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Abstract 

Polymer solar cells (PSCs) aim to produce clean energy that is cost-competitive to en-

ergy produced by fossil fuel-based conventional energy sources. From an environmen-

tal perspective, PSCs already compares favorably to other solar cell technologies in 

terms of fewer emissions of greenhouse gases during production. The cost-

competitiveness of PSCs is envisioned achievable by the use of inexpensive materials 

and high throughput roll-to-roll (R2R) printing and coating techniques. The state-of-

the-art of the laboratory PSCs is, however, far removed from the vision of the widely 

disseminated low-cost solar cells as the laboratory solar cells are mostly focused on in-

creasing the power conversion efficiency through materials design with little emphasis 

on the choice of materials, operational stability and large-scale processing. Indium-tin-

oxide (ITO), the commonly used transparent conductor, represents majority of the 

share of cost and energy footprint in terms of materials and processing in a conven-

tional PSC module. Furthermore, the scarcity of indium is feared to create bottleneck 

in the dawning PSC industry and its brittle nature is an obstacle for fast processing of 

PSCs on flexible substrates as well as for applications in flexible end products. Thus, the 

replacement of ITO with low-cost alternatives is crucial for the commercial feasibility 

of PSCs.  

Encompassing these concerns, my PhD study has contributed to the development 

and evaluation of alternatives to ITO in laboratory cells, upscaling of ITO-free concepts 

from laboratory cells to R2R produced large-area modules, and integration of these 

module in demonstrator consumer applications. Accordingly, this dissertation is orga-

nized into nine chapters. Chapter 1 is aimed at contextualizing PSCs on the world ener-

gy map. It aims to address the question: why should PSCs be pursued? Chapter 2 at-

tempts to provide a concise yet encompassing introduction to PSCs; and the problem 

with ITO and possible solutions. It also lays out specific targets that were set before the 

beginning of PhD study which provides a frame-of-reference for the later chapters. A 

holistic evaluation of several ITO-free concepts was carried out to determine low-cost 

upscaling compatibility of these concepts (Chapter 3). The results highlighted three ar-
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chitectures that represented different competencies with regards to photovoltaic per-

formance, stability, and low-cost processing. These three architectures were upscaled 

(Chapter 5-7) using R2R techniques described in detail in Chapter 4. One of the three 

upscaled architecture (Chapter 7) represented an efficient alternative to ITO in terms 

of photovoltaic performance and were further investigated for stability and flexibility. 

These modules were then integrated in a credit-card size laser pointer for demonstra-

tion purposes. A colleague, Nieves Espinosa, has conducted life-cycle analyses (LCA) on 

all the three upscaled ITO-free architectures.  Drawing upon the data from her pub-

lished work, Chapter 8 provides concise and comparative LCA of the three upscaled 

ITO-free architectures in order to determine which technology can be pursued further 

among the three architectures. LCA results of the ITO-free architectures are also com-

pared against ITO-based upscaled PSCs as well as against other photovoltaic technolo-

gies. Finally, the last chapter (Chapter 9) puts everything in the nutshell and identifies 

future challenges.  
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Resumé 

Plastsolceller (PSC) har til formål at producere ren energi, der er prismæssigt konkurren-

cedygtig sammenlignet med energi produceret af konventionelle fossile brændsler. Fra et 

miljømæssigt perspektiv sammenlignes PSC allerede positivt til andre solcelle-teknologier 

i form af færre emissioner af drivhusgasser under produktionen. Konkurrenceevnen for 

prisen på PSC opnås ved brug af billige materialer og høj hastigheds rulle-til-rulle (R2R) 

trykning samt coating teknikker. De bedste PSC produceret i laboratorieforhold er langt 

fra visionen om den meget udbredte billige solcelle, da disse mest er fokuseret på at øget 

effektiviteten gennem design med lille vægt på valget af materialer, driftsstabilitet og om-

fattende behandling. Indium-tin-oxid (ITO), den mest almindeligt anvendte transparente 

leder, repræsenterer størstedelen af omkostningerne og energi fodaftrykket i form af ma-

terialer og forarbejdning i et konventionelt PSC modul. Desuden vil manglen på indium 

skabe en flaskehals i PSC industrien og samtidig er ITOs struktur en hindring for hurtig be-

handling af PSC på fleksible substrater, samt for fleksibiliteten af slutproduktet. Udskift-

ning af ITO med billige alternativer er således afgørende for den kommercielle succes for 

PSC. 

Med disse bekymringer i mente, har mit ph.d.-studie bidraget til udvikling og evalu-

ering af alternativer til ITO i laboratorieceller, opskalering af ITO-fri koncepter fra labora-

torium til R2R produceret –moduler med stort areal og integration af disse moduler i for-

bruger-applikationer til demonstration. Derfor er denne afhandling organiseret i ni kapit-

ler. Kapitel 1 placerer PCS på et energiforsynings-verdenskort. Det ledende spørgsmål i 

kapitel 2 er hvorfor skal PSC videreføres? Her gives en kortfattet, men omfattende intro-

duktion til PSC, samt problemet med ITO og mulige løsninger. Det indeholder også kon-

krete mål, der blev sat før begyndelsen af ph.d.-studiet, som giver en ramme for de sene-

re kapitler. En helhedsvurdering af flere ITO-fri koncepter blev udført for at bestemme 

deres opskalerings kompatibilitet (kapitel 3). Resultaterne fremhævede tre arkitekturer, 

der repræsenterede forskellige fordele med hensyn til solcellernes ydeevne, stabilitet og 

lave forarbejdningsomkostninger. Disse tre arkitekturer blev opskaleret (kapitel 5-7) ved 
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hjælp R2R teknikker beskrevet i detaljer i kapitel 4. En af de tre opskalerede arkitekturer 

(kapitel 7) udgjorde et effektivt alternativ til ITO i form af solcelle præstation og blev yder-

ligere undersøgt for stabilitet og fleksibilitet. Disse moduler blev yderligere integreret i en 

kreditkortformat-laserpointer til demonstration. Nieves Espinosa, en kollega, har gen-

nemført livscyklusanalyser (LCA) på alle tre opskalerede ITO-fri arkitekturer. Data fra hen-

des offentliggjorte arbejde (kapitel 8) er kortfattet beskrevet og sammenligner LCA for de 

ITO-fri arkitekturer med henblik på at afgøre hvilken teknologi kan videreføres. LCA resul-

taterne for ITO-fri arkitekturer er også sammenlignes med opskalerede ITO-baserede PSC 

samt mod andre fotovoltaiske teknologier. Endelig sætter sidste kapitel (kapitel 9) af-

handlingen i perspektiv og identificerer fremtidige udfordringer. 
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1. Why Polymer Solar Cells? 

1.1 World Energy Scenario 

Modern society is built upon energy consumption. Energy enables access to basic 

amenities such clean drinking water, sanitation, healthcare, food, shelter, etc. which 

improve our living conditions. Furthermore, it enables the functioning of all modern 

technologies which has become an integrated part of our everyday existence.  Running 

out of fuels to power the engine of the modern age would have unimaginable conse-

quences on our quality of life and would render all technological innovations futile. Un-

fortunately, the threat is imminent. In 2011, total world power consumption was 12.27 

million tons of oil equivalent (MTOE) of which 87% was generated from natural gas, oil, 

and coal. Calculations have shown that the known reserves of oil, natural gas and coal 

can sustain the current consumption pattern for 52, 64, and 112 years, respectively [1]. 

However, the world’s fuel consumption is rapidly increasing primarily due to improving 

living standards in emerging markets and increasing world’s population (Figure 1). A 

United Nations report estimates that the current population of 7 billion will reach 9.6 

billion in the year 2050 [2]. During the same time, the world energy consumption is 

projected to increase to 30 TW in 2050- twice that of current world consumption of 15 

TW [3]. It is the economic expansion and population growth in the non-OECD (Organi-

sation of Economic cooperation and development) countries that will dictate the fu-

ture global energy demand (Figure 1-1).  If the production of the fossil fuels were al-

lowed to increase to meet the increasing demand, then the predicted lifetime of the 

fossil fuels (estimated as reserve to production ratio) will be significantly shorter. In-

stead, fossil fuel companies attempt to maintain the lifetime of fossil fuels constant by 

restricting supply as new reserves are increasingly becoming harder to discover. This 

practice consequently leads to rapid increase in fuel prices [4]. Either scenario are dis-

astrous and calls for the development of alternate, sustainable, energy sources in or-

der to satisfy the increasing world demand and to ensure availability of energy to our 

future generations. 



 

Ph.D. Thesis - Dechan Angmo  

2 Upscaling of Indium Tin Oxide (ITO)-Free Polymer Solar Cells 

1.2 Renewable Energy Resources 

Renewable energy resources are inexhaustible sources of energy that are clean and do 

not contribute to greenhouse gas emission. Sun is the ultimate source of all renewable 

energy forms: solar energy, wind energy, geothermal energy, biomass, hydro and tidal 

energy. In 2011, renewable energy constituted only 8.0% of the global energy con-

sumption, of which 6% came from hydroelectricity [5]. The rest of the renewable ener-

gy technologies remain the least exploited.  The lack of economic incentives despite 

their environmental benefits has prohibited renewable energy technologies to signifi-

cantly contribute to world’s energy supply.  This is because fossil fuels have been the 

cheapest source of energy. Increasing fossil fuel prices, however, have enabled alter-

nate energy sources to enter the market. Renewable energy sources, particularly wind 

energy and solar cells, are currently experiencing a rapid growth.  From 2010 to 2011, 

the net renewable energy excluding hydroelectricity share to global energy consump-

tion increased by 17.7%. During this period, power generation by solar cells experi-

enced an increase of 86.71% while wind energy experienced a growth of 26% [1,5].  

 

 

 
Figure 1-1  The historical trend of increasing global energy consumption displaying the contributions 

from various sources in the global energy mix (left) [5] . The projected growth in energy demand 

driven mostly by non-OECD countries (right). © RSC publishing. Reprinted, with permission rom ref. 

[3]. 
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 Despite these impressive numbers, the net impact of such a rapid growth of renewa-

ble energy resources in the global energy mix remains marginal with a dismal 2.2% 

contribution in the global energy mix in 2011. Of this, solar cells contribution to global 

energy mix is horrifically only 0.12% [1,5]. However, this scenario is changing as the 

cost of energy produced by renewable energy is becoming cheaper with rapid scientific 

innovations while the cost of energy produced by fossil fuels remains increasing. It is 

very likely the two trends will meet in the near future, making energy produced by re-

newable energy technologies competitive with fossil fuels.  

 

1.3 Solar cells: What impedes? 

Even the most conservative estimates suggest that solar cells have the capacity to 

meet future global energy demand.  One such estimate based on the assumption that 

even if only 2% of the land area on earth is allocated to solar cell plants operating at an 

average power conversion efficiency of 12%, the energy produced would be twice than 

the projected world energy demand in the year 2050 [3].  Of all the renewable energy 

resources, solar cell remains the most reliable yet least exploited renewable energy 

technology. Solar cells or photovoltaic cells convert sunlight or solar energy directly in-

 

Figure 1-2 Distribution of world energy mix in the year 2011. Solar cells accounted a  share of only  

0.12% of the total world supply [5]. 
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to electricity and possess several advantages to any other forms of energy conversion 

including other renewable energy technologies: 

1) It is the most benign form of energy and do not generate greenhouse gases, 

radioactive waste or noise pollution. 

2) It the most scalable technology which can be integrated in pocket calculators 

or installed in large power plants. It doe necessarily not depend on large infrastructure 

development such as power transmission lines.  

3) It runs on solar energy which is abundant and free. In fact, solar cells can po-

tentially lead to decentralization of energy production having potential geopolitical re-

percussions on energy independence of nations. Microcosmically, solar cells can allow 

energy independence of households and businesses. 

4) Solar energy is reliable and predictable. Cloudiness, humidity, pollution and 

other temporal variables that affect the insolation at a specific location provide a small 

amount of almost random perturbation [6]. In comparison, power produced from wind 

turbines is unreliable due to wind intermittency.  

 

Despite these obvious advantages and despite being commercially available since 

1950s, solar cells currently contribute a dismal 0.1% to the total global energy con-

sumption with a current total world installed capacity of 55.7 TWh (Figure 1-2).  Figure 

1-3 shows the current world per capita energy consumption and the world distribution 

of average yearly global irradiance.  As it can be seen, the emerging markets of Asia, 

south America, and Africa (apart from some developed regions such as middle-east 

and Australia) receives the highest annual solar irradiation. It is this part of the world 

that currently constitutes the 1.4 billion people that have no access to electricity and 

the 1.1 billion that have intermittent access as is evident in Figure 1-3a [7].  Solar cells 

are particularly suited in these regions and can significantly contribute to satiating to-

day’s unmet needs while at the same time contributing to tomorrow’s increasing de-

mand. In other words, these are the regions that represents markets with most 

potential for solar cells if provided at affordable cost.  
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 The impact of solar cells in the world energy scenario has been stifled by their 

high production cost which in turn is driven by highly energy intensive materials and 

processing requirements. Indeed, the need for minimizing materials and processing 

costs is the impetus that has driven the evolution of photovoltaic technology from the 

first to the third generation (Figure 1-5). The first generation of solar cells is based on 

thick films of monocrystalline (160-240 µm) and polycrystalline silicon (100-180 µm). 

While these forms of silicon solar cells have excellent performance in terms of efficien-

cy (average performance 15-18% and a lifetime of 20-25 years), their production is 

slow and involves several highly energy and labor intensive processes [8]. High purity 

monocrystalline silicon are grown in form of column ingots via the Czochralski process 

 
Figure 1-3 (a) World distribution of per capita energy consumption in tonnes oil equivalent (TOE). 

© 2013 BP.  Adapted from, ref.[5]. (b) World distribution of annual global irradiance. Source: 

NASA.  
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that requires molten silicon typically achieved at 2000 oC. Silicon wafers are then sliced 

from the ingots-- a process that results in greater than 40% material wastage [9]. As a 

result, silicon wafers account for more than 70% of the cost of monocrystalline silicon 

solar cell modules [9]. This also translates to the fact that despite their highest effi-

ciency among all solar cell technologies, the cost of electricity produced from the first 

generation solar cells still remains very far from being competitive with conventional 

energy sources (Figure 1-4).  

 

 The need to reduce production cost has led to the development of second gen-

eration solar cells. Second generation solar cells are thin film solar cells based on: α-Si 

(amorphous and micromorphous silicon, maximum efficiency 9.5% and 11.7% respec-

tively on laboratory scale), CdTe (Cadmium Telluride, maximum efficiency 16.5% on la-

boratory scale) and CIGS (Copper Indium Gallium Diselenide, maximum efficiency 

20.3% on laboratory scale) [10]. The manufacturing of second generation solar cells is 

 

Figure 1-4 The LCOE for Photovoltaics (PV),Concentrating solar power  (CSP) and wind power at lo-

cations in Germany and Spain. The values underneath the technologies refers to:  solar irradiance in 

kWh/m²year at optimal angle for PV, at optimal direct normal irradiance or DNI for CSP, full-load 

hours per year for wind. © 2013 Fraunhofer ISE, Germany. Adapted (Original image tweak ed for 

higher resolution for reproduction here), with permission from ref.[15]  
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highly simplified, incurring 100 times less source materials than first generation, and 

involves largely dry techniques such as sputtering and chemical vapour deposition pro-

cesses. Furthermore, they can be deposited in roll-to-roll inline on flexible substrates 

such as metal foils or cheaper substrates such as soda-lime glass, and avoid labor in-

tensive assembling of discrete silicon wafers as required in the first generation of solar 

cells [10]. The impact of these manufacturing advances is, however, dampened by the 

reduced efficiency of thin films technologies as compared to first generation cells. As a 

result, the final electricity cost and energy pay-back time of thin film technologies are 

not markedly different from the first generation solar cells. Furthermore, the use of 

environmental hazardous and rare elements such as cadmium makes some of the thin-

film technologies less competitively advantageous to the first generation solar cells. 

 

 Based on the experiences of the first and the second generation solar cells, it be-

comes clear that further development of the solar cells have to follow a cost-to-

performance optimization where performance is defined by photovoltaic response and 

stability; and cost is defined by an all-inclusive materials and processing cost. Accord-

  
Figure 1-5: The evolution and classification of solar cell technology. The list is not exhaustive and 

the timeline is to roughly demonstrate the period when each generation recorded the most rapid 

development.  All types of solar cells are still undergoing research and development. 
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ingly, the development of third generation has bifurcated into two independent ap-

proaches.  One development line attempts to dramatically increase the efficiency of 

inorganic solar cells beyond that of Shockley- Queisser limit (31-41% for single junction 

solar cells) and is addressed via four approaches: multi-junction cells, intermediate-

band cells, hot carrier cells and spectrum conversion. Apart from multi-junction solar 

cells, the other approaches are in early stages of research [11]. The second branch 

aims to dramatically reduce cost by employing cheaper materials and faster processing 

techniques. This is accomplished in the form of organic solar cells that be processed in 

a very fast, high throughput processing using printing and coating techniques such as 

those employed in the graphics industry (e.g. newspapers, magazines, packaging, tex-

tiles, etc.). Among the third generation organic solar cells, polymer solar cells (PSCs) 

have demonstrated the most potential to deliver energy on a meaningful scale. It has 

an unmatched increasing trend in power conversion efficiency over the last decade 

reaching now to 11%, bringing PSCs on the same pedestal as amorphous thin film sili-

con solar cells in terms of efficiency [12].  Yet there remain many unresolved challeng-

es on the path to achieve the cost and environmental targets that would enable PSC’s 

competitiveness with conventional energy. One of the challenges facing is upscaling 

from laboratory to large-scale using fast processing methods and low-cost materials at 

ideally no loss to efficiency and stability in comparison to laboratory cells—this is the 

theme of this dissertation.  

1.4 Polymer solar cells: Scope of the thesis 

The discovery of conducting polymers in the late 1970s laid the genesis of today’s pol-

ymer solar cells [13]. Conducting polymers, particularly polyacetylene, could be doped 

to form all three classes of electronic materials: insulators, semi-conductors, and met-

als. The possibility of combining the electronic properties of semiconductors with low-

cost processing advantages of polymers has since motivated research in PSCs. Initially, 

the prime focus was in the optimization of the photoactive polymer to enable power 

conversion efficiencies that were meaningful in the context of global energy supply 

and in comparison to other solar energy conversion means. In this context, the facets 
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that make PSCs an attractive technology, the use of low-cost materials and simple pro-

cessing conditions, were largely ignored and efforts were mostly concentrated on in-

creasing power conversion efficiencies. This scenario was justified for long since early 

studies on PSCs reported rather poor power conversion efficiency in the order of 10-2 % 

[14]. Today, the efforts into improving the inherent electronic properties of the photo-

active polymer semiconductors have fructified with the technology currently reported 

to have a power conversion efficiency of 11% on laboratory cells [12]. Now, the chal-

lenge lies in translating such efficiency achieved on devices with an active area signifi-

cantly less than 1 cm2 to large area modules produced by roll-to-roll (R2R) processing 

while ensuring that the low-cost objective of PSCs is achieved [12].  

 

 My Ph.D. study has been dedicated to bridging the gap between laboratory cells 

and R2R processed large-area module in order realize the overall aim of economically- 

and environmentally profitable PSCs.  Following a brief introduction to PSCs and an 

overview on the problem with indium and possible solutions  (Chapter 1), this disserta-

tion journeys through the development and evaluation of laboratory cells based on 

various ITO-free architectures  (Chapter 3);  the process of upscaling of various ITO-

free architectures highlighting the difference between laboratory processing and low-

cost upscaling via roll-to-roll processing techniques; and the implications of processing 

adaptions with low-cost processing methods on the overall performance of each up-

scaled architecture (Chapter 5-7). A comparative post-analysis of the environmental 

feasibility based on life-cycle analysis of these upscaled architecture is also presented 

(Chapter 8) providing feedback for future improvements. It is noted that significant 

improvement has been made in realizing a cost-effective ITO-free large-area flexible 

PSCs.  
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2. Polymer Solar cells: An Introduction 

2.1 Scope of the chapter 

This chapter attempts to present a brief background on polymer solar cells (PSCs) in-

cluding a brief history, basic principles, device architecture, and device characteriza-

tion. A brief introduction on the need for replacement of Indium tin oxide (ITO) and 

possible alternatives to ITO are summarized.  Finally, specific targets were laid out be-

fore the beginning of this Ph.D. study. These are listed at the end of the chapter and 

provide a frame of reference for the endeavors on upscaling reported in the subse-

quent chapters.  

 

2.2  A brief history 
Several landmark discoveries and milestones have led to the PSCs that we know today. 

In 1839, Edmond Bacqueral, a French experimental physicist, was the first to discover 

the photovoltaic effect. He discovered current generation upon shinning lights of dif-

ferent wavelengths in his electrolyte-semiconductor cell that comprised of two plati-

num electrodes covered with semiconductors AgCl or AgBr which were dipped in an 

aqueous solution [1,2].  In 1905, Albert Einstein explained the photoelectric effect that 

laid the foundation our understanding of the physics of photovoltaic effect. For his 

“discovery of the law of photoelectric effect,” Einstein was awarded Nobel Prize in 

1920. The next leap in history was the first inorganic solar cell developed by Bell labor-

atories in 1954. Based on Silicon, the cell had a reported efficiency of 6% [2]. Although 

the photoconductivity in various organic compounds have been reported since 1903 

including in chlorophyll, anthracine, phorphyrins etc., it was the discovery of semicon-

ducting polymers, particularly polyacetylene, that paved the way for today’s PSCs. Pol-

yacetylene could be doped to tailor its semiconducting properties as was first demon-

strated by Alan J. Heeger, Alan Macdiarmid, and Shirakawa [2]. Since then, semicon-

ducting polymers have been developed by leaps and bounds, having implications in all 

forms of organic electronics such as organic light emitting diodes (OLEDs), organic thin 
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film transistors (OTFTs), organic thin film memory transistors (OTFMTs), and organic 

photovoltaic cells (OPV) including PSCs, to name a few.  Recognizing the growing impli-

cation of the discovery of semiconducting polymers, Alan J. Heeger, Alan Macdiarmid, 

and Shirakawa were awarded the Nobel Prize in Chemistry “for the discovery and de-

velopment of conductive polymers” two decades later in the year 2000.  

 

2.3 Basic principles 
Soon after their discovery, polyacetylene were investigated in solar cells. The earlier 

forms of these solar cells investigated comprised of the semiconductor polymer mate-

rial sandwiched between two electrodes with different work-functions; one of the 

electrodes a transparent conductor that permits light into the device. However, the 

earlier devices based on polyacetylene resulted in limited power conversion efficiency 

typically below 0.1% [2].  While more soluble polymers were being developed, it was 

the understanding of the nature of photoexcited states in organic semiconductors that 

lead to two subsequent breakthroughs in polymer solar cells that boosted the confi-

dence of the field. Tang et al. discovered that introducing a bilayer of two semicon-

ducting materials like a p-n junction –a heterojunction-- where one semiconductor had 

a higher affinity for holes and the other for electrons led to creation of a local field that 

enhances exciton dissociation and increases current [2,3]. Tang reported a power con-

version efficiency of 1% which was significant improvement to what was otherwise be-

ing reported. Such a result with heterojunction consequently led to the intermixing of 

two such polymers or a polymer and a soluble fullerene molecule such as Buckminster-

fuller or buckyball (C60) in solution before casting into a thin film [3,4]. The resulting 

interpenetrating morphology-now termed as the bulk heterojunction (BHJ)- paved for 

advancement of organic electronics in general and PSCs in particular; consequently, 

the leading to a rapid increase in efficiency of PSCs to 11% today [5].  

 

 The basic principle of current generating mechanism in organics solar cells are 

based on some fundamental differences in comparison to inorganic solar cells such as 

silicon solar cells. In inorganic solar cells, photon absorption upon illumination of the 
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device results in excitons (bound hole-electrons pairs) with low binding energy (0.1 eV) 

which can spontaneously dissociate at room temperature into charge carriers. The 

high charge mobilities allow them to be transported to their respective electrodes to 

be collected. In PSCs, photon absorption by semiconducting  polymer molecules results 

in excitons with high binding energy (1 eV) due to their spatial confinement to a single 

polymer molecule domain and have a lifetime of  few nanoseconds. Furthermore, the 

charges when generated in a semiconductor polymers has orders of magnitude lower 

mobilities than inorganic solar cells. For example, silicon has an electron mobility of 

1000 cm-2 V-1 s-1 and a hole mobility of 450 cm-2 V-1 s-1. In comparison, semiconducting 

polymers have charge mobility in the range of 10-6 to 1 cm-2 V-1 s-1 [3]. Hence, without 

an external impetus, the exciton generated in semiconducting polymer rapidly decay 

to their ground state within a matter of nanoseconds. The introduction of another 

semiconductor polymer or acceptor molecules with high electron affinity delivers this 

impetus due to the creation of a localized field between the donor and the acceptor 

molecules. This is realized when the LUMO of the acceptor molecule is higher than the 

HOMO of the donor polymer. Bulk hetero-junction morphology (BHJ) allows the most 

effective and practical method of achieving large interfaces between donor and accep-

tor module as well as allows the creation of an interconnected pathway, facilitating not 

only exciton dissociation but also efficient charge transport to the electrodes. Figure 2-

1 demonstrates the operational mechanism of PSCs.  

 

  Poly(3-hexylthiophene-2,5-diyl (P3HT) and [6,6]-phenyl-C61-butyric acid methyl 

ester (PCBM) are extensively studied and commonly used donor polymer and acceptor 

molecule respectively. A comprehensive overview of all photoactive polymers and ac-

ceptor molecules could be found elsewhere [4,6]. Similarly, several reviews could be 

consulted for deeper understanding of device physics of PSCs, for example ref. [7]. 
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2.4 Device architectures 
A polymer solar cell comprise of a thin film of the photoactive material sandwiched be-

tween two electrodes of different work functions. One of the electrodes is a transpar-

ent conductor from where light is permitted to the photoactive layer. Two different ar-

chitectures are commonly used: a normal structure and an inverted structure (Figure 

2-2). In normal structure, the electron accepting electrode is a low work-function met-

al, usually Aluminum. Illumination can be achieved either through the top or the bot-

tom electrodes. The terms ‘top’ and ‘bottom’ are usually used with reference to the 

processing sequence on the substrate. The bottom electrode is the first material to be 

deposited on the bare substrate and the last deposited electrode forms the top elec-

trode, thus sandwiching the thin film photoactive material in in between.  In normal 

structures (sometimes, referred as traditions or conventional structures), the bottom 

 

Figure 2-1Schematic illustration of operational mechanism of (bulk) heterojunction polymer solar cells. 

© 2013. Adapted, with permission from ref. [26]. 
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electrode is the transparent conductor, usually ITO. However, several other geome-

tries are also possible including a reverse stacking of the materials as shown in Figure 

2-2.  

 

In inverted structure, the direction of charge transport is reversed in comparsion 

to the normal device structure: the electron accepting electrode is the transparent 

conductor and the back electrode is higher work function metal which collects holes. 

Buffer layers provide charge selectively and also contribute to tuning the electric field 

in the device.  Poly(3,4-alkenedioxythiophenes):poly(styrenesulfonate) (PEDOT:PSS) is 

the most commonly used hole transport layer in both structures. Zinc oxide (ZnO) is of-

 

Figure 2-2 Schematic illustration of PSC device geometries. The differences between normal and 

inverted architecture is shown. The architectures in either type can be illuminated from either  the 

bottom electrode (a, c) or the top electrode (b, c). Notice that in inverted architectures, an elec-

tron transport layer such as ZnO is a crucial addition to the materials in comparison to normal ar-

chitecture. The back electrode in normal architectures is a low-work Al whereas in inverted struc-

tures, higher work function metal such as Ag and Au are employed.  
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ten used as electron selective buffer layer in inverted structure while LiF is the most 

commonly employed as buffer layers in normal devices.  PEDOT:PSS also functions as a 

surface planarization on ITO or other electrodes. Inverted structure is most popular 

when studying large scale low-cost processing of PSCs while normal structure is mostly 

used in the development of  PSCs, for example, in the evaluation of new polymers and 

other materials. The most popular geometries of the solar cells are shown in Figure 2-

2. 

 

2.5 Photovoltaic Characterization 

In dark, an organic solar cells acts like a diode. The equivalent circuit that approximates 

the operation of organic solar cells is demonstrated in Figure 2-3. It comprises of a di-

ode with an ideality factor (n) and a saturation current (Io); a source that induces cur-

rent upon illumination (IL); a series resistor (Rs) that takes into account all the re-

sistances at the interfaces, in the bulk materials, and due to the lateral conductivity or 

sheet resistance of the electrodes; and shunt resistance (Rsh) which that takes into ac-

count dark current leakage. The corresponding current-voltage (IV) curve is also shown 

in Figure 2-3. In the dark, the IV curve is similar to a diode. Upon illumination, the 

curve simply shifts on the y-axis with a magnitude that corresponds to current gener-

ated upon illumination. The key photovoltaic parameters are Open circuit Voltage 

Figure 2-3 The equivalent electric circuit that approximates the operation principle of organic pho-
tovoltaic cells (left); The IV curve of solar cells is shown in the (left) where all key photovoltaic are 

demonstrated.   
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(Voc), Short circuit current (Isc), Fill factor (FF), Power Conversion Efficiency (PCE), and 

Maximum Power Point (MPP).  

 

 The origin of voltage in PSCs is still a matter of active investigation.  While it is af-

firmed that the voltage is a direct function of the differences in the energy level be-

tween the HOMO of donor polymer and the LUMO of the acceptor molecule, there is 

loss factor whose exact magnitude and origin is still unclear. Empirically it has been 

found to be 0.3 V and generally attributed to device architecture, including the work 

function of the electrodes [8,9]. 

 

𝑉𝑜𝑐 = (1/𝑒){(𝐸𝑑𝑜𝑛𝑜𝑟𝐻𝑂𝑀𝑂) − (𝐸𝑎𝑐𝑐𝑒𝑝𝑡𝑜𝑟𝐿𝑈𝑀𝑂)} − 0.3 𝑉 (1) 

 

  e is the elementary charge.  

 

Some other relations between key photovoltaic properties are as follows: 

 

𝑀𝑃𝑃 = 𝐽𝑚𝑎𝑥 × 𝑉𝑚𝑎𝑥   (2) 

 

Jmax current density and Vmax is the maximum voltage on the IV curve. MPP describes 

the maximum power output possible in the solar cell. The unit of MPP is Watt (W). FF 

describes the ratio of MPP to that of maximum theoretically possible power genera-

tion.  

 

𝐹𝐹 = 𝑀𝑃𝑃
𝐽𝑆𝐶×𝑉𝑂𝐶

= 𝐽𝑚𝑎𝑥×𝑉𝑚𝑎𝑥
𝐽𝑠𝑐×𝑉𝑜𝑐

     (3) 

 

  The figure of merit comparison of various solar cell technologies is given by the 

power conversion efficiency (PCE) which is the ratio of the power of the incident light 

to that of power generated in the solar cell.  
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𝑃𝐶𝐸 = 𝑀𝑃𝑃
𝑃𝑖𝑛

=  𝐹𝐹×𝐽𝑚𝑎𝑥×𝑉𝑚𝑎𝑥
𝑃𝑖𝑛

  (4) 

 

2.6 Indium tin oxide  
 

2.6.1 The problem of indium tin oxide in polymer solar cells 

Indium tin oxide (ITO) is a metal oxide transparent conductor that is commonly used in 

most optoelectronic applications such electronic displays. Until recently, ITO was a 

ubiquitous material in organic solar cells as well.  ITO has a high conductivity with a 

commonly reported sheet resistance of 10 Ω□-1 and transmission of greater 80% in the 

visible region of the solar spectrum. However, the scarcity of indium resources in the 

world and its high demand from the display industry has created large cost fluctuations 

and future supply concerns. An official report on the market trend of minerals United 

States Geological Survey (USGS) suggests that the price of indium has fluctuated any-

where between 10-40% annually in the past 5 years [10]. Apart from the volatility of 

indium prices, its incorporation in the processing of ITO requires vacuum-based highly 

energy intensive deposition techniques such as sputtering, thus further increasing the 

cost footprint of ITO. In the upscaling, ITO substrate needs to be patterned which re-

sults in large material wastage. Apart from cost, ITO brings other disadvantages partic-

ularly for use in PSCs: its brittle nature limits flexibility and its low thermal expansion 

coefficient results in poor interfacial compatibility between the organic materials and 

the ITO surface [11-13].  

