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Abstract in English

Catalysts are used in 90% of the world’s chemical processes to produce 60% of its chemical products,
and they are thus very important to our modern society. We therefore seek to better understand current
catalytic materials, so that we can find alternatives that will improve the energy efficiency, selectivity or
similar of current chemical processes, or to make new technologies economical feasible.
Kohn-Sham density functional theory (KS-DFT) has proven to be a powerful theory to find trends in cur-
rent catalytic materials, which can empower a more informed search for better alternatives. KS-DFT relies
on accurate and efficient approximations to the exchange correlation functional, yet these functional ap-
proximations have lacked a systematic way to estimate the underlying uncertainties. A Bayesian error
estimation approach provides a mechanism for calculating approximative uncertainties, and so accurate,
computationally feasible exchange-correlation approximations that incorporate it have been called for.
This thesis presents significant steps forwards towards providing general applicable exchange-correlation
functional approximations with Bayesian error estimation capabilities. A semi-empirical approach was
used with a machine learning toolset to improve accuracy and transferability of the functional approxi-
mations. The toolset includes Tikhonov regularization of smoothness in a transformed model space, for
ensuring sensible model solutions; an explicit model compromise with a geometric mean loss function,
for ensuring generally applicable models; a robust MM-estimator loss function, for ensuring resistance to
outliers in data; and a hierarchical bootstrap resampling estimating prediction error validation method, for
selecting the model complexity that provide best transferability outside the training data.
Three new semi-empirical functional approximations have been made: BEEF-vdW, mBEEF, and mBEEF-
vdW. It is shown that these functionals are able balance the accuracy of predicting energetics of covalent
and non-covalent chemistry better than any comparative functional that we have tested, and they could
therefore become the functional approximations of choice for understanding chemical processes at the
solid-gas and solid-liquid interfaces.





Resumè på dansk

Katalysatorer anvendes i 90% af verdens kemiske processer til fremstilling af 60% af vores kemiske pro-
dukter, og de er derfor meget vigtige for vores moderne samfund. Vi søger derfor bedre at forstå anvendte
katalytiske materialer, således at vi kan finde alternativer, der kan forbedre energieffektiviteten, selektivitet
og lignende for aktuelle kemiske processer, eller for at gøre nye grønne teknologier økonomisk rentable.
Kohn-Sham tæthedsfunktionalteori (KS-DFT) har vist sig at være en nyttig teori til at finde tendenser i
kendte katalytiske materialer, og derved bidrage til en mere informeret søgning efter bedre alternativer.
KS-DFT afhænger af nøjagtige og effektive tilnærmelser af exchange-korrelations funktionalet, og disse
funktional approksimationer har manglet en systematisk måde at vurdere de underliggende usikkerheder
på. Den Bayesiansk fejlestimering metode har er en måde hvorpå man kan approksimere disse usikker-
heder, og det har skabt efterspørgsel efter nøjagtige og hurtige exchange-korrelations approksimationer
med mulighed for disse estimationer. Denne afhandling præsenterer betydelige fremskridt i retning af at
skabe generalle brugbare estimation exchange-korrelation funktionale approksimationer med Bayesian
fejlestimering tilgængelige. En semi-empirisk metode blev brugt sammen med fitte teknikker til at forbedre
nøjagtigheden og overførbare funktional approksimationer. Disse teknikker inkluderer Tikhonov regu-
larisering af glathed i et transformeret model rum, for at sikre fornuftige overførbarhed; et specifikt model
kompromis med et geometrisk gennemsnit kost funktion, for at sikre generelt anvendelige modeller; en
robust MM-estimator kostfunktion, for at sikre modstandsdygtighed over for outliers i data; og en hier-
arkisk bootstrap resampling estimering af forudsigelses fejlene, til valg af model kompleksitet, der giver
bedst omsættelighed udenfor træningsdata. Der blev skabt tre nye semi-empiriske funktionaler: BEEF-
VDW , mBEEF og mBEEF-VDW. Det bliver vist, at disse funktionaler er i stand balancere nøjagtigheden
i at forudsige energetik for kovalent og ikke-kovalent kemi bedre end nogen af de funktionel vi har sam-
menlignelig dem med, og de kan derfor blive de funktionelle approksimationer som man i fremtiden vil
bruge for at forstå kemiske processer i faststof-gas og faststof-væske grænsefladerne.
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1 Introduction

Catalysts are used in 90% of the world’s chemical processes to pro-
duce 60% of its chemical products.1 Catalysis can thus be thought 1 "Recognizing the Best in Innovation:

Breakthrough Catalyst". R&D Maga-
zine, September 2005, p. 20.

of as the backbone of our the modern society. We therefore seek to
better understand current catalytic materials, so that we can find
alternatives that will improve the energy efficiency, selectivity or
similar of current chemical processes, or to make new technologies
economical feasible.

Today, computer models are used to augment the problem solving
ability of human intelligence. Following Moore’s law, the compu-
tational power has increased exponentially over several decades.
Allowing simulations with Kohn-Sham Density functional theory
(KS-DFT) for elucidating mechanisms and fundamental trends in en-
zymatic and heterogeneous catalysis, for designing chemically new
active materials by “electronic structure engineering”.

When studying the physical world itself every measurement taken
by an apparatus will have an uncertainty/error associated with it.
To properly compare measurements from different models we need
an estimate of this measurement uncertainty. Likewise when using
a computer to simulate nature, we should calculate an uncertainty
estimation associated with every measurement taken on this virtual
apparatus.

Density Functional Theory (DFT) is an exact electronic structure
theory where the electrons density is used instead of the electron
wavefunction, and it as proven successful within DFT to use the
Kohn-Sham theory approach, where the interaction between the elec-
trons is described by an exchange-correlation functional. The exact
functional is unknown, but even if the exact functional were known,
it would be computational intractable and require an approximation.
For the last five decades or so, scientist have developed models of
the exchange-correlation functional that could provide enough ac-
curacy to gain insights into material science phenomena while still
being computationally tractable. Two approaches have been used to
develop new generally applicable models of the exchange correla-
tion functionals: reductionism and the empiricism. The reductionist
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seeks to use model systems where exact properties are known, while
empiricists use empirical data to fit the functional. Many proposed
functionals of these two approaches, or the semi-empirical combi-
nation of the two, have provide accurate measurements yet none
provided systematic way to estimate the uncertainty on the acquired
result.

The development of Bayesian Error Estimation ensemble func-
tionals begins here, prompted by the development of atomic pair
potentials that use Bayesian statistics to provide an error estimates. In
the Bayesian approach to statistics, a direct connection between the
model and the data is proposed which includes a deliberate account-
ing of the prior knowledge. This allows one to ask “given the data
what is the best model and what are the uncertainty of the model
parameters?”

To make error estimations for an exchange correlation functional,
an optimized model of the functional is needed. Semi-empirical
model development has three pillars: model space, training data,
and model selection. The model space determines to what extend
local, semi-local or non-local information of the electron distribution
is know. More information allows for a more complete model, but
carries a higher computational cost. The training data are well known
quantities from real materials or other models, and are selected to
promote transferability of the model for systems outside the training
data. Finally one selects a model within the defined model space that
best captures the material properties of interest. Here one needs to
take care not to overfit the data, e.g. making the model too complex
within the given model space.

In this thesis my goal is to present an overview of insights that
have been gained in developing exchange-correlation functionals
with error estimations, and thereby put my scientific contributions
into a proper context.

First will provide an introduction to density functional theory,
an overview of the training data, and an introduction to the ma-
chine learning tools used throughout the studies. Secondly, I will go
through previous work on Bayesian error estimation functionals, up
until when I begun my work on the subject, followed by the three
studies that I have contributed to. In the end, I will conclude the the-
sis with an outlook on possible fruitful future directions in Bayesian
error estimation functionals development.



2 The Kohn-Sham exchange-correlation functional ap-
proximation

The following chapter a brief introduction to the Kohn-Sham ap-
proach to density functional theory (DFT). We will use Perdew’s
methaphorical ladder (Jacob’s ladder) to create a hierarchy of Density
functional approximations (DFAs), and introduce the zoo of pub-
licized DFAs, that has become available to DFT users, but with an
emphasis on the DFAs used in theoretical surface science. First how-
ever, we will take a view at the different chemistry such functionals
need to describe.

2.1 Strong and weak bonding1

1 Based on Kittel [2005], Salam [2009],
Martin [2004]

The types of inter-atomic bonding in matter are commonly grouped
as; Ionic, covalent, metallic, van der Waals (vdW) like, and hydro-
gen bonds. The first three provide strong bonding interactions of the
nuclei and the nearby electron density, and these are characterized
by their, relative to the last two type, small bond lengths and large
density overlap. These types of bonding are the main responsibility
of making matter around us stable, and they counteract the repul-
sion due to ion-ion electrostatics (Coulomb) and the Pauli exclusion
principle for short ion-ion distances.

The bonds in ionic crystals (e.g., solid NaCl) are formed due to
the large difference in electronegativity between the ions, where
charge transfer leads to approximately closed-shell ions and large
electrostatic attractions between them. The covalent bonds, which
are both present in molecules and solid crystals, are created from a
redistribution of the electron density due to a hybridization between
pairs of the valence electrons, which leads to new bonding and anti-
bonding states. Covalent bonds can therefore be described as “charge
sharing” between atoms. For the metallic bonds the electrons in the
solid material are completely delocalized and thereby shared by
the entire crystal. The positive ions are situated in a sea of shared
electrons and the conducting electrons can be seen as a fermi gas of
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nearly free electrons.
The hydrogen bonding and the vdW interactions are most often a

weaker interaction than the above, but for some systems they play a
very important role in creating stability; this is for instance the case
in biological matter (e.g. in proteins and DNA), for rare-gas chem-
istry, and for soft matter. In the hydrogen bond the attraction arises
from an interaction between the two species in a link of the form
A � H · · · B, where A and B are strongly electronegative atoms, such
as F, O, and N. The interaction is therefore caused by an electrostatic
interaction between the polarized hydrogen atom and atom B, where
the electronegative host A is neutralizing much of the single elec-
tron of the hydrogen atom, thus making the interaction between H
and B weak. These interaction energies are found to be in the order
of 0.1 eV, which can be compared to the covalent bond between two
hydrogen atoms with a bonding strength of 4.8 eV.

Lastly, the van der Waals forces, the weakest interaction of the five,
but virtually always present. This interaction is even present in the
limit of large separation between the interacting fragments with no
overlap. The forces arise from spontaneous charge density fluctu-
ations, that result in transient electromagnetic fields which induce
dipole and multi-dipole interactions between distant charge densi-
ties. The correlation of these temporary fields leads to an attractive
force between the charges. These forces are long-range but decay al-
gebraically with the separation. For the considerations here, only the
non-retarded regime is considered, where the length between the in-
teracting charges are small enough so that finite speed of light plays
little role; hence the response time of the dipoles is longer than the
interaction time between the charges.

2.2 KS-DFT2

2 This section is based on Perdew
and Schmidt [2001], and is by no
means intended to provide a excessive
overview of Kohn-Sham theory. For
details consult e.g. Perdew and Kurth
[2003].

Density functional theory has today become a workhorse for elec-
tronic structure calculations. The Kohn-Sham density functional
theory introduced practical estimates for the ground-state energy and
electron density of the many-electron system. With proper approxi-
mations, to be introduced later, the methods is able to computation-
ally affordably predict the sizes and shapes of molecules, the crystal
structures of solids and the work required to stretch or break chemi-
cal bonds; thus covering all the bonding types introduced above.

The systems that we are interested in can be described by a Hamil-
tonian of the form

Ĥ =
N

Â
i=1


�1

2
r2

i + v(ri)

�
+

1
2 Â

i
Â
i 6=j

1
|ri � r j|

+ Vnn, (2.1)
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where Vnn is the electrostatic potential energy coming from in-
teraction among the nuclei. The equations here are given in Hartree
atomic units, hence h̄ = e2 = m = 1. The external potential v(r) is
usually describing the interaction between the nuclei and the elec-
trons, but can also include external fields from fragments not con-
sidered in the Hamiltonian. The ground-state eigenfunction of Ĥ is a
correlated N-electron wavefunction, this function has 3N arguments,
which makes it computationally problematic to deal with in terms of
evaluating the Hamiltonian and storing the results for large systems.
The Kohn-Sham density functional theory proves that instead of solv-
ing the problem for the interacting system, one can find the ground
state densities ns(r) (s =" or # spin states) and energy E in principle
exactly, by solving a self-consistent one-electron Schrödinger equation
for N orbitals yas(r), which each only are functions of the 3 spacial
arguments r = (x, y, z). The self-consistent orbitals are in these equa-
tions implicit functionals of the electron density of the spin up and
down states (n"(r) and n#(r)). The Kohn-sham equations are


�1

2
r2 + v(r) +

ˆ
dr0 n(r0)

|r0 � r| + vs
xc(r)

�
yas = easyas(r), (2.2)

n(r) = n"(r) + n#(r), (2.3)

ns(r) = Â
a

Q(µ � eas)|yas(r)|2, (2.4)

E = Â
s

ˆ
drts(r)+

ˆ
drn(r)v(r)+

1
2

ˆ
dr
ˆ

dr0 n(r)n(r0)
|r0 � r| + Exc[n", n#]+ Vnn,

(2.5)

ts = Â
a

Q(µ � eas)
1
2
|ryas(r)|2, (2.6)

vs
xc =

dExc
dns(r)

. (2.7)

The chemical potential µ is in equations 2.4 and 2.6, so that
´

drn(r) =

N. The fermion occupation numbers are derived from the step func-
tion Q(x) as 0 for x < 0 and 1 for x > 1.

If the exchange-correlation energy Exc is omitted along with its
functional derivative dExc/dns(r) (the exchange-correlation po-
tential), one ends up with the Hartree equations without the self-
interaction correction. If instead the correlation energy is omitted in
Exc = Ex + Ec, but where the exchange energy Ex is treated exactly,
the equations are that of the Hartree-Fock approximation.
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Both the Hartree (which neglects Exc) and the Hartree-Fock (ne-
glects the correlation energy Ec and with the exact exchange) ap-
proximation fail dramatically in describing chemical bond energies
compared to the simplest Exc approximation.3 Both the exchange and 3 See table in Perdew and Schmidt

[2001].correlation energy are important for describing chemistry and the
combined two can thus be said to be “nature’s glue”.

The exchange correlation energy is found by integrating exchange-
correlation density per particle over all space:

Exc = Â
s="#

ˆ
exc n(r)dr,

where exc = ex + ec is the exchange correlation energy density that
usually depends on the electron density n(r), and other quantities,
and what those quantities are is the topic of the following.

2.3 The five-rung ladder of density functionals

Jacob’s ladder of density functional approximations for the exchange-
correlation energy, is a systematic classification of the density func-
tional approximations in DFT.4 At each rung more complex and more 4 J. P. Perdew and K. Schmidt. Jacob’s

ladder of density functional approxi-
mations for the exchange-correlation
energy.Perdew and Schmidt [2001]

global ingredients are added to the approximations, thus making it
possible for the functional to provide a better approximation to the
exact functional. This comes however with an added computational
cost. The original Jacobs ladder consists of the following ordered
from the least complex to the most complex: The local spin density
approximation5 (LSDA), the generalized-gradient approximation 5 Kohn and Sham [1965]

(GGA), meta-GGA (MGGA), hyper-GGA, and the random phase
approximation.

Since the formulation of the ladder a number of functionals have
however been formed that are using non-local density information. A
rung between the the MGGA and Hyper GGA is therefore inserted,
and the new ladder will be used to organize the functionals, see
figure to right.

KS-DFT and the XC functional Ingredients of density XC functionals

Jacob’s ladder of XC functionals revised

Rung 1

Rung 2

Rung 3

Rung 3.5

Rung 4

Rung 5

Heaven of chemical accuracy

n

Òn

· and Ò2
n

non-local n

occupied „–

unoccupied „–

LSDA

GGA

vdW

MGGA

Hybrid (E
xx

+E

c

)

E

xx

+RPA

7/25Figure 2.1: The revised Jacob’s ladder
with non-local density rung included.

Starting again from the lowest rung: The LDA uses only the lo-
cal density as input, while at the second rung and the third rung
the semi-local dependency of the density (GGA) and the KS orbitals
(MGGA) are added. At the inserted rung 3.5 the non-local density is
included, used in the van der Waals funtionals. The hyper-GGA rung
introduce the nonlocal dependence of the occupied KS orbitals in the
exact exchange energy density, and thereby only approximating the
correlation energy. At the fifth-rung the unoccupied KS orbitals are
added so that the correlation energy can be calculated through the
Random phase approximation.



19

To construct good approximations to the exact functional at each
rung, two different approaches can be taken: That of the reductionist
and that of the empiricist.

The strategy of the reductionist is to deduce the functional form
from known constrains of the exact functional. He or she will use
model systems where the exact functional is known exactly, such as
the uniform electron gas (UEG); which is also known as the Homoge-
neous electron gas (HEG), and as jellium. At each level of complexity
the reductionist will try to derive the simplest model that can take
into account of the most relevant exact constraints, and first then test
the functional on relevant data.

The empiricist, on the other hand, uses empirical evidence as ref-
erence data for a to fit a parametrized model of the functional. He
will search for the simplest model that is able to properly repro-
duce the empirical data, and using tests to ensure that it is not an
overfit. When the exact constraints to the function are also used, the
approach is referred to as semi-empirical.

A challenge for the empirical or semi-empirical approach is to en-
sure that the model that is created is transferable to systems outside
the training data, and that the model is thus not an overfit. Further-
more, reliable training datasets are needed for this approach. Which
is why constraints are also taken into account in this approach. The
reductionist on the other hand needs to make many choices about
what constraints to be accounted for and how. These choices will in
the end be made from looking at empirical data for verifying differ-
ent models, or at insights at what functional forms comes out of the
empirical approach. An interplay between the two methods are there-
fore used and one call talk of a synergetic relationship between the
two approaches.

2.4 LSDA

The local spin density approximation (LSDA) by Kohn and Sham,6 6 Kohn and Sham [1965]

can be said to be the mother of all density functional approximations:

ELSD
x [n", n#] =

ˆ
drn(r)e

uni f
xc (n"(r), n#(r)),

where e
uni f
xc (n", n#) is the exchange-correlation energy density

per particle for the uniform electron with spin densities n" and n#.
The UEG is a very important system for creating density functional
approximations as it has a number of properties that can be found
very accurately; the e

uni f
xc (n", n#) is for instance accurately known and

parametrized.
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The LSDA has proven to be a surprisingly accurate approxima-
tion for solids and solid surfaces, where the electron density of the
valence electrons is very homogeneous, and thus has a very big re-
semblance to the uniform electron gas. The explanation for why the
approximation works for solids thus relies on that the approximation
satisfy many exact constraints for the homogeneous electron gas.7 An 7 Further details on the different con-

straints that are fulfilled by the approx-
imation can be found in Perdew and
Schmidt [2001].

important observation for the functional is that it is almost always a
better approximation for Exc than it is for Ex or Ec separately. This
is due to an observed error cancelation between the two terms in the
approximation.

On the other hand it has been observed LSDA is an inadequate
approximation to systems where the electron density varies signif-
icantly, e.g. for molecular bonds. The molecular geometries and
vibration frequencies are reasonably described by LSDA, but ther-
mochemistry predictions are far off and the intra-molecular covalent
bond energies are vastly overestimated.8 The LSD approximation was 8 See Perdew et al. [2005].

therefore not widely adopted in the quantum chemistry community.

2.5 Generalized Gradient approximation

For the next functional class the gradient of the electron density, rn,
is added to the LSD information. This is most often done in the Gen-
eralized Gradient approximation (GGA) formalism. GGAs are there-
fore presented as a semi-local approximation.

In the GGA exchange energy formalism, an enhancement factor
scales the local energy of the uniform electron gas, e

uni f
x (n), through

an enhancement factor Fx, hence

eGGA
x (n, rn) = e

uni f
x (n)Fx(s), (2.8)

where s is the reduced density gradient defined as

s =
|rn|
2kFn

2 [0, •], (2.9)

kF = (3p2n)1/3, (2.10)

with kF being the Fermi wavelength. The GGA exchange energy is
therefor given as

EGGA
x [n, rn] =

ˆ
#

uni f
x (n)Fx(s)n(r)dr. (2.11)

Similar to the LSDA the known properties of the uniform electron
gas can be used as basis for constructing the enhancement factor.
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Specifically it is known that in the slowly varying density limit the
expansion of Fx(s) is given as

Fx(s) = 1 +
10
81

s2 +
146

2025

✓
|r2n|

(2kF)2n

◆2

+ · · · . (2.12)

Using this expansion makes the GGA functional obey the LDA
limit of Fx(s = 0) = 1. Secondly the constraint of the Lieb-Oxford
lower bound can be used, which puts an upper limit for the exchange
enhancement factor of Fx(s)  1.804.9 9 See Lieb and Oxford [1981]

The correlation depend on the LDA correlation similar to the
exchange enhancement factor, but in a more complicated fashion.

The GGA approximation allows for a extrapolation away from the
LDA limit to the slowly-varying high-density (small-s) regime. The
GGA approximations have especially improved the approximations
for molecular bonds, and only introducing a small extra computa-
tional cost to the calculations. There are however many limitations
to the model still. The s-parameter provides a measure for the inho-
mogeneity, which the GGA functional approximations uses to assess
how far the local density is from a uniform electron gas, and scale
the uniform electron gas energy on basis of that. The electron density
distribution of ionic and metallic solid crystals may however differ
significantly,10 and the gradient of the local density is not able to 10 See Csonka et al. [2009], Klimes et al.

[2011]fully capture this. It is not possible by merely knowing the s value of
a local density, if the electron is a part of a solid material or a molecu-
lar bond.

The DFA zoo is very populated with GGAs. Some function-
als are found to have a better relative performance in describing
solid state materials because they do not deviate too strongly from
LSDA in the small s regime, while others have been optimized for
theoretical chemistry while doing so deviate more from LSDA,
thus making them less suitable for solid state materials studies.
The most popular GGA functional is PBE and it’s PW91 predeces-
sor. A number of functionals are based variations of the PBE func-
tionals, e.g.: PBEsol what uphold the slowly varying gradient expan-
sion to full capacity of a GGA; and RPBE that has been targeted for
chemisorption. The BLYP functional with it’s combination of B88 ex-
change and LYP correlation was important early to show that GGA’s
could be used for chemistry. 11

11 PBE and PW91 of Perdew et al.
[1996a,b]; PBEsol and RPBE of Perdew
et al. [2008], Hammer et al. [1999]; B88

and LYP of Becke [1988], Lee et al.
[1988]
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2.6 MGGA

At the third rung on Jacob’s ladder the GGA is expanded by adding
the Laplacian of the electron density and/or the kinetic energy den-
sity (KED) t(r) of the occupied KS orbitals,

ts(r) =
1
2

occ.

Â
i

|rfis(r)|2.

The exchange of common MGGA functionals is similar to the GGA in
the form of an enhancement factor to the LSDA energy, but including
the before mentioned ingredients also. The KED can be expressed in
a form as a =

�
t � tW� /tuni f 2 [0, •], where tW = |rn|2/8n

is the von Weizsäcker KED, and tuni f = 3
10 (3p2)2/3n5/3 is the

KED of the uniform electron gas. The a = 0 limit corresponds to
t = tW, which is characteristic of electron densities with single-
electron (iso-orbital) character, and for a = 1 the KED is that of
the uniform electron gas (t = tuni f ). The local KED is therefore
able to discriminate between these two very different regimens in
terms of what kind of bonding is taking place. That the MGGA
in such a direct way is able to classify densities, has been given
as cause for it’s better performance than GGA. With the KED it is
possible to fulfill the slowly varying density expansion to a higher
order than for GGA, due to the extra flexibility of the functionals,
which provides means to restrict the extended functional form.

The MGGAs are considered semi-local functionals as they rely on
the occupied KS orbitals which are readily available in DFT calcula-
tions. The extra computational overhead of calculating the total en-
ergy of a MGGA functional is modest compared to a GGA functional,
when using the Neumann et al. [1996] method.

A number of MGGA functionals have been proposed but many
fewer than GGAs. Of common functionals are VSXC, TPSS and it’s
revTPSS revision, and M06-L. Lately the MS-0, MS-1 and MS-2 have
been proposed which insure that more of the exact constraints are
fulfilled.12

12 VSXC is of Van Voorhis and Scuseria
[1998]; TPSS and revTPSS are of Tao
et al. [2003], Perdew et al. [2009]; M06-L
is of Zhao and Truhlar [2006]; MS-0 is
from Sun et al. [2012a], while MS-1 and
MS-2 are of Sun et al. [2013].

2.7 The non-local functionals for dispersion

The dispersion force is an inherent long-range effect, and it can ex-
ist between fragments that do not have any density-density overlap.
The local to semi-local functional type listed above (LDA, GGA, and
MGGA) should therefore by construction not be able to capture dis-
persion effects, and this is also observed in practice.13

13 See Kristyán and Pulay [1994]
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In the following will be presented the main ideas of the Rutgers-
Chalmers (RC) non-local correlation approximation, and it’s varia-
tions. Following by examples of semi-local density functionals where
this correlation functional has been introduced to offer applicable
functionals for describing vdW systems.

A number of non-density-density based vdW correction methods
have also been suggested, where the dispersion is based on sum-
ming up approximations for pairwise dispersion interaction between
atoms. The dispersion energy is then added to the kohn-sham energy
post the solution of the Kohn-Sham equations. These methods have
successfully been employed in many molecular system calculations,
but they are however not in general suitable for solids.14

14 See Tkatchenko and Scheffler [2009],
Grimme et al. [2010], Sato and Nakai
[2009], Becke and Johnson [2005, 2006].

Some notable examples of these are the DFT-D method, the TS09

2.7.1 Rutgers-Chalmers non-local correlation approximation

With the Rutgers-Chalmers (RC) correlation approximation a correc-
tion to the LDA correlation energy for non-uniform electron densities
is introduced. The RC correlation approximation is therefore not only
a vdW approximation, but serves the role of covering all non-local
type correlation. Other variants of the vdW density functionals have
been made to be combined with semi-local correlation functionals,
which will later be discussed.15

15 Only a very broad overview to the
method is given here. For more detail
consult Dobson and Gould [2012].

The starting point is the adiabatic connection fluctuation-dissipation
(ACFD) formalism to the exact ground state correlation energy. From
ACFD expression an approximation to the non-local part of the corre-
lation can be made in the compact form

Enl
c =

1
2

¨
n(r)f(r, n(r), rn; r0, n(r0), rn(r))n(r0)drdr0, (2.13)

which is a 6-dimensional integral over the interaction kernel f,
and so depends on the densities and density gradients in all pairs
of spacial points r and r0.16 The resulting interaction kernel, f, has 16 A number of approximation have

been introduced to bring the ACFD to
the form of 2.13, which are omitted here
as the level of detail needed to justify
the approach is beyond the scope of this
chapter.

several appealing features. Since the asymptotic form is

f ⇠ |r � r0|�6 for |r � r0| ! •, (2.14)

the nonlocal correlation will follow the �C6R�6 formulation for
well-separated densities, that is missing in the local approximations.
The kernel’s symmetric properties furthermore results in Enl

c = 0
for rn(r) = 0, such that the non-local correlation vanishes for the
uniform electron gas. The kernel includes a local wave vector, usually
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denoted q0(r), for which a density gradient dependence enters. It is
defined as a modulation of the fermi wave vector through

q0(r) =
e0

ex
eLDA

x
kF(r), (2.15)

where eLDA
x = eLDA

x [n] and e0
xc = e0

x[n, rn] is given by a a gradient
correction to LDA correlation of by:

e0
xc = eLDA

xc � eLDA
x

"
Z
9

✓
rn
kFn

◆2
#

, (2.16)

with Z = �0.8491 in the original form. The non-local correlation
also contributes to the exchange-correlation potential through vnl

c =

dEnl
c /dn, such that fully self-consistent calculations are possible.
In the form outlines above, a 6D spacial integral of all the den-

sity pairs need to be made, which is very computational expensive
as the system at hand grows. It has been found that the kernel
form can be cast in a slightly different form, that allows for a fast
Fourier transformed procedure. This procedure by Román-Pérez
and Soler [2009] allows for an implementation of the functional that
is significantly faster, such that the non-local correlation functional
becomes computational feasible for most small relevant systems.

The RC none-local correlation was paired with the revPBE ex-
change, chosen to mimic exact exchange, and the LDA local corre-
lation in vdW-DF exchange correlation functional. It was found that
the non-local correlation cannot be paired successfully with the exact
exchange though, and the error cancelation effect of the RC non-local
approximation with exchange is thus found needed to yield good re-
sults. 17

17 See Dion et al. [2004], Langreth et al.
[2009]

To improve on the results of the vdW-DF functionals it has been
suggested to pair the non-local correlation with other exchange func-
tionals. These functional types includes the optPBE-vdW, optB88-
vdW and optB86b, where the first two have been optimized through
the use of the S22 benchmark dataset for non-covalent interactions,
and the latter for bulk energies. Another vdW type functional is
that of C09-vdW that in the exchange matches a enhancement factor
form in the low reduced gradient (s) that fulfills the slowly varying
electron gas, with revPBE exchange enhancement factor for high s
values.18

18 For optPBE-vdW, optB88-vdW and
optB86b-vdW see Klimes et al. [2010,
2011]; for C09-vdW see Cooper [2010].

Later the vdW-DF functional have been revised to the vdW-DF2

functional, see Lee et al. [2010], by changing the exchange functional
that the non-local correlation is combined with, and by employing
a larger gradient dependence in q0 through choosing Z = �1.887 in
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equation 2.16.

2.7.2 VV09 and VV10 non-local correlation approximations

Another approach to approximating the ACFD equation for the non-
local correlation functional has been done by Vydrov and Van Voorhis
in the studies towards the VV09 and VV10 non-local correlation
functionals.19 The VV10, build on ideas from VV09, has been found 19 See Vydrov and Van Voorhis [2009,

2010a], Langreth and Lundqvist [2010],
Vydrov and Van Voorhis [2010b,?]

to yield very good performance on non-covalently and covalently
bonded molecular systems. In Sabatini et al. [2013] the VV10 kernel
was furthermore reformulation so that a Fourier transformation
could be made similar to the original non-local functional, which
makes the revised VV10 (rVV10) computational feasible for relevant
system sizes.

2.8 Hyper-GGA and hybrids

The forth-rung density functionals introduce the non-local occupied
KS orbitals. With the occupied non-local KS orbitals it is possible to
calculate the exact exchange (EXX) functional. The formal definition
of the correlation is therefore what is left to describe the exact density
functional after the exact exchange has been subtracted. With the
exact exchange given, only an approximation to the exact correlation
functional is needed, but to find a suitable correlation functional has
however not been fruitful, and different approaches has therefore
been made where only part of the exact exchange is used.

The hybrid functionals mixes a fraction of the exact exchange en-
ergy with that of lower-rung DFAs, and with this it is possible to
achieve much better energetics. This shows how error cancelation be-
tween the approximations to the exchange and correlation is impor-
tant for the performance of the lower-rung functionals. The hybrid
functionals are very popular for quantum chemistry because of their
good description of molecular thermochemistry.20

20 See Becke [1993, 1997], Zhao and
Truhlar [2008].The long-ranged Coulomb potential however renders hybrid DFAs

very computational demanding for periodic systems, especially
metallic systems. Screening of either the long-range og the short-
range part of the Coulomb potential for EXX can be used to improve
the characteristics of the hybrids; either performance wise or make
them less computational demanding. On how the range-separation
can improve performance will be given in the the below section on
self-interaction error.

The most popular functional of the hybrid type is that of B3LYP.
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Of others it is worth mentioning PBE0 and HSE.21

21 B3LYP is in Stephens et al. [1994];
PBE0 is in Adamo and Barone [1999];
and HSE is in Heyd et al. [2003].

2.9 Random Phase approximation + corrections

At the highest level of Jacobs ladder is the random phase approxi-
mation (RPA), which is based on the the second order perturbation
theory. The RPA is therefore a natural companion to the exact ex-
change. A description of the van der Waals interaction naturally
comes out of the formalism, which makes the approximation use-
ful for benchmarking vdW functionals. The approximation has been
proven to give qualitative better descriptions than semi-local func-
tional for systems where the lower rung functionals fails to give the
correct qualitative description, e.g. in what site CO will adsorb on
transition metal surfaces.22 It has however been observed that short 22 See Schimka et al. [2010], Olsen et al.

[2011]range correlation is performing poorly, and screening is therefore
suggested. The calculations are much more computational expensive
than for the semi-local functionals but implementations optimized for
GPU’s significantly lower the computational costs of the method, and
bring it within reach for many current studies. The RPA is seldom
self-consistent but added on top of orbitals from semi-local functional
calculations.23

23 See Yan et al. [2013]

With the rALDA reformulation of the RPA method, RPA now also
exceeds the performance of standard semi-local functionals for most
types of energetics.24

24 See Olsen and Thygesen [2013]

A role for the RPA method with it’s high accuracy, but also high
computational cost, is as a verification of lower rung functionals and
to benchmark calculations where either high quality quantum chem-
istry methods are not feasible and where high quality experimental
data are not available.

2.10 The self-interaction error

In the Kohn-Sham equations for the energy (equation 2.5), it was
observed in the early days of quantum mechanics that the Hartree
energy, given as

J[n] =
1
2

ˆ
dr
ˆ

dr0 n(r)n(r0)
|r0 � r| (2.17)

did not vanish for one-electron system, due to a spurious self-
interaction (SI) inherent in it. For Hartree-Fock theory, i.e. exact ex-
change of rung 4 and up, this is not a problem as the self-interaction
term is cancelled by the exchange self-interaction terms. This is how-
ever not so for the semi-local exchange functionals (LDA, GGA and
MGGA), and this so called self-interaction error (SIE) is believed to
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be the cause of many of the failures of approximate density function-
als.25 The goal has therefore been to find methods for these lower 25 See Vydrov and Scuseria [2004]

rung functionals that effectively removes the SIE, both for chem-
istry and solids, while still make these functionals computational
less demanding than the 4th and 5th rung functionals. The SIE has
been shown to be the reason for different failings of low-rung func-
tionals, these include: Not producing derivative discontinuities at
integer electron numbers of the total energy as a function of the
orbital filling; also the failure to reproduce localized orbitals; and
to provide proper band-gabs for many materials. These failures
are as mentioned all different reminecense of the fundamental SIE.

A number of self-interaction correction (SIC) schemes have been
suggested. Most notable is the PZ-SIC of Perdew and Zunger [1981],
that formally is correct. However the method fails in many cases,
and it is not clear how this formalism can be made widely used. 26

26 Pederson and Perdew [2011]

A number of new methods methods tries to alleviate these problems
with the PZ-SIC, but non have been widely adopted.27

27 See for instance Dabo et al. [2010]

The Hubbard U correction within the linear response methods,
provides another way of removing the self-interaction for lower rung
functionals.28 This method ensures that the Hubbard U term is not 28 Cococcioni and de Gironcoli [2005]

a fitting parameter, but chosen instead to minimize self-interaction
errors. A number of extension have been proposed for also correcting
for the inter-site non-linearity of the energy when filling up orbitals,
and further to calculate forces so that different energies can be com-
pared.29

29 See respectively:Campo and Cococ-
cioni [2010], Kulik and Marzari [2011]

For the hybrid functionals where only partial EXX is used a SIE
will be present. For these functionals long-range-corrected form has
been proposed, where the long-range part of the exchange is used
to remove the self-interaction, while the short range exchange is that
of a lower rung approximation. The short range semi-local exchange
insures that proper error cancelation with the lower-rung correlation
functional can happen.30 The long-range part of the EXX is unfor- 30 See Krukau et al. [2008]

tunately, as previous mentioned, the most computational expensive
part of EXX.

Another approach is to create an model potential that will provide
derivative discontinuity or other desired properties. Much success
have been obtained with such an approach to calculate bandgabs in
materials; using for instance the GLLB potential; however this poten-
tial, and many others, fail to be integrable to a energy functional, and
can thus only be used as a post SCF approach.31 In Armiento and 31 For GLLB see Krukau et al. [2008].

For discussion on different approaches
to create energy functionals from model
potentials see Elkind and Staroverov
[2012].
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Kümmel [2013] is has however been shown it is possible to create a
GGA exchange energy functional with derivative discontinuity. This
functional has a form that is very different from usual GGA function-
als and it is to be seen how to create a functional with the necessary
features to reproduce derivative discontinuities, and at the same time
provides good energetics.

2.11 Solving the Kohn-Sham equations computationally efficiently

The following will be an account for the calculations performed
towards creating the data given in the thesis.

Given a exchange-correlation energy functional, the ground state
density and total energy are calculated using the iterative self-
consistent field procedure (SCF): Initial a starting density is used
to calculate the KS effective potential vs(r) for all electrons, and the
solution of the Kohn-Sham eigenvalue problem (equation 2.2). The
single particle solutions y0

as will however correspond to a different
density n0(r) = Âa,s |y0

as|2 than the initial; this output density is now
used for solving the eigenvalue problem again, and repeat the pro-
cess. The SCF loop continues until convergence is reached, by which
the densities and total energy do not change significantly between it-
erations.

To solve the Kohn-Sham equations, a representation of the elec-
tronic densities, potentials and wavefunctions are needed. This repre-
sentation should provide adequate description, while being efficient
in terms of storage and computational cost. Common basis-sets for
the representation are atomic-centered orbitals, plane waves, and
real-space grid. The atomic wavefunctions are eigenfunctions to the
atomic Hamilton, so they are to be mutually orthogonal. The atomic
core states are localized to the core, and are very different from the
delocalized valence orbitals. For the valence electrons to be orthogo-
nal to the core orbitals, they therefore have to be rapidly oscillatory in
the core region, and that makes them expensive to represent compu-
tationally. Different approaches are used to go about this.32

32 See Martin [2004]

The core orbitals change very little with the chemical environ-
ment for most systems, and a simple approximation is therefore the
frozen core approximation, where the core orbitals are not relaxed in
the SCF procedure. The frozen-core approximation is usually imple-
mented through pseudopotentials, that are smoothly varying poten-
tials constructed to mimic the effect of the ion and the core electrons
on the valence electrons. Using pseudopotentials one only solves the
Kohn-Sham equations for the valence electrons. This method is com-
putational much cheaper than solving for the core electrons, but one
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also discard all information about the Kohn-Sham orbitals close to
the core.

A way to go about discarding all core orbital information, is by us-
ing an all-electron method such as the augmented plane wave (APW)
method. The APW method divides the space up in a regions for the
atomic core and for the interstitial regions. The core is then treated
with atom-centered augmentation spheres in which the wave func-
tions are taken as atomic-like partial waves, to efficiently reproduce
the rapid oscillations. The interstitial regions are instead expanded
with smoothly varying envelope functions, e.g., plane waves. The
partial waves and the envelope functions are then matches at the aug-
mentation sphere boundaries.33

33 See Slater [1937], Martin [2004], Blöchl
[1994]

The Projector Augmented Wave formalism (PAW) of Blöchl [1994]
extend on the augmented-wave methods and the pseudopotential
approach.34 In the PAW method the rapidly oscillating wave func- 34 See Kresse and Joubert [1999]

tions of the core are linear transformed into auxiliary wavefunc-
tions, and atomic corrections are then added inside the augmenta-
tion spheres. The Kohn-Sham equation can then be solved indepen-
dently in the two regions, and the solution of the smooth part and
the corrections for the atomic are then added together afterwards
for the potentials and the densities to give the all-electron solution.

The DFT calculations presented and used later as inputs for the
fitting routines, were calculated using the GPAW software package,
which employs the PAW method, within a real grid or plane waves
representation. The Atomic Simulation Environment was further-
more used as interface to GPAW.35

35 See Enkovaara et al. [2010], Bahn and
Jacobsen [2002]





3 Datasets for training and validation

For the training of the exchange correlation model and following val-
idation it is important with reliable compilations of materials prop-
erties and chemical observables. These datasets should represent the
condensed matter interactions that is DFT studies, and the reference
data should be of the highest quality. This chapter presents datasets
to be used throughout the rest of this thesis.

3.1 Datasets of materials properties

The benchmark data can be from either experimental studies or cal-
culated from high-level theory such as CCSD(T).1 The most elaborate 1 The CCSD(T) method is a quantum

chemistry method, where the many-
body Schrödinger equation is solved
very accurately.

wavefunction methods are very accurate, and can be considered
essentially exact for molecular properties, and they are thus very
good for benchmarking. The CCSD(T) “model chemistry” has be-
come the standard for benchmark data to be directly compared
to DFT results. The experimental data are often not as accurate as
theoretical benchmarks, but many atomistic systems are simply
impossible to treat with expensive wavefunction theory, e.g., the
extended lattices of solid crystals. To capture materials properties
for these systems one must resort to careful experiments, prefer-
ably at low temperature and possibly with extrapolation to the
zero Kelvin limit and corrections for zero-point motion of atoms.

The following benchmark datasets are either adapted from litera-
ture or compiled from published works.

3.1.1 G3/99 and G2/97: Molecular formation energies

The molecular formation enthalpies of the G3/99 thermochemical
test set of Curtiss et al. [1997] represent intramolecular bond ener-
getics. It has become very popular for benchmarking and calibrating
electronic structure methods. The 223 molecules may be divided
into three subsets denoted G3-1, G3-2, and G3-3 comprising 55, 93,
and 75 molecules, respectively. The G3-1 and G3-2 subsets constitute
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G2/97, in which case the two subsets may be denoted G2-1 and G2-2,
respectively.

The formation enthalpies are experimentally determined. In ac-
cordance with the procedure of Curtiss et al. [1997] they are extrap-
olated to zero Kelvin by correcting for thermal and vibrational con-
tributions. Thermal corrections and zero-point energies from Curtiss
et al. [1997] and Staroverov et al. [2003] are used. The result is 233

electronic-only static-nuclei formation energies D f E, i.e., negatively
signed atomization energies, which are directly comparable to predic-
tions from ground state DFT. Contributions to D f E from spin-orbit ef-
fects are not corrected for. This is expected to be of little overall con-
sequence.2 2 See Curtiss et al. [1997]

Theoretical G3/99 formation energies are calculated from the
difference between molecular and atomic total energies as

D f E = EM � Â
A

EA, (3.1)

where A runs over all atoms in the molecule M, while EM and EA are
ground state molecular and atomic total energies, respectively.

3.2 RE42: Molecular reaction energies

The RE42 compilation contains 42 zero-Kelvin reaction energies in-
volving 45 different molecules from G3/99, and was presented in
Wellendorff et al. [2012]. The theoretical reaction energies are calcu-
lated from total electronic energies as DrE = ÂP EP � ÂR ER , where
the sums run over reactant (R) and product (P) molecules.

