

are the broad concept kinase activity and the more specific 6-phosphofructokinase

activity, which represents a subtype of kinase activity. Molecular function terms

are often the sort of functional groupings that molecular biologists refer to as the

function of a protein. In contrast, the Biological Process (BP) ontology describes

biological operations carried out by one or more of molecular functions. High-level

processes such as cell death can have both subtypes, such as apoptosis, and subpro-

cesses, such as apoptotic chromosome condensation. The final category, cellular

component, is not a function in the common sense, but is highly related to the

function of a protein and describes location, at the level of sub-cellular structures

and macromolecular complexes. Examples include nuclear inner membrane, with

the synonym inner envelope. Tools like BLAST2GO [80] offers a graphical inter-

face to the GO and can both be used to assign GO terms and to create graphs

and charts of different levels of terms. Systems like GO are useful because they

allow for comparisons and for computational analysis of data. While a human is

capable of understanding how two different descriptions cover the same function,

computers are not capable of making such inferences.

Assigning functions according to the Gene ontology (GO) has the drawback

of being difficult to generalize because of the graph structure of the GO system,

called a directed acyclic graph (DAG). This means that any term might have

multiple parent terms and cannot be generalized to one upper level function. This

has given rise to different approaches for comparing terms, as one specific term

can be assigned two different upper level terms (parents). Another problem with

using GO for prokaryotic annotation is that the system was originally and is still,

maintained by eukaryotic experts. This might bias the GO terms and overlook

pathways and systems specific to or more frequently found in prokaryotes. While

the systematic nature and structure of GO is on one hand an advantage, it is also

the drawback of the system as manually literature derived keywords hold more

biological information than GO terms [81].

The use of GO in this project was based on several considerations. First

and foremost, using GO terms as annotations made it possible to automate the

procedure of comparing predictions to known functions. Another consideration

is that users of an annotation system will want to compare the system to other

systems themselves, as such, the user might desire a comparable result base. Not

all domains can be described with GO, therefore the combination of using GO

terms and Pfam domain descriptions where no GO term is available might offer a

greater coverage of protein annotation.
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3 Predicting protein function

Computational prediction of protein function has developed dramatically in the

last few years. Current methods include approaches relying on identification of

similarity between sequence and/or structure or similarity to defined protein fam-

ilies. Although many variations of annotation system exists, they all employ some

version of these setups.

The Institute for Genome Sciences (IGS) system [22] uses a wide range of pre-

dictive tools to annotate genomes. The first step includes identification of protein

coding and non-coding genes using Glimmer3 and non-coding RNA sequences are

identified using RNAmmer [82]. The protein coding genes are then compared to

UniRef100 using BLASTx [83] followed by comparisons to TIGRfams [51] and

Pfam [48] domain databases. Then follows detection of motifs using SignalP [71],

LipoP [84], TMHMM [39] and PROSITE [50]. A number of selection criteria spec-

ifies how each protein is to be annotated and results are returned as graphical

and text based files. The methods used here include different implementations of

Markov models (Glimmer3, RNAmmer, LipoP, TIGRfam and Pfam) as well as

artificial neural networks (SignalP) and weight matrix (PROSITE) approaches.

The Department of Energy Joint Genome Institute (DOE-JGI) Microbial An-

notation Pipeline [23] also uses RNAmmer for RNA detection but uses a com-

bination of GeneMark [61], Prodigal [62] and Metagene [85] for protein coding

genes. While GenMark uses HMMs for prediction, Metagene uses GC content and

codon frequencies predict protein coding genes. Functional annotations are cre-

ated from comparisons to Pfam, TIGRfam, KEGG (Kyoto Encyclopedia of Genes

and Genomes)[86] and COG (Clusters of Orthologous Groups of proteins)[87]. The

JCVI standard operating procedure for annotating prokaryotic metagenomic shot-

gun sequencing data [24] uses similar approaches for coding and non-coding gene

finding as the systems described above and annotation is performed using Pfam

and TIGRfam, TMHMM and LipoP in addition to homology search using BLAST

and the enzyme profile database, PRIAM [88] which uses position specific scoring

matrices.

As illustrated above, annotation systems include a variety of different data and

model sources in order to annotate as many proteins as possible and as precisely

as possible. Any one of the approaches used in these pipelines can stand alone
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as they describe a specific part of protein function. The InterPro database [49]

has collected a large amount of data into one single entity connecting all relevant

information to each entry and has created a method for searching and combining

results from all the databases, InterProScan [89]. The pipelines described above

predict protein function with a balance between high coverage and high specificity

in annotation. This is often the desired level of annotation for publication of

sequence data and identification of individual traits of a genome. However, the

requirements for annotation in a comparative context are slightly different. Here

the criteria for specificity is lowered as the need for coverage is prioritized. This

work describes the construction of a functional scheme based on Pfam-A and the

training of Artificial Neural Networks (ANNs) using sequence features, was used to

create models for comparative functional annotation. The models are incorporated

into a pipeline called CMGfunc, Comparative Microbial Genomic functions, and

the performance of the pipeline is described in the paper ”CMGfunc, Comparative

functional annotation of bacterial proteins using artificial neural networks and

proteins domains”, Section 5.3 on page 67.

3.1 CAFA experiment

As the number of computational prediction methods increases it becomes neces-

sary to construct a system for evaluating the performance of these methods in a

standard framework. Efforts and focus on the need for this kind of assessment

of computational predictions dates back to the first Critical Assessment of Struc-

ture Prediction (CASP, 1994), which aims to determine the progress in protein

structure prediction [90]. The assessment project has proven highly successful and

20 years later CASP has a key role in the field of protein structure prediction

[91]. The Critical Assessment of Functional Annotation experiment (CAFA) aims

to become the functional equivalent of CASP by improving the performance and

evaluation of functional annotation of proteins [92]. The project constructs a func-

tionally unknown dataset from public data (Swiss-Prot and the Enzyme Function

Initiative[93]) and research groups sign up to attempt to assign functions to the

data. After a time (6 months to a year), predicted functions are compared to ac-

cumulated experimental functions and performance is evaluated. The project ran

for the first time in 2006 and has collected many useful approaches to functional

annotation. Furthermore, the experiment has highlighted the slow progress in ex-

perimental verification, further supporting the need for computational methods.
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Other initiatives include the COMBREX1, a project focused on the increase of

speed in functional annotation and consists of a database of computational func-

tional predictions and a system for experimentalists to validate the predictions.

The project also offers small grants to support experiments [9].

3.2 Artificial Neural Networks

Artificial Neural Networks (ANNs) have proved useful as classification tools for dif-

ferent aspects of protein function such as protein fold [94], enzyme classes [66] and

transmembrane proteins [95]. Non-homologous function prediction using features

and ANNs was first implemented in the ProtFun method for human proteins [66].

The basic concept of an artificial neural network (ANN) consists of a large number

of independent connected units called nodes. The connections between the nodes,

the weights, hold the actual pattern of the model. Nodes are essentially equations

which calculate an output value based on their input. The neurons function as

switches which output a value, based on an activation function and the sum of the

input values.

Usually all nodes in a layer will have the same activation function. If not else

stated, equations presented in this section are as described by Baldi et. al. [96]

and Lund et. al. [97]. Nodes are commonly arranged into connected layers, with

one input and one output layer. The output layer commonly consists of only one

node. The arrangement of layers is called the architecture of the ANN, and a

commonly used architecture is the layered feedforward architecture, consisting of

visible and hidden layers [96]. In a feedforward network, information flows only in

one direction, that is, from input to output. The nodes in the input layer receive

input from a real number vector and do not compute any values. The function

of the input layer is to store data. The hidden layer nodes receive the data from

the input layer, calculate an output from this input and send the output to the

next layer. Figure 3.1 on the following page shows the structure of a node which

receives input and computes output. This structure applies for both nodes in the

hidden and the output layers. A node in a layer receives input from all the nodes

connected to it, which is commonly all nodes in the preceding layer. The sum of

the weighted (wj,i) inputs is passed into the node xi and the produces an output

zi = g(xi), where g is the activation function of the node. The total input to a

1www.combrex.bu.edu

www.combrex.bu.edu
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Figure 3.1: General structure of an artificial node, applies to nodes in hidden
layers. The inputs values yj , multiplied by their weights (wj,i) and then summed
up in the node, passed through the activation function and produces a output
value, zi.

node is a weighted (wj,i) sum of outputs from the previous layer

xi =
∑
j

wj,i ∗ yj + bias (3.1)

where j is the index number of the node in the previous layer and bias is the bias

or threshold of the unit which is the same for all nodes in a layer. The output

from a node is then

zi = g(xi) = g

∑
j

wj,i ∗ yj + bias

 (3.2)

There are a number of different activation functions in use. If the function is a

threshold function, such as

g(x) = {1 if x > 0 and 0 if x ≤ 0} (3.3)

the node works as a threshold gate. Here, a logistic sigmoid activation function

was used as, with the function given as

g(x) =
1

(1 + e−x)
(3.4)
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This function has a monotonic S shape which is shown in Figure 3.2. This function

is especially useful for estimating the probability of binary events, though other

activation functions can lead to essentially the same results [96].

Figure 3.2: The logistics sigmoid function.

A network can have multiple hidden layers and the number of nodes in the

hidden layer can also vary. The network can have multiple output nodes if this

fits the purpose. An example of a neural network architecture consisting of 75

inputs, 2 hidden layers and 30 nodes in each and a single output node is shown in

Figure 3.3 on the following page.

Testing and training, back- and forward-propagation

Artificial neural networks are not programmed in the traditional sense. Instead, a

network gets its information from a training procedure where the model is exposed

to input data with known output values. The network models the pattern in the

data by adjusting the weights to fit as much of the data as best as possible.

This is done by evaluating the error between the computed output (Oi) by the

network and the true output (Ti) associated with the input. A commonly used

error measure is to let the error E be proportional to the sum of the squared

difference between known and computed output

E =
1

2

∑
i

(Oi − Ti)
2 (3.5)

The goal of the training procedure is to minimize this error. One way of doing

this is by using back-propagation to update the weights. The back-propagation
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Figure 3.3: Example of feed-forward artificial neural network architecture. The
input layer has 75 inputs and is fully connected to two hidden layers with 30
neurons in each and one output layer. The sigmoid activation function is used
between all layers.

algorithm is a “steepest descent” method, which is used for finding the local min-

imum of a given function, such as the error function in this case and updates

the weights using a defined step size. The step size is called the learning rate

and the setting for this is is application-dependent and is typically chosen by ex-

perimentation. The error, the difference between the true and predicted output

value, is back-propagated after each training set has been presented. With each

back-propagation of the error the weight in the network is changed, and another

forward-propagation is initiated by presenting a new set of inputs.

The neural network is trained, the weights are updated to reflect the pattern in

the sequences, by presenting a number of examples of the pattern to the network.

These are referred to as positive examples. Positive examples are essential for

proper training, but it is also essential that the model can correctly identify true

negatives, sequences that do not fit the model. These are called negative examples,
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and should be representative of the kind of negative data the model will encounter

in true data. If the model needs to identify a very small fraction of proteins, it

has to be trained with a wide variety of negative examples as these represent a

much wider pattern than the positive examples. The training of artificial neural

networks is the key step in using these models for prediction and great effort should

be made in setting up the architectures and training data.

This chapter has described how protein function can be predicted with special

emphasis on using artificial neural networks, how they function and how then can

be trained. The paper ”CMGfunc, Comparative functional annotation of bacterial

proteins using artificial neural networks and proteins domains”, Section 5.3 on

page 67 illustrates how these concepts are used to create a set of functional models

for bacterial proteins.
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4 Data Sharing

In the work presented here, free and open source software was where possible used

for analysis. Focus was kept on sharing data and procedures for results presented

in this work for future reproduction. Furthermore, results have been published in

open access journals to ensure accessibility to the work, and the software has been

stored in public depositories for anyone to download and use.

4.1 Reproducibility

As bioinformatics becomes widely used and evolves, computational systems be-

come more advanced and specific. Reproducing results is not only a matter of

access to the right data but also requires access to the actual setup/pipeline/pro-

cedure used to generate figures/tables or key numbers. Creating portable and

local running systems that can be distributed is key in this process and also en-

sures privacy when working with confidential data, which is not suited for online

upload and analysis [98]. Such efforts are becoming more and more important as

the data behind each publication grows too large to be shared in supplementary

files or send via email. As a result, many published scientific publications can-

not be reproduced, as for example microarray experiments where 10 of 18 tested

publications could not be reproduced [99]. This further raises the question of re-

sponsibility – who should be in charge of ensuring that results can be reproduced

by peers? Currently, the duty is being passed between the scientists and the

journal editors, with no clear decision on the problem [100]. Only about 20% of

large scale published datasets are used again by others in future publications [101].

Phrased another way, 80% of the papers with large datasets get published and the

underlying data is ignored, never cited by others.

However difficult it is to place the responsibility, efforts to ensure reproducibil-

ity are becoming part of grant requirements, with applicants being asked to make

plans and provide documentation for how to share and publish data created dur-

ing the project (Research Councils UK1). Some journals are taking a similar ap-

proaches, requiring authors to deposit supporting data either with the journal

1www.uk.sagepub.com/repository/binaries/pdf/Library-OAReport.pdf

www.uk.sagepub.com/repository/binaries/pdf/Library-OAReport.pdf
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itself or with recognised data repositories (American Economic Review, the Jour-

nal of Evolutionary Biology, and Clinical Infectious Diseases). Initiatives like the

The Digital Curation Centre (DCC) works on capacity, capability and skills for

research data management in the research community2). Although requirements

for publication of data is key to reproducibility, major problems arise when sci-

entific credit, ownership and confidentiality comes into play [102]. Such problems

require explicit licensing and in the case of confidentiality specific permits have

to be retrieved before publication3. Several benefits come from working towards

reproducible research, the first one being that much research is funded by state

money, and the people have a right to access and have the research evaluated.

Other effects include improvement in work habits which leads to better collabo-

rations across research institutions and countries. Finally, working reproducibly

increases the impact of the results, as it leads to less competition and more ac-

knowledgement, when data can be reproduced, less people end up doing something

almost identical and it is more easy to use and acknowledge the published work

[103].

In this work, initiatives were taken to ensure reproducibility. Considerations

like these were part of the decision process when creating the CMG-biotools and

CMGfunc systems. Both of these systems were created as virtual computers giving

the user access to all code and data. For CMGfunc, the training data used to

create the models is also made available via the GitHub repository (repository

name cmgfunc). The CMG-biotools system has no additional data and is as such,

self contained. Both of these systems have the additional advantage of being

graphical as well as command line based, giving the user an easy entry to simple

command line use as well as a well known interface for handling files. The virtual

computers are based on Xubuntu, a graphical but reduced version of the Ubuntu

system and the virtual implementation means that they can run on all types

of operating systems. Ensuring reproducibility is not only a matter of ensuring

access to data but also access to procedures and methods used to analyze the

data. In this project, data was stored in a MySQL database which can be used

to verify the results. Although data in a MySQL database requires some practice

to retrieve, using so called queries, the queries used to obtain the data can be

made available with the database file itself. Using a database and queries to

make data public is becoming more common, with a key example being the Pfam

database4. Another example is the InterPro database, which can be downloaded

2www.dcc.ac.uk
3http://blogs.biomedcentral.com/bmcblog/files/2010/09/opendatastatementdraft.pdf
4http://pfam.sanger.ac.uk/help#tabview=tab11

www.dcc.ac.uk
http://blogs.biomedcentral.com/bmcblog/files/2010/09/opendatastatementdraft.pdf
http://pfam.sanger.ac.uk/help#tabview=tab11
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as a local installation, containing an offline version of all the information of the

system. InterPro is however not a SQL database and must be searched using

specially designed programs in the install package. All data used for the CMGfunc

project has been made available through GitHub in an effort to ensure future

reproducibility of the results presented.

4.2 Publication

Another aspect of sharing data is the publication of results. The number of scien-

tific articles is skyrocketing, with more than 25.000 new articles on Web of Science

every week of 2011. A small fraction of these will be retracted [100]. Of course,

retractions are a bad thing, and it is not desired to have a high rate of retractions;

however, with the large increase in publications, and some constant level of er-

ror and misconduct, it is reassuring that some bad publications get detected and

retracted. Although the peer review process has been a good way of ensuring rel-

evance of scientific publication, the nature of the process might not always ensure

the quality of publications. With much work being published based on computa-

tional analysis it is very difficult for reviewers to verify the published results. It is

likely that changes must be made to the review process as both science and pub-

lications requirements change. Some initiatives have already been made in this

direction, such as the F1000Research journal. The journal was started in 2010

and was indexed in PubMed in 2012. The goal is to improve the way research

is communicated and introduces a new setup for publication and data access5.

This journal runs on a very different scheme than other journals. The traditional

approach to scientific publishing has been that the editor is the first to view the

paper after which it may or may not be send for review. When the reviewers re-

turn their comments they also give a verdict, approved, approved with revision or

not approved. The author is then given the chance to make revisions and resubmit

within a timeline. This procedure is often very long, and many iterations might

be required before publication is reached. Furthermore, the paper is not public

or citable through this process, making it impossible for the authors to publish

new work based on the first paper. The F1000 has a very different submission

system. A paper is initially evaluated by a editorial team before being published

as awaiting peer review, at which point the paper is made available on the F1000

webpage. Referees are selected and the comments are publically displayed with

the online version of the paper. All communication between referee and scien-

5http://f1000research.com/about

http://f1000research.com/about
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tist takes place openly and when the revisions have been meet the paper is given

the status approved and is indexed in Pubmed, Google Scholar and a number of

other resources. Although some debate is going on about the review process of

F1000research, some calling it a non-journal and referring to the review process

as incomplete and messy, the project does illustrate the need for changes in the

publication process as results are generated faster and based on larger datasets.