 

 The initial upscaling experiments on PSCs using roll-to-roll (R2R) processing and 

subsequent life cycle analyses studies demonstrated that the use of ITO and vacuum 

processing are not feasible for the low-cost production of PSCs. ITO was observed to 

incur 90% of the cumulative energy demand (total embedded energy due to materials 

and processing) in the PSC modules produced [14]. In an industrial setting, the figure 

may go down but it is still expected to be the prime determinant of cost and environ-

mental footprint in polymer solar cells owing to its processing requirements when the 

rest of the materials in the polymer solar cells are solution-based and can be processed 
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at very high throughput. It is therefore crucial to find a low-cost replacement to ITO 

that bears no supply concerns, is flexible, and is preferably solution-based involving 

vacuum-free processing.  

 

2.6.2 Alternatives to Indium tin oxide  

 

Indium tin oxide is a ubiquitous material in most optoelectronic devices and as such 

the efforts in finding an alternative to ITO is exhaustive. In general, the alternatives of 

ITO could be categorized into four broad material groups: 1) nanomaterials; 2) poly-

mers; 3) metals; and 4) metal oxides. Nanomaterials can further be classified into car-

bon nanotubes, graphene, metal nanowires, and metal nanogrids. These material 

groups are not mutually exclusive and are often used in some combination with each 

other. Particularly, Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) or PE-

DOT:PSS often used in combination with many of these alternatives. Figure 2-4 sum-

maries material categories that are investigated as alternatives to ITO. A comprehen-

sive literature reviews on the alternatives of ITO could be found in our publication [15]. 

 

2.6.3 Figure of merit qualifications for transparent conductors 

Various figure-of-merit (FoM) relationships have been suggested to set a benchmark 

for transparent conductors in general.  In 1976, Haacke first quantified a FoM relation-

ship that combines the two most important properties of a transparent conductor –the 

transmittance (T) and sheet resistance (Rst)-- as given in equation 5 [16].  
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𝜙𝐻 = 𝑇𝑞𝑅𝑠𝑡 = 𝑇𝑞𝜎𝑑   (5) 

 

q is an exponent whose value determines the magnitude of transmittance required for 

a specific application. A q value of 10 results in a transmittance of 0.9 which is suffi-

cient for most application. 𝜎 is conductivity and d is the film thickness. This relation-

ship is valid for free standing films and traditionally employed for metal oxide and ul-

tra-thin metal film where sheet resistance is a directly function of film thickness 

[17,18]. It does not account for percolation driven materials such as carbon nanotubes 

and nanowires. With the recent surge of interest in finding replacements to ITO, many 

FoM relationships have been suggested [17,19-21]. One such relationship is the ratio 

of DC to optical conductivity 𝜎𝐷𝐶/𝜎𝑂𝑃 that is found to be even applicable for percola-

tion driven materials [20]. ITO with a sheet resistance of 10 Ω□-1 and 90% transmit-

tance results in   𝜎𝐷𝐶/𝜎𝑂𝑃  ratio of ~350; ultra-thin Ag and aluminum has a FoM of 

around 250 and 75 respectively [17]; and carbon nanotubes and graphene 6-14 and 75, 

 
Figure 2-4 Flow-chart illustrating the classification of alternatives to ITO. 
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respectively; while Ag nanowires have been reported to have superior properties than 

doped metal oxides with the FoM ratio of 500 demonstrate thus far [22].  Figure 2-4 

shows a comparison of different transparent electrode materials based on FoM re-

ported in the literature. It must be mentioned that although the novel transparent 

electrodes such as Ag nanowires may be able to deliver superior properties in stand-

alone films, their adoption in functional multilayer structures such as in polymer solar 

cells however has been met with several challenges due to high surface roughness and 

weak adhesion to substrates [23,24].  

 

2.7 Toward low-cost polymer solar cells: Project Targets 

The primary goal of this Ph.D. study was to contribute in the development of a robust 

ITO-free alternative that is employable in the upscaling of PSCs using fast-throughput 

R2R printing and coating techniques, ideally in ambient conditions. Some specific aims 

were: 

1.  Investigating upscaling of ITO-free modules on the path to develop a robust ITO-

free process.  

 
Figure 2-5: A summary of reported properties of TCO alternatives. Solid lines are fits according to 
some figure of merit equations.  The dotted rectangle shows the target region for transparent 
conductive electrode application. © 2013 Nature Publishing Group. Reprinted, with permission 
from ref. [17] 
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2. A PCE of >1% on large-area modules (100 cm2) with a P3HT:PCBM based photoac-

tive layer and a geometric fill factor on modules of >60%. Geometric fill is defined as 

the active area to the total area of a module and has implications on cost (discussed 

in Chapters 5-8).  

3. Understanding and improving stability of the modules with regards to shelf life 

and indoor and outdoor applications. 

4. Cost- and environmental-footprint of the ITO-free architectures must be lower 

than ITO-based processes such as ProcessOne that our group had previously report-

ed [25].  

5. Ultimately, the process should be robust enough to be integrated in ITO-free de-

monstrator applications. 
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3.  An evaluation of ITO-free architectures for determining up-
scaling compatibility 

3.1 Introduction 

 Often, the record efficiencies reported of various solar cells are based on devices with small 

active area and fabricated under controlled laboratory conditions. Particularly, in solution-

based solar cells such as polymer solar cells (PSCs), the majority of the scientific reports 

(>86%) are based on devices with less than 1 cm2 active area [1]. For some solar cell tech-

nologies such as crystalline Si, the upscaled cells or wafers can realistically have similar effi-

ciency as the record cells since materials and processing in both cases are similar; the former 

involving silicon and its doping and the latter involving discrete controlled steps. Hence, such 

devices when upscaled results in minor losses in efficiency. For example, the commercially 

available crystalline silicon have a record efficiency of 25% on 4 cm2 area [2]; an upscaled Si 

cell/wafer (135 mm x135 mm) has a reported record efficiency of 22.5%; and a correspond-

ing silicon solar cell panel (2067 x 1046 cm2) with 128 wafers have a reported efficiency of 

20% (Maxeon E-series, Sunpower) [2,3].  In PSCs, however, the fabrication of laboratory cells 

are carried out using ‘exotic’ materials and processing methods (for example, spin coating, 

evaporation, atomic layer deposition) that are far removed from the ultimate commercially 

feasible roll-to-roll (R2R) printing and coating processing that is envisioned for the technolo-

gy. The performance of PSCs, in terms of both stability and efficiency, is highly dependent on 

primarily the active material and also crucially on the film and interface properties (for ex-

ample, donor acceptor morphology, interfaces, roughness, etc.) which in turn are deter-

mined to a large extent by the materials and the processing methods employed.  Hence, the 

record laboratory cells efficiency of PSCs (11%), fabricated on small area (0.159 cm2) [2] un-

der controlled conditions using ‘exotic’ photoactive polymers and delicate processing condi-

tions is very far-off from an  all-ambient processed module (active area efficiency of ~2%) 

fabricated in a commercially-likely conditions [4].  

 

 Hence, it is very important to evaluate the upscaling compatibility of laboratory scale 

prototypes before upscaling.  A holistic evaluation should be based on the photovoltaic per-
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formance, stability, and materials and processing methods incurred in the prototype to de-

termine if upscaling is warranted. To reiterate from Chapter 1, the ultimate aim of PSCs is 

low-cost energy production which, given the lower lifetime and expected efficiency of PSCs, 

will be best accomplished using ambient processing on flexible substrates and ideally using 

only benign solvents such as water. The use of inert conditions, clean room, or vacuum pro-

cessing, and the use of rigid substrates such as glass have not been dismissed while it is likely 

that their use will imply that the technology requiring these will be less competitive unless 

balanced by higher performance in some aspects (e.g., stability and photovoltaic properties, 

technical yield, material parsimony). 

 

 Based on this frame of reference, this chapter aims is based on a study in which the 

upscaling compatibility of five different ITO-free architectures based on their photovoltaic 

properties, stability, and materials and processing conditions were evaluated. To focus on 

the architectures, the active material was controlled in all the devices. The devices are stud-

ied in detail. The aim was to find the best architecture suitable for low-cost upscaling. Such a 

process can be thought of as a screening process for selecting the best ITO-free device archi-

tecture that is worth investing resources in their upscaling. The subsequent chapters are 

based on the upscaling of device architectures based on the recommendations from the 

study presented in this chapter. 

 

3.2 The Architectures 
Five different ITO-free devices were contributed by four different institutions--ECN (Nether-

lands), ISE (Germany), Holst Center (Netherlands) and DTU (Denmark)-- each having a rich 

experience in their respective devices supplied to this study. As such, all devices compared in 

this work are optimized and can be regarded as the state-of-the art of their respective de-

sign. Schematic illustrations of the device architecture are shown in Figure 3-1. An ITO-based 

inverted device was also included as reference. All ITO-free devices are based on an inverted 

structure apart from the Holst-type device which is based on a normal or conventional struc-

ture. 
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3.3 Materials and Processing 

Table 2-1 provides information on materials, suppliers, deposition methods, and deposition 

conditions for all device architectures. Layer thicknesses are given in the schematic illustra-

tions in Figure 3-1. Further details can be found in the literature cited under the following 

subheading that briefly describes the architectures studied. 

 

3.3.1  Reference ITO-based devices  

The ITO on glass substrates (10 Ω□-1) were first thoroughly cleaned with ultra-sonication in 

isopropanol and water and dried at 200 oC. The functional layers were then spin-coated at 

1000 rom in the sequence: ZnO; P3HT:PCBM  (1:1 wt:wt ratio in cholorbenzene with a total 

concentration of 60 mg ml-1); and  PEDOT:PSS (dilution in isopronanol in 2:1 v/v ratio). ZnO 

and PEDOT:PSS deposition were followed by annealing step at 140 oC -5 minutes. Finally, the 

Ag electrode was evaporated.  

 

 

Figure 3-1 Schematic illustration of the layer stacking in five different ITO-free architectures  evaluated. ITO-

based reference device (REF) is also shown. 
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3.3.2 NORM 

NORM devices are based on normal structure that directly replaces ITO with a composite 

current collection grid comprising a inkjet printed metal grid overlaid by inkjet printed highly 

conductive (HC) PEDOT: PSS. P3HT: PCBM (1:1 wt:wt ratio with a net concentration of 52 mg 

ml-1 in 1, 2-dichlorobenzene) is then spin coated at 1000 rpm. Finally, LiF and Al were con-

secutively evaporated to complete the device stack [5,6]. 

 

3.3.3 ASP 

ASP devices utilize the composite electrode as described for NORM structure in an inverted 

architecture. ZnO is then spin coated at 1000 rpm on the Ag grid/PEDOT:PSS composite elec-

trode to form the electron selective layer followed by P3HT:PCBM (same as NORM). PEDOT: 

PSS (1:1 dilution with Isopropanol) forms the hole the transport layer that is spin coated at 

1000 rpm and dried at 120 for 5 minutes. Finally, Ag grid is screen printed. It has been found 

crucial to deposit one layer (often ZnO) in the glove box and the device requires activation 

by application of high voltage after processing.  

 

3.3.4 ALCR 

ALCR devices utilize a low work function metal substrate Cr-Al-Cr as electron contact as pre-

viously reported [7]. The purpose of the first Cr layer is for ensuring good adhesion to glass 

and to protect the highly reactive Al and can be omitted if a substrate conditioned for Al 

deposition such as when Mitsubishi RNK PET film is used. The second Cr layer acts as an elec-

tron selective layer while also providing protection for the Al layer. The photoactive layer of 

P3HT:PCBM (20 mg:14 mg in 1ml of o-Xylol) is then deposited on the Cr layer followed by a 

hole transporting PEDOT:PSS layer and a suitable work function metal contact such as Ag or 

Au. In this case, Au was used as the second metal contact.  

 

3.3.5  AGNP 

AGNP is an inverted ITO-free device that utilizes a solution processed semi-transparent Ag as 

the front electrode developed under this PhD study [8].The rest of the stack is exactly similar 

to the REF device (section 3.3.1) 
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3.3.6 WT 

The wrap through (WT) device architecture known from inorganic solar cells was re-

developed and adopted for flexible organic solar cells by Fraunhofer ISE [9]. A parallel cir-

cuitry is formed by a so called wrap through (WT) circuitry. The ALCR device structure  (de-

scribed in section 3.3.4) is built on a thin plastic substrate, where the Cr/Al/Cr contact forms 

the negative terminal of the solar cell. The complete stack including the substrate is perfo-

rated and a second metallized substrate is laminated to the backside of this device. The last 

deposited material, PEDOT:PSS, is led through the perforated vias in the device to the se-

cond metallized substrate, which collects the current from the PEDOT:PSS and forms the 

positive terminal. In this way, an easily scalable WT device structure is accomplished. 

 

3.4 Encapsulation method 

One method of encapsulation was adopted across all device structures to limit variability in 

stability due to barrier properties of the encapsulating material and the encapsulation 

method. The devices were encapsulated by sandwiching each devices between two glass 

slides (the substrate and encapsulation glass) using a UV curable DELO-ALP adhesive (LP655).  

The glue was homogeneously distributed by sliding two foldable clips with some force from 

the centre of the device toward the edge. Finally, the device with the adhesive was exposed 

to UV radiation for a short time under a solar simulator (1 min with consequent heating to 

around 70 oC) or under UV light to achieve curing of the adhesive.  For DTU ProcessH device, 

the PET substrate was mounted on a glass substrate using the same adhesive. The rest of the 

encapsulation was similar to all other devices. 
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Table 3-1 Materials and processing specification of the various architectures investigated. 

Purpose Device architectures Materials Material suppliers Deposition method Deposition conditions 

 
 
Electrode 1 
(electron contact) 

ALCR Cr/Al 
 Sigma Aldrich Evaporation 

 
Vacuum 
 NORM Al 

ASP Ag Suntronic U5714 Ink jet printed  
Ambient 
 AGNP Ag Kunshan Hisense Electronic (SC-100). Spin coated 

REF ITO Lumtec/Naranjo substrate As received/sputter coated Vacuum 

Electron transport/hole blocker 

ALCR Cr 
Sigma Aldrich Evaporated Vacuum 

NORM LiF 
ASP 

 
ZnO 

In house prepared nanoparticles in IPA  
Spin coated 
 

N2 
AGNP 

In house prepared nanoparticles Ambient 
REF 

Photoactive layer 
 

ALCR 

P3HT:PCBM 

Reike Metals Inc. 4002e 

Spin coated 

N2 
NORM 

Plextronics Plexcore OS2100: Solenne B.V. Ambient 
 

ASP 
AGNP 
REF 

Hole transport/electron blocker 
 

ALCR 

PEDOT:PSS 

Clevios F010 and Agfa customized Formulation Evaporated N2 
NORM Agfa Orgacon EL-P 5015 

Spin coated 
 

Ambient 
 

ASP 
AGNP Agfa Orgacon EL-P 5010 
REF Agfa Orgacon EL-P 5010/5015 

Electrode 2 
(Hole contact) 
 
 

ALCR Au Sigma Aldrich Evaporated 
Vacuum 

NORM Al Suntronic U5714 Inkjet printed 
ASP 

Ag 
 

Toyo Rexalpha RA FS FD 018 (paste) Screen printed Ambient 
AGNP 

Sigma Aldrich Evaporated Vacuum 
REF 

Substrate 

ALCR 
Glass 
 

- 
  

 

NORM 
ASP 
AGNP PET Melinex PET 
REF Glass - 
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3.5 Photovoltaic properties:   
To allow a logical comparison of the architectures, it is necessary to control the photo-

active material. P3HT:PCBM was used in all architectures as it is a commercially availa-

ble material. Since independent laboratories were involved, a round-robin method was 

adopted in the evaluation of photovoltaic performance of the solar cells. Under a 

round-robin study, all devices are collected at one institution and the first round of 

measurements is initiated. Then, the devices are sent around at the participating insti-

tutions in rotation for photovoltaic measurements. Finally, the devices are sent back to 

the starting institution where the last measurement is carried out. For this study, the 

devices were measured at four institutions following the scheme shown in Figure 3-2. 

All devices were masked to achieve an active area of 1 cm2 which was proven more re-

liable than a smaller active area. In a preliminary round robin investigation, ITO-based 

reference devices with two different active areas –1 cm2 and 0.36 cm2 – were evaluat-

ed.  Devices with smaller active area (0.36 cm2) were found to show high level of disa-

greement, particularly with Jsc measurements. At some institutions, the 0.36 cm2 de-

vices showed Jsc values that were significantly higher (12 mA cm-2) than theoretically 

expected. A 400 nm thick P3HT:PCBM active layer cannot realistically give more than 

12 mA cm-2  even at 100% internal quantum efficiency according to a modeling result 

that evaluates photon absorption under AM 1.5G by P3HT:PCBM in a similar device 

structure [10].  The exaggerated current could be caused by interplay of small aperture 

area, thickness of the mask, the uniformity and the diffuse content of the light from 

the lamp of the solar simulator—all of which may result in overestimation of photocur-

rent [11]. As a result of this uncertainty with smaller aperture area, 1 cm2 was selected 

for photovoltaic and stability measurements of the ITO-free architectures. It must be 

noted that 1cm2 is also the optimal width of cells for ITO-based substrates in a serially 

integrated module– a module design used in the upscaling (introduced in the next 

chapter).The round-robin data of ITO-based reference devices are given in the Appen-

dix 10.2 (Table A-1). 
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  All ITO-free were fabricated with an area of 1 cm2 except WT which was supplied 

to this study with an area of 2.2 cm2. All devices (2 devices of each architecture) were 

masked with an aperture of 1 cm2 and were studied in the round-robin method. In the 

absence of certification, a round-robin is a facile method to gain consensus on claimed 

photovoltaic properties and establish credibility. Devices were measured at 1 sun illu-

mination (1000 W m-2; AM1.5G) at all institutions while only DTU had the facility to 

conduct measurement under low-light conditions (0.1 sun). All institutions demon-

strated good agreements on the photovoltaic performance of all the architectures un-

der 1 Sun with a maximum standard error in PCE of 10% except for WT. Figure 3-3 

shows the distribution of PCE of all the devices studied under the round-robin while 

standard error is listed in Table 3-2 (See Appendix 10.2 for the complete data).  This 

level of disagreement in PCE is mostly attributed to the variation in Jsc for which a 

standard error of ~12% is observed; Voc and FF have the highest consensus with a max-

imum standard error of 3% and 5%, respectively. While Jsc could vary to some extent 

because of degradation over the course of the round robin studies (25 days), however, 

other factors such as the light sources and their calibration, operator’s handling, etc. 

may all contribute to this variability. Nevertheless, the 10% standard error in PCE is the 

highest consensus reported of any round robin study conducted on PSCs [12,13]. Fur-

thermore, the relative difference among the various architectures remained the same 

at all stages of round-robin measurement. WTs devices mark a large uncertainty ~30% 

in its performance, has a different active area, and were not considered for further 

evaluation.  Although WT devices represent a highly scalable design but at this stage 

but the processing was not yet robust enough at the time of this study. They are con-

tinually being developed at the home institution (ISE Fraunhofer) and it is likely that in 

future they will emerge as a successful architecture.  
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With the consensus gained in the round robin study, all devices can be compara-

tively evaluated. The key photovoltaic parameters under 1 sun (1000 W m-2 AM 1.5G) 

and under low-light/indoor conditions (0.1 sun; 100 W m-2) is given in Table 3-2 and 

the corresponding IV curves are shown in Figure 3-3. Despite the common photoactive 

materials and the active area, large differences in the photovoltaic performance are 

observed. ALCR emerges as the best architecture in terms of photovoltaic performance 

with PCE equaling to- or greater than- the reference ITO-based cells under 1 sun and 

low-light, respectively. On the other hand, AGNP have the lowest PCE under 1 Sun and 

low-light conditions. To account for the observed differences in the PCE of the various 

architectures, it is necessary to delve into the reasons for the variation in short circuit 

current density (Jsc), Open-circuit voltage (Voc) and fill factor (FF).  

 

Figure 3-2 Schematic diagram of the round-robin procedure followed for this study. The blue lines 

represents the ITO-free architectures submitted while the paths in black shows the rotation in 

which the ITO-free device were measured at different locations.  The numbers is brackets denote 

the sequence and the number of measurements carried out.   

 

 

 



 

Chapter 3 - 2BAn evaluation of ITO-free architectures for determining upscaling compatibility 

38 Upscaling of Indium Tin Oxide (ITO)-Free Polymer Solar Cells 

 

3.5.1 Short circuit current density 

The largest variation among the different architecture is observed in Jsc. The variation 

in Jsc is mostly a direct consequence of the differences in the optical transmission of 

the different transparent electrodes (TE) employed in each architecture (Figure 3-4). 

Nevertheless, there are certain differences in Jsc among the various architectures that 

the differences in transmittance of the TE do not account for. For example, ASP and 

NORM employ the same TE yet ASP have lower Jsc than NORM. Jsc in PSCs is deter-

mined not only by the photons hitting the photoactive layer (PAL) but the multitude of 

mechanisms that take place thereafter that determine the final charge carrier harvest. 

Broadly, these mechanisms involve exciton generation, diffusion, separation, and 

charge transport. These mechanisms are not only dependent on the photoactive mate-

rial, its morphology, and the transparent electrode but also on the architecture itself 

including other constituent materials, their placement in the architecture,  and their 

characteristics (layer thickness, optical properties, layer quality, electrical interfaces, 

etc.). To account for how current generation occurs in the four architectures consid-

 

Figure 3-3 Round robin measurement of PCE of reference devices and the  ITO-free architectures 

(two cells each) at four institutions is shown. The ovals are intended as aids for visualizing the 

spread in data. The legend corresponds to the institutions in Figure 3-2 (a); and the IV curves of 

the devices (b). The IV curves are from the first measurement during the round robin study. 
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ered here, an external quantum efficiency data (EQE) can provide valuable infor-

mation.  

 

EQE informs the conversion efficiency with which photons incident upon a solar cell 

gets converted into electrons. In other words, it is the electrons collected per photon 

absorbed and is defined by [14]:  

 

𝐸𝑄𝐸 = 𝜂𝑎𝑏𝑠 × 𝜂𝑒𝑥ℎ𝑎𝑟𝑣𝑒𝑠𝑡 × 𝜂𝐶𝑇 × 𝜂𝐺𝑆 × 𝜂𝐶𝐶   (1) 

 

where abs is the absorption efficiency of the photons by the photoactive material, ex-

harvest is exciton harvest, CT is charge transfer, GS is germinate separation and CC is 

charge collection.  

 

 In an ideal scenario, EQE spectra should reflect the absorption trend of the pho-

toactive polymer; that is, the highest absorption region of the photoactive material 

should correspond to the maximum peak region in the EQE spectra (a symbatic re-

sponse) due to highest amount of charge carrier generation possible in this region. This 

is most realistically achievable in an architecture with thick photoactive layer when: 1) 

TE has a uniform transmission in the absorption range of the photoactive polymer and 

2) TE is the electron collecting electrode (cathode) such that the electrons generated in 

the most photoactive region in the photoactive layer, that is, the interface of the PAL 

facing the TE, is readily collected by the cathode. A symbatic response is clearly dis-

cernible in the REF. device while it is less so pronounced in ALCR, ASP, and AGNP (Fig-

ure 3-4). The differences in the EQE spectral shape of the inverted structures can be 

explained by considering the vertical gradients in the photocurrent generation effi-

ciency and/or recombination. In thick P3HT:PCBM layers, incident photons with energy 

corresponding to the peak absorption region of P3HT (around 500 nm) is absorbed 

within the first 100 nm from the TE (henceforth, term as the “most potential region”); 

while the remaining photons away from absorption peak of P3HT (i.e., in the 400 and 
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600 nm regime) are more uniformly absorbed throughout the thickness of the layer 

[15] . 

  

ITO has a uniform transmittance in the visible spectrum. As a result, a symbatic 

photo-response is seen in the reference cells and the shape of the EQE spectra is simi-

lar to the absorption profile of P3HT with the peaks in EQE graph corresponding to the 

peaks in P3HT absorption spectrum except for the peak at 365 nm. The small peak at 

365 nm is attributed to the ZnO:P3HT interface that forms an additional photoactive 

interface and contributes to current in this region.  ZnO is an n-type semiconductor 

with a band gap of 3.42 eV (~365 nm) that directly corresponds to the peak at 365 nm 

in the EQE spectrum. 

 

 In AGNP devices, current harvest in the most potential region is hampered by the 

trench in the transmission of the TE electrode.  EQE graph indicates that most elec-

trons are collected away from the most potential region, that is, deeper into the PAL 

layer toward the back of the cell.  This corresponds well with the transmittance profile 

of the TE used in AGNP, a semitransparent Ag electrode, that has a significantly higher 

transmittance in the ~ 400 and ~ 600 region than in the 500-550 nm region (Inset in 

 

Figure 3-4. The transmission profile of the transparent electrodes is shown (left). ALCR transmis-

sion profile is not available but it is expected to be similar to ASP and NORM. The absorption of 

P3HT:PCBM is shown for reference. The inset shows a rescaled transmission profile of the TE used 

in AGNP. The EQE curves of the various architectures are shown (left).  
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Figure 3-4 left). Furthermore, the opposite electrodes are similar in AGNP which re-

duces in electric field within the device, suppressing charge carrier drift velocity, and 

inducing higher recombination.  

 

ALCR devices are an up-side down or directly inverted NORM. In comparison to other 

architectures, ALCR employs much thinner active layer which is accommodated by the 

evaporated Al/Cr bottom electrode due to its low roughness. As a result, the photocur-

rent from the most potential region seems to be efficiently transported to the Al/Cr 

electrode. The reflection from the Al/Cr further enhances current generation. The 

transmission spectra is not available but a similar graph as the ASP and NORM is ex-

pected due to the same PEDOT:PSS thickness. The dip in the current collection be-

tween 350-400 nm is unusual and is attributed to poor ordering in the P3HT:PCBM 

blend in the this architecture [16,17]. This could be induced by the P3HT:PCBM ratio  

which in ALCR was  1.43:1 (wt/wt) while in all other architectures was 1:1 (wt/wt).  

 

 In spite of the same TE employed in both ASP and NORM devices, much lower 

current is harvest in ASP devices than the NORM devices. This is partly due to the addi-

tional ZnO layer in the path of incoming light that represent scattering sites for the in-

cident photons. Unlike in NORM device, the lack of reflective back electrode further 

contributes to lower photocurrent generation in the ASP devices. Moreover, the 

screen printed back electrode in ASP device causes damage to the photoactive layer 

beneath the screen printed Ag lines due to the diffusion of the solvent from the screen 

printing grid into the device as clearly evident in Figure 3-5. NORM devices employ 

evaporated back electrode and therefore do not suffer such loss. Lastly, ASP device 

employ symmetric Ag grid/PEDOT:PSS electrodes across the photoactive layer results 

in reduced charge carrier drift, inducing further recombination. All these factors im-

pede current harvest in ASP devices than in NORM devices. In ASP, the problem of 

screen printed Ag ink is an avoidable challenge and can be improved by using better 

screen printing inks such as UV curable ones [4], by other printing techniques such as 
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inkjet printing that  is observed to eliminate this problem [18], and/or by optimizing 

PEDOT:PSS formulation.  

 

NORM architecture is based on normal or ‘conventional’ device structure. It uses 

the same TE as ASP but the polarity of the architecture is reversed in NORM in compar-

ison to ASP.  This explains the antibatic characteristic of the NORM devices in compari-

son to ASP as is evident in the dip in the peak absorption region of P3HT in NORM ar-

chitecture. The charge carriers produced in the most potential region need to trans-

verse through the bulk of the photoactive layer to be collected by the electrode and 

therefore current from this region is visibly suppressed due to recombination.  Elec-

trons are thus more efficiently produced in toward the back of the PAL where the elec-

trons are more readily collected and also enhanced by the reflection from the back 

electrode. All these factors render more charge carrier harvest in NORM architecture 

than in ASP. 

 

 

Figure 3-5 LBIC images of ASP device. The arrows show shading losses due to the Ag grid used in 

the transparent electrode. A one-to-one correspondence of each Ag grid line in the transparent 

electrode to the lines in LBIC image is shown (arrows of the same color point to the same grid in 

both image).  The remaining grid lines are destruction of the photoactive polymer due to the sol-

vent diffusion from the screen printed Ag grid back electrode.  
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3.5.2 Open Circuit Voltage: 

Open circuit voltage in PSCs is directly related to the energy difference between the 

HOMO level of the donor polymer and the LUMO of the acceptor materials with a loss 

factor of ~0.3; the origin and the exact magnitude of the loss factor is a matter of ac-

tive investigation [19-22]. Electrodes have a minor influence when they form ohmic 

contact. Ohmic contacts are formed when there is no energy barrier (or small barrier 

>0.2 eV that can be overcome by thermal activation) in the transport of charge carriers 

to their respective electrode). That is, when the work-function of cathode (negative 

terminal of the device) is lower than the LUMO of the acceptor and the work function 

of the counter electrode is higher with respect to HOMO of the donor polymer. When 

both electrodes form ohmic contact with the active material, the electrode materials 

have negligible influence on the device Voc [19]. Figure 3-6 shows the energy level dia-

gram of all the architectures based on literature-collected values of work functions.   

 

 Since all architectures employ the same photoactive layer (P3HT:PCBM) and 

form ohmic contact at both of the immediate interfaces across the PAL (Figure 3-5), it 

is not surprising that Voc in all architecture is similar in all architectures except ALCR . 

Especially, the interfaces across the photoactive layer in ASP, AGNP, and ITO reference 

cells are exactly similar which is why their Voc are similar and within standard devia-

tion. ALCR has significantly higher Voc and this effect can be elucidated by a compari-

son with NORM architecture.   
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 ALCR and NORM have the similar interfaces and electrode materials. The differ-

ence is then attributed to several factors: firstly, the work function at the PEDOT:PSS is 

dependent on the sequence of deposition of PEDOT:PSS with respective to the absorb-

er layer. PEDOT:PSS deposited on top of the absorber layer as in the case of ALCR has a 

higher work function than when deposited under the absorber layer as in NORM de-

vices [19,23]. As a result, ALCR has a higher work function difference across its elec-

trode. Secondly, LiF/Al is evaporated on active material which may increase trap states 

in NORM devices while Al/Cr forms the bottom electrode in ALCR, upon which organic 

materials are spin coated in ambient temperature. Finally, 1 nm of LiF is known to ag-

gregate while Cr form more interconnected network, thus resulting is a larger insulator 

(oxidized Al)/PAL interface in NORM than in ALCR [24]. These effects explain why Voc in 

ALCR is slightly higher than in NORM. 

Table 3-2 Key photobvoltaic parameters of the different architectures under 1 Sun illumination (1000 

W m-2 AM1.5G) and under indoor conditions 0.1 Sun (100 W m-2) 

Architecture Measurement Jsc (mA cm
-2

) Voc (V) FF (%) PCE (%) 
 

ALCR 
1 sun 7.29 (7.18) 0.58 (0.93) 63.02(1.77) 2.65 (6.28) 
Indoor 0.84 0.52 69.63 3.0 

NORM 
1 sun 7.15(10.23) 0.53 (1.04) 61.58 (0.89) 2.34 (10.33) 
Indoor 0.78 0.45 68.83 2.4 

ASP 
1 sun 6.10 (9.57) 0.53 (1.36) 54.04 (2.18) 1.75 (10.55) 
Indoor 0.74 0.449 60.72 2.02 

AGNP 
1 sun 3.81 (5.70) 0.54 (1.02) 56.26 (0.79) 1.16 (5.91) 
Indoor 0.41 0.47 54.57 1.044 

WT 1 sun 5.89 (21.59) 0.57 (2.64) 35.50 (6.71) 1.19 (22.58) 

REF 
1 sun 8.47 (11.55) 0.55 (1.85) 40.13 (4.88) 1.86 (8.87) 
Indoor 1.0 0.4821 62.24 2.98 
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3.5.3 Fill Factor  

The loss in fill factor is a direct consequence of low shunt resistance and high series re-

sistance. In organic solar cells, these parasitic resistances can originate from several 

different factors. Low shunt resistance can originate from micro-shorts in the device 

due to, for example, the interconnection between positive and negative PEDOT: PSS 

layer in ASP architecture or spikes in one metal electrode intercalating into the oppo-

site electrode. Shunts are usually caused by manufacturing defects. On the other hand, 

series resistance may originate from contact resistance between all interfaces, bulk re-

sistance in PAL layer or the other material layers, and the lateral conductivity/sheet re-

sistance of the electrodes. Series resistance (Rs) and shunt resistance (Rsh) for all the 

architectures extracted from their respective IV curves in Figure 3-3 is listed in Table 3-

3. In general, PSCs for both indoor and outdoor applications, a shunt resistance of 85 

kΩ cm-2 or higher and a serial resistance of 3 Ω cm-2 or lower is recommended to pre-

vent large power loss [25].  