3.3 DBH24/08: Molecular reaction barriers

The chemical reactant and product states are often separated by an
energy barrier, which must be surmounted if the reaction is to pro-
ceed. The DBH24/08 set of Zheng et al. [2009] comprises 12 forward
(Vf ) and 12 backward (Vb) benchmark barriers

Ground- and transition-state molecular geometries, are calculated
using the quadratic configuration interaction with single and double
excitations (QCISD) wavefunction method, are from Zheng et al.
[2007]. Density functional barrier heights are computed from the
transition state total energy (E‡) and the initial (Ei) and final (Ef )
state total energies as

Vf = E‡ � Ei, (3.2)

Vb = E‡ � Ef . (3.3)



33

3.4 S22 and S22x5: Non-covalent bonding

The S22 dataset of Jurecka et al. [2006] represents van der Waals in-
teractions and hydrogen bonding by considering non-covalent bond-
ing between molecular dimers and complexes. It has been widely
used for assessment3 and parametrization4 of density functional 3 See: Gulans et al. [2009], Cooper

[2010], Kannemann and Becke [2010],
Sherrill [2010], Hanke [2011], Goerigk
and Grimme [2011], Zhao and Truhlar
[2008].
4 See Kannemann and Becke [2010],
Klimes et al. [2010], Lee et al. [2010],
Vydrov and Van Voorhis [2010], and
Grimme et al. [2010], Zhao and Truhlar
[2006].

methods for vdW type interactions. The datasets has however now
been somewhat superseded by the newer and larger S66 set of Rezac
et al. [2011]. The S22 set consists of CCSD(T) interaction energies
between relatively small molecular complexes, but includes also
non-covalent bonding between the somewhat larger DNA and RNA
bases adenine, thymine, and uracil, as well as 2-pyridoxine and 2-
aminopyridine. The 22 complexes are divided into three groups
according to the type of interaction predominantly responsible for
stabilizing the complex; hydrogen bonding, dispersion interactions,
and a mixture of dispersion and electrostatic interactions. This cat-
egorization was made on the basis of interaction energy decom-
positions using the symmetry-adapted perturbation theory method.

MP2 or CCSD(T) geometries at equilibrium intermolecular sep-
arations from the original work in Jurecka et al. [2006]are used.
Benchmark CCSD(T) interaction energies with extrapolation to the
complete basis set (CBS) limit were reported in that same publica-
tion. However, most likely due to the computing resources available
at the time, different basis sets were used for small and large com-
plexes. Later works have therefore revised the S22 interaction ener-
gies, employing larger and identical basis sets for all complexes at the
original geometries.5 For the larger complexes the reported basis set 5 See Takatani et al. [2010] and

Podeszwa et al. [2010].effects are significant, so the CCSD(T)/CBS energies of Takatani et al.
[2010] are adopted here as the current best-estimate of the true S22

interaction energies.

An extension in form of the S22x5 extension was proposed in
Grafova et al. [2010]. In addition to the near-equilibrium intermolec-
ular distances, S22x5 contains for each complex four non-equilibrium
binding energies. Thus, CCSD(T) potential-energy curves (PECs) for
each complex are mapped out at relative interaction distances d of
0.9, 1.0, 1.2, 1.5, and 2.0 as compared to S22. We here divide S22x5

into five subsets according to interaction distance, e.g., “S22x5-0.9”.

The computational procedure used for S22x5 was identical to the
S22 one, so we expect the basis set deficiencies to persist in S22x5.
The non-equilibrium data points on each PEC are therefore corrected
according to the difference between original and revised S22x5-
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1.0 CCSD(T) energies. The proposed correction were published in
Wellendorff et al. [2012]. These are very small on average but signif-
icant for certain larger complexes. The modified CCSD(T) interac-
tion energies are used throughout for the S22x5 dataset and subsets.

Each S22x5 density functional interaction energy Ed
int is computed

as the difference between the total electronic energy of the interacting
complex Ed

0 and those of its two isolated molecular constituents, Ed
1

and Ed
2,

Ed
int = Ed

0 � Ed
1 � Ed

2. (3.4)

Computational accuracy is enhanced by keeping all atoms in the
monomers in the same positions in the supercell as those atoms
have when evaluating the total energy of the complex. With the sign
convention in Grafova et al. [2010] stable intermolecular bonding is
here taken to mean negative interaction energy.

3.5 Crystalline solids

We represent the energetic and structural properties of crystalline
solids in the follow datasets of experimental data.

3.5.1 Sol34Ec

Cohesive energies of 34 Period 2–6 pure crystals in fcc, bcc, diamond,
and hcp lattices. Zero-point effects are not considered. This dataset
was used in Wellendorff et al. [2012], where the included systems are
listed.

3.5.2 Sol27

It was shown by Csonka et al. [2009] that removal of thermal and
zero-point contributions to experimentally determined lattice con-
stants and bulk moduli may be important when benchmarking den-
sity functional methods. Experimental zero-Kelvin lattice constants
and cohesive energies (Ec) contain zero-point vibrational contribu-
tions, leading to zero-point anharmonic expansion (ZPAE) of the
lattice and zero-point vibrational energy (ZPVE) contributions to Ec.
As discussed in Alchagirov et al. [2001], an estimate of the ZPVE may
be obtained from the Debye temperature QD of the solid according to

ZPVE = �9
8

kBQD. (3.5)

The vibrational contribution is subtracted from the cohesive en-
ergy, leading to increased stability of the crystal towards atomization.
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The same reference derived a semi-empirical estimate of the ZPAE
contribution to the volume of cubic crystals.

The Sol27LC and Sol27Ec sets of zero Kelvin lattice constants and
cohesive energies of 27 fcc, bcc, and diamond structured bulk solids
are appropriately corrected for zero-point phonon effects. These
datasets were also used in Wellendorff et al. [2012].

3.5.3 Extended solids dataset of Sol54Ec and Sol58LC

The Sol58 lattice constants (Sol58LC) and Sol54 cohesive energies
(Sol54Ec), are extensions of the Sol27 sets to include also mixed-
element compounds in the rock-salt, cesium chloride, and zincblende
cubic crystal structures. The low-temperature zero-point exclusive
data are from Schimka et al. [2011], Haas et al. [2009] (Sol58LC) and
Schimka et al. [2011] (Sol54Ec), respectively.

The crystal cohesive energy for a given lattice constant a is calcu-
lated from

Ec = EA � EB, (3.6)

where EA is the total energy of the free atom and EB the bulk to-
tal energy per atom. The equilibrium (maximum) cohesive energy
of a stable solid is thus a positive quantity. Equilibrium lattice con-
stants a0 are determined from fitting the SJEOS equation of state to
cohesive energies sampled in five points in a small interval around
the maximum of the Ec(a) curve, see Alchagirov et al. [2001]. For
hcp-structured crystals the c/a lattice constant ratio is fixed at the
experimental one.

3.6 CE27: Chemisorption on solid surfaces

The CE27 datasets contains chemisorption energies of simple molecules
on late transition-metal surfaces. They are derived from temperature
programmed desorption experiments or from microcalorimetry, most
often at low coverage. The 27 chemisorption energies have been crit-
ically chosen from literature with emphasis on reliability as well as
covering a reasonably wide range of substrates and adsorbates. CE17

is a subset of CE27. Details regarding adsorption mode, adsorption
site, references and computational setups can be found in Wellendorff
et al. [2012].

Most of the surface reactions are associative adsorption processes
at 0.25~ML coverage. In that case the chemisorption energy DE is
computed according to
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DE = EAM � EM � xEA, (3.7)

where EAM is the total electronic energy of the adsorbate A on
metal surface M, and EA and EM total energies of the isolated ad-
sorbate and metal surface, respectively. The constant x equals 1 for
associative adsorption and N2 dissociation on Fe(100), while x = 1

2
for dissociative H2 chemisorption. In the case of NO dissociation on
Ni(100) at 0.25~ML coverage the chemisorption energy is

DE = EAM + EBM � 2EM � EAB, (3.8)

where AB is the NO molecule.



4 Machine learning methods

In this chapter we will introduce the different machine learning(ML)
tools used for fitting the Bayesian Error Estimation functionals, which
for brevity are called BEE functionals or for short BEEFs. These ML
tools have been introduced at different points in the history of the
BEEF family development and this chapter is intended to create a
more coherent introduction to the ML tools used. The goal is how-
ever not to provide an in depth statistical foundation, but rather to
present the methods concisely so to create a good overview.

4.1 Parametrization

To fit a exchange-correlation functional, one must parametrize the
functional space. For the exchange-enhancement factor this is usually
achieved through a parametrization in the normalized gradient den-
sity s within the GGA formalism. A parametrization is sought that
can describe the optimal model with the fewest number of parame-
ters.

The general formulation of a linear parametrization model is

M(x, a) = a0 f0(x) + a1 f1(x) + ... + ap fp(x) =
Np

Â
p=0

ap fp(x), (4.1)

where x is the input, a is the coefficients to the model and f (x)

are the basis functions. For the simple polynomial series the basis
functions are given as fp = xp.

The polynomial series is however not orthogonal, and we will
therefore later use the Legendre polynomial series, which is or-
thonormal over the region [�1, 1]. We can use a Padé approximant
to transform a dimension from [0, •[ to [�1, 1].
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4.2 The Bayesian connection

4.2.1 Probability theory and Bayes’ theorem

The foundation of the Bayesian inference is through Bayes’ theorem
that provides a connection between the probability distribution of A
and B, given as P(A) and P(B), and the conditional probabilities of A
given B, or B given A, hence P(A|B) and P(B|A) respectively.

First we define the product rule, which says that the conditional
probability P(A|B) is given by the probability joint probability of A
and B by

P(A \ B) = P(A, B) = P(A|B)/P(B). (4.2)

Secondly, the sum rule enable us to find the probability of A by
summing up all the joint probabilities.

P(A) = Â
B

P(A, B), (4.3)

where the sum runs over all probability distributions of B that link
to A. Now using these two rules enable use to define Bayes’s theorem
in the common form

P(A|B) =
P(A|B)P(A)

P(B)
, (4.4)

so that A can be deduced by B, using the prior knowledge of the
distributions of A and B given as P(A) and P(B).

Lets consider the case where a dataset D, which we will attempt to
describe by the model M with the parameter vector a. It is assumed
that D has been generated by M, but that a is unknown. And that
the data has an added layer of noise (D = M + e). Our goal is now to
find a given D and our knowledge about the noise e. Using Bayes’s
theorem1 we have that the posterior probability P(aM|D) is the 1 posterior µ likelihood ⇥ prior

likelihood P(D|aM)
P(D) times the prior distribution P(a), hence

P(aM|D) =
P(D|aM)P(a)

P(D)
. (4.5)

The denominator in the above expression can be described as

P(D) =
ˆ

P(D|a)P(a)da, (4.6)

and is a normalization factor that insures that the posterior distri-
bution integrates to one. In the following example we will find the
best model to describe the given data.
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4.2.2 Maximum-likelihood model for model with Gaussian noise2

2 See [Bishop, 2006]

Assuming that the model has an overlay of Gaussian noise, then the
likelihood has the form

P(D|M) =
N

’
n=1

N
⇣

yn|M(xn, a), b�1
⌘

, (4.7)

where b is the precision matrix, xn is measurement variables to
the model and yn is the associated target vector generated from the
model. The precision matrix b is given as the variance for the noise
process. N (yn|µ, s2) would denote a Gaussian distribution on top
of ym with a mean µ and variance s2, hence b = bI, where I is the
identity matrix.

Assuming that we have an equal prior expectation to any a, then
we can maximize the likelihood of the model, which is the same as
maximizing the logarithm to of the likelihood function, hence

argmax
a

P(a|D) = argmax
a

ln P(a|D), (4.8)

ln P(a|D) = � b

2

Nd

Â
i

{yi � M(a, xi)}2 (4.9)

which is similar to minimizing the conventional least squares(LS)
loss function.

L(a) =
1
2

Nd

Â
i

(M(a, xi) � yi)
2 . (4.10)

The solution of the LS for the above problem is also known from
Gauss-Markov theorem.3 And if the precision matrix b 6= bI, then 3 See p.51 in [Hastie et al., 2009] for

definition of Gauss-Markov theorem.the maximum likelihood solution correspond to that of the gener-
alized least squares solution, which also fulfills the Gauss Markov
theorem.
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4.2.3 Overfitting

Now for finding the underlying model of the noisy data of last sec-
tion, the number of parameters Np in the underlying model could
be unknown. It is illustrated in figure 4.1 below what can happens
when we increase the number of parameters for the model. All the
data points will be very well described but the fitted model does not
describe the underlying model. This is called an overfit.

the data is observed, we immediately get the probability

distribution PðMajDÞ / expð#
P

iðyi # ya
i Þ

2=2r2
0Þ: Maxi-

mizing this probability distribution amounts to minimizing

the sum in the exponent which is seen to be the usual least-

squares fitting.

2.3 Ensembles

The Bayesian approach discussed above does, however, not

only give rise to the least-squares fit. Through Eq. 2 a full
probability distribution for the model parameters is

obtained. This distribution defines an ensemble of models

which are illustrated in Fig. 1 by the red error bars. The
distribution is seen to be more narrow than the distribution

of data points indicating that the model is trained collec-

tively on the whole data set. If the number of data points,
Nd increases, the distribution of parameters become more

and more narrow until the distribution peaks sharply

around the best third-order polynomial approximation to
the sine function. Each data point can be viewed as con-

tributing to the constraining of the model and thereby the

definition of the ensemble.

2.4 Overfitting

A well-known problem with fitting models is the phe-

nomenon of overfitting. If the model is too complex (i.e.

contains too many parameters) and/or the database is too
limited the obtained best-fit models may be highly unre-

alistic and useless for prediction purposes. Some examples

are shown in Fig. 2 where the same 20 data points gener-
ated by a noisy sine function are used as in Fig. 1, but now

the polynomial order is changed to 7 and 11. The high-

order fits clearly express features which are not present in

the original sine function by overfitting to the actual data

points.

2.5 Priors

The prior probability, the last term in Eq. 2, can be used to

at least partly address the issue of overfitting. The prior

probability can express our expectations to the model
beyond what the information from the data provides. In our

sine-function case we might expect our target function to
be well-behaved with a smooth series expansion with

modest-valued derivatives. If we expand the function as

f ðxÞ ¼
PNp

n¼0 anxn=n! we expect the parameters to be not

much larger than 1. A very conservative value for the prior

probability could be PðMaÞ / expð#
P

a2
n=2r2

prÞ; with

rpr = 104. This prior probability can now be combined

with the first probability-term (sometimes called the like-
lihood) in Eq. 2, and a new best-fit model is obtained

by maximizing the product with respect to the model

parameters. As can be seen in Fig. 3 this modest choice is
sufficient to completely ‘‘tame’’ the wild oscillatory

behavior for the 7th and 11th order models. The two high-

order models become essentially identical as the prior in
combination with the factorial 1/n! makes the high-order

contributions negligible.

2.6 Formulas for Linear Models

Before we move on to develop the above approach further

with the aim of using it in DFT, we need to outline some of

the formulas used in the model construction. For conve-
nience we shall limit ourselves to linear models where the

objective function f(x) is approximated by a simple linear

combination of basis functions fn : f ðxÞ ¼
PNp

n fnðxÞan ¼
f TðxÞa; where we have adopted a matrix notation, with a a
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Fig. 2 The black curve shows the sine function and the black data
points as in Fig. 1. The red, green, and blue curves show optimal
polynomial fits of degrees 3, 7, and 11, respectively. The higher-order
fits are seen to deviate significantly from the sine-function as an
indication of overfitting
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Fig. 3 By adding a prior probability the problem of overfitting can be
brought under control. The resulting optimal fits now behave in a
reasonable way without wild excursions. The models of order 7 and
11 are now identical (the dotted blue line)
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Figure 4.1: The black curve shows
a sine function, from which a number
of measurements with associated error
are shown by the black error bars. The
red, green, and blue curves show the
optimal polynomial fits of degrees 3,
7, 11 respectively. The deviation of the
higher order fits are are a clear sign
of overfitting. Adopted from [Petzold
et al., 2012].

4.2.4 Prior model expectation and regularization

So our goal is to find the underlying model, but we did not use our
prior knowledge fully, as we had an expectation for that the model
should not be too complex. We now assume a Gaussian prior distri-
bution for the model parameters given as

P(a|Mw) = N (a|0, w�1 I) =

✓
w2

2p

◆(M+1)/2

exp
⇢

�w2

2
aTa

�
, (4.11)

where w is the precision of the model distribution. This posterior
describes an uncertainty distribution the parameters in the model,
meaning that if we did not have any data at hand then we would
assume a zero vector solution (a = 0). With data at hand our prior
expectation will then compete with likelihood probability. The loga-
rithm to the posterior distribution now gives

ln P(a|D) = � b

2

Nd

Â
i

{yi � M(a, xi)}2 � w2

2
aTa + const, (4.12)

which we maximize to find the optimal model parameters a.
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4.2.5 The frequentist interpretation

The maximum likelihood problem of equation 4.12 above can be
translated to language of the frequentist by introducing the cost
function as

C = � ln P(a|D) = L(a, D) + R(a, w) + const, (4.13)

which we wish to minimize. L is as mentioned earlier the loss and
R is the regularization. The regularization term penalizes large co-
efficients, and the loss term penalizing not fitting the data well. The
regularization term found in equation 4.12, R = 1

2 w2aTa, is gen-
erally known by the names ridge regression, shrinkage and weight
decay. w is the regularization strength. We will abbreviate the least
squares loss function with ridge regression regularization as RR-LS.

A more general regularizer can be used in the form of

R =
w2

2

Np

Â
p

|ap|q, (4.14)

where q = 2 is that of the quadratic regularizer introduced
above as ridge regression. q = 1 is know as the lasso, and this
penalization has the effect that for a large regularization strength
some of the coefficients will be driven to zero, and thus making
the model more sparse. In the following we will limit ourselves
to q = 2, but later we will change the norm of the loss function.

4.3 Minimizing the cost function

We now want to minimize the least squares ridge regression (RR-LS)
cost function given as

C(a) =
1
2
(Xa � y)2 +

1
2

w2aTa, (4.15)

where we have introduced the design matrix X, an N ⇥ M matrix,
with row i given as the parametrization series fp(x) of data point i.
We can write the loss in this manner because the loss is linear in the
coefficient vector a. It is noted that RR-LS cost is quadratic in a, and
a close form solution will therefore exist.

To minimize the cost function we look for where the gradient in
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the solution space is zero, hence:

∂C
∂a

= 0 ) (4.16)

0 = XTXa0 � XTy + w2a0 , (4.17)

a0 =
⇣

XTX + w2 I
⌘�1

XTy, (4.18)

where the solution vector a0 is denote the coefficient vector a
that minimizes the cost. The singular value decomposition (SVD)
of X is given as USV T , where S is the singular values matrix with
the singular values Sp in the diagonal, and V T is the right singular
vectors matrix. V is a unitary transformation, hence V TV = VV T = I,
where I is the identity matrix. We can use the SVD to rewrite the
solution to

a0 =
⇣

VS2V T + w2 I
⌘�1

XTy (4.19)

= V
⇣

S2 + w2 I
⌘�1

V TXTy, (4.20)

where the inverse can now easily be found by the inverse to
the diagonal entries of S2 + w2 I. As it can be seen from equation
4.20 above, we only need the S and V , so if the number of data
points far exceed the number of parameters (Nd > Np) it will be
more efficient to make the SVD of XTX, where VS2V T = XTX.

Minimizing RR-LS cost function in equation 4.15 with too many
parameters for w = 0 is an ill-posed problem, in which there will
be zero or near zero singular values. The corresponding modes are
called sloppy modes.4 For sloppy modes an insignificant change of 4 See [Brown and Sethna, 2003]

the data will cause a large change in the solution, and the parameters
are therefore poorly determined. A larger w will however make the
problem well-defined.

The Hessian to the cost is given as

H =
∂2C(a, w)

∂a2

����
a=a0

= XTX + w2 I, (4.21)

and with the definition C0(w) = C(a0(w)), we can write the cost
function as

C(a, w) = C0(w) +
1
2
(a � a0)

T H(a � a0), (4.22)

which will become useful later.

Lastly we define the smoother matrix as5

5 See [Hastie et al., 2009]
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S = X
⇣

XTX + w2 I
⌘�1

XT (4.23)

= XV
⇣

S2 + w2 I
⌘�1

V TXT (4.24)

= U
⇣

S2 + w2 I
⌘�1

S2UT , (4.25)

and the model predictions for the target values can thus be given
as

ymodel = Xa = Sy,

which we will use in the following.

4.3.1 The effective number of parameters6

6 See [Hastie et al., 2009]

The regularization is smoothing out how the parameters should
depend on the data, and one can therefore talk about the effective
number of parameters (Ne f f ), or the effective degrees of freedom, in
the model.

It is therefore very convenient to define Ne f f by the sum of the
diagonal elements in the smoothing matrix of equation 4.23, hence

Ne f f (w2) = tr(S), (4.26)

= tr(
⇣

S2 + w2 I
⌘�1

S2), (4.27)

= Â
p

S2
p

S2
p + w2 , (4.28)

where tr(·) denote the trace. We can use the SVD for XTX also to
calculate Ne f f .

We note that the following limits are given for the effective num-
ber of parameters for regularization strength:

lim
w2!0

Ne f f = Â
p

1 = Np, (4.29)

lim
w2!•

Ne f f = Â
p

0 = 0. (4.30)

We will use Ne f f to describe how complex the model is when
providing solutions to the cost function of different fitting problems.

4.3.2 The Bayesian error estimation ensemble7

7 See [Brown and Sethna, 2003].

Using Bayes’s theorem it is possible to ask what is the model uncer-
tainty from knowing some data D, which is the basis for creating an
error estimation ensemble for the fitted functional.
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A probability distribution P can be written fluctuation da around
a0. For this probability distribution we will require that the mean
expectation value of a0 = a0 + da reproduce the mean error of a0,
hence:

Nd

Â
i

D
(dqi)

2
E

=
Nd

Â
i

(Dqi)
2 , (4.31)

where h. . .i indicates the average over the ensemble, and, dqj , and
Dqj are the prediction errors given respectively by a0 and a0. In other
words we demand that the error estimation prediction ensemble on
average reproduce the observed error of a0. A probability distribu-
tion for the fluctuations that fulfills the above requirement is

P µ exp (�C(a)/t) , (4.32)

t = 2C0/Ne f f , (4.33)

where the ensemble temperature t scales the model fluctuations
in accordance to equation 4.31. The unbiased temperature t is given
by scaling the temperature with Nd

Ne f f +Nd
. Each of the parameters are

assumed to contribute equally to the cost function in a harmonic
fashion.

In effect of the temperature t will scale the Hessian and we define

W = tH�1. (4.34)

The ensemble of fluctuations can be now created using a random
number generator and the eigenvalue decomposition of the W, hence

dak=V·diag(
p

u)·vk, (4.35)

where, vk is a Np long random vector of normal distributed num-
bers (variance 1 and mean 0); and u, and V are the eigenvalues and
eigenvectors of W respectively.

The Bayesian error estimation (BEE) ensemble prediction error on
data points i can therefore be calculated directly as

sBEE =
q

xiW
�1xT

i , (4.36)

and the BEE ensemble prediction of the entire dataset is given by

sBEE =
p

XW�1XT .

If we disregarding dependency between the data points, we can
define a covariance matrix from the BEE ensemble prediction as
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CovBEE = Is2
BEE. (4.37)

4.3.3 Origo of the solution

In the ridge regression formalism given, the penalization of the so-
lution has been done from a zero vector origo. The origo of the prior
solution can however be shifted to accommodate for a a prior belief
in a solution that we would use if we did not have any data at hand.
With this the regularization term is defined as

R(a, ap, w) =
1
2

w2 �a � ap
�T �a � ap

�
, (4.38)

where ap is the prior origo of the solution. To bring regularization
back to the ridge regression form, this prior solution shift is trans-
formed into the target vector y following

ẙ = y � Xap, (4.39)

where ẙ is then used in the cost function instead of y, and the
solution coefficient vector is afterwards adjusted back to the zero
origo reference model space by

a = å + ap. (4.40)

4.3.4 Tikhonov regularization

The ridge regression treats all the different parameters equally, how-
ever at times the different parameters can have quite a different effect
- e.g. for a polynomial base the 1st order polynomial and the 10th
order polynomial will affect model prediction quite differently. We
therefore generalize the ridge regression to the Tikhonov regulariza-
tion form, where the Tikhonov matrix G is introduced to govern the
regularizing scaling between the parameters, hence

R(a, w) =
1
2

w2aTG2a, (4.41)

where ridge regression corresponds to the case G = I.

A commonly used choice of the Tikhonov matrix is to penalize
non-smoothness of the underlying function, hence

G2
ij =
ˆ

∂2 fi(x)
∂x2

∂2 f j(x)

∂x2 dx. (4.42)

To make G invertible however, we need to add a diagonal elements
to overlap entries that are zero. This is usually done by adding a
diagonal constant matrix to the Tikhonov matrix, hence
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G2
ij =
ˆ

∂2 fi(x)
∂x2

∂2 f j(x)

∂x2 dx + aI, (4.43)

where a is some small constant that makes the inversion well-defined.
Using that the Tikhonov matrix is invertible, a transformation of the
problem can be made such that the ridge regression form reappear.
By the transformations

X 0 = XG�1 y0 = y a0 = Ga, (4.44)

one can now solve the ridge regression problem as before but in
the prime space. The solution is then given in the original “non-
smooth” parameter space through the transformation a = G�1a0.

It should be noted that the smoothness can be multidimensional,
and it is then given by the laplacian operator.

Transforming the input space with a Padé approximant will result
in a different definition of smoothness for the problem, when the
smoothness is defined in the transformed space. The transformation
therefore serves a double role by making the it possible to describe
the underlying model better with fewer parameters, and by allowing
a the flexibility of the model where it is judged to be important with
the smoothness regularization.

In the following we will investigate how to decide on the optimal
regularization strength, i.e. choosing the optimal model complexity.

4.4 Optimal model complexity.

For deciding the optimal model complexity, we will use cross vali-
dation, where we optimize for the model complexity that yields the
most transferable model.

4.4.1 Cross-validation

The optimal model complexity has to rely on the available data and
our prior knowledge, but we need a way to figure out if the model is
an overfit for selecting the regularization strength. For every model
optimization we can divide the data into 4 groups:

Known known the training data

Known unknown data we know about but don’t use

Unknown known the selection of the data or handed over implicit
knowledge about how the data should behave
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Unknown unknown the data that we would like the model to work
on in the end

The optimal model is one that is able to describe the unknown un-
known data, and we are going to use cross-validation to give an
estimate that will lead us to choose the model that is hopefully best
suitable for this.

We could divide the data in two groups: a training set (known
known) and a holdout set (known unknown) for validating the
model. We can use the validation data to test for overfitting, hence
transferability of the fitted model. We would however like to use all
the data to train our model.

In cross-validation one rotate the data between the holdout and
training group, and use evaluation on the validation data to select the
optimal regularization strength for the full dataset. Commonly used
cross-validation are of the group K-fold cross validation, where 1/K
of the data is used as holdout data, and the rest training data. The
data can be taken out either randomly or in a rotation. Ideally one
would exhaust the number of ways to draw the holdout data but that
is computationally unfeasible.

The Leave-one-out technique, which name describes the method,
is of the rotation type, where one can do an exhausted sampling, and
Bootstrapping one will on the contrary randomly pick the validation
data. Of popular K-fold method that will not be presented in more
depth are 10 fold, were one randomly pick 1/10 of the validation
data in each round and fit to the rest, and the 2 fold method where
one takes half the data out and the make a cross examination by
training on one group and validating on the other and vice versa.8 8 See [Hastie et al., 2009]

4.4.2 Leave-One-Out Cross-Validation

The leave one out cross-validation (LOOCV) is a very simple cross-
validation technique for which a very fast solution exists. The esti-
mated prediction error of the method is the average of the validation
error when taking one data point out of the training dataset as val-
idation data. In practice a closed form solution exists such that one
does not need to do Nd minimizations of the cost function. For a
dataset with a set data points given by the set Z .

Let the leave-one-out cross validation loss estimation be given as

ŝ2
LOO =

1
Nd

Nd

Â
i=1

Li(ai/2Z ), (4.45)

where ai/2Z is the solution to the full cost function for which data
point i has been omitted from the dataset Z . The fast LOOCV esti-
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mate will be given for the LS-RR cost function, where the models are
found by LS-RR and the loss function for the estimator is that of LS.

Define

P = INd⇥Nd � S, (4.46)

where S is the smoothing matrix from equation 4.23. The leave-
one-out least squares prediction error can then be found by the fol-
lowing

ŝ2
LOO�LS =

1
Nd

yTP (diag(P))�2Py. (4.47)

We will in the following refer to the least square LOOCV as LOOCV
or LOO.

4.4.3 Bootstrap resampling and the Bootstrap .632 estimate

With bootstrap resampling a number of new datasets are created
from the original with random picking from the original dataset,
where a data point is allowed to be used several times. The statistical
measures are then calculated from looking at the distribution of all
the samples. The bootstrap .632 estimator9 is based on the observa- 9 [Efron, 1983]

tion that using some of the data as validation data and not omitting it
as training dataset a less than optimal model is created. The true er-
ror of the trained model should be expected to be better as more data
is used in training the final model than in the cross-validation esti-
mations. The bootstrap 0.632 estimator corrects for this by mixing the
model variance to the full dataset with the estimated error variance
from the bootstrap cross-validation [ERR in the following manner:

EPE.632 =

q
0.632 · dERR + 0.368 · cerr. (4.48)

The estimate of cerr is the error estimation by the best fit to the entire
dataset, given as

cerr = L(a0) (4.49)

and dERR is the bootstrap estimation of the error defined by

dERR =
1

Nd
Â

i

1
Ns|j/2s

Â
j=s|j/2s

Li(bj), (4.50)

where with Ns bootstrap samples for each data point i in the
dataset there are Ns|j/2s samples where the data point is not a part
of the sample training set s. For each datapoint the loss function for
that specific datapoint is used, and bi is the parameters that mini-
mizes the model cost function Cs given for the training set. Following
the discussion before, each sample s is created by resampling of the



49

dataset, where each data point is allowed to be used multiple times
in the sample dataset.

Using the same samples for each regularization strength removes
sample variation noise in the EPE regularization curve. It is impor-
tant that enough samples are being used to overcome the noise of the
method.

For the RR-LS cost function with the use of the same samples for
all regularization strengths, we can made the SVD for all samples
squared design matrices, XTX once and thus calculating the boot-
strap error for different regularization strengths at almost no cost.

4.5 A geometric mean cost and loss function

When the model needs to be optimized for several properties that
are not directly comparable, the arithmetic mean (µA), µA = 1

n Ân
i xi,

might not be ideal. For example for comparing two models on two
clusters, where the target data values of one is magnitudes larger
than the other; here the cluster with smaller values be overshadowed
by the one with bigger values. The scaling of the two clusters might
be arbitrary, and the best model is therefore not properly defined.

An alternative to the arithmetic mean is the geometric mean (µG
or GM), µG = (’n

i xi)
1/n; here the scale of the different properties do

not matter. When comparing two models by the geometric mean, if
one model 1 can lower x1 by 10 percent while only making x2 higher
by less than 10 percent compared to model 2, then model 1 will have
a smaller geometric mean assuming all other things being equal.

To find model compromises between several clusters, the geo-
metric mean will therefore be used in different forms. The estimate
can however be used in different ways, and this compromise esti-
mate furthermore has consequences for also the model selection.

The training data D is divided into Nk clusters, and Dk is now
the data points associated with cluster k. Note that the clusters can
have overlap between them. In the following the cost function Ck and
loss function Lk are the cost and loss function for the data points of
cluster k, i.e. Dk.

4.5.1 Geometric mean of cluster cost functions

A simple model compromise when fitting several clusters is that
of the geometric mean of each clusters’ cost functions, where each
clusters’ cost function includes the optimal regularization strength
found for that cluster. The global cost for the Nk clusters is then given
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by

C̆GM =

 
Nk

’
k

Cw̆k
k

!1/ Â w̆k

, (4.51)

where w̆k is the weight of cluster k, and Ck is the cost function to
the individual cluster with the minimum solutions a⇤

k . By adding a
weight to the individual clusters one has the ability to control for for
instance if two clusters describe the same property, or if one property
is more important than the other.

This cost function of equation 4.51 is non-linear when Nk > 1,
and a new approach to solving the global cost function is there-
fore needed. For the following it is assumed that the cost functions
of the individual clusters are harmonic, e.g. RR-LS cost functions.

One can start by defining the cost that we want to solve in terms of
the logarithm to the cost, hence

K̆GM = ln C̆GM =
Nk

Â
k

w̆k
Â w̆k

ln Ck, (4.52)

and using the zero gradient condition for the minimum we have

Nk

Â
k

w̆k
Â w̆k

1
Ck

dCk
da

= 0. (4.53)

Using the Hessians and individual solutions of the cost functions
we can write

Nk

Â
k

w̆k
Â w̆k

1
Ck

d
da

✓
Ck(a⇤

k ) +
1
2

(a � a⇤
k )

T Hk (a � a⇤
k )

◆
= 0, (4.54)

and with Wk = w̆k
Â w̆k

1
Ck

, the solution is given by

ă =

 
Nk

Â
k

Wk Hk

! 
Nk

Â
k

Wk Hka⇤
k

!
. (4.55)

Wk is however not known initially, but can be approximated it-
eratively. Starting from an initial guess to the solution, e.g. ăinit =

1
Nk

Â a⇤
k , one calculated Wk which lead to a new guess of ă, and the

process repeats.

The geometric mean of the cost functions provides a well-defined
direct compromise. The added knowledge from accumulating data
of several clusters can however not be used to create a more complex
model.
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4.5.2 Geometric mean of cluster loss functions

When more consistent data is at hand, we should be confidence
about finding a more complex solution, without having to fear that
we are overfitting. This suggest that the loss function should be the
geometric mean of cluster loss functions, and we the full cost func-
tion can be given in the form

C̆(a, w) =

 
Nk

’
k

Lk(a)w̆k

!1/ Â w̆k

eR(a;w), (4.56)

where as previous Lk is the loss function for cluster k, and w̆k is
an adjustable weighting of each cluster. The loss function Lk is taken
to be the average loss of the dataset, such that the geometric loss
function is consistent for different sizes of datasets.

The logarithm to the cost function of equation yields

K(a; w) = ln{C̆(a, w)} = Â
k

w̆k
Â w̆k

ln{Lk(a)} + R(a; w). (4.57)

Using the zero gradient condition to find the minimum of the cost
function yields

∂K
∂a

= 0 = Â
k

wk
Nk

∂ ln Lk
∂a

+
∂R
∂a

= Â
k

wk
Lk Â w̆k

∂Lk
∂a

+
∂R
∂a

, (4.58)

which is a again a non-linear problem.

Equation 4.58 can either be solved through an iterative procedure,
were it is assumed that the loss function is quadratic. A new cost
function with the same minimum as equation 4.56 is defined by

K̃(a; w, a⇤) = L̃k(a; a⇤) + R(a; w) (4.59)

= Â
k

wk
Â wk

1
Lk(a⇤)

Lk(a) + R(a; w) (4.60)

where a⇤ is the best guess of the solution. K̃ can now solved, start-
ing with an initial solution guess ãinit: a⇤ is iteratively replaced with
ã and convergence is reached when minimizing K̃ yields the self-
consistent solution a = a⇤. The converged solution of K̃ is denoted
ã. K̃(a; w, a0) is quadratic, and the Hessian can therefore be found
in the usual manner. The same goes for the number of effective pa-
rameters (using equation 4.26) and the Bayesian error estimation
ensemble; all given for the cost function K̃(a; w, ã).

It is also possible to minimize the non-linear cost function K di-
rectly with BFGS and K̃ is then given from the solution found by
BFGS.
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4.5.3 Cluster-LOOCV for model compromise

We define the cluster-leave-out-out cross validation as by rotation
of each cluster as holdout set and then evaluate the fit from the other
clusters on it.

Two alternative prediction errors are given for cluster-LOOCV,
that of the arithmetic mean of the validation loss and the geometric
mean of the validation loss. Let Z be the ensemble of clusters, i.e.
Z = {k1, k2, k3, . . . , kNk}. The arithmetic mean estimation is now given
as:

D2
AM =

1
Nk

Â
k

Lk(ãk\Z), (4.61)

and the geometric mean of validation loss

D2
GM =

 

’
k

Lk(ãk\Z)wk

!1/ Â wk

, (4.62)

where the loss function is similar to the one optimized for the indi-
vidual clusters, hence for one dataset. k \ Z is the clusters excluding
the k’th cluster.

4.5.4 Hierarchical cluster-Bootstrap.632

The geometric mean loss function is now introduced in the boot-
strapping formalism. As previously, the prediction error in the

Bootstrap.632 formalism is given as EPE.632 =

q
0.368cerr + 0.632[ERR,

see equation 4.48-4.50. In a geometric mean cluster version we define

cerr =

 
Nk

’
k

Lk(ã)wk

!1/ Â wk

, (4.63)

where Lk is again the loss function corresponding to the individual
clusters, hence the average squared loss. Further we define

dERR =

 
N

’
k

 
1

Nµk
Â
µk

Lk(bµk )

!
wk

! 1
Â wk

, (4.64)

where µk iterates over bootstrap samples s, where cluster k has
been omitted from the training set. Nµk is the number of bootstrap
samples where cluster k is not in the sample. And bµk is the solution
to the µk’th global cost function, hence

bµk = argmin
b

� ˘Cµk (b, w)
�

.
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˘Cµk is the global cost function of equation 4.56 for the µk’th sample
of the bootstrap resampled training data, i.e. sµk .

The resampling procedure now takes a hierarchical form: For each
sample s each cluster is bootstrap resampled internally. Secondly, the
collection of resampled clusters in the sample is bootstrap resampled.

The rationale for this two level resampling scheme is to have a
method that will capture correlations between the data points in
the clusters and between the clusters. In other words we want the
procedure to capture if two clusters are highly correlated, but also if
the clusters are internally correlated.

With the normal Bootstrapping method it is unlikely that a large
cluster will be taken out in one of the sample, for a limited number of
bootstrap samples, and so the method will not be able to test trans-
ferability between the different clusters fully. The internal resampling
makes the method resilient to the case where the clusters are a copies
of one another.
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4.6 Robust fitting

The downside of using the least squares as loss function, which we
have discussed up until now, is that if one data point is very off,
i.e. an outlier, then the whole model will break down and not be
transferable. This is the price that is paid from from having highest
possible efficiency estimator for is normally distributed data.

The median loss function estimator, on the other hand, has a
breakdown proportion of 0.5, as half of the data points can be out-
liers without it affects the estimate of the median significantly. The
median however has a low efficiency on normally distributed data
compared to the least squares. Ideally we would like to use an es-
timator that simultaneously has a high efficiency and a high break-
down point. The loss functions of robust statistics seeks exactly that.

An outlier can have a big influence on the predicted model when
using a non-robust estimator, and thus creating a masking effect.
For this reason one cannot rely on inspection to identify outliers, and
thus removing them manually.

4.6.1 M-estimators

The M-estimator is a generalization of the maximum likelihood es-
timator.10 Given a linear fitting problem, the residual vector for a 10 See [Huber, 1964]

model M is given by r = Xa � y = (r0 , ..., rn)T , with the notation of
previous sections. The M-estimator is now defined the solution of ŝ

in

1
Nd

n

Â
i=1

r
⇣ ri

ŝ

⌘
= d, (4.65)

where d 2 [0, 1] and r is a r-function. The solution ŝ is called the
M-estimator of scale. Take the example of the least squares r-function
r(t) = t2, which we saw earlier was associated with a gaussian error
probability distribution. The solution to the M-estimator of scale for
r(t) = t2 and d = 1, is using equation 4.65(above) ŝ =

p
ave(x2) ,

thus yielding the root mean square (RMS). In other words the RMS
is the M-scale of the least squares loss function. Now by choosing
a different r-function and tuning the d value, one can find a more
robust estimation of the scale.

The M-estimator can be used for regression by using the r-function
as the loss function, with every data point scaled by the M-scale of
equation 4.65.11

11 See [Maronna et al., 2006]
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The d has the role of determining the breakdown point of the esti-
mator. The breakdown point (BDP) is mathematically defined as the
maximum proportion of observations that can be arbitrary altered
with the estimator remaining bounded away from the border or the
parameter set.

A r-function, r(t), is a nondecreasing function of |t|, where r(0) =

0, r(t) is increasing for t > 0 such that r(t) < r(•), and, if r is
bounded, r(•) = 1. A number of robust r-functions have been sug-
gested. For these the general property is r asymptotically becomes
flat such that big outliers will not influence the estimate more than
small outliers. It r is differentially for all t, it is called a y-function.

A frequently used r-function for scale estimations is the Tukey-
Bisquare defined as

rbis(t) = min{1 � (1 � t2)3, 1}, (4.66)

which is compared to least squares in the figure to the right.

Figure 4.2: Comparing the Tukey-
Bisquare and least squares r-functions.

The TukeyBisquare is a y-function.

To find the scale for a set of residuals, numerically procedures
can be used. Using those, the next section will let us solve the linear
regression problem for a the ridge regression problem with a y-
function loss function.

4.6.2 The iterative reweighting least squares (IRWLS)

To solve the regression problem with the M estimator, one can use
the Iterative ReWeighting Least Squares (IRWLS), starting from good
guesses to the final solution. The approach uses that for the RR-LS
cost function, the solution could be found in a simple close form:
a =

�
XTX + IMw2��1

XTy, see section 4.3. For the M estimator with
ridge regression, i.e. L = r(t), a similar system of equations can be
created.12 We define 12 See [Maronna, 2011] for ridge regres-

sion solution and [Maronna et al., 2006]
for the M-estimator solution.y(t) = r0(t), W(t) =

y(t)
t

, (4.67)

and

ti =
ri
ŝ

, wi =
W(ti)

2
(4.68)

w = (w1, . . . , wn)0, W = diag(w). (4.69)

Now differentiating the M-estimator cost function with the solu-
tion vector, a, and setting it equal to zero, and a similar solution to
RR-LS appears, hence
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a =
⇣

XTWX + IMw2
⌘�1

XTWy, (4.70)

which is a weighted version of the solution to the RR-LS solution.
Since r and thus W(t) are decreasing functions of |t|, observations
with large residuals will receive lower weights wi. The weighted nor-
mal equations suggest an iterative procedure:

1. From an initial solution a0 calculate the M-estimator: , ŝ0.

2. For k = 0, 1, 2, ...:

(a) Given the solution ak: calculate the residual vector r, the M-
estimator ŝk and then the weights W

(b) Compute ak+1 by solving 4.70.