The work presented in this thesis is based on large amounts of data with

complex analysis pipelines and setups, and although all data was obtained from

public sources, the road to reproducibility is still long. Hopefully, procedures for

data and analysis sharing will become standard soon and increase the knowledge

which can be found in data.
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5 Articles

5.1 CMG-Biotools, basic Comparative Microbial Genomics

The paper presented here represents a project focused on how to compare bacterial

genomes and how to make the tools available and useful for other scientists. The

work started as the development of teaching material but proved to be of inter-

est to people outside the classroom as well. The paper describes a self-contained

package that can be run on almost any modern portable laptop computer. The

virtual machine creates a user-friendly and computationally powerful bioinformat-

ics pipeline taking accessibility, reproducibility, speed and difficulty of use into

consideration. The package has been used in one week introductory workshops in

Spain, Norway, Morocco, Thailand, Nepal, and at the Center for Disease Control

in Atlanta, Georgia (USA) as well as being used for several years in the semester

course, Comparative Microbial Genomics at the Technical University of Denmark.

The paper presents CMG-biotools, a free workbench for Comparative Microbial

Genomics which is a virtual computer that can be installed on all platforms.

The workbench includes tools for formatting and handling of data types, gene

prediction, proteome comparisons using sequence and feature based methods as

well as structural analysis using circular DNA plots. The individual tools in this

workbench have been published previously and were not developed for this project.

The workbench, however, is the first time these tools are made available for local

installation and use. The workbench is based on the Xubuntu operating system,

which is similar to systems like Windows and Mac OSX. The workbench requires

some introduction to Unix, and the user will be able to get more out of the tools

once a basic level of Unix has been achieved. However, the system has proven a

great way to introduce command line tools to people with no prior experience.

The paper was published in PLOS ONE in April 2013 and has been viewed

over 1.800 times and based on the correspondence directed at the authors, the

workbench is being used around the world.
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Abstract

Background: Today, there are more than a hundred times as many sequenced prokaryotic genomes than were present in
the year 2000. The economical sequencing of genomic DNA has facilitated a whole new approach to microbial genomics.
The real power of genomics is manifested through comparative genomics that can reveal strain specific characteristics,
diversity within species and many other aspects. However, comparative genomics is a field not easily entered into by
scientists with few computational skills. The CMG-biotools package is designed for microbiologists with limited knowledge
of computational analysis and can be used to perform a number of analyses and comparisons of genomic data.

Results: The CMG-biotools system presents a stand-alone interface for comparative microbial genomics. The package is
a customized operating system, based on Xubuntu 10.10, available through the open source Ubuntu project. The system
can be installed on a virtual computer, allowing the user to run the system alongside any other operating system. Source
codes for all programs are provided under GNU license, which makes it possible to transfer the programs to other systems if
so desired. We here demonstrate the package by comparing and analyzing the diversity within the class Negativicutes,
represented by 31 genomes including 10 genera. The analyses include 16S rRNA phylogeny, basic DNA and codon statistics,
proteome comparisons using BLAST and graphical analyses of DNA structures.

Conclusion: This paper shows the strength and diverse use of the CMG-biotools system. The system can be installed on
a vide range of host operating systems and utilizes as much of the host computer as desired. It allows the user to compare
multiple genomes, from various sources using standardized data formats and intuitive visualizations of results. The
examples presented here clearly shows that users with limited computational experience can perform complicated analysis
without much training.
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Introduction

The number of microbial genome sequences has exploded due

to the lower cost of sequencing facilitated by advances in

sequencing technology making these services easier and faster.

There are now roughly a hundred times as many sequenced

prokaryotic genomes available as in 2000. The National Center

for Biotechnology Information (NCBI) has an online list of genome

sequences, complete and in progress. In 2000, 42 sequenced

genomes were available on the NCBI list, and this number had

grown to 4 189 in February 2012 (www.ncbi.nlm.nih.gov/

genomes/lproks.cgi). Further, recently a single study [1] has

compared genome sequences from 2 348 Mycobacterium tuberculosis

isolates, and there are many more studies in progress where

thousands of bacterial genome sequences are compared. As

a consequence, more experimental biologists with little to no

experience with bioinformatics find themselves in possession of an

enormous amount of sequencing data and in need of tools

necessary for analysis.

Analyzing the sequence of a single genome can confer a wide

range of knowledge [2,3]. It is possible to use alignment tools to

find a specific gene in a genome within seconds, for example to

identify a genetic marker for a specific phenotype. DNA structure

analyses can pinpoint chromosomal regions that lend themselves

to certain genes and genomic elements. Regions that show distinct

structural properties along the chromosome include clusters of

genes encoding surface-proteins (usually more AT rich), possible

phage insertions, regions likely to contain highly expressed genes

as well as potential genomic islands [4–6]. Based on the annotation

of a genome it is also possible to find the gene neighbors of

a specific gene, thus possibly identifying functionally connected

genes. The sequencing of individual genomes has facilitated

a whole new approach to wet lab experiments that until recently

were not possible. There is an enormous amount of information

just in a single genome sequence.

However, the real power of genomics is manifested through

comparative genomics. Even within a species, comparative

genomics has highlighted a diversity that would not have been
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detected otherwise. The diversity within Escherichia coli was

illustrated in a study from 2009, where the number of gene

families, in Escherichia coli was estimated to be 43 000 [7]; this

number is expected to become larger as more genomes are

sequenced. Another example of the power of comparative

genomics, this time within low diversity genomes, can be found

in a study of two Bacillus species, B. anthracis and B. cereus. These are

difficult to differentiate based on chromosomal markers [8], and

the difference in pathogenicity is solely determined by the strict

presence of two virulence plasmids, which both are required for

anthrax. The diversity of a species can be estimated by multiple

sequence comparisons across genomes calculating the pan genome

(all genes found in genomes) [9]. Comparative microbial genomics

(CMG) also allows for fast and inexpensive analyses, for example

phylogenetic relationships between organisms. Further, it is

possible to build up data from known organisms that would allow

for quick classification of an isolate of an unknown organism, just

from its genome sequence.

The CMG-biotools package presented here is designed for

microbiologists with limited knowledge of computational analyses

and comes with a basic introduction to Unix. Within this package

it is possible to do phylogenetic analysis, proteome comparisons,

DNA structure analysis and much more, just with a list of

genomes. Most of the analyses can be performed on FASTA

formatted DNA sequences from unpublished projects as well. The

CMG-biotools system presents a stand-alone interface for com-

parative microbial genomics. The package is a installable oper-

ating system, based on Xubuntu 10.10 available through the open

source Ubuntu project (www.xubuntu.org/get). This setup over-

comes problems with dependencies and platform specificity

allowing for all users to work in the same environment. Ubuntu

is a widely used, free of charge and open source operating system

with a large user community and thousands of free applications. As

of 2012, Ubuntu is the second most popular Linux distribution,

only surpassed by Mint [10]. It is a stand-alone operating system

and can be installed directly onto a local computer or on a virtual

computer using virtualization software. The CMG-biotools

operating system has been tested on a free virtualization

application, VirtualBox (www.virtualbox.org). This system ad-

dresses the problem of working with large amounts of data,

allowing for comparative analyses of multiple genomes, thereby

making use of the vast amount of sequence information that is now

available in laboratories all over the world.

Results and Discussion

To demonstrate the capabilities of the CMG-biotools (Com-

parative Microbial Genomics), analyses are performed on a set of

genomes from the class Negativicutes. The CMG-biotools operating

system was installed on an 8 Gigabyte virtual computer using

VirtualBox (www.virtualbox.org). Figure 1 illustrates the work and

data flow of the analyses.

Data Collection and Assessment
The first step of the analyses is to obtain genome data for a set of

organisms. In the example presented here, we obtain data from

the GenBank database [11] at the National Center for Bio-

technology Information (NCBI, www.ncbi.nlm.nih.gov/genome/

browse/) This database is part of the International Nucleotide

Sequence Database Collaboration (INSDC) and contains more

than 3000 bacterial genome projects. For the example, organisms

of the class Negativicutes were identified from NCBI genomes list

(www.ncbi.nlm.nih.gov/genome/browse/, ‘‘Prokaryotes’’, Negati-

vicutes (taxid:909932)) and GenBank INSDC numbers or whole

genome sequence numbers (WGS) were obtained. The genome

sequences of 6 complete (NCBI Genomes list, status: ‘‘Complete’’)

and 25 assembly genomes (NCBI Genomes list ‘‘Scaffolds/

contigs’’) were identified. NCBI GenBank INSDC numbers were

used for complete genomes while WGS numbers were used for

draft sequences. Using the program getgbk and the INSDC/WGS

numbers, each genome was downloaded in the NCBI GenBank

format (Figure 1, Step 1). A list of genome names and INSDC/

WGS numbers is found in Table 1. DNA sequences were

extracted from GenBank files and saved in FASTA format(saco_-

conver t [12], Figure 1, Step 2B).

Basic statistical parameters were calculated for the 31 genomes

(Figure 1, Step 3B), using whole genome DNA FASTA files as

input, and the results are shown in Table 2. The AT content

varied from 42 to 66% and the genome size ranged from 1.26 to

2.89 Mega bases (Mb). The percentage of unknown bases refers to

letters in the DNA code that are not A, C, T or G. These bases

might be the result of an assembly process or errors in sequencing.

Of the 31 genomes analyzed, 8 had non-canonical base letters in

the DNA sequences, ranging from 0.0001%. to 3.6%. The fraction

of the largest contig will be 100% for genomes with one

chromosome and therefore this measure is more useful for

identification of incomplete sequences. For the non-complete

genomes, the fraction made up by the largest sequence varied from

5% to 30%. It is seen the the fraction correlates with the number

of contigs, if the genome sequence is in many contigs, then the

largest sequence covers a small fraction of the entire genome.

These findings show a large variation in the dataset, both in the

context of biology (AT content and size) and data quality (number

of contigs and percentage of unknown bases).

Gene Finding
The next step in the analysis is to identify coding regions in

DNA sequences. Some genome projects have manually curated

and high quality annotations while others have no annotations at

all. Again others have been annotated using a genefinding

algorithm without any additional evaluation of the findings. The

CMG-biotools uses the program Prodigal [13] for genefinding and

has been incorporated into a pipeline called prodigalrunner. This

pipeline takes a genome DNA GenBank or FASTA file as input

(Figure 1, Step 2C) The output from prodigalrunner is a pre-

liminary GenBank file (.gbk), a general feature format file (.gff),

a FASTA formatted open reading frame file (genes,.orf.fna) and

a FASTA formatted protein file which contains the translations of

the genes (orf.fsa). Table 3 shows the number of published genes

compared to the number of genes found when using Prodigal for

genefinding.

This genefinder found between 1 206 (D. micraerophilus DSM

19965) and 2 886 (Thermosinus carboxydivorans Nor1) proteins in the

31 genomes. Compared to the published proteins from GenBank,

Prodigal finds roughly the same number of genes, except for two

genomes which did not have any published annotations. The

advantage of using an independent gene finder for all genome

sequences in an analysis is that the difference introduced by

annotators will be removed. As information on how genefinding

was performed is rarely available, doing local genefinding might

eliminate badly annotated projects. Whether to use published

annotations is up to the individual user but for obvious reasons,

genefinding will have to be done for projects with no published

annotations. For the remaining analysis in this paper, proteomes

predicted using prodigalrunner will be used.

CMG-BioTools

PLOS ONE | www.plosone.org 2 April 2013 | Volume 8 | Issue 4 | e60120

33 CHAPTER 5. ARTICLES



Phylogenetic Analysis
The chromosomal DNA sequence, as extracted from the

GenBank files (FASTA format) is used as input for this analysis,

as illustrated in Figure 1, Step 2A. The whole genome DNA

sequence is searched for rRNA sequences using RNAmmer [14]

and a sequence from each genome is extracted (select16SrRNA,

Figure 1, Step 3A). The selection criteria for the extraction process

defaults to the highest scoring sequence found with a length

between 1 400 and 1 800 base pairs. This selection is not

necessarily the most correct way of selecting a 16S rRNA sequence

for phylogenetic analysis, but offers the opportunity to compare

genomes based on a single sequence. The alignment program

ClustalW [15] is used for multiple sequence alignment of the

sequences. From the alignment, a distance tree is constructed,

using 1 000 bootstraps [16] to find the best fitting distance tree (the

output is a file Phylip tree format.phb). Each node of the tree is

shown with a bootstrap value between 0 and 1 000, the number

indicating how many times this branching is seen out of 1 000 re-

samplings. The higher the number the more reliable the

branching. The visualization of the tree was done using njplot

[17] and is shown in Figure 2.

The results of the RNAmmer analysis yielded no rRNA

sequences for two genomes (Centipeda periodontii DSM 2778, 72

contigs, and Megamonas hypermegale ART12 1, 1 replicon).

Sequences from 6 genomes had lengths outside the default

thresholds - length between 1 400 and 1 800 base pairs (Table 4,

16S rRNA length and score for each genome). For this analysis the

thresholds were changed to include these 6 genomes (lower

threshold for sequence length was changed to 1 100 base pairs).

The genome of Megamonas hypermegale contains a large number of

unknown bases (found in 99 stretches of lengths between 141 and

1780 nucleotides, calculated using countUnknowns.pl). The

average length of these stretches was 804 nucleotide positions,

roughly half the length for a 16S rRNA sequence. It is here

hypothesized that such unknown base stretches can prevent

rnammer from identifying ribosomal RNA sequences, because

parts of the 16S rRNA sequence might be missing. The sequence

of Centipeda periodontii DSM 2778 does not contain any unknown

bases, but still no rRNA sequences were found in this sequence.

The genome is in 72 contigs and the largest sequence is 8.5% of

the total, numbers that are not extreme compared to other

genomes in this analysis (Table 3). It can be hypothesized that the

lack of 16S rRNA sequences in this genome might be a result of

the sequence assembly. Since ribosomal RNA sequences often are

repeated sequences, the assembly process might not be able to

conclusively place the rRNA in the DNA, and might discard the

sequences all-together.

The 16S rRNA tree (Figure 2) has been manually colored by

genus, where multiple genomes per genus was available. The

genomes show a general tendency to cluster within their

taxonomical groups. Furthermore, the tree shows three main

clusters with Acidaminococcus and Selenomonas as separate clusters

(cluster II and III). The last cluster contains the genomes of

Veillonella, Megasphaera and Dialister, all clustered in subgroups

according to taxonomy. The clustering of genomes according to

genera is expected since the taxonomic naming is based on 16S

Figure 1. Analysis workflow. Visual representation of the data flow through each of the steps in the CMG-biotools system. The figure shows the
analysis input and program name along with the analysis output type. Green arrows indicate data extraction from a GenBank file format, this data
needs to be available in the file for these steps to work. Red arrows indicate local genefinding which results in gene FASTA, protein FASTA and
GenBank files.
doi:10.1371/journal.pone.0060120.g001
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rRNA comparison [18]. It should be noted that the resulting trees

shown here should be considered as preliminary classification.

Genome Atlases (Structural DNA Atlas)
Genome atlases were constructed for each of the 6 complete

genomes using GenBank files generated by prodigalrunner(Table 1

and Figure 3, high resolution figure as supplemental Figure S1).

The input to this analysis is a GenBank file containing one

replicon of a genome (a single chromosome or plasmid, Figure 1,

Step 3E). The analysis is performed using the program

genomeAtlas, which is a collection of scripts that utilizes the

GeneWiz program [6]. The genome atlas shows three types of

information: base composition (AT content, GC skew), global

repeats within the replicon (direct and inverted), and DNA

structural properties (position preference, DNA stacking energy,

and curvature). Genes (blue for leading and red for lagging strand),

rRNAs and tRNAs are displayed as found in the GenBank

annotation. The DNA is used for simple base count information

includes AT content and GC skew. The atlas also shows a visual

representation of structural properties of the DNA molecule

(inverted and direct repeats, position preference [19], stacking

energy [20] and intrinsic curvature [21,22]). These different

structures can potentially influence gene expression, likelihood of

gene rearrangement and even evolutionary hotspots. The atlases

in Figure 3 show a range of different DNA structure properties.

Arrows and colors mark different important regions on each atlas

(added to the atlases manually).

Mobile elements sometimes have different base composition,

and can be indicated by areas of different curvature, stacking

energy and position preference, compared to the chromosomal

average (grey), as seen from the atlas of Acidaminococcus fermentans.

Highly expressed regions are sometimes regions which will not

Table 1. Genome information.