 

 
 Figure 3-6 Energy level diagram of all the different PSC architectures.  
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 All ITO-free architectures have lower Rs than ITO. This is a direct consequence of 

lower sheet resistance of the new electrodes in the ITO-free architectures used in 

place of ITO. ITO has a sheet resistance of 10 Ω□-1 while both electrodes in all ITO-free 

architectures have less than 1 Ω□-1. In all, for outdoor application, series resistance is 

more crucial as high series resistance causes dramatic loss in PCE due to power loss 

(Ploss~RI2). It has been shown that under 1 sun, a shunt resistance of 1 kΩ cm-2 or high-

er is sufficient while a serial resistance of 3 kΩ cm-2 or lower is required to prevent 

power losses [25]. All ITO-free architectures demonstrate higher than 1 kΩ cm-2 of Rsh 

and lower series resistance than the reference device. Hence, all ITO-free architectures 

are suitable for outdoor applications, if not more so than ITO-based REF.  

 

 On the other hand, the Rsh of all ITO-free architectures is higher than ITO. ALCR 

has the highest Rsh which is explained by the evaporated substrates that are less prone 

to defects. In printed metal electrodes as used in NORM, AGNP, and ASP, presence of 

spikes the Ag film leads to shunting [26]. The reduced Rsh of ASP in comparison to oth-

ers could be due to Ag migration through diffused solvent from the screen printed sil-

ver as seen in LBIC image (Figure 3-4)[27]. High Rsh is more important than Rs for in-

door applications [25] and from this point of view; the ITO-free architectures are suita-

ble for indoor applications. 
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3.5.4 Summary of photovoltaic properties 

 From the purely architectural point-of-view, ALCR represents a well-rounded architec-

ture in terms of its materials, their surface and film properties, and the processing se-

quences— all of which enable ALCR architecture to higher Jsc, Voc, and FF than any of 

the other architectures. It presents a >2.5% efficiency in both indoor and outdoor con-

ditions, which remains higher than the ITO-based reference device. Among the rest, 

NORM and ASP also exhibit similar performance to ITO-based reference device and 

may be suitable over ALCR if they bring competitive advantage in stability or pro-

cessing.  AGNP and WT device represents the lowest PCE (around 1%), AGNP repre-

sents the most robust technology in that it has the lowest standard error in the meas-

urements conducted over the round-robin study  (~5%) while WT represents the other 

end of the spectrum with a standard error of (>20%). Hence, AGNP could be investi-

gated further for upscaling compatibility while WT is deemed not yet robust to pursue 

upscaling on a large scale. The detailed comparative analysis is important for it eluci-

dates the implications of materials and processing choices on the devices performance 

and highlight the opportunities for improvement in some architectures or sacrifices 

that might be required in others once processing is carried out with a common goal—

low-cost processing. 

Table 3-3 Factors determining FF: Series resistance (Rs)  is calculate by taking the inverse slope on  

IV  curves between 0.9-1.0 V; Shunt resistance (Rsh) is determined by inverse of the slop between -

0.6V to 0.6V; and sheet resistance measured by a four point probe. 

 ALCR NORM ASP AGNP 
ITO. 
Ref 

FF (%) 63.02 61.58 54.04 56.26 40.13 
Rs  (Ω cm-2) 4.65 7.38 6.88 3.84 10.97 
Rsh (KΩ cm-2) 2.28 1.843 1.15 1.86 0.25 
Sheet resistance of 
bottom/top electrode 
(Ω □-1) 

<1/<1 1/1 1/<1 5/<1 10/<1 
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3.6 Stability 

The real world application of PSCs demands sufficient stability under operational and 

storage conditions to justify its use as a power source in various applications. The In-

ternational Summit on Organic photovoltaic Stability (ISOS) has laid out a framework 

for stability testing under various operational and shelf-life conditions [28]. According-

ly, the stability of the P3HT:PCBM based PSCs in normal and inverted architectures 

have been reported by independent groups  [29-33].  

 

 A PSC is as stable as its weakest link (material or interface) in its stack and there-

fore all material components play a crucial role in determining the overall stability of a 

complete solar cell. A holistic stability evaluation of the ITO-free architectures is essen-

tial in-order to make informed decisions about the choice of architecture for upscaling. 

Hence, the ITO-free architectures have been evaluated based to ISOS protocols under 

several standard and accelerated testing conditions as defined in Table 3-4. The tests 

are carefully selected to represent diverse real world conditions, representing location- 

and application-specific stability. For example, for indoor application in ICT, stability 

under indoor lighting conditions is more relevant than under 1 sun conditions (1000 W 

m-2, AM 1.5). Such an evaluation allow for identification of causes of device failure and 

Table 3-4 Stability test conditions according to ISOS protocols employed in this study. 

Category 
Light 
(Sun) 

Temperature 
(oC) 

Relative Humi-
dity 
(%) 

Deviations from ISOS Pro-
tocols 

ISOS-D-1 0 25 20-35 - 
ISOS-LL 0.1 30 10 – 15 - 

ISOS-L-1 1 37±3 10 – 15 
Temperature was control-
led 

ISOS-L-2 1 80 10 – 15 
Testing was performed in 
Room environment 

ISOS-L-3 0.7 65 50 
Modules were kept at 
open circuit 
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in making concrete recommendations on the improvement in device architectures for 

improving stability.  

 

  Degradation of a PSC can be complex with several mechanisms at play in tan-

dem. The photoactive polymers decay when subjected to chemical and physical stress-

es. Chemical stresses induce decay via photo-oxidation, thermo-oxidation, photolysis 

and thermolysis. In P3HT films, photo-oxidation is the prominent degradation mecha-

nism [34]; thermolysis or thermal decomposition is negligible below 400 oC [34,35]; 

photolysis in the absence of oxygen takes place in the time scale of years and P3HT es-

timated to retain  80% of its absorbance properties up-to 5 years [36]; and thermo-

oxidation is temperature dependent. Based on the processing and operational tem-

perature expected of PSCs on low-cost flexible substrate such as PET, thermo-oxidation 

has been shown to be significantly slower process than photoxidation. Manceau et al. 

found that the degradation rate of P3HT when treated with 100 oC is several orders of 

magnitude slower than photolysis of P3HT when subject to UV below 300 oC [37]. 

Apart from UV light and the presence of oxygen, the photo-oxidation of P3HT is influ-

enced by other environmental conditions, particularly humidity, ozone, and tempera-

ture [34]. Similarly, metal used in electrodes can decay due to oxidation as well as due 

to various organo-metallic chemistry [38-40].  Physical stress, on the other hand, is 

more relevant to the mechanical handling of a finished product and induces failure or 

loss in performance in a solar cell due to bending under tension or compression, shear 

stress, delamination etc [41-43]. Interfacial mechanical stress may also be induced in-

trinsically due to, for example, morphological evolution of photoactive polymer [44]. 

Morphological stability of PSCs is also another issue that depends on the chemistry of 

the photoactive materials as well as on the processing. Generally, chemical degrada-

tions relates to the intrinsic stability of the photoactive polymer and other material 

components, which is primarily dependent on their chemical structure and secondarily 

on their processing and their operational or storage environmental conditions. Under 

uncontrolled ageing environment, a confluence of several or all of these mechanisms is 
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likely to take place. The mechanisms of degradation in PSCs are holistically reviewed in 

various publications [45,46]. 

 

3.6.1 Stability under storage conditions 

In this evaluation, the ITO-free architectures are stable in dark storage (ISOS-D-1) 

which is a testament to the fact that thermo-oxidation of the active material is negligi-

ble at room-temperature and that all materials and interfaces in all architectures un-

der dark storage conditions are stable. At the end of 1700 hours, architectures are 

within 80% of its initial PCE (Figure 3-7). Due to the manual measurement, there are 

large fluctuations (up to 10%) between each measurement points and it is hard to dis-

cern a decaying trend if there is any. However, AGNP is disguisable among the rest as it 

shows a rather stable PCE despite the manual measurements and may point toward its 

superior stability than the others. For a complete picture, the operational stability of 

the various architectures will elucidate the difference in the stability of various archi-

tectures. 

 

3.6.2 ISOS-LL 

Under operational conditions, PSCs are usually observed to decay in two stages:  an in-

itial exponential decay known as the “burn-in” is followed by a linear degradation 

trend as schematically represented in Figure 3-7. Lifetime is then defined by the time it 

takes for the PSCs to degrade by 20% (T80) from the onset of the linear decay (T100). 

The origin of burn-in period is still widely disputed. In general, burn-in is caused by a 

degradation mechanism that becomes self-contained or cease over the course of age-

ing. Because it can originate from various mechanism, the magnitude of burn-in period 

ranges from 100 hours to over 1000 hours [27,47]. Both have implications on the ef-

fective efficiency of a device in real world applications and therefore, the reported ef-

ficiency of various architectures must account for loss in burn-in, if significant. 

 

 A characteristic decay pattern is observed in all devices when aged under indoor 

lighting conditions (ISOS-LL).  Common to all devices is that they have a burn-in lasting 
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~100 hours.   However,  the efficiency loss in this duration vary among the various ar-

chitectures  with ALCR, NORM, REF., AGNP and ASP showing a loss of  20%, 22%, 25% , 

28%, and 33% respectively (Appendix 10.2, Figure A-1).  Further analysis of the degra-

dation pattern of Voc, Jsc, and FF reveals that the burn-in has different origins in differ-

ent architectures which could be attributed to their materials and processing. All de-

vices show a degrading Jsc at haphazard relations to each other and it is attributed to 

the lack of edge sealing and the differences in adhesive thickness which lead to loss of 

active area at different rate in the various architectures.  ALCR shows no degradation 

in FF and Voc which is attributed to the fabrication and encapsulation in nitrogen envi-

ronment. On the other end of the spectrum, ASP shows the highest loss in FF and Voc. 

The loss in Voc and FF among the various architecture can be inferred from their fabri-

cation environment and the use of PEDOT:PSS layer on top of the PAL layer. PE-

DOT:PSS deposited on top of P3HT:PCBM  has very poor adhesion with PAL and is also 

highly hygroscopic [45,48].  Accordingly, ALCR fabricated in nitrogen shows the least 

burn-in degradation.  NORM devices, fabricated in air and no PEDOT:PSS on top of PAL 

stands second to ALCR. Both AGNP and ASP have thick PEDOT:PSS layer on top of PAL 

and are processed in ambient conditions. Hence, they show the most burn-in loss.  The 

use of vacuum in deposition of the top electrode in AGNP and ITO could reduce the 
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concentration of adsorbed moisture in PEDOT:PSS which explains their lower amount 

of degradation in Voc and FF than the ASP [49].  

 

Once the degradation agents introduced in the layers during the processing runs 

out, the burn-in effect on Voc and FF extinguishes and the devices appears to be stable 

thereafter.  The fluorescence lamps have very little UV emission and device will re-

mains stable beyond 1000 hours. Due to large intensity fluctuations, the extrapolation 

of lifetime is conducted between 600-700 hours (~400 data points). The two arbitrary 

points were selected because the intensity fluctuation of the lamps (as judged from 

sudden Jsc fluctuations) between these two points were less than 5%.This reveal stabil-

ity (T80) of 1880, 2200, 3600, and 10,700 hours for ITO-REF, NORM, ALCR, and AGNP 

respectively. ASP do not degrade during this time indicating infinite stability unless lim-

ited by catastrophic failure and this is attributed to better encapsulation than the oth-

ers.  In future, measurement of lamp intensity is recommended for more accurate es-

timation of lifetime.  ITO-REF. is expected to have some contact problem as revealed 

by the fast degradation of FF.  Nonetheless, regardless of where the regression is per-

formed, the comparative stability of the architectures remains the same and that 

AGNP and ASP show the highest stability while NORM shows the least which is at-

 

Figure 3-7: (a) the degradation pattern under storage conditions is shown (ISOS-D-1). (b) Illustra-

tion of the a typical decay pattern demonstration key lifetime determinants: T100 is the onset of 

linear decay while T80 marks the end of the lifetime. ©2013 Amercian Chemical Society. Adapted, 
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tributed to oxidation of aluminum. The combination of very limited UV content in the 

fluorescence light and the room temperature limits degradation of the photoactive 

polymer. Hence, all architectures are suitable for indoor applications from a stability 

perspective.  

 

3.6.3 ISOS-L-1/-2/-3 

The devices tend to degrade faster when subjected to higher illumination, tempera-

ture, and humidity as in ISOS-L-1/-2/-3 than under low-light conditions (Figure 3-8). 

NORM devices cannot sustain any of these ageing environments and completely de-

grades within 100 hours in all these tests. The rapid decay in the remainder of the ar-

chitectures is due to encapsulation failure and the lack of UV filter in the glass barriers 

 

Figure 3-8. The degradation trend/stability of the different ITO-free architectures under various 

operational conditions. ITO reference devices are also shown for comparisons. 
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used.  Only a comparative and qualitative evaluation of the stability can be made 

among the various architectures. AGNP device are the most stable of all followed by 

ALCR. It was observed that AGNP has constant Voc and FF over the ageing duration 

among all architectures in both ISOS-L-1 and –L-3 tests, thus attesting to the stability of 

all material constituents and interfaces in these ageing environments. AGNP electrodes 

have silver films on both sides of the devices which may act as barrier to oxygen or wa-

ter diffusion. The only channel for oxygen and water infiltration is permitted through 

the edge cross section where the adhesive is exposed to the ambient atmosphere. At 

high temperature, the adhesive yields and results in accelerated degradation under 

ISOS-L-2.  
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   Second to AGNP is ALCR which has a constant Voc in all three ageing tests, while 

FF degrades rather rapidly in all the three tests. The degradation in FF is primarily at-

tributed to chemical changes in the exposed surface of PEDOT:PSS due to uptake of 

water which reduces its conductivity [50,51]. This is caused by moisture diffusion 

through the adhesive from the unsealed edges to the top surface of PEDOT:PSS. PE-

DOT:PSS forms a  large interface with the adhesive that fixes the top glass barrier slide. 

LBIC images of the cells after the ageing tests confirm this hypothesis (Figure 3-9).  

 

 ASP architecture contains two PEDOT:PSS layers at the opposite terminal of the 

device which accelerate the degradation in the photovoltaic properties.  While the top 

electrode is similar to ALCR, the bottom is printed Ag grid on glass overlaid by PE-

DOT:PSS. Large pockets of current inhibition are observed in regions adjacent to the 

inkjet printed grids in the LBIC image (not shown). This is attributed to the poor adhe-

sion of the ink-printed grid on the glass substrate resulting in voids that allow easy pas-

sage for moisture infiltration from the edges of the device.  

 

Figure 3-9 LBIC images of the ALCR devices after ageing tests: ISOS-D-1? (a), ISOS-L-1 (b), ISOS-L-2 

(c) and ISO-L-3 (d). Devices seem to degrade due to a combination of yielding of the adhesive and 

the lower edge sealing margin (direction B) in ISOS-L-2 and ISOS-L-3.  Scale bar is 1 cm. 
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3.6.4 Summary of stability results 

When evaluating the stability following the many different test protocols employed, it 

became evident that there are large differences between the different architectures. 

All ITO-free architectures are stable under dark storage conditions and have high sta-

bility under low-light conditions. As such, all devices architectures are suitable for in-

door applications such as power source for various gadgets such as pocket calculators, 

lamps, e-readers, smart packaging, etc. When it comes to high intensity sunlight, high 

temperatures and humidity (ISOS-L-1/2/3) it is clear that the normal architecture de-

vice (NORM devices) fails quickly in all tests as expected and it is primarily attributed to 

the failure initiated by the oxidation of low work function Al electrode due to moisture 

and oxygen diffusion through the edges and the pin holes [52-54]. Since the device 

does present stability under both shelf life and low-light conditions, it is likely that this 

technology could be improved but the success of its use would depend on the devel-

opment of efficient and low cost encapsulation methods (encapsulation with qualities 

beyond the method employed here) and/or on design improvement, for example, with 

the use of alternate interfacial buffer layer to LiF such as Cr [54], C60 or MoO3 [55,56] 

that has been shown to improve the stability by as much as a factor of 100.  In its cur-

rent form, upscaling of NORM devices is not warranted in comparison to the other ar-

chitectures. The rest of the architectures can only be evaluated relatively with one-

another while absolute lifetime cannot be meaningfully deduced from the data as it 

clearly became apparent that the improvement in edge sealing and addition of a UV fil-

ter in the barrier material can significantly prolong the lifetime of all architectures. 

Nevertheless, AGNP devices demonstrate the highest stability in ISOS-L-1 and -3 tests, 

while no architecture could sustain the rigorous conditions as employed under ISOS-L-

2. ISOS-L-2 is unlikely to be met in real-world application. PEDOT:PSS emerged to be 

important constituent whose hygroscopic nature renders fast degradation of the de-

vices. Edge sealing of the devices against water and oxygen would therefore greatly 

enhance the stability of all devices.  
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3.7 Architecture selection for upscaling 

Based on the photovoltaic properties and the stability data described above, there is 

no clear winner architecture that shows distinctly high photovoltaic performance and 

high stability in comparison to the rest. The above studies can be viewed as way to re-

duce the number of candidates for up-scaling as well as to shed light on the implica-

tions of the processing methods and material components other than the photoactive 

material on the overall performance of architecture for use in polymer solar cells.  Af-

ter the degradation studies employing the five ISOS tests, the ASP, ALCR and AGNP de-

vices still stand with the ALCR being the highest performer in terms of PCE and the 

AGNP architecture the best performer with respect to overall stability. The ASP archi-

tecture can be considered an intermediate with respect to ALCR and AGNP in regard to 

both stability and performance.  These three architectures outperform ITO REF. with 

respect to either PCE or stability, or both. The choice among these three contenders to 

up-scaling is not an easy one to make and will require some consideration also of the 

materials and processing advantages and disadvantages for each of the architectures 

from the point of view of upscaling via facile and fast low-cost R2R processing. While 

all architectures are prototypes, several (but not all) of the materials and processing in 

each device architecture as employed in the prototype can be directly transferred to or 

adapted for low cost up-scaling. For example, the ALCR prototypes employ glove box 

environment as well as uses vacuum processing steps in the processing of Al/Cr and Au 

grid electrodes.  In the upscaling, Au grid can be replaced with a screen-printable silver 

grid; however, Al/Cr has to be processed either by sputtering or evaporation or other 

such techniques where the use of vacuum is an absolute requisite. On the other hand, 

the ASP and AGNP architectures in principle do not require vacuum processing and can 

both be all printed/coated. As such, a comparative evaluation of upscaling compatibil-

ity of the three ITO-free architectures based holistically on device photovoltaic and 

stability performance as well as on low-cost processing compatibility must be carried 

out.  Table 2-4 summarizes the properties of the three architectures in their suggested 

prototype form for low-cost upscaling compatibility. Listed in the second rows under 

each property is potential at low-cost upscaling compatibility that takes into account if 
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low-cost techniques can be used to replace techniques that are used in the prototype 

development.  Plus sign (+) shows positive result and the negative sign (-) shows oth-

erwise. For PCE and stability parameters, no negative signs are used because all devic-

es show good photovoltaic properties with a PCE of >1% and none of the devices de-

grades completely (PCE to 0%) in any of the stability tests. In such a case, the relative 

difference among the three architecture is shown by using +++; ++; and + to indicate 

the best, the intermediate, and the weakest among the three architectures, respec-

tively. 

 

 If upscaling of the three prototypes is carried out using materials and processing 

exactly similar to those used in the prototypes development, all three architectures 

warrants upscaling as demonstrate by similar total points. However, none of the archi-

tecture delivers both PCE and stability distinctly high enough to sacrifice processing 

speed and employ glove-box and vacuum-based processing. Therefore, upscaling com-

patibility of the three architectures is evaluated upon adoptability of low-cost pro-

cessing techniques. Based solely on adoptability of low-cost processing techniques,   

ALCR is the least desirable as ambient processing cannot be carried out for all layers. 

ASP and AGNP can all be R2R processed using coating and printing under ambient con-

ditions and therefore both warrants upscaling. Dropping ALCR is a hard call since it 

does represent >2.5% PCE and has intermediate stability in comparison to ASP and 

AGNP. Therefore, it may be investigated further in upscaling. 
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3.8 Summary 
This chapter presented a comparative study on various state-of-the-art ITO-free archi-

tectures contributed by various institutions. Detailed discussions on the observed dif-

ferences in the photovoltaic property and stability are presented. Such a discussion 

highlights the limitations and the possibilities of improvement in each architectures. 

Based on the photovoltaic property and stability results, a qualitative evaluation is car-

ried out to determine the low-cost upscaling suitability of all architectures in their cur-

rent processing form as proposed by the contributing institutions. The adoptability or 

Table 3-5. Comparison of the three final architectures evaluated for upscaling suitability. The con-

clusions presented in the second row for each property reflect adoptability or adaptability to low-

cost roll-to-roll upscaling. 

Property ASP ALCR AGNP 
PCE ++ +++ + 

n.a n.a. n.a 
Stability + ++ +++ 

n.a. n.a. n.a. 
Printability + - - 

+ - + 
Metal-free - - - 

+ - - 
Vacuum-free + - - 

+ - + 
Ambient Processing + - + 

+ - + 
Flexible substrate - - + 

+ + + 
Post-processing free-
dom1 

- + + 
- + + 

Total 
 (as is prototype form) 

6 6 7 

Total 
 (low-cost R2R pro-
cessing compatability) 

5 2 5 

1Devices with two PEDOT:PSS layers require post-processing functionalization by application of a 

short pulse high voltage to switch the property of one of the PEDOT:PSS layers through de-doping 

[57] 
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lack thereof of several of the processing steps used the prototype development in the 

low-cost roll-to-roll processing of the architectures is discussed. Finally, it emerges that 

an architecture that presents a high score in only one aspect of solar cell performance 

is not sufficient to justify an investment in up-scaling.  Many will require further tech-

nical development. This study also highlights that when developing device architec-

tures, one must take into account the upscaling suitability of the adopted processing 

technique in their development. Ideally, an all solution ambient processing like the ASP 

devices is the most bankable processing method in prototype development because 

upscaling of such structure are not likely to cause dramatic changes in the properties 

as drastic changes in processing are not required in upscaling.  
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4. The Upscaling Process: A background 

4.1 Introduction 
This chapter aims to present an overview of the upscaling process of polymers solar 

cells (PSCs) which include module design, R2R printing and coating processes, R2R en-

capsulation, and finally R2R characterization.  It presents a prelude to the next chap-

ters (Chapter 5-7) which are based on the upscaling of three different ITO-free archi-

tectures as selected from the initial prototype evaluation presented in Chapter 3.  

 

4.2 Module design 

Ideally, a solar cell should deliver the same power conversion efficiency (PCE) irrespec-

tive of the device area.  In reality, however, this is hard to achieve. Scalability of a sin-

gle cell is limited by the resistance of the electrodes. Particularly, the common metal 

oxide transparent electrode used in thin films (such as ITO and FTO) often has high 

sheet resistance which, in turn, results in large ohmic losses upon upscaling and mani-

fests in decreasing fill factor with increasing cell area in a solar cell. In order to mini-

mize the series resistance upon upscaling, individual cells are electrically interconnect-

ed to form modules.  A serially-integrated module based on inverted architecture 

(sometime also referred as monolithically-integrated) allows low-cost processing due 

to an all-solution processing possibility as well as achievement of interconnection dur-

ing processing itself. Figure 4-1 demonstrates such a serially-integrated module design. 

The width of each cell can be optimized to allow maximum active area in each cell with 

minimum ohmic losses. For ITO on PET which commonly has a sheet resistance of 60 

Ω□-1, a cell width ~1 cm is found optimum [1,2].  The active area can also be increased 

by elongating the length of the cells since the direction of current is along the width of 

the cell and therefore increasing length of the cells do not contribute to ohmic losses. 

The gaps between the cells are inactive (or passive) regions and represents aperture 

loss; however, these gaps are necessary for establishing interconnection between the 

individual cells in a module. The gaps should be as small as possible to avoid losses in 

geometric fill factor while also achieving electrical isolation of each cell as well as ac-
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commodating processing adjustments (such as layer offsets) required in the processing 

of each subsequent layers in a PSC stack. In our group, a 2 mm gap is found to be op-

timum for a cell width of ~1 cm in a module structure based on ITO electrode [1]. Ge-

ometric fill factor is defined by the ratio of the current generating area to the complete 

module area. The areas allocated to contacts, interconnections, edges, etc. result in 

low geometric fill actor and the aim is to achieve >60% geometric fill factor. 

 

4.3 Roll-to-Roll Processing 
A roll-to-roll (R2R) implies a continuous process in which a flexible substrate (known as 

the web) is subjected to four consecutive steps on a R2R machine: 1) unwinding from a 

roll (unwinder); 2) passing through printing or coating station(s); 3) then through dry-

ing unit(s) after each printing or coating sessions if required; 4) rewinding on a second 

roll. A surface treatment step such as corona treatment may follow before Step no. 2 

and the printing of registration marks and barcodes may be incorporated before the 

final rewinding of the web once the solar cell stack is complete. A PSC is a stacked mul-

tilayer structure which allows the possibility of a multitude of printing and coating 

techniques to be employed in the processing of each individual layers. Ideally, an inline 

all-ambient R2R processing of all layers is desirable for PSCs. However, an all in-line 

R2R processing of PSCs is not feasible due to different process speed and drying re-

 

Figure 4-1. Schematic illustration of an inverted architecture based serially-integrated module 

comprising of three cells/stripes. Only the active area contributes to the power generation. Pho-

togenerated current is injected into the cathode and is then driven laterally to one edge of the de-

vice where contact to the back metal electrode of the adjacent device is made. Either cathode or 

anode can be transparent. 

 

javascript:popupOBO('CMO:0002344','c0ee00373e')


 

Chapter 4 - 3BThe Upscaling Process: A background 

Upscaling of Indium Tin Oxide (ITO)-Free Polymer Solar Cells 71 

quirements of each layer and therefore a combination of inline and discrete processes 

are used in practice.  A schematic illustration of our (DTU’s) R2R line which was em-

ployed in the processing of all ITO-free modules described in the succeeding chapters 

is shown in Figure 4-2.  Table 4-1 lists the R2R printing and coating techniques that are 

employed in the processing of PSCs of the three different ITO-free architectures re-

ported in the next chapters. A comprehensive review on many roll-to-roll coating and 

printing techniques applicable in the processing of PSCs is published elsewhere [3,4]. 

Henceforth, only the techniques that were used in upscaling of ITO-free PSC modules 

as a part of this PhD study are described. 

 

4.3.1 Slot-die coating 

Among the myriad of techniques available, slot-die coating has proven to be a facile 

and fast coating method for various layers in a PSC stack including the photoactive ma-

terial, charge selective buffer layers such as nanoparticle solutions such as ZnO and 

PEDOT:PSS, and electrodes such as nanoparticle based Ag inks. Slot-die coating is a 

one-dimensional technique that allows patterning only in the form of stripes along the 

direction of the web-movement in the R2R line.  However, such a dimensionality has 

sufficed in the fabrication of serially-integrated PSC modules especially when consider-

 

Figure 4-2. A roll-to-roll processing unit at DTU comprising of: 1) Unwinder; 2) Web-guide; 3) Coro-

na station 4) Flexo- station; 5) Slot-die coating; 6 and 8) convection ovens; 7) Rotary screen print-

er; 9) Inkjet for identification barcodes; and 10) Rewinder. Either 4 or 5 is used during one R2R run. 

Figure not drawn to scale. 
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ing the significantly lower running cost of the machine compared to other techniques 

such as flexographic printing. The parts and assembly of a slot-die head is shown in 

Figure 4-3. The width of the stripes can be easily controlled by designing the flow-

mask. The alignment of the pattern in subsequent layer is accomplished by simply 

moving the coating head perpendicular to the direction of the web movement. Slot-die 

coating is a pre-metered technique: the layer thickness can be controlled by simple 

processing input parameters.  The dry layer thickness can be estimated with the fol-

lowing empirical expression [3]; 

𝑑 = f
s∙w

�c
ρ
� 

 

where d is the dry layer thickness in cm, f is the flow rate in cm3 min-1, s is the web 

speed in cm min-1, w is the coated width in cm, c is the solid concentration in the ink in 

g cm-3 and 𝝆 is the density of the dried ink material in g cm-3. The term 
𝑓

𝑠 ∙ 𝑤
  is simply 

the wet-layer thickness.  

 

4.3.2 Screen-printing 

Screen printing is a versatile and simple printing technique that allows for 2-

dimensional patterning of the printed layer. It exists in two types: rotary and flat-bed; 

 

Figure 4-3 (a) A side-view picture of an assembled slot-die head. The parts are shown in (b) com-

prising of: (from left) half of the head, meniscus guide, flow mask, and second half with T-shape 

flow channel. The flow mask is designed for printing of 3 sets of modules along the width of the 

web, each with 16 stripes/cells. 
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both can be mounted on a R2R line although rotary is more compact (Figure 4-4). 

Screen printing is mostly suitable for printing of relatively thick layers with inks of 

higher viscosity and solvents with low volatility. Screen printable formulations of Ag 

are commercially available and are used for R2R screen printing of interconnects be-

tween cells in a module, busbars, and Ag electrodes in inverted geometry [5-8]. In the 

processing of ITO-free modules in this Ph.D. study, screen printing is used in the print-

ing of silver back electrodes and interconnections, as well as for printing of PEDOT:PSS 

layers in some cases. Others have utilized screen printing in the processing of one or 

more functional components of a PSCs [9,10] including an all screen printed PSCs by 

our group used in the first public demonstration on PSCs [11]. 

 

 The screen printing process involves a screen made of a mesh of a woven mate-

rial (i.e., synthetic fiber or steel), held in tension to a frame. The mesh is filled with an 

emulsion that is impervious to the coating solution (stencil). The image print is 

achieved on the screen by removing the stencil by a photochemical process using a 

shadow mask, thus leaving the image area open and permeable to ink. Printing is 

achieved by forcing the ink through the open areas in the screen by using a squeegee.  

In this manner, the pattern (print image) on the screen is reproduced onto the sub-

strate (Figure 4-4). During printing, the screen in placed above the substrate at a cer-

tain ‘snap-off’ distance of few millimeters. The diameter and the thread count of the 

mesh determine the amount of ink deposited on the substrate. Layer thickness is in-

fluenced by force of squeegee, screen parameters, the snap-off distance, the speed of 

squeegee, and rheology of the printing paste. Generally, screen printing is used for 

printing thicker layers often above 500 nm to several microns range; however, few re-

ports suggest that a 40 nm active layer can be achievable [9]. Nonetheless, these re-

ports are on less than 1 cm2 of active area.  In large scale setting, it may be difficult to 

maintain homogenous layer thickness for extremely thin layers. 
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4.3.3 Flexographic printing 

Flexographic printing is a two-dimensional printing technique consisting of four main 

parts: printing plate cylinder, anilox roller, impression roller, and an inking unit (Figure 

4-5). The printing plate, also referred as printing form, is made of an elastomeric poly-

mer and carries the relief image (image positive as protruding features) on its surface. 

The inking unit is comprised of either a chambered doctor blade or a fountain roller in 

an ink bath and a doctor blade. The surface of the anilox roller contains engraved cells 

of certain geometry and volume. During printing, the cells in the anilox roller are even-

ly filled with ink via the chambered doctor blade or the fountain roller. Excess ink in 

the latter case is scraped off with the doctor blade (a steel blade).  The ink from the 

anilox roller is transferred to the image relief on the plate cylinder.  Only the relief gets 

inked, the recessed areas remain ink-free.  Finally, the ink from the printing plate is 

transferred to the web rolling over the impression roller with the use of nip pressure, 

thus reproducing the image onto the web. Flexographic printing is typically used in 

printing presses for the packaging industry. It is a fast printing method with maximum 

web speed of greater than 500 m min-1 achievable. Only two instances have been re-

ported: a modified PEDOT: PSS formulation was printed at 30 m min-1 to process de-

 

Figure 4-4: Schematic illustration of two forms of screen printing process (left) and a picture of an 

actual flat-bed R2R screen printing of silver paste in progress (right). The squeegee is captured in 

motion. 
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vices with area of 0.09 cm2 [12] and the printing of conductive Ag micro grid network 

on ITO coated PET [13].  Our group had earlier used flexographic printing to apply n-

octanol as a wetting agent prior to slot-die coating of PEDOT PSS [14].  As a part of this 

PhD study in conjunction with various other projects in our group, we have used flexo-

graphic printing in the processing of Ag grid for ITO-replacement in the upscaling of 

one of the ITO-free architecture (Chapter 7).  Web-speed up-to 20 m min-1 has been 

employed.  