3. Stop if the residuals changes are below a predefined threshold.

The iterative reweighting procedure to solve the ridge regression M-
estimator problem has in [Maronna, 2011] been found to decrease the
object function of the cost function at every step, whereas the solu-
tion to the normal M-estimator problem, i.e. without regularization,
with iterative reweighting least squares has been proven to decrease
at every iteration. The initial solution should have a high break-
down point and will as a consequence possible have a low efficiency.

As the loss function is no longer quadratic, many local minima are
possible. Therefore one have to rely a good initial solutions to start
the IRWLS, or an ensemble of initial solutions. The initial solutions
can be found using various scale independent estimator. e.g. the L =

|Xa � y|, or by trimming the dataset in different ways and solve for
the RR-LS.

The weighting of the data points means that we have to reestab-
lish the effective number of parameters for a given regularization
strength. Using the definition of w from equations 4.68 and 4.69 and
the following transformations:

x̃ =
w0X
w01

, X = X � 1x̃ (4.71)

The Hessian for the reweighed calculations is given as

Ĥ = X(X 0WX + w2 IM)�1X 0W (4.72)
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Again following the procedure in section4.3.1 and the definition
of [Hastie et al., 2009], effective degrees of freedom and number of
effective parameters are given as

N̂e f f = tr
�

Ĥ
�

. (4.73)

Following, Ne f f will refer to N̂e f f for MM calculations.

4.6.3 The MM-estimator

The MM-estimator is an extension to the M-estimator, where a two
step process is used of to find the optimal solution and achieve a
higher breakdown point and efficiency simultaneously. Two different
r-functions are used: and initial function r0 for high breakdown
point(BDP) and a function r for the efficient of the estimate. Both are
bounded and r0 � r.13

13 See [Yohai, 1987]

It can be shown that if L(ar0) � L(ar) then the solution is con-
sistent, and the BDP of r is no less than of r0. Furthermore if r is
differentiable, then a solution to the cost function will have the same
efficiency as the global solution. Using these properties one can find
a solution with high efficiency and sufficient breakdown by using a
r0 for high BDP and r for a sufficient efficiency.

We start with an initial estimator ainit, from which we calculate the
residuals r = r(ainit) , and an M-scale ŝinit given by

1
n

n

Â
i=1

r0

✓
ri

ŝinit

◆
= d. (4.74)

The cost function for the MM estimator for ridge regression (RR-
MM) is now given in the form

C(â, w) = ŝ2
init

Nd

Â
i

r

✓ rj(â)

ŝinit

◆
+ R(a, w), (4.75)

where the factor ŝ2
init in front the estimator is added to make the

loss function coincide with the least squares cost function one for
r(t) = t2. The minimization problem is solved with IRWLS proce-
dure as shown above.





5 Bayesian Error Estimation functionals

The studies BEE functional previous my involvement will will here
be presented.

5.1 Inspiration for density functionals with error estimation

The development of Kohn-Sham density functionals with error es-
timation was inspired by the development of interatomic potentials
with error estimation.1 Interatomic potentials are used extensively 1 See Frederiksen et al. [2004]

to study the structural and dynamical properties of a wide range of
materials from biomolecules to polymers and semiconductors. Typi-
cally interatomic potentials are computational very fast, because the
interatomic energies and forces are carried out by explicit evalua-
tions of pair-like or angular terms, that depends on only the coor-
dination of a few atoms at a time. It is therefore possible to look at
much larger systems than DFT. The speed and simplicity of the in-
teratomic potentials are, however, obtained at a cost of lower predic-
tion power, and the accuracy of the potentials is therefore a concern.

The study of Frederiksen et al. [2004] therefore presented a method
for how to create a Bayesian error estimation ensemble to assess the
uncertainty of the degree of uncertainty that should be expected us-
ing the potentials. The method employs a harmonic approximation
of a cost function to construct the ensemble in the fashion outlined
in the machine learning introduction.2 The cost function for the 2 Note that for the ensemble, anhar-

monic effects was observed and the
ensemble temperature was therefore
lowered to T0/4, which ensured a
better agreement with the gaussian
distributed reference.

parametrization was the squared least between between the model
and the DFT references. To ensure transferability, and avoid overfit-
ting, a holdout set is used to check how many parameters should be
used in the potential.

This study thus lead the way to how the Bayesian error estimation
could be used for fitted models within electronic structure calcu-
lations. Following will be presented the insights gained in the first
studies on creating density functionals with error ensemble, leading
up to the BEEF functional family.
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5.2 The first density functional with Bayesian error estimation

For the first investigation of a density functional with Bayesian error
estimation capabilities, it was chosen to make a parametrization of
the GGA exchange enhancement factor. The parameters were then
fitted to a small datasets of experimental molecular atomization
energies, and experimental cohesive energies.3 The model space ex- 3 See Mortensen et al. [2005] and Kaasb-

jerg [2005].pansion using the following series, Fm(s) =
� s

s+1
�m, which had been

chosen so that the PBE and RPBE functionals could be reproduced in
the model space with few parameters in the relevant s-range.4 4 Respectively 5 and 6 parameters are

need for reproducing PBE and RPBE
in the interval s 2 [0,3], see Kaasbjerg
[2005]34 CHAPTER 4. GGA-MODEL

s

x
)s(

F

Figure 4.1: The 10 first basis functions Fn(s).

functions, the enhancement factor for a given set of parameters θ can be written:

Fθ
x (s) =

Np
∑
n=1

θn
✓
s
s+1

◆2(n−1)
, (4.2)

where Np is the number of parameters.
It is worth noticing that the first basis function F1 is constant. This means that the
value of the parameter θ1 sets the overall scale for the resulting enhancement fac-
tor. It must therefore be expected that energies calculated with this model, will be
very sensitive to fluctuations in this parameter.

With the model defined, the first order change in the total energy δE with respect
to a change in the parameters δθ will now be established.
For a given set of parameters θ the exchange energy is given by:

Eθ
x [n] = ∑

n
θn

Z

dr n(r)εuni fx (n)Fn(s). (4.3)

As the density n(r) depends on θ through the Kohn-Sham potential vs, changing the
parameters will also change the density. However, to first order in δθ, the change
in the energy δE is independent on the change δn in the density, implying that only
the exchange energy is changed upon a change in the parameters:

δEx = ∑
n

δθn
Z

dr n(r)εuni fx (n)Fn(s) ⌘ ∑
n

δθn∆θ
n. (4.4)

Figure 5.1: The 10 first basis functions,
see Kaasbjerg [2005].

The parametrization took the following form

Fb
x (s) =

Mp

Â
m=1

bm

✓
s

s + 1

◆2(m�1)

, (5.1)

where m is the parameter, Mp is the total number of basis functions
and bm can be regarded as free parameters. The 10 lowest order basis
functions are depicted in figure 5.1.

To find the optimal model the standard least square cost function

was chosen: c(b) = 1
2 Âk

⇣
Ek(b) � Eexp

k

⌘2
, where Ek(b) is the at-

omization or cohesive energy of system k in the database calculated
for parameters b. The electron density is that of self-consistent PBE
calculation.5 The leave-one-out cross validation error estimate was re-

5 To the first order it was expected
that the density would not change
significant for the best fit exchange
model from PBE.

ported to be minimized for M = 3 parameters in the model, and the
resulting enhancement factor can be seen along with a corresponding
error ensemble in figure 5.2.

where !LDA
x !n" # $3kF=!4"" [for a spin polarized density

we have Ex%n"; n#& # !Ex%2n"& ' Ex%2n#&"=2]. The en-
hancement factors for PBE and RPBE are shown in
Fig. 1. In the following we shall expand the enhancement
factor as

Fx!s" #
XNp

i#1

#i

!
s

1' s

"
2i$2

; (3)

regarding the #’s as free parameters. We use three parame-
ters (Np # 3) which a train/test check for our database has
shown to give the optimal fit without over-fitting. The
model space could be extended in future work to include
a fraction of exact exchange as for the B3LYP [18] or
PBE0 [19] functionals.

The database we use consists of the experimental atom-
ization energies of the molecules H2, LiH, CH4, NH3, OH,
H2O, HF, Li2, LiF, Be2, C2H2, C2H4, HCN, CO, N2, NO,
O2, F2, P2 and Cl2 and the experimental cohesive energies
(per atom) of the solids Na, Li, Si, C, SiC, AlP, MgO, NaCl,
LiF, Cu, and Pt. In the cost function all systems in the
database appear with the same unit weight.

All calculations are performed with a real-space multi-
grid DFT code [20] using the projector-augmented wave
method [21] to describe the core regions. All calculated
energy differences have been converged to an accuracy
better than 50 meV with respect to the number of grid
points and unit-cell size or number of k points. The elec-
tron density is calculated self-consistently using the PBE
functional and the evaluation of the exchange-correlation
energy for other enhancement factors are performed using
the PBE density. This is a very good approximation due to
the variational principle. Energies are calculated at the
calculated equilibrium bond distances.

Since Eq. (3) is linear in the parameters #, the total
energy of a given system will also be linear in #:

E!#" # E0 '
X3

i#1

!Ei#i; (4)

where the coefficients E0 and !Ei only have to be calcu-
lated once for each system. It is therefore very fast to
calculate energy values for different enhancement factors
in the ensemble.

Minimizing the cost function with respect to the three
parameters leads to the best-fit enhancement factor shown
in Fig. 1 corresponding to the parameters #bf #
!1:0008; 0:1926; 1:8962". The function is seen to follow
quite closely the PBE enhancement factor at low values
of the gradient s. In particular, it is nearly one in the
homogeneous limit (s # 0) which is exclusively a result
of the fitting. For s values greater than 1.5 the best-fit
enhancement factor increases more steeply than PBE
being more similar to the RPBE factor. In Table I the
resulting errors are shown for LDA, PBE, RPBE, and for
the best fit. RPBE performs better on the molecules and
PBE is better for the solids; the best fit represents a com-
promise between the two. We would like to stress that the
main point of this Letter is not to derive an improved
functional. Much experience has been acquired concerning
how well different GGA functionals work for different
systems [22,28,29] and we do not expect to obtain a large
overall improvement within this simple GGA framework.
But as we shall see in the following the ensemble construc-
tion allows for realistic evaluation of the error bars on
calculated quantities.

The cost function appearing in the probability distr-
ibution Eq. (1) is very nearly quadratic in the model
parameters in the relevant range of parameter space.
We can therefore expand the exponent in the probability
distribution as C!#"=T # const' 1

2!#
TA!#, where A is

a symmetric matrix. With U being the unitary matrix
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FIG. 1 (color online). Exchange enhancement factors as a
function of dimensionless electron density gradient. The gray
lines show enhancement factors drawn from the ensemble
exp!$C!#"=T". The dashed, dotted, and full lines show enhance-
ment factors for PBE, RPBE, and the best fit, respectively.

TABLE I. Errors in DFT atomization energies and cohesive
energies (in eV) relative to experiment. All calculations are
based on self-consistent PBE densities. Experimental numbers
are taken from Refs. [11,22–27].

Error LDA PBE RPBE Best fit

Molecules:
Mean abs. 1.46 0.35 0.21 0.24
Mean 1.38 0.28 $0:01 0.12
Max. ($) $0:35 $0:22 $0:32 $0:26
Max. (') 3.07 0.89 0.46 0.71

Solids:
Mean abs. 1.35 0.16 0.40 0.27
Mean 1.35 $0:09 $0:40 $0:24
Max. ($) $0:72 $1:37 $0:94
Max. (') 2.73 0.36 0.15

All:
Mean abs. 1.42 0.28 0.28 0.25
Mean 1.37 0.14 $0:16 $0:02

PRL 95, 216401 (2005) P H Y S I C A L R E V I E W L E T T E R S week ending
18 NOVEMBER 2005

216401-2

Figure 5.2: The exchange enhance-
ment factors as a function of the di-
mensionless electron density gradient,
adapted from Mortensen et al. [2005].
The green/grey lines show enhance-
ment factors drawn from the error
estimation ensemble of exp(�C(b)/T).
The dashed, dotted and full lines show
enhancement factors of RPBE, PBE and
the best fit respectively.

The study highlighted how the ensemble could be used to judge
scientific conclusions. For example what preferred binding site for
a molecule is, and the uncertainty on the cohesive energy, see figure
5.3.

With this study a clear case were made for density functionals
with Bayesian Error estimation; in terms of providing a simple but
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Figure 5.3: Calculated ensemble for
cohesive energy (x axis) and bcc-fcc
energy difference (y axis) for a copper
crystal. The BEE’s are indicated by
error bars. The inset uses rescaled axes.
Lower panel: Calculated ensemble for
binding energy (x-axis) and bridge-top
energy difference for CO on a CU(100)
surface. Values for the experimentally
preferred states (fcc and top) are indi-
cated by vertical dotted lines. Units are
in eV.

useful measure for the uncertainty to be expected when performing
a DFT calculation with a GGA level exchange correlation functional.

A number of limitations in terms of the functionals model se-
lection procedure and performance will here be highlighted. The
full extend of the performance, it has later been found, cannot be
assessed in non-self-consistent calculations, which will be shown
later in this thesis. In the leading work of Kaasbjerg [2005] a num-
ber of issues arose that were not explicitly addressed in proceeding
publication of Mortensen et al. [2005], these are highlighted in the
following. In Kaasbjerg [2005] the optimal model was found by leave-
one-out cross-validation to have M = 4 parameters, however this
solution was disregarded as it was not believed to be a transferable
model solution. For the cost function a suggested weighting of the
systems of different materials properties were suggested, to ensure
that one material property would not overrule the other in the cost
function by introduce a normalization that would make the data di-
mensionless and normalize according to how well one regarded the
data. In Mortensen et al. [2005] all data were regarded equally with-
out taken into account of their different dimensions, and this could
thus unintentionally have introduced a skewed bias towards opti-
mizing for one of material properties fitted. In the parametrization
the LDA limit were furthermore fixed and the limited flexibility of
this choice towards providing a better performing functional versus
having the functional be transferable outside the training data were
not addressed. In following studies these potential limitations were
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investigated. It should also be noted that the datasets were limited
in their coverage, e.g. there were no chemisorption systems in the
training datasets.
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5.3 Investigation of the constraints in the GGA formalism

In the next study a different approach were taken to the model
space, which provided an easy framework for testing how differ-
ent exact constraints influenced the performance of the optimal
fit.6 In the study the goal is to create a functional better suited for 6 See Toftelund [2006]: Master project

thesis with the purpose of developing
a bayesian error estimation functional
that would be useful for chemisorption
systems.

chemisorption, which implied that the functional would not be fitted
to solid state properties. A Padé approximant was introduced as the
parametrization, which took the following form:

FPadé
x (b, s) =

1 + (b1 + µ)s2 + (1 + k)b2s4

1 + b1s2 + b2s4 , (5.2)

where b = (b1, b2) are the optimization parameters. In this form
of the GGA exchange enhancement factor could be explored with
only two parameters, and the different theoretical limits of the GGA
exchange enhancement factor could be constrained or not. With
this parametrization it was easy to test the implication of omitting
different exact constraints on the exchange enhancement factor. These
are:
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Figure 4.8 The five enhancement functions used to calculate the
atomization energies in table 4.2. They are very different in shapes,
but results in almost the same energies.

4.5 Comparing functionals

In this section, five di↵erent exchange enhancement functions with very dif-
ferent shapes but similar costs will be tested by using them when calculating
the atomization energies of the molecules in the database. Two of the five
functionals are the functionals found when optimizing the model in (4.8):
FPadé

x (✓opt) and FPadé
x (✓gm), where ✓opt and ✓gm are found in (4.12) and

(4.11), respectively. The last three are the optimized functionals F
(a),1
x in

(4.13), F
(b),1
x in (4.15) and F

(c),1
x in (4.17) from previous section. They are

shown in figure 4.8 and the calculated atomization energies of the molecules
are shown in table 4.2.

Even though the shapes of the five enhancement functions are very dif-
ferent, there are no substantial di↵erences between the atomization energies

obtained from them. Also, for the energies calculated with the F
(a),1
x func-

tional, which has a sudden decrease at s ⇡ 1.8 there are no notable di↵erence
in the energies compared to the energy of the other functionals. This means
that at least for the molecules in the database, s-values much larger than
2.2 cannot be important. It has been shown that s-values larger than 3 do
not carry any weight at all [36, 37].

Figure 5.4: The five exchange en-
hancement functions used to calculate
the atomization energies in table 5.1.
The C values list the cost value of that
functional. Figure from Toftelund
[2006].

(a) The local Lieb-Oxford bound: lim
s!•

Fx(s) = 1 + k

(b) The curvature of the exchange enhancement factor in the
homogeneous electron gas limit: ∂Fx

∂s2 |s=0 = 2µ

(c) The local density limit: Fx(s = 0) = 1.

Using a least squared fitting procedure on a dataset of small molecule
atomization energies, given in table 5.1, it was explored what omit-
ting these constrains would impact performance. It was found that
Lieb-Oxford and the gradient in the homogeneous gas limit had only
minor effect on the performance (0-10% lower Mean abs. error), while
the effect of omitting the the local density limit lowered the mean
absolute error by 28%.
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Molecule Expt. F Padé
x,opt FPadé

x,gm F
(a),1
x F

(b),1
x F

(c),1
x

H2 4.75 4.57 4.56 4.50 4.57 4.68
LiH 2.51 2.26 2.43 2.42 2.28 2.35
CH4 18.18 17.85 17.82 17.91 17.87 18.17
NH3 12.9 12.74 12.82 12.81 12.62 12.83
OH 4.61 4.55 4.58 4.51 4.56 4.56
H2O 10.07 9.71 9.64 9.59 9.72 9.77
HF 6.11 5.77 5.70 5.68 5.78 5.83
Li2 1.06 0.87 0.90 1.14 0.85 0.90
LiF 6.02 5.18 5.50 5.65 5.24 5.36
Be2 0.13 0.32 0.36 0.58 0.33 0.33
C2H2 17.58 17.49 17.53 17.44 17.53 17.64
C2H4 24.04 24.16 24.13 24.27 24.19 24.48
HCN 13.53 13.72 13.90 13.68 13.63 13.67
CO 11.24 11.05 11.06 10.92 11.08 10.98
N2 9.91 10.17 10.45 10.14 9.93 9.91
NO 6.63 6.90 6.95 6.83 6.78 6.64
O2 5.23 5.52 5.29 5.37 5.50 5.29
F2 1.67 2.16 2.07 2.18 2.17 1.94
P2 5.09 4.92 4.93 4.76 4.99 4.69
Cl2 2.52 2.56 2.37 2.62 2.54 2.47

Mean abs. error 0.25 0.24 0.25 0.22 0.18
Mean error -0.07 -0.04 -0.04 -0.08 -0.06

Table 4.2 The atomization energies calculated with the five dif-
ferent enhancement functions from figure 4.8 and the experimental
values. All energies are given in eV.

Table 5.1: The atomization ener-
gies calculated with the five different
enhancement functions and the exper-
imental values. All energies are given
in eV. The different functional solutions
are given as: Fopt

x is the local optimum
to the cost function that does not violate
the homogeneous gas limit for s2, Fgm

x is
the global optimum, and for F(a)

x , F(b)
x ,

F(c)
x the corresponding limit has been

omitted. Table from Toftelund [2006].

In this functional form the number of parameters are very limited,
so a cross validation method is not needed. To make the ensemble
estimation in the original form a harmonic cost function is required,
and methods for finding a good approximation was developed as
well.

A limitation of this method is that the Padé approximant model
with only two parameters will expand the enhancement factor space
in a certain way, and if another functional form is needed for some
reason, it will not be detected in this functional space.
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5.4 Full machine learning approach Bayesian density functional.

Following study presented in the previous section, a more machine
learning heavy approach was investigated for a Bayesian error esti-
mation functional applicable for chemisorption.7 In the following we 7 See Petzold et al. [2012] and Petzold

[2010]. This chapter will use mainly
refer to Petzold et al. [2012] and occa-
sionally to Petzold [2010] for specific
details.

will provide a concise overview of the study and the findings divided
in the natural topics.

5.4.1 Datasets

To provide a better training for the fitting of the functional a number
the following datasets were included

• An extended dataset of atomization energies consistent of 148

molecules from the G2/97 dataset

• A compilation of reaction energies, see table in the table to the
right (figure 5.5)
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3.2 Databases and model space

3.2.1 Databases

Three databases are employed in the following: atomization, chemisorption and
reaction energies.

Atomization energies: This database consists of the 148 molecules from
the G2/97 test set [38, 1]. The geometries are fixed to the MP2(FULL)/6-
31G(d) optimized geometries. The (semi) experimental atomization energies
are gained from the experimental enthalpies at 298 K and corrected for thermal
contributions and zero point energies (ZPE) as described in Ref. [38], in order to
get 0 K, ZPE-less reference values, that can directly be compared to theoretical
atomization energies. The ZPEs and thermal corrections of the molecules are
based on B3LYP geometries [113].

Chemisorption energies: This database contains 11 chemisorption ener-
gies. Ten are those used in Ref. [55] except for CO/Rh(100), the experimental
value of which had been found suspicious, in the same reference. The systems
are listed in 3.3. The slabs were set up, in the same way as described in Ref.
[55], though the geometry of the top layer and the adsorbate was optimized. In
some cases, the adsorption energy of N on Fe(100) from Ref. [91] is included in
the database, the slab is set up as described there.

Reaction energies: This database contains the energies of the following
reactions (energy to the right minus energy to the left):

H2 + CO2 � H2O + CO
4 H2 + CO2 � 2 H2O + CH4

H2 + CO2 � HCOOH
3 H2 + CO2 � CH3OH + H2O
3 H2 + CO2 � 3/2 H2O + 1/2 CH3CH2OH

10/3 H2 + CO2 � 2 H2O + 1/3 C3H8

7/2 H2 + CO2 � 1/2 C2H6 + 2 H2O
3 H2 + CO2 � 2 H2O + 1/2 C2H4

11/4 H2 + CO2 � 1/4 butadiene + 2 H2O
2 H2 + CO2 � 1/2 CH3COOH + H2O
2 H2 + CO2 � 1/2 HCOOCH3 + H2O

The reference values are semi-experimental, in that the experimental enthalpies
are taken from the NIST Chemistry WebBook [2] and corrected for zero point
energies and temperature contributions based on RPBE vibrations5

Computational details: All calculations were carried out with the real-
space multi-grid DFT code GPAW [92] that describes core regions with the
projector-augmented wave method [21]. The grid spacing of the real-space grid
was 0.16 Å. The molecules and atoms were centered in a 12x13x14 Å3 unit cell

5The reference values calculated from the reference values of the atomization energies
database (which probably yields more accurate values) deviate from the reference values that
involve RPBE vibrations by 0.02 eV, on average.

Figure 5.5: Listing of systems in
reaction energies dataset of Petzold
[2010].

• 11 chemisorption systems, with 10 of them adapted from Hammer
et al. [1999]

The addition of a dataset for respectively reaction energies and
chemisorption system provides a larger coverage of the materials
properties which the functional family is intended for than in the
previous studies. A dataset for solid state properties was however
omitted in this study.

The energy contributions of the basis functions were again based
on self-consistent PBE densities.

5.4.2 Model space

The model space was, as previous studies, a parametrization of the
GGA exchange enhancement factor. A linear parametrization of how-
ever suggested, as is the study of section 5.2. The parametrization
was made with basis functions of the following forms

fx = 1 + k � k

1 + µs2

k eqµs2/k
, (5.3)

with k = 0.804 and µ = 0.2195. The reduced density gradient s is
as in equation 2.9. q is the free parameter parametrization.

The basis functions for the model are given in figure 5.6 to the
right.
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Figure 3.1: The enhancement factor basis functions that span the GGA model
space. The five steepest of them have been found to be numerically unstable
and were removed from section 3.5 on.

basis functions satisfy three constraints: They have the right s ! 0 behavior
regarding their value as well as second derivative, and they obey the Lieb-Oxford
bound. By imposing the constraint

�
n an = 1 in (3.14), the s ! 0 limit is also

retained for the linearly combined enhancement factor, though not the Lieb-
Oxford bound. If, in the remainder of this work, there is talk of (un)constrained
enhancement factors, then it refers to the constraint

�
n an = 1. Note that

even in the unconstrained case, we cannot choose fx(s = 0) and f ��
x (s = 0)

independently of each other - an oddity we have only realized in a late stage of
the project.

We generated a pool of 49 enhancement factors corresponding to some thetas
✓0, . . . , ✓48 (see Fig. 3.1). The basis functions in Eq. (3.14) were then picked
from that pool, such that fx(n; s) means fx(✓i(n); s), n = 1, . . . , P .

3.2.3 Some technical details

All calculations with the newly constructed GGAs are performed non-self-consistently
based on a self-consistent PBE density.

For a given l : {1, . . . , P} ! {0, . . . , 48} let a = (al(1), . . . , al(P )), an = al(n)

and f = (fl(1), . . . , fl(P )), fn = fl(n). Let furthermore E
PBE\x
i be the PBE

(atomization / chemisorption / reaction) energy of the i-th point in the database
without the exchange contribution, and Ex

in the non-self-consistent fn exchange
contribution6 to that energy. Then the energy for any enhancement factor

6All the energies considered here - atomization, chemisorption, reaction - are linear
combinations of energies of di↵erent systems. The atomization energy, for instance, is
P

↵

E(�) � E(µ) with the molecule µ and the constituting atoms �. If we call E

x
sn

=
R

f

n

(s
s

(r)) �

HEG(n
s

(r)) n

s

(r) d3
r the exchange energy of system s as calculated with en-

hancement factor f

n

, then E

x
in

is calculated as E

x
in

=
P

↵

E

x
↵n

� E

x
µn

, in the case of an
atomization energy.

Figure 5.6: Basis functions of in
Petzold [2010]. Adopted from Petzold
[2010].



65

The linear model provides in principle a full coverage of the GGA
enhancement factor model space, if enough functions are included.
However, for numerical reasons only a certain number of functions
can be included, and thus having a functional space that covers the
relevant region of the s-range is important. In the parametrization
suggested, the RPBE and PBE functional are covered like Toftelund
[2006], but at the same time the model is flexible to provide enhance-
ment factors much different from these.

5.4.3 Model selection with regularization and bootstrap resampling

Using a full linear parametrization with a many parameters called for
ways to called for a smooth way to limit the model complexity, and
thus introducing least squares ridge regression with the Tikhonov
matrix for the cost function, hence RR-LS of equation 4.15 with the
Tikhonov matrix of section 4.3.4.
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3.5.4 A study of di�erent priors

Four priors are investigated in fits to the atomization energies, namely

zero: P zero(a) :=
�

n

a2
n (3.28)

cPBE: P cPBE(a) :=
�

n

(an � aPBE
n )2 (3.29)

dPBE: P dPBE
1 (a) :=

� �
f(s; a) � fPBE(s)

�2
ds (3.30)

P dPBE
2 (a) := P zero(a) (3.31)

smooth: P smooth
1 (a) :=

�
(f ��(s; a))

2
ds (3.32)

P smooth
2 (a) := P zero(a) (3.33)

where the regularization term R(a) of Eq. (3.24) is then

R(a, �1(, �2)) = �2
1P1(a)(+�2

2P2(a))

The zero prior is a common prior [115] penalizing large coe�cients an that are
often an indication of overfitting. However, for small databases, i.e., if the prior
has a big influence on the fit, the enhancement factor is drawn towards fx(s) =
0 �s. It is certainly more reasonable to have the enhancement factor tending to
PBE, if data are scarce. This is achieved with prior cPBE - the ”c” stands for
coe�cients, because in the cPBE prior the proximitity of some model a to PBE
is measured in the coe�cients space. But this prior also has an imperfection:
The prior considers the steepest basis function (cf. Fig. 3.1) as being as good
as the functions adjacent to PBE, although we have a strong feeling that it
performs worse. Or, the enhancement factor f = 0.5(f20 + f22) ⇡ f21 = fPBE is
seen to be clearly di↵erent from PBE by the prior, although both enhancement
factors can hardly be told apart, in an f vs. s plot. Measuring the distance
between enhancement factors in the coe�cient space also seems arbitrary, in
the sense that one might miss an explanation as to why the measure should be
based on the coe�cients in front of the basis functions in Fig. 3.1, and not on
those corresponding to another basis? One could hope, on the other hand, that
the prior is still reasonable enough to do a good job on our problems (which we
in fact think is the case). Therefore, a more appropriate measure seems to be
P dPBE

1 , which accounts for that di↵erence between enhancement factors, that is
directly (that is, what the ”d” stands for) visible in a plot. P dPBE

1 alone cannot
constrain all directions in the model space, though, wherefore the zero prior
is added. The fourth prior is inspired by Ref. [126]. It aims at smoothness
and therefore measures the unsmoothness of a given enhancement factor by
integrating its curvature. Again, the zero prior is needed to ensure numerical
stability.

Figure 5.7: The different regulariza-
tion priors tested in for functional.
Adapted from Petzold [2010].

For the Tikhonov matrix a number of different regularization
priors were suggested through the formulation R(a, w1(, w2)) =

w2
1P1(a)(+w2

2P2(a)) combined with different origo for the solution,
see figure 5.7 for definitions and figure 5.8 for plots.
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Figure 3.6: E↵ect of the priors (fit to the atomization energies). Left: The
coe�cients an, right: the corresponding enhancement factors. For further ex-
planation see the text.

The best fit parameters ↵ for the respective cases are

zero: ↵ = (AT A + �2I)�1AT Y (3.34)

cPBE: ↵ = (AT A + �2I)�1(AT Y + aPBE) (3.35)

dPBE: ↵ = (AT A + �2
1F + �2

2I)�1(AT Y + �2
1F

PBE) (3.36)

smooth: ↵ = (AT A + �2
1G + �2

2I)�1AT Y (3.37)

with Fnm =
�

fn(s)fm(s)ds the integral over the n-th and m-th enhancement
factors, FPBE

n =
�

fPBE(s)fn(s)ds, and Gnm =
�

f ��
n (s)f ��

m(s)ds the integral
over the second derivatives of the enhancement factors. The integration is chosen
to start at zero, the upper bound is adjusted to make F and G as least singular
as possible (the upper bounds are set to 17 and 11, respectively).

The priors’ e�ect on the best fit enhancement factor is considered first,
meaning, in the cases of the dPBE and smooth prior, �2

2 is fixed to 10�7, so that
the e↵ect of the important part of the priors is exposed. The �2

1 that minimize
the CV EPE are 0.11, 0.11, 1.0, 0.5 for zero, cPBE, dPBE, and smooth prior,
respectively. The resulting best fit enhancement factors (fit to the atomization
energies) are shown in the right graph of Fig. 3.6. The left graphs display the
corresponding coe�cients an. The enhancement factors gained with the zero
and the cPBE priors are virtually the same. Only the coe�cients look rather
di↵erent around n = 21, which corresponds to the PBE enhancement factor.
Clearly, the cPBE prior favors that factor, but the adjacent factors, which are
quite similar to PBE, can arrange in a way, that the final zero prior enhancement
factor is basically the same as that of the cPBE prior. The dPBE enhancement
factor seems to be torn between minimizing the bare cost (that is joining the

Figure 5.8: Comparing the optimal
fit of different regularization pri-
ors.Adapted from Petzold [2010].

It was found beneficial to not make any explicit constraints on the
functional.

The optimal regularization strength for each model was found by
minimizing the Bootstrap 0.632 estimation prediction error resam-
pling estimate, see section 4.4.3. With the Tikhonov regularization the
notion of effective number of parameters was furthermore introduced
as a measure of the functional complexity in the density functional
fitting context, see section 4.3.1.

CHAPTER 3. ERROR ESTIMATION FOR DFT PREDICTIONS 32

their coe�cients are plotted in the upper graphs of Fig. 3.7. The amplitude of
the coe�cients has become much smaller owing to the increased influence of the
zero prior. The dPBE fit is much smoother than it was before, the fit with the
smooth prior has not changed a lot, although its magnitude at s = 3 is reduced,
though still breaking the Lieb-Oxford bound.

The following table summarizes the MAE errors of all considered fits (note,
the models were fitted to the atomization energies only; ”a”, ”cs”, and ”r”
denote the atomization, chemisorption and reaction databases):

prior �2 aMAE (eV) csMAE (eV) rMAE (eV)
cPBE 0.11 0.119 0.225 0.141
zero 0.11 0.119 0.224 0.137

dPBE (0.6,0.03) 0.117 0.412 0.086
dPBE (1.0,10�7) 0.107 9.265 0.095
smooth (0.4,0.001) 0.121 0.176 0.188
smooth (0.5,10�7) 0.121 0.181 0.173

All enhancement factors do a very good job on the atomization energies, which
they were fitted to, and nothing spectacular is happening with the reaction
energies, which involve a subset of the molecules in the atomization energy
database. More interesting are the csMAE. Those make the dPBE appear a
very unreliable prior as compared to the others. Smooth performs best on the
chemisorption energies, although the di↵erence to cPBE and zero is not extreme
and the better performance on the chemisorption energies is accompanied by
a worse performance on the reaction energies as compared to cPBE and zero.
So, juged from this table, the priors cPBE, zero, and smooth all seem to do a
good job, dPBE is less trustworthy. Speaking in favor of the smooth prior is the
fact that the fit to the atomization energies reproduces the RPBE predictions
(which are considered to be trustworthy to about 0.2 eV) on the systems of Sec.
4.1 significantly better than the fit with the cPBE prior - see Fig. 3.16 and
the black data of Fig. 3.15 for the predictions made for those systems by the
best fit functional to the atomization energies with the smooth and cPBE prior,
respectively.

3.5.5 A self-consistent fit to the atomization energies

Note: In the course of the thesis writing, a bug in the GPAW code has been discovered

that makes the the self-consistent calculations with the new functional inaccurate, though not

completely invalid. Since the project of paper 2 was concerned by that bug as well and the

main authors had the time to redo their calculations, we can use their experience to asses how

the results are influenced. In general, the bug has a limited impact and makes the non-self-

consistently obtained results looking less accurate than they actually are.

So far, all optimizations were done non-self-consistently (nsc). We picked
the model with the smooth prior and �2 = (0.4, 0.001) to find an enhancement
factor that works self-consistently (sc) well. We will see that the nsc fit does a
relatively poor job if applied self-consistently8. The search for the sc fit procedes

8At least partly due to the bug.

Table 5.2: Comparing mean absolute
error for atomization energies (eMAE),
chemisorption (csMAE) and reaction
energies (rMAE) datasets for different
regularization priors. All functionals
were fitted to the atomization energies
only. Adapted from Petzold [2010].

The different regularization methods were compared by fitting
to the atomization energy dataset and evaluating on the atomiza-
tion, chemisorption, and reaction energy datasets, see table 5.2. It
was found that the smoothness Tikhonov matrix were most effec-
tive at ensuring transferability from the atomization energies to the
chemisorption dataset. The transferability for the smoothness model
to the reaction energies was worse than for the alternative methods.
The reaction energies dataset is however very similar to the atomiza-
tion energies, and the dataset is reasonably described by the smooth
model, whereas the dPBE is performs very bad for the chemisorption
systems. The smooth function compared to the cPBE and zero meth-
ods were overall similar average performance, but with emphasis on
either chemisorption energies or reaction energies.
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5.4.4 Model compromise for multiple datasets

The inclusion of multiple datasets for fitting in the study raised the
question for what compromise between the optimal model to the
different datasets to make. This problem was addressed indirectly
looking at how to create a better ensemble for both the G2/97 dataset
and the chemisorption dataset after a fitted model was created. For
two datasets, a ratio between how well the ensemble should repro-
duce errors of one or the other datasets were introduce as a measure
of this. This provided for a handle were the ensemble that performed
best to ones liking could be chosen.

5.4.5 Discussion

The study in Petzold et al. [2012] illustrated how the machine learn-
ing tools could be used to ensure that a transferrable functional
could be created in a highly flexible model space, through the use
of smoothness regularization and bootstrap resampling. The smooth
fit made to the G2/97 dataset is presented in figure 5.9 along with
the result of using the fit with ensemble on the ammonia synthesis.
The ensemble can be seen to widen out at about s = 2-2.5, indicating
that not much information is available about that region in the cost
function, which in agreement with the earlier observation that the
relevant s region is 0-3.
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Figure 5.9: Left: The smooth fit to
G2/97. The black line in the middle
is the fit. the ensemble is in yellow
and the one standard deviation of the
ensemble is given as the surrounding
black lines. Right: In black the results
of the smooth fit with error bars for the
different steps in Ammonia synthesis.
Adopted from Petzold [2010] where
more details can be found.

The inclusion of several datasets highlighted that an approach for
properly treating the compromise between fitting different materials
properties are called for. Going for more than two datasets will make
the process of deciding a ratio between reproducing the error of
different datasets

In the study the functional with ensemble was used to assess the
reaction path uncertainty of ammonium synthesis. This study high-
lighted how that the bayesian error estimation ensemble for function-
als in the future would bring valuable insights on the uncertainty in
catalysis design screening studies for chemical processes.



6 The BEEF-vdW functional 1

1 This chapter is based on the study
of Wellendorff, J. and Lundgaard, K.
T. and Møgelhøj, A. and Petzold, V.
and Landis, D. D. and Nørskov, J.
K. and Bligaard, T. and Jacobsen, K.
W., "Density functionals for surface
science: Exchange-correlation model
development with Bayesian error
estimation", Phys. Rev. B 85 (2012), pp.
235149.

In the following the BEEF-vdW study will be presented, in which we
set out to to use the learnings of the previous studies and create a
functional competitive equally costly functionals for surface science.
The fitting procedure expanded upon the datasets, the ingredients of
the model, and the model selection.

For the model space, a full parametrization of the GGA space
was done similar to Petzold et al. [2012], but in a basis where full
orthogonally were insured, such that a very flexible model would be
possible with limited numerical issues. This parametrization were
made in a transformation of the reduced density gradient such that
the flexibility foremost would be in the energetically relevant part of
the parameter space. In addition the correlation was expanded to be
a mixture of local, semi-local and non-local correlation functionals.

Several new datasets were introduced for training the model. The
training data were now to include many more of the types of sys-
tems that are modeled in surface science studies, with the intention
of much more deliberate ensuring that the functional were to be op-
timize to perform good in real use cases. This also allowed for a full
benchmark against alternative functionals in a much more broad way.
Furthermore, a number of validation studies were introduced, which
provided further understanding of the BEEF-vdW functional and it’s
alternatives.

For the model selection the introduction of many datasets pro-
vided that we should take more systematically approach to the com-
promise between how well to describe different materials properties.
This was done in a two step fitting procedure: First by finding the
best fit to the individual materials properties; and in the second step,
making a compromise between the fits to the individual datasets.

In the following the above workings will be described in more
details, and in addition a outline for further investigation will be
made, similar to the previous presentations - which will set the scene
for the next study in the BEEF functional series.
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6.1 The parametrized GGA+vdW model space

We employed a model space for the BEEF-vdW with a mixture of a
full parametrization of the exchange enhancement factor, and for the
correlation a sum of a local, semi-local and non-local functionals from
the litterature. This was to insure that the exact limits of the func-
tional could easily be enforced, while providing a much more flexible
model space.

The parametrization of the enhancement factor followed the proce-
dure of Petzold et al. [2012] for making a parametrization that would
be highly flexible, and then afterwards use machine learning tools to
constrain the model. The GGA exchange energy is therefore given as
EGGA

x [n, rn] =
´

#HEG
x (n)Fx(s)n(r)dr .

We decided to expand the exchange enhancement factor in a Leg-
endre polynomial series within a transformation of the reduced den-
sity gradient. The transformation is

t(s) =
2s2

q + s2 � 1 , �1  t  1,

with q = 4 and the Legendre polynomial expansion was given as

Fx(s) = Â
m

amBm(t(s)).

The Legendre polynomial basis within the transformation is illus-
trated in the figure to the right (figure 6.1).
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Figure 6.1: Legendre polynomial
exchange basis functions Bm(t(s))
illustrated for polynomial orders 0 to
6. Adopted from the supplementary
material of Wellendorff et al. [2012].

The transformation is a Padé approximant that was selected to
almost be that of the PBE functional.2 So that choosing Fx(s) :=

2 see Perdew et al. [1996a]

1.4 + 0.404 · t(s) with q := k/µ = 0.804/0.21951 ⇡ 3.663 would be that
of the PBE exchange enhancement factor. For this is should also be
noted that the q value of PBE is not chosen to fulfill the slowly vary-
ing electron gas, but this is however the case for the PBEsol exchange
functional.

The total GGA exchange energy were by the former definitions
given as

EGGA
x [n, rn] = Â

m
am

ˆ
#UEG

x (n)Bm(t)n(r)dr

= Â
m

amEm [n, rn] ,

where Em is the exchange energy corresponding to the basis func-
tion Bm.

The parametrization of the correlation energy GGA functional
space is not as simple as for the exchange, which only makes the
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parametrization in a single parameter. The parametrization of the
correlation energy functional was therefore given in already establi-
hed correlation functionals, hence

Ec [n, rn] = acELDA
c + (1 � ac)EPBE

c + Enl
c ,

where the LDA correlation is mixed with the PBE semi-local corre-
lation through the parameter ac, with the full non-local correlation of
vdW-DF2. 3

3 LDA of Perdew and Wang [1992], PBE
of Perdew et al. [1996a] and the vdW
correlation of Lee et al. [2010].

The total exchange correlation model space was therefore given in
the form

Exc =
Mx�1

Â
m=0

amEm + acELDA
c + (1 � ac)EPBE

c + Enl
c ,

where Mx = 30, and the total number of fitting parameters is 31.
Within the model space, aside from the q value, the common con-
straints of the GGA exchange could be invoked. This includes the
uniform electron gas limit Fx(0) = 1 and recovery of the correct gra-
dient expansion for slowly varying densities, and the Lieb–Oxford
bound. Fx(s ! •) = 1.804 for large electron density gradients
and/or small densities. The sum of LDA and PBE correlation is fur-
thermore constrained to unity, and to fulfill 0  ac  1.

6.2 The exchange-correlation model selection

We chose to do the fitting procedure, as before mentioned, in a two
step process. Where the first is individual fits to the datasets, and the
second to make a compromise between the first.

6.2.1 Fitting individual materials properties

The RR-LS cost function was used for the individual datasets. For the
exchange enhancement factor, we employed a Tikhonov regulariza-
tion with smoothness defined in the t(s) transformed space. By this
we would insure that the model were regularized accordantly to how
we expected a reasonably exchange model to be. Ones were inserted
in the diagonal of the Tikhonov matrix matrix for the zero and first
order exchange enhancement polynomials and for the correlation
LDA-PBE mixing parameter.