Tax Organism INSDC WGS WGS for download Status

591001 Acidaminococcus fermentans DSM 20731 CP001859 – – Complete

568816 Acidaminococcus intestini RyC-MR95 CP003058 – – Complete

563191 Acidaminococcus sp D21 – ACGB01 ACGB00000000 Scaffolds/contigs

888060 Centipeda periodontii DSM 2778 – AFHQ01 AFHQ00000000 Scaffolds/contigs

592028 Dialister invisus DSM 15470 – ACIM02 ACIM00000000 Scaffolds/contigs

888062 Dialister micraerophilus DSM 19965 – AFBB01 AFBB00000000 Scaffolds/contigs

910314 Dialister microaerophilus UPII 345-E – AENT01 AENT00000000 Scaffolds/contigs

158847 Megamonas hypermegale ART12 1 FP929048 – – Complete

907 Megasphaera elsdenii DSM 20460 HE576794 – – Complete

699218 Megasphaera genomosp type 1 str 28L – ADGP01 ADGP00000000 Scaffolds/contigs

706434 Megasphaera micronuciformis F0359 – AECS01 AECS00000000 Scaffolds/contigs

1000569 Megasphaera sp UPII 135-E – AFUG01 AFUG00000000 Scaffolds/contigs

1000568 Megasphaera sp UPII 199-6 – AFIJ01 AFIJ00000000 Scaffolds/contigs

500635 Mitsuokella multacida DSM 20544 – ABWK02 ABWK00000000 Scaffolds/contigs

626939 Phascolarctobacterium succinatutens
YIT 12067

– AEVN01 AEVN00000000 Scaffolds/contigs

749551 Selenomonas artemidis F0399 – AECV01 AECV00000000 Scaffolds/contigs

638302 Selenomonas flueggei ATCC 43531 – ACLA01 ACLA00000000 Scaffolds/contigs

585503 Selenomonas noxia ATCC 43541 – ACKT01 ACKT00000000 Scaffolds/contigs

879310 Selenomonas sp oral taxon 137 str F0430 – AENV01 AENV00000000 Scaffolds/contigs

864563 Selenomonas sp oral taxon 149 str 67H29BP – AEEJ01 AEEJ00000000 Scaffolds/contigs

546271 Selenomonas sputigena ATCC 35185 CP002637 ACKP02 ACKP00000000 Complete

401526 Thermosinus carboxydivorans Nor1 – AAWL01 AAWL00000000 Scaffolds/contigs

866776 Veillonella atypica ACS-049-V-Sch6 – AEDR01 AEDR00000000 Scaffolds/contigs

866778 Veillonella atypica ACS-134-V-Col7a – AEDS01 AEDS00000000 Scaffolds/contigs

546273 Veillonella dispar ATCC 17748 – ACIK02 ACIK00000000 Scaffolds/contigs

686660 Veillonella parvula ATCC 17745 – ADFU01 ADFU00000000 Scaffolds/contigs

479436 Veillonella parvula DSM 2008 CP001820 – – Complete

457416 Veillonella sp 3 1 44 – ADCV01 ADCV00000000 Scaffolds/contigs

450749 Veillonella sp 6 1 27 – ADCW01 ADCW00000000 Scaffolds/contigs

879309 Veillonella sp oral taxon 158 str F0412 – AENU01 AENU00000000 Scaffolds/contigs

944564 Veillonella sp oral taxon 780 str F0422 – AFUJ01 AFUJ00000000 Scaffolds/contigs

Table listing the genomes used in the analysis. Data was downloaded from NCBI GenBank database. Abbreviations: Tax: NCBI taxonomy id number, Organism: Name of
organism, INSDC: NCBI GenBank Accession number,WGS: NCBI Whole Genome Sequence Project number, Status: status of sequencing project. The WGS number can be
used for downloading whole genome sequencing projects by removing the last two numbers and adding 6 zeros (ACGB01 is downloaded using the number
ACGB000000).
doi:10.1371/journal.pone.0060120.t001
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easily condense around chromatin proteins (See atlas for

Acidaminococcus intestini RyC-MR95, very low position preference,

average stacking energy and position preference). Some regions

are often associated with rRNA sequences and these patterns are

also thought to correlate with high gene expression (See atlas for

Megasphaera elsdenii DSM 20460, less negative stacking energy (red,

melt easy) and low position preference (flexible)). Regions with

high curvature and stacking energy indicate a strongly curved

region with tendency to melt (See atlas for Selenomonas sputigena

ATCC 35185). This structure might be involved in a special DNA

structure, maybe where the chromosome attaches to the bacterial

cell membrane. On the chromosome of Veillonella parvula DSM

2008 are several regions with high curvature, stacking energy and

position preference, suggesting this region to be curved, rigid and

easily melted. The genes in this region might be highly expressed

but controlled by histone-like proteins that preferentially bind to

curved DNA. The draft chromosome of Megamonas hypermegale

ART12 1 is slightly different from the other atlases. For five of the

six atlases in Figure 3, the GC skew indicates the location of the

origin and terminus of replication, and changes from most G’s

(blue) to more C’s (pink). For most bacterial genomes, G’s are

biased toward the leading strand [23]. Note how the number of

genes on leading/lagging strand changes along with the GC skew

(more G’s, more minus strand genes). For the genome of

Megamonas hypermegale ART12 1, the GC skew lane is a mixture

of pink and blue, likely because this is a draft genome sequence.

The genome is also highly AT rich (66%) and contains three

regions with DNA structural patterns different from the rest of the

genome.

Table 2. Genome statistics.

Organism bp AT Std. AT Contig Unknown Largest N50

Acidaminococcus fermentans DSM 20731 2 329 769 44,16 – 1 – 100 2 329 769

Acidaminococcus intestini RyC-MR95 2 487 765 49,98 – 1 – 100 2 487 765

Acidaminococcus sp D21 2 238 973 49,80 0,03 79 – 6,2 43 082

Centipeda periodontii DSM 2778 2 650 230 44,02 0,04 71 – 8,4 72 349

Dialister invisus DSM 15470 1 895 860 54,50 0,03 2 – 99,9 1 894 898

Dialister micraerophilus DSM 19965 1 256 198 64,69 0,05 32 – 17,9 90 852

Dialister microaerophilus UPII 345-E 1 395 825 64,35 0,07 32 – 15,4 122 970

Megamonas hypermegale ART12 1 2 209 938 65,89 – 1 3,602 100 2 209 938

Megasphaera elsdenii DSM 20460 2 474 718 47,01 – 1 0,397 100 2 474 718

Megasphaera genomosp type 1 str 28L 1 726 197 53,95 0,03 34 – 12,2 156 177

Megasphaera micronuciformis F0359 1 765 374 54,56 0,04 49 – 24,8 142 252

Megasphaera sp UPII 135-E 1 440 762 61,19 0,04 46 0,001 12,0 63 822

Megasphaera sp UPII 199-6 1 242 998 53,26 0,04 38 – 12,0 96 055

Mitsuokella multacida DSM 20544 2 204 718 41,89 0,04 28 – 19,5 321 943

Phascolarctobacterium succinatutens YIT 12067 2 122 261 52,36 0,05 118 – 5,1 43 220

Selenomonas artemidis F0399 2 209 623 42,75 0,06 66 – 19,7 89 528

Selenomonas flueggei ATCC 43531 2 157 862 44,03 0,04 33 – 12,2 125 841

Selenomonas noxia ATCC 43541 2 039 467 44,13 0,05 56 – 14,2 106 401

Selenomonas sp oral taxon 137 str F0430 2 475 066 43,27 0,05 15 – 22,1 306 540

Selenomonas sp oral taxon 149 str 67H29BP 2 429 414 43,20 0,05 56 – 7,8 95 526

Selenomonas sputigena ATCC 35185 2 568 361 42,89 – 1 – 100 2 568 361

Thermosinus carboxydivorans Nor1 2 889 774 48,50 0,03 49 – 12,1 108 262

Veillonella atypica ACS-049-V-Sch6 2 053 871 61,03 0,04 63 – 10,3 80 793

Veillonella atypica ACS-134-V-Col7a 2 151 913 61,02 0,04 70 – 9,8 74 331

Veillonella dispar ATCC 17748 2 116 567 61,14 0,06 25 – 30,4 498 249

Veillonella parvula ATCC 17745 2 163 473 61,43 0,04 19 – 26,9 416 853

Veillonella parvula DSM 2008 2 132 142 61,37 – 1 – 100 2 132 142

Veillonella sp 3 1 44 2 156 561 61,36 0,04 31 – 18,0 282 953

Veillonella sp 6 1 27 2 169 785 61,33 0,04 22 – 15,8 257 597

Veillonella sp oral taxon 158 str F0412 2 176 752 61,05 0,04 21 – 19,3 366 615

Veillonella sp oral taxon 780 str F0422 1 731 014 60,55 0,03 75 – 14,0 73 892

Basic genome statistics for genome DNA sequences. Values of zero are marked by ‘‘2’’. Abbreviations: Organism: Name of organism. Status: sequencing status of
published project. bp: total number of base pairs in all DNA. AT: Percent of AT in DNA. Std. AT: Standard deviation in AT across DNA fragments. Contig: number of DNA
fragments corresponding to replicons or contigs. Unknown: percentage of unknown bases (not A, T, C or G). Largest: size of largest contig as a percentage of total
length. N50: weighted median statistic such that 50% of the entire assembly is contained in contigs or scaffolds equal to or larger than this value.
doi:10.1371/journal.pone.0060120.t002
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Amino Acid and Codon Usage
The input to the analysis of codon usage and bias in third codon

position is a gene FASTA file (DNA). The amino acid usage can be

performed on any set of proteins in FASTA format using

aminoacidUsagePlot (Figure 1, Step 3D). Here, both analyses

were run using the genes and proteins identified by prodigalrunner

(Figure 1, Step 2C). The program basicgenomeanalysis calculates

the bias in third position, codon and amino acid usage and the

output is a text file containing the values along with a PDF file with

plots. The bias is defined as 21 in the case of 100% A or T in third

position, +1 is the case of 100% G or C.

The bias in third position was analyzed and visualized for the 6

complete genomes (Figure 4). The genomes of V. parvula DSM

2008 and M. hypermegale ART12 1 have a high bias towards A/T in

third position (bias score, 20.3906 and 20.6256, respectively) and

also a very high AT content (66% and 61%, respectively). The

genomes of S. sputigena ATCC 35185 and A. fermentans DSM

20731, have low AT content and a bias towards G/C in third

position (bias score, 0.4719 and 0.4276, respectively). M. elsdenii

DSM 20460 and A. intestini RyC-MR95 have average AT content

but M. elsdenii has a clear bias in third position towards C (bias

score, 0.3175). This analysis shows the diversity of AT content

between these genomes and also illustrates how AT content

correlates with the nucleotide bias in third codon position.

The codon and amino acid usage was calculated for all 31

genomes and visualized in heatmaps created in R (Figure 5, genera

colors were added manually). The genera of Veillonella and

Selenomonas cluster together showing that each species have

a unique use of both codons and amino acids. The genomes

belonging to Megasphaera, Acidaminococcus and Dialister are less

conserved, and do not consistently cluster together. These two

trees show a different relationship than the 16S rRNA tree

(Figure 2). The amino acid usage tree shows three main clusters

with Selenomonas and Dialister forming their own clusters (cluster II

and III). The last cluster (cluster I) consists of Veillonella, Megasphaera

and Acidaminococcus. This is significantly different from the codon

Table 3. Genefinding and published genes.

Genome name GenBank Prodigal ID

Acidaminococcus fermentans DSM 20731 2 026 2 063 CP001859

Acidaminococcus intestini RyC-MR95 2 404 2 372 CP003058

Acidaminococcus sp D21 2 005 2 105 ACGB00000000

Centipeda periodontii DSM 2778 2 559 2 440 AFHQ00000000

Dialister invisus DSM 15470 1 954 1 765 ACIM00000000

Dialister micraerophilus DSM 19965 1 243 1 206 AFBB00000000

Dialister microaerophilus UPII 345-E 1 310 1 308 AENT00000000

Megamonas hypermegale ART12 1 2 118 2 759 FP929048

Megasphaera elsdenii DSM 20460 2 220 2 222 HE576794

Megasphaera genomosp type 1 str 28L 1 610 1 560 ADGP00000000

Megasphaera micronuciformis F0359 1 774 1 724 AECS00000000

Megasphaera sp UPII 135-E 1 310 1 291 AFUG00000000

Megasphaera sp UPII 199-6 1 151 1 112 AFIJ00000000

Mitsuokella multacida DSM 20544 2 142 1 942 ABWK00000000

Phascolarctobacterium succinatutens YIT 12067 2 150 2 012 AEVN00000000

Selenomonas artemidis F0399 2 195 2 024 AECV00000000

Selenomonas flueggei ATCC 43531 2 117 2 045 ACLA00000000

Selenomonas noxia ATCC 43541 2 020 1 955 ACKT00000000

Selenomonas sp oral taxon 137 str F0430 2 395 2 341 AENV00000000

Selenomonas sp oral taxon 149 str 67H29BP 2 407 2 313 AEEJ00000000

Selenomonas sputigena ATCC 35185 2 255 2 283 CP002637

Thermosinus carboxydivorans Nor1 2 750 2 886 AAWL00000000

Veillonella atypica ACS-049-V-Sch6 1 840 1 865 AEDR00000000

Veillonella atypica ACS-134-V-Col7a 1 903 1 923 AEDS00000000

Veillonella dispar ATCC 17748 1 954 1 941 ACIK00000000

Veillonella parvula ATCC 17745 1 929 1 945 ADFU00000000

Veillonella parvula DSM 2008 1 844 1 865 CP001820

Veillonella sp 3 1 44 0 1 922 ADCV00000000

Veillonella sp 6 1 27 0 1 936 ADCW00000000

Veillonella sp oral taxon 158 str F0412 2 000 2 029 AENU00000000

Veillonella sp oral taxon 780 str F0422 1 588 1 605 AFUJ00000000

Table listing genome name, number of published proteins (GenBank) and number of proteins found using Prodigal for genefinding (Prodigal). The column labeled ‘‘ID’’
refers to the INSDC or WGS id number as described in Table 1.
doi:10.1371/journal.pone.0060120.t003
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Figure 2. 16S rRNA tree. Each genome sequence was searched for 16S rRNA patterns and candidate sequences were extracted. The best sequence
from each genome was selected. For two genomes, no sequences were found, Centipeda periodontii DSM 2778, Megamonas hypermegale ART12 1.
For 6 additional genomes, the located sequences were shorter than the default acceptable length. The short sequences sequences are marked with
a ‘‘*’’. Length criteria was changed from minimum 1 400 to 1 100 and maximum 1 800 unchanged. The distance tree was made with 1 000 bootstraps.
doi:10.1371/journal.pone.0060120.g002
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usage tree which creates a cluster consisting of Veillonella and

Dialister with a single Megasphaera genome (cluster III), another

cluster of Selenomonas(cluster II) and the last cluster of Megasphaera

and Acidaminococcus (cluster I). None of the two methods makes

a consistent clustering of the Megasphaera genomes as the 16S

rRNA tree. In accordance, none of the three trees show the same

general clusters, however they all manage to cluster closely related

genomes, with the single exception of Megasphaera.

Proteome Comparisons Using BLAST
For this analysis, proteomes were constructed for all 31 genomes

using prodigalrunner for genefinding. Presented here are two

different types of proteome comparisons, both based on the

BLAST algorithm (Basic Local Alignment Search Tool) [24,25].

The first method is a BLAST matrix and shows a pairwise

proteome comparison by using BLAST to identify whether two

proteins are shared between genomes [26]. Two proteins are

considered to be in the same family if 50% of the alignment

consists of identical matches and the length of the alignment is

50% of the longest gene. The main part of the matrix consists of

pairwise genome comparisons; with fractions of shared proteins

shaded in green (more green, more protein families shared). The

row that would reflect self-comparison indicates internal homologs

(internal paralogs, shaded red) which are defined as a significant

hit within a genome to a protein other than the query protein

itself.

The program performing this analysis is called blastmatrix and

the input is an XML file (Figure 1, Step 3C). This file is created by

the program makebmdest by inputting the name of a directory

containing protein files. This program takes all the protein FASTA

files in a given directory, extracts relevant information and formats

it into an XML file which is read by the blastmatrix program. The

Table 4. Ribosomal RNA analysis using RNAmmer.

Organism Status Score Length (bp) Total seq.

Acidaminococcus fermentans DSM 20731 Complete 1 910.8 1 545 6

Acidaminococcus intestini RyC-MR95 Complete 1 920.1 1 545 3

Acidaminococcus sp D21 Scaffolds/contigs 1 920.1 1 545 1

Centipeda periodontii DSM 2778 Scaffolds/contigs – –* –

Dialister invisus DSM 15470 Scaffolds/contigs 1 836.1 1 557 3

Dialister micraerophilus DSM 19965 Scaffolds/contigs 1 878.8 1 555 1

Dialister microaerophilus UPII 345-E Scaffolds/contigs 1 197.2 1 325* 1

Megamonas hypermegale ART12 1 Complete – –* –

Megasphaera elsdenii DSM 20460 Complete 1 842.0 1 552 7

Megasphaera genomosp type 1 str 28L Scaffolds/contigs 1 860.0 1 557 1

Megasphaera micronuciformis F0359 Scaffolds/contigs 1 816.0 1 550 1

Megasphaera sp UPII 135-E Scaffolds/contigs 1 887.4 1 556 1

Megasphaera sp UPII 199-6 Scaffolds/contigs 1 868.7 1 556 1

Mitsuokella multacida DSM 20544 Scaffolds/contigs 1 915.8 1 549 2

Phascolarctobacterium succinatutens YIT 12067 Scaffolds/contigs 1 907.9 1 646 1

Selenomonas artemidis F0399 Scaffolds/contigs 6.368 1137* 1

Selenomonas flueggei ATCC 43531 Scaffolds/contigs 1 089.7 1 216* 1

Selenomonas noxia ATCC 43541 Scaffolds/contigs 1 364.8 1 296* 1

Selenomonas sp oral taxon 137 str F0430 Scaffolds/contigs 1 830.8 1 532 4

Selenomonas sp oral taxon 149 str 67H29BP Scaffolds/contigs 1 252.5 1 258* 1

Selenomonas sputigena ATCC 35185 Complete 1 861.4 1 543 4

Thermosinus carboxydivorans Nor1 Scaffolds/contigs 1 898.8 1 549 7

Veillonella atypica ACS-049-V-Sch6 Scaffolds/contigs 1 512.8 1 369* 1

Veillonella atypica ACS-134-V-Col7a Scaffolds/contigs 1 871.2 1 551 1

Veillonella dispar ATCC 17748 Scaffolds/contigs 1 870.5 1 551 3

Veillonella parvula ATCC 17745 Scaffolds/contigs 1 848.5 1 553 1

Veillonella parvula DSM 2008 Complete 1 859.5 1 551 4

Veillonella sp 3 1 44 Scaffolds/contigs 1 861.6 1 553 1

Veillonella sp 6 1 27 Scaffolds/contigs 1 862.2 1 551 1

Veillonella sp oral taxon 158 str F0412 Scaffolds/contigs 1 860.5 1 552 4

Veillonella sp oral taxon 780 str F0422 Scaffolds/contigs 1 877.1 1 550 4

The total number of identified 16S rRNA sequences is shown for each genome sequence. Length of highest scoring sequence and corresponding RNAmmer score is
given. Default settings is to select the sequence with the highest RNAmmer score and a length between 1 400–1 800 bases. For this analysis the criteria were changed
to a length range of 1 100–1 800, to include sequences from all genomes with 16S rRNA matches. Sequences with lengths shorter than the default acceptance threshold
are marked with a ‘‘*’’. Two organisms did not have any hits to the RNAmmer models, values of zero are marked by ‘‘2’’.
doi:10.1371/journal.pone.0060120.t004
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Figure 3. Genome atlases, DNA structures. A DNA structural atlas was generated for each of the 6 complete genomes. DNA, RNA and gene
annotations are from the published GenBank data. Each lane of the circular atlas shows a different DNA feature. From the innermost circle: size of
genome (axis), percent AT (red= high AT), GC skew (blue =most G’s), inverted and direct repeats (color = repeat), position preference, stacking energy
and intrinsic curvature. Orange arrows indicate changes in the skew of G and C, which frequently indicate origin and terminus of replication. Blue
arrows show the location of rRNA operons, as annotated in the GenBank file. Dark red arrows highlight areas of the genome that show significantly
different DNA structures than the rest of the genome. A higher resolution pdf is available as a supplemental figure. A high resolution figure can be
found as supplemental Figure S1.
doi:10.1371/journal.pone.0060120.g003

Figure 4. Bias in third position. The bias in third codon position is visualized for each of the 6 complete genomes. The bias was defined as 21 in
the case of 100% A or T in third position, +1 is the case of 100% G or C.
doi:10.1371/journal.pone.0060120.g004
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protein FASTA file can be obtained by extracting proteins from

a GenBank file (using saco_extract) or by using the Prodigal

genefinder (extract DNA from GenBank, saco_convert, and find

genes using prodigalrunner). A BLAST matrix comparison of the

31 Negativicutes genomes was calculated on the CMG-biotools

system, using 4 processors (calculation time was 9 hours).