 

4.3.4 Inkjet printing  

 Inkjet printing is a two dimensional technique that allows the formation of fine pat-

terns of inks from suspensions or solutions with high resolution up-to 1200 dpi and 

frequency of 100 kHz [15]. It is a non-contact printing method wherein printing is 

achieved by directing a steady jet of ink droplets to the substrate. The mechanism of 

ink generation classifies inkjet printers into two main categories: drop-on demand and 

continuous. In continuous ink jet, a continuous stream of ink is forced through a micro-

scopic nozzle by a high pressure pump. The stream is broken down into equal droplets 

by application of acoustics and is subsequently charged either with binary or variable 

charges. The charged droplets are directed to the substrate with the use of an electro-

static field. The deflection of the droplets in the electrostatic field directs some to the 

substrate in a desired pattern while most (98%) are deflected into a ‘catcher’ or a ‘gut-

 

Figure 4-5: Schematic illustration of flexography printing (a); a flexo printing plate cylinder with re-

lief image  (b); and flexography printing of Ag paste in progress on a PET  (c). 
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ter’ which is the recycled back to the ink reservoir. Controlling the tendency of the 

drops to recombine is difficult and recycling adds complexity to the system. Hence, 

continuous ink jet printing systems are replaced by newer techniques such as drop-on-

demand (Figure 11), which is also used in some of our processing.  

 

 In drop-on-demand (DoD), the required amount of ink droplets are generated 

with the use of a piezoelectric or by a thermal actuators that are located in the ink 

chambers. In piezoelectric based systems, an electric signal controls the mechanical 

deformation of the piezo-plate. Upon the application of voltage, the piezoelectric ma-

terial deforms and sends a pressure pulse to the ink forcing it out of the nozzles in the 

form of droplets (Figure 4-6). Each ink requires optimization of the waveform of the 

applied voltage to form stable droplets. The applied frequency determines the amount 

of drops released per second and therefore the printing speed. In thermal jet process, 

a heating element (resistor) is used to induce localized vaporization of a small amount 

of the ink in the enclosed ink chamber. This results in pressure build-up causing dis-

placement of some of the ink in the chamber and ejection of a droplets through the 

nozzles.  

 

  Ink jet printing offers precision printing of inks with high resolution up-to 1200 

dpi. Being a non-contact printing method, the risk of contamination of inks is also elim-

inated. Furthermore, printing is digitally controlled which means the no costly printing 

form is required and processing is relatively simple than other techniques. In compari-

son to other techniques, the major disadvantage is possibly the limited printing speed. 

The dry layer thickness of ink jet printed film is given by number of droplets delivered 

per area, the single droplet volume, and the concentration of the solute in the ink with 

the following empirical relationship [3];  

 

𝑑 = Nd Vd
𝑐
𝜌
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Nd is the number of droplets per area (cm-2) printed, Vd is the volume of each droplet 

(cm3), c is the concentration of the solid material in the ink in g cm-3 and 𝝆 is the densi-

ty of the material in the final film in g cm-3.  

 

 During this Ph.D. study, inkjet printing is employed in the printing Ag electrodes, 

as a front electrode printed directly on a substrate [16,17] or as a back electrode print-

ed as the last layer on top of an inverted PSC stack [18], or both. Others have also used 

bench-top inkjet printers in the processing of front electrodes in normal architectures 

[19-21]. Inkjet printing of silver nanoparticle on flexible foil is a widely researched sub-

jected because of its interested to printed electronics; however, inkjet printing can also 

be employed in the processing of various organic materials such as photoactive mate-

rials [22-26]; PEDOT:PSS [23,27,28]; and inorganic nanoparticle solutions such as TiO2 

[29] , ITO [30], InZnSO [31], ZnO [32]. Inkjet printing has been particularly studied as a 

cost-efficient up-scalable technology that allows freedom in two dimensional pattern-

ing, particularly sought-after in the field of organic photodiode (OLEDS), memory de-

vices, transistors (OTFTs), sensors, etc. [33]. In PSCs, slot-die coating has proven to be a 

facile and fast coating method for low viscosity solutions such as P3HT:PCBM, ZnO, and 

PEDOT:PSS [3,4,34-36]. It is unlikely that inkjet printing of these layers will rival the 

ease and low maintenance of slot-die coating for very large scale production for PSC 

modules, where one dimensional patterning offered by slot-die coating has sufficed 

and in fact is more robust and tolerable to a wide range of ink properties. Inkjet print-

ing requires research on the ink development as the mechanism of droplet generation 

causes constraints on the ink formulations. In general, inks ought to be with lower vis-

cosity (4-30 cp) and high surface tension (>35 mN min-1) with solvent of high boiling 

point [3] . However, the inks of PSC materials are often composed of a complex mix-

ture of many solvents with different volatility which may introduce problem in droplet 

formations. Low boiling point solvents cause printing head clogging and coffee strain 

effects [37].  As such, additives are used to module the ink properties. Excellent re-

views on inkjet printing in organic electronics can be consulted for more information 

[38,39]. 
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4.3.5 Sputtering 

Metals such as aluminum or chromium are highly reactive metals in the presence of 

oxygen and water, and cannot be deposited using solution processing under ambient 

conditions.  Such metals are deposited using a vacuum-based methods such as evapo-

ration and sputtering. R2R magnetron sputtering was employed in the processing of Al 

and Cr electrodes in the upscaling of one of the architectures (Chapter 5). 

 

  Sputtering is a physical vapor deposition technique that involves bombardment 

of a source material (target) by energetic ions generated in glow discharge plasma of 

Ar which is situated in front of the target. The bombardment leads to removal of target 

atoms (sputtering) which then condenses onto a substrate resulting in a thin film (Fig-

ure 4-7). Secondary electrons are also emitted by the target surfaces which are con-

strained to the plasma using magnetic fields parallel to the target surface. The trapping 

of these electrons increase the probability of electron-atom collision which in turn 

leads to increase ion bombardment of the target, giving higher sputtering rates and 

higher deposition rates. A magnetron sputtering operates at a typical pressure of 10-2 

mbar and at voltages of 500 V [40]. The web speed during film deposition by sputtering 

is significantly slower (in cm min-1 range) in comparison to other printing and coating 

techniques which can process in the unit of   m min-1. 

 

Figure 4-6 Schematics of piezoelectric drop-on-demand (DOD) inkjet printing (right); a photograph 

of inkjet print-head (top right) and a photograph of a full roll-to-roll ink-jet printed pattern (reso-

lution of 600 DPI) using a DOD system on a web width of 305 mm (bottom right). 
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4.3.6 Thermal Imprinting for processing of embedded metal grids 

Thermal imprinting has been used in the processing of embedded Ag grids in the flexi-

ble substrate.  It is a pattern transfer multistep processing that involves: 1) Preparation 

of mold stamp; 2) Pattern transfer from the stamp to the flexible substrate by imprint-

ing with the application of heat and pressure; 3) metal filling by doctor blading and 4) 

removal of excess ink; and 5) drying/sintering (Figure 4-8) [16,41,42].  In our study, a 

flexible nickel master with a diagonal line print pattern with a line spacing of 2 mm was 

used. The nickel stamp is electroformed and the resulting pattern is stands as protrud-

ing features on the surface of the stamp. During printing, the flexible metal mold 

stamp is attached to a heated roll and pressure is applied as the flexible substrate such 

as PET is passed through the nip of the heated roller. In this manner, the pattern on 

the stamp is reproduced/imprinted on the substrate in the form of engraved channels, 

the width of which is dependent on the mold design. The substrate properties (such as 

the glass transition temperature, surface tension, etc.) are very crucial for successful 

replication of the pattern from the mold onto the substrate within reasonable pro-

cessing temperature and pressure [43]. In our experiment, the temperature of the roll 

was 110oC and a force of 100 KgF was applied and the resulting width of channels was 

10 µm. Once this step is completed which is accomplished at low web-speed (up-to 12 

 

Figure 4-7. Schematic illustration of a R2R sputtering system showing deposition of two metals 

(targets). The figure is not to scale and system is generally more compact because of the large vac-

uum requirement. 
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m min-1), silver is filled in the imprinted pattern by doctor blading. The excess ink is 

cleaned by using roll cleaning and finally, the embedded metal is sintered.  A schematic 

illustration of the R2R imprinting method employed in the preparation of embedded 

silver grids is shown in Figure 4-8.  

   

4.4 Encapsulation 
Encapsulation of PSC modules involves sealing the module between two sheets of bar-

rier foils. This is accomplished by using three sealing methods: cold lamination, hot-

melt lamination, and UV-lamination.  All three methods can be carried out on a R2R 

line comprising of two unwinder rolls and a rewinder roll and some support rolls as 

shown in Figure 4-8.  One of the unwinder is used for a roll of barrier foil. In cold lami-

 

Figure 4-8. Schematic diagrams of the fabrication process of Ag-embedded TCF: (a) fabrication of 

flexible stamp mold, (b) wrapping the stamp mold on the thermal roll, (c) roll-to-roll thermal im-

printing of polymer film, (d) dropping of conductive nano-silver paste on the patterned polymer 

film, (e) doctor blading of nano-silver paste, and (f) roll cleaning and drying of the Ag-filled film. 

©2013 American Scientific Publishers. Adapted, with permission from ref. [41] 
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nation, barrier foil is pre-coated with a pressure sensitive adhesive and protected by a 

glossy paper liner which does not adhere to the glue. During lamination, the glossy pa-

per is removed and the glue is exposed. The barrier foil with the adhesive is then place 

over exposed side of the modules between two support rolls. The lamination is com-

pleted by the application of nip pressure. The next step is to repeat the process for the 

back side behind the substrate if required. Sometimes, we have fabricated solar cells 

directly on the barrier film in which case only one side of the modules can to be lami-

nated.  Hot-melt uses the same principle as cold lamination except that the glue re-

quires heat for curing instead of pressure. This is achieved by passing the barrier with 

adhesive and the module foils stack between heated rollers that melts the adhesive 

and tightly seals the module. UV lamination is the most cumbersome encapsulation 

method in comparison to the other two methods. It involves consecutively coating the 

barrier film with a UV curable adhesive, lamination of the module, and curing of the 

adhesive under UV lamp. All three techniques are schematically shown in Figure 4-9. 

Among the three techniques, cold lamination is the fastest method and a web-speed 

>20 m min-1 is easily accomplished. As discussed in Chapter 3, the adhesives do not 

have barrier properties. It is therefore crucial to maintain as low thickness of the adhe-

sive. Edge sealing can be accomplished by maintaining a larger margin of the barrier 

foils that extends beyond the module area. Such simple methods can significantly pro-

long the stability of the modules. A comparison of these three techniques and the im-

plications of different adhesives on the photovoltaic properties and stability of PSC 

modules and cells are published elsewhere [44,45]. 
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4.5 Roll-to-roll characterization  

A single roll of R2R processed solar cell module consists of a large number of solar cells 

(from a few hundred to thousands depending on the motif and the length of the roll). 

Manual electrical characterization of all solar cell modules on a roll is tedious and in-

curs unnecessary resource wastage.  A R2R characterization set up is a fast and an in-

expensive method for automatic characterization of solar cell module from a R2R pro-

cessed roll. Such a set-up can be used for IV characterization and electrical imaging 

methods such as light beam induced current (LBIC), Dark lock in thermography (DLIT) 

etc.  Operator is only required during the initial starting up (mounting the roll and turn-

ing on the characterization unit)  and shutting down of the instrument (unmounting, 

collecting the data, and turning of the instrumentation) once the characterization is 

completed.  The instrumentation is simple and is schematically illustrated in Figure 4-9 

[1]. It comprises of a R2R line comprising of an unwinder and a rewinder; a solar simu-

lator and the necessary electric components such as source meter unit (SMU) and a 

computer;  a positioning system,  electrical contacting system which includes vacuum 

table with electrical contacts to the SMU and pneumatic contact pads. The system is 

 

Figure  4-9  Step-wise processing of R2R encapsulation of PSC modules. Shown are three different 

methods: cold lamination that uses pressure sensitive adhesive (PSA); UV lamination, and hot-

melt. ©Wiley. Reprinted, with permission from ref. [44]. 
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fully automated and controlled by a computer. The positioning of the module on the 

vacuum table is achieved reading the register marks printing during R2R fabrication of 

the PSC modules. 

 

 During operation, solar cell modules are automatically positioned under a solar 

simulator (we use 1000 W m-2, AM 1.5 powered by a Steuernagel KHS1200). Electrical 

contacting is achieved by a combination of vacuum-table and pneumatic cylinders that 

force contact between the module bus bars and the conducting strips on the table that 

relays the connection to the source-meter. IV characterization is then automatically 

carried out by a Keithley 2400 sourcemeter and custom built software collects IV data, 

performs photo-annealing tests by taking multiple IV curves, and determines when to 

move to the next module [3]. 

 

 Under this PhD work, R2R characterization could seldom be employed due to 

edge sealing of the encapsulation which requires contacting to be made with a punch-

through push button which requires manual operation. For such button contacts, the 

modules need to be isolated from the roll by a laser cutter or by using scissors. Charac-

 

Figure  4-10 Schematic illustration of a R2R characterization unit. The electrical components are 

given in the second row. 
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terization of the rolls is manually done by randomly selecting modules from the roll 

and testing under a solar simulator. Nonetheless, the R2R characterization unit can be 

employed in the future pending investment on R2R contacting of encapsulated mod-

ules. 

 

4.6 Summary 

This chapter provides a comprehensive background of upscaling process. It also dis-

cusses R2R processing techniques that are employed in the upscaling of ITO-free mod-

ules under this Ph.D. study.  Different combinations of some or all of these techniques 

are employed in the processing of individual layers of the three ITO-free architectures 

investigated for upscaling (Chapter 5-7).  Here, each processing technique is discussed 

in detail and presented along is a review of their use in the literature.  In addition to 

 

Table 4-4-1 R2R processing techniques applied in the upscaling of three different architectures. 

Given in brackets in the first row is their prototype abbreviation. 

Upscaled de-
nomination  

Fraunhofer-type  
(ALCR) 

IOne 
(ASP) 

ProcessH 
(AGNP) 

Structure Substrate/Al/Cr/ 
P3HT:PCBM/PEDOT 
:PSS/Ag 

Substrate/Ag/PEDOT:PSS 
/ZnO/P3HT:PCBM/PEDOT:PSS/Ag 

Substrate/Ag/ZnO/P3HT: 
PCBM/PEDOT: 
PSS/Ag 

Substrate Kapton foil Barrier PET Barrier PET 
Bottom elec-
trode 
 

Sputtering 
(Al/Cr) 

1. Flexography 
(Ag grids) 

2. Rotary screen printing 
(hc PEDOT:PSS) 

Slot-die 
(Ag) 

Electron 
transport lay-
er 

- Slot-die  
(ZnO) 

Slot-die 
(ZnO) 

Photo-active 
layer 

Slot-die 
(P3HT:PCBM) 

Slot-die  
(P3HT:PCBM) 

Slot-die 
(P3HT:PCBM) 

Hole 
transport lay-
er  

Slot-die 
(PEDOT:PSS) 

Slot-die/ 
rotary screen printing 

(PEDOT:PSS) 

Slot-die 
(PEDOT:PSS) 

Top elec-
trode  
(anode) 

Screen printing 
(Ag) 

Screen printing 
(Ag) 

Screen printing 
(Ag) 
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the techniques presented here, there are a myriad of R2R processing techniques avail-

able which we have holistically reviewed in several publications [3,4]. To complete the 

picture, R2R encapsulation techniques and R2R characterization techniques are also 

discussed although the later could not be used during this PhD study due to the lack of 

R2R contact for edge sealed devices. Nonetheless, this is a technical problem that can 

easily be overcome and remains pending further investment.  The ideal scenario of 

low-cost processing of PSCs involves high throughput ambient processing where the 

beginning of processing starts with feeding a bare PET foil through a R2R machine and 

the final R2R processing run returns a fully encapsulated module that can  readily  be 

integrated in various applications or installed for power generation. The ideal scenario 

is within grasp by using a combination of several of these processing steps.  

 

4.7 Summary 

Among the plethora of coating and printing that are available, some are comparatively 

advantageous than others. Hence, it is critical to identify the techniques that are most 

suitable for low-cost processing of functional organic multilayer structures such as pol-

ymer solar cells. This means that the techniques should be evaluated on the basis of 

processing speed, requirement for ink preparation, running cost and maintenance. So 

far, slot-die coating remains unparalleled to any other technique for coating of low-

viscous solutions due to its low-cost running cost and ability to coat low thicknesses 

suitable for solar cells.  Two dimensional techniques such as flexographic printing, 

inkjet printing, thermal imprinting, and rotary screen printed have been explored in 

the upscaling in this PhD study and each techniques brings different advantages as it is 

discussed in the later chapters.  
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5.  Upscaling of Architecture 1: The Fraunhofer-type 

5.1 Introduction 

The upscaled ALCR with several processing modifications is denominated as the Fraun-

hofer-type (Fraunhofer ISE first suggested the architecture [1]). The ALCR prototypes 

described in Chapter 3 were based on several processing conditions that are beyond 

the objective of our low-cost production. Specifically, the prototypes were fabricated 

in glove-box environment and using vacuum-based deposition method (evaporation) in 

the processing of Cr/Al/Cr bottom electrodes and Au top electrodes. Low-cost R2R 

processing implies ambient processing and avoidance of vacuum-based methods. 

Hence, prior to R2R large-scale processing, laboratory test-cells (active area 3 cm2) 

were revisited to optimize and evaluate their performance upon ambient processing 

and vacuum-free methods wherever accommodable. The optimized parameters can 

then be readily adopted in R2R processing of large-area modules. The test-cells set a 

true benchmark against which the performance of R2R processed modules can be 

compared.  The difference in the materials and processing methods used in the devel-

opment of the prototype, test-cells (R2R process optimization) and R2R processing are 

listed in Table 5-1.   

 

5.2 The test cells 
5.2.1 Materials 

Kapton polyamide foil was purchased from Skultuna Flexibles AB (Sweden). Poly(3-

hexylthiophene) was purchased as Sepiolid P200 from BASF and [60]PCBM was pur-

chased from Solenne BV (purity of 99%). PEDOT:PSS was purchased as Orgacon EL-P 

5010 from Agfa and was diluted with isopropanol until a viscosity of 270 mPa s was ob-

tained. The silver ink was a heat curable one (Dupont PV410) and used as received. The 

barrier foil was purchased from Amcor. 

 

5.2.2 Processing 

The test cells were fabricated on R2R sputtered Al/Cr on polyamide Kapton foil. The 

electrode foil was prepared for R2R processing. Small pieces (25 x 50 mm) were cut 

from one Al/Cr roll and mounted on a glass substrate. P3HT:PCBM solution in choro-
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benzene was spin-coated at 600 rpm on the substrate. PEDOT:PSS were subsequently 

spin-coated and dried at 140 oC for 5 minutes. Finally, silver grid was screen-printed us-

ing a small laboratory screen printer and dried immediately after printing at 140°C for 

3 minutes. All devices were manually encapsulated using a barrier foil that was pre-

lined with pressure sensitive adhesive on one side. Apart from the sputtered Al/Cr 

electrode, the processing of all other layers were carried out in air and the final device 

active area was 3 cm2. Three discrete parameters were optimized on test-cells: active 

layer concentration, P3HT: PCBM ratio, and PEDOT: PSS thickness. Table 5.2 lists the 

impact of processing conditions on the photovoltaic properties of the solar cells. All 

cells were characterized under 1 sun illumination (1000W m-2; AM 1.5) under a solar 

simulator equipped with a metal-halide lamp.  

 

5.2.3 Results 

Firstly, the concentration of P3HT:PCBM in the active ink was optimized. This was done 

by varying the weight of P3HT and PCBM in the solvent simultaneously while keeping 

the ratio of P3HT:PCBM constant at 1.5:1 (w/w).  The intermediate concentration of 35 

mg mL-1 (21 mg of P3HT and 14 mg of PCBM per 1 ml of chlorobenzene) results in the 

highest photovoltaic performance. Secondly, the influence of PCBM content relative to 

P3HT was investigated. This was done by varying weight fraction of PCBM against a 

constant weight of P3HT at 21 mg mL-1 (the optimum from the first experiment). Three 

Table 5-1 Adapting processing toward low-cost upscaling: changes in materials and processing con-

ditions from prototype to the test cells and finally to the R2R large-area modules is shown. 

Materials Prototype Test-Cells R2R modules 
Bottom 
electrode Cr/Al/Cr Evaporated Al/Cr R2R sputter sputtered 

Active layer P3HT:PCBM Spin-coated/ 
glove box P3HT:PCBM Spin-coating/ 

ambient 
slot-die 
/ambient 

Hole-
transport 
Layer 

PEDOT:PSS Spin.-coated/ 
glove-box PEDOT:PSS Spin-coating 

/ambient 
slot-
die/ambient 

Top-
electrode Au Evaporated Ag Screen-printing/ 

ambient 
screen-
print/ambient 

Substrate Glass  Kapton   
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sets were prepared with P3HT:PCBM ratio of 1.5:1; 1:1; and 1:1.5 (wt/wt).All three ra-

tios results in very similar performances. This is in agreement with a previous study in 

which the mixing ratio of P3HT.PCBM was investigated on a gradient scale in R2R pro-

cessing using slot-die coating [2]. In the third experiment, the thickness of PEDOT:PSS 

was investigated. PEDOT:PSS thickness optimization requires a  trade-off between 

maximizing transmittance and minimizing harmful solvent diffusion from the screen 

printable Ag ink through the PEDOT:PSS layer and into the photoactive layer [3]. Both 

of these phenomena impose opposing requirements on the PEDOT:PSS layer thickness:  

too thick layers lead to low current densities because of significant transmission loss 

while solvent destruction can be minimized; on the other hand, too thin layers lead to 

s destruction of active layer and sometime even short circuit as result of Ag migration 

with the solvent of the screen printed Ag toward the opposite electrode. The latter is 

also observed in the test-cells with the thinnest PEDOT:PSS (2000 rpm) explored in this 

experiment. Hence, it is crucial to find an optimum layer thickness that allows maxi-

mum optical transmission while minimizing the damage to the photoactive layer. This 

optimum PEDOT:PSS layer thickness in the test cells was achieved at a spin-coating 

speed of 1250 (~800 nm) that led to the highest efficiency after annealing of ~1.4% .  

Table 5-2 Overview of processing optimization on test cells and the corresponding influence on key 

photovoltaic parameters. The parenthesis gives values after photo-annealing. 

 P3HT:PCBM              
(mg mL-1) 

PEDOT:PSS 
Spin coating 

(rpm) 

Voc 

(V) 
Jsc 

(mA 
cm-2) 

FF 
(%) 

PCE 
(%) 

Active con-
centration 

15:10  
1000 

0.35 3.91 31 0.42 
21:14 0.35 5.92 35 0.72 
30:20 0.32 3.41 24 0.26 

P3HT:PCBM 
ratio 

21:14 1000 0.36 7.43 30 0.80 
21:21 0.35 5.92 35 0.72 

21:18.5 0.37 7.30 30 0.81 

PEDOT:PSS 
Thickness 

21:18.5 700  0.41 6.42 35 0.92 (0.85) 
1000 0.43 8.00 30 1.03 (1.20) 
1250 0.40 7.71 36 1.11 (1.40) 
1400 0.40 8.01 33 1.05 (1.35) 
2000 - - - - 

 



 

Chapter 5 - 4BUpscaling of Architecture 1: The Fraunhofer-type 

94 Upscaling of Indium Tin Oxide (ITO)-Free Polymer Solar Cells 

The efficiency of all test-cells were limited (maximum 1.4%) in comparison to 

the prototype (PCE >2.5%) due to several reasons. Firstly, the prototypes employed 

evaporated back electrode which allows extremely thin PEDOT:PSS layer (~200 nm) 

and the width of the prototype cells to the busbar was 0.5 cm. These factors results in 

the higher current density (10-12 mA cm-2) and also contribute to higher FF (>50%) in 

the prototypes compared to the test-cells. However, the main difference between pro-

totype and the test-cells is found in Voc and FF and this is attributed to the presence of 

an inflection point in the IV curves of all the test-cells which is absent from the proto-

types (Figure 5-1). Such an inflection in the IV curve is characteristic of barrier to 

charge transport between the photoactive material and the electrodes, caused by an 

insulating interface or a poorly conducting interfacial layer [4-7]. Since no intentional 

barrier introduced and the material selected for this architecture were based on work 

function matching it can be inferred that the inflection in the IV curve is due to barrier 

to charge extraction emerging from an interface that has changed its properties during 

processing. A similar inflection point is observed when ZnO is used as electron 

transport layer in inverted PSC devices [3,8]. In such ZnO- based devices, the inflection 

is attributed to O2 adsorption on the ZnO surface which can be eliminated by UV illu-

mination (excitation in n-type ZnO semiconductor) or by application of reverse bias 

 

Figure 5-1 IV-curve typical evolution during photo-annealing of an encapsulated test device at 

1000 W m-2, 72 +/- 2°C from as-produced having an inflection (red)  to less severe inflection after 

photoannealing (blue). The curves corresponding to the first phase (decreasing IV) are omitted 

(left); A typical evolution of the photovoltaic parameters upon photo-annealing time (□) Voc, (∆) 

FF,(ₒ) Jsc; and (■) PCE (right). 
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(charge injection) [3,9]. In the test-cells, however, UV illumination achieved by con-

stant exposure of the devices to the illumination from the solar simulator alleviates the 

inflection point albeit never completely eliminates it. This suggests that the inflection 

in test-cells is caused not only by the adsorbed gas species on chromium [10] but also 

by another mechanism, probably due to the formation of poorly conducting Cr2O3 lay-

er [11]. We note that such an inflection is not observed in the prototype devices which 

were completely fabricated in the glovebox. The fabrication in air introduces the inflec-

tion resulting in much reduced FF and Voc of the test-cells (FF: <40%; Voc: <0.4V) com-

pared to the Prototypes (FF: >55%; Voc: >0.55V).  

 

  The severity of the inflection is dependent on the thickness of the chromium 

metal. In a separate study, it was observed that 100 nm Al/ 5 nm Cr electrode based 

device (exactly similar to the prototypes) resulted in a more acute S-shape curve while 

increasing the thickness to 15 nm as used in here in the test-cells alleviates the S-shape 

nature. This is simply due to increasing bulk to surface ratio. Furthermore, simply rins-

ing the Al/Cr surface with ethanol immediately prior to deposition of the successive 

layers may alleviate the problem during ambient processing. However, none of these 

trials results in complete elimination of the inflection phenomena. It was observed that 

annealing in glovebox after ambient processing of P3HT:PCBM and PEDOT:PSS resulted 

Table 5-3 Overview of processing optimization on test cells and the corresponding influence on 

key photovoltaic parameters. The parenthesis gives values after photo-annealing. 

 P3HT:PCBM              
(mg mL-1) 

PEDOT:PSS 
Spin coating 

(rpm) 

Voc 

(V) 
Jsc 

(mA 
cm-2) 

FF 
(%) 

PCE 
(%) 

Active con-
centration 

15:10  
1000 

0.35 3.91 31 0.42 
21:14 0.35 5.92 35 0.72 
30:20 0.32 3.41 24 0.26 

P3HT:PCBM 
ratio 

21:14 1000 0.36 7.43 30 0.80 
21:21 0.35 5.92 35 0.72 

21:18.5 0.37 7.30 30 0.81 

PEDOT:PSS 
Thickness 

21:18.5 700  0.41 6.42 35 0.92 (0.85) 
1000 0.43 8.00 30 1.03 (1.20) 
1250 0.40 7.71 36 1.11 (1.40) 
1400 0.40 8.01 33 1.05 (1.35) 
2000 - - - - 
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in no inflection in the IV curve (Figure 5-2). This observation signals toward two possi-

ble cases: 1) the high susceptibility of chromium to thermally induced oxidation or gas 

adsorption or (2) reduction of chromium oxide upon annealing in N2 environment [12]. 

Chromium is a complex transition metal and is known to oxidize in various states de-

pending on the processing environment-- some form semi-conductor of either p-type 

and n-type nature and with various charge motilities [10-13].  Complete understanding 

of its role in our PSCs demands an elaborate study on the properties of chromium ox-

ide that forms during ambient and glovebox processing. This was beyond the scope 

and duration of my PhD study; however, suffice to state here that the incorporation of 

chromium in a PSC device requires glovebox processing to harvest its full potential as 

observed in our study as well as seen in another independent study where P3HT:PCBM 

was slot-die coated in ambient conditions but annealed in the N2 environment [14].  

 

5.3 The R2R Produced Modules 

The Fraunhofer-type is a top illuminated inverted architecture that utilizes metal bot-

tom electrode and a PEDOT:PSS/Ag grid top transparent electrodes. Two different 

large-area device designs were investigated: serially-integrated module and monolithic 

 

Figure 5-2 The influence of processing conditions on the on the inflection in the IV curve of test-

devices with chromium interlayers. Here, Al/Cr thickness was 100 nm/5 nm. The inflection is 

less severe for thicker Cr layer as shown in Figure 5-1. 
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module. In the serially-integrated module, 16 cells were serially connected in each 

module during the R2R printing process and final total area of the module was 235 

cm2. This was accomplished by patterning the bottom Al/Cr electrode in the forms of 

strips along the length of the roll using shadow mask during sputtering of Al/Cr.  

Monolithic modules were based on large-area single cells (100 cm2). We chose to in-

vestigate monolithic modules primarily on account of the significantly lower sheet re-

sistance of the bottom electrodes (Al/Cr) of <1 Ω□-1 in comparison to ITO on PET (30-60 

Ω□-1) and because monolithic modules are easier process with coating and/or printing 

in a R2R line, thus enabling higher yield. The size of the module was arbitrarily deter-

mined so that two monolithic modules can fit along the width of the foil although de-

vices as wide as the web-width could have been made. Furthermore, four designs of 

top electrodes in monolithic structures were investigated to optimize the trade-off be-

tween current collection and optical losses due to shading from the top Ag grid. Figure 

5-3 schematically illustrates the serially-integrated and monolithic structures and Table 

5-2 lists their specifications.   
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5.3.1 Processing 

 Both serially-integrated module and monolithic modules were R2R processed follow-

ing similar processing conditions. The difference was in patterning of the Al/Cr bottom 

electrode upon which the subsequent layers were processed. Al/Cr layer were sput-

tered coated on Kapton foil in two geometries. For serially-integrated modules, the 

Al/Cr was sputter deposited through shadow masks to process 16- stripes, each 13 mm 

wide and separated from the adjacent by a gap of 2 mm. We note that the same speci-

fication was found optimum in the processing of an ITO-based upscaling module 

known as the ProcessOne and as discussed earlier in Chapter 4. For monolithic mod-

ules, the 200 mm wide Al/Cr layer was sputter coated in the center along the web-

width (web width = 305 mm). Two monolithic modules were processed along the 

 

Figure 5-3  Schematic illustration of serially-intergrated module and monolithic modules with four 

different top electrode designs. 

 

Table 5-4 Illuminated and active area of the different modules prepared in this study. Serially-

integrated module design leads to large active area loss due to interconnection gaps as well as 

shadow losses from the top Ag grid electrode. Monolithic design incurs active area loss only due to 

shading from the top metal grid. The main busbars (contacts) are not counted in the total area. 

 
Grid spacing 
Of the top 

Ag grid (mm) 

Total Ar-
ea 
 (cm2) 

Active Ar-
ea 
 (cm2) 

Geometric fill factor  
(Active area/Total 
area) 

16-stripes Serially-integrated  235 160 68.1 

Monolithic 

Comb 0.5 100 95.8 95.8 
Grid 5 100 87.8 87.8 
Honey Comb 7 100 94.7 94.7 
Large Honey Comb 15 100 97.3 97.3 
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width of the web. This is done by patterning during the slot-die coating of active mate-

rial in two stripes, each of 98 mm wide and separated from the other by 20 mm. The 

rest of the stack in both serially-integrated and monolithic modules were processed us-

ing similar conditions following the patterns of the underlying layer and incorporating 

necessary layer offsets in the consecutive layers.  Table 5-5 carries a compilation of 

processing methods and parameters as using in upscaling of the Fraunhofer-type 

modules. Layer-wise R2R processing images are shown in Figure 5-4. 

 

In R2R processing, the drying time is limited by the oven-length. We selected the 

parameters that best reflected the processing conditions employed in the test cells 

while maintaining reasonable web-speed. The active layer was P3HT:PCBM in chloro-

benzene with a mixing ratio of 21:18.5 (wt/wt) per ml of chlorobenzene as found op-

timum in the test study, however, PEDOT:PSS could not be processed to the optimum 

thickness determined in the test cells. 

Table 5-5. R2R processing methods and parameters used in upscaling of the Fraunhofer-type 

modules. 