The origo of the solution for the exchange enhancement factor was
Fx(s) := 1.4 + 0.404 · t(s) - hence very similar to that of PBE exchange.
The origo for correlation was ac = 0.75, thus having 0.75 LDA corre-
lation and 0.25 PBE correlation.
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The model complexity was found using the bootstrap .632 proce-
dure with 500 random generated samples made individually for each
regularization strength. As the regularization of the s22x5 systems for
long distances gave solutions with many parameters that seemed to
unphysical, we made the restriction that Fx(s ! •) � 1, which
resulted in tuning up the regularization strength in fitting these
datasets.

The expectation values were given as non-self-consistent results
on RPBE densities; and RPBE geometries when geometries were not
given from the reference data.



71

6.2.2 The individually trained exchange-correlation models

The result of the fitting procedure for the dataset used in the study
are given in the table 6.3 to the right, and the exchange enhancement
factor are provided in the figure 6.2 below.

70 A Semi-empirical Approach to Density Functional Development

Table 7.1: Model selection results of individually training the XC model in (7.5)
to 10 different datasets. Meff is the effective number of parameters in a model, see
(7.23). The s = 0 and s ! 1 limits of the obtained exchange enhancement factors
are also shown. MSD, MAD and STD are mean signed, mean absolute, and standard
deviation, respectively, all in meV. Note that these are non-selfconsistent results.

↵
c

Meff F
x

(0) F
x

(1) MSD MAD STD

CE17 0.90 4.7 0.97 2.15 �10 96 116
RE42 1.00 4.2 1.06 1.21 19 168 207
DBH24/08 0.00 3.7 1.14 3.14 1 116 142
G2/97 0.27 7.2 1.10 2.53 �13 109 149
Sol34Ec 0.00 7.7 0.97 1.25 �4 168 208
S22x5-0.9 0.81 3.2 0.96 1.68 0 9 11
S22x5-1.0 0.82 3.1 0.98 1.87 0 8 10
S22x5-1.2 0.40 5.7 1.04 2.38 0 4 6
S22x5-1.5 0.85 4.0 1.02 1.91 �1 3 4
S22x5-2.0 1.00 3.3 0.95 1.37 2 3 3

DBH24/08, G2/97, and Sol34Ec datasets, as well as the five S22x5 subsets (all intro-
duced in Section 4.1). Each model is therefore trained on a single materials property
only, and their features differ significantly.

The DBH24/08 set appears to favor GGA exchange that substantially violates the
LDA limit (F

x

(0) = 1.14) along with inclusion of full PBE correlation (↵
c

= 0). The
model furthermore overshoots the LO bound significantly (F

x

(1) = 3.14). The XC

Figure 7.3: Exchange enhancement factors of the individually trained XC models
listed in Table 7.1.

Table 6.1: The model selection results
for the individually training datasets.
Me f f is the effective number of param-
eters. MSD, MAD and STD are mean
signed, mean absolute, and standard
deviation, respectively, all in meV. The
results are non-selfconsistent.

The procedure is hence applied to molecular, solid state, surface
chemical, and vdW dominated energetics as represented by the CE17,
RE42, DBH24/08, G2/97, and Sol34Ec datasets, as well as the five
S22x5 subsets.
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Figure 6.2: Exchange enhancement
factors of the individually trained XC
models listed in table 6.1.

For model to DBH24/08 it is favorable with a GGA exchange that
substantially violates the LDA limit (Fx(0) = 1.14) along with inclu-
sion of full PBE correlation (ac = 0). The model furthermore over-
shoots the Lieb-Oxford bound (LO) significantly (Fx(•) = 3.14).
The exchange-correlation to the G2/97 set shows similar trends
for the GGA exchange and PBE correlation, but it is less extreme.

The former are dramatically different from the Sol34Ec cohesive
energies. The GGA exchange is starting from below Fx = 1, and then
reaching a maximum at s ⇡ 2, and finally declining slowly towards
Fx = 1.25. The model optimized for the cohesive energies uses full
PBE correlation. As was previously noted, only s-values up to about
2.5 are of energetically importance, and that the GGA exchange for
some of the models exceeds the LO bound for high s-values is there-
fore not expected to have a significant importance, however for the
models where this is the case, a significant breaking of the LDA limit
is also observed.

The remaining of datasets in Table6.1 has optimized exchange-
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correlation models that are more alike that of the common GGA
functionals, with all exchange enhancement factors starting out
near the LDA limit and intermediate correlation mixing parameters.
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Figure 6.3: The relative standard
deviations obtained when non-self-
consistently applying the exchange-
correlation models found individually
for each training dataset, listed on the
abscissa, to all 10 training datasets
along the ordinate.

To test the transferability of the individual models for the datasets
all models for the individual training were applied on all other train-
ing sets. For comparing the transferability we reported the relative
root mean square deviation, denoted rSTD for relative standard de-
viation, for all individually optimized models to all the datasets, see
figure to the right.

The rSTD is thus a measure of model transferability and the di-
agonal in the figure, from bottom left to top right, is, by definition,
ones. The map features two distinct areas of mostly reddish squares:
To the far right, the S22x5- 2.0 model yields rSTD > 5 for all other
sets than DBH24/08, and rSTD 28 for S22x5-0.9. Furthermore, a 5 ⇥ 4
square in the top left corner illustrates that exchange-correlation
models trained on chemical or solid state datasets perform signifi-
cantly worse on vdW type energetics, than models fitted to the latter.
The S22x5-2.0 rSTDs are largely unaffected by changing exchange-
correlation models (top horizontal row). We propose that the small
density–density overlap between many of the S22x5-2.0 complexes
combined, means that the nonlocal correlation is most important for
these systems, and in all 10 models the none-local correlation is the
same.

The individually training dataset optimized models, fitted with the
method described earlier, is capable of providing models that shows
much better statistics than functionals of the same model complexity
provided in the litterature.4 However it is found that the transferabil- 4 For comparison see the statistics of the

benchmark provided in the following.ity of the optimized functionals between the training datasets are in
many cases bad, see figure 6.3, this is however especially observed to
and from the low density-density overlapping systems of S22x5.
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6.3 Compromise model for several materials properties

In the BEEF-vdW study it was chosen to make a model compromise
using the cost functions for the individual datasets, given in equation
4.51. The optimal model would be one where decreasing the cost
on one dataset would increase the relative cost on the other datasets
commutative more. The model compromise is therefore that of the
product of the individual costs of the datasets, provided as the first
model compromise in the machine learning chapter.

The compromise between the cost of two datasets for the optimal
model using the product of the costs procedure is illustrated in the
figure 6.4 to the right.
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Figure 6.4: Main panel: The exchange-
correlatoin model compromises be-
tween the G2/97 and S22x5-1.0 datasets
illustrated in terms of relative costs
(rCost) for both sets when the weight
fraction f = W [G2/97]/W [S22x5 � 1.0]
is varied and the summed cost func-
tion is minimized where the weight
is given by the fraction. A red dot
marks the point of equal rCost.
The fact that an XC model with
rCost[G2/97] = rCost[S22x5 � 1.0] = 1
is not obtainable which illustrates the
necessity of a model compromise.
Insert: The product of relative costs
display a minimum (blue dot) for a
certain weight fraction.

The plot shows how optimizing for one property will severely in-
crease the relative cost on the other property, where the properties
are quantified by the fit to a dataset. For the product of the cost mini-
mum it is observed that a the fraction between the two properties in a
cost function that is the sum of the two cost functions is relatively flat
around the optimum.

6.4 The BEEF-vdW functional

76 A Semi-empirical Approach to Density Functional Development

Table 7.2: The BEEF-vdW model compromise. The effective weight in determining
the XC model solution is w/C for each dataset, as iteratively found from minimizing
the product cost function (7.14). The relative standard deviation (rSTD) is the ratio
of the STD at the BEEF-vdW compromise to the STD at the regularized individual
solution in Table 7.1. The relative cost (rCost) are defined similarly, but includes
regularization, see Eq. (7.13).

w w/C rCost rSTD

CE17 1.0 1.80 1.7 1.3
RE42 0.5 0.62 2.5 1.8
DBH24/08 1.0 0.65 4.9 2.3
G2/97 0.5 0.62 2.6 1.6
Sol34Ec 1.0 0.43 7.5 2.8
S22x5-0.9 0.1 0.01 28.6 5.4
S22x5-1.0 0.1 0.04 9.1 2.9
S22x5-1.2 0.1 0.09 3.5 2.1
S22x5-1.5 0.1 0.08 4.1 2.1
S22x5-2.0 0.1 0.18 1.8 1.5

with some of the data in G2/97. Both weights were therefore lowered to 0.5. The
same reasoning applies to the S22x5 subsets, where the same complexes are found in
all five subsets, albeit at different interaction distances. A weight of 1/5 = 0.2 on each
S22x5 subset would therefore be natural, but for reasons of performance of the final
functional, constant weights of 0.1 were chosen.

The resulting model compromise is also tabulated in Table 7.2, showing the effective

Figure 7.6: The BEEF-vdW exchange enhancement factor compared to those of a
few standard GGA exchange functionals. The corresponding BEEF-vdW correlation
functional is composed of 0.6 LDA, 0.4 PBE, and 1.0 nonlocal correlation.

Table 6.2: The BEEF-vdW model
compromise overview. The effective
weight in determining the exchange-
correlation model solution is w/C for
each dataset, as iteratively found from
minimizing the product cost function.
The relative standard deviation (rSTD)
is the ratio of the STD at the BEEF-
vdW compromise to the STD at the
regularized individual solution in Table
6.1. The relative cost (rCost) is again
relative to the individual fit where
the the regularization strength of the
individual fit is used.

The BEEF-vdW functionals was designed with the weights on the
individual datasets given in table 6.2. The weights were modified to
take into account for how important the different materials proper-
ties are and how much different datasets were describing the same
property. The RE42 set is based on G2/97 molecules, and the data in
RE42 is therefore correlated with some of the data in G2/97, and it
was therefore decided to weight those two datasets by each one half.
Similarly for the S22x5 subsets, where the same complexes are found
in all 5 datasets. The weight was set to half of the natural weight for
these datasets, 1/5 = 0.2, as it was observed that this would benefit
the functional towards being better for surface chemistry.

The parameters to the resulting functional are provided in ta-
ble 6.2, showing the w/C, rCost, and rSTD for all the datasets used
in training the model. The is observed that the model compromise
model is significantly worse for the S22x5-0.9 dataset than the indi-
vidually trained model, which is both made visible in the relative
cost and in the relative STD. The rest of the S22x5 set is much more
adaptable to the compromise model, and on the same level of relative
STD as the solids dataset and the barriers.

The expansion coefficients for the BEEF-vdW functional is given
in table 6.3. It is here seen that the smoothness regularization as
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expected suppresses the higher order polynomials. The correlation
consist of 0.6 LDA and 0.4 PBE, and the non-local correlation of vdW-
DF2.

7.3 XC model selection and model compromises 77

Table 7.3: Expansion coefficients a
m

for the BEEF-vdW Legendre exchange basis
functions B

m

. The correlation mixing parameter, ↵
c

in (7.5), is 0.6001664769.

m a
m

m a
m

0 1.516501714 15 �8.018718848⇥10�4

1 4.413532099⇥10�1 16 �6.688078723⇥10�4

2 �9.182135241⇥10�2 17 1.030936331⇥10�3

3 �2.352754331⇥10�2 18 �3.673838660⇥10�4

4 3.418828455⇥10�2 19 �4.213635394⇥10�4

5 2.411870076⇥10�3 20 5.761607992⇥10�4

6 �1.416381352⇥10�2 21 �8.346503735⇥10�5

7 6.975895581⇥10�4 22 �4.458447585⇥10�4

8 9.859205137⇥10�3 23 4.601290092⇥10�4

9 �6.737855051⇥10�3 24 �5.231775398⇥10�6

10 �1.573330824⇥10�3 25 �4.239570471⇥10�4

11 5.036146253⇥10�3 26 3.750190679⇥10�4

12 �2.569472453⇥10�3 27 2.114938125⇥10�5

13 �9.874953976⇥10�4 28 �1.904911565⇥10�4

14 2.033722895⇥10�3 29 7.384362421⇥10�5

dataset weight w/C, rCost, and rSTD for all datasets used in model training. It is
clearly seen that especially the S22x5-0.9 interaction energies are hard to fit simulta-
neously with the other sets within the XC model space employed here: The relative
cost for the set is high, allowing the model to adapt mostly to the other datasets by
lowering w/C for this set. This is furthermore reflected in the rSTD of 5.4, indicating
that the BEEF-vdW performance on this dataset is significantly worse than obtained
in the individual fit to the S22x5-0.9 complexes reported in Table 7.1. Even so, the
remaining S22x5 subsets appear to share XC model space with the datasets repre-
senting formation and rupture of interatomic bonds to a significantly greater extent.
Therefore, even a reasonably accurate description of the balance of strong and weak
interactions in the S22x5-0.9 complexes is nearly incompatible with at least one of the
other sets of materials properties, when demanding well-behaved DFAs in the present
model space.

Table 7.3 lists the BEEF-vdW expansion coefficients. The suppression of high-order
solution coefficients by the Tikhonov regularizer is clearly seen. The correlation func-
tional consists of 0.6 LDA, 0.4 PBE, and 1.0 nonlocal correlation. The qualitative
shape of the BEEF-vdW exchange enhancement factor is shown in Fig. 7.6, with
s = 0 and s ! 1 limits of 1.034 and 1.870, respectively. Thus, BEEF-vdW exchange
does not exactly comply with the LDA limit for s = 0, but is 3.4% higher. The en-
hancement factor is above most GGA exchange functionals up to s ⇡ 2.5, from where
it approaches the LO bound with a small overshoot in the infinite limit.

The lack of exact fulfillment of the LDA limit for exchange indicates a conflict between
this limit, the training data, and the employed preference for smooth exchange models.

Table 6.3: Expansion coefficients am
for the BEEF-vdW Legendre exchange
basis functions Bm. The correlation
mixing parameter, ac was 0.6001664769.
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Figure 6.5: The BEEF-vdW exchange
enhancement factor compared to those
of a few standard GGA exchange
functionals. The corresponding BEEF-
vdW correlation functional is composed
of 0.6 LDA, 0.4 PBE, and the vdW-DF2

nonlocal correlation.

In figure 6.5 we see the the exchange enhancement factor plotted
with a couple of GGA functionals that we find relevant comparisons.
It is observed how the shape is very different in that does not fulfill
the LDA limit, but follows the steepest functionals up for thereafter
to level off. The limits for s = 0 and s = • are 1.034 and 1.870,
respectively.
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6.5 The Bayesian error estimate

A Bayesian error estimating ensemble of functionals were created,
using the formalism of section 4.3.2. The ensemble yet again con-
firms that the loss function only provide guidance for the functional
for s up to around 2.5, after this the ensemble spreads out, and it is
only the regularization that is defining the behavior. It can also be
observed that the uncertainty of the functional around the LDA limit
includes for one standard deviation the LDA limit. The correlation is
within one standard deviation within the bounds of 0  ac  1.
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Figure 6.6: The bayesian ensemble of
the exchange-correlation functionals
around BEEF-vdW. In the main panel
the Black solid line is the BEEF-vdW
exchange enhancement factor, while
the orange lines depict Fx(s) for 50

samples of the randomly generated
ensemble. Dashed black lines mark
the exchange model perturbations
that yield DFT results ±1 standard
deviation away from BEEF-vdW results.
The insert provides a histogram of the
distribution of correlation parameters in
an ensemble containing 20,000 samples.
The distribution is centered around
ac = 0.6.

In table 6.4 we compare the resulting error estimations of the
training datasets with the actual errors for the datasets when the
BEEF-vdW functional is applied self-consistently. The estimates are
of varying quality, however for all of them they provide a order of
magnitude error for the materials property error. The quality of the
BEEF-vdW error ensemble estimations can be put in perspective to
that no other systematic error estimates are currently available to our
knowledge. In Wellendorff et al. [2012] we illustrates how one can
use calculations of different functionals to estimate the error. How-
ever it was observed that the ensemble provided a comparable view
of the actual errors, but with the benefit of being much computa-
tional cheaper and systematic.

7.4 Bayesian error estimation enesemble 81

Table 7.4: Comparison of self-consistent BEEF-vdW standard deviations to those
predicted by the ensemble of functionals around BEEF-vdW. All energies in meV.

BEEF-vdW Ensemble estimate

CE17 143 209
RE42 372 253
DBH24 331 144
G2/97 242 312
SolEc34 576 436
s22x5-0.9 171 197
s22x5-1.0 94 181
s22x5-1.2 36 137
s22x5-1.5 8 67
s22x5-2.0 5 18

G2/97, and S22x5-0.9 datasets, while the ensemble underestimates the errors for RE42,
DBH24/08, and Sol34Ec. For the remaining S22x5 subsets the error estimates are too
large.

Importantly, Fig. 7.8 illustrates strengths and weaknesses of the present approach to
error estimation. Many of the reaction energies are accurately reproduced by BEEF-
vdW and the ensemble estimates a relatively small error on those data. However,
some of the reactions for which BEEF-vdW yields larger errors are assigned too small
error bars. The water-gas shift reaction CO+H2O!CO2+H2 is one of these. The
reason for this is indicated by the fact that all tested GGA, MGGA and vdW-DF type
functionals yield nearly identical reaction energies for this reaction. One simply has
to move rather far in XC model space to find a functional that predicts a reaction
energy significantly different from the BEEF-vdW result. This causes the ensemble to
underestimate the actual error for that reaction. Since the hybrid functionals appear
to break the overall trends observed for the lower-rung functionals in Fig. 7.8, inclusion
of exact exchange in the model space might remedy such limitations of the BEEF-vdW
functional and its Bayesian ensemble.

Table 6.4: A comparison of the
self-consistent BEEF-vdW standard
deviations to those predicted by the
Bayesian error estimating ensemble of
BEEF-vdW. All energies in meV.
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6.6 Assessment of BEEF-vdW functional

An extensive benchmark overview was created, where the BEEF-vdW
functional was compared to other commonly used semi-local func-
tionals and the hybrid functional B3LYP. Furthermore several quali-
tative studies were provided to show how the functional performed
in relevant surface science studies, where higher level reference data
of other functionals are available. In this thesis however, the main
point is to present the fitting procedures for exchange-correlation
functionals and provide a throughout assessment of those. Therefore
only a single assessment plot will be given her, as we believe that
it is representative for the functional within this context, and fur-
ther benchmark for the includes BEEF-vdW in the following chapters.

In figure 6.7 a barplot with the Mean absolute error for the bench-
mark datasets with self-consistent BEEF-vdW calculation results, as
well as results for the functionals that we in the study found most
relevant to compare to.5 5 See calculation details in Wellendorff

et al. [2012].
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the accuracy of different density func-
tionals in predicting various materials
properties. For each dataset, the bars
illustrate proportionally scaled mean
absolute deviations. B3LYP calcula-
tions were not performed for extended
systems.

The overview illustrates that the BEEF-vdW overall performs well
compared to current functionals. The functionals given by type
are GGA: PBE and RPBE; revTPSS is a meta-GGA; vdW-DF, vdW-
DF2 and optB88-vdW are of GGA+vdW; and B3LYP is a hybrid.6 6 PBE in Perdew et al. [1996a], RPBE

in Hammer et al. [1999]; revTPSS in
Perdew et al. [2009]; vdW-DF, vdW-DF2

and optB88-vdW in Dion et al. [2004],
Lee et al. [2010], Klimes et al. [2010];
B3LYP in Stephens et al. [1994].

A number of the datasets have been expanded in the bench-
mark, and the reason for not using them as training sets were due
to them not being available when the BEEF-vdW fit were made.7

7 See chapter 3 for more details on the
datasets.

The performance comparison to the other functionals can be ob-
served to match how the weighting to the different training sets were
done. A good performance is achieved on G3, where the performance
outliers comes from that a subset of the G3 are of very large systems
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that can skew the statistics. It is noted that the BEEF-vdW functional
was fitted to the G2/97 dataset, but it was found that this was very
transferable to the atomization energies of the G3 dataset. The BEEF-
vdW performs almost equal to the RPBE for CE27 and for the RE42,
which was hoped for. The performance in s22x5 on the level of vdW-
DF but it not as good as the OptB88-vdW functional that has been
specifically optimized for this dataset. The solid state performance is
given in by the Sol27Ec (cohesive energies), and the lattice parameters
of Sol27LC. For these it is seen that the BEEF-vdW performs signifi-
cantly worse than the PBE and revTPSS, that both to a much higher
degree fulfills the slowly varying electron gas limit.

6.7 Summary and discussion

The BEEF-vdW functional study illustrated how to bring earlier
insights together fit a general applicable functional.

6.7.1 The strengths of the BEEF-vdW study

What foremost made the BEEF-vdW study different from the former
Bayesian error estimating functional studies was the number of mate-
rials properties that was covered in the training sets. For the first time
we had a full coverage of most of the relevant surface science proper-
ties in the training datasets. This allowed use to see how the different
properties were to be describe in the model space of GGA exchange
with GGA+vdW non-local, and further how a compromise could
come together for simultaneously treating all these properties at the
same time.

For the fitting the individual datasets, the machine learning tools
that was presented in Petzold et al. [2012] were fully put in use.
This included Tikhonov regularization with a smooth basis, and
with the model complexity given by minimizing the Bootstrap 0.632

estimated predicted error resampling estimator. However, with a
transformation of the s parameter with a Padé approximant the
smoothness was defined in a way that matches the expectation for
the final functional. Furthermore, the usage of the a Legendre poly-
nomial basis within the transformed s parameter space, ensured
would be able to reach a higher complexity that previous, if needed.
And, the correlation of a mixture between the LDA and PBE corre-
lation illustrated a simple way to form a correlation functional to
match the vdW non-local functional to exceed the performance of it.

The model compromise of this study, for the first time to our
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knowledge, illustrated how a more systematic and transparent
view on the weighting of the different materials properties could
be done for the fitting of an exchange-correlation functional; where
the weights of the different materials properties were not to be set
by intuition of the creators, but by explicitly stating how much we
wish to optimize for individual properties through the product cost
weights.

Again it was clear that not fulfilling the LDA limit makes sense for
these fitted functionals, as the performance penalty would be very
big if that constraint were to be restricted.

Lastly the study also provided a full benchmark for the functional
to easily enable a comparison to other relevant functionals.

6.7.2 Limitations of the BEEF-vdW study

There were however also a number of issues number of limitations in
the study that should be highlighted.

In the study the datasets used in the benchmark of the different
functionals were largely extended compared to the training datasets.
This made it possible to validate the transferability of the optimal
functional. However it would have been better if the extra data were
to be used in training the data, and then having the cross-validation
algorithm ensure that the model were to be constrained throughly.

It also becomes apparent that fitting the G2 or G3 datasets and
evaluate on this dataset is not a good validation of the overall per-
formance of a fit. In the G3 datasets (concealing the G2) a number of
large carbon chains makes functionals such as the OptB88-vdw come
out very bad as it has not been optimized for these systems. How-
ever this functional is able to capture the relevant molecular reaction
chemistry through the RE42 dataset, which is what is relevant for
surface science studies.

For the GGA-vdW model space it was also observed that the bar-
riers could not be properly described in the model space. It is known
that the hybridization happening in molecular transition states in-
flicts a high degree of self-interaction if not a self-interaction free
functional is used. Furthermore, it was observed that the optimized
functional for this dataset were very different from the optimal mod-
els to the other datasets. It was most comparable to the G2 optimal
fit, which following the discussion from the previous paragraph
is not in high standing either. It could therefore be argued that in
the current form of the model compromise, such a dataset should be
omitted.
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The performance of the functional was heavily limited by the ex-
change model space, which was also known from the previous stud-
ies of the Bayesian error estimating functionals. The improvements
in performance that was gained overall, compared to the function-
als that were benchmarked against, we attribute to a different opti-
mization criteria combined with not fulfilling the LDA limit of the
exchange enhancement factor and having a mixed correlation of LDA
and GGA. It is well understood that the meta-GGA functional space
would make it possible to create a higher performing functional, with
only a modest gain in computational overhead.

A more flexible correlation parametrization would also be pre-
ferred. Holding the sum of the LDA and GGA correlation equal to
one does not make us fulfill the LDA limit as the exchange factor is
not constrained in the limit, so this limitation of the parametrization
could harm the performance of the optimized functional, while not
providing the theoretical justification that was intended by making it.

For the model selection, the following limitations should be
mentioned. For the individual fits it was observed that for several
datasets, the Bootstrap procedure did not provide an optimal model
complexity. However, following the study it was found that there was
an error in the implementation of the ERR in the bootstrap EPE esti-
mation, where the loss function was that of the variance, and thus the
function did not take the bias into account. It is not expected that this
problem had a significant negative effect on the BEEF-vdW functional
solution, as the additional constrain of Fx(•) > 1 were added to
S22x5, and because of the final model compromise. In the study new
samples were made for every regularization strength, which is not
optimal as explained in the machine learning chapter. However this
is not expected to have influenced the model complexity optimum,
as it was countered by using many bootstrap samples, and by careful
oversight.

The use of the model compromise in the form of the product of
the cost functions of the individual datasets was that of a compro-
mise, and it did not use the full information at hand to provide a
maximum likelihood solution for the full problem. The compromise
did yield a well performing functional, and for this model space. If
one datasets’s individual fits would have had a very high regular-
ization associated with it, then it would have made the compromise
model much more constrained too.

A last limitation, that was not addressed in the BEEF-vdW model
fit, was the effect of self-consistent of the fit. It was observed that the
root mean square deviation on the sum of S22x5 increase by about
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50% from the prediction of the fit to the self-consistent results. In
Petzold [2010] it was argued that fitting on the results of the current
BEEF-vdW densities would have lead to close to a convergence be-
tween the non-self-consistent results and the self-consistent results. A
further investigation of this would have added clarity to this issued,
and insured that the final fit would indeed be the optimal fit in terms
of self-consistent model predictions.



7 A meta-GGA Bayesian Error Estimation Functional

We will now take a look at the next functional of the BEEF class,
called mBEEF. Most notably this functional is optimized in a parametriza-
tion of the Meta-GGA model space, and the model compromise is
that of the geometric mean loss function of the datasets. These ex-
tensions were made to overcome many of the limitations that were
observed in the development of the BEEF-vdW functional.

In this chapter we look into the details on the methodology of
the mBEEF functional, and see how it is benchmarked against other
functionals, similar to the BEEF-vdW study. Furthermore we will
take a look at a qualitative study of the mBEEF functional, where
it can be observed how the different rungs of Jacobs Ladder dictate
what accuracy can be achievable within the normal formalisms.

7.1 The model space

For the mBEEF functional we created a full parametrization of meta-
GGA (MGGA) exchange energy. We define the model space follow-
ing the definitions given for the MGGA exchange rung on Jacobs
ladder in the DFT chapter.

For the MGGA exchange factor we therefore write that Fx(n, rn, t) =

Fx(s, a), and the model space is expanded in P Legendre polynomials
B depending on s and a by the transformations ts and ta given here:

ts(s) =
2s2

q + s2 � 1,

ta(a) =
(1 � a2)3

1 + a3 + a6 ,

Pmn = Bm(ts)Bn(ta),

Fx(s, a) =
M

Â
m=0

M

Â
n=0

amnPmn,

where M = 7 and we therefore have Mtot = (M + 1)2 = 64
exchange basis functions with expansion coefficients amn. Both ts

and ta are confined to the interval [�1, +1], such that the Legendre
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polynomial expansion is fully orthogonal. We choose q = k/µ =

0.804/(10/81) = 6.5124 in the ts transformation, and it is therefore
given as a Padé approximant to the PBEsol exchange enhancement
factor. The PBEsol exchange transformation was chosen for the s
parameter because it makes it easy to reproduce a functional with
the exact constraint of the LDA limit, and for the slowly varying
electron gas gradient expansion around s = 0. The transformation ta

is likewise chosen so that the second order gradient expansion could
be fulfilled.1 The full exchange energy expansion is of the form 1 See

Jianwei Sun, Bing Xiao, and Adrienn
Ruzsinszky. Communication: Effect of
the orbital-overlap dependence in the
meta generalized gradient approxima-
tion. The Journal of chemical physics, 137

(5):051101, August 2012b. ISSN 1089-
7690. doi: 10.1063/1.4742312. URL
http://www.ncbi.nlm.nih.gov/pubmed/
22894323

Exc =
M

Â
m,n

amnEmn
x + EGGA

c ,

= xaT + EGGA
c ,

where x is a vector of the exchange basis function energy contribu-
tions. The correlation energy functional EGGA

c is that of PBEsol.

7.2 Training datasets

In this study the number of datasets were limited to five, for which
some had been updated or slightly modified since the BEEF-vdW
study.

The datasets are the G3/99 molecular formation energies, and the
related RE42 reaction energies to represent gas-phase chemistry. The
two datasets have however in this study been modified to normalize
the data better in the following way: The G3/99 were standardized
with the factor 1/(Na � 1), where Na is the number of atoms in each
molecule. The RE42 were similarly standardized with the factor
1/(Nr � Np + 1), where Nr and Np are the number of reactants and
products in each reaction, respectively.

Surface chemistry were represented by the CE27a chemisorption
energies of simple adsorbates on late transition metal surfaces. The
CE27a is the CE27 dataset from earlier, where the reference is to the
free atoms rather than the gas-phase adsorbates.

The functional was trained on the Sol54Ec dataset, and on the
derivatives cohesive energies, with respect to the crystal volumes
around equilibrium, with the experimental lattice constants from the
Sol58LC dataset. The Pb data point was however excluded from the
training sets however, as it was found to be a heavy outlier.

The structural geometries2 and electronic densities for all the 2 This only applied for the Chemisorp-
tion systems where the structures were
not given directly from the reference
data.

datasets were defined by self-consistent PBEsol functional calcula-
tions.

http://www.ncbi.nlm.nih.gov/pubmed/22894323
http://www.ncbi.nlm.nih.gov/pubmed/22894323
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7.3 Exchange model selection

To optimize the model, we used the the loss function of the geomet-
ric mean loss function of the least squares for the individual train-
ing datasets, given in equation 4.56. The weights on the individual
datasets were all set to 1 in the loss function. For the prior solution
we employed the Tikhonov transformation to the problem with the
smoothness of the 2-dimensional transformed space of ts and ta. The
Tikhonov matrix G2 was therefore defined by the Laplacian er2 of the
exchange basis functions P(ts, ta),

er2 =
∂2

∂t2
s

+ l
∂2

∂t2
a

,

G2
mnkl =

ˆ 1

�1

ˆ 1

�1
dts dta er2Pmn er2Pkl ,

where l = 102 scales the regularization penalty between polyno-
mials in ts and ta.

The origo of the solution was chosen to that of Fx(s, 1) = 1
for all s and half of the MS0 exchange along the Fx(0, a) model
space direction. This origo is significantly different from what has
been used in the BEEF-vdW study, but it was found that the en-
semble behaved well in the limit of almost no information in the
origo, in contrast to when the origo of MS0 or similar, where the
ensemble would very constrained in much of the energetically con-
straint region for then to open much more out outside of this region.

The optimal model complexity was found using the cluster-
LOOCV for the five datasets with the sum loss of the samples, given
in equation 4.61.
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7.4 The mBEEF functional

cl
us

te
r-L

O
O

CV
 E

PE

Figure 7.1: The cluster-LOOCV
estimated prediction error as a function
of the model complexity. The sum of
the errors is used in the prediction error
estimate.

In figure 7.1 to the right, we show the regularization curve for sum
loss estimated prediction error using the cluster-LOOCV method of
equation 4.61. The model complexity is chosen as the minimum to
the regularization curve. The minimum is seen to be well defined but
with a two other almost as good solution for a larger model complex-
ity. The optimal model complexity for the mBEEF model has 8.8 ef-
fective parameters

In figure 7.2 the mBEEF functional is plotted along with the so-
lution to the cost function for different regularization strengths; re-
sulting in a range of different exchange model complexities. For the
mBEEF model we observe that it is also preferable for a functional in
the MGGA model space to break the LDA limit slightly.

Figure 7.2: Model-compromise
optimized mBEEF type exchange
enhancement factors for increasing
number of effective parameters q. Full
black lines indicate the chosen mBEEF
Fx(s, a). Standard GGA and MGGA
exchange functionals are indicated by
dashed lines along with the prior model
(black dashes). a) Projections along s
for a = 1. b) Projections along a for
s = 0. The effective number of exchange
model parameters range from 0 (dark
blue) to 20 (dark red). The mBEEF
model has 8.8 effective parameters.The ensemble for the mBEEF is plotted in figure 7.3, and it takes

a similar shape to that of the BEEF-vdW in the a = 1 cut, and it is
illustrated that much of the functional is mostly constrained in the
low a limit, which is the region between the homogeneous electron
gas limit (a = 1) and the single atomic orbital limit (a = 0).

Figure 7.3: Bayesian ensemble of
exchange models (yellow) around the
mBEEF (solid black). a) Projections
along s for a = 1. b) Projections along a
for s = 0.
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7.5 Benchmark

In figure 7.4 we summarize a broad benchmark of popular or recent
GGA and MGGA density functionals, and also mBEEF and BEEF-
vdW. The bars indicate the logarithms of scaled mean-absolute errors
on the five datasets applied in mBEEF training. The mBEEF exchange
model compromise appears excellent: The MAE is among the three
lowest for all five properties and considerably improves over BEEF-
vdW in predicting lattice constants of bulk solids and their cohesive
energies while retaining a good description of the adsorbate–surface
bond strengths in CE27a.
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Å

0.
10

7
Å
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against popular or recent GGA and
MGGA density functionals in terms
of mean-absolute errors (MAE) on
predicting the materials properties
represented by the 5 datasets applied
in mBEEF training. BEEF-vdW is
also included. Note that each bar is
normalized with the smallest one
and plotted on a logarithmic scale for
reasons of clarity. Horizontal black
dash-dotted lines indicate the mBEEF
level, which is among the 3 lowest for
all 5 materials properties.

7.6 The model compromise investigated

In the BEEF-vdW study, it was highlighted how a model compro-
mise between different material properties had to be made, as the
GGA model is limited. However, with the added ingredient for the
MGGA functionals this compromise can be broken, and a func-
tional that outperforms GGA functional on several material prop-
erties is possible. We further illustrated this in the study of mBEEF.

In figure 7.2 a broad selection of GGAs, MGGAs, and vdW-DF
type functionals are applied in calculations of four different quan-
tities; chemisorption energies of small molecules on close-packed
transition metal facets, surface energies of various facets, solid bulk
moduli, and gas-phase reaction energies. These materials properties
are represented by the CE27a, SE30, BM32, and RE42 datasets.3 The 3 The SE30 and BM32 are from

G. H. Jóhannesson, T. Bligaard, A. V.
Ruban, H. L. Skriver, K. W. Jacobsen,
and J. K. Nørskov. Combined electronic
structure and evolutionary search
approach to materials design. Phys. Rev.
Lett., 88(25):255506, 2002

tested GGAs are PBEsol, PBE, and RPBE, while the literature MGGAs
are TPSS revTPSS oTPSS and MS0. The three chosen van der Waals
functionals vdW-DF, optPBE-vdW, and C09-vdW are equivalent ex-
cept for the choice of PBE-like exchange. Figure 7.2a plots root-mean-
squared prediction errors (RMSEs) on chemisorption energies against
those on surface energies. The points within each class of exchange-
correlation model space fall approximately on straight lines, illus-
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trating the compromise between accurate adsorbate–surface bond
strengths and surface stabilities. However, the MGGA model space
offers the most attractive compromises; the green line in figure 7.2a
is by far closest to the origo. This is supported by figure 7.2b, where
mean-signed errors (MSEs) on predicted bulk moduli are plotted
against those on molecular reaction energies. The relations be-
tween mean errors are again approximately linear and the MGGA
points fall closest to origo, though not all on the same straight line.

Figure 7.5: Bivariate analyses of
semi-local DFT prediction errors for
chemical and bulk materials properties.
a) Root-mean-squared error on the
CE27a chemisorption energies against
that on the SE30 surface energies. b)
Mean-signed error on the BM32 solid
bulk moduli against that on the RE42

gas-phase reaction energies. Straight
lines are fits through the GGA (blue),
meta-GGA (green), and vdW-DF type
(red) data points.

The bivariate prediction error analyses in figure 7.2 exceedingly
confirm conjectures from other studies. The linear relationships be-
tween DFT-predicted chemisorption energies and surface energies
have appeared in recent literature for the particular cases of CO on
Pt(111) and Rh(111).4,5,6 However, bivariate analyses of DFT pre- 4 A. Stroppa and G. Kresse. The short-

comings of semi-local and hybrid
functionals: what we can learn from
surface science studies. New J. Phys., 10

(6):063020, 2008

5 J. Sun, M. Marsman, A. Ruszinszky,
G. Kresse, and J. P. Perdew. Improved
lattice constants, surface energies,
and CO desorption energies from a
semilocal density functional. Phys. Rev.
B, 83:121410(R), 2011

6 L Schimka, J Harl, a Stroppa,
a Grüneis, M Marsman, F Mittendorfer,
and G Kresse. Accurate surface and
adsorption energies from many-body
perturbation theory. Nature materials, 9

(9):741–4, September 2010. ISSN 1476-
1122. doi: 10.1038/nmat2806. URL
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diction errors for surface chemistry and stability has, to the authors’
knowledge, not previously been considered on such firm statistical
footing as in figure 7.2.

7.7 Summary and discussion

We summarize the improvements of the mBEEF study compared to
the BEEF-vdW study her, and provide again guidance towards fur-
ther improvements of the BEE development methodology.

The benchmark of the mBEEF functional, presented a very conve-
nient case for the mBEEF functional. The functional was amount the
best performing functionals on all the datasets simultaneously, and
the best performing for three of the five datasets. Several bench-
mark and qualitative validation studies were made in addition
to the ones presented in this chapter. These overall showed that
the mBEEF functional performed in comparable to other high-
performing MGGA functionals, which validates that the mBEEF
functionals’s performance is transferable, and not an overfit to

http://www.ncbi.nlm.nih.gov/pubmed/20657589
http://www.ncbi.nlm.nih.gov/pubmed/20657589
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the training datasets, that also constituted the benchmark sets.

In the model compromise study of bivariate prediction errors we
presented a more statistically founded view of the model compro-
mise of the different rungs of Jacobs ladder, where was illustrated
how each model class are bound to make a compromise between how
well it predicts high accuracy reference energetics of various material
properties.

7.7.1 Strengths

The mBEEF study illustrated how the full parametrization could
be made of the MGGA model space as a natural progression of the
parametrization with BEEF-vdW. Where the inputs to the were trans-
formed, so that they range would match that of the Legendre polyno-
mial basis, and next use a 2-dimensional Legendre polynomial basis
to expand this transformed 2-dimensional space. This expansion al-
lowed for an easy definition of also the smoothness of the prior with
one parameter to scale the regularization strength ratio between the s
and a model spaces.

The training datasets used for the model optimization were only
modestly expanded or improved to those of the benchmark of BEEF-
vdW, but they now cover the range of simple energetic materials
properties that are viewed as important for surface science.

The model compromise was that of the geometric mean with the
least squares loss for the individual datasets, with a prior of the
smoothness Tikhonov matrix in the 2-dimensional model space. The
cost function of the fitting problem therefore allowed for the full
data information of all the datasets to be taken into account. With an
optimal model complexity found by the minimizing for the cluster-
LOOCV estimated prediction error it was possible to locate a model
complexity with good fitting performance but without seemingly
overfitting.

7.7.2 Limitations

For the model space, it was decided to simplify the correlation func-
tional energy to be that of the PBEsol correlation, and only the effect
of the exchange were therefore given. This made it convenient for
analyzing the fitting procedure, as the regularization was only to be
done in the exchange enhancement space, but it did not provide the
full model complexity at the MGGA rung. The exchange space of the
mBEEF could cover some of the correlation, but the exchange model
does not have the full information of the spin density to allow for full
a correlation model as those of other MGGA functionals. Further-



88

more, the exclusion of the vdW non-local correlation makes the func-
tional unequipped for studies where vdW dispersion is important.

For the training datasets, it is noted that the mBEEF functional was
notably not fitted for the the S22x5 van der Waals complexes, which
goes back to the discussion above, hence there were no non-local
correlation in the functional form of mBEEF, so it was not expected
that the functional would be able to capture the vdW interaction. An-
other observation in the study was however that the Pb data point
in solids training dataset was an outlier. The data point was there-
fore excluded from the training dataset manually. If data points are
outliers in the dataset because e.g. there is a large experimental er-
ror to them, then they will deter the optimization algorithm through
the resampling algorithm, and we will not end up with the optimal
transferable functional. The approach that was taken in the mBEEF
study of manually removing an outlier is not very unsystematic, with
masking it is hard to detect these outliers, see discussion in section
4.6. We would like to have methods that systematically can prevent
outliers from deter the model, and remove masking effects.

The optimal model complexity was found as the global mini-
mum to the estimated prediction error for different regularization
strengths, presented in the regularization curve. However, several
more complex models local minima were given for higher model
complexities. This was unsatisfying as it did not make it clear if the
model complexity selected is indeed the optimal, as the regulariza-
tion curve could possible tilt with small changes in the dataset or in
the prior.



8 Robust fitting of exchange correlation functionals

In this final study we have extended the machine learning tools to
deal with some of the issues that persisted in the former studies of
BEEF-vdW and mBEEF. These tools will be presented and used to fit
a functional of the mBEEF-vdW, which is the natural step forward,
but with the emphasis on the evaluation of the machine learning
tools. The study is a work in progress.

We will in this study introduce a loss function for handling out-
liers, and furthermore propose a scheme for which to incorporate
with the methods used in the BEEF functionals. The overall loss func-
tion will therefore still be of the geometric mean to the individual
datasets of BEEF-vdW and mBEEF, but where each dataset are now
represented by a robust loss function.

For the loss function, we will also propose a scaling of the data
points internally in datasets that is based on the covariance matrix of
our Bayesian error estimation method.

In addition we will take use of the hierarchical bootstrapping
estimate with the geometric loss function, so that cost function of the
optimal model correspond to the model that is optimized for in the
cross validation estimating prediction error. The outlier detection is
tested on a dataset with artificial outliers; to test the procedures in a
controlled environment.

We will further provide detailed view of the functional models
performance on the training dataset to assess the loss functions. And
propose using a cross-validation estimate of the transferability of the
functional to judge which loss function performs best. We will in the
end propose the functional form of the mBEEF-vdW functional and
make a non-self-consistent benchmark of it.

8.1 The model space

The model space for this study was for the exchange identically to
that of the mBEEF study. Thus for the MGGA exchange basis we
use a basis of 8 ⇥ 8 = 64 Legendre polynomials in the ts and ta
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transformations.
We have tested the larger basis of 10 ⇥ 10 Legendre basis functions,

but we did not find any significant performance improvement for the
optimal model, compared to a 8 ⇥ 8 basis. Having a larger basis with
higher order Legendre polynomials will however come at a computa-
tional cost.