The BLAST matrix (Figure 6, high resolution figure as

supplemental Figure S2) illustrates that the conservation between

genomes is generally higher within a genus than between genera

(for example Selenomonas, 53–57%, and Megasphaera, 33–81%). The

Selenomonas strains also show a high similarity to the genome of C.

periodontii DSM 2778, while the Megasphaera genus shows no higher

similarity to other genera. For both the genomes of Acidaminococcus

and Dialister, the similarity is varied with one comparison being

very similar and the others not (31–45%). Within the Veillonella

genus, the conservation is 64–84% with the exception of Veillonella

species oral taxon 780 str F0422 (conservation 36–38% to other

Veillonella). In comparison, a study performed on genomes from the

Vibrionaceae family showed that different strains of Vibrio cholerae

share between 70–80% proteins while the similarity to organisms

outside the species ranged from 30–45% [27]. From that same

study, the internal homology (red squares) ranges from 1.3–5.3%.

Other studies, such as a study on Vibrionaceae have shown numbers

ranging from 1.8–5%. Another study analyzed the similarity

between Enterobacteriaceae genomes, and found a 76–98.8%

similarity between 7 genomes of Escherichia coli [28] The same

study showed an internal homology of approximately 0.3–3% for

the 7 Escherichia coli.

The second method looks at the cumulative set of all genes,

shared across genomes (pan-genome) and the conserved set of

gene families across all genomes (core-genome) [29]. The pan- and

core-genomes are theoretical representations of a collective protein

pool and a conserved protein pool, respectively. When a protein

type is found in all genomes in a collection, it is called a core gene

of this collection. Here this is implemented in a pan- and core-

genome plot (Figure 7) where sequences are compared using

BLAST and the 50/50% cutoff described above. As the clusters

grow to more than two members, single linkage clustering is used

to assign a new sequence to a group. The program performing this

analysis is called pancoreplot and the input is a tab separated text

file representing a number of FASTA files containing amino acid

sequences (Figure 1, Step 3C). For this analysis, the input files and

directories are the same as described for the BLAST matrix.

For the first genome, the pan and core are identical, and the

core becomes smaller with the addition of a second genome, as

genes in this pool now need to be found in both genomes. If a gene

from the core is not found in a new genome it is removed from the

core, and is then only part of the pan-genome. The pan-genome is

the entire gene pool and as such includes the core genome. The

order of the genomes can change the course of the graph, but the

final shared gene pool (core and pan-genome) will be the same.

A pan- and core-genome plot analysis was performed for all 31

genomes (Figure 7). The final core genome was found to be 134

gene families and the pan genome contains 17 999 gene families.

For an average proteome size of around 1 900 within the

Negativicutes, a core genome of 134 is relatively small. Using the

output data from the pan- and core-genome it was possible to

analyze gene overlaps and intersections of the dataset. The core

genome of the Veillonella genomes is 936 protein families, less than

half of the average number of genes in these genomes. Of these

families, nly 210 are not found in any of the other genomes

(complimentary) while 802 families are not found in the core of the

other genomes (‘‘compinter’’). The pan-genome of the 31 genomes

is 17 999 families, indicating a large diversity and many accessory

genes in this class. Compared to similar analyses for genomes of

the Vibrionaceae family, pan- and core-genome sizes was 20 200 and

1 000 respectively [27]. The V. cholerae genomes have a core

genome of 2 500, more than 60% of the average size of these

genomes, 4 000 genes [27].

Materials and Methods

The CMG-biotools
CMG-biotools is a modified setup of the publicly available

Xubuntu 10.10 (www.xubuntu.org/get) operating system. Xu-

buntu is a community developed operating system that is well-

suited for laptops and desktops. It natively contains all applications

from word processing and email applications to web server

software and programming tools and is part of the Ubuntu project,

published under the GPL (GNU General Public License). A

number of bioinformatic tools have been added to the system to

allow for analysis of microbial genome sequence data and is here

called ‘‘CMG-biotools’’. CMG-biotools is an installable operating

system (disc image,.iso format). By installing the software, the user

accepts the terms of the license and agreements.

The CMG-biotools operating system can be installed on a local

computer or on a virtual computer application, such as VirtualBox

(www.virtualbox.org). A standard installation should take less than

25 minutes. The functionalities of CMG-biotools consists of a series

of compiled executables, Perl, Python and bash scripts contained

in a folder on the system (/usr/biotools/). These scripts can be

modified according to the individual licenses of the programs

(See.LICENSE files for this information). The CMG-biotools

system is made to run on a local laptop and uses one processor

by default. The computationally heavy programs, blastmatrix and

pancoreplot, have built-in options (-cpu) that allows the user to

increase the number of processors if available.

Download
The installable disk image file (.iso) containing CMG-biotools is

available from the webpage (www.cbs.dtu.dk/staff/dave/

CMGtools/). The tutorials for the courses taught on this platform

are available from the same webpage. The system has been tested

using VirtualBox, a free virtual computer application, on Windows

and Mac operating systems (www.virtualbox.org).

Programs
Data collection. The getgbk.pl script uses the Entrez E-utils

programmatic interface made available by the NCBI to fetch

sequence data. The script allows searching within the NCBI

nuccore or the new bioproject databases using Genbank Accession

identifiers or project identifiers respectively. Records identified in

bioprojects can be filtered to only fetch matches in RefSeq or

GenBank. Extraction of DNA from GenBank format is done using

saco_convert [12], which locates the DNA sequences in the

GenBank data labeled ‘‘ORIGIN’’ and prints the data in FASTA

Figure 5. Amino acid and codon usage heatmaps. Amino acid and codon usage were for all 31 genomes calculated based on the genes
identified by gene finding (Prodigal). The percentage of codon and amino acid usage was plotted in two heatmaps using R. The heatmaps were
clustered in 2D, thus reordering the organisms and the amino acids/codon to show the shortest distance between them. Dendograms were draw for
both and can be used to visualize the difference in usage between organisms.
doi:10.1371/journal.pone.0060120.g005
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format. Extraction of translated coding sequences from GenBank

is done using saco_extract [12]. This program accesses the

GenBank data labeled ‘‘translation’’, extracts the sequences and

prints them as FASTA format along with the gene identifier, also

obtained from the GenBank file. Some GenBank files do not have

annotated protein sequences and from these the extraction

procedure will not work. In such cases, genefinding should be

performed. The input arguments to the saco programs describes

input and output file formats, where the first indicates the input file

format (for instance GenBank) and the second the output format

(for instance FASTA).

Phylogenetic analysis. The RNAmmer [14] program is

used for the localization of rRNA sequences in genomic DNA

(FASTA format). DNA is extracted from GenBank files using

saco_convert and stored in FASTA format (Figure 1, Step 2B).

The program uses HMM models to search a DNA sequence for

sequences with significant similarity to models of rRNA sequences.

Models are included for 5S, 16S and 23S rRNA for bacterial

genomes (options TSU, SSU and LSU respectively). For the

examples in this paper, each genome sequence was compared to

the models for 16S rRNA only. Each sequence is searched and

possible rRNA sequences are stored as FASTA formatted DNA

sequences. The highest scoring sequence with acceptable length

(between 1 400 and 1 800) is extracted from each genome

(select16SrRNA) and stored in a FASTA formatted DNA file. It is

also possible to use all predicted sequence in stead of selecting the

highest scoring one. Some genomes have multiple 16S rRNA

sequences and they might yield slightly different phylogenetic

relationships. One sequence from each genome is compared in

a multiple alignment using ClustalW [15] and the resulting

alignment is used to construct a distance tree using 1 000 re-

samplings. The tree is visualized using njplot [17].

Genome atlases (structural DNA atlas). The genome atlas

presented here is an implementation of the atlas presented earlier

by Jensen et al. 1999 [4,6]. Below is a short description of each of

the parameters shown in the DNA atlases. Color scales for all

parameters follow the same system. The DNA sequence is read

and an output file is generated for the various calculated

parameters. For each nucleotide in the genome a numerical value

is calculated. This file is then read by the GeneWiz program,

which calculates the average and standard deviation for each

parameter, if the average value of the window is more than 3

standard deviations on either side of the overall average the

window is maximally colored. In order to plot the data on

a circular map a ‘‘window size’’ is used for longer genomes, which

effectively smooths the data for better graphics. For the parameters

Stacking Energy, Position Preference and Intrinsic Curvature, the window is

0.0026genome length. The window is 0.0016genome length for

Percent AT and GC skew. Each of these are calculated separately,

wrapped into a pipeline and visualized in a circular plot, called an

atlas. The gene annotations are taken directly from a GenBank

coding regions; if no such information is found the CDS2/+ lanes

will be blank. The following lists explanations to each of the lanes

in a genome atlas: Percent AT is the percent of A’s and T’s in the

genome. GC skew is calculated as ((G-C)/(G+C)), with a window

size of 10 000 bp and is useful for determining the origin and

terminus of replication [30,31]. Global Direct Repeats and

Global Inverted Repeats refer to a sequence that is present in

at least two copies on the same or opposite strands, respectively.

Intrinsic Curvature is a measure of DNA curvature and is

calculated using the CURVATURE program [21,22]. The values

are scaled from 0 (e.g. no curvature) to 1, which is the curvature of

DNA when wrapped around the nucleosome. Stacking Energy
is derived from the dinucleotide values provided by Ornstein et al

Figure 6. BLAST matrix. An all against all protein comparison was performed using BLAST to define homologs. A BLAST hit is considered
significant if 50% of the alignment consists of identical matches and the length of the alignment is 50% of the longest gene. Internal homology
(paralogs) is defined as proteins within a genome matching the same 50–50 requirement as for between-proteome comparisons. Self-matches are
here ignored. A comparison of 31 Negativicutes genomes was performed on the CMG-biotools system (9 hours). A high resolution figure can be found
as supplemental Figure S2.
doi:10.1371/journal.pone.0060120.g006

CMG-BioTools

PLOS ONE | www.plosone.org 13 April 2013 | Volume 8 | Issue 4 | e60120

44



[20]. The scale is in kcal/mol, and the dinucleotide values range

from 23.82 kcal/mol (will unstack easily) to 214.59 kcal/mol

(difficult to unstack). A positive peak in base-stacking (i.e., numbers

closer to zero) reflects regions of the helix which would de-stack or

melt more readily. Conversely, minima (larger negative numbers)

in this plot would represent more stable regions of the

chromosome. Position Preference is a measure of preferential

location of sequences within nucleosomal core sequences [19]. The

trinucleotide values range from essentially zero (0.003, presumably

more flexible), to 0.28 (considered rigid). Since very few of the

trinucleotide have values close to zero (e.g. little preference for

nucleosome positioning), this measure is considered to be more

sensitive towards the low (‘‘flexible’’) end of the scale.

Gene finding. Gene finding is performed using the program

Prodigal [13]. The program is wrapped into a formatting program

called prodigalrunner. The program reformats the raw output of

Prodigal to FASTA formatted open reading frames, DNA and

amino acids, along with a draft of a GenBank file and a raw

general feature formatted file, a.gff file. The Prodigal program

allows for different parameter modifications, including training

(prodigalrunner -t ,organism.) of the gene finder using given

data. This feature increases the computation time of the algorithm,

but for less known organisms this feature might improve gene

finding. It should be noted that the default behavior when

encountering N’s is not changed - the program treats runs of N’s as

masked sequence and does not build genes across them. The

CMG-Biotools system also comes with the native Prodigal

program, which can be used as published [13].

Amino acid and codon usage. The amino acid and codon

usage is calculated using BioPerl modules [32], and is a simple

calculation of the fraction of each amino acid or codon count of

the total count of amino acids or codons. The bias in third position

is found by counting the number of each base on each position in

each codon, divided by the total number of codons. The bias in

Figure 7. Core and pan genome using BLAST. A pan- and core-genome calculation was performed using BLAST. A BLAST cutoff of 50% identity
and 50% coverage of the longest gene was used. If two proteins within a genome matched according to the 50/50% cutoff, they were clustered into
one protein family. Protein families were extended via single linkage clustering. If a protein family includes proteins from all genomes in the
comparison, the family is a core protein family.
doi:10.1371/journal.pone.0060120.g007
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the third position between G/C and A/T was then calculated as

sum(GC)-sum(AT), so that 100% GC in third codon position is +1

and 21 for 100% AT. The plots are made using Perl and

Gnuplot.
Proteome comparisons using BLAST. The BLAST matrix

is a visual presentation of a pairwise proteome comparison using

BLAST (Basic Local Alignment Tool) [26]. All sequences are

compared to each other and a BLAST hit is significant when 50%

of the alignment is identical matches and the length of the

alignment is 50% of the longest gene in the comparison. If two

sequences are similar according to the cutoff, they are collected in

one ‘‘protein family’’. For the comparison of two genomes, protein

families are built through single linkage, so that each shared

connection must be between sequences from different genomes

(shaded green). Paralogs are traditionally defined as a gene which

has undergone duplication before speciation; in the BLAST

matrix, an internal hit significantly similar to the query protein is

grouped into the same gene family. The bottom row of the matrix

shows the number of proteins that have homologous hits within

the proteome itself (shaded red). The color scales are set

automatically from the highest to lowest value observed, but can

be changed manually. The procedure is implemented in the

program blastmatrix, which takes a XML formatted input file.

The input file is created by the program makebmdest.

The pan- and core-genome plot is a different use of BLAST for

comparing proteomes (using the 50/50 cutoff as described above).

The core-genome consists of protein families with representatives

found in all investigated genomes. The pan-genome is the entire

set of protein families from all genomes in the comparison. The

first genome in the analysis has a core-genome equal to the pan-

genome. The addition of an second genome reduces the core-

genome of the two genomes and increases the pan-genome. Each

sequence of a new genome is compared to a representative from

each of the existing gene-families. If the new sequence matches,

the family is a core-family, if the sequence does not match a family

it becomes a new protein family. When all new sequences have

been compared to existing gene-families, core families that did not

have a representative in the latest added genome are removed

from the core-genome of the genome comparison. The change in

the pan- and core-genome is followed as two lines (blue and red,

respectively). The number of new proteins, along with how many

new protein families that corresponds to, is indicated as gray bars

on the plot. The program (pancoreplot), produces a plot and

a table which can be used to look up the underlying values of the

plot.

The pan- and core-genome calculations can be used to extract

subsets of genes for different genome sets. The program that

implements this is called specificGenes and works on the BLAST

output from the pancoreplot program. The procedure is based on

mathematical set theory and works with intersections, unions and

complementary genesets. Each genome is treated as a set and the

intersection is the gene families that two or more sets have ‘‘in

common’’. The intersection of genome A and B, is the set of all

gene families which are found in both A and B. The union of two

or more sets refers to the gene families which are found in either

genome A or B. Calculating the complimentary families of

a genome refers to the set of all families which are members of A

but not members of B. In the comparative genomic analysis, the

sets usually consists of more than one genome, such as the

intersection of genome A, B and C while not found (complimen-

tary) in genome D, E and F. This will give families that are found

in A, B and C but not found in any of D, E or F. It is also possible

to calculate the situation where families are found in A, B and C

but not found in the intersection of D, E and F, this is referred to

as the ‘‘compinter’’. For more details, see the CMG-biotools

manual.

Supporting Information

Figure S1 Genome atlases, DNA structures (Figure 3 at
High-Resolution).

(PDF)

Figure S2 BLAST matrix (Figure 6 at High-Resolution).

(PDF)
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5.2 Veillonella, between Gram positives and negatives

This paper represents a project illustrates how much variation can be found be-

tween genome sequences and how difficult it is to analyze sequences without ho-

mology to known and annotated sequences. A set of 24 genomes of the Nega-

tivicutes class was conducted using the tools provided in the CMG-biotools, to

identify unique genetic features for this group. The initial interest in this specific

genus arose from the fact that they all stain Gram negative in the Gram cell wall

structure test, while in all other aspects are more closely related to Gram posi-

tive organism. Although Gram status does not always correlate with taxonomic

clustering, this specific genus groups closely with all Gram positives (taxonomy

based on 16S rRNA). During the course of the study, it became evident that this

group shows very little sequence homology to other organisms. The 24 genomes

were compared to a set of diverse genomes using sequence similarity methods such

as BLAST and 16S rRNA alignments as well as feature based methods such as

Composition Vector Trees and DNA tetramer frequencies. The metabolic poten-

tial of each genome analyzed using the Kyoto Encyclopedia of Genes and Genomes

(KEGG).