Layers Deposition 

method 

Web-speed 

(m min-1) 

Drying time 

(temperature/time) 

Dry-layer thick-

ness 

Al/Cr Sputtering 0.01  - 100 nm/ 15 nm 

P3HT:PCBM Slot-die coating 2 .0 90 oC/ 30 sec 300 nm 

PEDOT:PSS  Slot-die coating 0.30 110 oC/ 3 min ~2 µm 

Ag Screen-printing 2.0 140 oC/ 1.2 min <5 µm 
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5.3.2 Photovoltaic properties of the modules 

 The photovoltaic properties of the large-area modules are listed in Table 5-5. The 

modules also show an inflection in the IV curves similar to the IV characteristics of the 

test-cells. Upon photo-annealing, the inflection alleviates and performance of the 

modules improves. serially-integrated modules demonstrates the best photovoltaic 

properties with the highest  PCE of 0.5% on total area which corresponds to a PCE of 

0.73% on active area.  The poor performance of the serially-integrated modules in 

comparison to the test cells is as a result of difficulties encountered during processing. 

R2R processing of PSCs is an additive process, where one layer is juxtaposed over the 

previous one. The alignment of each subsequent layer is easily accomplished when the 

patterning of the preceding layers is straight and homogenous. In the case of serially-

integrated modules, the patterns in the AL/Cr electrode ought to be perfectly straight 

and regularly spaced over the entire length of the roll so as to avoid alignment prob-

 

Figure 5-4 Layer-wise R2R processing of serially-integrated design: patterned sputtered Al/Cr 

substrate comprising of 16 stripes (a) on-to which P3HT:PCBM active layer slot-die coated (b) 

followed by slot-die coating PEDOT:PSS (c). The corresponding steps in the processing of 

monolithic modules are shown in (d-f). Screen printing of serially-integrated module (g) and 

MM (h) is also shown. 
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lems during processing of the subsequent layers. Unfortunately, this was not fully real-

ized and the position of the Al/Cr stripes was shifted along the length of the foil. This 

led to problems in the ensuing processing steps, especially during the screen printing 

of Ag. Flat-bed screen printing is a non-continuous process where adjustment in the 

alignment of the screen can only be made between two printing steps and each print-

ing step can produce several modules depending on the number of print image on the 

screen-printing mask. In our case, each print step processed 5 modules as the mask 

carried 5 print images. As a result, a large number of the modules had print defects 

due to misalignment causing ‘shorting’ of several cells in a module. This is confirmed 

by LBIC image (Figure 5-4).  The average photovoltaic properties listed in Table 5-5 are 

of modules with Voc >3.5%.  Of the 40 modules processed over the length of 6 m foil, 

only 21 modules had such a Voc.  

 

  In a serially-integrated module, Voc of a module is the summation of Voc of each 

cell whereas total current of a module is found to be a closer to the average of all the 

cells [15].  Therefore, a true comparison of the R2R produced module to that of the 

test-cells is best made with the performance of a single cell in the SI-M module. The SI-

M with 16 cells should ideally give a Voc of 0.4 X 16 = 6.4V based on the Voc of the test-

cells; however, only 6.0V at best is obtained which means that even the best module 

has one non-functioning cell. Furthermore, PCE of the test cell should be compared 

with PCE on active area of the serially-integrated modules since the performance of 

the test cells are based active area.  Hence, the PCE on active area for serially-

integrated module is 0.74% which is nonetheless significantly lower than the test cells 

(1.4%). The loss in PCE is attributed to the higher PEDOT:PSS layer thickness (2 µm) in 

the serially-integrated  compared to the optimized test-cell (~800 nm) that results in 

the loss of light transmission to the photoactive layer and consequently decreases the 

current generation in the device. As a result, significantly lower current is harvested in 

the up-scaled module (4.7 mA cm-2) than the test-cells (8.0 mA cm-2). However, the 

PEDOT:PSS thickness was found to be critical during slot-die coating because the high 

viscosity of the PEDOT:PSS limits web-speed and flow-rate. Serially-integrated mod-

ules, however, display improved FF in comparison to the test-cells because of the 
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higher thickness of PEDOT:PSS which means higher conductivity as well as due to the 

lower current which means less resistive power losses (Ploss = Rs I2). If progress is made 

on improving coating of PEDOT: PSS and screen printing of Ag so that the optimized 

condition can directly be adopted, an total area efficiency of 0.90% can be expected; 

the difference to that of PCE obtained on test-cells is therefore as a consequence of 

low-geometric fill factor in serially-integrated modules in which >30% of the total area 

do not contribute to current generation (dead regions). A monolithic module is pre-

cisely made to avoid active area loss due to low geometric fill factor as well as to alle-

viate alignment problem during processing as no fine patterning is required. The low-

sheet resistance of the Al/Cr electrode (500 mΩ □-1) as well as of the current collecting 

Ag grid on the top electrode (<1 Ω □-1) would ideally allow realization of a monolithic 

module.  

 

 Table 5-6 also lists the photovoltaic properties of the monolithic modules. The 

PCE of the monolithic modules are lower than theserially-integrated modules mainly 

due to lower FF and Jsc. Both this effect is associated with power losses due to the top 

PEDOT:PSS/Ag electrode.  When such a composite transparent electrode is employed, 

the performance of the solar cell can be affected by three prime factors attributable to 

the PEDOT:PSS/metal grid transparent electrode: 1) the resistive losses due to PE-

DOT:PSS; 2) active area loss due to shading from the metal grids; and 3) ohmic loss due 

to the resistance in the silver grid lines. The contact resistance of PEDOT:PSS and Ag is 

also an important factor but it has been known to impose negligible resistance. Com-

pared to the serially-integrated, monolithic  modules employed varied Ag grid designs. 

The resistive losses that are manifested in the significantly lower FF of all monolithic 

and serially-integrated modules are due to several design shortcomings including larg-

er than optimum grid spacing and the resistive losses in the grid lines. This is elaborat-

ed in the following paragraph. 
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A study that delves into electrical modelling on composite PEDOT:PSS/Ag grid 

transparent electrode, while taking into account the shading losses due to Ag grids,  

resistive loss due to PEDOT:PSS, and resistive losses due to Ag grid lines, shows that 

larger than optimum grid spacing leads to rapid losses in PCE of the PSCs (Figure 5-6). 

An inkjet printed Ag grid structure (comb-like) with a grid width of 325 µm and a grid 

height of 500 nm printed in combination with a PEDOT:PSS is found to have an opti-

mum grid spacing (distance between two adjacent Ag lines) of 2.5-3.3 mm for use in a 

2 x 2 cm2 laboratory cell [16]. Lower than optimum grid spacing results in large optical 

loss due to shading from the metal grid dominates while larger than optimum spacing 

leads to large loss power losses due to resistance. In the monolithic modules explored 

in this experiment, grid spacing ranged between 5 mm (Grid design) up-to 15 mm 

(Large Honeycomb design) (See Table 5-3). Furthermore, 200 µm wide Ag grid lines are 

used to transport high current in monolithic modules (up-to nearly 500 mA can be ex-

pected  while only 340 mA is achieved) to a minimum distance 9 cm (distance to the 

Table 5-6 Overview of the key photovoltaic parameters after photoannealing measured under 1 

Sun illumination (1000 W m-2, AM 1.5G). The best module properties are listed along with aver-

age performance (in brackets). 

 Voc 
(V) 

Jsc 
(mA cm-2) 

FF 
(%) 

PCE (%) 
On Total area 

PCE (%) 
On active area 

16-stripes Serial-
ly-integrated 6.00 (5.9) 4.7 (4.0)  41.00 (41.00) 0.50 (0.41) 0.74 (0.60) 

Monolithic      
Comb 0.33 (0.32) 2.60 (2.25) 25.3 (25.6) 0.22 (0.18) 0.23 
Grid 0.45 (0.44) 3.30 (3.30) 24.4 (24.4) 0.36 (0.34) 0.41 
Honey Comb 0.34 (0.34) 2.60 (2.35) 24.7 (25.2) 0.22 (0.20) 0.24 
Large Honey 
Comb 0.43 (0.42) 2.30 (2.01) 24.1 (24.2) 0.24 (0.20) 0.24 
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busbar/contact). The same grid lines transport much lower current (2 orders of magni-

tude lower) to a distance of only 1 cm in the serially-integrated modules. The resistive 

losses in the Ag grid lines and PEDOT:PSS is therefore the dominating mechanism for 

power loss (Pl ≈ RsI2 ) in the monolithic modules which manifests in decreasing FF and 

reduced current in comparison to the serially-integrated modules.  Among the four de-

signs, the Comb and the Honeycomb shares a similar shading loss (Table 5-4), has simi-

lar grid spacing, and therefore display similar photovoltaic characteristics.  

   

  The Large Honeycomb based monolithic modules demonstrates relatively lower 

current and FF despite its significantly lower shading loss than the other designs sug-

gest that the grid spacing in this design (15 mm) is more than optimum and large resis-

tive losses emerge from the PEDOT:PSS. The Grid based monolithic modules with a grid 

spacing of 2 mm and highest shading loss (15%) demonstrate the highest current ow-

ing to its unique design where the top Ag grid which minimizes the resistive loss. The 

 

Figure 5-5 A typical 16-stripe serially integrated module (a) and its corresponding LBIC image 

(c).  Stripe number 7, 13, 14, and 16 do not exhibit photovoltaic behavior and it is due to the 

misalignment during processing that lead to short circuit. A monolithic module with large hon-

ey-comb top electrode is also shown (b) along with its corresponding LBC image (d) showing 

homogenous current generation. Color contrast between the background (blue) and the cur-

rent generation parts (yellow) in each LBIC image represents the relative amount of current 
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Grid design comprise of  isolated networks of grid lines which allows current from only 

a small area to be harvested and transferred to a ‘secondary busbar’ which then chan-

nels it to the primary busbar (Figure 5-7). In the other designs, however, the Ag grids 

form an interconnected network throughout the module and supports very high cur-

rent transport incurring large resistive losses. Hence, a higher current is collected in 

the Grid design despite its highest shading loss (15%) among the four designs. In all, 

several shortcomings in the Ag grid design can truly be evaded using mathematical 

models such as that demonstrated in ref. [16] to plan the best grid design for maximiz-

ing performance of the module.  Furthermore, simple design elements such as varying 

the thickness of the Ag lines and incorporating busbars around the monolithic module 

to reduce the distance of the current transportation through preferably thin networks 

of Ag grid lines would likely improve the performance of the monolithic modules.  

 

 

Figure 5-6 Measured (open square) and calculate (cross) efficiency of solar cells with Ag 

grid/PEDOT:PSS transparent conductor in a normal architecture. The grid lines are 325 µm wide. 

The curve in the solid lines accounts for ohmic loss in the PEDOT:PSS layer and optical loss due 

to shading from the grid lines, but  does not account for the ohmic losses in the gridlines. Cross-

es account for all three factors. © 2013 Wiley. Adapted, with permission from ref. [16]. 
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1.5 Summary 

In summary, the drawback of upscaling Fraunhofer-type modules lies in the use of 

chromium. Chromium oxidizes when processed in ambient conditions. In fact, when 

thinner chromium layer (5 nm) is used as suggested for the prototype and remaining 

stack is processed in ambient conditions, a severe irrecoverable inflection in IV curve is 

observed. Thicker Cr layer alleviate the inflection and enables ambeint processing 

albeit at an expense to the performance as evident in the difference in PCE of the test 

cells here ( 1.5%) to the prootypes (> 2.5%). Upscaling of the test-cells to large-area 

modules in a serially-intergrated structure reveals losses are mainly caused due to 

printing errors and inability to transfer optimum PEDOT:PSS thickness, both of which 

can be avoided now alleviated. In fact, currently improved formulations of PEDOT:PSS 

(e.g. Agfa PEDOT:PSS 5015, Clevios F010, etc.)  are available which allows higher 

flexibility in processing maneauvers which was not present when we did this 

experiment. Furthermore, the comparison of the upscaling module geometries reveals 

that a serially-intergrated module is likely to allow full scalability of active area PCE 

from a laboratorty test-cell to the upscaled module but the total area PCE will always 

be bottlenecked by passive regions allocated for interconnections. In all, a loss of 30-

40% of maximum achievable PCE will always be sacrified on the total area in a serially-

integrated module design. The loss in geometric fill factor, of course, has implications 

on the cost of production. Finally, a monolithic geometry may be feasible for metal 

 
Figure 5-7 Grid design and Large Honeycomb designs as used in the large area monolithic mod-
ules (100 cm2) are schematically illustrated in (a) and  (b) respectively. Figures are not to scale.  
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based electrode with high conductivity and can maximize geometric fill factor. In our 

investigation, both current and voltage are sustained in the monolithic modules as 

compared to the test-cells, the losses are primarily due to FF. Therefore,  rigorous 

optimization in the grid design is necessary to recover FF. This is a topic of future 

investigation.  

 

 



 

Chapter 5 - 4BUpscaling of Architecture 1: The Fraunhofer-type 

108 Upscaling of Indium Tin Oxide (ITO)-Free Polymer Solar Cells 

References 

[1] M. Glatthaar, M. Niggemann, B. Zimmermann, P. Lewer, M. Riede, A. Hinsch, J. Lu-

ther, Organic solar cells using inverted layer sequence, Thin Solid Films. 491 (2005). 

[2] J. Alstrup, M. Jørgensen, A.J. Medford, F.C. Krebs, Ultra fast and parsimonious ma-

terials screening for polymer solar cells using differentially pumped slot-die coating, 

ACS Applied Materials and Interfaces. 2 (2010) 2819-2827. 

[3] F.C. Krebs, T. Tromholt, M. Jorgensen, Upscaling of polymer solar cell fabrication us-

ing full roll-to-roll processing, Nanoscale. 2 (2010) 873-886. 

[4] W. Tress, A. Petrich, M. Hummert, M. Hein, K. Leo, M. Riede, Imbalanced mobilities 

causing S-shaped IV curves in planar heterojunction organic solar cells, Appl. Phys. Lett. 

98 (2011) 063301. 

[5] W. Tress, K. Leo, M. Riede, Influence of Hole-Transport Layers and Donor Materials 

on Open-Circuit Voltage and Shape of I?V Curves of Organic Solar Cells, Advanced 

Functional Materials. 21 (2011) 2140-2149. 

[6] W. Tress, S. Pfuetzner, K. Leo, M. Riede, Open circuit voltage and IV curve shape of 

ZnPc:C60 solar cells with varied mixing ratio and hole transport layer, Journal of Pho-

tonics for Energy. 1 (2011) 011114-011114. 

[7] J. Wagner, M. Gruber, A. Wilke, Y. Tanaka, K. Topczak, A. Steindamm, U. Hörmann, 

A. Opitz, Y. Nakayama, H. Ishii, J. Pflaum, N. Koch, W. Brütting, Identification of differ-

ent origins for s-shaped current voltage characteristics in planar heterojunction organic 

solar cells, J. Appl. Phys. 111 (2012). 

[8] M.R. Lilliedal, A.J. Medford, M.V. Madsen, K. Norrman, F.C. Krebs, The effect of 

post-processing treatments on inflection points in current–voltage curves of roll-to-roll 

processed polymer photovoltaics, Solar Energy Mater. Solar Cells. 94 (2010) 2018-

2031. 

[9] F. Verbakel, S.C.J. Meskers, R.A.J. Janssen, Electronic memory effects in diodes of 

zinc oxide nanoparticles in a matrix of polystyrene or poly(3-hexylthiophene), Journal 

of Applied Physics. 102 083701. 

 



 

Chapter 5 - 4BUpscaling of Architecture 1: The Fraunhofer-type 

Upscaling of Indium Tin Oxide (ITO)-Free Polymer Solar Cells 109 

[10] G. Thurner, R. Abermann, A study of O2 and CO adsorption on thin evaporated 

chromium films, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and 

Films. 5 (1987) 1635-1639. 

[11] M. Julkarnain, J. Hossain, K.S. Sharif, K.A. Khan, Temperature effect on the electri-

cal properties of chromium oxide (Cr2O3 ) thin films, Journal of Optoelectronics and 

Advanced Materials. 13 (2011) 1454. 

[12] K. Hieber, L. Lassak, Structural and electrical properties of chromium and nickel 

films evaporated in the presence of oxygen, Thin Solid Films. 20 (1974) 63-73. 

[13] M. El-Hiti, M.A. Ahmed, M. El-Shabasy, Electrical properties of thin chromium 

films, J. Mater. Sci. Lett. 8 (1989) 329-333. 

[14] B. Zimmermann, H.F. Schleiermacher, M. Niggemann, U. Würfel, ITO-free flexible 

inverted organic solar cell modules with high fill factor prepared by slot die coating, So-

lar Energy Materials and Solar Cells. 95 (2011) 1587-1589. 

[15] S.A. Gevorgyan, M.V. Madsen, H.F. Dam, M. Jørgensen, C.J. Fell, K.F. Anderson, 

B.C. Duck, A. Mescheloff, E.A. Katz, A. Elschner, R. Roesch, H. Hoppe, M. Hermenau, M. 

Riede, F.C. Krebs, Interlaboratory outdoor stability studies of flexible roll-to-roll coated 

organic photovoltaic modules: Stability over 10,000 h, Solar Energy Mater. Solar Cells. 

116 (2013) 187-196. 

[16] Y. Galagan, B. Zimmermann, E.W.C. Coenen, M. Jørgensen, D.M. Tanenbaum, F.C. 

Krebs, H. Gorter, S. Sabik, L.H. Slooff, S.C. Veenstra, J.M. Kroon, R. Andriessen, Current 

Collecting Grids for ITO-Free Solar Cells, Advanced Energy Materials. 2 (2012) 103-110. 

 

 

 

 

 

 

 



 

Chapter 6 - 5BUpscaling of Architecture 2: ProcessH 

110 Upscaling of Indium Tin Oxide (ITO)-Free Polymer Solar Cells 

6. Upscaling of Architecture 2: ProcessH 

6.1 Introduction 
ProcessH is an all-solution processed large-area module adapted from the AGNP proto-

type (Chapter 3). It is a bottom-illuminated inverted architecture and employs a simpli-

fied R2R processing scheme in the upscaling requiring only slot-die coating and screen-

printing in the processing of a complete module. The transparent electrode is based on 

solution-processed ultra-thin Ag film. Thin metal films were explored as transparent 

conductor prior to the discovery and subsequent dominance of ITO and are also cur-

rently being revisited as a replacement to ITO [1]. However, the solution processing of 

transparent metal has not been demonstrated earlier to the best of my knowledge. 

The upscaling process of ProcessH was carried out in three segments: 1) development, 

evaluation, and optimization of the properties of the Ag semi-transparent electrode; 2) 

application of Ag transparent electrode in the fabrication of test cells for process opti-

mization and setting a reference against which the upscaled modules can be evaluat-

ed; 3) Upscaling via an all-ambient R2R processing and evaluation of the performance 

of the upscaled modules. All three segments are consecutively reported in this section.   

 

6.2 The solution-processed transparent Ag electrode 

 The processing and properties of the semi-transparent silver film forms the most cru-

cial step in determining their applicability as transparent electrode in solar cells. The 

transparent silver film is processed by diluting an as-received non-particle based Ag ink 

with different solvents. The pristine Ag ink has 18 wt% loading and was purchased 

from Kunshan Hisense Electronic (SC-100). 1-butanol and isopropanol were found to 

be the most suitable solvents for dilution.  Customized inks were prepared by varying 

the dilution factors in both solvents. The diluted inks were spin coated at 1500 rpm for 

30-45 seconds on PET substrate affixed on a glass slide. Once coated, the film is trans-

parent which upon drying/annealing at 140 oC on a hot-plate immediately transforms 

into a highly reflective semi-transparent Ag film. All silver transparent films were an-

nealed at 140 oC for 2 minutes.  The resulting film, henceforth termed as Ag transpar-

ent electrode or Ag TE, is highly homogenous and smooth with an rms line roughness 
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of 2 nm measured over a length of 1 µm. These films of Ag TE were studied for sheet 

resistance and optical transmission. 

 

 Figure 6-1 shows the transmission profile the Ag diluted with the two different 

solvents. Although the transmittance of 1-butanol based dilution is much higher com-

pared to isopropanol at all dilution factors, however all films with 1-butanol exhibit 

higher sheet resistance (Table 6-1). Therefore, Ag/isopropanol with 1:5 (v/v) dilution 

was used in the subsequent processing of semi-transparent Ag electrode primarily on 

account of its lower sheet resistance at a relatively lower expense to optical transmis-

sion. 

 

6.3 The Test-cells 
6.3.1 General Materials 

 Silver for the semi-transparent back-electrode is a non-particle based conductive ink 

(loading of 18 wt%) purchased from Kunshan Hisense Electronic (SC-100). The aqueous 

zinc oxide solution was precursor-based prepared as described earlier [2]. The active 

layer was a mixture of poly (3-hexylthiophene) (P3HT) (Sepiolid P200, BASF) and phe-

nyl-C61-butyric acid methylester (PCBM) (99%, Solenne B.V.). The active ink was pre-

pared by dissolving P3HT:PCBM (1:1; wt/wt) with a total solid concentration of 60 mg 

 

Figure 6-1 Optical transmittance profile of semi-transparent Ag electrode based on ink prepared 

with isopropanol and 1-batonal dilutions (left). IV curve of the best test-device is shown (right) 

which is based on isopropanol dilution of the Ag ink. 
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in 1 ml of solvent. The solvent was a mixture of 1-chloronaphthalene (5 vol%) and 

(95 vol%) chlorobenzene. PEDOT:PSS (Orgacon EL-P 5010) was purchased from Agfa 

and diluted with isopropanol in a ratio of 2:1 by weight. A UV curable silver paste from 

Toyo (Rexalpha RA FS FD 018) was used for screen printing the interconnections be-

tween the cells in a module. The substrate for the test-cells was polyethylene tereph-

thalate (PET) from Melinex and the substrate for upscaling was barrier foil purchased 

from Amcor.  Amcor barrier foil was also used for encapsulation of the modules. The 

barrier had a thickness of 55 μm and a UV filter (cut-off at 390 nm). The barrier per-

formance was 0.01 cm3 m−2 bar−1 day−1 with respect to oxygen (measured according to 

ASTM D 3981) and 0.04 g m−2 day−1 with respect to water vapor (measured according 

to ASTM F 372-78). For the module encapsulation the barrier foil was pre-laminated 

with a pressure sensitive adhesive (467MPF) from 3M. 

 

6.3.2 Processing and photovoltaic properties 

Upon the semi-transparent Ag film, test cells of 0.25 cm2 (0.5 X 0.5 cm2) were fabricat-

ed by spin coating ZnO, P3HT:PCBM, and PEDOT:PSS consecutively at 1000 rpm, 600 

rpm and 1000 rpm respectively. The deposition of ZnO and PEDOT: PSS was each fol-

lowed by a drying step at 140 oC for 5 minutes while P3HT:PCBM was left in the air for 

 

Figure 6-2 Transmittance profile of the semi-transparent Ag electrode used in ProcessH modules. 

The addition of ZnO layer causes  ~50% increase in transmittance of the Ag TE. The transmittance of  

PEDOT:PSS transparent electrode as used in Fraunhofer-type modules is given for comparison as 

well as the absorbance profile of P3HT is shown to depict the region of interest (left). A typical evo-

lution of IV curve of an as-produced ProcessH modules (right) 
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2 minutes to dry. The back Ag electrode was evaporated. The IV curve of a best cell is 

shown in Figure 5-1 along with the key photovoltaic parameters. All test cells on semi-

transparent silver substrate were marked by high FF in access of 50% owing to the low 

roughness and high sheet resistance of the Ag film. However, current density is much 

lower due to the limited transmittance of the Ag film. Nonetheless, the photovoltaic 

properties of the best test-cells are much higher and on average are similar to those 

observed in the Fraunhofer-type test cells (Table 6-1). Furthermore, no inflection was 

observed in the IV curves. Note that the AGNP prototypes evaluated in Chapter 3 and 

the test-cells reported herein had no changes in the processing conditions. The only 

difference was in the area of the cell, which was scaled down according to the intend-

ed upscaling structure (reported in the next section). Nonetheless, the scaling of de-

vice area in the test cells from 0.25 cm2 to 1 cm2 does not significantly change results 

and on average a power conversion efficiency of ~1% is achieved.  

 

 

6.4 The R2R Produced Modules 
6.4.1 R2R Processing of silver transparent electrode 

The optimized Ag ink for transparent electrode with  isopropanol dilution as used in 

the test cell could not be employed in the R2R processing. This was purely a technical 

issue. In our R2R setup, the slot-die head is located directly above the convection oven 

(Chapter 4, Figure 4-2). The combination of low boiling point of isopropanol (80 oC) and 

the hot air from the oven results in defects (big pores) in the freshly printed semi-

Table 6-6-1  Sheet resistance of semi-transparent Ag films upon dilution with 1-butanol and iso-

propanol at different volume ratio. 

Ag:solvent 
(v:v) 

Ag: 1-butanol 
(spin coated) 

Ag: isopropanol 
(spin coated) 

Ag:1-butanol  
(R2R gradient test) 

 
Sheet re-
sistance 
(Ω □-1) 

Transmittance 
at 550 nm 

Sheet re-
sistance 
(Ω □-1) 

Transmittance 
at 550 nm 

Sheet re-
sistance 
(Ω □-1) 

Transmittance 
at 550 nm 

1:5 29 43 % 5 28 % 17 20 % 
1:6 46 51 % 9 38 % 34 30 % 
1:7 1000 53 % 10 38 % 103 39 % 
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transparent Ag film. In order to avoid it, 1-butanol which has higher boiling point (117 
oC) was used as the preferred solvent for dilution although it was not the optimized 

choice in the test cells. A more refined and accurate optimization of the ink was carried 

out by a R2R gradient coating analysis wherein solutions from two sources are differ-

entially pumped and mixed  en route  to the slot-die head which is ultimately coated 

on PET substrate. In this way, Ag films are coated on the substrate with varying mixing 

ratio of the two ink sources. A complete R2R gradient analysis set-up is described 

elsewhere [3]. Such a screening method enables the probing of a wide parameter 

space and allows accurate reproducibility of the processing conditions as the gradient 

test was done on the same R2R equipment using slot-die coating which similar to that 

employed in the processing of the modules. In this test,  Ag:1-butanol (1:5 v/v) was 

one of the ink source which was linearly diluted with 1-butanol before slot-die coating 

on barrier foil at 2 m min-1. The resulting Ag films were studied for transmission and 

sheet resistance. Silver ink dilution with 1:5 (v/v) was found most suitable for further 

processing of the modules. It had a sheet resistance of 17 Ω □-1 at a transmittance of 

20% (at 550 nm).  Note that the R2R test shows different results than the test optimi-

zation with spin coating due to different thicknesses of the films in the two cases de-

spite the similar ink. The thickness of the films could not be measured either with AFM 

or Dektak due to their ultra-low thickness and the use of the plastic substrate. None-

theless, the R2R coated films are thicker than spin coated as optical transmission is re-

duced while the sheet resistance is improved compared to the spin-coated film at the 

same mixing ratio of the solvent to the Ag ink. . 

 

  The addition of ZnO layer causes improvement in  the transmission of Ag TE/ZnO 

to 30% at 550 nm. This enhancement in transmittance upon addition of ZnO to the Ag 

film is most likely caused by surface plasmon resonance (SPR) effects at the Ag/ZnO in-

terface [4]. SPR effects in multilayer structures of ZnO with noble metals can enhance 

both transmittance and conductivity of ZnO and is a widely studied material for its po-

tential as an ITO replacement [5]. SPR relies on surface plasmons of metal nanoparti-

cles whose effect is sensitive to size and shape of the nanoparticles. The effect of SPR 

diminishes with larger size of Ag islands/particles as studied by Zhang et al. [4]. SEM 
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analysis revealed the presence of un-coalesced Ag islands of <10 nm sizes within the 

large pores in the morphology of the Ag TCE. It is likely that these islands are mostly 

responsible for transmittance enhancement due to SPR as sizes in other studies (Figure 

6-3).  Subsequently, the R2R optimized Ag ink with 1-butanol dilution (1:5 v/v) was ap-

plied in the fabrication of large-area modules. 

 

6.4.2 Module Design 

 A serially-integrated module architecture was selected that comprised of 16 intercon-

nected cells. The resulting total aperture area of the module was 54 cm2 and the corre-

sponding active area was 35.5 cm2. Hence, the geometric fill factor was 66%. The width 

of the active part of the strip was 3 mm which was kept similar to the test-cells while 

the interconnection gap was 1 mm.  Because of the narrow width of the cells, the top 

Ag electrode was printed only for interconnection between the cells.  

 

 

Figure 6-3 Microstructure of Ag semi-trnasparent film. Porosity and interconnected network of Ag 

islands could be seen; (b) Magnified image of porous regions as seen in (a). Un-coalesced dis-

persed Ag nanoparticle (size <10nm) are visible; (c) EDS taken in the open areas confirming the 

presence of Ag in these area albeit at lower amount. (d) EDS on Ag particle. The silver island of <10 

nm areascribed to the enhancement in transmission upon the addition of ZnO. 
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6.4.3 R2R Processing of the ProcessH modules 

The modules were directly fabricated on barrier foil, thus eliminating the need for a 

separate PET substrate. Once processed, the module need be encapsulated only from 

one side. PET imposes a large environmental foot-print in the raw materials incurred in 

the fabrication of PSCs [6,7].  Prior to processing of the functional layers, the barrier 

foil (web-width of 305 mm) was heat stabilized to avoid shrinkage that could otherwise 

lead to registration problems in the subsequent coating and printing steps. This was 

accomplished by running the web through the ovens (4 m) with a temperature 140 °C 

with a web speed of 1 m min-1. The cross-directional shrinkage was ca. 0.6 %. Thereaf-

ter, subsequent layers were processed in an all-ambient R2R process using only slot-

die coating of all layers apart from the top silver for interconnection which was screen 

printed. Figure 6-4 shows pictures of step-wise R2R processing of each functional layer 

and Table 6-2 summarizes the processing parameters. 

  

6.4.4 The photovoltaic properties of ProcessH modules 

  Unlike the test cells, all modules displayed a dynamic photovoltaic behavior. The 

initial IV curve when the modules were illuminated under the solar simulator (1000 W 

m-2 AM 1.5) was marked by a strong S-shape. Prolonged exposure under the solar sim-

ulator (light soaking) causes evolution of the IV curve to a normal J-shape IV curves.  

The dynamic photovoltaic performance of the modules is caused by metastable photo-

conductivity of ZnO [8,9]. The conductivity of ZnO improves upon photo illumination as 

a result of elimination of adsorbed oxygen on the surface of ZnO. UV exposure induces 

photo excitation in ZnO (band gap of 3.2 eV) and the resulting hole-generation leads to 

oxygen desorption, consequently increasing conductivity of ZnO. Furthermore, the UV 

Table 6-6-2  R2R processing details as employed in the upscaling of ProcessH 

Layer Deposition 
method 

Web-speed 
 

Drying conditions 
Temperature/Time 

Dry-layer  
thickness 

Semi-transparent Ag Slot-die  2.0 m  min-1 140 oC /2 min 100 nm 
ZnO Slot-die 2.0 m  min-1 140 oC /3 min 100 nm 
P3HT:PCBM Slot-die  1.4 m  min-1 140 oC /3 min ~425 nm 
PEDOT:PSS  Slot-die 0.5 m  min-1 140 oC /8 min ~2 µm 
Ag Screen-print 2.0 m  min-1 UV curing  

(2X420 mJ cm-2) 
<5 µm 
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filter in the barrier foil/substrate (cut off at 390 nm) also slows down the mechanism 

of oxygen desorption from ZnO surface as less than 2% of the light wavelength that 

could induce photo-excitation in ZnO (363 nm) is transmitted to the ZnO layer [10]. 

The UV filter in the barrier foil is essential for prolonging the stability of the device as 

UV induces photo-degradation in the organic solar cell. While conductivity improve-

ment of ZnO upon UV exposure is a gradual process and even more so for our modules 

receiving limited amount of UV light. However, directly injecting holes by increasing 

reverse bias also results in oxygen desorption and ultimate increase in ZnO conductivi-

ty [11]. Table 6-3 shows the effect of increasing reverse bias on the on the duration of 

evolution to peak efficiency. The absence of inflection in the IV curves of the test cells 

could be due to the evaporation of the back electrode which can minimize the ad-



 

Chapter 6 - 5BUpscaling of Architecture 2: ProcessH 

118 Upscaling of Indium Tin Oxide (ITO)-Free Polymer Solar Cells 

sorbed oxygen on ZnO surface. Based on the result of the test cells, the up-scaled 

module should ideally deliver: Voc: 8V;  Jsc : 5.3 mA cm-2;  FF: >50%. However, the best 

module demonstrated a peak photovoltaic performance with PCE: 0.44%; Voc: 5.8V, FF: 

40.3 % and Jsc = 2.6 mA cm-2. Analysis of the IV curves at the peak performance reveal 

that the series and shunt resistance in the modules suffer by 33% and 400% respec-

tively in comparison to the best test-cell.  The increased series resistance in the mod-

ules is a direct consequence of the much lower conductivity of the R2R processed Ag 

TE in comparison to the ones employed in test-cells (Table 6-3). On the other hand, the 

decrease in shunt resistance by 400% is more significant as it was not expected. 