The correlation was parametrized as

Ec [n, rn] = aLDAELDA
c + aPBEsolEPBEsol

c + anlEnl
c ,

where the none-local (nl) correlation is of the vdW-DF2 type, sim-
ilar to BEEF-vdW. We now have a free parameter for each part of
the correlation functional, and thus have a more free form than the
parametrization in the BEEF-vdW study, and we use PBEsol correla-
tion instead of the PBE correlation.1 1 For LDA see Perdew and Wang [1992],

for PBEsol see Perdew et al. [2008] and
for vdW-DF2 see Lee et al. [2010].

In total we have 67 parameters in the exchange-correlation model.

8.2 The training datasets

For the mBEEF-vdW functional we choose to use only training
datasets previously introduced in the mBEEF and BEEF-vdW stud-
ies:

RE42 42 reaction energies to represent gas-phase chemistry.

CE27 27 chemisorption energies with references as in the
mBEEF study.

Sol54Ec Cohesive energies of 54 solids.

Sol58LC The derivatives of the cohesive energies with respect to
the crystal volumes around the experimental equilibrium
taken from the Sol58LC dataset.

S22x5 Non-covalent interaction of the 22 intermolecular interac-
tion energies, with the interaction energies of the relative
distances of 0.9, 1.0, 1.2, 1.5 and 2.0 as compared to the
S22 dataset, which were also used in the BEEF-vdW study.

It should be noted that in this study we chose not optimize di-
rectly for the G3/99 dataset. The reason is that we previous ob-
served that the G3/99 fitted very well in BEEF-vdW and mBEEF,
but that the description of atomization energies did not carry over
to relevant quantities; secondly we find that the relevant informa-
tion of the set is captured in the reaction energy dataset of RE42.
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In this study, the structural geometries and electronic densities
were initially that of PBEsol, and then to the first mBEEF-vdW func-
tional in the series of towards a mBEEF-vdW functional fitted to on
self-consistent structural geometries and electronic densities.

8.3 Model selection

To find the optimum model for all the datasets we will now use a two
step procedure:

First, we fit the individual datasets, where two new concepts will
be introduced. We will use the Bayesian error estimation (BEE) en-
semble Covariance estimation to rescale the system errors internally
in the datasets, and secondly we will be a robust MM-estimator for
the loss function to make the optimum model resistant to outliers.
We will provide assessment of including each of these two new ex-
tensions to the loss function.

Secondly, we will fit to all the datasets simultaneously using a
model compromise loss function. In this step all the data points will
carry over weights from the individual fits from the BEE ensemble
covariance estimation, and from the robust loss function. To find the
optimal model complexity, we will introduce the hierarchical clus-
ter bootstrap resampling with the model compromise loss function.

8.3.1 Rescaling datasets from the Bayesian error estimation

It was noted in the machine learning chapter that the Bayesian error
estimation ensemble could be used to create a covariance matrix for
a dataset, see equation 4.37. We here propose to use the estimated
covariance to scale all the data points of a datasets, by transforming
the design matrix X with the TBEE, where

TBEE =

q
Cov�1

BEE

1
Nd

tr(
q

Cov�1
BEE)

. (8.1)

TBEE is found self-consistently, which means that a solution pro-
vides TBEE scaling, that then again will give rise to a slightly changes
solution. This procedure is highly convergent and only about a cou-
ple of iterations are needed. We will for short refer to the method as
BEE scaling or BN, for BEE normalization.

8.3.2 What are outliers in the the dataset

We propose that outliers in the data should be disregarded in the
fitting procedure. An outlier is a data point that falls outside of what
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can be regarded as normal data. This makes us suspicious for that
there could be problems associated with the data, and that our model
will become less accuracy when we use it on data points outside the
training dataset. Here follows some reasons for why outliers can
arise in our training datasets:

• Experimental reference value can have a high amount of uncer-
tainty associated with it, and the theoretical model system can be a
bad representation of the experimental system.

• The model system calculations can use inadequate setups/potentials/basis
sets. The model system can also be non-converged in structure ge-
ometries, electronic density or total energy.

• The model space can be incomplete in a way that makes it hard
for the model to give descriptions to certain materials properties.
Some of the challenges to semi-local functionals are: strong cor-
relation effects, relativistic effects, self-interaction, and long range
dispersion. .

For the outliers we cannot know if some of the above effects are in
play, so we must rely on robust fitting methods that are resistant to
the outliers. The Robust fitting theory offers a theoretical foundation
for how to identify outliers and remove them.

The robust MM-estimator procedure

To make our fitting procedure robust, we will use the MM-estimator
loss function instead of the least square (LS) loss function that so far
have been used2. 2 Following the discussion of section 4.6

it was found that the LS loss function is
not robust.

The implementation will be based on Maronna [2011], where the
MM-estimator loss function was combined with ridge regression.
Following the definition of the MM-estimator in section 4.6.3, we
need to choose the constants for the MM-estimator cost function,
and we need to have a scheme for which to come up with an initial
robust solution. The following sections will provide these constants
following Maronna [2011] and how we have chosen to come up with
initial robust estimates of the solution.

We will use the method of Maronna [2011] to find the robust so-
lutions for a given regularization. To find the model compromise
we however rely on the cross validation methods that have been
presented in 4.4 and 4.5.4. The details for how the optimal model
complexity is found with the BEE scaling and MM-loss function will
follow after the implementation of the MM procedure.
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8.3.3 Constants for the MM procedure3

3 The approach here follows Maronna
[2011].

Recall the cost function for the MM estimator in equation 4.6.3:

C(â, w) = ŝ2
init

Nd

Â
i

r

✓ rj(â)

ŝinit

◆
+ R(a, w).

To use the MM-estimator cost function we need to define the r

and the initial robust estimate ŝinit, that is estimated from r0. For r

and r0 r-functions we use the TukeyBisquare defined in equation 4.66

by rbis(t) = min{1 � (1 � t2)3, 1}. We furthermore need to choose
the c0 in r0(t) = rbis

⇣
t

c0

⌘
for the initial M-estimator, and c for r(t) =

rbis
� t

c
�
, where c0  c.

To the initial scale we want to achieve a high BDP. We solve for
the scale using d = 0.5

⇣
1 � Ne f f

Nd

⌘
, and the constant c0 is in Maronna

[2011] by

c0 = 7.8464 � 34.6565 · d + 75.2573 · d2 � 62.5880 · d3, (8.2)

where the relationship between c0 to d for illustration is plotted in the
margin figure (figure 8.1).

Figure 8.1: The relationship between
c0 and d.

For each initial solution, ainit, c0 is thus found by the above equa-
tion, and used to calculate the initial robust estimator ŝinit.

For the MM estimator, c is chosen as c = 3.44 to provide a normal
efficiency of 85%.4

4 It was found in Maronna [2011] that a
higher efficiency would also lead to a
higher unwanted bias of the solution.

We furthermore employ a correction to ŝini and c for high dimen-
sional data, where the number of effective parameters are comparable
to the number of data points in the dataset. The correction to ŝini is
given as

s̃ini =
ŝini

1 � (k1 + k2/n)Ne f f /Nd
, with k1 = 1.29, k2 = �6.02, (8.3)

and we adjusted c to c = 4, when N̂e f f /Nd > 0.1.5 5 See more details in Maronna [2011].

The IRWLS weights to the dataset will change the balance between
the loss term and the regularization term in the cost function, and
thus change the effective number of parameters at a given regulariza-
tion strength. A correction to the regularization strength is therefore
introduced, so that RR-MM match the RR-LS solution for a given
regularization strength. The correction is given as w0 =

p
3w/c2.
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8.3.4 The initial estimator

The initial estimator of the scale is found, following Maronna [2011],
using the S-estimator, which is given by the cost function

C(â, w) = ŝ2
N

Â
j=1

r0

✓ rj(â)

ŝ

◆
+ R(w),

where ŝ is now no longer fixed as in the RR-MM cost function of
equation. The solution to the RR-SE problem is again found using the
IRWLS procedure.
To initialize the algorithm, Nbootstrap bootstrap resampled datasets
are created, and the solution for each of these are found. The is simi-
lar to using the trimmed least squares loss function. For each of these
solutions the robust initial scale is fund to the full dataset, but only
the Nkeep lowest estimator solutions is fully iterated to their solution
using the IRWLS for the RR-SE estimator.

From the Nkeep RR-SE solutions we select the one with the lowest
robust RR-SE scale ŝ, and this is now the ŝinit scale in the RR-MM
procedure, after we have applied the correction of equation 8.3.

The number of effective parameters for the S-estimator is calcu-
lated similarly to the RR-MM method. We use Nbootstrap = 500, and
Nkeep = 50, which we have found provide stable results for our
datasets.

8.3.5 Defining the loss function

In the following we will propose four different loss functions that we
wish to compare:

RR-LS The standard Least Squares loss function

RR-LS-BN The standard Least Squares loss function where the
datasets has been scaled self-consistently with the Bayesian
covariance-scaling

RR-MM The robust MM-estimator loss function as given above
combined

RR-MM-BN The robust MM-estimator loss function as given above
combined, where the datasets has been scaled self-
consistently with the Bayesian covariance-scaling

These are all combined with the same regularization prior for a full
cost function of their respective names above.

The regularization is defined by the smoothness to the exchange
enhancement factor as in mBEEF and with additional regularization
on the correlation parameters, where the regularization strength to
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the correlation parameters are scaled by 10�3 to the overall regular-
ization strength. In all model optimizations of this chapter, we use
have that the origo of the exchange solution is given as Fx = 1 and
the origo of the correlation solution is given as aLDA = aPBEsol = 0.5,
and anl = 1.

The optimal model complexity is found with the Bootstrap.632

estimator using one set of samples. For the MM loss function, we
update the robust IRWLS weights to the dataset in the Bootstrap.632

regularization minimum, and repeat until convergence in the model
complexity and the IRWLS weights. Convergence is usually reached
within 3 iterations. In the bootstrap estimated prediction error, the
IRWLS and Bayesian error estimation scaling weights are carried
over, such that the model complexity optimization is internally con-
sistent.

The fitting procedure for fitting multiple datasets is the follow-
ing. For the BN or MM loss functions the weights on the individual
systems from these two approaches combines is carried over to the
compromise fit. For the compromise fit we define the loss function
with the geometric mean, similar to the mBEEF study. The optimal
model is then found by minimizing the estimated prediction error
found with the bootstrap.632, where we use the geometric mean loss
function for the datasets and the hierarchical resampling; as describe
in the machine learning chapter. For the estimated prediction error
for the model compromise, we similar to the for the individual fits
carry over the weights from the IRWLS procedure and TBEE weights
to the estimating prediction error.
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8.4 Outlier detection in RE42

We want to test the procedure on a realistic test dataset, where the re-
sult of the procedure can easily be evaluated. We therefore introduce
a number of outlier data points in the RE42 dataset, and compare the
RR-LS and RR-MM-BN cost function solutions. The outliers are made
by adjusting target values in the target vector. We shift the first two
targets by -1 eV and the next two by +1 eV. We expect a lower model
complexity from the RR-LS when outliers are introduced, as the
outliers will lead to less transferable models within the dataset in the
bootstrap samples.

In the figure below (figure 8.2) we compare the regularization
curves for the RE42 dataset with outliers, using the RR-LS and RR-
MM methods. We find that the RR-MM minimizes EPE for a more
complex model, and furthermore provides a less shallow minimum
than RR-LS.

Figure 8.2: Bootstrap.0632 Estimated
prediction error (EPE) versus the
number of effective parameters (Ne f f )
for the RE42 dataset with introduced
outliers with the RR-LS and RR-MM
cost functions. The RR-MM minimum
is less shallow, and the model has
9.8-6.4=3.4 more effective parameters
then the optimal model for the RR-LS
method.

Next we will compare the root mean square deviation (RMSD) for
the data points in the RE42 dataset omitting the first 4 data points:
No outliers: RR-LS: 13 meV (Ne f f = 8.7), RR-MM: 8.0 meV (Ne f f =

9.7); With outliers: RR-LS: 44 meV (Ne f f = 6.4), RR-MM: 9.7 meV
(Ne f f = 9.8).

We find that the RR-MM method provides a more complex model
for RE42 in general, and is only slightly affected by the outliers with
respect to the model complexity and the RMSD for the good data
points. The larger model complexity for RR-MM over RR-LS, when
there is no outliers introduced, propose that some of the data in the
dataset are not well-defined within the model space.6 6 Note that results of this section will

not correspond to later results for the
RR-MM method on RE42, as the MM
procedure was slightly adjusted later to
make the BDP of the method similar to
that of Maronna [2011].

The study shows that the RR-MM cost function with BEE scaling is
indeed more resistant to outliers than the RR-LS cost function.7

7 The BEE scaling is the same for the
outliers with and without the outliers,
so the robustness is from the MM-
estimator solely.
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8.5 Assessment of best loss functions for the exchange correlation
model selection

We will now compare the different models that has been proposed
by first fitting them to the individual datasets, and in the following
making the compromise to all datasets. We follow the methodology
for fitting with the MM loss function and with the Bayesian scaling
given previous in both instances. For comparing the loss functions,
we will introduce the introduce the tilde version of the ERR, err
and EPE for the Bootstrap procedure, where the IRWLS and TBEE
weights have not been introduced. These estimates are thus com-
parable between the methods, and ]ERR provide a direct measure
for the transferability of the method, which we optimize for. For
the individual fits ]ERR refer to that of the standard Bootstrap.632

method and for the model compromise fit ]ERR, ferr and gEPE are
that of the hierarchical bootstrap with geometric mean loss function.

We present two sets of data where the structural geometries and
the electronic densities are that of respectively: In run 0 the PBEsol;
and in run 1 a mBEEF-vdW functional fit with the RR-MM method as
outlined here but with the c0 fixed to that of a 85% efficiency, which
we expect only have a minor influence on the fit.

With data from both runs provided, one can get an understand-
ing of the influence that self-consistency has. However, to fully as-
sess this, one would have to compare the non-self-consistent results
with the self-consistent results for the same model. This has not
been included as we do not have data for all the runs towards self-
consistency, and we would therefore not be able to make the analysis
fully.

The best loss function should however be independent of the den-
sity that is used, as we are evaluating it on the parametrization ener-
gies for the same density as it was fitted to.

8.5.1 Comparing loss functions for the individual datasets

For the model optimization for the individual datasets we compare
the following quantities: The effective number of parameters (Ne f f );

The transferability estimate ]ERR which that of
p

[ERR of the Boot-
strap .632 procedure without the scaling of IRWLS and TBEE, follow-
ing the discussion above; RMSD, MAD and MSD are the root mean
square, mean absolute and mean signed deviation for the model for
the unscaled data points; min, and max are the minimum and maxi-
mum values of the unscaled data points; r are the deviations for the
model prediction to the target values for all data points; r̂ = TBEEr
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(the Bayesian error estimation scaled deviations); w shows the IRWLS
for all the data points; and for the last three stats it is noted that Nd is
the number of data points.

CE27

N

eff

ÊRR RMSD MAD MSD min max r r̄ w
P

w

i

P
w

i

/N

d

N

eff

/

P
w

i

run 0:
RR-LS 4.8 227 162 122 -12 -412 254 27.0 1.00 0.18
RR-LS-BN 5.4 239 172 127 -16 -438 349 27.0 1.00 0.20
RR-MM 5.1 198 180 126 -55 -491 194 22.0 0.81 0.23
RR-MM-BN 5.7 208 167 117 -19 -424 387 23.9 0.88 0.24
run 1:
RR-LS 8.7 300 140 111 -0 -242 330 27.0 1.00 0.32
RR-LS-BN 6.1 328 207 156 -12 -601 522 27.0 1.00 0.23
RR-MM 8.7 275 142 111 2 -243 343 26.1 0.97 0.33
RR-MM-BN 6.3 313 218 166 -2 -365 624 24.7 0.92 0.26

.

Table 8.1: CE27 model statistics with
deviations in meV.For chemisorption dataset (CE27), see figure 8.1: We highlight

that the all models become more complex for run 1 compared to run
0. For this dataset we have structure geometry optimization, so we
expect that there would be a larger difference between run 0 and run
1. The data is observed as more noisy when the densities are not self-
consistent, and the result is similar to when outliers were added to
the RE42 dataset. There are no major outliers in run 1.

The RR-MM loss function has the lowest ]ERR on both run 0 and
run 1.

RE42

N

eff

ÊRR RMSD MAD MSD min max r r̄ w
P

w

i

P
w

i

/N

d

N

eff

/

P
w

i

run 0:
RR-LS 14.0 181 58 41 -1 -178 148 42.0 1.00 0.33
RR-LS-BN 13.4 195 87 54 4 -189 370 42.0 1.00 0.32
RR-MM 13.3 442 446 154 -52 -1983 1757 33.2 0.79 0.40
RR-MM-BN 10.5 290 279 121 14 -881 1142 32.3 0.77 0.32
run 1:
RR-LS 14.9 198 62 44 -4 -224 142 42.0 1.00 0.35
RR-LS-BN 14.9 189 79 52 7 -179 263 42.0 1.00 0.35
RR-MM 15.9 161 70 35 -11 -380 109 38.6 0.92 0.41
RR-MM-BN 15.2 181 78 44 -4 -310 276 38.9 0.93 0.39

.

Table 8.2: RE42 model statistics with
deviations in meV.For reaction energies dataset (RE42), see figure 8.2: The different

between run 0 and run 1 in the number of effective parameters is
large, especially for the RR-MM methods. It can also be observed that
the number of outliers are drastically reduced. The biggest outlier
that persist in run 1 is that of the reaction O2 + 2H2 ! 2H2O.

The RR-MM again outperforms the other loss functions, but with
an overall statistic that is worse than RR-LS (RMSD 62 to 70 meV).
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Sol54Ec

N

eff

ÊRR RMSD MAD MSD min max r r̄ w
P

w

i

P
w

i

/N

d

N

eff

/

P
w

i

run 0:
RR-LS 9.8 313 233 142 1 -506 1135 54.0 1.00 0.18
RR-LS-BN 10.4 318 228 146 -14 -552 1011 54.0 1.00 0.19
RR-MM 12.1 255 240 130 36 -459 1217 42.8 0.79 0.28
RR-MM-BN 11.7 255 238 131 29 -460 1201 41.7 0.77 0.28
run 1:
RR-LS 9.8 316 233 142 1 -506 1135 54.0 1.00 0.18
RR-LS-BN 10.6 320 227 145 -14 -560 995 54.0 1.00 0.20
RR-MM 11.0 282 278 158 23 -517 1250 36.7 0.68 0.30
RR-MM-BN 11.9 254 238 131 29 -463 1194 41.9 0.78 0.28

.

Table 8.3: Sol54Ec model statistics
with deviations in meV.For cohesive energies solids dataset (Sol54Ec), see figure 8.3: The

number of effective parameters decreases for the RR-MM loss func-
tions for run 1 compared to run 0. There are a large number of out-
liers in the dataset. For this dataset the RR-LS method is the best
performing in the ]ERR estimate. Looking at the r plots we see a few
very big outliers in the dataset, and a big chuck that we are able to
describe exceedingly well. The data of Sol54Ec is experimental, and
the fits suggest that one should take a closer look at the underlying
data.

Sol58LC

N

eff

ÊRR RMSD MAD MSD min max r r̄ w
P

w

i

P
w

i
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d
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eff
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P
w

i

run 0:
RR-LS 11.8 24 15 13 2 -41 43 58.0 1.00 0.20
RR-LS-BN 7.0 24 20 14 -1 -49 65 58.0 1.00 0.12
RR-MM 8.4 28 28 15 -7 -91 100 32.0 0.55 0.26
RR-MM-BN 11.8 28 27 15 -6 -89 88 43.9 0.76 0.27
run 1:
RR-LS 12.0 24 15 13 2 -41 42 58.0 1.00 0.21
RR-LS-BN 7.0 24 20 14 -1 -49 65 58.0 1.00 0.12
RR-MM 12.1 29 29 16 -8 -86 87 38.9 0.67 0.31
RR-MM-BN 8.8 29 29 16 -8 -87 100 31.1 0.54 0.28

.

Table 8.4: Sol58LC model statistics
with deviations of the cohesive energies
at the experimental lattice parameter
(meV/cubic angstrom) .

For the derivative to the cohesive in the experimental lattice pa-
rameter (Sol58LC), see figure 8.4: The outliers in the dataset for the
two runs and for both the MM loss functions looks similar to that of
the cohesive energies. The effective number of parameters change
change for RR-MM and RR-MM-BN method in opposite directions
between run 0 and run 1; for RR-MM Ne f f goes up and for RR-MM-
BN Ne f f goes down. The LS loss functions outcompete the MM in
the ]ERR estimate.

For the S22x5 dataset in the 1.0 distance, see figure 8.5: For this
and for the other of S22x5 the MM method gives very similar results
and the difference is mostly in the BN scaling, which has a slightly
lower ]ERR estimate. Ne f f / Â wi figure is fairly high, which will
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s22x5-1.0

N

eff

ÊRR RMSD MAD MSD min max r r̄ w
P

w

i

P
w

i

/N

d

N

eff

/

P
w

i

run 0:
RR-LS 9.2 29 9 7 -1 -21 18 22.0 1.00 0.42
RR-LS-BN 11.2 28 7 5 -1 -17 13 22.0 1.00 0.51
RR-MM 9.4 28 9 6 -1 -23 19 21.6 0.98 0.43
RR-MM-BN 11.7 31 6 5 -0 -14 12 21.9 1.00 0.53
run 1:
RR-LS 10.9 27 6 5 -0 -13 11 22.0 1.00 0.49
RR-LS-BN 8.5 28 14 9 -2 -47 15 22.0 1.00 0.39
RR-MM 10.6 27 7 5 -0 -13 11 21.7 0.99 0.49
RR-MM-BN 8.5 28 14 9 -2 -46 15 21.8 0.99 0.39

.

Table 8.5: S22x5 1.0 model statistics
with deviations in meV .make the c0 value go up, see figure 8.1. The dataset is therefor so

small that a data point needs to be more extreme for the MM method
to judge it as an outlier. For the 0.9 distance, see figure 8.6, one out-
lier is however observed, and the MM methods outperform the LS
methods in ]ERR. For completion the loss function comparison statis-
tics 1.2, 1.5, and 2.0 parts of the S22x5 dataset are provided in figure
8.7, 8.8 and 8.9, and we note that the difference between the MM and
LS loss function is small because no outliers could be identified.

s22x5-0.9

N

eff

ÊRR RMSD MAD MSD min max r r̄ w
P

w

i

P
w

i

/N

d

N

eff

/

P
w

i

run 0:
RR-LS 8.6 31 12 10 -1 -30 18 22.0 1.00 0.39
RR-LS-BN 9.0 29 12 8 -1 -38 21 22.0 1.00 0.41
RR-MM 8.4 29 13 10 -2 -40 19 21.4 0.97 0.39
RR-MM-BN 9.3 29 12 8 0 -38 16 21.7 0.99 0.43
run 1:
RR-LS 8.0 29 13 10 -1 -34 19 22.0 1.00 0.36
RR-LS-BN 8.5 28 14 10 -2 -47 16 22.0 1.00 0.38
RR-MM 10.3 26 17 7 -4 -77 13 20.7 0.94 0.50
RR-MM-BN 8.9 26 17 9 -4 -67 13 21.2 0.96 0.42

.

Table 8.6: S22x5 0.9 model statistics
with deviations in meV .
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s22x5-1.2

N

eff

ÊRR RMSD MAD MSD min max r r̄ w
P

w

i

P
w

i

/N

d

N

eff

/

P
w

i

run 0:
RR-LS 10.4 23 5 4 -1 -9 14 22.0 1.00 0.47
RR-LS-BN 9.5 21 10 5 -1 -33 27 22.0 1.00 0.43
RR-MM 11.2 23 5 4 -0 -7 13 21.9 1.00 0.51
RR-MM-BN 10.0 22 9 5 -1 -31 27 21.8 0.99 0.46
run 1:
RR-LS 9.0 17 6 5 -1 -11 12 22.0 1.00 0.41
RR-LS-BN 8.2 17 9 6 -0 -28 15 22.0 1.00 0.37
RR-MM 8.7 17 6 5 -1 -12 13 21.5 0.98 0.40
RR-MM-BN 8.4 18 9 6 -0 -26 15 21.5 0.98 0.39

.

Table 8.7: S22x5 1.2 model statistics
with deviations in meV .

s22x5-1.5

N

eff

ÊRR RMSD MAD MSD min max r r̄ w
P

w

i

P
w

i

/N

d

N

eff

/

P
w

i

run 0:
RR-LS 10.8 9 2 2 -0 -5 3 22.0 1.00 0.49
RR-LS-BN 10.1 11 3 2 -0 -8 9 22.0 1.00 0.46
RR-MM 10.8 9 2 2 -0 -5 3 21.8 0.99 0.49
RR-MM-BN 10.3 10 3 2 -0 -6 8 21.7 0.99 0.47
run 1:
RR-LS 7.7 7 3 2 -0 -4 6 22.0 1.00 0.35
RR-LS-BN 7.0 9 5 4 -0 -16 7 22.0 1.00 0.32
RR-MM 8.2 8 3 2 -0 -4 6 21.6 0.98 0.38
RR-MM-BN 6.9 9 5 3 -0 -15 6 21.6 0.98 0.32

.

Table 8.8: S22x5 1.5 model statistics
with deviations in meV .

s22x5-2.0

N

eff

ÊRR RMSD MAD MSD min max r r̄ w
P

w

i

P
w

i

/N

d

N

eff

/

P
w

i

run 0:
RR-LS 7.7 6 2 2 -1 -3 2 22.0 1.00 0.35
RR-LS-BN 8.0 8 4 3 1 -10 14 22.0 1.00 0.36
RR-MM 8.5 6 2 1 -1 -3 2 21.7 0.98 0.39
RR-MM-BN 7.9 8 4 3 1 -10 12 21.4 0.97 0.37
run 1:
RR-LS 11.2 6 1 1 0 -2 3 22.0 1.00 0.51
RR-LS-BN 10.8 5 2 1 0 -5 3 22.0 1.00 0.49
RR-MM 11.9 5 1 1 0 -2 3 21.9 1.00 0.54
RR-MM-BN 10.8 5 2 1 0 -5 3 21.9 1.00 0.49

.

Table 8.9: S22x5 2.0 model statistics
with deviations in meV .
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Overall for the individual datasets, we saw that the MM loss func-
tion outperformed the LS method for CE27 and RE42 in the ]ERR
estimate, and only a small number of outliers were observed for these
datasets in run 1. For the solids datasets the LS method performed
better than the MM methods, and these datasets had many outliers
each, both in run 0 and run 1. Very few outliers were observed in the
s22x5 dataset, and the difference between the MM and LS method.

The BN transformation resulted in higher ]ERR for the CE27 and
RE42 datasets and a lower ]ERR for the Sol54Ec dataset. The transfor-
mation did not affect the results for the s22x5 datasets much for the
]ERR estimate.

The model compromise solution

For the compromise loss function we choose the following w̆: For the
s22x5 datasets (0.9, 1.0, 1.2, 1.5, 2.0 bonding length scales) w̆ = 0.2,
such that the combined weight of the s22x5 datasets is 1; For CE27

and RE42 we set w̆ = 2, to give importance to these datasets; Lastly,
for Sol54Ec and Sol58LC w̆ = 1. With these weights, we seek a gener-
ally applicable functional especially suited for heterogeneous cataly-
sis studies.

10

Model compromise

N

eff

ÊRR ferr ÊPE

run 0:
RR-LS 11.2 365 121 547
RR-LS-BN 13.1 435 122 595
RR-MM 10.9 291 135 495
RR-MM-BN 6.7 343 157 538
run 1:
RR-LS 10.0 352 141 541
RR-LS-BN 12.0 367 140 551
RR-MM 10.5 295 140 499
RR-MM-BN 7.8 322 197 531

.

Table 8.10: Comparing the loss
functions for the model compromise.

The overall comparison statistics can be seen in figure 8.10, with
the ]ERR, ferr and gEPE, where the weights w̆ have been taken into
account in the geometric mean estimates of the datasets. We find
that the RR-MM loss function performs best for both run 0 and run 1.

The exchange enhancement factor for the RR-MM fit of run 1

is shown figure 8.3. The exchange enhancement factor breaks the
LDA limit and is first very flat for then to follow the MS0 functional
approximatively along both the s and a dimensions plotted here.
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Figure 8.3: The optimal model for
the mBEEF-vdW run 1 densities (black)
with a Bayesian ensemble of exchange
models (yellow).

The correlation parameters for the functional are given as aLDA =

0.43 ± 0.16, aPBEsol = 0.39 ± 0.16, and anl = 0.87 ± 0.15, where
the second number is one standard deviation of the Bayesian error
estimation ensemble for the parameter. It notably follows the MS0

functional in the exchange enhancement factor, but it breaks the LDA
limit for s = 0, a = 1.

-1

Neff

Figure 8.4: A representative regular-
ization curve for the RR-MM method
on run 1.

In figure 8.4 we have plotted a representative regularization plot
for MM-LS run 1.8 The minimum in the EPE curve is very well de- 8 It is not the exact plot from above as

the robust weighting carries a bit of
variation between runs, and the robust
weight have are not the exact of the
solution given above.

fined, in contrast to the cluster-LOOCV used in the mBEEF study.
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8.5.2 Benchmark

For the RR-MM solution we provide non-self-consistent benchmark
in the table 8.11 and table 8.12, where the functional of RR-MM run
1 is referred to as mBEEF-vdW RC2, or for short mBEEF-vdW. The
functionals have been divided in groups as of their model complexity,
hence from the top: GGA; MGGA; GGA+vdW; and with the mBEEF-
vdW MGGA+vdW. These functionals have been selected as the most
representative functionals for each group that are accessible in our
code.9 9 All references excluding the mBEEF

and the mBEEF-vdW are given here:
PBE: Perdew et al. [1996a], PBEsol:

Perdew et al. [2008]; RPBE:Hammer
et al. [1999]; TPSS: Tao et al. [2003];
revTPSS: Perdew et al. [2009]; oTPSS:
Goerigk and Grimme [2011]; MS0:Sun
et al. [2012b]; vdW-DF Dion et al.
[2004]; vdW-DF2 Lee et al. [2010];
optPBE-vdW, optB88-vdW: Klimes
et al. [2010]; C09-vdW Cooper [2010];
BEEF-vdW Wellendorff et al. [2012].

We do not have reference data for the derivative to the Sol58LC
dataset at the experimental lattice parameters, so it is here omitted.
We expect that the non-self-consistent results resembles the self-
consistent results to a very high degree, as the functional is close
to the functional that was used to create the electronic densities and
structural geometries.

In the following account for the benchmark of mBEEF-vdW, we
evaluate the functional as a general applicable surface science func-
tional that is capable of capturing non-covalent bonding.

For the S22x5 benchmark, in table 8.11, we use the geometric mean
of the different lengths to rank the functionals. The mBEEF-vdW is
by the geometric mean of RMSD and MAD, standards performing in
between the optPBE-vdW and optB88-vdW; both of which have been
optimized for the S22 set, and a little worse than the C09-vdW func-
tional.

s22x5 0.9 s22x5 1.0 s22x5 1.2 s22x5 1.5 s22x5 2.0 s22x5 GM

(meV) MAD MSD RMSD MAD MSD RMSD MAD MSD RMSD MAD MSD RMSD MAD MSD RMSD MAD MSD RMSD

PBE 160 160 230 120 120 163 64 64 80 27 27 32 9 9 12 50 50 65
PBEsol 100 51 134 79 59 113 51 47 69 25 25 31 9 9 12 39 32 52
RPBE 320 320 405 224 224 275 102 102 122 33 33 42 9 9 12 74 74 92

TPSS 205 205 274 160 160 207 87 87 105 35 35 42 10 10 13 64 64 80
revTPSS 184 184 232 146 146 182 84 84 100 35 35 43 11 11 15 62 62 77
oTPSS 273 273 353 208 208 260 106 106 125 39 39 48 11 11 13 75 75 94
MS0 109 109 150 79 79 105 45 45 57 23 23 28 9 9 12 38 38 50
mBEEF 100 96 141 60 54 80 23 16 29 14 9 18 7 7 9 27 22 36

vdW-DF 140 140 168 71 70 89 32 4 40 15 -13 20 4 -4 5 28 17 36
vdW-DF2 99 99 123 44 43 55 13 5 16 4 2 5 5 5 6 16 12 20
optPBE-vdW 31 29 40 20 -1 24 28 -25 38 20 -20 24 5 -5 7 17 9 22
optB88-vdW 19 17 22 13 5 15 13 -4 18 6 -3 9 2 1 3 8 4 11
C09-vdW 21 -13 30 13 -3 17 13 -3 16 11 -6 14 2 -2 3 10 4 13
BEEF-vdW 136 136 170 74 72 93 27 6 35 6 -5 8 3 2 4 23 14 28

mBEEF-vdW RC2 30 11 42 29 0 37 17 -5 21 6 -2 7 4 3 6 13 2 17

1

Table 8.11: Benchmark for the s22x5

sets. The geometric mean (GM) to
the S22x5 statistics has been added in
the right. The mBEEF-vdW RC2 are
non-self-consistent, while all other
references have been calculated self-
consistently.
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3

CE27 Sol54Ec RE42

(meV) MAD MSD RMSD MAD MSD RMSD MAD MSD RMSD

PBE 701 -682 824 240 -80 315 298 -85 420
PBEsol 1461 -1461 1610 395 377 549 480 -287 728
RPBE 164 32 203 528 -511 616 250 113 333

TPSS 371 -337 469 237 -41 308 250 82 326
revTPSS 413 -395 515 274 105 384 395 203 519
oTPSS 246 -201 340 302 -162 368 246 24 308
MS0 249 43 312 276 -79 380 457 -71 625
mBEEF 180 -56 250 268 -172 400 261 -18 318

vdW-DF 208 -94 255 546 -467 659 394 237 522
vdW-DF2 289 -152 374 544 -542 652 403 236 537
optPBE-vdW 690 -690 795 210 -90 307 268 62 346
optB88-vdW 906 -906 1021 205 24 292 259 17 344
C09-vdW 1324 -1324 1440 352 344 488 327 -111 452
BEEF-vdW 174 -32 201 380 -345 496 290 142 372

mBEEF-vdW RC2 191 -22 243 259 66 400 305 -12 376

Table 8.12: Benchmark. The mBEEF-
vdW RC2 are non-self-consistent, while
all other references have been calculated
self-consistently.

Next we will take a look at the CE27, Sol58Ec and RE42 datasets
in table 8.12. For the chemisorption systems of CE27, mBEEF-vdW
has a RMSD that is a little higher than that of BEEF-vdW and RPBE,
and on the same level as vdW-DF and mBEEF. These functional are
however much worse performing to the S22x5. The optB88, optPBE
and C09-vdW functionals have RMSD that are 3-4 times that of the
mBEEF-vdW. The mBEEF-vdW can therefore like no other functional
bridge between the chemisorption and the non-covalent binding of
the S22x5 dataset.

For the Sol54Ec dataset the RMSD of mBEEF-vdW is in the range
of many of the comparable functional. It is slightly higher than for
the optPBE-vdW and optB88-vdW, but better than the vdW-DF, vdW-
DF2 and BEEF-vdW. The mBEEF-vdW is in the upper end of the
spectrum of the RMSD for the MGGA functional. To the Sol54Ec
dataset, we however did not expect to have a high performance
within the dataset, as much many of the data points were deemed
outliers. We however do not have a objective way of take this into
account in the statistics.

For the reaction energies of the RE42 dataset, mBEEF-vdW has
RMSD very similar to the optB88-vdW and optPBE-vdW, and lower
than the C09 functional. In general the mBEEF-vdW is within reach
of functionals with the lowest RMSD on RE42. As for the Sol54Ec
dataset, it was observed that the RE42 had a couple of big outliers
and these will influence the statistics somewhat.

Overall the benchmark indicates that the mBEEF-vdW is a gen-
eral applicable surface science functional that is capable of captur-
ing non-covalent bonding. The functional can bridge between the
non-covalent binding of S22x5 and the chemisorption like no other
functional benchmarked here.
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8.6 Summary

In the mBEEF-vdW study presented here, we foremost introduced a
number of new machine learning tools to handle some of the issues
that had been observed in the BEEF-vdW and mBEEF studies.

For the loss function we introduced the robust fitting scheme to
make the optimization procedure resistant to outliers in data, while
still be highly efficient for data without outliers. We proved how this
could be very beneficial, by introducing artificial outliers in one of
our datasets, and the MM estimator loss function proved to handle
this much better than the RR loss function previously used.

We introduced an internal scaling procedure BEE scaling, based on
the Bayesian error estimation covariance matrix, to scale the datasets
to be more internal consistent.

And, we introduced a hierarchical bootstrap resampling cross
validation method, and made it compatible with the model com-
promise loss function for several datasets. This method also showed
to perform in the intended manner, by making the regularization
curve much more deep, such that overfits can be detected easier.

We tested the methods using the bootstrap transferability error
estimator to judge the methods and found that the RR-MM improved
transferability notably, but the Bayesian error estimation scaling did
not.

The mBEEF-vdW functional was then fitted with the now tested
procedures, and a non-self-consistent benchmark indicated that the
mBEEF-vdW functional is a general applicable surface science func-
tional that is capable of capturing non-covalent bonding. Full self-
consistent calculations is however needed before the assessment can
be completed.



9 Future development

We still have many ideas for improvements left to explore within
the parts of the BEEF functional development. These improvements
could result in more accurate error estimating functional; both at
the current computational level and beyond. Some of these ideas for
improvements will be provided here.

9.1 Model space

In all the studies so far, only the exchange energy has been fully
parametrized. The exchange is the largest contributor to bind-
ing of matter in most cases, but the correlation still play a very
important role. It would therefore be interesting to explore a full
parametrization of the semi-local correlation. Such a parametriza-
tion should use the MGGA ingredient, which has currently not
been used in the correlation functionals of the BEEF functional, but
which is used in correlation functionals for other MGGA functionals.

Another step that could be taken without extra computational bur-
den is to include the VV10 non-local correlation instead of the vdW-
DF type non-local correlation. This functional has been shown to
yield better statistics than comparable functionals.

Currently, no steps have been taken to remove self-interaction for
the functionals in BEEF. There are several procedures for doing; be-
ing the Hubbard U method or a form of the PZ-SIC. It is however, a
requirement for many applications in heterogeneous catalysis that the
methods can be used fully self-consistent, and include force correc-
tions.

Another approach forward would be to include the exact ex-
change, which would however also make the functional more com-
putational expensive. Either in a partial form or in a screened form.
This could also as mentioned for the screened exchange methods,
provide a means to remove the self-interaction error.
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9.2 Training Datasets

The inclusion of datasets that covers a variety of material properties
that exists has been a very important part of developing the three
functionals BEEF-vdW, mBEEF and mBEEF-vdW. And to provoke fu-
ture advancements in the model development, as well as ensure that
the coefficients to a more parametrized model can be properly deter-
mined, more high quality data is sought. Fortunately is has become
easier to get hand on these data, and the inclusion and testing of new
varieties of materials properties data should therefore continue.

9.3 Method development

Within the fitting approach presented here there are still many ma-
chine learning tools that we have not yet tested. For the exchange
parameter space the smoothness regularization seem to have a
good physical grounding, and it has been possible to fit a highly
parametrized model, and still achieve a high level of transferabil-
ity, as was shown in all the three studies for the BEEF functionals.
However, for a fully parametrized correlation other types of prior
estimations could be useful. One way to do this would be to move
away from the squared model length regularization cost of ridge re-
gression, similarly to what we have done for the loss function, e.g.
would be the lasso method.

A number of non-linear machine learning tools could also provide
valuable insight into the functional form of the exchange correla-
tion functional; such as support vector machines, kernel methods or
neural networks.
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A methodology for semiempirical density functional optimization, using regularization and cross-validation
methods from machine learning, is developed. We demonstrate that such methods enable well-behaved exchange-
correlation approximations in very flexible model spaces, thus avoiding the overfitting found when standard
least-squares methods are applied to high-order polynomial expansions. A general-purpose density functional for
surface science and catalysis studies should accurately describe bond breaking and formation in chemistry, solid
state physics, and surface chemistry, and should preferably also include van der Waals dispersion interactions.
Such a functional necessarily compromises between describing fundamentally different types of interactions,
making transferability of the density functional approximation a key issue. We investigate this trade-off between
describing the energetics of intramolecular and intermolecular, bulk solid, and surface chemical bonding, and the
developed optimization method explicitly handles making the compromise based on the directions in model space
favored by different materials properties. The approach is applied to designing the Bayesian error estimation
functional with van der Waals correlation (BEEF–vdW), a semilocal approximation with an additional nonlocal
correlation term. Furthermore, an ensemble of functionals around BEEF–vdW comes out naturally, offering an
estimate of the computational error. An extensive assessment on a range of data sets validates the applicability
of BEEF–vdW to studies in chemistry and condensed matter physics. Applications of the approximation and its
Bayesian ensemble error estimate to two intricate surface science problems support this.

DOI: 10.1103/PhysRevB.85.235149 PACS number(s): 71.15.Mb, 31.15.eg, 68.43.−h

I. INTRODUCTION

Kohn-Sham density functional theory1,2 (KS–DFT) is a
widely celebrated method for electronic-structure calcula-
tions in physics, chemistry, and materials science.3,4 Indeed,
modern DFT methods have proven valuable for elucidating
mechanisms and fundamental trends in enzymatic and het-
erogeneous catalysis,5–13 and computational design of chem-
ically active materials is now within reach.14–17 Successful
use of DFT often relies on accurate but computationally
tractable approximations to the exact density functional for the
exchange-correlation (XC) energy. The generalized gradient
approximation (GGA) is very popular due to a high accuracy-
to-cost ratio for many applications, but suffers from a range
of shortcomings. Thus, common GGA functionals are well
suited for computing many important quantities in chemistry
and condensed matter physics, but appear to be fundamentally
unable to accurately describe the physics and chemistry of a
surface at the same time.18 Moreover, van der Waals (vdW)
dispersion interactions are not accounted for by GGAs,19 and
spurious self-interaction errors can be significant.20–22 The
interest in applying DFT to more and increasingly complex
problems in materials science is not likely to decrease in the
years to come. Much effort is therefore devoted to improve on
current density functional approximations.