Based on 16S rRNA, complete genomic DNA sequences, and a consensus tree

based on conserved proteins, comparisons showed that the Negativicutes are only

distantly related to Clostridia, but are even less related to Gram-negative species.

Analyzing genomes of the Veillonella genus, under the Negativicutes class, showed

a total of 1.350 protein were found in all Veillonella genomes (core genes), although

less than half of these were found in any Clostridium genome. Only 27 proteins

were found conserved in all analyzed genomes. Veillonella has distinct metabolic

properties, and significant similarities to other genomes were not detected, with

the exception of a shared LPS biosynthesis pathway. The Negativicutes exhibits

unique properties, most of which are shared with Gram-positives and some with

Gram negatives. They are only distantly related to Clostridia, but are even less

related to Gram-negative species, based on protein and sequence comparisons.

Though the Negativicutes stain Gram-negative and possess two membranes, the

genome and proteome analysis presented here confirm their taxonomic placement.

This project highlighted the problem of annotation by sequence homology, but also

the need for being able to compare the functional markup of several organisms.
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The Firmicutes represent a major component of the intestinal microflora. The intestinal Firmicutes are 
a large, diverse group of organisms, many of which are poorly characterized due to their anaerobic 
growth requirements. Although most Firmicutes are Gram positive, members of the class 
Negativicutes, including the genus Veillonella, stain Gram negative. Veillonella are among the most 
abundant organisms of the oral and intestinal microflora of animals and humans, in spite of being 
strict anaerobes. In this work, the genomes of 24 Negativicutes, including  eight Veillonella spp., are 
compared to 20 other Firmicutes genomes; a further 101 prokaryotic genomes were included, cover-
ing 26 phyla. Thus a total of 145 prokaryotic genomes were analyzed by various methods to investi-
gate the apparent conflict of the Veillonella Gram stain and their taxonomic position within the 
Firmicutes. Comparison of the genome sequences confirms that the Negativicutes are distantly relat-
ed to Clostridium spp., based on 16S rRNA, complete genomic DNA sequences, and a consensus 
tree based on conserved proteins. The genus Veillonella is relatively homogeneous: inter-genus pair-
wise comparison identifies at least 1,350 shared proteins, although less than half of these are found 
in any given Clostridium genome. Only 27 proteins are found conserved in all analyzed prokaryote 
genomes. Veillonella has distinct metabolic properties, and significant similarities to genomes of 
Proteobacteria are not detected, with the exception of a shared LPS biosynthesis pathway. The clade 
within the class Negativicutes to which the genus Veillonella belongs exhibits unique properties, 
most of which are in common with Gram-positives and some with Gram negatives. They are only 
distantly related to Clostridia, but are even less closely related to Gram-negative species. Though the 
Negativicutes stain Gram-negative and possess two membranes, the genome and proteome analysis 
presented here confirm their place within the (mainly) Gram positive phylum of the Firmicutes. Fur-
ther studies are required to unveil the evolutionary history of the Veillonella and other Negativicutes. 

Background 
The genus Veillonella, belonging to Negativicutes, 
consists of anaerobic, non-fermentative, Gram-
negative cocci, that are normally observed in pairs 
or short chains, and are non-sporulating and non-
motile [1]. Veillonella spp. are abundant in the hu-
man microbiome and are found in the oral, respira-
tory, intestinal and genitourinary flora of humans 
and animals; they can make up as much as 10% of 
the bacterial community initially colonizing the 
enamel [2] and are found throughout the entire 
oral cavity [3], especially on the tongue dorsum and 
in saliva [4]. The importance of Veillonella spp. in 

human infections is uncertain, and they are gener-
ally considered to be of low virulence. Veillonella 
form biofilms, often with Streptococcus spp., and 
species of these genera have been found to be more 
abundant in the oral microflora of people with poor 
oral health [5]. Studies have shown that during 
formation of early dental plaque, the fraction of 
Veillonella spp. changes in mixed-microbial colo-
nies with streptococci [6]. Thus, Veillonella spp. 
may play a role in caries formation as they utilize 
the lactic acid produced by the organisms condu-
cive to caries [7]. Veillonella are also among the 
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most common anaerobic species reported from 
pulmonary samples and are frequently recovered 
from cystic fibrosis cases [8]. The organisms are 
also abundant in the human gut flora, where their 
numbers were found to be higher in children with 
type I diabetes compared to healthy controls [9]. 
Currently, 12 species of Veillonella have been char-
acterized [10,11] including V. parvula, V. atypica 
and V. dispar, which are found in the human oral 
cavity. 
The Negativicutes are the only diderm (literally 
'two skins') members of the phylum Firmicutes as 
they possess an inner and an outer membrane. 
Their placement within the Firmicutes has been 
widely accepted, and has been confirmed by 16S 
rRNA analysis [12]. However, their genomes have 
not been analyzed in detail to confirm their taxo-
nomic position. This work presents a broad analy-
sis of the Negativicutes with focus on the 
Veillonella spp. using comparative microbial  

genomics. A total of 24 genomes from the 
Negativicutes were compared to 121 genomes 
covering most of the taxonomic span of sequenced 
bacterial genomes. We investigated how the 
Negativicutes genomes compared to other bacteri-
al genomes using three different and complemen-
tary approaches: 1) phylogenetic trees to visualize 
the relative distance of the Negativicutes genomes 
to other genomes; 2) amino acid composition, nu-
cleotide tetramer frequency and metabolism anal-
ysis using 2-D clustering and heatmaps to com-
pare genomes; and 3) proteomic comparison 
across the Negativicutes genomes. 

Materials and Methods 
Genome sequences used for analysis 
The set of 145 genomes included in this study (24 
Negativicutes genomes and 121 other prokaryotic 
genomes covering 26 phyla) are listed in Table 1. 

 

Table 1. Genomes used in this study 
Phylum Name of organism and strain Strain designation Type strain? NCBI Taxon ID NCBI Project ID 

Acidobacteria Acidobacterium capsulatum  ATCC 51196 Yes 240015 28085 
Acidobacteria “Korebacter versatiles”  Ellin 345  204669 15771 
Acidobacteria “Solibacter usitatus”  Ellin6076  234267 12638 

Actinobacteria Bifidobacterium bifidum  317B No 1681 42863 
Actinobacteria Catenulispora acidiphila  ID139908, DSM 44928 Yes 479433 21085 

Actinobacteria Corynebacterium 
pseudotuberculosis  

C231 No 681645 40875 

Actinobacteria Segniliparus rugosus  ATCC BAA-974 Yes 679197 40685 

Actinobacteria Streptomyces bingchenggensis  BCW-1 
Name not 
validly 
published 

749414 46847 

Actinobacteria Tropheryma whipplei  Twist Yes 203267 95 
Aquificae Persephonella marina  EX-H1 Yes 123214 12526 

Aquificae Sulfurihydrogenibium sp.  YO3AOP1 
No type 
strain 
available 

436114 18889 

Aquificae Thermocrinis albus  HI 11/12, DSM 14484 Yes 638303 37275 
Bacteroidetes Bacteroides thetaiotaomicron  VPI-5482 Yes 226186 399 
Bacteroidetes Candidatus Sulcia muelleri  DMIN  641892 37785 
Bacteroidetes Chitinophaga pinensis  UQM 2034, DSM 2588 Yes 485918 27951 
Bacteroidetes Paludibacter propionicigenes  WB4, DSM 17365 Yes 694427 42009 

Chlamydiae Protochlamydia amoebophila  UWE25 Yes 264201 10700 
Chlamydiae Chlamydia trachomatis  E/Sweden2 No 634464 43167 
Chlamydiae Chlamydophila pneumoniae  AR39 No 115711 247 
Chlamydiae Waddlia chondrophila  WSU 86-1044 Yes 716544 43761 
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Table 1. Genomes used in this study (cont.) 
Phylum Name of organism and strain Strain designation Type strain? NCBI Taxon ID NCBI Project ID 

Chlorobi “Chlorobium chlorochromatii”  CaD3 
Name not 
validly 
published 

340177 13921 

Chlorobi Chlorobium tepidum  TLS Yes 194439 302 
Chloroflexi Chloroflexus aggregans  DSM 9485 Yes 326427 16708 
Chloroflexi Dehalococcoides sp  BAV1 No 216389 15770 

Chloroflexi Herpetosiphon aurantiacus  ATCC 23779 Yes 316274 16523 

Chloroflexi Roseiflexus sp.  RS-1 
No type 
strain 
available 

357808 16190 

Cyanobacteria Anabaena variabilis 3 ATCC 2941 No 240292 10642 
Cyanobacteria Cyanothece sp.  PCC 7822 No 497965 28535 
Cyanobacteria Prochlorococcus marinus  MIT9301 No 167546 15746 
Cyanobacteria Synechocystis sp.  PCC6803 No 1148 60 

Deferribacteres Calditerrivibrio nitroreducens  Yu37-1, DSM 19672 Yes 768670 49523 
Deferribacteres Deferribacter desulfuricans  SSM1, DSM 14783 Yes 197162 37285 
Deferribacteres Denitrovibrio acetiphilus  N2460, DSM 12809 Yes 522772 29431 

Deinococcus-
Thermus Oceanithermus profundus  506, DSM 14977 Yes 670487 40223 

Deinococcus-
Thermus 

Thermus thermophilus  HB8 Yes 300852 13202 

Deinococcus-
Thermus 

Truepera radiovictrix  RQ-24, DSM 17093 Yes 649638 38371 

Dictyoglomi Dictyoglomus turgidum  DSM 6724 Yes 515635 29175 
Elusimicrobia Elusimicrobium minutum  Pei 191 Yes 445932 19701 
Fibrobacteres Fibrobacter succinogenes  S85 Yes 59374 32617 

Firmicutes Acetohalobium arabaticum  Z-7288, DSM 5501 Yes 574087 32769 
Firmicutes Acidaminococcus fermentans  VR4, DSM 20731 Yes 591001 33685 

Firmicutes Acidaminococcus sp.  D21 
No type 
strain 
available 

563191 34117 

Firmicutes Alkaliphilus oremlandii  OhILAs Yes 350688 16083 
Firmicutes Bacillus subtilis subsp. subtilis  168 Yes 224308 76 
Firmicutes Clostridium botulinum  F Langeland No 441772 19519 

Firmicutes Clostridium cellulolyticum  H10 Yes 394503 17419 
Firmicutes Clostridium diffic ile  630 (epidemic type X) No 272563 78 

Firmicutes “Desulfotomaculum reducens”  MI-1 
Name not 
validly 
published 

349161 13424 

Firmicutes Dialister invisus  DSM 15470 Yes 592028 33143 

Firmicutes Dialister micraerophilus  
Oral Taxon 843 DSM 
19965 Yes 888062 53029 

Firmicutes Dialister micraerophilus  UPII-345-E No 910314 59521 
Firmicutes Enterococcus faecalis  V583 No 226185 70 

Firmicutes Eubacterium cylindroides  T2-87 No 717960 45917 
Firmicutes Eubacterium rectale  A1-86, DSM 17629 No 39491 39159 
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Table 1. Genomes used in this study (cont.) 
Phylum Name of organism and strain Strain designation Type strain? NCBI Taxon ID NCBI Project ID 

Firmicutes Exiguobacterium sibiricum  255-15 Yes 262543 10649 
Firmicutes Geobacillus kaustophilus  HTA426 Yes 235909 13233 
Firmicutes Lactococcus lactis  cremoris MG1363 No 416870 18797 

Firmicutes Lysinibacillus sphaericus  C3-41 No 444177 19619 

Firmicutes Megamonas hypermegale  ART12/1 No 158847 39163 

Firmicutes Megasphaera genomo sp.  type 1 28L 
No type 
strain 
available 

699218 42553 

Firmicutes Megasphaera micronuciformis  F0359 No 706434 43125 
Firmicutes Mitsuokella multacida  A 405-1, DSM 20544 Yes 500635 28653 
Firmicutes Paenibacillus sp.  JDR-2 No 324057 20399 

Firmicutes Phascolarctobacterium sp.  YIT 12067 No 626939 48505 

Firmicutes Selenomonas artemidis  F0399 No 749551 47277 
Firmicutes Selenomonas flueggei  ATCC 43531 Yes 638302 37273 
Firmicutes Selenomonas noxia  ATCC 43541 Yes 585503 34641 

Firmicutes Selenomonas sp. Oral Taxon 137 F0430 
No type 
strain 
available 

879310 52055 

Firmicutes Selenomonas sp.  
Oral Taxon 149 
67H29BP 

No type 
strain 
available 

864563 50535 

Firmicutes Selenomonas sputigena  DSM 20758 Yes 546271 51247 

Firmicutes Staphylococcus aureus aureus ED98 No 681288 39547 

Firmicutes Streptococcus pneumoniae  TIGR4 No 170187 277 

Firmicutes Thermoanaerobacter sp.  X514 
Name not 
validly 
published 

399726 16394 

Firmicutes Thermosinus carboxydivorans  Nor1 Yes 401526 17587 
Firmicutes Turic ibacter sp.  PC909 702450 42765 No   
Firmicutes Veillonella atypica  ACS-049-V-Sch6 No 866776 51075 

Firmicutes Veillonella atypica  ACS-134-V-Col7a No 866778 51079 

Firmicutes Veillonella dispar  ATCC 17748 Yes 546273 30491 
Firmicutes Veillonella parvula  ATCC 17745 No 686660 41557 
Firmicutes Veillonella parvula  Te3, DSM 2008 Yes 479436 21091 

Firmicutes Veillonella sp.  3 1 44 
Name not 
validly 
published 

457416 41975 

Firmicutes Veillonella sp.  6 1 27 
Name not 
validly 
published 

450749 41977 

Firmicutes Veillonella sp.  Oral Taxon 158 F0412 
Name not 
validly 
published 

879309 52053 

Fusobacteria 
Fusobacterium nucleatum 
nucleatum ATCC 25586 Yes 190304 295 

Fusobacteria Ilyobacter polytropus  CuHBu1, DSM 2926 Yes 572544 32577 

Fusobacteria Leptotrichia buccalis  C-1013-b, DSM 1135 Yes 523794 29445 

Fusobacteria Sebaldella termitidis  NCTC 11300 Yes 526218 29539 
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Table 1. Genomes used in this study (cont.) 

Phylum Name of organism and strain Strain designation Type strain? NCBI Taxon ID NCBI Project ID 

Fusobacteria Streptobacillus moniliformis  9901, DSM 12112 Yes 519441 29309 
Planctomycetes Pirellula staleyi  DSM 6068 Yes 530564 29845 
Planctomycetes Planctomyces limnophilus  Mu 290, DSM 3776 Yes 521674 29411 
Proteobacteria Acinetobacter baumannii  SDF No 509170 13001 

Proteobacteria Alkalilimnicola ehrlichii  MLHE-1 Yes 187272 15763 
Proteobacteria Arcobacter nitrofigilis  DSM 7299 Yes 572480 32593 
Proteobacteria Burkholderia xenovorans  (fungorum) LB400 Yes 266265 254 
Proteobacteria Campylobacter jejuni  doylei 269.97 No 360109 17163 

Proteobacteria Candidatus Pelagibacter ubique SAR11 HTCC1062 
Name not 
validly 
published 

335992 13989 

Proteobacteria Candidatus Zinderia insecticola CARI 
Name not 
validly 
published 

871271 51243 

Proteobacteria Cellvibrio japonicus  Ueda107 Yes 498211 28329 

Proteobacteria Cupriavidus taiwanensis  LMG19424 Yes 164546 15733 
Proteobacteria Escherichia coli  K-12, MG1655 No 511145 225 
Proteobacteria Geobacter uraniireducens  Rf4 Yes 351605 15768 
Proteobacteria Hahella chejuensis  KCTC 2396 Yes 349521 16064 

Proteobacteria Haliangium ochraceum  SMP-2, DSM 14365 Yes 502025 28711 

Proteobacteria Helicobacter pylori  908 No 869727 50869 
Proteobacteria Lawsonia intracellularis  PHE/MN1-00 No 363253 183 

Proteobacteria Magnetococcus sp.  MC-1 
Name not 
validly 
published 

156889 262 

Proteobacteria Methylobacterium nodulans  ORS2060 Yes 460265 20477 
Proteobacteria Neisseria meningit idis  Z2491 No 122587 252 

Proteobacteria Neorickettsia sennetsu  Miyayama Yes 222891 357 
Proteobacteria Nitrosomonas eutropha  C91 (C71) Yes 335283 13913 

Proteobacteria Photorhabdus luminescens 
laumondii  

TT01 Yes 243265 9605 

Proteobacteria Polynucleobacter necessarius  STIR1 No 452638 19991 
Proteobacteria Pseudomonas aeruginosa LESB58 No 557722 31101 
Proteobacteria Pseudomonas fluorescens SBW25 No 216595 31229 

Proteobacteria Pseudomonas stutzeri A1501 No 379731 16817 
Proteobacteria Salmonella enterica enterica PT4 P125109 No 550537 30687 
Proteobacteria Shewanella oneidensis  MR-1 Yes 211586 335 
Proteobacteria Sorangium cellulosum  So ce56 No 448385 28111 
Proteobacteria Stigmatella aurantiaca  DW4 /3-1 No 378806 52561 

Proteobacteria Sulfurospirillum deleyianum  5175, DSM 6946 No 525898 29529 
Proteobacteria Vibrio cholerae  O395 No 345073 32853 
Spirochaetes Borrelia turicatae  91E135 Yes 314724 13597 
Spirochaetes Brachyspira murdochii  56-150, DSM 12563 Yes 526224 29543 
Spirochaetes Leptospira interrogans  lai 56601 No 189518 293 

Synergistetes Thermanaerovibrio 
acidaminovorans  

Su883, DSM 6589 Yes 525903 29531 

 

53 CHAPTER 5. ARTICLES



Veillonella, Firmicutes 

436 Standards in Genomic Sciences 

Table 1. Genomes used in this study (cont.) 
Phylum Name of organism and strain Strain designation Type strain? NCBI Taxon ID NCBI Project ID 

Tenericutes Acholeplasma laidlawii  PG-8A No 441768 19259 

Tenericutes Candidatus Phytoplasma asteris  yellows witches'-broom 
AY-WB 322098 

Name not 
validly 
published 

13478  

Tenericutes Candidatus Phytoplasma mali  AT 
Name not 
validly 
published 

37692 25335 

Tenericutes Mycoplasma genitalium  G37 Yes 243273 97 
Tenericutes Mycoplasma pneumoniae  FH No 722438 49525 
Tenericutes Ureaplasma parvum  sv 3, ATCC 27815 No 505682 19087 
Thermotogae Fervidobacterium nodosum  Rt17-B1 Yes 381764 16719 
Thermotogae Kosmotoga olearia  TBF 19.5.1 Yes 521045 29419 
Thermotogae Petrotoga mobilis  SJ95 Yes 403833 17679 
Thermotogae Thermotoga naphthophila  RKU-10 Yes 590168 33663 
Verrucomicrobia Akkermansia muciniphila  ATCC BAA-835 Yes 349741 20089 
Verrucomicrobia Opitutus terrae  Yes PB90-1 452637 
Crenarchaeota Sulfolobus solfataricus  P2  273057 108 
Crenarchaeota Thermosphaera aggregans  M11TL, DSM 11486 Yes 633148 36571 
Euryarchaeota Halogeometricum borinquense  PR3, DSM 11551 Yes 469382 20743 

Euryarchaeota Methanocella sp.  RC-I 
Name not 
validly 
published 

351160 19641 

Euryarchaeota Methanothermus fervidus  V24S, DSM 2088 Yes 523846 33689 

Korarchaeota 
Candidatus Korarchaeum 
cryptofilum 

OPF8 
Name not 
validly 
published 

374847 16525 

Nanoarchaeota “Nanoarchaeum equitans”  Kin4-M 
Name not 
validly 
published 

228908 9599 

16S rRNA tree 
For this analysis, 16S rRNA sequences were predict-
ed from the whole genome sequences of the selected 
organisms, using the RNAmmer algorithm [13]. The-
se sequences were aligned using the MAFFT pro-
gram, with the iterative refinement algorithm using 
maximum iteration (1000) and default parameters 
for gap penalties [14]. A distance tree was con-
structed using MEGA5 [15] with the Neighbor-
joining algorithm [16] and 1,000 bootstrap re-
samplings. The taxa in the resulting tree were col-
lapsed to phyla, except for the Negativicutes. 