 

Figure 6-4. Step-wise R2R processing of ProcessH modules  with  slot-die coating of semi-

transparent Ag  electrode,  ZnO,  P3HT:PCBM,  and PEDOT:PSS respectively in  (a-d); screen print-

ing of Ag showing 6 modules are being printed in each print step (e); R2R encapsulation  (f). The 

transparency of the slot-die coated highly conductive Ag film on  barrier foil  is shown in ( g) and a 

complete module is shown in (h). 
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  Further investigation revealed that the use of the barrier substrate was primarily 

responsible for reduced shunt resistance. Figure 6-5 shows the surface roughness of 

Alcan barrier foil and Melinex PET used in processing of modules and the test devices, 

respectively. The surface of the barrier foil is highly inhomogeneous and carries spikes 

reaching 2 µm in height. On the other hand, Melinex PET is very smooth with no 

spikes. When Ag ink is deposited on these substrates, the surface topology of the Ag 

film mirrors those of the substrates. Furthermore, the loss of current in the modules 

compared to the test-cells and the prototypes are due the active area destruction from 

screen printed Ag used for interconnection as evident in the LBIC images (Figure 6-6). 

As discussed in Chapter 3, due to the transmittance profile of the Ag TE that had higher 

transmission in the 500-600 nm range, a significant contribution to photocurrent was 

expected from toward the back of the cell  (cf. Figure 3-4). The destruction of the ac-

tive layer in this region therefore limits the current harvest.  

Table 6-3  IV characteristic of modules at peak performance during photo-annealing. The brackets 

for test cells shows the average while modules shows the current of the whole module (=average 

of the cell) 

 Applied 
bias 

Voc 
(V) 

Jsc 

(mA cm-2) 
FF 
(%) 

PCE 
active 
area 
(%) 

Time to peak efficiency  
during photoannealing 

(h) 

Test cell - 0.51 5.34 
(4.38) 

51.48 
(51.45) 

1.61 
(1.22) 

- 

Module 1 - 20 V 6.8 2.81(5.8) 40.3 0.44 21.15 
Module 2 - 30 V 6.8 1.45(2.9) 41.9 0.23 10.07 
Module 3 - 40 V 5.7 1.4 (2.8) 41.8 0.23 5.66 
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6.5 Summary 

ProcessH has a comparative advantage in comparison to any of the known architec-

tures (ITO-based ProcessOne, and all archtiectures architectures upscaled under this 

PhD study) in that:  1) it is a complete solution-based process free of vacuum steps; 2) 

it  does not need glovebox and  can be processed under ambient conditions; 3) it is re-

sourceful in terms of the amount of Ag required in the processing of the Ag TE and in 

the number of different materials or layers in the stack; 4) it incurs only two printing or 

coating techniques (slot-die coating, and screen printing), both of which are the least 

expensive and efficient methods where material wastage often is very little or nil; and 

5) it can be processed directly on barrier foil eliminating the need for a separate PET 

substrate such as that required in ITO-based ProcessOne or expensive Kapton foil re-

quired in Fraunhofer-type module.   

 

Figure 6-5 Optical profilometry (white light interferometry) images showing the surface roughness 

of Alcan barrier foil (left) and Melinex PET (right).  
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In this upscaling experiment, the test-device demonstrated a PCE of >1%, thus 

passing the threshold we had set as minimum requisite for upscaling. In the upscaling, 

however, several technical problem emerged which ultimately limited the perfor-

mance of large-area R2R processed The main challenge was the fact that the optimized 

processing conditions of the test device especially the processing of Ag TE could not be 

directly transferred to R2R processing, and the roughness of the barrier substrate fur-

ther limited the PCE of the large-area modules. Nevertheless, both challenges are sur-

mountable and it is safe to say that ProcessH can deliver a PCE of 1% when these chal-

lenges are overcome.  

 

 

  

 

Figure 6-6  LBIC mapping of a module from the semi-transparent Ag side( left) and from the PE-

DOT:PSS side (right). Image of the actual module is displayed to the right of the LBIC images. The 

right LBIC shows more than half of each cell when images from the back side with reduced current 

generation while this effect is observed in the front cell affirming that the harmful solvent has not 

diffused completely through the 425 nm thick active layer.  
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7. Upscaling of Architecture 3: IOne 

 

7.1 Introduction 
IOne modules are adapted from ASP architecture as introduced in Chapter 3.  It is a 

bottom illuminated inverted architecture where the transparent electrode is a combi-

nation of silver grid/PEDOT: PSS. The subsequent layers are processed on top of this 

transparent electrode. While the printing of silver grids on flexible foil is widely pur-

sued in the printed electronics industry; however, these grids are generally stand-

alone circuits for which conductivity is the only parameters to be optimized. In solar 

cells, however, the printed Ag grids need to be optimized for competing parameters 

when used as transparent electrode. These parameters are: conductivity, surface cov-

erage or shading, and topology and roughness. The printed grid should be as narrow 

as possible to minimize shading losses, which inadvertently requires raising the topog-

raphy (height) of the grid lines to gain conductivity. However, the raising of the grid 

lines could lead to short circuits due to “shunting” of the solar cells due to the interca-

lation of bottom Ag grids electrode into the opposite electrode. Polymer solar cells 

(PSCs) are less tolerable to high roughness of the bottom electrode  as the opposite 

electrodes are merely separated by a distance determined by the thickness of the in-

between layers, that is,  a thin metal oxide buffer layer (>100 nm) and the photoactive 

layer (usually < 400 nm). Therefore, the surface planarization of the grids is critical for 

it can become fundamentally impossible to erase a rough structure when the rough-

ness of the preceding layer is larger than the film thickness of the succeeding layer(s) 

[1]. Taking all these arguments into account, it is empirically safe to say that the grid 

height should be around 100 nm which is the intended thickness of the planarization 

PEDOT: PSS layer [2]. Although higher grid height can be planarized using thicker PE-

DOT:PSS planarization layer but this would reduce  light transmission due to absorp-

tion by the  PEDOT:PSS planarization layer [2]. Hence, in the development of Ag 

grids/PEDOT:PSS as transparent electrodes, the design and topology of the grid is a 

major concern as larger surface coverage of the metal grids lead to loss of active area 
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due to shading from the grids and raised height of the grids can result in  shunting as 

subsequent layers are processed on top of this electrode.  A rigorous optimization is 

required among several parameters: 1) grid aspects (height versus width) that dic-

tates conductivity and shading; 2) grid design that dictates surface coverage and shad-

ing loss; 3) the type of silver ink that can affect conductivity, the roughness,  and the 

quality of the surface of the printed grids: 4) the roll-to-roll (R2R) processing tech-

niques employed in the printing of the grids which can determine the feasibility and 

adoptability of a particular design depending on the dimensionality and the resolution 

limit of the technique. Furthermore, the processing techniques can cast influence on 

the film properties of the printed grids as well as on the low-cost overall objective of 

pursuing Ag grid/PEDOT:PSS as ITO-replacement in the first place.  

 

  Prior to this PhD study, various techniques have been reported on the pro-

cessing of Ag grids as transparent electrodes (TCE) in small area laboratory cells such 

as diffusion transfer reversal [3], screen printed with embedded grids in the substrate 

[4]; evaporated [5], inkjet printed [5,6]; however, seldom were they pursued on flexi-

ble substrates and on large-area. In fact, only 0.5% of all reported scientific papers of 

PSCs have been demonstrated on flexible substrates [7]. Additionally, none of the re-

ported literature employed a complete solution processing as the back electrodes in 

all cases were evaporated.  

 

  In the upscaling of IOne, the main challenge in the realization of functional 

modules or cells based on Ag grids/PEDOT:PSS transparent conductor was in finding 

the most suitable R2R processing technique that allows the realization of the desired 

properties of the Ag grids TCE on large-area flexible substrates. The uses of flexible 

substrates imply limited thermal capacity of the substrate to withstand high tempera-

ture sintering conditions. For example, PET can sustain its dimensional stability up-to 

150 oC. Hence, the most time consuming part in development of IOne was in the find-

ing the most suitable technique in the printing of the Ag grids TCE suitable for applica-

tion in  PSCs. Accordingly, the development of IOne comprised of three consecutive 
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stages that include: 1) the evaluation of three R2R techniques in the printing of Ag 

grids on flexible substrate for application in PSC; 2) the evaluation of the functional 

feasibility of the Ag grids as TCE in test cells and determining the most suitable meth-

od for use in upscaling of large-area modules; and 3) the R2R processing and investi-

gation of large-area IOne modules. All three segments are consecutively reported in 

this chapter.  

 

7.2 R2R Processing of Ag grids for transparent electrode 

Three R2R processing techniques were evaluated in the printing of Ag grids on flexible 

substrate PET: inkjet printing, flexographic printing, and thermal imprinting. All three 

techniques are described in Chapter 4.  Thermal imprinting was carried out at a part-

ner institution. The pattern comprised of 14 stripes with a length of 250 mm and 

width of 13 mm.  These stripes were patterned with the diagonal print with 14 stripes 

spaced by 2 mm. The processing comprised of two steps. The first step was thermal 

imprinting of the intended grid design and was accomplished oat a web speed of 0.96 

m min-1 and force of 100 KgF. The imprinted pattern was filled with silver at the same 

web speed and dried at 110oC for 3 minutes. The nominal width was 15 µm and 

height was 10 µm. The inkjet printing and flexographic printed grid were based on a 

hexagonal pattern with a repeat of 2 mm and the intended line-width was 100 nm. In 

the flexographic printed grids, the nominal grid width of 100 nm resulted in the effec-

tive printed line-width of 130 µm. The nominal grid width in inkjet printed silver was 

set as 80 µm as the printed grid was expected to possess a larger effective width due 

to ink spreading. The final printed lines had an actual width of 130 µm as well, similar 

to the flexography printed lines (Figure 7-1). The height of inkjet printed grids (line-

height) was 300 nm whereas inhomogeneities due to viscous fingering in flexographic 

printing were observed to result in line-height up-to 700 nm. 16 stripes were printed 

with a width of 13 mm each and a gap of 2 mm. The surface profiles of the printed 

grids are shown in Figure 7-1. All three techniques employed water-based Ag ink and 

were all processed on 130 µm thick PET Melinex foil. Further details on the processing 

could be allocated in ref. [8].  
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Each technique has its own advantages and disadvantages. Embedding the silver 

grids in the substrate by thermal imprinting allows a controlled solution to the issue 

of topology, conductivity, and shading loss. The embedded grids are characterized by 

smooth surface and high aspect ratio, thereby enabling higher conductivity at rela-

tively lower shading loss than the non-embedded grids processed via inkjet or flexo-

graphic printing. However, the processing of embedded grids is more intricate and is 

based on two processing steps involving thermal imprinting and silver filling. Each of 

the processing steps is accomplished at lower web-speed speed compared to ink-jet 

printing and flexographic printing. The maximum achievable web-speed for thermal 

imprinting is significantly lower than either inkjet or flexographic printing. Here, a 

processing speed of 0.96 m min-1 was applied in both processing steps which were 

performed in discrete steps. Inkjet printing and flexography printing, on the other 

hand, are fast processing methods. However, they offer lower resolution and much 

less control over aspects of the printed features than thermal imprinting (such as ink 

Table 7-1 A comparison between conducting electrodes based on thermally imprinted 

and silver filled, flexographically printed, and ink jet printed grids using parameters cov-

ering cost, easy, processing and physical parameters. The table first appeared in our pub-

lication. © RSC Publishing. Adapted, with permission  from ref. [8] 

 Thermally imprinted Ink jet printed Flexo printed 
Speed (m min-1) 0.48 2 25 
Maximum possible speed  
(m min-1) 

6 70 200 

Number of steps 2 1 1 
Ink type Nanoparticles Nanoparticles Nanoparticles 
Water as solvent Yes Yes Yes 
Cost of master Medium Free (digital) Low 
Optical transmission of  
substrate/grid 

82% 77% 75% 

Resolution (micron) 16 (XX) 100 (42) 100 (32) 
Printed height (nm) 0 ± 25  +150 ± 25 +200 ± 150 
Spikes (nm) 20 50 1000 
Technical yield High High High 
Conductivity (Ω □-1) 10 60 11 
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spreading etc.). A holistic comparison of the three techniques is presented in Table 7-

1.  

 

7.3 The Test cells 
7.3.1 Processing 

Unless reported herein, all materials are similar to that described in Chapter 6. In or-

der to determine the functional feasibility of the R2R printed grids in PSCs, they were 

incorporated in fabrication of R2R single cell test devices. The foils with inkjet printed, 

flexographically printed and thermally imprinted silver grids were spliced into one roll 

with a length of 150 m. All subsequent processing was carried out on the same roll in 

the same processing step in order to keep variation as low as possible. PEDOT:PSS 

(Hereaus PH1000) was rotary screen printed on top of the grid structure with a print-

ing speed of 10 m min-1 and dried using a 1.5 kW infra-red heater and a 2 meter oven 

at 140 oC. The remainder of the processing involved slot-die coating of a ZnO nano-

particle suspension in acetone with a web speed of 5 m min-1, followed by drying 

through two through two sets of 2 m long convection ovens at 70 oC and 140 oC re-

spectively. This was followed by slot-die coating of active (1:1 wt/wt with a total con-

centration of 2 wt% in cholorobenzene) at 2 m min-1 and drying through the first oven 

at 90 oC and the second oven at 140 oC.  PEDOT:PSS (EL-P 5010) was subsequently 

slot-die coated at 0.6 m min-1 through the first oven at 120 oC and a 1.5 KW infra-red 

heater, followed by a second oven set at 140 oC. Finally silver back electrode with lin-

ear grid lines and bus bar (comb structure) with a thickness of 0.2 mm and a repeat of 

1 mm was screen printed through a flat-bed R2R screen printing station at a web-

speed of 1 m min-1 and dried at 140 oC through a 1.2 m oven, making the residence 

time in the oven of 1.2 min. All devices required functionalization that was achieved 

by running a short pulse of high voltage through the device as explained later in the 

chapter. The solar cells were then encapsulated using UV curable adhesive between 

two sheets of barrier foil. Running the foil through a laminator with a nip pressure of 

150 kg over the width of the foil allows the adhesive to flow over the device resulting 
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in homogenous and thin adhesive on both sides of the cells. Finally, the adhesive was 

cured under a metal halide based solar simulator (1000 W m2, 85 oC) for two minutes.  

 

7.3.2 The photovoltaic Properties 

All devices were then characterized under a metal halide lamp equipped solar simula-

tor (1000 W m2, AM 1.5G, 85 oC). The key photovoltaic parameters are listed in Table 

7-2 and the corresponding IV curves are shown in Figure 7-2. The photovoltaic per-

formance of previously reported ITO-based R2R processed single cell on flexible sub-

strate, known as ProcessOne [9], is also listed for comparison. 

 

Figure 7-1 Schematic illustrations of the different grid structures printed by three the three 

defferent techniques--the thermally imprinted grid with Ag filling (top), Inkjet (middle) with an 

illustration of the occasional presence of misfired ink droplets and the irregular structure of 

the grid lines, as compared to the more regular flexographically printed grids (bottom). Shown 

alongside are optical pictures (scale bar is 100 mm) and surface profile line-scan across the 

grid lines showing typical width and height. The last column are the topography image taken 

from confocal microscope. Figure reprinted from the original publication. ©2013 RSC Publish-

ing. Adapted, with permission from ref [8]. 
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Among the three different processing methods used in the printing of Ag grid 

TCE, the test cells based on the embedded grids gave the highest PCE, closely fol-

lowed by the flexographic grids; the test cells with inkjet printed grids showed less 

than half the PCE in comparison to the other two techniques. The solar cells based on 

flexographic and imprinted grids are characterized by high fill factor in excess of 50%  

ascribed to the high sheet  resistance of Ag grids of ~10 Ω□-1 while test cells on inkjet 

printed grids are marked by low FF due to the higher sheet resistance (60 Ω□-1).  The 

conductivity of the inkjet printed grids can be improved in future experiments by im-

proving upon the sintering and wetting conditions. The difference in the sheet re-

sistance of the inkjet printed girds and the other two techniques can be explained by 

the difference in their materials and processing.  

 

In this experiment, inkjet printing of the grids employed a different ink system 

(SunChemical Suntronics U7508) than used in the other two techniques (PChem asso-

ciaciates, PFI-722). Furthermore, they were annealed only for 2 minutes at 140 oC 

(web-speed of 2 m min-1 and combined oven length of 4 m) in convection ovens.  The 

flexographically printed grids, on the other hand, were annealed under IR ovens in 

addition to annealing in two convection ovens (albeit for much shorter duration in the 

convection oven owing to the fast web-speed 25 m min-1), while the embedded grids 

 

Figure 7-2 IV characteristics of the three types of devices, as measured in the lab at 1000 W m-2; 

AM1.5G;  85 oC (a). The transmittance profile through the different grids are shown in (b) and a 

picture of a R2R processed test- cell (6 cm x 1 cm) seen from the screen printed back Ag electrode 

(c). Figure reprinted from the original publication. ©2013 RSC Publishing. Adapted, with permis-

sion from ref. [8]. 
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were annealed only in convection over at 140 oC for 3 minutes. Hence, a more ration-

al comparison of the inkjet printable grids can be made with the embedded grids as 

processing of Ag employed similar sintering conditions in both these methods. The 

inkjet printed grids employ inks having smaller Ag nanoparticle size as well as are 

highly stabilized Ag nanoparticle suspensions containing varied organic stabilizing 

compounds such as ethylene glycol and polyvinyl polypropylene. Particle size distribu-

tion analysis showed that inkjet printed silver have a size distribution of 45 ± 9 nm 

whereas Ag used in embedded grids have a size distribution of 217 ±37 nm. The larger 

net grain boundaries in inkjet printed can impede charge transport especially if organ-

ic compounds are not completely eliminated and tend to remain at the grain bounda-

ries around the surface of the nanoparticles [10].  

 

Using faster heating methods such as flash sintering or IR annealing as em-

ployed in the flexographic printed grids would allow overcoming this challenge. IR an-

nealing allows faster heating than convection ovens as evident in the difference be-

tween the surface morphology of the Ag nanoparticles (Figure 7-3) between the em-

bedded grids and the flexo- grids. Both these technique employed the same ink, how-

ever, the embedded grids were annealed only in convection oven at 140 oC for 3 

minutes and the flexographic printed grid which were annealed at 140 oC for 10 se-

conds in convection oven followed by IR annealing in 2x1.5 KW dryers. Despite the 

similar ink, the Ag nanoparticles in the flexographically printed Ag grids have coa-

lesced whereas the Ag nanoparticles in the embedded grids have not. While this 

Table 7-2 IV-data comparison for the three device types, measured both under simulated light 

1000 W m-2 AM 1.5G 

 Imprinted Flexo Inkjet ITO-based Proces-
sOne* 

PCE (%) 1.92 1.83 0.75 0.97 
Jsc (mA cm-2) 7.06 7.02 4.27 7.10 
Voc (V) 0.50 0.51 0.50 0.48 
FF (%) 54.7 51.2 35.1 28 
Width of the 

  
13 13 13 9 
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should result in higher conductivity of flexographic printed grids than the embedded 

ones; however, similar sheet resistance of the Ag grid is observed for both techniques.  

This is because the Ag nanoparticles in the embedded grids are marked by higher 

densification whereas flexographically printed silver have coarsened leading to large 

pores in the morphology. Nonetheless, the effect of IR annealing may be sufficient to 

remove organic compounds in inkjet printed grids.  

 

  Lastly, the inkjet printed grids were prone to large defects and inhomogeneities 

in the print quality due to misfiring of the ink droplets, blocked nozzle (s) as well as 

poor coalescing of the printed lines as observed in the separation between the  print-

ed lines that are perpendicular to the printing direction (Figure 7-4). The latter can be 

evaded in future by further optimization in the wetting properties of the substrate 

and the ink. All these effect explain the high sheet resistance of the inkjet printed 

grids. 

 

 

Figure 7-3 SEM images of the nanoparticles for the three different silver electrodes (top) with cor-

responding optical images below. The grids prepared by thermal imprinting and silver filling are 

shown with a low degree of magnification due to larger particle size (right). The ink jet printed 

(middle) and flexographically printed grids (right) are shown with the same magnification. Figure 

reprinted here from our original publication. ©2013 RSC Publishing. Adapted, with permission 

from ref. [8] 
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  Nonetheless, the solar cells based on all three different printed grids were func-

tional and the photovoltaic performance in the case of flexographically printed and 

embedded grids far exceeded the photovoltaic properties reported of R2R processed 

single cells based on ITO (ProcessOne). This is possible because of higher FF (>50%) 

achievable with the use of Ag grid/PEDOT:PSS transparent electrode than reported on 

ITO-substrates [9]. The relative difference in the photovoltaic properties of the test 

cells based on the three Ag grid printing techniques is a direct consequence of their 

difference in the properties of the printed films --optical transmission, conductivity, as 

well as surface properties as noted in Table 7-1.  Among the three different tech-

niques, the embedded grids and the flexographic grids resulted in similar PCE of the 

test-cells(Figure 7-2; Table 7-2) while the inkjet- printed grids led to the poorest per-

forming devices due to the high sheet resistance of the grids which manifest as the 

lowest FF compared to the other two techniques.  In case of the latter, improvement 

in annealing, for example, by flash sintering, would improve the conductivity as dis-

 

Figure 7-4 LBIC images of devices based on the thermally imprinted grid (a), ink jet printed (b), 

and flexographic printed (c). The small inserts show photos of the actual cell with strong back-

lighting. Flexographic printed grids are most uniform while inkjet printed grids and have compar-

atively smaller shading loss despite the similar line width as inkjet printed Ag grids. Inkjet printed 

grids lines have identifiable defects due to misfired ink-droplets (green circle) and uncoalesced 

printed lines (red circle). The arrow shows the printing direction. The picture is first appeared in 

our original publication. 2013 RSC Publishing. Adapted, with permission from ref. [8]. 
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cussed in the preceding paragraphs. In all cases, further improvement in the printing 

of the grids including the lowering of the thickness and width of the grids to minimize 

shading loss, a PCE exceeding 2% can be realistically expected.  

 

  In all, the R2R test cells based on IOne presented the highest performance com-

pared to the test cells of the other two architectures: the Fraunhofer-type (Chapter 5) 

and the ProcessH (Chapter 6). In fact, the IOne test cells showed higher photovoltaic 

properties than reported for flexible ITO-based R2R coated devices by our group. In 

the upscaling into large-area modules, flexographic printing was adopted as the most 

cost-effective method toward the achievement of low-cost processing of ITO-free 

modules on account of its highest web-speed compared to the other two techniques 

despite at a slight compromise in photovoltaic properties as compared solar cells pro-

cessed on embedded grids.   

 

7.4 The R2R produced IOne modules:  
This section describes the process of upscaling of the IOne structure from the R2R sin-

gle test cells as reported in the previous section to R2R processed large-area modules 

with areas exceeding 180 cm2. The modules are processed completely under ambient 

conditions in an all-solution process using a combination of R2R printing and coating 

methods. Several cost improvement measures were adopted in the large-area pro-

cessing. The variations observed in the properties of prototypes, the R2R test cells, 

and the R2R large-area modules are also discussed. This section reports that IOne 

modules deliver a PCE above >1% on >100 cm2 module area, thus satisfying the target 

of this Ph.D. study. These modules are further investigated for operational stability 

under rigorous simulated and real conditions following several ISOS protocols [11]. 

The IOne modules are further investigated for mechanical stability under several 

bending tests. All results on scalability, stability, and flexibility of IOne modules are 

comprehensively presented in this section.  
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7.4.1 Module design 

A serially-integrated module design was fabricated starting with the patterning of the 

flexographically printed Ag grid in the form of several stripes (13 mm wide, 2 mm gap) 

similar to that used in the upscaling of Fraunhofer-type. The Ag grid was printed in 

hexagonal pattern. The grid had a nominal line width of 100 µm, a thickness of 200 

nm, and the distance between two parallel sides in a hexagon of 2 mm. The active ar-

ea width was 10 mm. The length of the stripes were varied (6, 10.3, and 13.5 cm) to 

get modules with three different total areas of 175.5, 102.0, and 32 cm2. The design is 

schematically shown in Figure 7-5 along with a picture of the final module. 

  

7.4.2 Processing 

The processing of all layers were carried out using R2R printing and coating in ambient 

conditions. The processing methods were similar to those used in the IOne test cells 

except the substrate employed in the large-area modules was a thin barrier foil from 

Amcor (45 µm). The web-width was 305 mm. Stepwise processing of the Ione module 

is shown in Figure 7-6. At the time of this experiment, DTU lacked R2R encapsulation. 

Therefore, the modules were randomly cut from the roll and were manually encapsu-

lated between two sheets of Amcor barrier foil using a UV curable adhesive from DE-

LO®. The modules were then passed under nip pressure in a R2R machine with <1 m 

min-1 to achieve homogeneous distribution of the adhesive over and under the mod-

 
Figure 7-5 Schematics of a representative module with three serially- interconnected cells. The 
number and length of cells were varied depending on the required module area (left); and a pic-
ture of a module with 7 serially connected cells taken from the transparent electrode side. The 
picture is adapted from our first publication. © Elsevier. Adapted with permission from ref. [21] 
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ule and to eliminate any air bubbles. Finally, the modules were placed under a metal-

halide based solar simulator for 5 minutes to cure the adhesive from the UV present 

in the light. After UV curing, the final thickness of the encapsulated module was 200 

µm.  

 

7.4.3 Photovoltaic properties and scalability 

The modules were characterized under a solar simulator supplying 1 sun illumination 

(1000 W m-2; AM 1.5G). The light source was a sulfur plasma lamp with A class spec-

trum in the absorption range of the active material. Prior to characterization, the sim-

ulator was calibrated using a reference photodiode.  

 

Figure 7-6: Photographs of the stepwise R2R printing and coating processes in fabrication of the 

modules: (a) flexography printing of Ag grid; (b-d) slot die coating of hcPEDOT:PSS, P3HT:PCBM, 

and PEDOT:PSS respectively; (e) flat-bed screen printing of Ag paste; and (f) final module after 

step (e). The picture is adapted from our first publication. © Elsevier. Adapted, with permission 

from ref. [19] 
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Freshly fabricated module showed no or very poor photovoltaic functionality in 

agreement with similar observations noticed in the prototypes and in the test cells.  

By running a short pulse of high current density-high electric filed through the IOne 

cells in the modules revives functionality leading to a J-shaped IV curve.  Doing so is  

hypothesized to involve a process of ‘switching’ (permanent change) of the electrical 

properties of PEDOT:PSS at the PEDOT:PSS/P3HT:PCBM interface by in-situ formation 

of a rectifying layer at this interface [12]. The activation of the test-cells can be easily 

accomplished manually with the use of a power supply; however, the activation of the 

serially integrated IOne modules is a tedious task as a roll of R2R processed solar cells 

carries several hundred serially-integrated modules depending on the design of the 

module, the web-width, and the length of the roll; and each module have many cell 

(up-to 16 in each modules in this study) where each cell requires activation. Manual 

functionalization of each module is a tedious task. As such, a custom built R2R switch-

ing set-up was put together in as part of another project as shown in Figure 7-7 

[12].The switching head comprised on an electrical contact pin array designed accord-

ing to a specific module design and connects to the bus bars of the Ag back electrode. 

Proprietary software controls the whole switching procedure that includes contact 

testing, applying the individual switching pulse per single cell, resistance measure-

 

Figure 7-7 R2R switching set-up for Ione modules (a); close-up of electrical contacting process on 

individual cells in a module (b-c). © Elsevier. Adapted, with permission from ref.[13] 
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ment or dark IV curve and further switching cycles, if necessary in case of insufficient 

switching. All steps are performed in parallel for all cells and take about 15 s for a 16-

cell module. Therefore, the switching of 10 m roll carrying 130 IOne modules takes 

about 32 min. More information on the switching process can be found elsewhere 

[12,13]. 

 

With the use of the R2R switching machine, it is easy to acquire functional mod-

ules and to explore the robustness of the IOne process. Scalability is analysed by simp-

ly elongating the length of the strips/cells during processing. Three different sizes of 

the modules were fabricated: Small (under 100 cm2), Medium (100 cm2), and Large 

(over 100 cm2). The modules were randomly selected from the roll of switched mod-

ules and encapsulated as described in the section 7.4.2. Table 7-3 lists the physical 

characteristics of the modules and Table 7-4 the key photovoltaic parameters of ran-

domly selected modules from the roll. The corresponding IV curve is shown in Figure 

7-8.  

 

 As Table 7-4 indicates, the IOne process is highly scalable.  Increasing the mod-

ule area has no significant effect on the photovoltaic properties as it can be expected 

 

Figure 7-8:  IV curves of ITO-free modules of three different sizes- large (176 cm2); medium (102 

cm2) and small (31.1 cm2) (left). The corresponding IV parameters are listed in table x. The trans-

mission profile of the front electrode (right). 
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ideally in serially-integrated module. All different sizes have PCE exceeding 1% on the 

total area and 1.5% on the active area.  All parameters in the modules are similar to 

the R2R test cells except current density, which is slightly lower than the test cells. In 

a serially-integrated PSC module, the current of a module is an average of all 

cells/stripes and hence a weak performing single cell can undermine the overall cur-

rent of the module. Furthermore, R2R processing of large-area solar cells renders 

higher variations in layer thicknesses and defects. This is much likely on the barrier 

substrate used in the upscaling in comparison to PET used in the R2R test cells. All 

these factors explain the lower current density in all the modules compared to the 

R2R test cells.  Nonetheless, the largest module selected randomly demonstrates a 

loss of only 7% as compared to the best prototype supplied by an independent insti-

tution as described in Chapter 3.  Furthermore, serially-integrated modules on ITO-

substrate (known as ProcessOne) having similar design parameters as used in the up-

scaling of IOne modules have resulted in a maximum PCE of 1.36-1.69% on active area 

>100 cm2 [14]. With these results, one can conclude that DTU has developed a robust 

IOne process that is highly scalable and that is an efficient alternative to ITO.  

 

 

 

Table 7-3: Physical aspects of the modules analysed to evaluate scalability.  

Module Total Areaa (cm2) 
Active area 

(cm2) 
No. Of stripes/cells 

Length 

(cm) 

Width of a 

 cell (cm) 

Small 31.1 24.0 4 6 1 

Medium 102.0 70.00 7 10 1 

Large 175.5 121.5 9 13.5 1 

Test cellb - 6 1 - 1 

Prototypec - 1 1 - 1 
aTotal area does not included contact made with copper tape. b from section 7.3,  R2R single cell. c From 
hapter 3, ASP structure.  
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7.4.4  Discussion  

IOne process is a scalable technique. Unlike in the upscaling of the Fraunhofer-type 

and ProcessH, no unforeseen difficulties were encountered in the adoption of the R2R 

test cells to R2R large area modules. The only time-consuming step was in adapting 

the prototype to R2R compatible technique which was predominately finding the 

most suitable R2R technique in the processing of the Ag grids. The prototypes were 

based on inkjet printed grids on glass substrates. In the upscaling, the inkjet printing 

was found to be the least desirable technique owing to large defects when processed 

on flexible substrate as well as due to the low conductivity of the grids. In the proto-

type development, discrete control over the printing can be maintained. For example, 

the substrate in the prototypes was glass whose surface properties were meticulously 

changed using repeated cleaning steps and treatment in nitrogen plasma. Further-

more, the printing was carried out on heated substrate (30-40 oC) and the printed 

grids were sintered under high temperature often up-to 190 oC for 30 minutes. Such 

sintering conditions are not feasible on a flexible PET substrate with a working tem-

perature of less than 150 oC. Furthermore, it is not possible to drastically change the 

substrate properties (for example, by cleaning or other surface treatment) and print-

ing conditions (for example, changing heating of the substrate, changing the print di-

Table 7-4 Key photovoltaic parameters of ITO-free modules studied measured under 1000 W m-

2; AM 1.5G 

Module Isc  
(mA) 

aJsc 
(mA 
cm-2) 

Voc  
(V) 

Voc of each 
cell 
(V) 

FF 
(%) 

Module 
PCE 
(%) 

Active area 
PCE (%) 

Small 29.6  5.73 2.106  0.53 53.59  1.07  1.39 
Medium 53.85  5.48 3.709  0.53 54.27  1.06  1.55 
Big 74.92  5.3  4.759  0.53 55.57  1.13  1.63 

Test cellb  7.02  0.51 51.2  1.83 
Prototypec  6.10  0.53 54.04  1.75 
aCurrent density was estimated for each module by measuring the photocurrent of a masked stripe in each 
module and dividing by mask area Jsc = Isc/Mask area; bfrom table 7-2; cASP prototype data from Table 3-2 
(Chapter3) 
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rection) whilst an ongoing R2R processing which is fast (web-speed up-to 25 m min-1 

has been employed in the upscaling of IOne). It is therefore always necessary to con-

duct a preliminary test in order to determine the true R2R compatibility of a proto-

type and to identify changes and improvements that might be necessary and to note 

the effect on the photovoltaic properties once such changes are incorporated. Once 

the method of processing of grid was determined, the subsequent processing in the 

R2R test cells as well as large area module proceeded without difficulties except in the 

switching of the IOne modules. IOne modules were marked by high FF compared to 

ITO-based counterparts which made-up for the slightly lower optical transmittance of 

the Ag/grids: PEDOT:PSS transparent electrode as compared to ITO substrates. Fur-

ther improvement rest in further tuning the design aspects and shading losses of the 

front electrode including PEDOT:PSS thickness and grid width and spacing while main-

taining or improving the processing speed achieved in this study (up-to 25 m min-1). 