The five-rung “Jacob’s ladder” of Perdew23 represents a
classification of the most popular density functional meth-
ods. Each rung adds new ingredients to the density func-
tional approximation (DFA), and so should enable better

approximations, but also adds to the computational cost. In
order of increasing complexity, the ladder consists of the
local spin-density approximation1 (LDA), GGA, meta-GGA
(MGGA), hyper-GGA, and finally the generalized random
phase approximation (RPA). The LDA uses only the local
density as input, while rungs 2 and 3 introduce semilocal
dependence of the density (GGA) and the KS orbitals
(MGGA).24 Hyper-GGAs introduce nonlocal dependence of
the occupied KS orbitals in the exact exchange energy density,
and fifth-rung approximations calculate correlation energies
from the unoccupied KS orbitals. The latter is computationally
heavy, but RPA-type methods are the only DFAs in this five-
rung hierarchy that can possibly account for vdW dispersion
between nonoverlapped densities.24

The failure of lower-rung DFAs in capturing dispersion
forces has spurred substantial developments in recent years.19

Such interactions are spatially nonlocal in nature, and several
different approaches to add “vdW terms” to lower-rung
DFAs now exist.25–28 The vdW–DF nonlocal correlation25

is a particularly promising development in this field. It is a
fully nonlocal functional of the ground-state density, and has
proven valuable in a wide range of sparse matter studies.29

However, the vdW–DF and vdW–DF2 (Ref. 30) methods
yield much too soft transition-metal crystal lattices,31,32 and
the correct choice of GGA exchange functional to use in
vdW–DF type calculations is currently investigated.30,32–34

One approach to choosing GGA exchange is comparison to
Hartree-Fock exchange35,36 and consideration of the behavior
of the exchange functional in the limit of large density
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gradients.35 Where does the vdW–DF approximation belong in
a hierarchy such as Jacob’s ladder? In terms of computational
complexity, the method contains fully nonlocal density-density
information without explicit use of the KS orbitals. From
this point of view, it should fit between rungs 3 and 4, and
we assign it here to rung 3.5. Note that nonlocal exchange
approximations, designed to partially mimic exact exchange at
a reduced computational cost, have recently been proposed37,38

as belonging to a rung 3.5.
Put in simple terms, two paradigms for developing density

functionals are dominant: that of constraint satisfaction by
reduction24 and that of fitting to empirical data.39–42 Both
have contributed greatly to the success of DFT. Reductionists
impose constraints based on analytic properties of the exact
density functional, and strive for nonempirical functionals that
fulfill as many constraints as possible on each rung of Jacob’s
ladder. Empirically oriented DFA developers use experimental
or high-level theoretical training data to optimize the DFA
description of one or more materials properties. Reduction is
arguably the most systematic approach to density functional
development, and has had a significant impact on the field
of KS–DFT. However, choices are often made as to what
types of physics and chemistry the DFA should describe
well.43,44 The empirical approach is fundamentally a matter of
explicitly making these choices, and parametrize an XC model
to suit personal preferences for computational performance.
This makes overfitting the training data and transferability of
the optimized DFA to systems and materials properties not
contained in the training data a central issue.24

The risk of overfitting was realized early on by Becke and
others.40,45 Using polynomial expansions of GGA exchange
and correlation in least-squares-fitting procedures, polynomial
orders above four were found to yield increasingly oscillatory
and unphysical XC functionals, that is, “a transition to
mathematical nonsense.”45 Nevertheless, semiempirical DFAs
containing many parameters have been constructed42,46,47

with little attention to the overfitting issue. Transferability
of a DFA parametrization depends not only on the degree
of overfitting to a single set of molecular or condensed
matter properties, but also on how many physically different
properties the approximate model was trained on. Optimizing
XC parametrizations to several different properties naturally
leads to a “competition” between data sets in determining
the model solution, i.e., an XC model compromise. Implicitly
acknowledging this, each data set is often assigned more or
less arbitrary weights.46,47 In our view, such an approach is not
guaranteed to yield the optimum model compromise.

In this study, we apply machine-learning methods to avoid
the above-mentioned pitfalls of semiempirical density func-
tional development. Regularization of a very flexible polyno-
mial GGA exchange expansion is at the heart of the developed
approach. We furthermore investigate the characteristics of
XC model compromises in a GGA + vdW model space, and
formulate and apply an explicit principle for how an XC
model trade-off should be composed. Using several training
data sets of quantities representing chemistry, solid state
physics, surface chemistry, and vdW dominated interactions,
the Bayesian error estimation functional with van der Waals
(BEEF–vdW) exchange-correlation model is generated. The
three most important aspects of semiempirical DFA design are

thus considered in detail: data sets, model space, and model
selection. The developed approach furthermore leads to an
ensemble of functionals around the optimum one, allowing an
estimate of the computational error to be calculated. Lastly,
BEEF–vdW is evaluated on systems and properties partly
not in the training sets, and is also applied in two small
surface science studies: calculating potential-energy curves for
graphene adsorption on the Ni(111) surface, and investigation
of the correlation between theoretical chemisorption energies
and theoretical surface energies of the substrate.

II. DATA SETS

Several sets of energetic and structural data describing
bonding in chemical and condensed matter systems are used
throughout this study. These data sets are either adapted from
literature or compiled here from published works, and are
briefly presented in the following. Additional information is
found in the Appendix.

(a) Molecular formation energies. The G3/99 (Ref. 48)
molecular formation enthalpies of Curtiss and co-workers
represent intramolecular bond energetics. Experimental room-
temperature heats of formation are extrapolated to 0 K,
yielding 223 electronic-only static-nuclei formation energies.
The G2/97 (Ref. 49) set of 148 formation energies is a subset
of G3/99.

(b) Molecular reaction energies. Molecular formation ener-
gies lend themselves well to compilation of gas-phase reaction
energies. The RE42 data set of 42 reaction energies involves
45 different molecules from G2/97.

(c) Molecular reaction barriers. The DBH24/08 (Ref. 50)
set of Zheng et al., comprising 12 forward and 12 backward
benchmark barriers, is chosen to represent gas-phase reaction
barriers.

(d) Noncovalent interactions. The S22 (Ref. 51) and S22x5
(Ref. 52) sets of intermolecular interaction energies of nonco-
valently bonded complexes calculated at the coupled-cluster
level with single, double, and perturbative triple excitations
[CCSD(T)] were compiled by Hobza and co-workers. Particu-
larly, the S22 set has become popular for assessment34,53–58 and
parametrization30,33,47,54,59,60 of density functional methods for
vdW–type interactions. The S22x5 set consists of potential-
energy curves (PECs) for each S22 complex, with interaction
energies at relative interaction distances d of 0.9, 1.0, 1.2,
1.5, and 2.0 as compared to S22, totaling 110 data points.
For convenience, this study divides S22x5 into five subsets
according to interaction distance, e.g., “S22x5-0.9.”
The accuracy of the original S22 and S22x5 energies have
certain deficiencies, so the revised S22x5-1.0 energies of
Takatani et al.61 are used instead. The remaining (nonequilib-
rium) data points on each CCSD(T) PEC are correspondingly
corrected according to the difference between original and
revised S22x5-1.0 energies, as elaborated on in the Appendix.

(e) Solid state properties. Three sets of 0-K experimental
solid state data are used, here denoted Sol34Ec, Sol27LC, and
Sol27Ec. The first comprises cohesive energies of 34 period
2–6 bulk solids in fcc, bcc, diamond, and hcp lattices. Zero-
point phonon effects have not been corrected for. Conversely,
the Sol27LC and Sol27Ec sets contain lattice constants and
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cohesive energies, respectively, of 27 cubic lattices, both
corrected for zero-point vibrational contributions.

(f) Chemisorption on solid surfaces. The CE17 and
CE27 data sets comprise experimental reaction energies for
chemisorption of simple molecules on the (111), (100), and
(0001) facets of late transition-metal surfaces at low coverage.
The CE17 set is a subset of CE27.

III. COMPUTATIONAL DETAILS

Self-consistent density functional calculations are per-
formed using GPAW,62–64 a real-space grid implementation of
the projector augmented-wave method.65 The ASE (Refs. 64
and 66) package provides a convenient interface to GPAW.
Grid-point spacings of 0.16 Å are employed for high-quality
computations of simple properties such as molecular bind-
ing energies. Properties of bulk solids are calculated using
somewhat denser grids with a spacing of 0.13 Å. Real-space
structure relaxation is applied to the G3/99 molecules and
CE27 chemisorption systems with 0.05 eV/Å as the criterion
of maximum force on each relaxing atom. Molecular and
single-atomic systems are placed in a box with at least 7 Å
vacuum to the box boundaries, except for the S22x5 complexes
for which the vacuum width is 10 Å. Further details on the
computational procedure employed are found in the Appendix.

IV. MODEL SPACE

The GGA exchange energy density εGGA
x (n,∇n) is conve-

niently expressed in terms of the exchange energy density of
the uniform electron gas εUEG

x (n) and an exchange enhance-
ment factor Fx(s), depending on the local density as well as
its gradient through the reduced density gradient s,

s = |∇n|
2kF n

, 0 � s � ∞,

εGGA
x (n,∇n) = εUEG

x (n)Fx[s(n,∇n)], (1)

EGGA-x[n,∇n] =
∫

εUEG
x (n)Fx[s(n,∇n)]dr,

where n = n(r), kF = (3π2n)1/3 is the Fermi wave vector of
the UEG, and EGGA−x is the semilocal GGA exchange energy.

In this study, a highly general exchange model space is
obtained by expanding the GGA exchange enhancement factor
in a basis of Mx Legendre polynomials Bm[t(s)] of orders 0
to Mx − 1 in a transformed reduced density gradient, denoted
t(s):

t(s) = 2s2

4 + s2
− 1, − 1 � t � 1

F GGA
x (s) =

∑

m

amBm[t(s)],

EGGA-x[n,∇n] =
∑

m

am

∫
εUEG
x (n)Bm[t(s)]dr (2)

=
∑

m

amEGGA-x
m [n,∇n],

where am are expansion coefficients, and EGGA-x
m is the

exchange energy corresponding to the Legendre basis function
Bm. The polynomial basis is constructed such that the boundary

limits t = [−1,1] are zero for all m > 1 basis functions.
Therefore, these limits are determined by the order 0 and 1
basis functions only.

Semilocal approximations to electron correlation effects
beyond GGA exchange are not easily cast in terms of a single
variable, such as s. The correlation model space is chosen
to be a linear combination of the Perdew-Burke-Ernzerhof
(PBE) (Ref. 67) semilocal correlation functional, purely local
Perdew-Wang68 LDA correlation, and vdW–DF2 (Ref. 30)
type nonlocal correlation. The latter is calculated from a double
integral over a nonlocal interaction kernel φ(r,r′),

Enl-c [n] = 1
2

∫
n(r)φ(r,r′)n(r′)dr dr′, (3)

which is evaluated using the fast Fourier transformation
method of Román-Pérez and Soler,69 implemented in GPAW
as described in Ref. 70.

In total, the XC model space consequently consists of GGA
exchange expanded in Legendre polynomials as well as local,
semilocal, and nonlocal correlation,

Exc =
Mx−1∑

m=0

amEGGA-x
m + αcE

LDA-c

+ (1 − αc)EPBE-c + Enl-c, (4)

where Mx = 30, and the total number of parameters is M =
Mx + 1 = 31.

None of the commonly imposed constraints on GGA
exchange are invoked, e.g., the LDA limit of Fx(s) and
recovery of the correct gradient expansion for slowly varying
densities, nor the Lieb-Oxford (LO) bound71,72 for large
electron density gradients. However, as seen from Eq. (4),
the sum of LDA and PBE correlation is constrained to unity.

V. MODEL SELECTION

Choices are made when developing a semiempirical density
functional. These are both explicit and implicit choices
pertaining to what the functional is to be designed for, that is,
for the selection of an optimum exchange-correlation model
that captures the materials properties of main interest when
applying the approximation. This study aims to explicate the
choices, and to develop a set of principles for the model
selection process. These principles are used to guide the in-
evitable compromise between how well significantly different
quantities in chemistry and condensed matter physics are
reproduced by an incomplete XC model space. Development
of an XC functional is in this approach divided into two steps.
First an individual model selection for a number of data sets is
carried out, and subsequently a simultaneous model selection
is made, compromising between the individual fits.

A. Individual materials properties

1. Regularizing linear models

Model training is formulated in terms of finding the expan-
sion coefficient vector that minimizes a cost function without
overfitting the data. This may be viewed as determining the
optimum trade-off between bias and variance of the model.73

The cost function contains two terms: a squared error term and
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a regularization term. One simple regularization suitable for
varying the bias-variance ratio is one that “penalizes” the cost
function for model solutions that differ from a suitably chosen
prior solution. This effectively removes sloppy74 eigenmodes
of the cost function by adding curvature to all modes, and
thereby limits the effective number of parameters in the model
solution. As the regularization strength is continuously de-
creased from infinity towards zero, the model parameters that
minimize the cost function are allowed to differ increasingly
from the prior solution. In a sufficiently large model space,
the solution that reproduces the data best without overfitting
is in general found for intermediate regularization strength. A
slightly more elaborate regularization is used in this study, as
outlined later on.

Finding the optimum model is then a matter of determining
the optimum regularization strength. This may be done by
minimizing the estimated prediction error (EPE) for varying
regularization strength. The EPE provides a statistical estimate
of the validity of a model outside the space of its training data,
and can be obtained by a large variety of resampling methods.
We obtain it using bootstrap resampling.75 Even though
common error quantities, such as the standard deviation (STD),
will in general decrease for regularization strengths smaller
than that which minimizes the EPE, the corresponding model
solutions are likely to be increasingly overfitted. Minimizing
the EPE and not the STD is therefore preferred for determining
well-behaved XC functionals.

2. Details of the procedure

The standard Tikhonov regularization method73 is chosen
to control overfitting. A cost function for the ith data set is
therefore defined as

Ci(a) = (Xia − yi)2 + ω2&2(a − ap)2, (5)

where Xi is a data matrix, a the coefficient vector, yi a target
vector of training data, ω2 the regularization strength, & is
denoted the Tikhonov matrix, and the prior vector ap is the
origo for regularization, i.e., the model solution for ω2 → ∞
and thus the model space reference point for regularization.

In accordance with Eq. (4), the data matrix consists of XC
contributions to a materials property for each system in the ith
data set from the M basis functions. These are evaluated non-
self-consistently on revised PBE (RPBE) (Ref. 76) densities.
The target vector contains the target XC contribution to each
quantity in the set. The Tikhonov matrix is defined from a
smoothness criterion on the basis functions. The exchange part
of & is the overlap of the second derivative of the exchange
basis functions with respect to the transformed reduced density
gradient

!2
ij =

∫ 1

−1

d2Bi(t)
dt2

d2Bj (t)
dt2

dt. (6)

Defined this way, the Tikhonov matrix directly penalizes
the integrated squared second derivative of the exchange
fit for finite regularization strength. This can be understood
as penalizing a measure of nonsmoothness of the fitted
exchange enhancement factor. In effect, the ! matrix scales the
regularization strength acting on each exchange basis function,
such that higher-order basis functions are suppressed when

minimizing the cost function. This leads to a model selection
preference for solution vectors with small coefficients for
higher-order polynomials, unless they are essential for obtain-
ing a satisfactory fit. Physically, it is very reasonable to require
Fx(s) to be a smooth and preferably injective function of s,
and significantly nonsmooth exchange solutions have been
shown to degrade transferability of fitted exchange functionals
to systems outside the training data.77 The correlation part of &
has one in the diagonal and zeros in the off-diagonal elements.
Since ! acts in the transformed t(s) space, the transformation
in Eq. (2) causes the regularization penalty on exchange to be
strongest in the large-s regime, where information from the
data matrix about the optimum behavior of Fx(s) is expected
to be scarce.76,78

In order to minimize the cost function in Eq. (5), it is
transformed by !−1. Ones are therefore inserted in the first
two diagonal elements of ! to avoid numerical issues. The
solution vector ai that minimizes Ci is written as

ai = !−1(X′
i
T X′

i + L2ω2
i

)−1(X′
i
T yi + ω2L2a′

p

)
, (7)

where X′
i = Xi!

−1, a′
p = !ap, and L2 is the identity matrix

with zeros in the first two diagonal elements. Singular value
decomposition of X′

i
T X′

i is used to calculate the inverse matrix.
The LDA and PBE correlation coefficients in the XC model
are constrained to be between 0 and 1, implying αc ∈ [0,1]
for the correlation coefficient in Eq. (4). In the cases that this
is not automatically fulfilled, it is enforced by recalculating
the solution while fixing αc to the nearest bound of the initial
solution.

The exchange part of the prior vector is chosen as the
linear combination of the order 0 and 1 polynomial basis
functions that fulfills the LDA limit at s = 0 and the LO
bound for s → ∞. With the exchange basis transformation
in Eq. (2), the prior for exchange is quite close to the PBE
exchange enhancement factor. For ω2 → ∞, we therefore
nearly recover PBE exchange, while lower regularization
strengths allow increasingly nonsmooth variations away from
this prior solution. The optimum model is expected to include
at least some semilocal correlation,31 so the origo of correlation
is αc = 0.75.

As previously mentioned, the optimum regularization is
found by minimizing the estimated prediction error for varying
ω2. Bootstrap resampling of the data matrix with the .632
estimator75,79 is used. It is defined as

EPE.632 =
√

0.368 · êrr + 0.632 · Êrr, (8)

where êrr is the variance between the target data and the
prediction by the optimal solution ai , and Êrr measures the
variance on samples of data to which solutions were not fitted
in the resampling. Both are determined as a function of ω2,
and Êrr is given by

Êrr = 1
Nµ

∑

µ

1
Ns|µ/∈s

∑

s|µ/∈s

(xµbs − yµ)2, (9)

where µ is an entry in the data set, Nµ the number of data
points, s a bootstrap sample of Nµ data points, and Ns|µ/∈s the
number of samples not containing µ. The parentheses calculate
the difference between the prediction xµbs of the data point µ
by the best-fit coefficient vector bs and the µth target value yµ.
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TABLE I. Model selection results of individually training the XC model of Eq. (4) to 10 different data sets. Meff is the effective number of
parameters in a model [see Eq. (21)]. The s = 0 and s → ∞ limits of the obtained exchange enhancement factors are also shown. MSD, MAD,
and STD are mean signed, mean absolute, and standard deviation, respectively, all in meV. Note that these are non-self-consistent results.

αc Meff Fx(0) Fx(∞) MSD MAD STD

CE17 0.90 4.7 0.97 2.15 −10 96 116
RE42 1.00 4.2 1.06 1.21 19 168 207
DBH24/08 0.00 3.7 1.14 3.14 1 116 142
G2/97 0.27 7.2 1.10 2.53 −13 109 149
Sol34Ec 0.00 7.7 0.97 1.25 −4 168 208
S22x5-0.9 0.81 3.2 0.96 1.68 0 9 11
S22x5-1.0 0.82 3.1 0.98 1.87 0 8 10
S22x5-1.2 0.40 5.7 1.04 2.38 0 4 6
S22x5-1.5 0.85 4.0 1.02 1.91 −1 3 4
S22x5-2.0 1.00 3.3 0.95 1.37 2 3 3

The best-fit solution is found by minimizing the cost function
with the data in sample s only.

In the bootstrap resampling procedure, 500 randomly
generated data samples are selected independently for each ω2.
The regularization strength that minimizes the .632 estimator is
found by a smooth fitting of the slightly scattered estimator plot
near the minimum. To properly regularize the S22x5 subsets
with long interaction distances, a condition Fx(s = ∞) � 1 is
enforced.

3. Individually trained XC models

Table I and Fig. 1 show details and statistics for the
optimized XC models obtained when the procedure outlined
above is applied to molecular, solid state, surface chemical, and
vdW dominated energetics. Each model is therefore trained
on a single materials property only, and their features differ
significantly.

The DBH24/08 set appears to favor GGA exchange that
substantially violates the LDA limit [Fx(0) = 1.14] along
with inclusion of full PBE correlation (αc = 0; no LDA
correlation). The model furthermore overshoots the LO bound
F LO

x = 1.804 significantly [Fx(∞) = 3.14]. The XC model
optimized to the G2/97 set shows similar trends with respect
to GGA exchange and PBE correlation, but is less extreme.

0 1 2 3 4 5
s

0

1

2

F
x

LO

LDA
CE17
RE42
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Sol34Ec
S22x5-0.9
S22x5-1.0
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S22x5-1.5
S22x5-2.0

FIG. 1. (Color online) Exchange enhancement factors of the
individually trained XC models listed in Table I.

In the other end of the spectrum is the model optimized to
the Sol34Ec cohesive energies. These favor GGA exchange
starting out slightly below Fx = 1, then reaching a maximum
at s ≈ 2, and finally declining slowly towards Fx = 1.25.
Best agreement with experimental cohesive energies is found
with full PBE correlation in addition to nonlocal correlation.
The occurrence of a maximum in the exchange enhancement
factor should, however, not be overemphasized. It has been
shown76,78 that only small GGA exchange contributions to
chemical and solid state binding energetics can be attributed
to reduced density gradients above 2.5. In the region of large
s, where the smoothness criterion on exchange is strongly
enforced, the regularization term in the cost function [Eq. (5)]
will therefore be dominant in determining the solution for such
systems. The regularization may therefore well determine the
behavior of Fx(s) for large density gradients.

For the remaining data sets in Table I, the optimized XC
models appear reasonable, with all exchange enhancement
factors starting out near the LDA limit. It is illustrative to
investigate how the XC models perform for data sets on
which they were not trained. The standard deviation is a
natural measure of performance. Defining the relative standard
deviation rSTD on some data set with some XC model, as
the STD obtained by that model divided by the STD of the
model that was fitted to that data set, rSTD is a measure
of transferability. Figure 2 shows a color map of the rSTD
for all 10 training data sets with all 10 trained models. The
diagonal from bottom left to top right is, by definition, ones.
In a background of blue and yellow-green squares, the map
features two distinct areas of mostly reddish squares. To
the far right, the S22x5-2.0 model yields rSTD > 5 for all
other sets than DBH24/08, and rSTD ≈ 28 for S22x5-0.9.
Furthermore, a 5 × 4 square in the top left corner illustrates that
XC models trained on chemical or solid state data sets perform
significantly worse on vdW–type energetics than models fitted
to the latter. It is also interesting to see that the S22x5-2.0
rSTDs are largely unaffected by changing XC models. With
little or no density-density overlap between many of the
S22x5-2.0 complexes, the constant nonlocal correlation in all
10 models is likely the main XC contribution to intermolecular
binding.

In summary, the deviation statistics in Table I illustrate that
the XC model space considered here most certainly spans the
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FIG. 2. (Color online) Color map of the relative standard devia-
tions obtained when non-self-consistently applying the XC models
found individually for each training data set, listed on the abscissa,
to all 10 training data sets along the ordinate.

model degrees of freedom necessary to obtain well-performing
density functionals with smooth exchange enhancement
factors and sound correlation components. However, a high
degree of transferability between the data sets should not be
expected for several of the models.

B. Several materials properties

Fundamentally, a compromise has to be made between
how well different materials properties are reproduced by the
same semiempirical density functional. This is expressed as
a compromise between how well the functional quantitatively
performs on different training data sets. What the compromise
should be can only be determined by the target applications
of the functional, and one challenge is to make this choice as
explicit as possible. This section presents one route towards a
methodology for optimizing an XC model to simultaneously
describe several different materials properties. First, the nature
of the model compromise is illustrated for the case of
simultaneously fitting two data sets using a summed cost
function with varying weights on the two sets. However, in
the end, a product cost function is found more convenient for
determining the optimum weights according to the directions
in model space favored by different data sets.

1. Model compromise

Consider first the problem of simultaneously fitting two
data sets, and let the model compromise be described through
the total cost function, given as the sum of the two individual
cost functions:

'(a) = W1C1(a) + W2C2(a), (10)

where Wi is a weight on data set i. The coefficient vector
solution b that minimizes '(a) is found by setting the

derivative to zero: Since the summed cost function is quadratic
in a, as the individual cost functions Ci are, it may be expressed
in terms of the individual solutions ai as

'(a) =
∑

i=1,2

Wi

(
C0

i + 1
2

(a − ai)T Hi(a − ai)
)

, (11)

where C0
i = Ci(ai) is the minimized cost of data set i, and

Hi is the Hessian of Ci(a). The minimizing solution b is thus
found from the individual solutions ai as

b =
(

∑

i=1,2

WiHi

)−1 (
∑

i=1,2

WiHiai

)

. (12)

However, a principle for guiding the choice of weights is
needed.

Let us consider establishing a compromise based on explicit
principles. The regularized cost functions for each training
data set Ci(a) contain information of the costs associated with
deviating from the individually found model solutions ai along
all directions in model space. The individual costs all increase
when moving away from ai due to deterioration of the fits,
increased overfitting, or a combination of both. Define now
the relative cost for each data set, rCost[ i ], as the individual
cost for set i evaluated at the compromising solution b relative
to the individual cost at ai , hence

rCost[ i ] = Ci(b)
Ci(ai)

= Ci(b)
C0

i

� 1. (13)

Thus defined, the relative cost for each training data set is a
simple measure of how unfavorable it is for each data set to be
fitted by the compromising solution b instead of the individual
solutions ai .

The main panel of Fig. 3 illustrates XC model compromises
between the G2/97 and S22x5-1.0 data sets. The curve maps
out the relative costs on both data sets obtained from model
solutions b when systematically varying the weights in '(a).
The weight fraction f is introduced (see caption of Fig. 3).
A wide range of poorly compromising models can obviously
be produced, sacrificing a lot of relative cost on one set while
gaining little on the other. However, if both materials properties
represented by the two data sets are considered important,
the optimum weightening is somewhere midway between the
asymptotic extrema.

The inset in Fig. 3 shows how the product of the relative
costs varies with f . To the right along the abscissa, where
the fraction increasingly favors the G2/97 set, the rCost
product increases rapidly. To the left, the increase is much
smaller, but a minimum is located in-between. At least one
intermediate minimum is always present since the slopes in
the two asymptotic regions are −∞ and 0, respectively. This
property is induced by the variational property around the
two original minima of the individual cost functions. Similar
conclusions apply to any combination of two or more data sets
that do not favor the same directions in the incomplete model
space.

We find in general that the condition of minimizing the
product of relative costs is well suited for choosing cost
function weights for arbitrary numbers of training data sets, if
the aim is a general-purpose model. This condition, which
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FIG. 3. (Color online) Main panel: XC model compromises
between the G2/97 and S22x5-1.0 data sets illustrated in terms of
relative costs (rCost) for both data sets when the weight fraction f =
W[G2/97]/W[S22x5-1.0] is varied and the summed cost function
Eq. (10) is minimized. A range of compromising solutions are
obtained, many of which are essentially fitting one data set only
(rCost ≈ 1) while sacrificing model performance on the other (rCost
≫ 1). A red dot marks the point of equal rCost. The fact that an XC
model with rCost[G2/97] = rCost[S22x5-1.0] = 1 is not obtainable
illustrates the necessity of a model compromise. Inset: The product
of relative costs display a minimum (blue dot) for a certain weight
fraction.

is identical to minimizing the product of costs, is applied
henceforth.

2. Product cost function

A product cost function for arbitrary numbers of training
data sets is here defined, such that the minimizing solution c
yields a desired minimum of the product of costs. The cost
function is written as

((a) =
∏

i

Ci(a)wi , (14)

where wi is a constant weight, and Ci is again an individual
cost function. The constant weight is an important feature of
((a) since it allows inclusion of training data sets which are
perceived significantly less important than others. It is thus
chosen from personal preferences given the purpose of the
functional, and we shall see that c minimizes the product of
costs given this choice.

For the case of two data sets, the stationary point between
the two individual solutions in model space is found by
differentiating the logarithm of ((a) with respect to a, and
solving

∑

i

wi

Ci

dCi

da
= 0. (15)

Using the method outlined above, the model solution that
minimizes ((a) is found in terms of the individual solutions
as

c =
(

∑

i

wi

Ci

Hi

)−1 (
∑

i

wi

Ci

Hiai

)

, (16)

where Ci = Ci(c), and wi simply scales the individual costs.
We see that this solution corresponds to letting Wi in Eq. (11)
equal wi/Ci . Thus, minimizing the product of costs has
introduced a natural weight C−1

i , while wi still leave room
for deliberately biasing the model solution.

From here on, the product solution is therefore used to find
the desired XC model solution: Since Ci is evaluated at c, the
optimum solution is found iteratively, using C−1

i as an iterator
while searching for a converged minimum of the product cost
function, given the constant weights wi .80

3. BEEF–vdW density functional

The BEEF–vdW exchange-correlation functional was de-
signed using the set of weights w listed in Table II. In principle,
these should all equal one, however, correlations between some
of the data sets have led us to lower the constant weight
on some of them: Since the RE42 set is based on G2/97
molecules, the data in RE42 are correlated with some of
the data in G2/97. Both weights were therefore lowered to
0.5. The same reasoning applies to the S22x5 subsets, where
the same complexes are found in all the five sets, albeit at
different interaction distances. A weight of 1/5 = 0.2 on each
S22x5 subset would therefore be natural, but for reasons of
performance of the final functional, constant weights of 0.1
were chosen. The prior vector was the same for the combined
functional as for the individual models.

The resulting model compromise is also tabulated in
Table II, showing the effective data-set weight w/C, rCost,
and rSTD for all data sets used in model training. It is clearly
seen that especially the S22x5-0.9 interaction energies are hard
to fit simultaneously with the other data sets within the XC
model space employed here: The relative cost for the set is
high, allowing the model to adapt mostly to the other data sets
by lowering w/C for this set. This is furthermore reflected in
the rSTD of 5.4, indicating that the BEEF–vdW performance
on this data set is significantly worse than obtained in the
individual fit to the S22x5-0.9 systems reported in Table I.
Even so, the remaining S22x5 subsets appear to share XC

TABLE II. The BEEF–vdW model compromise. The effective
weight in determining the XC model solution is w/C for each data
set, as iteratively found from minimizing the product cost function
[Eq. (14)]. The relative standard deviation (rSTD) is the ratio of the
STD at the BEEF–vdW compromise to the STD at the regularized
individual solution in Table I. The relative costs (rCost) are defined
similarly, but includes regularization [see Eq. (13)].

w w/C rCost rSTD

CE17 1.0 1.80 1.7 1.3
RE42 0.5 0.62 2.5 1.8
DBH24/08 1.0 0.65 4.9 2.3
G2/97 0.5 0.62 2.6 1.6
Sol34Ec 1.0 0.43 7.5 2.8
S22x5-0.9 0.1 0.01 28.6 5.4
S22x5-1.0 0.1 0.04 9.1 2.9
S22x5-1.2 0.1 0.09 3.5 2.1
S22x5-1.5 0.1 0.08 4.1 2.1
S22x5-2.0 0.1 0.18 1.8 1.5
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TABLE III. Expansion coefficients am for the BEEF–vdW Leg-
endre exchange basis functions of order m. The correlation mixing
parameter, αc in Eq. (4), is 0.6001664769.

m am m am

0 1.516501714 × 100 15 −8.018718848 × 10−4

1 4.413532099 × 10−1 16 −6.688078723 × 10−4

2 −9.182135241 × 10−2 17 1.030936331 × 10−3

3 −2.352754331 × 10−2 18 −3.673838660 × 10−4

4 3.418828455 × 10−2 19 −4.213635394 × 10−4

5 2.411870076 × 10−3 20 5.761607992 × 10−4

6 −1.416381352 × 10−2 21 −8.346503735 × 10−5

7 6.975895581 × 10−4 22 −4.458447585 × 10−4

8 9.859205137 × 10−3 23 4.601290092 × 10−4

9 −6.737855051 × 10−3 24 −5.231775398 × 10−6

10 −1.573330824 × 10−3 25 −4.239570471 × 10−4

11 5.036146253 × 10−3 26 3.750190679 × 10−4

12 −2.569472453 × 10−3 27 2.114938125 × 10−5

13 −9.874953976 × 10−4 28 −1.904911565 × 10−4

14 2.033722895 × 10−3 29 7.384362421 × 10−5

model space with the data sets representing formation and
rupture of interatomic bonds to a significantly greater extent.
Thus, accurate description of the balance of strong and weak
interactions in the S22x5-0.9 complexes is nearly incompatible
with at least one of the other sets of materials properties, when
demanding well-behaved exchange and correlation functionals
in the present model space.

Table III lists the BEEF–vdW expansion coefficients. The
correlation functional consists of 0.6 LDA, 0.4 PBE, and 1.0
nonlocal correlation. The qualitative shape of the BEEF–vdW
exchange enhancement factor is shown in Fig. 4, with s = 0
and s → ∞ limits of 1.034 and 1.870, respectively. Thus,
BEEF–vdW exchange does not exactly obey the LDA limit for
s = 0, but is 3.4% higher. The enhancement factor is above
most GGA exchange functionals up to s ≈ 2.5, from where it
approaches the LO bound with a small overshoot in the infinite
limit.

0 1 2 3 4 5
s

0

1

2

F
x

LO

LDA

PBE
revPBE

RPBE
BEEF-vdW

FIG. 4. (Color online) The BEEF–vdW exchange enhancement
factor compared to those of a few standard GGA exchange func-
tionals. The corresponding BEEF–vdW correlation functional is
composed of 0.6 LDA, 0.4 PBE, and 1.0 nonlocal correlation.

The lack of exact fulfillment of the LDA limit for exchange
indicates a conflict between this limit, the training data, and the
employed preference for smooth exchange models. The G2/97
and DBH24/08 chemical data sets are found to give particular
preference to exchange enhancement models with Fx(0) ≈
1.1, and enforcing Fx(0) = 1.0 for these sets leads to severely
nonsmooth exchange solutions for s → 0. Similar behavior
was found in Ref. 77. Note that MGGA approximations
are able to achieve exchange models with Fx(0) ̸= 1.0 for
densities different from the UEG, while still obeying the LDA
limit for UEG-like densities. The BEEF–vdW Fx also has
small “bump” at s ≈ 1.3. This is not essential to the quality
of the model and is not expected to harm its transferability.
However, completely removing such features requires overly
strong regularization.

VI. ENSEMBLE ERROR ESTIMATION

A normal DFT calculation does not provide any information
about the uncertainty of the result from using an approximate
XC functional. One method to obtain an estimate of the
uncertainty is performing several calculations using different
functionals, and observe the variations in the prediction of the
quantity of interest. Another more systematic approach is to
use an ensemble of functionals designed to provide an error
estimate, as discussed in Ref. 81. This method is applied to
the BEEF–vdW model, and the adaptation is briefly presented
here.

Inspired by Bayesian statistics,73 we define a probability
distribution P for the model parameters a given the model θ
and training data D:

P (a|θD) ∼ exp[−C(a)/τ ], (17)

where C(a) is the cost function, and τ is a cost “temperature.”
Given the data D, a model perturbation δa has a certain
probability associated with it, and this defines an ensemble
of different XC functionals. The temperature is to be chosen
such that the spread of the ensemble model predictions of
the training data reproduces the errors observed when using
BEEF–vdW self-consistently. This approach to constructing
the probability distribution is closely related to the maximum
entropy principle.77,82

The ensemble is defined through a Hessian scaled with the
temperature. The Hessian is calculated directly from

H = 2
N∑

i

wi

Ci(ap)
!−1(X′

i
T X′

i + ω2
i L2)!−1T

, (18)

where the sum is over training data sets. The temperature is
related to the effective number of parameters in the model,
calculated from the effective regularization

ω2
eff =

N∑

i

wi

Ci(c)
ω2

i , (19)

where ω2
i are the regularization strengths for the individual data

sets. Additionally, diagonalization of the combined square of
the transformed data matrix

,′ = VT

(
N∑

i

wi

Ci(c)
X′

i
T X′

i

)

V, (20)
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where ,′ contains the eigenvalues along the diagonal and V
the eigenvectors, allows the effective number of parameters
left in the model after regularization, Meff , to be computed as

Meff =
M∑

m

,′
m

2

,′
m

2 + ω2
effL

2
m

. (21)

Since Meff = 7.11 in the BEEF–vdW model compromise,
more than 75% of the initially 31 model degrees of freedom
have been suppressed by regularization.

The temperature calculation is slightly modified from the
method in Ref. 81 in order to construct an unbiased error
estimation. This reflects that a larger error is expected when
BEEF–vdW is applied to systems not included in the training
data sets. The temperature is therefore calculated as

τ = 2
C(c)
Meff

· Ntot

Ntot − Meff
, (22)

where Ntot is the total number of systems in the training
sets. The second term is close to unity since Ntot ≫ Meff .
An ensemble matrix is now found as

"−1 = τ H−1, (23)

with eigenvalues w2
-−1 and eigenvectors V-−1 .

Finally, using an ensemble of k vectors vk , each of length
M with elements randomly drawn from a normal distribution
of zero mean and variance one, the BEEF–vdW ensemble
coefficient vectors ak are calculated from

ak = V-−1 · 1w-−1 · vk. (24)

The BEEF–vdW ensemble matrix is provided in the Supple-
mental Material.83

An illustration of the BEEF–vdW ensemble is shown in
Fig. 5. For each data point in each data set, this ensemble
may be applied non-self-consistently to BEEF–vdW electron
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FIG. 5. (Color online) Bayesian ensemble of XC functionals
around BEEF–vdW. Main panel: Black solid line is the BEEF–vdW
exchange enhancement factor, while the orange lines depict Fx(s)
for 50 samples of the randomly generated ensemble. Dashed black
lines mark the exchange model perturbations that yield DFT results
±1 standard deviation away from BEEF–vdW results. The inset
shows a histogram of the distribution of correlation parameters in
an ensemble containing 20 000 samples. The distribution is centered
around αc = 0.6.

TABLE IV. Comparison of self-consistent BEEF–vdW standard
deviations to those predicted by the ensemble of functionals around
BEEF–vdW. All energies in meV.

BEEF–vdW Ensemble estimate

CE17 143 209
RE42 372 253
DBH24 331 144
G2/97 242 312
SolEc34 576 436
s22x5-0.9 171 197
s22x5-1.0 94 181
s22x5-1.2 36 137
s22x5-1.5 8 67
s22x5-2.0 5 18

densities. The standard deviation of the ensemble predictions
of a quantity is then the ensemble estimate of the BEEF–
vdW standard deviation on that quantity. The exchange
enhancement ensemble expands after s ≈ 2, where most of the
chemistry and solid state physics have already happened.76,78

The predictive performance of the ensemble has been
evaluated using 20 000 ensemble functionals. In practice,
however, a few thousand ensemble functionals suffice for
well-converged error estimates at a negligible computational
overhead. Estimated standard deviations on the training data
sets are compared to those from self-consistent calculations
in Table IV. The ensemble performance on the data-set level
should be assessed in combination with observing the error
predictions on a system-to-system basis. Figure 6 illustrates the
BEEF–vdW ensemble error estimates for the RE42 molecular
reaction energies, and compares BEEF–vdW results to those
of other functionals. Similar figures for more data sets are
found in the Supplemental Material.83

On the data-set level, the overall predictive performance of
the ensemble is satisfactory. The ensemble standard deviations
in Table IV are slightly overestimated for the G2/97, CE17,
and S22x5-0.9 data sets, while the ensemble underestimates
the errors for RE42, DBH24/08, and Sol34Ec. For the
remaining S22x5 subsets, the error estimates are too large.

Importantly, Fig. 6 illustrates strengths and weaknesses
of the present approach to error estimation. Many of the
reaction energies are accurately reproduced by BEEF–vdW,
and the ensemble estimates a relatively small error on those
data. However, some of the reactions for which BEEF–vdW
yields larger errors are assigned too small error bars. The
water-gas shift reaction CO + H2O→CO2 + H2 is one of
these. The reason for this is indicated by the fact that all tested
GGA, MGGA, and vdW–DF–type functionals yield nearly
identical reaction energies for this reaction. One simply has
to move rather far in XC model space to find a functional
that predicts a reaction energy significantly different from the
BEEF–vdW result. This causes the ensemble to underestimate
the actual error for that reaction. Since the hybrid functionals
appear to break the overall trends observed for the lower-rung
functionals in Fig. 6, inclusion of exact exchange in the
model space might remedy such limitations of the BEEF–vdW
functional and its Bayesian ensemble.
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FIG. 6. (Color online) Deviations . = .rE
DFT − .rE

exp between the RE42 molecular reaction energies calculated using representative
XC functionals and experiment. Color codes are BEEF–vdW: black; GGA: blue; MGGA: green; vdW–DF type: red; and hybrid: yellow.
BEEF–vdW ensemble error estimates are indicated by horizontal error bars. The numbers in the middle column are self-consistent BEEF–vdW
deviations from experiment.

VII. BENCHMARKS

The following is a comparative assessment of BEEF–
vdW and a selection of literature XC functionals of the
LDA, GGA, MGGA, vdW–DF, and hybrid types. These are
listed in Table V. The benchmark data sets used are the
six sets to which BEEF–vdW was trained, except Sol34Ec,

as well as the G3-3, CE27, Sol27Ec, and Sol27LC data
sets. The latter sets were introduced in Sec. II. Statistics
on deviations of computed quantities from experimental
or high-level theoretical references are reported for each
density functional in terms of the mean signed (MSD), mean
absolute (MAD), and standard deviation (STD). The sign
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TABLE V. A selection of density functionals at the LDA (1),
GGA (2), MGGAa (3), vdW–DF (3.5), and hybridb (4) rungs of
Jacob’s ladder.

Type Targetc Ref.

LDA 1 68
PBE 2 General 67
RPBE 2 Chemistry 76
BLYP 2 Chemistry 87, 88
HCTH407 2 Chemistry 46
PBEsol 2 Solid state 43
WC 2 Solid state 89
AM05 2 Solid state 90
TPSS 3 General 91
revTPSS 3 General 44
vdW-DF 3.5 vdW 25
vdW-DF2 3.5 vdW 30
optPBE-vdW 3.5 vdW 33
optB88-vdW 3.5 vdW 33
C09-vdW 3.5 vdW 34
B3LYP 4 Chemistry 92
PBE0 4 Chemistry 93

aAttempts to apply the M06-L (Ref. 47) MGGA were unsuccessful
due to convergence issues for a wide range of systems from almost
all considered data sets. Note that problematics of evaluating MGGA
potentials, especially for the M06 family of functionals, are discussed
in recent literature (Refs. 84–86).
bHybrid functionals have not been applied to extended systems.
cShould be understood as a very general characterization of the main
target of a functional, and does not consider underlying principles of
design.

convention is

deviation = DFT − reference. (25)

Computed deviations for all systems in all data sets considered
are tabulated in the Supplemental Material,83 which also
provides the raw DFT data.