Composition Vector Tree (CV) 
A Composition Vector Tree was constructed based 
on protein sequences of the 145 selected genomes 
using a webserver (available at tlife.fudan.edu.cn/ 
cvtree) with the K parameter set at 6 [17]. The  

outcome from the program is a distance matrix 
based on amino acid sequence comparisons, which 
is then used to generate a phylogenetic tree with 
the neighbor-joining method. In the shown tree, the 
outgroup chosen was Methanothermus fervidus (an 
Archaea). After tree visualization with MEGA5, 
branches were collapsed wherever possible with 
the exception of the Negativicutes branch, which 
remained expanded. 

Consensus tree of conserved genes 
Using the list of universally conserved core genes, 
previously identified by Ciccarelli et al. [18], and 
an implementation of BLAST, a set of genes that 
was shared among all 145 genomes was identified. 
Proteins that had no match in at least one genome 
or showed poor E-value were eliminated. The 27 
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conserved core genes were extracted (Table 1) 
and a multiple alignment was produced using 
MUSCLE software [19]. A set of phylogenetic trees 
was constructed by PAUP [20] and a best-fit con-
sensus tree was generated using Phylogeny Infer-
ence package (PHYLIP) as described elsewhere 
[21]. Bootstrap values were found after 27 re-
samplings, which is equal to the number of gene 
families conserved in all the analyzed genomes. 

DNA tetramer analysis and amino acid usage 
A tetramer frequency heatmap was constructed 
from the observed ratios of tetra-nucleotide fre-
quencies divided by estimated tetra-nucleotide 
frequencies for each genome [22]. The estimated 
tetra-nucleotides were computed from the ge-
nomes' base composition. The ratio of observed 
over expected frequency was used for hierarchical 
clustering using complete linkage and Euclidean 
distance, which was subsequently performed with 
respect to both strain and tetramer frequencies. 
The amino acid heatmap is based on frequencies of 
deduced proteomic amino acids from each genome 
normalized with respect to the total number of ami-
no acids in each genome. The amino acid frequencies 
for each genome were clustered using complete 
linkage and Euclidean distance with respect to both 
genomes and amino acids. The heatmap was made 
using the R package ggplot2 [23]. 

Comparison of metabolism potential 
The protein sequences of Kyoto Encyclopedia of 
Genes and Genomes (KEGG) orthology categories 
[24] were downloaded and only the Bacterial se-
quences were considered. The Hidden Markov 
model (HMM) of each ortholog was generated us-
ing HMMER version 3 [25] based on the multiple 
alignment of each orthologous set of KEGG pro-
teins, using MUSCLE software [19]. The 145 pro-
teomes were queried against the HMMs to infer 
their ontology. A cutoff of 1×10−30 was used for 
statistical significance. A heatmap of each pathway 
and process derived from the database KEGG was 
illustrated based on normalized abundance of the 
enzymes present in each pathway. The heatmap 
and hierarchical clustering were performed in the 
software R [23]. 

Construction of BLAST matrix and proteome 
comparison 
Reciprocal BLAST was performed between each ge-
nome pair. The program blastall version 2.2.25 was 
used for BLAST implementation using default  

settings (BLASTp, E-value set to 1×10−5 for non-
homologs and 1×10−8 for homologs, without 
 filtering). A hit was considered significant at a 
BLAST cutoff of 95% identity and 95% coverage (of 
the longest gene in comparison). The number of hits 
was then given as a percentage of the genes in the 
column representing the corresponding genome. 
The diagonal designates internal homologs, comput-
ed by blasting each genome with itself. To avoid in-
cluding identical genes, the second highest scoring 
hits were used. Furthermore, we also performed 
homology reduction of the diagonal hits, using an 
implementation of the Hobohm algorithm [26]. 

Results 
Twenty-four Negativicutes genomes were com-
pared to 121 other prokaryotic genomes covering 
22 Bacterial and 4 Archaeal phyla. When available, 
at least two genomes were included for every phy-
lum. The first analysis presented here is based on 
16S rRNA alignments. A single 16S rRNA gene was 
extracted from each of the genomes and an align-
ment was produced spanning the maximum 
length of the gene. A phylogenetic tree was con-
structed based on this alignment, as shown in Fig-
ure 1. With the exception of the Negativicutes, 
branches of the tree were collapsed in those cases 
where the analyzed species within a phylum clus-
tered together. With the exception of some 
Firmicutes, the analyzed genomes cluster accord-
ing to their phylum, although the Deferribacteres 
phylum is mixed with the Proteobacteria phyla, 
and two members of Proteobacteria are not posi-
tioned with other members of their phylum 
(Lawsonia intracellularis and Magnetococcus). 
That most phyla could be collapsed is consistent 
with the weight of 16S rRNA similarities in cur-
rently accepted taxonomic descriptions of prokar-
yotes. The Firmicutes, however, show less con-
sistency. Although most of the analyzed Firmicutes 
cluster together, two species are separated from 
the Firmicutes branch (Eubacterium cylindroides 
and Thermoanaerobacter sp., both members of 
Clostridia). The Negativicutes are positioned with-
in the Firmicutes cluster, and this part of the tree 
is expanded in the figure for clarity. As can be 
seen, phylogeny of the 16S rRNA gene provides 
good resolution between the different genera of 
the analyzed Negativicutes. All Veillonella spp. are 
clustered within one branch of the Negativicutes. 
The Acidaminococcaceae (to which 
Phascolarctobacterium spp. also belong) are 
placed within the cluster of the Veillonellaceae, in 
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accordance with their current classification [27]. 
The Acidaminococcaceae used to be recognized as 
a separate family within the Negativicutes, just like 
the Veillonellaceae, and during preparation of this 
contribution these two families were presented as 
such in the Taxonomy database at NCBI. Of note is 
the relatively close relationship between 
Negativicutes and two Clostridium species (C. 
botulinum and C. cellulolyticum), which does not 

cluster with other members of the Clostridium ge-
nus (Figure 1). That genus displays a high degree 
of variation and re-classification of some of the 
members of this genus is in progress (see for ex-
ample [27]). That two members of the Clostridia 
are even placed outside the Firmicutes phylum is 
an indication of 16S rRNA gene sequence hetero-
geneity within this class. 

 
Figure 1. Phylogenetic neighbor-joining tree based on 16S rRNA genes extracted from 145 ge-
nomes (24 Negativicutes and 121 prokaryotic genomes representing 26 phyla). Bootstrap values of 
50 and higher are indicated. With the exception of the Negativicutes, branches where all organ-
isms belong to the same phyla are collapsed and named by the phyla they represent. The green 
shading indicates the position of Firmicutes. The collapsed branch of the Bacilli, marked (1), con-
tains Turicibacter sanguinis, a Firmicutes member of the Erysipelotrichales as well as Bacilli mem-
bers. An uncollapsed tree is included in the supplementary material. 
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Next, all protein-coding genes of the analyzed ge-
nomes were compared and a composition vector 
tree (CVtree) was produced, based on amino acid 
sequences (Figure 2). The topology of the result-
ing tree is generally in accordance with the 16S 
rRNA tree shown in the previous figure. As indi-
cated by the collapsed branches, the CVtree 
grouped most genomes according to their known 
taxonomic phyla, although not all Spirochaetes 
cluster together. In contrast to the 16S rRNA tree, 
in this protein tree all the Firmicutes cluster to-
gether, and are distinct from other phyla. The 
Negativicutes genomes, nested within the 
Firmicutes, again have the Acidaminococcaceae 

placed within the Veillonellaceae, while all 
Veillonella spp. are found in one cluster. All Clos-
tridia, this time divided into two collapsed 
branches, are positioned as the closest relatives to 
Negativicutes. It is of interest that among the clos-
est relatives to Firmicutes, based on this analysis, 
are the Fusobacteria and the Elusimicrobia; these 
are atypical diderm bacteria that produce lipopol-
ysaccharides [28]. However, the spirochete,  
Brachyspira murdochii, does not possess two 
membranes, but is nevertheless grouped with 
atypical diderms. On the other hand while the 
Synergistetes are atypical diderm bacteria, they 
are placed elsewhere in the tree (Figure 2). 

 
Figure 2. Phylogenetic tree based on composition vector analysis (CVtree) of all protein coding genes 
(amino acid sequences) derived from the analyzed genomes. Note that the branch lengths in this plot 
are artificial. The coloring is the same as in Figure 1 and branches have been collapsed. The 
Firmicutes branch Bacilli, marked (1), contains Turicibacter sanguinis. An uncollapsed tree is included 
in the supplementary material. 
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A third analysis was based on a subset of proteins 
found conserved amongst all analyzed genomes. 
These conserved proteins were selected based on a 
protein BLAST (a cutoff of 50% identity and 50% 
coverage of the query length was used) and single 
linkage clustering. The analysis identified 29 genes 
that are shared among all 145 genomes [Table 2]. A 
consensus tree was constructed based on these 29 
conserved proteins (Figure 3). The results confirm 
the global observations of the other two  

phylogenetic analyses: the Negativicutes cluster 
together and are most closely related to Clostridia 
(in this case the most closely related species are 
Desulfotomaculum reducens and Acetohalobium 
arabaticum). As before, the Acidaminococcaceae 
cluster together but within the Veillonellaceae. The 
position of Turicibacter sanguinis within the Bacilli 
group of Firmicutes is consistent with the other two 
trees but contrasts with its taxonomic description 
at NCBI as a member of the Erysipelotrichia. 

Table 2. Universally conserved COGs 
Group Average length (aa) Annotation 

COG0012 380  Predicted GTPase, probable translation factor  

COG0016 423  Phenylalanine-tRNA synthethase alpha subunit  

COG0048 137  Ribosomal protein S12  

COG0049 182  Ribosomal protein S7  

COG0052 240  Ribosomal protein S2  

COG0080 154  Ribosomal protein L11  

COG0081 230  Ribosomal protein L1  

COG0087 288  Ribosomal protein L3  

COG0091 157  Ribosomal protein L22  

COG0092 240  Ribosomal protein S3  

COG0093 130  Ribosomal protein L14  

COG0094 182  Ribosomal protein L5  

COG0096 131  Ribosomal protein S8  

COG0097 177  Ribosomal protein L6P/L9E  

COG0098 220  Ribosomal protein S5  

COG0100 145  Ribosomal protein S11  

COG0102 167  Ribosomal protein L13  

COG0103 172  Ribosomal protein S9  

COG0172 442  Seryl-tRNA synthetase  

COG0184 154  Ribosomal protein S15P/S13E  

COG0186 122  Ribosomal protein S17  

COG0197 175  Ribosomal protein L16/L10E  

COG0200 166  Ribosomal protein L15  

COG0201 445  Preprotein translocase subunit SecY  

COG0202 323  DNA-directed RNA polymerase, alpha subunit  

COG0256 178  Ribosomal protein L18  

COG0495 854  Leucyl-tRNA synthetase  

COG0522 199  Ribosomal protein S4 and related proteins  

COG0533 375  Metal-dependent proteases with chaperone activity  
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Figure 3. Consensus tree based on the phylogenetic trees of 27 genes conserved in all 145 genomes. 
The collapsed branch of the Bacilli, marked (1), contains Turic ibacter sanguinis. An uncollapsed tree is 
available as a supplemental figure. 

In conclusion, based on three independent phylo-
genetic analyses, the closest relatives to the 
Negativicutes seem to be the Clostridiaceae. The 
observed clustering of species within the 
Negativicutes is consistent with their assigned 
taxonomy. Furthermore, these analyses show that 
Veillonella spp. form a distinct branch, most differ-
ent from the other Negativicutes, while the recent 
change of status of the Acidaminococcaceae (they 
are no longer a separate family) is confirmed by 
these analyses. 

Apart from comparing proteins and genes, ge-
nomes can also be compared based on nucleotide 
composition irrespective of their coding capacity. 
For instance, the frequency of nucleotide combina-
tions can reveal similarities between genomes that 
are independent of protein-coding information. We 
compared the frequency of tetranucleotides for all 
145 genomes. The observed frequency of all 64 
tetranucleotide combinations was extracted for 
each genome and these frequencies were divided 
by the theoretically calculated, expected frequen-
cies (corrected for differences in base composi-
tion). This ratio, which could be interpreted as a 
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genomic signature, was expected to reflect taxo-
nomic divisions [29]. However, although the analy-
sis identified a high similarity in tetranucleotide 
frequency for all of the analyzed Veillonella ge-
nomes, most of the clustering observed was not in 
accordance with known taxonomic relationships. 
Not only were Negativicutes other than Veillonella 
separated from each other and strewn across the 
phyla, but also several other Firmicutes were dis-
tributed over various branches (data shown as 
supplementary material). In fact, for most of the 
analyzed genomes, members of identical phyla did 
not cluster together and even the Archaea were 
mixed with Bacteria, although some closely related 
species were indeed clustered. This may explain 
why all Veillonella genomes grouped together. Sev-
eral organisms with similar tetranucleotide fre-
quencies did not share a common ecological niche, 
in contrast to previously reported observations 
(reviewed in [30]). Neither was the obtained clus-
tering dictated by GC-content. The conclusion from 
this analysis was that tetranucleotide analysis is 
only taxonomically informative for closely related 
genomes. 

We also compared whole-genome amino acid fre-
quencies in each of the deduced proteomes. Alt-
hough the results are slightly more in agreement 
with known taxonomy as compared with the ge-
nomic signatures discussed above, this analysis 
does not cluster organisms according to their phy-
la, and again some Archaea are mixed with Bacte-
ria. The relevant part of the heatmap based on 
amino acid frequency is shown in Figure 4. All 
Veillonella genomes cluster together within the 
Negativicutes, with the exception of two of the 
three Dialister genomes, which are found most 
closely related to Clostridium species (See supple-
mental information for a version of this figure 
showing all the genomes). The major Negativicutes 
cluster also contains a Geobacillus (which is a 
Gram-positive Firmicutes) and a methanogenic 
Archaean. Interestingly, the closest relatives to this 
cluster are not Clostridia, as the previous phyloge-
netic trees suggest, but a number of Proteobacteria. 
It is striking that the amino acid frequency analysis 
detects similarities to Proteobacteria, with which 
the Negativicutes have their two membranes in 
common. 