 

7.5 Stability of IOne modules 

Stability of polymer solar cells marks one of the three primary facets that ought to be 

developed in tandem with other two–efficiency and low-cost processing— if the 

commercial vision for PSCs is to become a reality.  In solar cells, stability has implica-

tions in terms of application, cost, and the environment.  Once the efficiency target is 

met, IOne modules were extensively and intensively evaluated for stability under sev-

eral rigorous accelerated and real-world operational and storage conditions following 

ISOS protocols [11]. Prior to the stability tests, the modules were encapsulated in a 

simple food packaging barrier (Amcor) having a UV filter (cut-off at 390 nm) and a 

barrier performance of 0.01 cm3 m−2 bar−1 day−1 with respect to oxygen (measured ac-

cording to ASTM D 3985-81) and 0.04 g m−2 day−1 with respect to water vapor (meas-

ured according to ASTM F 372-78). This section reports on the results of the stability 

tests, presents a discussion of the observations, and attempts to inform what could to 

be improved.  

 



 

Chapter 7 - 6BUpscaling of Architecture 3: IOne 

Upscaling of Indium Tin Oxide (ITO)-Free Polymer Solar Cells 143 

7.5.1 The stability test set-up 

The modules were evaluated for stability under eight different tests. The test condi-

tions are listed in Table 7-5. The modules were either placed under continuous expo-

sure to light and continuously measured with an automated system (ISOS-L-2/-LL/-O) 

or periodically removed from their test systems and measured under calibrated sun 

simulator under 1 sun illumination (1000 W m-2; AM 1.5G) by recording three IV 

curves and taking the average values (ISOS-D-1/-D-2/-D-3/-L-3/-TC-3).The solar cell 

modules were stored in a drawer for ISOS-D-1 test. The high temperature storage 

tests (ISOS-D-2) were performed in an oven, while a climate-control chamber (Q-SUN 

Xenon Test Chamber from Q-LAB) was used for the damp heat tests (ISOS-D-2/-D-3/-

L-3). A thermal cycling chamber (Thermotron) was used to perform ISOS-TC-3. For the 

outdoor test (ISOS-O), the modules were placed on a solar tracker and connected to 

an automated system for continuous IV recording (every 10 min). To perform ISOS-L-2 

the modules were placed under a metal halide lamp based solar simulator (B class 

spectrum) with intensity close to 1 sun and the IV curves were automatically recorded 

every 10-15 minutes. Additionally, modules were placed under fluorescent light with 

intensities close to 0.2 sun for ISOS-LL. Prior to the initiation of the stability tests, all 

modules were characterized under a solar simulator with a sulphur plasma lamp sup-

plying 1 sun illumination and having an A class spectrum in the absorption range of 

the P3HT. Then, they were distributed to their respective tests. At the end of the sta-

bility tests, the modules were measured again under 1 sun illumination.  
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7.5.2 Stability results 

Figure 7-9 presents the stability graphs of the most stable modules in each ISOS test 

and the corresponding T80 values are given in Table 7-5 while Table 7-6 lists the key 

photovoltaic parameters before and after the stability tests measured under 1 sun il-

lumination. In the calculation of T80, the first measurement is assumed to be T100 

since burn-in duration and amount was not consistent in all the tests. It could possibly 

be due to the UV curing required in the encapsulation which inadvertently eliminates 

or alleviates the burn-in effect. Nonetheless, the maximum burn-in duration was ob-

served to be 20 hours or less and the net impact on PCE was less usually than 10%.  

Hence, T100 is taken as the initial measurement and the reported T80 values in Table 

7-5 is either directly noted from the measurements when T80 fell within the test peri-

od or it is deducted from linear extrapolation. At least two modules were monitored 

under each test and the range of T80 noted in Table 2 represents the variation ob-

Table 7-5 T80 of the modules for each type of ISOS tests conducted. The color gradation 

demonstrates the gradation in stress intensity with respect to temperature, relative humidity 

and radiation for each test. 

Category Light  

(Sun) 

Tempera-

ture  

(oC) 

Relative 

Humidity  

(%) 

T80 (hrs) Deviations from ISOS 
Protocols 

ISOS-D-1 0 25 20 – 35 1000-2800 - 

ISOS-D-2 0 65 10 – 15 ~ 5000 - 

ISOS-D-3* 0 50 85 100 – 200 Lower storage- tempera-
ture by 15 oC 

ISOS-L-2 1 70 10 – 15 450-560 Testing was performed in 
room environment 

ISOS-L-3 0.7 65 50 100 – 200 Modules were kept at 
open circuit 

ISOS-LL 0.2 30 10 – 15 1800-1900 - 

ISOS-TC-3 0 -40 to 85 55 520-650 - 

ISOS-O** 0 – 1 10 – 25 20 – 100 1500-2000 - 

*Modules under D-3 demonstrated inconsistent behavior. While one module showed linear 
degradation, the other remained stable upto 500 hours followed by a catastrophic failure to PCE 
of 0%. 
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served. The variations in the T80 values are attributed mainly to defects and variabil-

ity introduced by manual encapsulation such as the thickness of the adhesive layer.  

Such a defect might not alter the initial measurements but can severely undermine 

the stability of the modules over longer duration as discussed later on. As such, auto-

mated encapsulation is encouraged which was not available at the time of this exper-

iments. However, now DTU has R2R encapsulation facilities described in Chapter 3 

and reported in detail elsewhere [15].  

 

  Over the course of the stability study, the modules in all tests were performing 

above T80 at 1000 hours except under high humidity conditions of ISOS-D-3 and ISOS-

-3 and under constant 1 sun illumination (ISOS-L-2). The fast decline in performance in 

humid environment is an inherent failure of the encapsulation due to the diffusion of 

water molecules into the device, which affects all photovoltaic parameters. The deg-

radation of the module performance under high humidity conditions is dictated by 

the highly hygroscopic nature of PEDOT:PSS which is known to swell and cause delam-

ination [16]. Optical images of the modules after ISOS-D-3 and L-3 test show moisture 

 

Figure 7-9:  Degradation trend the key photovoltaic parameters of IOne modules subjected to 8 

different ISOS stability tests. 
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spots all across the modules penetrating from back electrode side into the device 

(Figure 7-10). This back electrode side is indeed the most susceptible route to entry of 

water molecules as the back electrode is in direct contact with adhesive holding the 

barrier. The adhesive is not water resistant.  Water micro droplets are also observed 

to enter from scratches in the foil. Such obvious concentration of water molecules is 

not observed in any other tests.   

 

The lifetime of the modules under ISOS-L-2 is limited by other mechanisms than 

those under high humidity conditions. Unlike under high humidity conditions, the 

modules in ISOS-L-2 have very stable Voc and FF, and only Jsc seem to degrade which 

suggest photo-oxidation of the photoactive polymer. Three factors accelerate photo-

oxidation of the active polymer under ISOS-L-2.  Firstly, the light spectrum of the met-

al halide lamp has significantly higher UV content compared to real world conditions 

 

Figure 7-10 Bright field optical image of a module after ISOS-L-3 test showing moisture diffusion 

into the device (a). The defect-prone region of the module next to the button contact (b) where 

delamination occurs and results in increased rate of photodegradation as observed in (e ) which 

shows  high density and growing photooxidized regions (white spots) imaged under transmis-

sion mode. Bubbles in the module after high temperature ISOS-L-2 test (c) also leads to delami-

nation and increased photo-oxidation as evident in (f).  The white spots are not present in a 

freshly prepared modules or are comparatively and significantly smaller in size in the rest of the 

modules imaged after stability tests (d). 
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and is further accelerated by the temperature of 70 oC used in the test. Such a rigor-

ous condition is unlikely to be met in real world indoor or outdoor operational condi-

tions. Therefore, T80 of the modules determined for ISOS-L-2 is a very conservative 

estimate and the real lifetime of the module is expected to be significantly higher in 

real world operational conditions. 

 

  Secondly, a visible discoloration in the solar cell around the button contacts is 

observed which suggest moisture infiltration leading to delamination of the top PE-

DOT:PSS and acceleration in photo-oxidation of adjacent cells to the contacts in the 

modules. Such a degradation of even one cell that is adjacent to the contacts not only 

decreases Jsc of the module, but in severe cases can impede charge injection or extrac-

tion leading to inflection in the IV curve and ultimately undermining FF and Voc. Figure 

7-11 shows an LBIC image of a module where such a localized degradation has oc-

curred and is propagated over time. The oxidized regions of a module can also be evi-

denced with optical images also as these are marked by high density of photo-

oxidized regions (discoloured or bleached spots) that are not present in the rest of the 

module or in a freshly prepared module (Figure 7-10).  Such localized defects are a re-

sult of the variation in the adhesive thickness as well as lower barrier foil margins 

(edge-sealing) around the modules.  Both of these can be avoided in future.  

 

 Thirdly, ISOS-L-2 modules had a unique visible defect that manifests as bubbles 

initiating from the silver interconnects/gap overlying area and leading into the back 

 

Figure 7-11  LBIC images of a module showing defect emerges near button contact (a) and prop-

agates over time (b). These modules are tested under outdoor conditions (ISOS-O). (a) is taken 

1000 hours and ( b) is taken at 3000 hours. 
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electrode side of the adjacent cell.  The bubbles are observed in both modules under 

ISOS-L-2. Visible discoloration underneath and around the bubbles is also observed 

indicating enhanced photo oxidation of the photoactive polymer (Figure 7-10). Clear-

ly, the bubbles are induced by merging of the remnant voids (oxygen and moisture 

entrapments or pockets) left behind during encapsulation, which is accelerated at 

high temperature due to lowering of the viscosity of the adhesive. The bubbles seem 

to cause delamination of the top PEDOT:PSS which is likely as PEDOT:PSS swells upon 

moisture adsorption and has a low adhesion strength with P3HT:PCBM [16,17]. All 

these bubbles lead to localized defects in the photoactive area contributing to de-

crease in Jsc of the module. Again, an operational temperature of 70 oC used in the 

ISOS-L-2 test is unlikely to be met in real world indoor or outdoor operational condi-

tions and therefore this defect can be evaded.  

 

 

Figure 7-12: (Left) ISOS-O Performance of an IOne module on a 45µm substrate placed on a 

tracker over a duration of ~1 year (20.06. 2012- 25.07.2013) in Roskilde, Denmark (left); the 

same module with larger edge-sealing margin (>1 cm). Current of the module on the left do 

not recover as sun starts shinning after winter, while the module on the right increases its PCE 

consistently with irradiance trend. 
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 The localized defects around contacts are a recurring issue and explain the low-

er end of the range of T80 values given in Table 7-5. The lifetime of the ISOS-O mod-

ules are also undermined by the defects around the contacts that lead to accelerated 

photo-degradation in the end cells leading to loss in Jsc and in severe cases causing 

loss of FF. On the other hand, generally Voc and FF remain constant over a year as 

shown in Figure 7-12, left.   

 

7.5.3 Solutions to encapsulation defects 

 The first set of stability experiments highlighted the issue of localized defects in the 

end cell(s) of a module. These defects were an outcome of encapsulation flaws that 

include narrow edge sealing margins, the proximity of button contacts to the end cells 

in a module, and variation in the thickness of the adhesive layer as a result of manual 

encapsulation.  The former two issues can be alleviated by simple measures that in-

clude extending the edge sealing margins and having the button contacts away from 

the end cells of a module. While altering the placement of button contacts requires 

redesigning the modules with elongated main busbar that will be incorporated in fu-

ture R2R processing, the effect of increasing edge sealing margins can be readily stud-

ied. 

 Toward this end, a second batch of modules were encapsulated with a larger 

edge sealing margins (>1 cm) and tested under three tests ISOS-L-1, ISOS-D-1, and 

ISOS-O.   The stability tests were performed at two different locations: at home (DTU, 

Denmark) and at an independent institution (ECN, Netherlands). All three tests were 

conducted in tandem at both the institutions. ISOS-L-1 is accelerated lifetime under a 

solar simulator (1000 W m-2; AM 1.5) at a temperature of 30-40 oC, in order to avoid 

the bubble formation as discussed in the previous section. ISOS-D-1 and ISOS-O are 

similar to that described in table 7-5. The tests were started in Oct 09, 2012 at both 

locations. 
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 In both institutions, the modules in all the tests were found to be very stable 

and all modules at both institutions were performing at greater than their respective 

T80 values at 1000 hours. Under ISOS-L-1, all modules were operating above T80 val-

ue at 1000 hours which suggest an outdoor operational lifetime of a minimum of 1 

year in northern and middle Europe which receive 1000-1200 hours of sunlight annu-

ally.  The projection was indeed verified at DTU where the ISOS-O test were continued 

for over a year (~10,000 hours) and module’s performance increases with time (Figure 

7-12; right).  Similar results were confirmed by ECN.  ISOS-D-1 was also continued for 

a year at DTU and the modules were very stable. These stability results are compiled 

in a bar graph in Figure 7-13. Based on these results, it can be confirmed that IOne 

modules are stable under storage and outdoor operational conditions for a minimum 

of one year. The experiments are continuing and so far the modules are running 

steady under outdoor conditions. 

 

Figure 7-13 Comparative evaluation of IOne modules simultaneously tested at two different loca-

tions (ECN, the Netherlands and DTU, Denmark) 
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  It is to be further noted that the food packaging barrier foil that we used here 

for IOne modules provide efficient encapsulation under most operational and storage 

conditions.  The Achilles heel in the encapsulation is the exposed edges of the adhe-

sive at the perimeter of the encapsulation.  Since the adhesive which does not bear 

any barrier properties, often localized defects start propagating from the edges of the 

modules.  Although extending the edge sealing margins may circumvent this issue to 

some extent, it is not altogether eliminated. New solutions ought to be found.  

 

7.6 Mechanical flexibility of IOne modules 

IOne modules were further evaluated for mechanical flexibility. The transparent elec-

trode in IOne comprising of substrate/flexographically printed Ag 

grids/hcPEDOT:PSS/ZnO, now termed as the Flextrode, is first tested for flexibility un-

der bending test.  An ITO on PET is also tested for reference. A makeshift set up was 

Table: 7-6: Initial and final photovoltaic parameters of ITO-free modules (active-area 70 cm2 with 

7 cells in each module) subjected to various ageing conditions as measured under 1000 W m-2 

(AM 1.5) solar irradiation at room temperature. 

Tests  Duration of 
test (hours) 

Voc 
(V) 

Isc  

(mA) 
FF 
 (%) 

PCE on ac-
tive-area 
(%) 

ISOS-D-1 Initial  1392 3.11 51.59 58.23 1.34 
Final   3.08 47.86 56.39 1.19 

ISOS-D-2* Initial  1560  2.00 33.01 52.33 1.20 
Final   1.91 33.94 49.55 1.15 

ISOS-D-3 Initial  504  3.56 51.04 55.41 1.44 
Final  0.98 3.34 17.85 0.00 

ISOS-L-2 Initial  1442  3.56 51.37 59.36 1.55 
Final   3.36 28.18 48.15 0.65 

ISOS-L-3** 
 

Initial   116 1.99 28.57 53.93 1.38 
Final   1.99 23.77 48.74  1.04 

ISOS-LL Initial  1582 3.53 51.85 52.43 1.35 
Final   3.42 46.76 48.48 1.11 

ISOS-TC-3 Initial  385 3.55 50.52 61.29 1.57 
Final   3.46 57.25 47.72 1.36 

ISOS-O 
(Denmark) 

Initial  3.57 56.14 56.15 1.43 
Final-1 1554 3.4825 38.86 54.62 1.05 
      

*module area = 28.8 cm2 with four cells/strips;**module area = 22 cm2 with four cells/strips 
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put-together by incorporating our available adhesion test instrument (Mecmesin) and 

a Keithley sourcemeter. Samples were mounted in the adhesion test instrument be-

tween two pinch grips. The displacement and the number of cycles of the one of the 

pinch grips can be controlled by the software available with the adhesion test instru-

ment. This feature can be used to bend samples at different radius by simply control-

ling the displacement of the top pinch grip. The samples could not be bent in a U-

shape but had three bending radii as visible in Figure 7-14. Nonetheless, the set-up 

was sufficient for comparison purpose as ITO reference substrate was also tested un-

der the exact conditions. Copper tapes were fixed at both ends of each sample to 

which crocodile clips were attached leading electrical connection into the Keithley 

sourcemeter.  An external contact was placed on top of the starting position of the 

pinch grip such that when the top pinch grip returns to its starting position during 

each bending cycle, it briefly hits the contact. The resistance of the contact is moni-

tored Using the second channel on the sourcemeter. As the contact is hit during each 

bend cycle, the resistance measurement of the sample is cued.  The resistance meas-

urement from the Keithley is then recorded in a custom built software (courtesy of a 

 

 

Figure 7-14 A schematic illustration for the bending test set-up. The sample is mounted be-

tween two pinch grips, one of which can be displaced allowing control over bending radius and 

the number of cycles. During each bend cycle, resistance of the sample is measured by the mul-

timeter at the cue from the contact once it is hit by the moving pinch grip during each bend cy-

cle.  The resistance measurement data then is recorded by a custom-built software.  
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colleague, Morten V. Madsen). For simplicity, a schematic illustration of the set-up is 

shown in Figure 7-14.  

 

  The samples were bent in the forward and in the backward direction that de-

termined the stress at the bending core as either tension or compression. The bend-

ing radius was 7.5 mm. The resistance of the Flextrode sample remained unchanged 

over the course of 10,000 bend cycles. On the other hand, the resistance of ITO on 

PET increased by an order of magnitude within 100 bending cycles. Optical images 

showed cracks emerging in ITO from the core of the bend and propagating toward the 

ends with increasing bending cycles (Figure 7-15).  Clearly, ITO on PET is not feasible 

for flexible applications while the Flextrode substrate is mechanically and electrically 

robust. 

 

Figure 7-15 (a-b) Mechanical flexibility of ITO-replacement used in the IOne modules -- the Flex-

trode (PET/Ag grid/PEDOT:PSS/ZnO). The bending radius is 7.5 mm.  The flexibility or the lack 

thereof of ITO on PET sample is also shown for reference (c) which is due to the brittle nature of 

ITO causing cracks upon bending (d). 
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 The next step was in the evaluation of IOne modules was to determine if the 

photovoltaic properties changes upon bending.  A 7-stripe module was bent at a 

bending radius for 2.3 cm for 1200 cycles. The stress at the core of the bend in the so-

lar cell stack was compression. The modules were measured under a calibrated 1 sun 

illumination (1000 W m-2, AM 1.5G) intermittently by pausing the bending test. Before 

each measurement, the modules were kept under the solar simulator for 2-3 minutes 

to equilibrate. No degradation in performance was observed (Figure 7-16). This is an 

on-going experiment and the modules will be evaluated under bending in compres-

sion and tension from two different directions (i.e. bending core will be either parallel 

to the stripes or perpendicular to the stripes).   

  

7.7 Demonstrator application 
Previously, the ITO-based upscaled architecture—ProcessOne--- has been the first tru-

ly scalable fully R2R processed technology that has been developed in demonstrator 

applications (Ref) and it is also commercially available from Mekoprint A/S, Denmark.  

 

Figure 7-16 Effect of bending on the photovoltaic properties of IOne modules. Bending in com-

pression at a bending radius of 2.3 cm (left). A highly flexible unencapsulated IOne module (sub-

strate thickness of 45 µm) in which the front transparent electrode side (honeycomb) and the 

back electrode side (the screen printed silver grid lines and interconnections silver) can be dif-

ferentiated.  
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ITO-free upscaled process, IOne, represent a huge leap forward in comparison to Pro-

cessOne in that it is not only ITO-free but it also employs an all-solution processing of 

all layers including the electrodes using facile and fast coating methods. Credit-card 

size laser power pointers (250 units) were developed as a consumer electronics 

demonstration.  The demonstrator was powered by a variant of IOne modules in 

which the front Ag grid was inkjet printed with conductivity improved by the use of 

flash sintering. The solar cell modules comprised of 16 serially integrated cells with a 

total area of 35.5 cm2. The width of bottom transparent electrodes was 3 mm and a 

gap width of 1 mm. A PCE of 1.7% on active area was accomplished when character-

ized under 1 sun conditions (1000W m-2; AM 1.5).  The modules were integrated in all 

printed circuitry enabling direct charging of the lithium polymer batteries to power a 

laser diode. The operating voltage of the laser diode was 3V and an operating current 

of 10 mA. The circuit and the final product is shown in Figure 7-17. Detail description 

of the production process, module integration into product, cost and life-cycle analy-

sis can be found elsewhere [18-20]. In all, the IOne modules were not the cost-driving 

factor in the demonstrator. The estimated cost of each IOne module was 0.25 € which 

represented a very low share (2 %) of the total cost of the demonstrator.  

 

 
Figure 7-17. The schematic diagram of the electronic circuit of the demonstrator with Zener diode 
(Z) to prevent overcharging of the lithium polymer battery (Batt.); blocking diode (D) prevents dis-
charge of the battery through the polymer solar cell (PV). ON/OFF (SW) switch to the laser diode 
and a printed resistor (R) is placed to avoid overloading the laser diode. The actual printed circuitry 
(middle) and the finish laser power lamp are also shown (right). The circuit designs are  ©  RSC Pub-
lishing. Adapted, with permission from ref. [25]  
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7.8 Summary 

Detail summary is given under photovoltaic and stability separately. In all, One mod-

ules is now a readily scalable ITO-free technique that is processed in an all ambient 

environment using only R2R printing and coating  techniques. A PCE of 1.5 -2% on ac-

tive area and >1% on >100 cm2 of total module area is achieved, thus fulfilling the 

practical targets of this PhD study. The modules were further assessed for stability us-

ing ISOS protocols. IOne modules are stable in most test conditions except where high 

humidity and/or high temperatures were involved which highlight the need to devel-

op encapsulation methods. Improvement in encapsulation would significantly prolong 

the lifetime, particularly from the edge sealing and contacting need immediate atten-

tion . As of now, with a simple food package barrier, the modules have withstood one 

year of harsh northern European climate (rain, snow, winter, very less sun) while still 

operating above 90% of its initial performance. However, the encapsulation proce-

dure has to be made more robust to increase reproducibility. All modules were man-

ually encapsulated that lead to variations in stability owing to the adhesive thickness. 

Automated encapsulation with very thin outlines of adhesive is encouraged. A small 

maneuver by increasing the edge sealing margins shows a marked improvement in 

the stability. The modules are further integrated in demonstrator application power-

ing laser points. 
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8.  A comparative evaluation of the ITO-free upscaled 
devices based on life-cycle analyses  

8.1 Introduction 

The primary motivation in the development of photovoltaics is the production of 

clean energy. Polymer solar cells (PSCs) aim to achieve this goal while achieving cost-

competitiveness against conventional energy sources.  A life cycle assessment (LCA) 

can allow a priori evaluation of the environmental impacts of an emerging technology 

and therefore can enable identification of the scope for environmental improvement 

of the technology [1]. Furthermore, an LCA can also point toward the economic feasi-

bility of an energy technology. In our development of ITO-free PSC concepts, LCA has 

been carried out after the upscaling of each ITO-free PSC concept. The LCA results, 

which has primarily been evaluated by a colleague Nieves Espinosa, have proven to be 

an effective tool in guiding our research and development on upscaling of the ITO-

free concepts toward our greater objective of environmentally and commercially via-

ble PSCs. The feedback provided by LCA effectively allows identification of arenas for 

improvements in our upscaling processes for cost-effective clean energy production. 

This chapter presents a comparative analysis on the environmental feasibility of three 

different upscaled ITO-free PSC architectures as described in Chapter 5-7 while identi-

fying areas for improvement in clean energy production. Additionally, this chapter 

aims to present a comparison of the upscaled ITO-free architectures against an up-

scaled ITO-based process as well as of PSCs in general as a technology against other 

photovoltaic technologies.  

8.2 A brief background on Life Cycle Analysis (LCA) 

An LCA, also referred as cradle-to-grave analysis, is a tool for objectively assessing the 

environmental aspects and potential impacts associated with a product [2] over its 

entire lifecycle which involves raw materials acquisition, their transport, manufactur-

ing, product transport, use and maintenance of the product, and final decommission 
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and/or recycling while identifying and quantifying relevant environmental impact at 

each stage [1]. LCA is a ISO standardized methodology for evaluation of environmen-

tal impact which involves four stages--a) Goal and scope definition; b) Inventory anal-

ysis; c) Impact assessment; and d) Interpretation of the data. LCA of a clean energy 

system starts with an explicit statement of the aim of the study, which sets the con-

text and provides a description of the product system. A functional unit is defined 

which provide a reference to which the inputs and outputs of the system are related.  

Then, LCA requires setting up a data inventory on the inflows and outflows of energy, 

materials, and greenhouse gases associated during an entire lifetime of a system and 

as relevant to the defined goal and scope of the LCA; and evaluating the feasibility of 

‘clean energy potential’ based on the energy and greenhouse gases offset against 

conventional primary energy means achieved by the use of the particular clean ener-

gy system. Commercial software allows compilation and reporting of the data, as well 

as contains database of emission of greenhouse gases and energy input in various 

chemicals and processes.  

  

 The inventory analysis is very critical as its reliability impacts the final assess-

ment. It includes: 1) a painstaking construction of raw material inventory and finding 

out the energy and pollutants associated with each raw-material that is used as an in-

put material in the production of a particular product and 2) figuring out the associat-

ed energy and pollutants that are further invested in the production into a final prod-

uct (direct process energy) and the use of a product throughout its lifetime.  While a 

lot of this information on various materials and processes is available in databases, 

some need to be constructed. 

 

  The lack of real data on the processing of PSCs due to the technology being nas-

cent has until recently prohibited a comprehensive LCA on PSCs. The ones that have 

delved on it have been rather limited in their scope: for example, only specific materi-

als [3] or laboratory solar cells prepared by spin-coating and evaporation are assessed 
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[4]. At this point, no other academic institution employs a complete R2R processing of 

PSCs. The upscaling of ITO-free architectures has been carried out our pilot R2R plant 

at DTU which allows us first-hand access to factual data on the materials and pro-

cessing parameters that have been employed in the R2R production of PSCs. Hence, 

the LCA based on our upscaling initiative is a good starting point to get an idea of the 

environmental feasibility of the PSCs as a technology in general and of our specific 

PSC architectures and processes in particular.  Many argue that due to the pilot na-

ture of our R2R production facilities for academic purposes, the LCA results do not re-

flect the true environmental impact of PSCs as a technology. We acknowledge that 

economies-of-scale in a true industrial production will definitely improve the envi-

ronmental impact of the PSC technology in general.  Nonetheless, our LCA results can 

be regarded a conservative scenario on a semi-industrial production scale, which 

nonetheless is based on factual data– a choice we prefer over speculation without 

demonstration.  

8.3 Methodology 

Life cycle analyses of all the three architectures up-scaled in chapter 5 have been car-

ried out and reported: Fraunhofer-type in ref. [5]; ProcessH in ref. [6] and IOne in ref. 

[7]. Furthermore, LCA of the upscaled ITO-based PSCs, known as the ProcessOne, had 

been reported by our group previously [8]. Herein, a compact summary all these LCA 

results are presented with a primary focus on ITO-free alternatives. ProcessOne is 

used as a benchmark against which the ITO-free architectures have been evaluated.  

For complete information on the methodology and inventory of each LCA analysis, 

please refer to the relevant publications. All processes have been developed at DTU. 

The system boundary considered in all the LCA studies, as schematically shown in Fig-

ure 6-1, incorporate direct energy used in the production of raw materials and in the 

manufacturing of the PSC modules. The energy used for manufacturing of the roll-to-

roll machinery, transportation, maintenance, and decommissioning and/ or recycling 

is not considered.   
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 In the LCA studies, the inventory analysis is based on data acquired in 

situ from materials consumption and equipment specification that are actually em-

ployed in their production at DTU. Data on raw material and the relevant upstream 

processes are collected from the database Ecoinvent 2.0-2.2 – an integrated database 

with commercial LCA software, SimaPro.  Unavailable data in Ecoinvent are compiled 

from relevant literature or other databases. The functional unit for solar cells is al-

ways defined as 1 m2 of processed area. This a standard unit used in other photovol-

taic technologies as well.  Due to spatial limitations of processing methods and the so-

lar cell module designs, the ratio of active area ratio is generally much lower to the 

web area is (45-70%). In in this chapter, the results presented are based on as-

incurred materials, module design, and processing parameters used in the upscaling 

of each of the architectures as detailed in Chapter 5-71.  

 

  Two different forms of energy are employed in the production of PSC modules: 

thermal energy (for example, for drying and annealing process) and electrical energy 

(for running the machines, or flash sintering, etc).  In order to holistically evaluate the 

energy-costs and energy-savings of an energy technology, one common unit of energy 

ought to be defined that can be compared with conventional energy means. Hence, 

thermal and electrical budgets were converted to a single unit, the equivalent primary 

energy (EPE) expressed in mega Joules (MJ). The conversion is dependent on the time 

and the energy mix of the country. Here, conversion factors 0.37 and 0.80 were used 

in the conversion of electricity and heat respectively into EPE. The factors are based 

on the Danish energy mix as of 2008. Lastly, the interpretation of results requires 

knowledge on the following terminologies [5,10]:  

 
                                                      
1 For this chapter, I have compiled the data from our original LCA studies publications [[5,6,8,9] 

or consulted the LCA concerned individual in our group for information on the IOne process 

[7]. 
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• Cumulative Energy Demand (CED): Total energy consumed in the production of 1 

functional unit of PSC modules. It is a summation of embodied energy in the raw 

materials and direct process energy. It is expressed in mega joules (MJ). 

• Energy Payback Time (EPBT): It is the ratio of CED to annual energy output. The 

result gives the number of years it takes for the energy technology to pay back the 

energy spent on its production, installation, use and maintenance, and recycle 

and/or decommission. 

 

𝐸𝑃𝐵𝑇 =  
𝐸𝐸𝑀𝐵
𝐸𝐺𝐸𝑁

 

 

• Energy Return Factor (ERF): The ratio of energy produced over the entire module 

lifetime (L) to the embedded energy. It is a ratio of the lifetime of the energy 

technology to EPBT. 

 

 

Figure 8-1 Life-cycle events of a polymer solar cell. The dashed line is the system bound-

ary considered in the LCA studies of the different architectures of PSC. © 2013 Elsevier. 

Adapted, with permission from ref. [5]. 
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𝐸𝑅𝐹 =  
𝐸𝐺𝐸𝑁 

𝐸𝐸𝑀𝐵
𝐿 =

𝐿
𝐸𝑃𝐵𝑇

 

 

• Greenhouse gas emissions (GHG): All climate relevant emissions during the life cy-

cle expressed as CO2-equivalents.The values can be derived from the embedded 

energy by multiplication with an emission factor (46.5g CO2-eq/MJ= 530g CO2-

eq/kWh for an average EU electricity mix).  For expressing climate relevant emis-

sions other than CO2 as “CO2 equivalents” weighting factors relative to CO2 are 

applied, e.g., N2O = 298, SF6 = 22.800 [10]. 

•  

 

8.4 LCA results  

All the PSCs architectures used in this study can be represented comprising of the 

functional layers as schematically shown in Figure 8-2. The difference among the ar-

chitectures is one of the electrodes, represented as Electrode 1. The actual schematic 

 
Figure 8-2 The general structure of the all upscaled solar cells architectures. ZnO is not 
present in the Fraunhofer-type while PET+adhesive excluded in IOne and ProcessH that 
were processed directly on barrier PET foil. 
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illustration of the architectures along with information on layer thicknesses and de-

sign can be found in the respective upscaling chapters (Chapter 5-7). 