All data are furthermore available online in the Computa-
tional Materials Repository (CMR).95 The repository contains
all information about the individual DFT calculations which
form the basis for the results presented here, including atomic
configurations and GPAW specific parameters. Access to search,
browse, and download these data is provided through the CMR
web interface.96

A. Molecular formation energies

The G2/97 and G3/99 thermochemical test sets have
become standards for validating density functional methods,
and the present calculations are well in line with published
benchmark data94 for these sets. Statistics are reported in
Table VI. Considering first G2/97, the LDA grossly overesti-
mates the molecular formation energies. Significant improve-
ments are found with GGAs, where XC functionals designed
to capture molecular energetics (RPBE, BLYP, HCTH407)
yield STDs below 0.5 eV, while those targeted at solid
state properties (PBEsol, WC, AM05) perform significantly
worse: their MSDs are large and negative, indicating severe

overbinding. The TPSS and revTPSS MGGA approximations
perform quite well on this set.

Turning to the vdW–DF variants, good description of the
G2/97 formation energies is also found for vdW–DF and
vdW–DF2. This, however, is not the case for the optPBE–
vdW, optB88–vdW, and C09–vdW functionals, for which
the GGA exchange components are optimized with vdW
dominated energetics in mind. This approach apparently leads
to intramolecular overbinding, as previously noted in Ref. 31.

For comparison, Table VI also includes statistics for
the B3LYP and PBE0 hybrids. As the wide application of
hybrid XC functionals in the quantum chemistry community
suggests, B3LYP and PBE0 accurately describe molecular
bond energetics, and the B3LYP parametrization is found to
be the best DFA for the G2/97 data set. Table VI furthermore
shows that also the BEEF–vdW functional performs very well
in predicting molecular formation energies. With a MAD
of 0.16 eV, BEEF–vdW is highly accurate on the G2/97
thermochemical set, and even outperforms the PBE0 hybrid
on these systems.

Now, let us switch attention to the G3-3 set of 75 molecules,
which the BEEF–vdW model was not trained on. For most
XC functionals tested here, the average deviations on G3-3
are larger than on G2/97. It is, however, noteworthy that
TPSS, revTPSS, vdW–DF, and vdW–DF2 are exceptions to
this trend. Benchmarking BEEF–vdW on G3-3 validates its
good performance in predicting molecular bond energetics.
This conclusion is underlined by the BEEF–vdW deviation
statistics on the full G3/99 compilation. With a MAD of 0.19
eV, it is the most accurate DFA tested on G3/99, closely
followed by B3LYP. Both MGGA functionals as well as
vdW–DF and vdW–DF2 also perform well on this set.

B. Molecular reaction energies

The last column of Table VI summarizes deviation statistics
for the RE42 data set. Even though the reaction energies are
derived from the G2/97 formation energies, the reaction ener-
gies appear difficult to capture accurately with GGA, MGGA,
and vdW–DF type functionals. None of them yield a STD
less than 0.3 eV. The B3LYP hybrid proves significantly more
accurate in this respect. Interestingly, the optPBE–vdW and
optB88–vdW functionals, which both severely overestimate
the G2/97 formation energies, prove as reliable for calculating
gas-phase reaction energies as the best GGA (RPBE), and
compare well to TPSS and BEEF–vdW.

C. Chemisorption on solid surfaces

Deviation statistics for the CE17 and CE27 data sets are
reported in the first two columns of Table VII. The BEEF–vdW
model was trained on CE17, while CE27 contains 10 extra
entries, mostly covering dissociative H2 chemisorption on late
transition-metal surfaces. With MADs � 0.7 eV, LDA and
the GGAs designed for solid state applications are clearly
overbinding simple adsorbates to solid surfaces (negative
MSDs). The RPBE, BLYP, and HCTH407 functionals are
significantly more reliable for calculation of chemisorption
energies, RPBE performing best with a MAD of 0.11 eV for
both CE17 and CE27. Also, vdW–DF and vdW–DF2 yield
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TABLE VI. Deviation statistics on the G2/97, G3-3, and G3/99 thermochemical data sets, as well as the RE42 set of molecular reaction
energies. All energies in eV.

G2/97 (148) G3-3 (75) G3/99 (223) RE42 (42)

Method MSD MAD STD MSD MAD STD MSD MAD STD MSD MAD STD

LDA −3.69 3.69 4.27 −8.35 8.35 8.78 −5.25 5.25 6.16 −0.55 1.06 1.62
PBE −0.64 0.68 0.84 −1.32 1.32 1.48 −0.87 0.90 1.10 −0.08 0.30 0.42
RPBE 0.25 0.40 0.51 0.94 0.96 1.13 0.48 0.59 0.78 0.11 0.26 0.34
PBEsol −1.69 1.70 2.00 −3.94 3.94 4.14 −2.45 2.45 2.90 −0.29 0.48 0.73
BLYP 0.00 0.32 0.43 0.57 0.62 0.76 0.19 0.42 0.56 0.16 0.29 0.37
AM05 −1.77 1.78 2.07 −4.00 4.00 4.19 −2.52 2.52 2.96 −0.21 0.41 0.62
WC −1.24 1.26 1.51 −2.86 2.86 3.03 −1.79 1.80 2.14 −0.24 0.43 0.65
HCTH407 0.09 0.26 0.35 0.48 0.55 0.65 0.22 0.36 0.47 0.06 0.27 0.35
TPSS −0.22 0.28 0.33 −0.26 0.29 0.33 −0.24 0.28 0.33 0.06 0.25 0.32
revTPSS −0.21 0.28 0.34 −0.24 0.26 0.31 −0.22 0.27 0.33 0.16 0.33 0.43
vdW–DF −0.10 0.24 0.33 0.18 0.24 0.32 −0.01 0.24 0.33 0.24 0.39 0.52
vdW–DF2 −0.15 0.28 0.39 0.11 0.26 0.36 −0.06 0.28 0.38 0.24 0.40 0.54
optPBE–vdW −0.84 0.85 0.98 −1.72 1.72 1.82 −1.14 1.14 1.32 0.06 0.27 0.35
optB88–vdW −1.04 1.04 1.20 −2.22 2.22 2.34 −1.44 1.44 1.68 0.02 0.26 0.34
C09–vdW −1.55 1.55 1.80 −3.55 3.55 3.72 −2.22 2.22 2.61 −0.11 0.33 0.45
B3LYPa 0.05 0.14 0.19 0.36 0.37 0.41 0.15 0.21 0.28 −0.05 0.15 0.22
PBE0a −0.10 0.21 0.28 −0.40 0.44 0.55 −0.20 0.29 0.39 0.13 0.33 0.47
BEEF-vdW −0.02 0.16 0.24 0.19 0.25 0.31 0.05 0.19 0.27 0.14 0.29 0.37

aB3LYP and PBE0 data adapted from Ref. 94.

MADs of 0.20 eV of less on CE27, while the two MGGAs
overbind on average. Again, a significant overbinding is found
for the three exchange-modified vdW–DF flavors. Lastly, it is
seen from the CE17 column in Table VII that BEEF–vdW
is among the DFAs offering most accurate predictions of
chemisorption energies of simple adsorbates on solid surfaces.
Since much of this accuracy is retained when moving to CE27,
good transferability is expected when applying BEEF–vdW
to other types of surface processes involving rupture and
formation of chemical bonds.

D. Molecular reaction barriers

The DBH24/08 reaction barrier heights belong to a class
of systems for which a fraction of exact exchange is known to
increase computational accuracy significantly over GGAs.22,97

This is supported by the DBH24/08 data in Table VII,
where the two hybrids clearly outperform the lower-rung
XC functionals. Considering the corresponding statistics for
BEEF–vdW as well as for the individual DBH24/08 XC model
reported in Table I, where a MAD of 0.12 eV was obtained, it is

TABLE VII. Deviation statistics on the CE17 and CE27 chemisorption energies, DBH24/08 reaction barriers, and the S22x5 interaction
energies of noncovalently bonded complexes. All energies in eV, except S22x5, which is in meV.

CE17 (17) CE27 (27) DBH24/08 (24) S22x5 (110)

Method MSD MAD STD MSD MAD STD MSD MAD STD MSD MAD STD

LDA −1.34 1.34 1.39 −1.33 1.33 1.42 −0.58 0.58 0.73 −50 62 110
PBE −0.42 0.42 0.44 −0.40 0.40 0.43 −0.33 0.33 0.43 76 76 132
RPBE −0.02 0.11 0.13 0.00 0.11 0.14 −0.27 0.27 0.34 138 138 227
PBEsol −0.85 0.85 0.87 −0.85 0.85 0.89 −0.44 0.44 0.56 38 53 85
BLYP −0.04 0.13 0.16 0.02 0.15 0.18 −0.33 0.33 0.39 140 140 218
AM05 −0.70 0.70 0.73 −0.69 0.69 0.73 −0.41 0.41 0.53 99 99 157
WC −0.76 0.76 0.78 −0.76 0.76 0.80 −0.41 0.41 0.52 56 63 105
HCTH407 0.11 0.17 0.22 0.15 0.20 0.30 −0.19 0.21 0.31 115 116 218
TPSS −0.32 0.32 0.37 −0.34 0.34 0.41 −0.35 0.35 0.41 100 100 162
revTPSS −0.38 0.38 0.43 −0.38 0.38 0.45 −0.35 0.35 0.41 92 92 141
vdW–DF −0.05 0.12 0.14 0.04 0.18 0.22 −0.27 0.28 0.34 39 52 87
vdW–DF-2 −0.04 0.13 0.18 0.07 0.20 0.26 −0.30 0.31 0.37 31 33 61
optPBE–vdW −0.39 0.39 0.42 −0.31 0.35 0.40 −0.33 0.33 0.41 −4 21 29
optB88–vdW −0.52 0.52 0.56 −0.44 0.45 0.52 −0.37 0.37 0.45 3 10 15
C09–vdW −0.78 0.78 0.81 −0.73 0.73 0.79 −0.41 0.41 0.50 −5 12 18
B3LYP −0.17 0.17 0.21 111 111 180
PBE0 −0.13 0.15 0.19 71 71 124
BEEF–vdW −0.08 0.12 0.14 −0.01 0.16 0.19 −0.26 0.26 0.33 42 50 88
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clear that the BEEF–vdW model has moved significantly away
from the part of model space favored by gas-phase reaction
barrier heights. Nevertheless, BEEF–vdW is among the best
nonhybrid functionals for such quantities.

E. Noncovalent interactions

The last column of Table VII lists deviation statistics for
the S22x5 interaction energies. As previously found in several
studies30,33,53,59 of the original S22 data set, vdW dominated
interactions are well described by vdW–DF type density
functionals, especially those with an optimized exchange
component. With MADs of 20 meV or less over all 110
points on the 22 potential-energy curves, the optPBE–vdW,
optB88–vdW, and C09–vdW functionals prove highly accurate
in this respect. The vdW–DF2 functional also captures vdW

TABLE VIII. Detailed statistics on the deviations of calculated
S22x5 interaction energies from CCSD(T) benchmarks using van der
Waals density functionals in all five points along the intermolecular
potential-energy curve. Mean signed and mean absolute deviations
are in meV. Mean signed relative (MSRD) and mean absolute relative
(MARD) deviations are also listed. Negatively signed deviation
means overbinding on average.

Method MSD MAD MSRD MARD

d = 0.9
vdW–DF 140 140 198% 198%
vdW–DF2 99 99 143% 143%
optPBE–vdW 29 31 28% 35%
optB88–vdW 17 19 26% 26%
C09–vdW −13 21 −13% 35%
BEEF–vdW 136 137 214% 214%
d = 1.0
vdW–DF 70 71 20% 25%
vdW–DF2 43 44 13% 15%
optPBE–vdW −1 20 −9% 13%
optB88–vdW 5 13 3% 6%
C09–vdW −3 13 1% 6%
BEEF–vdW 72 74 20% 28%
d = 1.2
vdW–DF 4 32 −16% 23%
vdW–DF2 5 13 −2% 7%
optPBE–vdW −25 28 −29% 30%
optB88–vdW −4 13 −6% 9%
C09–vdW −3 13 −8% 11%
BEEF–vdW 6 27 −12% 18%
d = 1.5
vdW–DF −13 15 −39% 40%
vdW–DF2 2 4 4% 6%
optPBE–vdW −20 20 −44% 44%
optB88–vdW −3 6 −12% 13%
C09–vdW −6 11 −26% 28%
BEEF–vdW −5 6 −13% 14%
d = 2.0
vdW–DF −4 4 −20% 20%
vdW–DF2 5 5 34% 34%
optPBE–vdW −5 5 −20% 21%
optB88–vdW 1 2 3% 8%
C09–vdW −2 2 −13% 15%
BEEF–vdW 2 3 27% 28%

interactions well, but the positive MSD signifies that most
of the deviations from the CCSD(T) reference energies stem
from underbinding. For vdW–DF and BEEF–vdW, this is
even more pronounced. None of the tested MGGA or hybrid
DFAs convincingly capture vdW interactions. Only the most
weakly gradient enhancing GGAs (PBEsol, WC, AM05) yield
reasonable statistics. Taking into account the appreciable LDA
overbinding of the S22x5 complexes, what appears to be GGA
functionals capturing long-ranged dispersion is more likely a
case of getting it right for the wrong reasons.

For completeness, Table VIII shows detailed S22x5 statis-
tics for vdW–DF variants and BEEF–vdW. Although per-
forming reasonably well on S22x5 as a whole, the vdW–DF,
vdW–DF2, and BEEF–vdW functionals underestimate the
intermolecular binding energies at shortened binding distances
d = 0.9. Also, at d = 1.0 the exchange-modified vdW–DF
flavors offer a better description, but the difference between
the two groups is much reduced. Concerning computational
accuracy, the vdW–DF2 MSD of 43 meV and MAD of 44 meV
for S22x5-1.0 obtained here compare very well to the MSD
and MAD of 40 and 41 meV, respectively, found in a recent
study59 for a revised S22 data set.

F. Solid state properties

Table IX reports a summary of deviation statistics for
calculations of lattice constants (Sol27LC) and cohesive
energies (Sol27Ec). The lattice constant statistics are in clear
favor of the PBEsol, AM05, WC, and revTPSS functionals.
Their standard deviations are small and the MSDs are close
to 0 Å. On average, however, these remarkably accurate
predictions of equilibrium crystal volumes come at the price
of overestimated cohesive energies.

The picture is opposite for vdW–DF and vdW–DF2. Lattice
constants are overestimated and more so than with any other
XC functional tested, vdW–DF2 yielding a standard deviation
of 0.18 Å. Furthermore, those two DFAs notably underestimate
cohesive energies. The less repulsive exchange functionals of
the modified vdW–DF variants lead in general to statistics
similar to those of PBE and TPSS for the two materials
properties in question. These findings closely match those
reported in recent studies32,78,98–100 assessing the performance
of GGA, MGGA, and vdW–DF type XC functionals for solid
state properties.

Benchmarking finally BEEF–vdW, we find in Table IX that
it performs reasonably well for cohesive energies and lattice
constants, though still predicting softer crystal lattices than
the optimized vdW–DF variants. With BEEF–vdW, these two
bulk materials properties are, however, significantly closer to
agreement with experiments than predictions by vdW–DF,
vdW–DF2, and most of the GGAs designed mainly for
chemistry.

VIII. APPLICATIONS

Two applications of BEEF–vdW to problems of current
interest in the surface science community are here presented:
graphene adsorption on the close-packed Ni(111) surface,
and the trends observed when applying lower-rung density
functionals in calculations of the binding energy of CO to
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TABLE IX. Deviation statistics for the Sol27Ec cohesive energies (eV/atom) and Sol27LC lattice constants (Å). Zero-point vibrational
effects have been removed from both experimental data sets.

Sol27Ec (27) Sol27LC (27)

Method MSD MAD STD MSD MAD STD

LDA 0.89 0.89 1.08 −0.07 0.07 0.10
PBE −0.10 0.27 0.38 0.05 0.06 0.07
RPBE −0.54 0.58 0.71 0.11 0.11 0.13
PBEsol 0.43 0.45 0.63 −0.01 0.03 0.04
BLYP −0.79 0.80 0.89 0.11 0.11 0.14
AM05 0.25 0.36 0.51 0.01 0.03 0.04
WC 0.37 0.41 0.57 0.00 0.03 0.04
HCTH407 −0.59 0.67 0.82 0.08 0.10 0.14
TPSS 0.08 0.27 0.36 0.05 0.05 0.08
revTPSS 0.31 0.37 0.50 0.03 0.04 0.07
vdW–DF −0.54 0.60 0.72 0.12 0.12 0.14
vdW–DF2 −0.58 0.64 0.75 0.12 0.14 0.18
optPBE–vdW −0.12 0.27 0.38 0.06 0.08 0.10
optB88–vdW 0.01 0.25 0.36 0.04 0.08 0.09
C09–vdW 0.42 0.43 0.59 0.01 0.05 0.06
BEEF–vdW −0.37 0.45 0.59 0.08 0.08 0.11

Pt(111) and Rh(111) substrates as well as the surface energy
of those substrates.

A. Graphene adsorption on Ni(111)

The remarkable electronic properties of monolayer
graphene103–105 and its potential application in electronics
technology104,106 motivate investigation of the interactions
between graphene sheets and metallic surfaces. The na-
ture of graphene adsorption on metals is highly metal
dependent,107,108 some surfaces binding graphene only weakly
and others forming strong covalent bonds to the carbon sheet.
The Ni(111) surface belongs to the latter group, graphene
forming a (1 × 1) overlayer at a graphene-metal distance of
d = 2.1 Å.109 Furthermore, a band gap is induced in graphene
upon adsorption, underlining the strong hybridization respon-
sible for changing the electronic structure of the carbon
sheet.110,111

Several theoretical studies have investigated the
graphene/Ni(111) potential-energy curve, with mixed
results.112–118 However, based on RPA calculations, it is by
now established that this particular adsorption process is
a delicate competition between strong interactions close to
the surface and vdW forces further from the surface.101,102

Figure 7 shows calculated PECs for graphene adsorption
on Ni(111) using LDA, MGGA, and vdW–DF type density
functionals, as well as BEEF–vdW. Computational details are
given in the Appendix. Additionally, two sets of RPA data are
shown for comparison, indicating that graphene adsorption
on Ni(111) is characterized by a physisorption minimum
at d = 3.0–3.5 Å and a chemisorbed state at d ≈ 2.2 Å,
the latter in good agreement with experiments.109 However,
as previously found,101,102,116,117 rung 1–3 DFAs, as well
as vdW–DF and vdW–DF2, fail to simultaneously describe
both qualitative features. Conversely, the optPBE–vdW and
optB88–vdW PECs are increasingly closer to RPA data. The
BEEF–vdW PEC shows qualitatively similar features, but the
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FIG. 7. (Color online) Potential-energy curves for graphene
adsorption on the Ni(111) surface. Random phase approximation data
are from Refs. 101 (RPA1) and 102 (RPA2). The gray area indicates
the region spanned by the estimated standard deviations along the
BEEF–vdW PEC.
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local minimum at d = 2.25 Å is very shallow and yields a
positive adsorption energy.

Figure 7 also shows ensemble error estimates along the
BEEF–vdW PEC. Especially two aspects of these are of
interest. First of all, the error bars do not straddle the zero line
for large graphene-metal distances, indicating that confidence
in the presence of a physisorption minimum is high. Second,
the error bars enlarge notably at smaller distances from d =
2.6 Å and inwards, reflecting that these BEEF–vdW data points
are associated with a significantly larger uncertainty. Recalling
how the ensemble error estimate is designed (Sec. VI), the
error estimates indicate that the graphene/Ni(111) PEC is very
sensitive to the choice of XC functional in the chemically
interesting range. Put differently, the ensemble suggests that
we should not trust the BEEF–vdW prediction of a positive
PEC for d < 2.7 Å as a definite result, as the estimated errors
are simply too large in this region of the PEC.

B. Surface chemistry and stability

Chemisorption energies of molecules on surfaces are
obviously important quantities in heterogeneous catalysis and
surface science. However, accurate computation of surface
energies Eγ can be critical as well since minimization of
surface energy is a driving force determining the morphology
and composition of surfaces, interfaces, and nanoparticles.123

GGA density functionals, however, often underestimate Eγ ,
and the GGAs yielding most accurate surface energies also
vastly overbind molecules to surfaces.119 It thus appears that
accurate computation of chemisorption energies on a surface
as well as the stability of that surface is not possible with
the same GGA approximation, underscoring a fundamental
incompleteness of the GGA XC model space.

The issue is here investigated for vdW–DF variants and
BEEF–vdW. Figure 8 shows atop chemisorption energies of
CO on Pt(111) and Rh(111) against surface energies of those
substrates, calculated using GGA, MGGA and vdW–DF type
functionals, and BEEF–vdW with error estimation. These
are compared to RPA results and experimental data. As
previously reported,119,124 the GGA data points fall along an
approximately straight line, which is significantly offset from
the experimental data, thus illustrating the issue discussed
above. This is here shown to be the case for vdW–DF variants
also: The dashed vdW–DF lines are parallel to the solid GGA
lines, and are only slightly offset from the latter, especially for
Rh(111). The vdW–DF and vdW–DF2 data points are quite
close to RPBE. Larger surface energies are found with the
exchange-modified vdW–DF variants, albeit at the expense
of overestimated chemisorption energies. Note that such a
correlation should be expected from Tables VII and IX and
a linear relation between Eγ and the solid cohesive energy.123

Although BEEF–vdW contains the vdW–DF2 nonlocal
correlation functional as an essential component, the former
predicts larger surface energies than the latter without sacri-
ficing accuracy of the CO-metal binding energy. We expect
that this ability of BEEF–vdW to “break” the vdW–DF line
is due to the expanded GGA model space as compared to
vdW–DF, the latter of which pairs nonlocal correlation with
LDA correlation. Significant inclusion of semilocal correlation
in vdW–DF type calculations was also found in Ref. 31 to
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FIG. 8. (Color online) Atop CO chemisorption energies .E

versus surface energies Eγ for Pt(111) and Ru(111). Red and
blue lines are linear fits to GGA and vdW–DF type data points,
respectively. MGGA data in green and yellow RPA data adapted
from Ref. 119. Estimated standard deviations are indicated by error
bars around the orange BEEF–vdW data points. All points (Eγ ,.E)
inside the gray areas are within one standard deviation from the
BEEF–vdW point for both quantities. Experimental surface energies
from liquid-metal data (Refs. 120 and 121), and experimental CO
chemisorption energies from Ref. 122.

broadly improve accuracy for several materials properties.
The BEEF–vdW error estimates furthermore appear very
reasonable. The experimental CO chemisorption energies are
straddled for both Pt(111) and Rh(111), and the error estimates
along Eγ almost fill out the gap between the GGA lines to
the left and the RPA and C09–vdW surface energies to the
right. Lastly, it is seen from the green TPSS and revTPSS
data points in Fig. 8, as also reported in Ref. 124, that the
third rung of Jacob’s ladder may offer the possibility of quite
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accurate surface energies with only moderately overbound
surface adsorbates.

IX. DISCUSSION

The presented approach to semiempirical DFA develop-
ment fundamentally considers XC functionals as more or less
accurate models of the exact density functional. From this
point of view, the XC model space expansion and model
selection procedure are essential, as are data sets for calibrating
or benchmarking XC models. The concept of an ensemble
of model solutions is intrinsic to the present model selection
procedure. The cost function for a single data set has both weak
(sloppy) and strong (important) eigenmodes in a sufficiently
flexible model space. Regularization is used to suppress the
weak modes in order to facilitate a physically sensible model
and maximize transferability. The regularized ensemble thus
contracts around the strong modes, and the optimum model
can, to some extent, be regarded an average of the ensemble
solutions. Without Tikhonov regularization of exchange, all
XC approximations obtained in this work would have 31
parameters and wildly oscillating GGA exchange solutions,
corresponding to a least-squares fit of an order-30 polynomial
in the reduced density gradient. Instead, well-behaved models
with 3–8 effective parameters are obtained.

It is important to note that model selection is intricately
connected to the model space. The reduced density gradient
transformation t(s) defines the expansion of GGA exchange. It
thereby also determines how hard the regularization punishes
nonsmoothness in different regions of s space, as well as
how the exchange part of the prior solution transforms to s
space. As previously stated, the prior is the origo for the XC
model solution. Many different priors may be chosen, but we
find it convenient that it transforms to a reasonable exchange
approximation. Then, decreasing regularization from infinity
towards zero leads to increasingly nonsmooth variations away
from this initial guess.

The linear combination correlation model space of local,
semilocal, and nonlocal correlation was anticipated31 to enable
highly accurate calculations for several, if not all, of the data
sets considered. The individually trained models in Table I con-
firm this, some sets favoring full LDA correlation in addition
to nonlocal ditto, other sets preferring full PBE correlation,
while most sets are fitted best by a combination of both.
The corresponding exchange functionals are also significantly
different, so the sets of strong eigenmodes for the regularized
cost functions are very materials property dependent. We argue
here that explicitly considering transferability among different
materials properties is important for producing a single DFA
composed of the most important modes for the combined data
sets, that is, the optimum model compromise must be found.

One approach to this task is minimizing a weighted sum
of the individual cost functions. This is somewhat similar
to weighted training functions used in least-squares-fitting
procedures, but with the critically important addition of regu-
larization. The summed cost function is elegantly minimized
using the individual solutions only, but gives no information
regarding how the weights should be chosen. Clearly, an XC
model trade-off is inevitable, so the weights should be the
ones yielding an optimum compromise. For just two data sets,

a wide range of poor choices of weights can be made, and the
complexity of this choice increases with the number of data
sets. In line with the statistical approach taken in the bulk of
this work, we believe that such choice should not be made
based on experience or intuition alone. Rather, a systematic
methodology for locating one or more points in XC model
space, where a well-behaved and properly compromising
solution resides, is desirable. The condition of minimizing
the product of relative costs for each data set is a reasonable
requirement for the model solution, philosophically as well as
in practice: The condition essentially states that if changing
the solution vector a to a + δa gains a larger relative reduction
in cost on one materials property than is lost in total on all
other properties considered, then a + δa is preferred.

Extensive benchmarking of BEEF–vdW against popular
GGA, MGGA, vdW–DF type, and hybrid XC functionals
shows that the developed methodology is able to produce truly
general-purpose XC approximations. Results are summarized
in Fig. 9, where error statistics for representative functionals
on gas-phase chemical, surface chemical, solid state, and
vdW dominated data sets are illustrated by bars. The BEEF–
vdW model compromise is indeed a very agreeable one.
For none of the data sets is the average BEEF–vdW error
among the largest, while several other functionals are highly
biased towards certain types of materials properties. This is
especially true for vdW–DF2 and optB88–vdW, displaying
severely erroneous description of binding energetics for bulk
solids and molecules, respectively. Furthermore, the figure
shows an overall performance equivalence of BEEF–vdW
and the original vdW–DF for gas-phase and surface chemical
properties, although the former more accurately predicts
bonding in the solid state. Further testing of the functional
might, however, prove interesting. Systems such as ionic
solids, semiconductors, and transition-metal complexes are not
included in the present benchmark, nor are the BEEF–vdW
predictions of molecular ionization potentials and electron
affinities tested. This will be addressed in future work.

We emphasize the strengths and weaknesses of the BEEF–
vdW ensemble error estimate. The ensemble functionals are
based on a probability distribution for the model parameters,
which limits the ensemble to the BEEF–vdW model space
only. This space is incomplete in the sense that it can not
accommodate a physically reasonable XC model yielding zero
error on all systems in all data sets considered, hence the
model trade-off. The BEEF–vdW computational errors are in
general reasonably well estimated, but the energetics of certain
systems is rather insensitive to the choice of XC approximation
within the GGA, MGGA, and vdW–DF type model spaces.
This leads to relatively small error estimates for these systems,
even though the actual computational error may be substantial.

Meanwhile, we find BEEF–vdW and the Bayesian ensem-
ble highly useful in surface science related applications. The
fact that BEEF–vdW appears to yield more accurate surface
energies than GGA or vdW–DF type XC approximations
of similar accuracy for adsorbate-surface bond strengths is
very promising. The error estimate proves very useful in this
case, even though the kinetic energy density of MGGA type
functionals may be needed in the model space if the surface
energy error bars are to span the experimental data. This again
illustrates that the ensemble does not give information beyond
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its model space, as it is solely based on it. However, the
error estimate carries important information in the BEEF–
vdW study of graphene adsorption on Ni(111). The PEC is
qualitatively wrong in the region of chemical bonding for this
intricate case of “solid state adsorption,” and the estimated
errors indeed indicate that this part of the BEEF–vdW PEC
is poorly determined. BEEF–vdW calculations can therefore
not predict with any confidence whether graphene should form
chemical bonds to the Ni(111) substrate in a low-temperature
experiment. It is encouraging that the ensemble is able to
capture this.

X. SUMMARY AND CONCLUSIONS

We have presented and evaluated a machine-learning-
inspired approach to semiempirical density functional de-
velopment. Focus has been on general applicability of the
resulting density functional to both strong and weak interac-
tions in chemistry and condensed matter physics, including
surface chemistry. Transferability and avoiding overfitting are
thus key issues, leading the presented methodology to rely
primarily on (1) a variety of data sets chosen to represent
vastly different interactions and bonding situations, (2) a
very flexible XC model space expansion at a computationally
feasible GGA + vdW level of approximation, and (3) XC
model selection procedures designed to “tame” the flexible
model space and yield XC approximations which properly
compromise between describing different types of physics and
chemistry.

To conclude, we have shown that regularization and cross-
validation methods are very useful for semiempirical density
functional development in highly flexible model spaces. It
is furthermore clear that computationally efficient general-
purpose functionals, targeted at accurately describing sev-
eral physically and chemically different materials properties,

necessarily must compromise between those properties in an
incomplete XC model space. However, the optimum model
trade-off is not easily found from simple intuition. A simple but
powerful principle for determining the position in model space
of a properly compromising XC approximation is therefore
formulated.

Application of the developed methodology has yielded the
BEEF–vdW density functional, and a benchmark of BEEF–
vdW against popular GGA, MGGA, vdW–DF type, and hybrid
XC functionals for energetics in chemistry and condensed
matter physics has been conducted. This benchmark validates
BEEF–vdW as a general-purpose XC approximation, with
a reasonably reliable description of van der Waals forces
and quantitatively accurate prediction of chemical adsorption
energies of molecules on surfaces, while avoiding large
sacrifices on solid state bond energetics. This should make
it a valuable density functional for studies in surface science
and catalysis.

Furthermore, an error estimation ensemble of functionals
around BEEF–vdW comes out naturally of the developed
fitting methodology. The ensemble is designed to provide an
easily obtainable estimate of the XC approximation error. It
is based on a probability distribution for the XC model pa-
rameters, and has been applied in the BEEF–vdW benchmark
and qualitative assessments for molecular surface adsorption,
surface energies, and graphene adsorption on Ni(111).

Finally, the methods developed here should lend themselves
well to other XC model spaces also, including the MGGA level
of theory or self-interaction correction schemes.
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APPENDIX: DETAILS OF DATA SETS AND
COMPUTATIONS

1. G2/97 and G3/99

In accordance with the procedure of Ref. 49, the G3/99
formation enthalpies are corrected for thermal and vibrational
contributions using thermal corrections and zero-point ener-
gies from Refs. 49 and 94. The G3/99 set is divided into three
subsets denoted G3-1, G3-2, and G3-3 comprising 55, 93, and
75 molecules, respectively. The G3-1 and G3-2 subsets con-
stitute G2/97. The G3-3 subset contains a significant fraction
of larger carbon-rich molecules as compared to G2/97.

Theoretical G3/99 formation energies .f E are calculated
from the difference between molecular and atomic total
energies as

.f E = EM −
∑

A

EA, (A1)

where A runs over all atoms in the molecule M , while EM and
EA are ground-state molecular and atomic total energies at
0 K, respectively.

2. RE42

The 42 molecular reaction energies .rE of the RE42 set are
listed in Table X. Theoretical reaction energies are calculated
from the total energies of G2/97 molecules after full geometry
relaxation as

.rE =
∑

P

EP −
∑

R

ER, (A2)

where the sums run over reactant (R) and product (P )
molecules.

3. DBH24/08

Forward (Vf ) and backward (Vb) benchmark reaction
barriers from high-level theory or experiments are adapted
from Ref. 50. Ground- and transition-state molecular ge-
ometries determined from quadratic configuration interaction
calculations with single and double excitations (QCISD) are
from Ref. 136. Density functional barrier heights are computed
from the transition-state total electronic energy (Ets) and the
initial (Ei) and final (Ef ) state total energies as

Vf = Ets − Ei, Vb = Ets − Ef . (A3)

4. S22x5

The original S22 publication51 from 2006 reported
CCSD(T) interaction energies of 22 noncovalently bonded
complexes with extrapolation to the complete basis-set (CBS)
limit. However, different basis sets were used for small and
large complexes. Geometries were determined from MP2 or
CCSD(T) calculations. Later works61,137 have revised the S22
interaction energies, employing larger and identical basis sets
for all complexes without changing the geometries. For the

TABLE X. Gas-phase molecular reactions and reaction energies
(in eV) constituting the RE42 data set. The experimental reaction
energies are compiled from the G2/97 static-nuclei formation
energies. .rE < 0 means exothermic.

Reaction .rE

N2 + 2H2 → N2H4 0.41
N2 + O2 → 2NO 1.88
N2 + 3H2 → 2NH3 −1.68
O2 + 2H2 → 2H2O −5.45
N2 + 2O2 → 2NO2 0.62
CO + H2O → CO2 + H2 −0.31
2N2 + O2 → 2N2O 1.57
2CO + O2 → 2CO2 −6.06
CO + 3H2 → CH4 + H2O −2.80
CO2 + 4H2 → CH4 + 2H2O −2.50
CH4 + NH3 → HCN + 3H2 3.32
O2 + 4HCl → 2Cl2 + 2H2O −1.51
2OH + H2 → 2H2O −6.19
O2 + H2 → 2OH 0.74
SO2 + 3H2 → SH2 + 2H2O −2.62
H2 + O2 → H2O2 −1.68
CH4 + 2Cl2 → CCl4 + 2H2 0.19
CH4 + 2F2 → CF4 + 2H2 −8.60
CH4 + H2O → methanol + H2 1.33
CH4 + CO2 → 2CO + 2H2 3.11
3O2 → 2O3 2.92
methylamine + H2 → CH4 + NH3 −1.15
thioethanol + H2 → H2S + ethane −0.71
2CO + 2NO → 2CO2 + N2 −7.94
CO + 2H2 → methanol −1.48
CO2 + 3H2 → methanol + H2O −1.17
2 methanol + O2 → 2CO2 + 4H2 −3.11
4CO + 9H2 → trans-butane + 4H2O −9.00
ethanol → dimethylether 0.53
ethyne + H2 → ethene −2.10
ketene + 2H2 → ethene + H2O −1.92
oxirane + H2 → ethene + H2O −1.56
propyne + H2 → propene −2.00
propene + H2 → propane −1.58
allene + 2H2 → propane −3.64
iso-butane → trans-butane 0.08
CO + H2O → formic acid −0.39
CH4 + CO2 → acetic acid 0.28
CH4 + CO + H2 → ethanol −0.91
1,3-cyclohexadiene → 1,4-cyclohexadiene −0.01
benzene + H2 → 1,4-cyclohexadiene −0.01
1,4-cyclohexadiene + 2H2 → cyclohexane −2.94

larger complexes, the reported basis-set effects are significant,
so we use here the CCSD(T)/CBS energies of Takatani et al.61

as the current best estimate of the true S22 interaction energies.
The S22x5 (Ref. 52) CCSD(T)/CBS potential-energy

curves were reported more recently. The computational proto-
col was, however, not updated from that used for S22, so we
expect the aforementioned interaction-energy inaccuracies to
persist for S22x5. In order to shift the equilibrium point on each
PEC to the revised S22 energies, and approximately correct
the remaining data points, a modification of the (possibly)
slightly inaccurate S22x5 CCSD(T) interaction energies is here
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introduced as

Ed
int := εd

int × E1.0
int

ε1.0
int

, (A4)

where Ed
int and εd

int denote modified and original S22x5
energies at the relative intermolecular distance d, respectively.
For E1.0

int = ε1.0
int , Eq. (A4) obviously reduces to Ed

int = εd
int for

all distances. The obtained corrections to εd
int are listed in

Table XI. The maximum correction of 11.4% amounts to
25.6 meV for the indole-benzene complex in a stacked
geometry, while the total mean signed correction to all the
110 interaction energies is 0.1 meV.

The modified CCSD(T) interaction energies are used
throughout this study for the S22x5 data set and subsets.
Each density functional interaction energy Ed

int is calculated
as the difference between the total electronic energy of the
interacting complex Ed

0 and those of its two isolated molecular
constituents Ed

1 and Ed
2 :

Ed
int = Ed

0 − Ed
1 − Ed

2 . (A5)

TABLE XI. Corrections Ed
int − εd

int to the S22x5 interaction
energies in Ref. 52 computed from Eq. (A4). Reported statistics are
most negative (min), most positive (max), mean signed (msc), and
mean absolute (mac) interaction energy correction at each distance.
Furthermore, the total mean signed (MSC) and total mean absolute
(MAC) energy corrections over all 110 energies are reported in the
bottom rows. All energies in meV.

Relative interaction distance d

Complex E1.0
int /ε

1.0
int 0.9 1.0 1.2 1.5 2.0

1 −1.0% −1.0 −1.3 −1.0 −0.5 −0.1
2 −1.0% −1.9 −2.2 −1.8 −1.0 −0.4
3 −1.1% −8.0 −9.1 −7.6 −4.5 −1.8
4 −1.1% −6.5 −7.3 −6.1 −3.7 −1.6
5 −1.1% −9.2 −10.0 −8.4 −5.1 −2.2
6 −1.8% −11.8 −13.0 −10.8 −6.4 −2.5
7 −2.3% −14.7 −16.0 −13.0 −7.3 −2.5
8 0.0% 0.0 0.0 0.0 0.0 0.0
9 −1.2% −0.4 −0.8 −0.4 −0.1 0.0
10 3.2% 1.5 2.1 1.6 0.7 0.2
11 6.8% 0.4 8.3 5.7 1.6 0.2
12 6.9% 5.1 13.5 9.0 2.9 0.6
13 1.3% 3.8 5.6 3.6 1.4 0.4
14 11.4% 10.5 25.6 17.8 5.3 0.5
15 4.6% 15.9 24.3 16.4 6.5 1.8
16 −1.4% −0.7 −0.9 −0.7 −0.3 −0.1
17 −0.6% −0.8 −0.9 −0.7 −0.4 −0.1
18 1.3% 1.1 1.3 1.0 0.5 0.2
19 −0.7% −1.2 −1.3 −1.1 −0.6 −0.2
20 3.2% 3.1 3.9 3.1 1.6 0.5
21 2.1% 4.5 5.2 4.4 2.5 1.0
22 −0.6% −1.6 −1.8 −1.5 −0.9 −0.4

min −2.3% −14.7 −16.0 −13.0 −7.3 −2.5
max 11.4% 15.9 25.6 17.8 6.5 1.8
msc 1.2% −0.5 1.1 0.4 −0.4 −0.3
mac 2.5% 4.7 7.0 5.3 2.4 0.8

MSC 0.1
MAC 4.0

TABLE XII. Experimental solid-state properties of 27 cubic bulk
solids. The ZPAE exclusive Sol27LC 0-K lattice constants a0 (Å) are
adapted from Ref. 98. 0-K Sol27Ec cohesive energies Ec (eV/atom)
from Ref. 125 are corrected for ZPVE contributions. Strukturbericht
symbols are indicated in parentheses for each solid. A1: fcc, A2: bcc,
A3: hcp, A4: diamond.

Sol27LC Sol27Ec

Solid a0 Ec ZPVEa

Li (A2) 3.451 1.66 0.033
Na (A2) 4.209 1.13 0.015
K (A2) 5.212 0.94 0.009
Rb (A2) 5.577 0.86 0.005
Ca (A1) 5.556 1.86 0.022
Sr (A1) 6.040 1.73 0.014
Ba (A2) 5.002 1.91 0.011
V (A2) 3.024 5.35 0.037
Nb (A2) 3.294 7.60 0.027
Ta (A2) 3.299 8.12 0.023
Mo (A2) 3.141 6.86 0.044
W (A2) 3.160 8.94 0.039
Fe (A2) 2.853 4.33 0.046
Rh (A1) 3.793 5.80 0.047
Ir (A1) 3.831 6.98 0.041
Ni (A1) 3.508 4.48 0.044
Pd (A1) 3.876 3.92 0.027
Pt (A1) 3.913 5.86 0.023
Cu (A1) 3.596 3.52 0.033
Ag (A1) 4.062 2.97 0.022
Au (A1) 4.062 3.83 0.016
Pb (A1) 4.912 2.04 0.010
Al (A1) 4.019 3.43 0.041
C (A4) 3.544 7.59 0.216
Si (A4) 5.415 4.69 0.063
Ge (A4) 5.639 3.89 0.036
Sn (A4) 6.474 3.16 0.019

aZPVE corrections are calculated according to Eq. (A6) using Debye
temperatures from Ref. 125.

Computational accuracy is enhanced by keeping all atoms
in the molecular fragments in the same positions in the box
as those atoms have when evaluating the total energy of the
complex.

5. Sol27LC and Sol27Ec

It was recently shown78 that removal of thermal and
zero-point contributions to experimentally determined lattice
constants and bulk moduli may be important when benchmark-
ing density functional methods. Experimental zero Kelvin
lattice constants and cohesive energies (Ec) contain zero-point
vibrational contributions, leading to zero-point anharmonic
expansion (ZPAE) of the lattice and zero-point vibrational
energy (ZPVE) contributions to Ec. As discussed in Ref. 138,
an estimate of the ZPVE may be obtained from the Debye
temperature 0D of the solid according to

ZPVE = − 9
8kB0D. (A6)

The vibrational contribution is subtracted from the cohesive
energy, leading to increased stability of the crystal towards
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atomization. The same reference derived a semiempirical
estimate of the ZPAE contribution to the volume of cubic
crystals. A recent study18 calculating the ZPAE from first
principles largely validates this approach. The Sol27LC and
Sol27Ec sets of zero Kelvin lattice constants and cohesive
energies of 27 fcc, bcc, and diamond structured bulk solids are
appropriately corrected for zero-point phonon effects. Details
are given in Table XII.

Density functional computation of total energies of the
extended bulk solids is done using a 16×16×16 k-point
mesh for sampling reciprocal space of the periodic lattice and
0.1 eV Fermi smearing of the electron occupation numbers.
Calculations for bulk Fe, Ni, and Co are spin polarized.
The cohesive energy for a given crystal lattice constant a is
calculated from

Ec = EA − EB, (A7)

where EA is the total energy of the free atom and EB is the
bulk total energy per atom. By this definition, the equilibrium
cohesive energy of a stable solid is a positive quantity.
Equilibrium lattice constants of cubic crystals a0 are deter-
mined from fitting the stabilized jellium equation of state
(SJEOS, Ref. 138) to cohesive energies sampled in five points
in a small interval around the maximum of the Ec(a) curve.