 
Figure 4. A zoomed heatmap of the amino acid frequency found in the deduced proteomes of all 145 genomes. A 
fragment of the heatmap is shown, presenting  the cluster in which all but two Negativ icutes are found. The remain-
ing two, both Dialister microaerophilus genomes, are positioned elsewhere in the tree, closest to Clostridium 
cellulolyticum (not shown in this zoom). The color scale indicates highly underrepresented (orange) to highly 
overrepresented amino acid frequency (magentum). The full figure is available as supplementary information. 
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The metabolic properties encoded by the ge-
nomes were analyzed next, based on KEGG 
comparisons [24]. The results are again visual-
ized in a heatmap (Figure 5). We hypothesized 
that this analysis could identify similarities 
based on niche adaptation. For simplicity, only a 
selected number of phyla are shown: apart from 
the Firmicutes, genomes are included that rep-
resent Bacteroidetes and Proteobacteria (both of  
which contain members frequently found in the 
oral or gut microbiome), while Cyanobacteria  
are included as representatives of a phylum that 
occupy an environmental niche. Since the ge-
nomes are compared based on predicted prote-
omes, their annotation was standardized in or-
der to reduce artificial variation caused by gene 
annotation differences. As can be seen in Figure 
5, the Veillonella genomes all cluster together at 
the right-hand side of the plot, within a larger 
cluster containing most of the other 
Negativicutes and some Firmicutes. The three 
Dialister species are placed outside the 
Negativicutes cluster. The other Firmicutes that 
are found combined with the Negativicutes, 
based on their metabolic potential, are Clostrid-
ium cellulolyticum, Eubacterium rectale, 
Lactococcus lactis, Streptococcus pneumoniae  
and Turicibacter sanguinis. These are all com-
mon members of the oral or intestine 
microbiome. As expected, the metabolic path-
way for lipopolysaccharide biosynthesis is 
shared between the Negativicutes and other 
Gram-negative species, as indicated by the ar-
rows in Figure 5. Interestingly, the Cyanobacte-
ria form a small cluster within, not outside the 
tree, together with a Haliangium and a 
Sorangium species as their closest neighbors 
(both are social Myxococcales belonging to the 
Deltaproteobacteria). The exclusive ability of 
carbon fixation by Cyanobacteria is apparent 
from the dark red square in the block 'energy'. 
The lanes of Veillonella in Figure 5 are dominat-
ed by light colors, indicative of medium meta-
bolic potential; that is, in contrast to some ge-
nomes where most of the pathways are present 
(dark red for Proteobacteria for example) or 
missing (dark green for other Negativicutes), the 
Veillonella genomes have partial pathways 
(based on knowledge primarily from aerobic 
genomes). There is no reason to believe that the 
Veillonella genomes should have less metabolic  
potential than other Negativicutes. Indeed, it is 

likely that the differences in metabolic potential 
of Veillonella are truly reflective of alternative 
capabilities for these bacteria. 

It was further investigated how conserved the 
predicted proteomes are within the 
Negativicutes. As a quantitative measure for 
homology, shared protein-coding genes were 
identified by pairwise BLASTP comparison and 
expressed as a percentage of the combined pro-
teomes. The results are shown in a matrix (Fig-
ure 6). In addition to the proteomes of the 24 
Negativicutes, the comparison includes Clostrid-
ium botulinum, Cl. cellulolyticum and 
Desulfotomaculum reducens , as these Firmicutes  
were shown to share characteristics with 
Negativicutes in previous analyses (cf. Figures 1 
and 3). The proteome of E. coli K12 is included 
as an example of a Gram-negative intestinal bac-
terium. The BLAST matrix was constructed us-
ing reciprocal best BLAST hits to determine the 
presence of shared protein family between two 
genomes. Inspection of Figure 6 shows that the 
genus Veillonella is relatively homogeneous; any 
two members of this genus share between 67% 
and 90% homology (1,357 to 1,682 protein fam-
ilies), irrespective of the species. The genus 
Selenomonas is more heterogeneous, with pair-
wise homology varying from 42% to 82% be-
tween any two species (980 to 1659 protein 
families). The three proteomes of Dialister spp., 
covering two species, share between 40% and 
84% homology. The highest homologous frac-
tion identified between two members of differ-
ent genera within the Negativicutes is 43% 
(Mitsuokella multacida compared to 
Selenomonas sputigena, whereas the lowest ho-
mology is 15% (Dialister spp. compared to 
Thermosinus carboxydivorans). Negativicutes  
share between 9% and 33% homology with the 
analyzed Firmicutes, whereas slightly lower ho-
mology is detected with E. coli (between 7% and 
24%). 

Finally, we assessed the gene pool conserved 
within all analyzed Negativicutes. Using the 
same cutoff for protein BLAST comparison as 
before, a core-genome is identified that contains 
about 300 conserved protein families (data not 
shown). This is a relatively low number of con-
served proteins, reflective of the extensive ge-
netic  heterogeneity within this bacterial class. 
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Figure 5. Heatmap of metabolism potential, based on Kyoto Encyclopedia of Genes and Ge-
nomes ontology (KEGG). The green color in the heatmap indicates weak metabolic potential, 
while red signals strong potential. The arrows to the right indicate the scores for lipopolysaccha-
ride biosynthesis. A version summarizing  the metabolism pathways and showing the species 
legend is available as supplementary material. 
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Figure 6. Proteome comparison represented by a BLAST matrix, based on 24 Negativ icutes genomes with recip-
rocal best hits. The genomes of Clostridium botulinum, Cl. cellulolyticum, Desulfotomaculum reducens and E. coli 
are added for comparison. Inter-genus comparisons are indicated by black squares. A version reporting  the nu-
merical values of homology percentages is available as supplementary information. 

Discussion 
The availability of complete sequences for a large 
and diverse set of Bacterial genomes has helped in 
exploring the conundrum of the genus Veillonella, 
a genus within the Negativicutes class, all of which 
are Gram negative Firmicutes. The 16S rRNA tree 
shown as Figure 1 illustrates how “close” the 
Negativicutes are to other Firmicutes. The closest 
Gram positive Clostridium species are actually 
quite distant to Veillonella and other Negativicutes 
genomes, as can be seen in the low fraction of 
shared protein families in Figure 6. The Gram-
negative Firmicutes are even more distant to other 
Gram negatives, such as Proteobacteria (e.g., E. 
coli). It should be noted that the family 
Clostridiaceae is a largely diverse group with 

many members being re-classified [27]. It is there-
fore possible that the taxonomic description of 
some Clostridium genomes may change in future. 
However, our analyses did not identify one single 
Gram-positive Firmicutes (Clostrida or others) that 
consistently was identified as most closely related 
to Veillonella. As seen from three types of phylo-
genetic analysis, the Negativicutes class genomes 
form a distinct cluster within the Firmicutes, and 
the Veillonella genus forms a relatively homoge-
neous group of species within the Negativicutes, 
with relatively conserved metabolic properties 
(Figure 5). In comparison, the Selenomonas genus 
is more heterogeneous, at least based on their to-
tal gene comparison, as illustrated in Figure 6. 
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In contrast to expectations, relatively little homol-
ogy between Negativicutes and other Gram-
negative genomes was detected in our analyses. 
Neither gene-dependent phylogenetic analysis, 
nor gene-independent DNA tetramer analysis 
identified a significant commonness between 
Negativicutes and, say, Proteobacteria. Only 
whole-genome frequency analysis of amino acid 
usage identified some similarity to a few 
Proteobacteria, and this might be more reflective 
of environment the organism is adapted to, and 
not phylogeny. Using KEGG pathways for metabol-
ic comparison of the proteomes we found few 
pathways in common, with the exception of a 
shared lipopolysaccharide biosynthesis pathway. 
From all analyses combined, it is clear that the 
taxonomic placement of Negativicutes within the 
Firmicutes reflects their genetic and genomic 
characteristics, although the proteins encoded by 

the Negativicutes genomes are quite distinct from 
their Gram-positive cousins. It could be speculated 
that the double membrane of the Negativicutes 
evolved in a lineage that used to be a single-
membrane (Gram-positive) Firmicute. Whether 
this event co-evolved independently of the for-
mation of other Gram-negative phyla, or was the 
result of lateral gene transfer, cannot be stated for 
certain at present; estimations of horizontally 
transferred regions in Veillonella parvula DSM 
2008, the only fully assembled Veillonella genome 
available, using the least conservative method on 
the Islandviewer web-site [31], revealed that only 
2% of the genome is of foreign origin. In compari-
son, 9% of the E. coli K-12 subsp. MG1655 genome 
was predicted as horizontally transferred. Further 
analyses are therefore needed to assess this in 
more detail. 
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5.3 CMGfunc: Comparative functional annotation of

bacterial proteins

The paper described in this section represents the main work of this project, a

stand alone functional annotation system designed for comparative analysis of

bacterial genomes. The system consists of 1.216 models of different functions

contained in a stand alone virtual computer which can be installed on any platform.

Each model is the result of a Artificial Neural Network training procedure and each

model represents a function trained on protein clusters of between 75 and 35.570

sequences (mean 1.471). Each function is described by Pfam-A domains, Pfam

clans and GO terms and can be connected to Interpro. The pipeline consists of

three steps and takes a protein FASTA file as input. A total of 75 sequence features

are calculated for each protein and each protein is compared to the functional

models. The model which gives the sequence the highest value (a 100% match

equals a value of 1) is recorded and the function of the models is assigned to the

sequence. Frequencies of each function is calculated for each genome or input set

and visualized in a set of heat maps. When multiple genomes are analyzed, the

analysis performs a clustering procedure of genomes based on shared functional

frequencies. The analysis divides functions into the three GO ontologies, molecular

function, biological process and cellular component, allowing for evaluations of

similarity based on different levels of functional annotation.

The performance of CMGfunc was evaluated using the CAFA 1 (Critical As-

sessment of Functional Annotation) data. Each protein was classified using the

ANN models, as described above, 98% of the sequences were assigned a function.

Comparing the GO terms output from CMGfunc with the GO terms from Uniprot

entries for the dataset revealed a 64% correct prediction rate on GO level 3 and

55% on GO level 4. The coverage of the CMGfunc models was further investigated

using proteins that did not have matches to Pfam-A. A set of 47.050 proteins which

could not be annotated using Pfam-A was compared to each of the CMGfunc mod-

els and functions for 98% of the dataset were predicted. Among these functions,

the helix-turn-helix(HTH) Pfam clan (1.139 proteins) was the most common. Al-

though not a direct function, such a pattern does suggest evidence for an HTH

structure being present in these proteins.

This project presented a set of models and tools for comparative functional

annotation and is available as a stand alone virtual computer as well as individual

scripts from GitHub, where wiki documentation is also found. The offline use and

cross platform installation ensures that the pipeline can be used for confidential

data analysis and does not require expensive computational infrastructure.
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Abstract Background: Assignment of protein function, particularly in the absence
of strong matches to proteins of known and well characterized function, is a difficult
task. Many programs and pipelines have been developed as an effort to improve the
automated functional annotation of protein sequences. These vary greatly in ease
of use, level of detail in annotation, manual curation and modelling approaches.
One shortcoming of such systems is that they do not readily allow for the com-
parison of annotations across genomes. Here we present CMGfunc (Compara-
tive Microbial Genome functions), a bioinformatics pipeline and model collection for
comparative functional annotation of bacterial genomes. The models are based on
protein clusters created on the basis of shared Pfam-A domain and modeled using
artificial neural networks, using 75 sequence features as input values.
Results: The performance of the CMGfunc method was assessed using the
dataset from a previous contest for prediction of protein function, CAFA 1. CMG-
func consists of 1216 functional models based on artificial neural networks, were
shown to cover 98% of 10,019 protein sequences used in the CAFA 1 challenge
and correctly annotate 60% proteins at the GO term level 3. Furthermore, the
methods, although based on protein clustering using Pfam, assigned functions to
98% of proteins with no match to Pfam (example set of 46.389 sequences).
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Background
Advances in DNA sequencing technologies over the past
10-20 years, both in speed, precision and price, has in-
creased the amount of sequence data tremendously. This
development has moved bioinformatics from the periph-
ery of life sciences, to a more central role, as analysis of
massive amounts of sequence data has become crucial.
An important area of bioinformatics is the functional an-
notation of genes and proteins based on sequence data.
Although protein functions might at first appear to be a
well defined problem, the definition of a function varies
based on the context in which it is used[1]. As such
the ambiguity of the protein function concept can be de-
scribed as a matter of defining the word ”understand”[2].
As the aim of sequencing DNA is to get greater under-
standing of biology, the process of assigning a function to
a gene or protein becomes a question of what is meant by
the word ”function”. The number of genome projects has
not only increased the available data to resolve the ques-
tions about DNA and the functions of genes but has also
greatly increased the amount of software to aid in finding
the answers.

Standardizing functional annotation
Though functional annotation has become increasingly
more common and new systems are emerging rapidly,
evaluating the performance of these systems has been
standardized. Due to differences in functional standards
and the standardized test sets, it has been difficult to com-
pare one system to another. The Gene Ontology (GO),
from the gene Ontology Consortium, has emerged as a
possible solution to some of the problems with evaluation
of functional annotation. The consortium was originally
launched as a collaborative project between three eukary-
otic model organism databases, but has since expanded to
include many microbial data sources as well[3, 4]. The
ontology consists of three structured controlled vocabu-
laries (ontologies) of functional descriptions (GO terms)
and unique identifiers constructed through manual anno-
tation and combines data from several databases and sci-
entific literature. The different vocabularies cover three
aspects of gene product function: molecular function, bi-
ological process and cellular component. The descrip-
tions in GO are organized in a relational manner with
”child-parent” relationships between different terms. The
GO has proved useful in making annotation comparable
and standardized and is now used by many annotation
pipelines [5, 6, 7].
With an established system like GO other initiatives have
been set up to promote advances in functional annota-
tion. The Critical Assessment of Functional Annotation
experiment (CAFA) aims at improving the performance
and evaluation of functional annotation of proteins.
The project constructs a functionally unknown dataset
from public data (Swiss-Prot and the Enzyme Function
Initiative[8]) and research groups sign up to attempt to
assign functions to the data. After a year, predicted func-
tions are compared to accumulated experimental func-
tions and performance is evaluated. The project ran for

the first time in 2006 and has collected many useful ap-
proaches to functional annotation. Furthermore, the ex-
periment has highlighted the slow progress in experimen-
tal verification, further supporting the need for computa-
tional methods.

Sequences domains
Proteins domains have long been of interest in the field
of functional annotation, because many of the functions
in the cell are done by proteins. The ”sequence hypothe-
sis”, upon which molecular biology is built, assumes that
the amino acid sequence of a protein determines its struc-
ture, and the structure determines its function(s). Based
on the observations that many known structures contain
conserved domains which form specific functions, a mod-
ular approach seems reasonable - where a protein can be
divided into sets of functional domains. One such ap-
proach to modelling protein functional domains is the
Pfam database, first published in 1997 [9]. A functional
domain might serve as a specific binding site, or create
a specific secondary or tertiary structure essential for the
proteins function. These characteristic regions have been
used to build models of functional or structural domains
of proteins. Different approaches in defining protein do-
mains are being used with Pfam, SUPERFAM, TIGRFAM
and PANTHER being among the best known databases
[10, 11, 12, 13]. The approach used here is based on
the Pfam database of Hidden Markov Models for domain
identification. One part of Pfam is a manually curated
set of domain models (Pfam-A) while another part is au-
tomatically generated from common sequence patterns
(Pfam-B). Additionally, Pfam includes a structure called
”clans” consisting of manually curated domains sets with
related structure or function or with similarities between
sequence profiles. Not all domains belong to a clan.
Through the InterPro database[14] it is possible to con-
nect some (but not all) Pfam domains to GO terms.

Comparative Microbial Genomics functions,
CMGfunc
The method presented here, CMGfunc (Comparative Mi-
crobial Genome functions), uses Pfam-A and Pfam clans
to create functionally related protein clusters. The aim of
the method is to create functional models with a degree
of generalization that allows comparison of large sets of
genomes. CMGfunc does not give a detailed prediction of
each protein function. If the function of a protein is very
specific, the chance of finding the same exact function in
another genome is very low. However, when comparing
genomes it is usually more interesting to discover which
processes are found in both genomes. For proteins with
no strong match to a reference with known structure and
function, prediction of general properties is better than
nothing.
Proteins from NCBI GenBank are clustered using Pfam-
A domains and clans. Additionally, 75 sequence features
are calculated for each protein. These features describe
biochemical, structural or functional signatures of the in-
dividual protein and include amino acid counts, molec-
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ular weight, estimates of subcellular location and signal
peptides. Each cluster is modeled using artificial neural
networks, where the input is the features of a protein se-
quence encoded numerically and the response is a score
describing how well a protein matches to that specific
function. Each network is a model describing a specific
protein function. A comparative pipeline allows for com-
parison of new proteins to all the models and returns both
text and graphical output of the genome annotation. The
pipeline also allows for comparison of functional anno-
tation across a number of genomes. Figure 1 shows the
analysis flow of the pipeline.

Protein FASTA file

Feature vector

Normalized feature vector

CMGfunc function

Frequencies of all functions

Protein sequence

Feature calculation

Normalization

Functional models

For each proteinFor each genome

Genomes

Functions of all genomes

Cluster functions

Cluster genomes

Plot functions

Figure 1. Flow of analysis in CMGfunc.

Materials and Methods
Genome and proteome data
A set of 1632 bacterial genomes was obtained from
the NCBI GenBank FTP database as of November 2010
(ftp://ftp.ncbi.nlm.nih.gov/genomes/GENOME_REPORTS/,
see Supplementary Table S1 for full list of genomes).
Complete DNA sequences were extracted from the
GenBank files and predicted proteomes were constructed
using the gene-finding algorithm implemented in Prodi-
gal version 2.0 (March 2010)[15]. Prodigal was run
with the option of not constructing genes over DNA se-
quence containing unknown bases (option −m). A total
of 5.317.141 proteins were predicted from the 1.623
genomes, and stored in a MySQL database designed for
the purpose.

Sequence clustering
Protein clusters with functionally related sequences were
created based on shared Pfam domains. The clustering
was done using three consecutive criteria:

• Criteria 1: Does the protein contain a Pfam-A do-
main?

• Criteria 2: Does the architecture match a Pfam-A
clan?

• Criteria 3: Is the protein group too large? Are too
few proteins in the cluster?