 

8.4.1 Cumulative Energy Demand 

  The three up-scaled ITO-free processes— Fraunhofer-type, ProcessH, and 

IOne—are evaluated against upscaled ITO-based process, ProcessOne. Each of the up-

scaling processes is analyzed for embodied energy in the raw materials and direct 

process energy incurred in each functional layer in the respective PSC stack. The em-

bodied energy in the raw materials of each functional layer is constructed by a sum-

mation of the embodied energy in their respective constituent materials while the di-

rect process energy is derived by summation of energy invested in all the processing 

steps incurred in the preparation of each layer. The raw material constituents of each 

layer and the processing steps used each layer is as follows:  

 

1. Input materials breakdown 

• Substrate: PET 
• Electrode 1 

  ProcessOne: ITO on PET 
 Fraunhofer-type: Al target, Al production, Cr target, Chro-

mium production, Argon production 
 ProcessH: non-particle based Ag; 1-butanol 
 IOne: Ag grid (PEDOT:PSS planarization layer is considered 

with hole-transport PEDOT:PSS layer) 
• Electron transport layer: ZnO (It is not used in Fraunhofer-type) 

 Zn(OAc)2 
 KOH 
 MeOH 
 Acetone 
 MEA 

• Photoactive layer 
 P3HT 
 PCBM 
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 Cholorobenzene 
• Hole transport layer 

 PEDOT:PSS 
 Isopropanol 

• Electrode 2 
 Ag (screen printable ink) 

• Encapsulation  
 Barrier foil (PET) 
 Adhesives 

 
2. Processing breakdown 

• Electrode 1 
  ProcessOne: 

• Only patterning is considered which comprise of:  
o Screen printing of etch resist 
o  UV curing 
o Etching 

 Fraunhofer type 
o  Sputtering of Al/Cr 

 ProcessH:  
o Slot-die coating of Ag non-particles 
o Drying 

 IOne:  
o Flexographic printing of Ag grid 
o Drying 
o Rotary screen printing of hcPEDOT:PSS 
o Drying 
o  

• Electron transport layer: ZnO (not used in Fraunhofer-type) 
o Ink preparation 
o Slot-die coating 
o Drying 

• Photoactive layer: P3HT:PCBM 
o Ink preparation 
o Slot-die coating 
o Drying 
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• Hole transport layer: PEDOT:PSS 
o Rotary screen printing in IOne process; slot-die 

coating in the rest. 
o Drying 

• Electrode 2: Ag PV410 
o Rotary screen printing in IOne processing; Flat-

bed in the rest. 
o Drying 

• Encapsulation  
 Encapsulation by R2R lamination 
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The embodied energy of the raw materials and other upstream processing that con-

stitute each functional layer in the PSC stack can be located in the publications. For 

example, the individual energy footprint of P3HT, PCBM, and cholorobenzene –the 

three of which altogether constitute the raw materials for the photoactive functional 

layer –can be found.  Similarly, the processing is categorized according to processing 

of each functional layer. Further breakdown of energy invested in processing includ-

ing upstream processes as well as equipment specifications can be located in the pub-

lications.  

  The cumulative energy demand per functional unit (1 m2) of each ITO-free 

architecture is shown in Figure 8-3 in which the share of embodied energy in the raw 

materials and direct process energy can be also distinguished. At first glance, IOne 

and ProcessH are significantly better than either ProcessOne or Fraunhofer-type and 

represent ten times lower net embedded energy than either ProcessOne or Fraunho-

fer-type. The embedded energy in ProcessOne is primarily driven by ITO on PET which 

constitutes >70% of the net embedded energy. Raw materials constitute more than 

 
Figure 8-3 A comparison of total embedded energy in the production of a functional unit 
(1 m2) of PSCs based on three different ITO-free processes (ProcessH, Fraunhofer-type, 
and IOne). ITO-based upscaled (ProcessOne) is also shown as a benchmark. The contri-
bution of raw materials and direct process energy incurred in each architecture can be 
distinguished. 
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three-fourths of the CED in ProcessOne of which ITO accounts for 88% share of the 

embodied energy in the raw materials. ITO on PET is considered as an input material 

while only patterning of ITO is carried out at DTU which constitutes the numbers allo-

cated for processing of ITO (Figure 8-4). 

 

The Fraunhofer-type possesses the highest CED of all the architectures in-

cluding the ProcessOne. The direct process energy of Fraunhofer-type represents 

two-third of the net embodied energy, of which 80% is imposed by the processing of 

Al/Cr (Electrode 1). The processing of Al/Cr incurs such a high energy footprint due to 

its sputtering requirement. Magnetron sputtering is an energy-intensive processing 

method which is based on instrumentation that operates at very high voltages (248 

MJ EPE in our processing) and high vacuum (88.53 MJ EPE in our processing) as well as 

the throughput is very low owing to low web-speed (1 cm min-1). Furthermore, Al/Cr 

also represents 60% of the net share of embodied energy in the raw materials of 

which 99% is levied by Argon gas which is used in the sputtering. In total, Al/Cr elec-

trode represents 78% of the net embedded energy in the Fraunhofer-type. Both Pro-

 
Figure 8-4 The share of each functional layer in the Input materials (top row) and the 
direct process energy (bottom row) is given for the four different upscaled PSCs archi-
tectures. 
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cessH and IOne represent low CED and have a more balanced distribution between 

and within the direct process energy and the embodied energy in the raw materials 

(Figure 8-4). The transparent electrode in ProcessH, a semi-transparent silver film 

based on a customized Ag ink, shares only 7% of the CED; the raw material contribu-

tion of the transparent electrode is only 1%. The transparent electrode of IOne (Ag 

grid and PEDOT:PSS) represents a slightly higher energy footprint than ProcessH with 

a share of 11% in the CED. Nonetheless, the electrodes are not the primary determi-

nants of the net embedded energy in either IOne or ProcessH. The pie-charts reveal 

that IOne and ProcessH can be further improved by addressing PEDOT:PSS whose dry-

ing requirement bears the largest share in the energy incurred in processing (due to 

its high thickness) as well as PET marks the biggest share in the embodied energy in 

the raw materials of all ITO-free architectures. We have been investigating the latter 

by employing barrier film directly as the substrate which leads us to forgo a separate 

PET layer completely. Nonetheless, this is presented with some challenges (shrinkag-

es, surface properties, etc.) which are constantly being solved. Finally, replacing silver, 

which marks a similar abundance issue as ITO, has to be resolved. Toward this end, 

graphite and carbon-paste have been explored in our experiments [9]. 

 

 The situation discussed thus far is based on as-upscaled processes as de-

scribed in Chapter 5-7. The active area percentage per functional unit therefore was 

different for each architecture: ProcessOne (67%); ProcessH (45%), Fraunhofer-type 

(67%) and IOne (50%).  Furthermore, the different architectures have been investi-

gated over the course of the past three years and the latest one, the IOne, represents 

several advancements in the processing. For a fair comparison, we can assume that 

the common layers in all the architectures-- the electron transport layer (ZnO), the 

hole-transport layer (PEDOT:PSS), the screen printed silver layer, the substrate, and 

the encapsulation method--are similar to Ione in all the different architectures. The 

active layer thickness is optimized in each architecture and it is not assumed to be the 

same. Furthermore, a constant active area of 67% can be assumed as used in the pro-
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cessing of ITO-based benchmark, the ProcessOne. These feasible assumptions, none-

theless, mark only minute improvement in the CED of ProcessOne and Fraunhofer-

type while IOne is emerges as the cleanest process of all, closely followed by ProcessH 

(Figure 8-5). 

 

8.4.2 Energy payback time (EPBT) 

  The energy payback time is the time required for a PSC system (or any 

other photovoltaic system) to generate the same amount of energy as is incurred dur-

ing all stages of its lifetime. In order to calculate the energy produced by a PSC sys-

tem, few assumptions are made. Firstly, the annual isolation level used in the calcula-

tion of the energy produced by the PSC system is set as 1700 KWh m-2, typical of Eu-

ropean southern countries and representative of the world average [8]. Based on ex-

 
Figure 8-5 A comparison of CED in the different upscaled PSC processes between as-
incurred and with feasbile assumptions. As-incurred is based on as-employed materials 
and processing in the upscaling experiments. Active area ratio of ProcessOne and Fraun-
hofer type was 67% while ProcessH and IOne had an active area of 45% and 50%, re-
spectively.  The different architectures were upscaled in different point of time and 
therefore the feasible assumptions simply assume our latest advancement in processing 
of ZnO, PEDOT:PSS, screen printing of Ag, substrate, and encapsulation and a common 
active area ratio of 67% in all architectures. The feasible assumptions do not make a pro-
found impact on ProcessOne and Fraunhofer-type which remains the least desirable ar-
chitectures for further development. 
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perience of the performance of the solar cells based on the different architectures, a 

PCE of 1-2% with the P3HT:PCBM-based active layer is assumed and is realistic. While 

ProcessOne and IOne have readily shown these power conversion efficiencies in our 

experiments as described in Chapter 5 and ref. [11] respectively, the ProcessH and the 

Fraunhofer-type have shown that 1% is realistic and therefore is a feasible assump-

tion for these architectures. Finally, the photovoltaic systems do not operate at all full 

capacity throughout the year. Therefore, a performance ratio of 0.75 is assumed [10]. 

Finally, the calculation of EPBT assumes that 1 kWh of annual electricity output of a 

solar module avoids the generation of 1 kWh conventional electricity and is therefore 

equivalent to 11.4 MJ primary energy (which is an averaged primary energy value re-

quired for the production of 1 kWh conventional electricity)[10]. 

 

 The EPBT of the different architectures is given in Figure 8-6 and is listed in 

Table 8-1. For a PCE of 1-2%, the Fraunhofer-type requires an EPBT of 3-1.5 years, 

closely followed by ProcessOne. Hence, these processes are only feasible over the 

ProcessH and IOne if 1) they demonstrate comparatively and significantly longer life-

time than the other architectures; and/or 2) their PCEs can be significantly improved. 

The former is unlikely as it can be inferred from the stability studies on the prototypes 

(Chapter 4) in which ProcessH emerged as the architecture with highest stability and 

both ProcessOne and Fraunhofer-type do not necessarily possess significantly higher 

stability the other two architectures; the latter could be accomplished with the use of 

new low-band gap polymer that deliver higher PCE. Nonetheless, the latter case will 

have proportionately similar impact on any of the other architectures and therefore 

further development of ProcessOne or Fraunhofer-type is not uniquely demanded for 

PSCs. In the laboratory devices, P3HT:PCBM shows an average PCE 3%  as revealed by 

data collected from all scientific publications [12]. The laboratory devices are based 

on very small area, often less than 1 cm2, and are most often processed with a combi-

nation of spin-coating (seldom in ambient conditions) and evaporation of the back 

electrodes. Furthermore, they almost exclusively employ ITO as the transparent con-
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ductor which allows achieving of high short circuit current 10-12 mA cm-2 in a 

P3HT:PCBM system. When upscaling, however, ohmic losses set-in due to the high 

sheet resistance of ITO, layer thicknesses are not as homogenous as spin-coated lay-

ers, and processing is mostly carried out in ambient conditions. Furthermore, the loss 

of active area in upscaling which can amount to 50% implies that a PCE of 1.5% on a 

functional unit is the most expected of a P3HT:PCBM-based PSC system. Considering 

these boundary conditions, IOne appears to be most environmental-feasible process 

that is operating at its highest capacity as it has already demonstrated a PCE of close 

to 1.5% for active area coverage of 50% per functional unit.  Furthermore, the initial 

assessments of the stability of IOne modules have already demonstrated an opera-

tional lifetime of a minimum of 1 year in outdoor conditions (Chapter 7). Given the 

EPBT of IOne is 2.3 months, the process as it stands right now is also environmentally 

and cost favorable to ITO-based ProcessOne. Answering how feasible is IOne requires 

evaluation of the energy return factor (ERF). At this juncture, however, only inference 

can be made as the true lifetime of the modules is still under characterization (next 

section).  

 

Table 8-1: Energy Payback Time (EPBT) of different architecture with currently achieved power conversion 

efficiency of 1-2%, and future projections of a PCE of 5-10% that assuming no further development in the 

architecture and PCE achievable only by novel polymers having energy footprint similar to P3HT:PCBM 

 PCE/ 
Architecture ProcessOne Fraunhofer-

type ProcessH IOne 

As-incurred 

1% 2.53 3.24 0.31 0.29 

2% 1.26 1.62 0.15 0.15 
5% 0.51 0.65 0.06 0.06 
10% 0.25 0.32 0.03 0.03 

With feasible assumptions** 

1%  2.24 2.91 0.42 0.39 
2%  1.12 1.46 0.21 0.19 
5% 0.45 0.58 0.08 0.08 
10% 0.22 0.29 0.04 0.04 
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8.4.3 Comparison with photovoltaic technology 

 Today, a plethora of photovoltaic (PV) technologies are present, some are 

commercially available while others are under development. Despite the more ma-

ture PV technologies that have high power conversion efficiencies (reaching 25%) and 

higher stability (reaching 25 years), they have been unable to compete with conven-

tional energy means in the last >50 years of their development. The reason is their 

exorbitant materials and processing costs as discussed in the introduction (Chapter 1).  

Over the course of development of PV technologies, PSCs have emerged in the last 

two decades as a means to overcome the bottleneck that the more mature PV tech-

nologies have experienced in terms of further cost reduction in materials and pro-

cessing (the dumping of solar cells from China in the year 2011-2012 is considered an 

anomaly as these cells are highly subsidized, thus misrepresenting the true cost [13] 

and are widely reported to be highly defective rarely operating at their given specifi-

cation [14]). PSCs represents a breakthrough in the photovoltaic technology in terms 

of its potentially cost-competitive energy generation to conventional energy means 

owing to its low-cost raw materials and manufacturing requirements and unprece-

dented in the PV sector, albeit at a cost to efficiency and stability. Nonetheless, a goal 

of 10-10 (that is, 10% efficiency with 10 years of lifetime) for PSCs has been suggested 

to be comparatively advantageous, both commercially and environmentally, than the 

25-25 goal threshold shown by inorganic first generation solar cells.  
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 Figure 8-7 shows the EPBT time of some established PV technologies in 

comparison to ProcessOne and IOne. One thing to keep in mind while evaluating the 

EPBT of various technologies is that the first generation solar cells have reached their 

peak efficiencies. But for a marginal improvement, the PCE and lifetime of these tech-

nologies is unlikely to show significant improvement as they are operating close to 

their theoretical limit (the third generation of inorganic solar cells as shown in Chap-

ter 1 (Figure 1-6) are too nascent to be considered at this point). The second genera-

tion thin films PV such as CIS and CdTe have similar EPBT as the first generation and 

therefore have not necessarily attained a significant cost-competitiveness against the 

first generation Si solar cells. With increasing efficiency and advancement in pro-

cessing, however, the EPBT of the second generation PVs is decreasing. In its current 

form, the third generation represent here by ITO-free PSCs (IOne) already demon-

strate significantly lower EPBT by a factor of 10 compared to any of the other tech-

nologies. Unlike other technologies, PSCs have a large potential to have higher effi-

ciency resting on the development of novel low band-gap polymers. Low band-gap 

polymers have been reported to give efficiency exceeding 10% in laboratory devices 

but are thus far not available commercially or in significant quantities to be used in 

 
Figure 8-6 The chart compares the EPBT of the different upscaled PSC processes and shows projections 
when PCEs can be improved within the boundary of current raw materials and processing parameters. 
The chart is based on feasible assumptions as shown in Table 8-1 
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upscaling experiments. Nonetheless, it is only a matter of time that low-band gap pol-

ymers will become widely available. Just by increasing the efficiency to 5% assuming 

no further development in processing and cost-reduction in raw materials, PSCs can 

have an EPBT of less than 1 month using IOne architecture.  

 

 EPBT is a common indicator for ‘greenness’ of the product as EPBT reflects 

the energy invested in the product. The energy invested is supplied by fossil fuels 

which in-turn is the prime determinant of greenhouse gases.  However, EPBT does not 

take into account the energy savings during the rest of the lifetime of the technology 

and therefore cannot assess the magnitude of ‘greenness.’ ERF is a more suitable in-

dicator for this purpose as it takes into account the operational lifetime of the tech-

nology. Considering a first or second generation solar cell with an average of 2 years 

of EPBT and 20 years of lifetime, an ERF of 10 is achieved. The current IOne PSCs with 

a lifetime of 2 years (based on our lifetime assessment) and an EPBT of 0.19 year (2.33 

months) results in an ERF of 10.52. From this perspective, PSCs are already competi-

tive with mature photovoltaic technologies in terms of ‘greenness.’  In terms of 

greenhouse gases, the early assessment suggest these PSC processes generate 14-23 

kg CO2-eq/m2 (~350-580g  CO2-eq/Wp) which compares rather favorably to other es-

tablished technologies  that typically generate 35-80 kg CO2-eq/m2 (~350-800g CO2-

eq./Wp) [10].   
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 In terms of cost, Azzorpardi et. al have conducted a comprehensive eco-

nomic assessment on the energy production based on ProcessOne modules in a do-

mestic setting and have shown that with a 7% efficiency and a 5 year of lifetime will 

enable a levelized cost of electricity (LCOE)  between 0.19 €/kWh and 0.50 €/kWh for 

a 1kWp system which is competitive with silicon solar cells [15]. The raw materials 

cost of ITO is shown to be the main determinant of the cost of a household PSC-based 

photovoltaic system incurring 40% of the total system cost. Although the economic 

assessment based on IOne is pending, nonetheless it can extrapolated assuming ITO-

free electrodes incurs 8 times less cost than ITO electrodes (a factor derived from 

embedded energy ratio), that the new ITO-free PSCs will deliver the same LCOE with 

an efficiency of 5% and a lifetime of 3 years which is indeed realistic the very near fu-

ture. Emmott et al. have shown the implications of replacing ITO with several ITO-free 

alternatives and concluded that silver nanowires and hcPEDOT:PSS can reduce elec-

tricity cost per watt peak by up-to 20% and EPBT by 30% respectively [16].  Our results 

 
Figure 8-7 The Energy Payback time of various photovoltaic technologies of three different 

generations are compared. The data is located from ref. [12]. In its current state, PSC IOne 
process represents the lowest EPBT of merely 0.23 years (2.7 months). 
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show that higher margins with PEDOT:PSS/grid is achievable because of high pro-

cessing speed and improvement properties compared a  to standalone hcPEDOT:PSS 

transparent conductors.  

 

8.5 Summary 

The initial comprehensive LCA of the three different upscaled ITO-free architectures 

reveal that the IOne is the clear winner demonstrating a PCE exceeding 1% on total 

area and 1.5-2% on active area for a P3HT:PCBM based system, and therefore em-

bodying a corresponding EPBT of 2 months and an ERF equaling to established PV 

technologies. Furthermore, the breakdown of raw-materials and processing incurred 

in each layer in each of the architectures reveal that further environmental (and cost) 

improvements are possible by: 

1. Increasing the active area ratio. In the ITO-based ProcessOne, a serial-

integrated module design is an absolute requisite owing to the limited conduc-

tivity of the ITO. However, a monolithic design is a more cost favorable design 

as the active area ratio can reach above 90%. Monolithic module design may 

be possible with the new ITO-free architectures as the front-electrodes can 

reach very high conductivity (sheet resistance of 1 Ω □-1) in comparison to ITO 

on PET (60 Ω □-1). This is a subject of current investigation.  

2. Reducing the layer thicknesses which imply energy-savings on raw materials 

and on processing.  Particularly, the embodied energy in the raw materials is 

predominantly dictated by PET and the adhesives for encapsulation in IOne. 

Reducing their thicknesses can bestow large cost-savings. It is therefore that 

we have been investigating barrier films directly as substrate while also serv-

ing as encapsulation. In the processing, currently drying time incurs 90% of the 

direct process cost. The hole-transport layer PEDOT:PSS has the highest thick-

ness which requires longer drying time and therefore represents the majority 

share of energy embedded in processing.  
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3. Avoiding silver. Not only does silver represents a large share of embedded en-

ergy in raw materials and processing, but also it has similar abundance as ITO. 

One can therefore argue that if we have an indium problem, we have a silver 

problem. In the long term, metal-free PSCs will be more feasible. Toward this 

end, carbon paste and graphite or other organic materials are being investi-

gated. 

4. Water-based processes.  Water is most environmental-friendly and the least 

expensive solvent. 

5. Improving stability toward the 10 year lifetime goal. In the calculation of ERF 

presented in this chapter, a  two year lifetime is used based on our ongoing 

stability experiment thus far but a 5 year efficiency in the short run and a 10 

year efficiency in the long run is expected of PSC technology. This will pave a 

long way in furthering the competitiveness of PSCs not only against its PV 

counterparts but also against conventional energy means.´ 

6. Last but not the least, the torchbearer of PSC are the chemical engineers 

whose ingenuity and success in tailoring stable low-band gap polymers will re-

sults in breakthroughs in the PSCs. 

 



 

Chapter 8 - 7BA comparative evaluation of the ITO-free upscaled devices based on life-cycle 
analyses 

182 Upscaling of Indium Tin Oxide (ITO)-Free Polymer Solar Cells 

References 

[1] A. Anctil, V. Fthenakis, Life Cycle Assessment of Organic Photovoltaics. in: V. 

Fthenakis (Ed.), Third Generation Photovoltaics, InTech, 2012. 

[2] International Standardisation Organisation (ISO),  Environmental management – 

Life cycle assessment – Principles and framework – ISO 14040(1996), Paris. (1996). 

[3] A.L. Roes, E.A. Alsema, K. Blok, M.K. Patel, Ex-ante environmental and economic 

evaluation of polymer photovoltaics, Prog Photovoltaics Res Appl. 17 (2009) 372-393. 

[4] R. García-Valverde, J.A. Cherni, A. Urbina, Life cycle analysis of organic photovolta-

ic technologies, Prog Photovoltaics Res Appl. 18 (2010) 535-558. 

[5] N. Espinosa, R. García-Valverde, A. Urbina, F. Lenzmann, M. Manceau, D. Angmo, 

F.C. Krebs, Life cycle assessment of ITO-free flexible polymer solar cells prepared by 

roll-to-roll coating and printing, Solar Energy Mater. Solar Cells. 97 (2012) 3-13. 

[6] N. Espinosa, M. Hosel, D. Angmo, F.C. Krebs, Solar cells with one-day energy pay-

back for the factories of the future, Energy Environ. Sci. 5 (2012) 5117-5132. 

[7] N. Espinosa, LCA data for IOne Process, Personal Communication. (05-08-2013). 

[8] N. Espinosa, R. García-Valverde, A. Urbina, F.C. Krebs, A life cycle analysis of poly-

mer solar cell modules prepared using roll-to-roll methods under ambient conditions, 

Solar Energy Mater. Solar Cells. 95 (2011) 1293-1302. 

[9] N. Espinosa, F.O. Lenzmann, S. Ryley, D. Angmo, M. Hosel, R.R. Sondergaard, D. 

Huss, S. Dafinger, S. Gritsch, J.M. Kroon, M. Jorgensen, F.C. Krebs, OPV for mobile ap-

plications: an evaluation of roll-to-roll processed indium and silver free polymer solar 

cells through analysis of life cycle, cost and layer quality using inline optical and func-

tional inspection tools, J.  Mater.  Chem.  A. 7037. 

[10] F. Lenzmann, J. Kroon, R. Andriessen, N. Espinosa, R. García-Valverde, F. Krebs, 

Refined Life-Cycle Assessment of Polymer Solar Cells, EU PVSEC Proceedings. (2011) 

3835-3839. 

[11] F.C. Krebs, T. Tromholt, M. Jorgensen, Upscaling of polymer solar cell fabrication 

using full roll-to-roll processing, Nanoscale. 2 (2010) 873-886. 



 

Chapter 8 - 7BA comparative evaluation of the ITO-free upscaled devices based on life-cycle 
analyses 

Upscaling of Indium Tin Oxide (ITO)-Free Polymer Solar Cells 183 

[12] M. Jørgensen, J.E. Carlé, R.R. Søndergaard, M. Lauritzen, N.A. Dagnæs-Hansen, 

S.L. Byskov, T.R. Andersen, T.T. Larsen-Olsen, A.P.L. Böttiger, B. Andreasen, L. Fu, L. 

Zuo, Y. Liu, E. Bundgaard, X. Zhan, H. Chen, F.C. Krebs, The state of organic solar 

cells—A meta analysis, Solar Energy Mater. Solar Cells.  

[13] I. Traynor, J. Rankin, EU to impose anti-dumping tariffs on Chinese solar panels, 

The Guardian. (2013). 

[14] T. Woody, Solar power's dark side, The New York Times. (2013) B1. 

[15] B. Azzopardi, C.J.M. Emmott, A. Urbina, F.C. Krebs, J. Mutale, J. Nelson, Economic 

assessment of solar electricity production from organic-based photovoltaic modules 

in a domestic environment, Energy Environ. Sci. 4 (2011) 3741-3753. 

[16] C.J.M. Emmott, A. Urbina, J. Nelson, Environmental and economic assessment of 

ITO-free electrodes for organic solar cells, Solar Energy Mater. Solar Cells. 97 (2012) 

14-21. 

[17] F.C. Krebs, J. Fyenbo, D.M. Tanenbaum, S.A. Gevorgyan, R. Andriessen, B. van 

Remoortere, Y. Galagan, M. Jorgensen, The OE-A OPV demonstrator anno domini 

2011, Energy Environ. Sci. 4 (2011) 4116-4123. 

[18] D. Angmo, T.T. Larsen-Olsen, M. Jørgensen, R.R. Søndergaard, F.C. Krebs, Roll-to-

Roll Inkjet Printing and Photonic Sintering of Electrodes for ITO Free Polymer Solar 

Cell Modules and Facile Product Integration, Advanced Energy Materials. 3 (2013) 

172-175. 

  

 

 

 

 

 

 

 

 



 

Chapter 9 - 8BConclusion and Outlook 

184 Upscaling of Indium Tin Oxide (ITO)-Free Polymer Solar Cells 

 

9. Conclusion and Outlook 

This PhD thesis reports a leap forward in the realization of ITO-free PSCs that can di-

rectly be adopted to power niche applications. Based on a rigorous evaluation of sev-

eral prototypes, upscaling of three was carried out. One of the upscaled architectures, 

IOne, demonstrated photovoltaic performance comparable to a previously reported 

ITO-based R2R processed module, ProcessOne. With the current performance and 

stability achievements with IOne, it is clear that ITO-free IOne modules are already 

positioned for niche applications. IOne modules displayed >1 % efficiency on a total 

area of >100 cm2 similar to those reported for ProcessOne modules. Furthermore, IO-

ne shows >10,000 hours of lifetime under operational and storage conditions.  It has 

an energy payback time of less than 3 months and has a similar energy return factor 

as conventional inorganic solar cells.  PSCs in general and IOne in particular are un-

precedented in ‘greenness’ in terms of emission of greenhouse gases as well as in 

their flexibility. In the Ph.D. study, the applicability of IOne modules in niche applica-

tion was demonstrated by integrating them in credit card sized laser pointers.  

  

  Additionally, this PhD study has highlighted the need to be conscientious in the 

choice of materials and processing in the development of PSCs toward a low-cost ob-

jective. Whatever the efficiency of the solar cells, PSCs will never realistically have life-

time comparable to other established inorganic technologies. Hence, reducing the 

cost of materials and production in conjunction with increasing the efficiency by the 

use of novel low-band polymer are the only way that would catapult PSCs on the 

same platform as the plethora of solar cell technologies that are on the market today. 

Additionally, this will pave way for competitiveness of PSCs against conventional fossil 

fuels in the long run. Often, it is difficult to judge whether a better performing archi-

tecture at a higher processing cost is worthwhile or not. In such cases, a life-cycle 

analysis even on laboratory cells can give useful feedback on the feasibility of the par-

ticular architecture or system in question.    
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 A running theme throughout the stability studies points toward the need to devel-

op more robust encapsulation methods. Low-cost encapsulation of PSCs has barely 

been investigated save for few scattered reports. While the food packaging barrier 

seem sufficient under most realistic indoor and outdoor applications, the contacting 

methods and edge sealing in our module remains the Achilles heel of initiating the 

degradation in the modules. Under high humidity conditions, the food packaging bar-

rier may not be sufficient. Hence, new solutions are demanded. 

 

Finally, all the concrete goals of this PhD study as described in Chapter 2 section 2.7 

have been met. At the same time, new challenges and new opportunities remain un-

veiled. 
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10.2 Appendices to Chapter 3. 
 
 

 

               

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table A-1. Round-robin data of ITO-based inverted devices with two different active areas. 

Two devices of each size were evaluated and the result of both devices is given in table.  

Device area 0.36 cm2 1 cm2 

Laboratory  Jsc 

 (mA cm2) 

Voc 

 (V) 

FF 

 (%) 

PCE 

 (%) 

 Jsc  

(mA cm2) 

Voc 

 (V) 

FF  

(%) 

PCE 

 (%) 

DTU-1 12.32 

12.85 

0.53 

0.51 

56 

58 

3.66 

3.82 

8.09 

8.47 

0.55 

0.55 

41 

40 

1.84 

1.86 

ISE-2  9.71 

10.30 

0.50 

0.51 

56 

57 

2.75 

2.99 

8.21 

8.49 

0.54 

0.54  

41 

40 

1.82 

1.83  

Holst-3 9.82 

10.27 

0.50 

0.50 

60 

59 

2.94 

3.04 

6.61 

6.91 

0.53 

0.53 

45 

45 

1.58 

1.65 

ECN-4  9.89 

10.63 

0.51 

0.51 

60 

59 

3.01 

3.19 

7.94 

6.74 

0.54 

0.55 

42 

42 

1.80 

1.56 

DTU-5 11.00 

11.53 

0.51 

0.52 

59 

57 

3.05 

3.11 

8.49 

7.04 

0.54 

0.54  

43 

42 

1.95 

1.59 
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Table A-2: Round-robin data of ITO-free architectures. The results are given for two cells of each 

architecture that were evaluated, cell 1/cell 2. 

Laboratory ITO-free  

architecture 

Jsc (mA cm2) Voc (V) FF (%) PCE (%) 

 NORM 7.15/7.35 0.53/0.52 62/57 2.34/2.18 

 ASP 6.10/6.04 0.53/0.53 54/52 1.75/1.66 

DTU-1 AGNP 3.55/3.81 0.50/0.54 57/56 1.01/1.15 

 ALCR 7.29/6.91 0.58/0.57 63/62 2.66/2.44 

 WT --/-- --/-- --/-- --/-- 

 NORM 6.71/7.02 0.53/0.52 61/56 2.17/2.04 

 ASP 6.02/5.81 0.52/0.53 51/52 1.60/1.60 

ISE-2 AGNP 3.34/3.52 0.49/0.54 61/57 1.00/1.08 

 ALCR 6.42/6.42 0.59/0.57 63/62 2.39/2.27 

 WT 6.73/6.56 0.58/0.58 38/38 1.48/1.45 

 NORM 5.56/5.77 0.52/0.51 62/56 1.79/1.65 

 ASP 4.80/4.66 0.51/0.51 53/56 1.30/1.33 

Holst-3 AGNP 3.24/3.39 0.48/0.53 55/57 0.86/1.02 

 ALCR 6.61/6.29 0.59/0.58 61/61 2.37/2.23 

 WT 4.70/4.00 0.57/0.56 38/37 1.00/0.83 

 NORM 6.01/7.14 0.52/0.52 62/56 1.94/2.08 

 ASP 6.03/5.99 0.52/0.53 52/53 1.63/1.68 

ECN-4 AGNP 2.94/3.81 0.50/0.54 57/57 0.84/1.17 

 ALCR 7.49/7.02 0.59/0.58 61/61 2.70/2.48 

 WT 5.57/6.70 0.58/0.58 27/34 0.87/1.32 

 NORM 5.94/7.20 0.53/0.53  61/56 1.92/2.10 

 ASP 5.99/5.98 0.52/0.53 52/59 1.60/1.64 

DTU-5 AGNP 3.29/3.86 0.50/0.53 51/57 0.83/1.17 

 ALCR 7.48/7.06 0.58/0.58 61/60 2.67/2.45 

 WT 5.10/6.30 0.54/0.55 27/33 0.74/1.15 
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Figure A-1: Burn-in region of ISOS-LL stability test of the various ITO-free prototypes.  The burn-in 

loss trend in Voc and FF is suspected to be a direct consequence of the fabrication environment 

and the use of PEDOT:PSS deposited on top of the photoactive layer as discussed in Chapter 3, sec-

tion 3.6.2. 
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