6. CE17 and CE27

The CE17 and CE27 data are derived from temperature-
programed desorption experiments or from microcalorimetry,
most often at low coverage. The 27 chemisorption energies
have been critically chosen from literature with emphasis on
reliability as well as covering a reasonably wide range of
substrates and adsorbates. All data are listed in Table XIII
along with details regarding adsorption mode, adsorption site,
and references.

Most of the CE27 surface reactions are molecular ad-
sorption processes at 0.25 ML coverage. In that case, the
chemisorption energy is computed according to

.E = EAM − EM − xEA, (A8)

where EAM is the total electronic energy of the adsorbate A on
metal surface M , and EA and EM total energies of the isolated
adsorbate and metal surface, respectively. The constant x
equals 1 for molecular adsorption and N2 dissociation on
Fe(100), while x = 1

2 for the dissociative H2 chemisorption
reactions. In the case of NO dissociation on Ni(100) at
0.25 ML coverage, the chemisorption energy is

.E = EAM + EBM − 2EM − EAB, (A9)

where AB is the NO molecule.
With these definitions of chemisorption energies, we

consider extended surface slab models with 2×2 atoms in
each layer and five layers in total. The slab models are
periodic in the surface plane and a vacuum width of 20 Å
separates periodically repeated slabs perpendicularly to the
surface planes. Calculations involving Fe, Ni, and Co are
spin polarized. Well-converged chemisorption energies are
obtained using a 10 × 10 × 1 k-point mesh and a real-space
grid spacing around 0.16 Å. The self-consistently determined
lattice constant of the slab solid obviously determines the xy

TABLE XIII. The 27 experimental reaction energies .E for
chemisorption on late transition-metal surfaces constituting the CE27
data set. The somewhat smaller CE17 data set is a subset of CE27.
Reactions in CE17 are marked with a “⋆”. All chemisorption energies
are in eV per adsorbate at a surface coverage of 0.25 ML, except
where otherwise noted. The adsorption mode is indicated by “m”
(molecular) or “d” (dissociative), along with the adsorption site.
Chemisorption energies for O have been evaluated as 1

2 {.E(O2) −
Eb(O2)} with Eb(O2) = 118 kcal/mol (Ref. 126) for the dioxygen
bond energy.

Mode Site .E Reference(s)

CO/Ni(111) ⋆ m fcc −1.28 122
CO/Ni(100) m hollow −1.26 127
CO/Rh(111) ⋆ m top −1.45 122
CO/Pd(111) ⋆ m fcc −1.48 122
CO/Pd(100) ⋆ m bridge −1.60 127–130
CO/Pt(111) ⋆ m top −1.37 122
CO/Ir(111) ⋆ m top −1.58 122
CO/Cu(111) ⋆ m top −0.50 122
CO/Co(0001) ⋆ m top −1.20 122
CO/Ru(0001) ⋆ m top −1.49 122
O/Ni(111) ⋆ m fcc −4.95 130
O/Ni(100) ⋆ m hollow −5.23 130
O/Rh(100) ⋆ m hollow −4.41 130
O/Pt(111) ⋆ m fcc −3.67 131
NO/Ni(100) ⋆ d hollow −3.99 127
NO/Pd(111) ⋆ m fcc −1.86 132
NO/Pd(100) ⋆ m hollow −1.61 133
NO/Pt(111) m fcc −1.45 131
N2/Fe(100)b d hollow −2.3 134
H2/Pt(111) ⋆ d fcc −0.41 135
H2/Ni(111) d fcc −0.98 135
H2/Ni(100) d hollow −0.93 135
H2/Rh(111) d fcc −0.81 135
H2/Pd(111) d fcc −0.91 135
H2/Ir(111) d fcc −0.55 135
H2/Co(0001) d fcc −0.69 135
H2/Ru(0001)c d fcc −1.04 135

a.E is the average of −1.58, −1.67, −1.69, and −1.45 eV.
bThe coverage of atomic nitrogen is 0.5 ML.
c.E is the average of −0.83 and −1.24 eV, both from Ref. 135.

dimensions of the slab simulation cell. Since the number of
real-space grid points employed in each direction is discrete,
a grid spacing of exactly 0.16 Å in the x and y directions is
rarely possible for slab calculations. Instead, it may be slightly
smaller or larger, which should not affect the computational
accuracy significantly. During structure relaxations, the bottom
two layers of the 2 × 2 × 5 slab models are fixed in the bulk
structure as found from bulk calculations.

7. Graphene adsorption on Ni(111)

Adsorption of graphene on Ni(111) was modeled using a
1 × 1 × 5 surface slab, a Ni(fcc) lattice constant of 3.524 Å as
determined with the PBE density functional, and 20 Å vacuum
width. The top three atomic layers were fully relaxed with PBE
using a grid spacing of 0.15 Å and a (20 × 20 × 1) k-point
mesh. Carbon atoms were placed in atop and fcc adsorption
sites, respectively.
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We present a general-purpose meta-generalized gradient approximation (MGGA) exchange-correlation func-
tional generated within the Bayesian error estimation functional framework [Wellendor↵ et al., Phys. Rev. B
85, 235149 (2012)]. The functional is designed to give reasonably accurate density functional theory (DFT)
predictions of a broad range of properties in materials physics and chemistry, while exhibiting a high degree
of transferability. Particularly, it improves upon solid cohesive energies and lattice constants over the BEEF-
vdW functional without compromising high performance on adsorption and reaction energies. We thus expect
it to be particularly well-suited for studies in surface science and catalysis. An ensemble of functionals for
error estimation in DFT is an intrinsic feature of exchange-correlation models designed this way, and we show
how the Bayesian ensemble may provide a systematic analysis of the reliability of DFT based simulations.

I. INTRODUCTION

Electronic structure theory o↵ers key insights into
the properties of materials, chemical reactions, and
biomolecules. Kohn-Sham density functional theory1,2

(KS-DFT) has proven a powerful framework for elec-
tronic structure studies,3 particularly due to a favor-
able tradeo↵ between the computational speed and ac-
curacy that can be obtained within this theory. Density
functional methods have over the past decade reached
a level of maturity where they can be applied not just
in detailed theoretical studies of a given material, but
be used to search for novel materials for technologically
relevant applications in materials science4–10 and chemi-
cal engineering.11–16 Such studies often take a screening
approach where massive amounts of DFT calculations
are performed using e�cient semi-local approximations
for the KS exchange-correlation (XC) energy and poten-
tial. These include generalized gradient approximations
(GGAs) and recent meta-GGA (MGGA) functionals.17,18

The reliability of semi-local density functional approxi-
mations (DFAs) is, however, unfortunately not universal.
No such single functional appears to o↵er sovereign accu-
racy with zero bias in prediction of materials properties
across the board of condensed matter and chemistry.19–22

The GGA and MGGA exchange-correlation model spaces
are flexible but incomplete and can not accommodate
an approximation that represents the exact XC func-
tional in all aspects of practical importance. The result
is an exchange-correlation model compromise on accu-
racy between di↵erent chemical and materials properties.
However, semi-local DFT remains a favorite workhorse
method within many research areas, so useful XC model
compromises are warranted. Semi-empirical optimization
lends itself well as a method for finding reasonably accu-

a)Electronic mail: jewe@slac.stanford.edu

rate compromises, but will never completely eliminate
DFT errors. The BEEF class of functionals generalizes
the fitting procedure for XC functionals to allow for es-
timation of the errors on the quantities calculated from
density functional theory. The traditional assumption
underlying functional fitting is that a ”best-fit” exchange-
correlation model fitted to a suitable set of systems might
be transferable, meaning that it hopefully calculates the
properties well for systems not included in the training
data. The generalization of this concept, which underlies
BEEF-type functionals, is, that if one defines an ”opti-
mal” ensemble of exchange-correlation models, such that
the ensemble on average reproduces errors on the train-
ing data, then the errors predicted by a well-constructed
ensemble could be transferable. The ensemble can then
be used to estimate computational uncertainties on cal-
culations for systems not included in the fitted data set.

We have in Ref. 23 established a semi-empirical frame-
work for developing model-compromise optimized density
functionals with error ensembles as a practical implemen-
tation of the ideas proposed in Refs. 24 and 25. That
study led to the first practically useful Bayesian error es-
timation functional, the BEEF-vdW, containing a some-
what expensive non-local correlation term. This BEEF
framework uses machine learning tools to find the opti-
mal compromise between model complexity and model
accuracy for a fitted general-purpose DFA in a highly
flexible exchange-correlation model space. It further-
more uses ideas from Bayesian statistics24 to construct
an ensemble of XC functionals directly from the cost
function that was minimized to find the optimally ac-
curate and transferable exchange-correlation functional.
This subsequently allows for fast and systematic error
estimates on simulated quantities, as the ensemble is ap-
plied non-selfconsistently on the electron density that re-
sults from utilizing the optimally fitted functional. A
number of surface science and catalysis studies26–29 have
successfully applied the BEEF-vdW functional, and have
demonstrated significant improvements over traditionally
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FIG. 1. Bivariate analyses of DFT prediction errors on chemi-
cal and materials properties. a) Root-mean-squared errors on
the CE27a chemisorption energies against those on the SE30
surface energies. b) Mean-signed errors on the BM32 solid
bulk moduli against those on the RE42 molecular reaction en-
ergies. Straight lines are fits through the GGA (blue), meta-
GGA (green), and vdW-DF type (red) data. The meta-GGA
lines are closest to origo in both panels, indicating improved
possibilities for exchange-correlation model compromises in
the meta-GGA model space as compared to the GGA and
vdW-DF ones.

used GGAs30 for similar studies.

We here take the BEEF development an important
step forward by considering a meta-GGA exchange model
space and refine the approach to XC model selection.
This semi-local functional allows studies of larger and
more complex systems than the BEEF-vdW, since the
non-local correlation term has been eliminated. We shall
show that the endured loss of accuracy, even for van
der Waals-bonded systems, is rather limited. This work
thus establishes the currently most versatile error estima-
tion functional, particularly useful for systems that are
not dominated by long-range dispersion interactions. We
first illustrate the model compromise of semi-local DFT.
A refined BEEF model selection procedure for addressing
the model compromise is then introduced and applied to
MGGA exchange. and the resulting density functional

(mBEEF) is subsequently benchmarked. Finally, we il-
lustrate the BEE approach to error estimation for a ma-
terials property in DFT by analyzing the adsorption-site
preference of CO adsorption on late transition metal sur-
faces.

II. EXCHANGE-CORRELATION MODEL COMPROMISE

The Perdew-Burke-Ernzerhof (PBE)31 approximation
from 1996 has become a default GGA in many branches
of the computational materials science research area.
However, the hundreds of GGA functionals reported in
literature since then clearly indicate that no GGA can be
considered truly universal. The PBEsol32 modification of
PBE for example predicts bulk lattice constants remark-
ably well but severely overestimates molecular bond en-
ergies, while the RPBE30 revision of the PBE functional
describes covalent chemistry well at the expense of over-
estimated lattice constants and underestimated cohesive
energies.23,32,33 This is the topography of the XC model
compromise in GGA DFT.

Meta-GGA density functionals34–40 augment the GGA
model space of electron density and its first-order gradi-
ent by including also the second-order density gradient34

or the orbital kinetic energy density (KED) of the occu-
pied KS eigenstates.35 Importantly, an electronic struc-
ture with vanishing electron density gradient is in MGGA
not necessarily modeled as a uniform electron gas (UEG).
The UEG limit on exchange for small density gradients
does in general not appear to be compatible with semi-
local DFAs fully optimized for prediction of molecular
bond energies.23,25,41 Special-purpose GGAs may be de-
signed by modification of known GGA forms, as in the
cases of PBEsol and RPBE. The main purpose of apply-
ing MGGA exchange in the BEEF framework is, however,
the prospect of better XC model compromises than with
GGAs at a very modest increase in computational cost.38

We illustrate this point in Fig. 1, where a broad selec-
tion of GGAs, MGGAs, and vdW-DF42 type function-
als are applied in calculations of four di↵erent quanti-
ties; chemisorption energies of small molecules on close-
packed transition metal facets, surface energies of various
facets, solid bulk moduli, and gas-phase reaction ener-
gies. These properties are represented by the CE27a,
SE30, BM32, and RE42 data sets, respectively, all dis-
cussed in more detail later. The tested GGAs are
PBEsol, PBE, and RPBE, while the literature MGGAs
are TPSS,37 revTPSS,38 oTPSS,43 and MS0.40 Note that
the three representative van der Waals functionals vdW-
DF, optPBE-vdW,44 and C09-vdW45 are equivalent ex-
cept for the choice of PBE-like exchange. Figure 1a
shows root-mean-squared errors (RMSEs) on the CE27a
chemisorption energies against those on SE30 surface
energies. The points within each class of XC model
space fall approximately on straight lines, illustrating the
trade-o↵ one is forced to make between accurate adsor-
bate–surface bond strengths and surface stabilities. How-
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ever, the MGGA model space o↵ers the most attractive
compromises; the green line in Fig. 1a is significantly
closer to the origo. This is supported by Fig. 1b, in
which mean-signed errors (MSEs) on predicted BM32
bulk moduli are plotted against those on RE42 molecular
reaction energies. The relations between mean errors are
again approximately linear and the MGGA points fall
closest to origo, though not all on the same straight line.

The bivariate prediction error analysis in Fig. 1 con-
firms the conjectures from earlier studies46,47 that the
exchange-correlation model compromise of typical XC
models lead directly to a trade-o↵ between the systematic
errors on various chemical and materials properties. Sim-
ple but e�cient approaches to optimizing density func-
tionals with respect to this trade-o↵ are therefore core
components of BEEF-class functional developments.

III. EXCHANGE MODEL SPACE

The spin-unpolarized meta-GGA exchange energy we
write as the usual37 integral over the uniform electron
gas exchange energy density ✏UEG

x

scaled with a semi-
local MGGA exchange enhancement factor F

x

,

E
x

=

Z
n✏UEG

x

(n) F
x

(n, rn, ⌧) dr, (1)

where n = n(r) is the local electron density, rn the
density gradient, and the semi-local kinetic energy den-
sity ⌧ = 1

2

P
i,�

|r 
i,�

|2 is summed over spins � and
state labels i of the KS eigenstates  

i,�

. Atomic units
are used throughout. The exchange enhancement factor
we furthermore express in terms of dimensionless elec-
tronic structure parameters; the reduced density gradi-
ent s = |rn|/(2k

F

n), where k
F

= (3⇡2n)
1
3 , and the re-

duced kinetic energy density ↵ = (⌧ � ⌧W)/⌧UEG, where
⌧W = |rn|2/8n and ⌧UEG = (3/10)(3⇡2)

2
3 n

5
3 .

The MGGA exchange enhancement factor we therefore
write F

x

(n, rn, ⌧) = F
x

(s, ↵), and expand it in prod-
ucts P of Legendre polynomials B depending on s and ↵
through transformed quantities t

s

and t
↵

:

t
s

(s) =
2s2

q + s2
� 1, (2)

t
↵

(↵) =
(1 � ↵2)3

1 + ↵3 + ↵6

, (3)

P
mn

= B
m

(t
s

)B
n

(t
↵

), (4)

F
x

(s, ↵) =
MX

m=0

NX

n=0

a
mn

P
mn

. (5)

For the mBEEF fit we chose values of M = N = 7,
giving Z = (M + 1) ⇥ (N + 1) = 64 exchange basis
functions with expansion coe�cients a

mn

, which more
than exhaust the present exchange model space. Both
t
s

and t
↵

are confined to [�1, +1]. With q = /µ =

0.804/(10/81) = 6.5124, transformation t
s

is a Padé ap-
proximant to the PBEsol F

x

(s), while t
↵

is inspired by
the MS0 exchange.40

Denoting by Emn

x

the exchange energy corresponding
to P

mn

, the full exchange-correlation energy is written

E
xc

=
M,NX

m,n

a
mn

Emn

x

+ EPBEsol

c

,

= xaT + EPBEsol

c

,

(6)

where x is the vector of exchange basis function en-
ergy contributions for the system in question and the
vector a contains the exchange model expansion coe�-
cients in Eq. (5). The training data in x was obtained
from PBEsol ground-state electron densities and single-
particle eigenstates.

IV. TRAINING DATA SETS

Five significantly di↵erent sets of target chemical and
materials properties are used in exchange model training.
They cover in total a large part of the electronic structure
phase space of molecules and condensed matter. Most of
the sets were also applied in Ref. 23, but are here updated
or slightly modified.

The G3/99 molecular formation energies48 and the re-
lated RE42 reaction energies23 represent gas-phase chem-
istry. Both data sets are normalized in model training
such as to approximately bring all data within each set
on an equal footing, see Ref. 49 for details. Surface chem-
istry we represent by the CE27a chemisorption energies
of simple adsorbates on late transition metal surfaces
adapted from previous work.23,50 Solid bulk energetics is
represented by cohesive energies in the Sol54Ec set, and
bulk structures by the derivatives of cohesive energies
with respect to crystal volume around equilibrium. Note
that solid Pb is excluded from both data sets in model
training, see Ref. 50. Experimental lattice constants are
from the Sol58LC set.50

Density functional calculations are performed using
gpaw,51,52 an open-source DFT code implementing the
projector augmented-wave method,53 and the open-
source ase54 package. gpaw can represent the Kohn-
Sham equations on a real-space uniform grid as well as
in a plane-wave expansion. Structural relaxations follow
the prescriptions in Ref. 23 and use grid-point spacings of
0.15–0.16 Å. Chemisorption energies are calculated using
a (10⇥10⇥1) Monkhorst-Pack55 k-point mesh. Bulk cal-
culations are done in plane-wave mode using a 1000 eV
plane-wave energy cuto↵ and a (16 ⇥ 16 ⇥ 16) k-point
mesh. Lattice constants and bulk moduli are computed
by fitting the SJEOS equation of state56 to 9 electronic
total energies sampled at lattice constants spanning ±1%
around the apparent equilibrium one.
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V. EXCHANGE MODEL SELECTION

We seek a general-purpose density functional for sur-
face chemistry studies with built-in error estimates. With
the flexible exchange model space defined in Eq. (5), max-
imizing not only performance on the training data sets
but also transferability to unseen data is essential. To
this end we use ideas from machine learning57,58 and ex-
tend on developments in Refs. 23 and 25. We formulate
the optimization problem in terms of a regularized cost
function to be minimized for the optimum (mBEEF) ex-
change coe�cient vector â

0

. We also generate a Bayesian
error estimation ensemble in terms of model fluctuations
around â

0

. Several aspects of model selection are most
conveniently introduced in terms of fitting a single set of
data.

1. Cost function and BEE ensemble

We parametrize an exchange model on a single train-
ing set by minimizing a cost function C consisting of a
squared-error loss function L and a regularizer R,

C(a; !) = L(a) + R(a; !)

= qTq + !2bT b,
(7)

which depends parametrically on the regularization
strength ! � 0. The residual vector of training errors is
q = Xa�y, where matrix X contains all exchange basis
function contributions and y is a vector of targets. The
vector b is a suitable a�ne mapping of a, which we shall
define later in Eq. (15). The minimal cost solution a

0

for
a given choice of ! is easily found, see Ref. 23. In the lan-
guage of Bayesian statistics, minimizing C over a given !
is equivalent to maximizing the posterior probability for
the model parameters given a prior expectation.57,58 The
regularizer in Eq. (7) imposes the prior expectation for a

0

as a penalty term of variable strength. The e↵ect is pa-
rameter shrinkage, a standard machine learning method
for dealing with ill-posed regression problems and avoid-
ing over-fitting by controlling the model complexity.57,58

Any ordinary least-squares (OLS) regression solution in
a su�ciently large model space will contain a number
of poorly determined parameters—parameters that vary
wildly for small perturbations of the training data—a
clear indication of over-fitting. Singular value decompo-
sition of regularized cost functions of the form (7) shows
how the regularizer adds curvature to such weak modes
in L and essentially freezes them out of the fit.25,58 Regu-
larization is therefore used to tune the model complexity
in order to enhance model generalization. It is then nat-
ural to introduce the notion of an e↵ective number of
model parameters ✓,57,58

✓(!) =
X

m

⌫
m

⌫
m

+ !2

, (8)

where ⌫
m

are the eigenvalues of XTX. Note that ✓(0) =
Z recovers the OLS solution while ✓(1) = 0. We may

think of ✓ as the number of cost function eigenmodes that
are not significantly a↵ected by regularization.25,57

The cost function is quadratic in a and can there-
fore around its minimum C

0

= C(a
0

; !
0

) be expressed
in terms of the Hessian matrix H = @2C/@aT @a and
model perturbations �a = a � a

0

:

C(a) = C
0

+
1

2
�aTH�a. (9)

As in previous work23–25,59 we define a probability dis-
tribution P for fluctuations �a around a

0

. From P we
draw ensembles of perturbed density functionals used for
estimating errors on DFT predictions. That the cost
function can be assumed to represent the probability of
a model given the data is intrinsically a Bayesian idea
with no analog in frequentist statistics. We require the
mean expectation value of predictions by ensemble mod-
els a0 = a

0

+ �a to reproduce the mean prediction error
of a

0

:

X

j

h(�q
j

)2i
k

=
X

j

(�q
j

)2, (10)

where h. . .i
k

indicates the average over k � 1 ensemble
models. The sums are over j training data while �q

j

and �q
j

are prediction errors by a0 and a
0

, respectively.
Following Refs. 25 and 59 the probability P is written

P / exp(�C/T ), (11a)

T = 2C
0

/✓, (11b)

where the ensemble temperature T scales the model fluc-
tuations such that Eq. (10) is satisfied. The temperature
is in Eq. (11b) expressed in terms of the minimized cost
and ✓, the e↵ective number of model parameters.

In practical applications of Bayesian error estimation
we sample the distribution P. An ensemble matrix ⌦ is
generated by scaling the inverse Hessian with the ensem-
ble temperature:

⌦ = TH�1. (12)

Ensemble perturbations �a
k

are then computed as

�a
k

= V · D · u
k

, (13)

where matrix V contains the eigenvectors of ⌦, ma-
trix D is diagonal and contains the square root of the
corresponding eigenvalues, and u

k

is a random vector
with normal distributed components of zero mean and
a spread of 1. The Bayesian error estimate on any
DFT prediction from total-energy di↵erences, �

BEE

, is
then simply related to the variance of k � 1 non-self-
consistent predictions p

k

by �a
k

:

�
BEE

=
p

Var(p) = hpTpi 1
2 , (14)

where p is a vector of ensemble predictions and the last
equality is strictly true for k ! 1, where hpi2 = 0.
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2. Tikhonov regularization

Smooth exchange enhancement factors are aestheti-
cally pleasing and computationally convenient. Indeed,
it was observed in Ref. 25 that smoothness of the en-
hancement factor is of key importance to obtaining a
exchange functional that is transferable to systems not
included in the training data. As in Ref. 23 we apply
a Tikhonov regularizer R in the cost function Eq. (7)
to impose our preference for smooth parametrizations of
the MGGA F

x

(s, ↵). This particular regularizer shrinks
model coe�cients in a ”smooth” space b,

b = �(a � a
p

), (15)

where the prior vector a
p

is an origo in model space.
The prior is thus the resulting fitted model at infinite
regularization strength, where all model deviations away
from a

p

are quenched by the regularizer. The squared
Tikhonov matrix �2 is defined from the overlaps of a
scaled Laplacian er2 of the exchange basis functions
P (t

s

, t
↵

),

er2 =
@2

@t2
s

+ �
@2

@t2
↵

,

�2

mnkl

=

Z
1

�1

Z
1

�1

dt
s

dt
↵

er2P
mn

er2P
kl

,

(16)

where � scales the regularization penalty between poly-
nomials in t

s

and t
↵

. In the present study we have chosen
� = 102, which in numerical tests seems to give a reason-
able trade-o↵ between smoothness along s and ↵. The
elements of the Tikhonov matrix grow as the polynomial
order of the basis increases, and the exchange model regu-
larization thus preferentially shrinks the more oscillatory
components in F

x

(s, ↵). The prior vector a
p

in Eq. (15)
is chosen such that infinite regularization strength yields
F

x

(s, 1) = 1 for all s and half the MS0 exchange along
the F

x

(0, ↵) model space direction.

3. Exchange model compromise

The XC model compromises illustrated in Fig. 1 in-
dicate the existence of significant constraints on the
performance of semi-local general-purpose density func-
tional approximations: A gain in accuracy on one chem-
ical or materials property is typically associated with
a loss of accuracy on a di↵erent property. Simultane-
ously minimizing the prediction errors on several dif-
ferent properties in a transferable manner is therefore
a multi-objective (or Pareto) optimization problem. In
such Pareto-optimizations, where one cannot a priori in-
fer a strict measure of the relative importance of the in-
dividual objectives, there is still one set of solutions that
are superior to all other. This is the Pareto set of non-
dominated solutions, or the set for which one can not im-
prove one quality without making another quality worse.

Among the Pareto-optimal set of solutions one still has a
choice in what importance is given to the di↵erent qual-
ities. In Ref. 23 a simple but e↵ective approach to this
type of problem was developed in the context of den-
sity functional fitting, based on minimizing the product
of cost functions for the individual training sets includ-
ing their individual regularizations. The logic underlying
this choice is to find a solution among all the Pareto-
optimal solutions where the relative improvement of one
property leads to a similar relative deterioration of the
other properties. The product of cost functions achieves
exactly this, if the cost represents the qualities to be op-
timized. Here we refine that approach by considering a
fully regularized cost function for all training data. This
corresponds to considering the squared residuals a bet-
ter measure of quality than the individually minimized
(and regularized) cost functions. It is our impression
that this improvement o↵ers slightly better fits, and it
has the added benefit that the Bayesian interpretation of
the statistics is significantly more straightforward, since
the functional results from one fit to all data rather than
separate fits to each chemical or materials property.

The new starting point for dealing with the exchange
model compromise can then be stated as an objective
function �:

�(a; !) = ⇧
i

L
i

(a) ⇥ eR(a;!), (17)

where L
i

is the squared-residual loss function for data
set i and the exponential a functional form for the prior
expectation for the model parameters. Because the loga-
rithm is an injective function, minimizing � is equivalent
to minimizing ln{�}. We can therefore define a regular-
ized cost function K for the exchange model compromise:

K(a; !) = ln{�} =
X

i

ln{L
i

(a)} + R(a; !). (18)

The minimizing argument vector a
0

(!), minimizing
the objective function K given !, is a vector that ful-
fills the zero-gradient condition

@K

@a
= 0 =

X

i

@ ln L
i

@a
+

@R

@a
=

X

i

1

L
i

@L
i

@a
+

@R

@a
. (19)

If K had been quadratic and positive definite, the exis-
tence of only a single solution vector a

0

(!) would have
been certain. This, however, does not appear to be a sig-
nificant problem, at least not with the data sets we have
fitted in the present study. Since the loss function, L

i

(a),
and the regularizer, R(a; !), are both quadratic in a,
the zero-gradient condition above is very close to repre-
senting a traditional least-squares minimization problem,
and we solve it by iterative least-squares minimization by
casting it on the form of Eq. (7):

eK(a; !,a⇤) = eL(a;a⇤) + R(a; !)

=
X

i

L
i

(a)

L
i

(a⇤)
+ R(a; !)

= q̃T q̃ + !2bT b,

(20)
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with least-squares solution ã. This solution is then in-
serted for a⇤ iteratively, and convergence is reached in
very few steps, when ã = a⇤. In that case, the model-
compromise cost Eq. (20) reduces to eK = N

D

+ !2bT b,
with N

D

the number of training data sets.
The concept of an e↵ective number of model parame-

ters, as defined in Eq. (8), applies equally well to eK, as
does the definition of the Bayesian ensemble matrix in
Eq. (12). Only the model complexity ✓̂, corresponding
to the globally optimum exchange model â

0

, remains to
be determined. This model should constitute a suitable
trade-o↵ between model bias and variance such that it
generalizes well to properties outside the training sets.58

We here apply a clustered leave-one-out cross validation
estimator of the generalization error, �2:

�2(!) =
1

N
D

NDX

i=1

L
i

(ã
i

(!)), (21)

where training set i has been excluded from eK when de-
termining ã

i

.
In summary, we thus determine the optimal simultane-

ous fit to all training data in the protocol, â
0

, by identify-
ing the regularization strength !̂

0

that minimizes the gen-
eralization error �2. The corresponding exchange model
complexity is ✓̂, and Bayesian error estimates on mate-
rials property predictions by â

0

are obtained following
Eqs. (11b)–(14).

VI. RESULTS

A. mBEEF density functional and BEE ensemble

Figure 2 shows a range of meta-GGA exchange en-
hancement factors obtained by minimizing Eq. (20) for
increasing model complexities, i.e., for decreasing !. The
enhancement factors are neatly smooth along s (top
panel) and ↵ (bottom panel) for small ✓, but develop in-
creasingly non-smooth features when the exchange mod-
els are allowed to become more complex, particularly for
✓ > 12. The optimum trade-o↵ between performance
and transferability, as determined by minimizing �2,
we find at ✓̂ = 8.8. This model we henceforth denote
mBEEF exchange. It is indicated by full black lines in
Fig. 2. Note that the full mBEEF exchange-correlation
functional uses PBEsol correlation, see Eq. (6), and that
mBEEF exchange does not conform to the formal UEG
limit. This appears to be a quite general feature of
semi-local DFAs optimized for chemistry.23,25,41 Con-
sequently, the mBEEF enhancement of LDA exchange
for a UEG-like electronic structure at (s, ↵) = (0, 1)
is F

x

(0, 1) = 1.037, while for rapidly varying densities
F

x

(1, 1) = 1.145. The latter is a significantly lower ex-
change enhancement in the large gradient/small density
regime than for most semi-local functionals.

The mBEEF error estimation exchange ensemble is il-
lustrated in Fig. 3. Note how constrained the ensemble

FIG. 2. Model-compromise optimized mBEEF type exchange
enhancement factors for increasing number of e↵ective pa-
rameters ✓ 2 [0, 20]. Full blue lines indicate ✓ < 10, while full
red lines indicate ✓ > 10. Full black lines illustrate the cho-
sen mBEEF F

x

(s,↵). Standard GGA and MGGA exchange
functionals are illustrated by dashed lines along with the prior
model. a) Projections along s for ↵ = 1. Note that ↵ = 1 for
a uniform electron gas, and that for this value of the reduced
KED the MGGA F

x

(s,↵) is equivalent to a GGA exchange
enhancement factor. b) Projections along ↵ for s = 0. All
but the most constrained mBEEF type exchange functionals
have a curved feature betwen the single-electron limit (↵ = 0)
and the UEG region (↵ ⇡ 1).

is around (s, ↵) = (0, 1), and that it clearly straddles the
UEG limit in this point. The ensemble models spread out
significantly for (s, ↵) > (2, 2), indicating that the func-
tional form of the mBEEF F

x

(s, ↵) is less constrained
in this region of the MGGA electronic-structure param-
eter space. We reported similar findings in Ref. 23 for
the large-s regime of the BEEF-vdW ensemble. The
fact that the ensemble is very broad for large reduced
density gradients suggests that the decay of the mBEEF
F

x

(s, 1) towards 1.145 for s ! 1 is not imposed by the
training data sets. Rather, the training data o↵ers very
little electronic-structure information for (s, ↵) > (2, 2),
and the exchange model in this region therefore becomes
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FIG. 3. Bayesian ensemble of exchange models (yellow)
around the mBEEF (solid black). Standard GGA and MGGA
exchange functionals are illustrated by dashed lines along with
the prior model. a) Projections along s for ↵ = 1. b) Projec-
tions along ↵ for s = 0. The ensemble is rather constrained
around the HEG limit (s,↵) = (0, 1) in both panels, but
spreads out significantly away from this region of XC mocel
space.

strongly dominated by the prior model a
p

.
The mBEEF exchange expansion vector and error es-

timation ensemble matrix are freely available online60 for
easy numerical implementation in DFT codes already im-
plementing meta-GGA functionals.

B. Benchmark

Figure 4 summarizes a broad benchmark of some popu-
lar or recent GGA and MGGA density functionals in ad-
dition to the mBEEF and BEEF-vdW functionals. All
data is obtained from selfconsistent DFT calculations.
The bars indicate the logarithms of scaled mean-absolute
errors on the five training data sets applied in mBEEF
fitting. The mBEEF exchange model compromise ap-
pears quite reasonable, as one would expect, since the
functional was trained on this data: The MAE is among
the three lowest for all five properties and presents a con-

siderable improvement over the BEEF-vdW in predict-
ing the lattice constants and cohesive energies of bulk
solids, while not compromising the good description of
the adsorbate–surface bond strengths in CE27a, which is
almost on the level of the RPBE functional.

We further underline this point by showing on a loga-
rithmic scale in Fig. 5 the product of the correspond-
ing RMS errors relative to that of mBEEF. It is ap-
parent that mBEEF on the training sets simultaneously
achieve very acceptable predictions within the five classes
of chemical and materials properties.

C. Transferability

We shall now assess the mBEEF transferability by con-
sidering quantities outside the training data. Table I
compares error statistics on the MB08-165 decomposi-
tion energies of artificial molecules, the BM32 bulk mod-
uli, the SE30 surface energies, and 26 of the 27 binding
energies of neutral and charged water clusters in the WA-
TER27 benchmark set. The mBEEF functional appears
to generalize reasonably well to prediction of properties
not explicitly included in the training sets used to gener-
ate it. The decomposition energies and bulk moduli are
on average predicted with only a limited systematic bias.
The surface energies are on average underestimated. For
this property mBEEF performs better than PBE and is
nearly on par with MS0, but does not attain the ac-
curacy of the TPSS-class functionals. As observed in
Fig. 1, this may be due to mBEEF’s focus on performing
well for chemisorption energies. Interestingly, the water
cluster binding energies are surprisingly well captured
by mBEEF even though systems with significant non-
covalent interactions were not included in the training
data. Contrary to the two TPSS-type MGGAs, PBE
and MS0 also appear to describe this sort of hydrogen
bonding well. Similar findings were reported in Ref. 40.
Another MS0-type MGGA was in Refs. 61 and 62 also
successfully applied to systems with weak bonding. All
together this suggests that the high accuracy of mBEEF
for hydrogen bonding may to some extend be due to the
use of a MS0-based form of the ↵-dependence in the ex-
change model space. We therefore concur with the hy-
pothesis of Perdew et al.62 that future high-performance
van der Waals (vdW) density functionals might benefit
greatly from optimized MS0-based exchange.

We note in passing that mBEEF also correctly predicts
the sequence of relative stabilities of the 4 isomers of the
water hexamer included in the WATER27 set. Moreover,
the MAE over the 4 isomers is less than 1 kcal/mol. Most
semi-local DFAs agree much worse with benchmark quan-
tum chemical calculations on these systems. According
to literature, it usually takes highly specialized exchange-
correlation functionals optimized for hydrogen bonding63

or dedicated vdW functionals44 to get the energetic or-
dering of water hexamers right. MS0 correctly predicts
the ordering when the benchmark (B3LYP) structures
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FIG. 4. Benchmark of mBEEF against popular or recent GGA and MGGA density functionals in terms of mean-absolute
errors (MAEs) on predicting the chemical and materials properties represented by the 5 data sets applied in mBEEF training.
BEEF-vdW is also included. Note that each bar is normlized with the smallest one and plotted on a logarithmic scale for reasons
of clarity. Horizontal black dash-dotted lines indicate the mBEEF level, which is among the 3 lowest for all five properties.

FIG. 5. Relative products of RMS errors on the five mBEEF
training sets. Note the logarithmic scale and the cluster-
ing of the density functional approximations into GGAs and
MGGAs+BEEF-vdW. This is a direct consequence of im-
proved possibilities for the XC model compromise.
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each set of bars.

are used, but fails upon structural relaxation, which
destabilizes the ’prism’ isomer by 1.3 kcal/mol. This
is not the case with mBEEF, where relaxation leads to
near-isoenergetics for the ’prism’ and ’cage’ isomers.

We further highlight the interesting finding above that
mBEEF performs surprisingly well for non-covalently
bonded systems by considering the S22 quantum chem-
ical benchmark set64,65 for non-covalently bonded com-
plexes. This data set exhibits hydrogen bonding as well
as van der Waals dispersion. Figure 6 shows error statis-
tics for several GGA, MGGA, and vdW-DF type den-
sity functionals in reproducing the S22 binding energies.
Semi-local DFAs do not contain the physics needed to
reliably capture long-ranged dispersion interactions. It
is therefore no surprise that the largest prediction errors
in Fig. 6 are found for GGAs and MGGAs, while vdW
functionals with explicitly non-local correlation are bet-
ter suited for this. Though mBEEF is a semi-local func-
tional and is not explicitly designed to capture dispersion
interactions, its performance on S22 is good. Notably,
mBEEF for example seems to on average outperform
the significantly more expensive vdW-DF functional. We
would expect even better performance on the S22 bench-
mark if a suitable non-local correlation term42,66 was
added to the mBEEF model space.

D. Bayesian error estimates: The CO puzzle

Finally, let us consider an example of applying the BEE
approach to error estimation in DFT. We choose a pro-
totypical surface chemical problem: Predicting the site
preference of molecular CO adsorption on close-packed
surfaces of late transition metals. Most semi-local den-
sity functionals fail to correctly predict the most stable
adsorption site over several such metals. This ’CO puz-
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TABLE I. Error statistics for di↵erent density functionals in predicting various chemical and materials properties not included
in mBEEF training. Computed statistics are mean error (ME) or mean relative error (MRE) and their absolute counterparts.

LSDA PBEsol PBE RPBE revTPSS oTPSS MS0 mBEEF BEEF-vdW

MB08-165 decomposition energies of artificial moleculesa (kcal/mol)

ME 15.4 7.6 1.4 �4.9 �7.3 �2.3 �11.0 0.1 �2.0
MAE 19.9 12.7 9.0 11.3 13.2 6.8 18.4 8.1 12.2

BM32 bulk modulib (%)

MRE 5.7 �3.0 �10.7 �17.9 �3.2 �7.3 �0.8 �0.7 �12.8
MARE 7.9 5.1 10.9 17.9 6.8 8.6 5.5 7.1 14.7

SE30 surface energiesc (%)

MRE �7 �13 �26 �35 �6 �11 �18 �22 �21
MARE 14 17 26 35 12 15 20 23 23

WATER26 binding energies of neutral and charged water clustersd (%)

MRE 47.5 17.3 2.7 �18.8 �7.8 �13.2 �2.5 2.3 �12.5
MARE 47.5 17.3 3.6 18.9 7.8 13.6 2.7 2.7 12.5

a Quantum chemical benchmark from Ref. 67.
b 32 experimental bulk moduli from Refs. 68 and 69, all corrected for thermal contributions and zero-point phonon e↵ects.
c 30 experimental surface energies from Ref. 70.
d Quantum chemical benchmark from Ref. 71. This set was in Ref. 43 named WATER27, but we exlude here the last benchmark data

point since it is a conformational energy di↵erence rather than a binding energy.

FIG. 7. Site preference �E for CO adsorption on (111) sur-
faces of Rh, Pd, Pt, and Cu and (0001) surfaces of Co and
Ru at 0.25 monolayer coverage. Error bars on mBEEF and
BEEF-vdW predictions indicate Bayesian error estimates.

zle’ is a standing issue in computational surface chem-
istry, and a large number of studies have been devoted
to elucidating its origin and its possible solutions, see for
example Refs. 72–78.

Figure 7 shows calculated adsorption energy di↵er-
ences �E between the experimentally most stable CO
adsorption site and less stable sites among the hollow
and atop sites on close-packed facets of Rh, Pd, Pt, Cu,
Co, and Ru, such that �E < 0 eV corresponds to a
correct theoretical prediction of the most stable of the

two sites. Predictions made using a range of DFAs are
indicated with di↵erent colors in the figure. The exper-
imentally observed preference at low temperature and
coverage is for the 1-fold coordinated atop site on all of
the considered surfaces except Pd(111), on which the 3-
fold coordinated fcc site is found to be energetically most
favorable.

Bayesian error estimates �
BEE

are shown for mBEEF
and BEEF-vdW calculations. Most GGAs and MGGAs
correctly predict �E < 0 eV on Rh(111), Pd(111), and
Ru(0001), while on Pt(111), Cu(111), and Co(0001) the
theoretical predictions are scattered around or just above
�E = 0 eV. The mBEEF �

BEE

values provide very rea-
sonable estimates of the spread of predictions by di↵erent
GGA or MGGA density functionals. In particular, the
BEEs indicate that calculated adsorption site preferences
for CO on Pt(111) and Co(0001) should not be consid-
ered indisputable, but may well change depending on the
choice of exchange-correlation functional. In some sense
Fig. 7 shows that such sensitivities of scientific conclu-
sions are also found if we meticulously compute each �E
using a wide range of di↵erent DFAs. However, Bayesian
error estimation ensembles provide a quantitative and
computationally inexpensive approach to such analysis.

VII. CONCLUSIONS

Broadly applicable semi-local density functionals must
somehow be designed with the exchange-correlation
model compromise in mind. The XC model selection pro-
cedure in the Bayesian error estimation functional frame-
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work e↵ectively addresses this multi-objective optimiza-
tion problem. We here used it to develop the mBEEF
exchange-correlation functional, and argue that this can
be considered a very reasonable general-purpose meta-
GGA density functional. It delivers highly accurate pre-
dictions of a wide range of di↵erent properties in mate-
rials physics and chemistry, and we expect mBEEF to
be particularly well suited for computational studies in
surface science, including catalysis. A Bayesian ensem-
ble for error estimation in DFT is an intrinsic feature
of the BEEF-class of density functionals. The ensem-
ble is defined in terms of XC model fluctuations, and
we have illustrated the application of error estimation by
considering a prototypical surface chemical problem. The
mBEEF ensemble error estimates correctly indicate that
one can not conclusively determine the site-preference of
CO adsorption on a number of late transition metal sur-
faces. A DFT user may traditionally try to get some
idea about the sensitivity of calculated quantities on
the choice of density functional approximation by te-
diously applying various established functionals to the
same problem. The BEE provides a more structured ap-
proach to such analysis via systematic but computation-
ally inexpensive computations of non-self-consistent XC
energy perturbations. We expect this approach to quan-
titative error estimation of correlated errors to become
a useful and very general tool for validating scientific
conclusions based on DFT in computational materials
science and chemistry. Finally, we find that the mBEEF
functional captures the strength of hydrogen bonding and
van der Waals bonding reasonably well, even though it
was not explicitly designed for this. This suggests that
mBEEF may be a very appropriate starting point for a
meta-GGA exchange-correlation functional explicitly in-
cluding non-local van der Waals correlation to accurately
account for long-range dispersion interactions. This will
be the topic of future extensions of this work.
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