Criteria 1: Does the protein match a Pfam-A domain?
Each protein was compared to the Pfam-A (version
26.0 November 2011, 13.672 families) database[16] us-
ing pfam_scan.pl[17]. Matches between sequences and
Pfam-A models were recorded and the presence/absence
of domains was used to create an architecture for each
protein. Multiple matches of one domain in one sequence
were ignored as well as the relative position of the do-
main in the sequence (e.g., AB = BAA). A protein se-
quence was allowed to match multiple unique domains
as long as they did not overlap - if overlaps were de-
tected, the highest scoring domain was used. The combi-
nation of domains in a sequence is called the protein "ar-
chitecture" and architectures can consist of just a single
domain. Each of the 5,3 million proteins was compared
to the Pfam-A database. About one million (1.130.097)
proteins did not match Pfam-A while more than 4 mil-
lion (4.177.021 or 78%) matched at least one domain.
The 4,1 million proteins containing Pfam-A domains were
then clustered based on shared Pfam domain architec-
tures, yielding 26.179 architectures clusters.
Criteria 2: Does the architecture match a Pfam-A clan?
Architecture clusters were connected to Pfam clans by
single linkage, if a domain in the architecture could be
connected to the clan the architecture was connected to
that clan. When an architecture could be connected to
several clans, the architecture was assigned to both clans.
Of the 26.179 architectures, 76% (19.988) could be as-
signed to a clan and are referred to as clan clusters. Ar-
chitectures consisting of one domain were not included,
as these did possibly not hold more information than that
Pfam domain model itself.
Criteria 3: Is the protein group too large or small?
Some architecture clusters were very small (16.041
groups had less than 10 proteins, 13.749 have less than
5 and 21.506 have less than 100) and 13 clan clusters
contained more than 50.000 proteins. If a clan group
contained more than 50.000 sequences, it was split into
architecture groups while retaining its clan description
(architecture clans). After this step, any cluster with
more than 50.000 or less than 100 sequences was dis-
carded. The result of this clustering is three types of
functional clusters: architectures with no clan association
(2.570), architectures with a clan association (914) and
clans (381).

Gene Ontology terms
Each of the clan models were connected to the Gene
Ontology terms using the Pfam to GO mapping pro-
vided by Gene Ontology[3, 14]. The mapping con-
tained a list of Pfam domains and the GO terms
they belong to, thus there could be more GO terms
per Pfam as well as more Pfams with the same GO
term. The terms included both Molecular Function
(MF), Biological Process (BP) and Cellular Component
(CC). GO terms were associated with Pfam-A domains
through a Pfam to GO mapping constructed by the In-
terPro [14] project and was obtained March 2012 from
http://www.geneontology.org/external2go/pfam2go. This
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Figure 2. Protein clustering and functional cluster se-
lection.

mapping does not cover all Pfam domains and 4.628 dif-
ferent domains were mapped to 2.176 GO terms. Terms
were connected to architectures and clans via single link-
age - if one domain in an architecture was connected to
the term, that term was assigned to the entire architec-
ture or clan. All clans were connected to at least one GO
term and 67% (2.317 of 3.484) of the architectures could
be connected to a term.

Sequences features
A set of 75 sequence features were calculated for
each protein, based on a number of external programs
and pipelines. Using the python module ProtParam
( http://biopython.org/w/index.php?title=ProtParam) six
values, or features, were calculated based on the ExPaZy
Protparam pipeline. Another 11 features came from Psort
[18] running the program with Gram positive and nega-
tive settings for each protein. High and low complexity
regions were calculated using SEG[19] and the output
was six values for each protein. SignalP was used, again
using both Gram positive and negative settings for each
protein, and produced 12 features. Normalization is the
process of adjusting all parameters to the same scale and
here each feature was normalized to a scale of 0 to 1. If
the measure had a fixed scale already, like PSORT giv-
ing values between 0 and 10, this was used to normalize.
If no fixed scale existed, like the molecular weight, the
highest value for that feature, observed in the dataset was
used to normalize (See Supplementary Table S2). The 75
features are combined into a single vector which is used
as the input to the functional group modeling engine for
the artificial neural network.

Artificial Neural Networks
Artificial neural networks were used to model the se-
quence groups formed by architectures and clans. One
network model was created per group, so that the model
could be used to evaluate whether a protein belongs to
that group or not. Training is done by presenting se-
quence feature vectors to the network engine, which then
uses that specific network model to calculate a value
based on the input. The model is then gradually adjusted
so that it will approximately give the desired output for
the specified input. In this case, the desired output was
set to be 1 for membership and 0 for non-membership.
Training was performed using 75% of positive data and
tested using the remaining 25%. Negative data used for
training and testing was selected from each group exclud-
ing the group currently being trained on. The number
of examples (proteins) selected from each group was set
to 30 unless the total number of positive examples di-
vided by the number of negative clans was larger than
30. For 381 clans, this means that at least 11,430 neg-
ative examples were used. Preliminary data indicated
that the networks showed a tendency to predict many
false positives if they were not trained with large amounts
of negative examples. The same number of sequences
were taken from each group, thus ensuring that nega-
tive data was selected from all groups not in the positive
set. Three sets were generated for each functional group
(protein cluster), randomly creating the positive and neg-
ative sets to address problems with bias in data. A fully
connected feed-forward neural network architecture was
constructed, with two hidden layers and 30 neurons in
each hidden layer. Each layer also contained a bias node.
A sigmoid activation function was used on all connec-
tions. The networks were constructed using the Python
library, pybrain[20] for architecture and algorithm im-
plementations.
As the network trains, the performance is monitored us-
ing the mean squared error (MSE) of the desired and pre-
dicted output. The more frequently the network predicts
a value close to the desired output the lower the MSE
becomes. As the MSE is a mean of all predicted/target
difference, it is sensitive to large numbers of examples. If
the number of negative examples is very high compared
to the number of positive examples, the network can get a
low MSE even by predicting all outputs to 0, the negative
data simple overpowers the effect of the false negatives.
For this reason, the networks are not evaluated solely on
MSE values. The MSE is calculated at each training round
(iteration) and can therefore be used to stop the train-
ing when the network seems to perform good enough.
However, for the reason described above, a low MSE can
be misleading. Therefore, the desired MSE was set very
low for training (0.0001 for datasets with less than 1.000
positive examples and 0.001 for datasets with more posi-
tive examples). The training stops when the desired MSE
value is met or when 1.000 iterations have been run,
whichever comes first. Networks were evaluated using
Matthew’s Correlation Coefficients (MCC) and MSE. The
MCC was selected for its ability to measure the perfor-
mance of a classifying program. The three different mod-
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els created for each cluster were compared based on the
MCC value for the testing and the best performing version
was selected. Each of the functional cluster groups were
tested for MCC values above 0.85 and of the initial set,
good performance was found for 756 of 2.570 architec-
tures with no clan association, 296 of 914 architectures
with a clans association and 164 of 381 clans.

CMGfunc pipline
The models constructed above were then built into a
pipeline for use on unknown FASTA sequences. The sys-
tem is called CMGfunc and is built into a virtual computer
available for download and local installation. A virtual
computer can be run on any platform using virtualiza-
tion software and guidelines for installation are available
on GitHub under the repository name ”cmgfunc”. The
pipeline consists of three parts:
1) CMGfunc.pl - this part takes a protein FASTA file as an
input and a directory of functional models (neural net-
works). Sequence features are calculated and normalized
for each protein and each protein is compared to a set of
functional models. The output is a result file containing
the best scoring function for each sequence (∗res) and
another list (∗res.all). The score indicates how well a
protein match the model for a specific function. A perfect
match would be 1 while a reasonable match would score
around 0.8.
2) CMGfunc_analyzeGenome.pl - the purpose of this
step is to summarize the functions identified in the first
step. The frequency of each function is recorded and
combined with functional descriptions for Pfam-A clans
and domains as well as GO terms. The frequency of the
clans is recorded and associated GO terms are listed. No
clan architectures are described by domain descriptions
and possible GO description while clans and architecture
clans are listed with clan descriptions and GO terms. The
output is a table in raw text format.
3) CMGfunc_plot_analyzeGenome.pl - the table from
above is used as input and several plots and tables are
generated. Three plots are created for function frequen-
cies, one for molecular function, one for biological pro-
cess and one for cellular component. Percentages plots
are created for the same three GO ontologies. A table
containing data used for the plots is created and also con-
tains additional functional information about each func-
tional model.

0.1 Comparison to CAFA 1
The CAFA 1[21] dataset was
downloaded from the webpage:
http://biofunctionprediction.org/content/previous-
cafa-data. The data itself was not part of the data used
to train the CMGfunc models. The set consists of 11,532
FASTA sequences with sequence names and UniProt
identifiers. Accessing a local version of UniProt (Release
October 2013) 11,039 sequences were connected to a
UniProt entry. Furthermore, not all entries contained GO
terms and 92% (10,111 of 11,039) entries were found
to be connected with one or more GO terms. Each of

the 11,532 protein were compared to the CMGfunc func-
tional models and 98% (11,293) were found to match a
function with a score higher than 0.9. To compare the
results with the UniProt functions, only matches with
associated GO terms can be used. Some architectures
do not have GO terms. The set of predicted functions
with score above 0.9 and associated GO terms include
9814 sequences. Three different comparisons were
done between the CMGfunc predictions and the Uniprot
annotations. The first was an exact term similarity
comparison, testing how many of the exact same GO
terms were found in the CMGfunc predictions and the
UniProt data. For the two next comparisons, BLAST2GO
was used to identify level 3 and 4 GO terms for Each
Uniprot and CMGfunc GO term set[22]. The upper
level terms were identified using the ”Combined Graph”
analysis, exporting the graph text data and extracting
terms for the desired level. The Overlap in GO terms was
then calculated again.

Results and Discussion
A set of 1632 genomes were obtained from NCBI Gen-
Bank as of November 2012. From these, more than 5 mil-
lion proteins were identified using the genefinder, Prodi-
gal. Each protein was compared to the Pfam-A database
and 78% were found to match one or more domains. Pro-
teins were clustered based on shared presence/absence
of domains as well as connections to Pfam clans. Clus-
ters with more than 50,000 and less than 100 proteins
were discarded. The remaining set of 3865 protein clus-
ters were modeled using 75 sequence features and a
feed-forward artificial neural network setup. The mod-
els showed varying performance (See Supplementary Ta-
ble S3) and 1216 were selected as acceptably perform-
ing networks based on Matthew’s Correlation Coefficient
(above 0.85). These functional models are described by
GO terms as well as Pfam domain or clan descriptions and
can be connected to InterPro entries if desired. The mod-
els are used as the backbone in the CMGfunc pipeline.
A set of input proteins are compared to each model and
the best comparison is recorded. If the best score is close
to 1, the protein will likely have the same function as
the model it resembles, and is connected with the GO
terms and descriptions of that model. The output of the
pipeline is a TAB delimited table file and six heat-map
plots. The heat-maps represent the frequency and frac-
tion of each function in each genome. The functions are
further split into GO ontologies, with separate plots of
Molecular Function, Biological Process and Cellular Com-
ponents. The plots are limited by user defined thresholds,
showing only fractions or frequencies above the thresh-
old. Figure 3 shows the comparison of functions for 15 Es-
cherichia coli genomes using a frequency threshold of 10
molecular function (See Supplementary Figure S1 for bio-
logical process and cellular component and percentage).
Clustering is automatically performed on both function
and genomes (For single genome annotation, see Sup-
plementary Figure S2). The genome set includes three
genome sequences of E. coli BL21 DE3 (NCBI project ID
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20713, 28965 and 30681) and another 12 genomes. One
genome E. coli SMS 3 5 (NCBI project ID 19469) was
included twice, the exact same sequence, to verify the
consistency of the annotation. The genomes form distinct
clusters on all three plots with genomes but the clusters
are not the same when comparing molecular functions,
biological processes and cellular components.

Frequency of functions with MF GO, multiple genomes
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Figure 3. CMGfunc results for set of genomes, molec-
ular function GO terms, frequencies over 10.

The method was tried on the CAFA 1[21] dataset com-
paring the GO terms predicted by CMGfunc and recorded
UniProt annotations for each protein. UniProt entries
were obtained from the CAFA dataset and 10,019 pro-
teins were found to be connected to UniProt as well as
GO terms. CMGfunc predicted functions for 98% (9814)
of the proteins with a score of 0.9 or higher (a perfect
match would be 1). Comparing the GO terms predicted
by CMGfunc with the UniProt terms, using exact term
matching, the predicted terms overlapped with the real
terms 29% of the time (2,902 of 10,019). Most of the
functional agreement was on molecular function level,
with 1,750 entries. Using BLAST2GO, the GO terms of
both CMGfunc and CAFA UniProt were normalized to the
third and fourth GO graph level. Calculating the overlap
again, with exact term matching, CMGfunc predicted the
same level 3 GO terms in 64% and 55% on level 4.
The CMGfunc functional models are based on more than
4 million proteins with matches to Pfam-A; however, 22%
of the proteins acquired could not be matched to Pfam-
A and could as such not be annotated using the infor-
mation already in the database. A random selection of
47,050 proteins from this unmatched set was compared
to the CMGfunc models and 98.6% (46,389) were found
to match on of the models with a score above 0.9. The
most common models matched to these proteins is the
helix-turn-helix clan. This structure accounts for 1,139 of
the proteins. Although not a direct function, this pattern

does suggest that these proteins do have the structure de-
spite not matching the Pfam domains associated with it.
The second most common function is the ribonuclease
H-like clan (908 proteins) which includes ”Any process
that initiates the activity of the inactive enzyme MAP ki-
nase kinase kinase in the context of cell wall biogene-
sis, the assembly and arrangement of the cell wall, the
rigid or semi-rigid envelope lying outside the cell mem-
brane of plant, fungal and most prokaryotic cells”. Other
common functions include clans for lysozyme-like pro-
teins, MetJ/Arc repressors and periplasmic binding pro-
teins (See Supplementary Figure S3 for CMGfunc heat-
maps of the protein annotation).

Conclusion
The method presented here, CMGfunc, consists of 1,216
functional models based on artificial neural networks.
The models were shown to covered 98% of 10,019 pro-
tein sequences used in the CAFA 1 challenge and cor-
rectly annotate 64% using on GO term level 3. Further-
more, the method, although based on protein clustering
using Pfam, assigned functions to 98% of proteins with
no match to Pfam (example set of 46,389 sequences).
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6 Concluding remarks

This thesis has presented the challenges and current status of large scale and

functional annotation. The primary goal of this project is to develop methods for

analyzing sequences without homology to known and annotated sequences. The

aim has been to overcome the obstacles in the coverage of functional annotation as

well as creating an environment for comparison of these annotations. One of the

requirements of the method is high coverage that includes many of the proteins

that cannot be annotated using sequence similarity methods. The method should

ensure comparability by allowing for functional profiles to be compared across

genomes. Lastly, access to data for verification, reproducibility and usage in local

research are desired.

This work has included studies of existing methods and databases which have

highlighted a number of strengths, initiatives, as well as problems of these meth-

ods. Several of the described methods involve the curation of database informa-

tion and sequences to create new databases and models, such as InterPro. In the

process, these projects are accumulating information about individual sequence

models, making them increasingly difficult to compare and automatically process.

Although existing resources serve important functions, such as systematically stor-

ing and connecting experimental and published data, they do not work well for

comparative annotation. For such purposes systems like the Gene Ontologies (GO)

are better suited but still cause other problems. The gene ontologies reflect the

manual curation of the system and the graph structure reflects experimental re-

sults, with one function having multiple upper level functions and several functions

per protein. When assigning a GO term to a new protein or protein family, there

are no requirements as to which level should be assigned, and since GO is a graph

system, finding upper level terms for such a group is not straightforward. Fur-

thermore, GO was developed for eukaryotes, and although effort are being made

to cover bacterial proteins as well, it is likely that prokaryotic specific initiatives

might be required as more metagenomes are sequenced and as such more of the

vast bacterial diversity is covered. Standards in the assignment of GO terms, as

well as standard approaches for the comparison of terms should be established.

As computational biology becomes a bigger part of medical science and society in

general, standards must be created to ensure that projects are conducted properly
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and can be validated against other projects. In the field of functional annotation,

the Critical Assessment of Functional Annotation (CAFA) is a step in the right

direction and in time it might take on a role like the one seen for CASP.

The functional models presented in this project were designed for comparative

analysis, and the 1.216 different functions are not proposed to describe the exact

function of every protein in bacteria. Instead they offer a level of annotation

which can be compared across very different genome, as the coverage of these

models has been shown to be very high (98% of proteins without match to Pfam-

A). Although the coverage of the functional models is high, the speed and precision

could be improved. The process of calculating features for each new protein is the

most limiting factor, although the process currently takes less than 10 seconds

per sequence. Improvements could include reprogramming of feature programs or

better parallel processing. The predictive performance of the models might be

improved by including more features, including more complex structural models,

codon usage or tetramer counts. The options of features is almost unlimited but as

more features are included, the speed of comparing each new sequence goes down,

so this is a cost/benefit problem. The CMGfunc models have been shown to assign

functions to proteins without matches to Pfam-A and showed a large coverage of

the sequences selected for CAFA 1. The models have a low precision but since

the coverage is so high, these models might be used in combination with other

more specific annotation tools. Combining Pfam-A or InterPro annotations with

CMGfunc might be the way to assign functions to the large number of functionally

unknown proteins. Finally, the method includes a setup for creating network

models using the CMGfunc features and network architecture for modeling a local

set of proteins. This procedure makes it possible for biologists working with a

specific protein to create models and descriptions for this specific function based

on sequences. This approach might also add to the future coverage of the method

as is allows the specialist to make their own networks, since they have the highest

expertise in their field.

The CMGfunc and CMG-biotools presented here are methods for creating

stand alone tools. The systems offer several advantages, including no need for

internet access which is useful for confidential data analysis. Furthermore, the

virtual computer setup makes the systems installable on a wide range of platforms

and makes it easy to receive support on the method, as every user is using the

method on the exact same system. Using this type of setup for distributing a

system or method also allows for through reproduction of results as any user has

access to the same system on which the method was developed. Lastly, both of
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these methods have been documented on wiki type web pages, giving users and

peers access to up to date documentation and changes on the system.

As more genomes, and metagenomes, become available, it is hoped that speed

and coverage of functional annotation will improve. To some extent, it might be

desired to include a larger fraction of false positives in order to insure high cover-

age, and then afterwards, add additional tests to filter out the false results. Such

approaches might be needed to discover new functions of genes. In the context

of new discoveries, it is also important to bring the sequence analysis to the biol-

ogists, allowing them to combine their biological knowledge with bioinformatics,

and not wait until biological and sequence results have been published separately.

Although much work is still left to be done resources are flowing into the area of

sequence analysis and progress is being made every day. As such, many different

approach are being tried out and tested which will, in time, improve the knowledge

gained from sequencing genomes.
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