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Summary 

SUMMARY 

Influenza A virus (IAV) is an important respiratory pathogen with a broad host range. The natural 

reservoir for IAV is waterfowls, but both human and swine are considered natural hosts. During the 

past century IAV has caused severe pandemics as well as seasonal epidemics in the human population. 

In pigs, swine influenza virus (SIV) is endemic worldwide and is associated with economic losses for 

the farmer due to the impact on pig health causing lowered production. Swine has been shown to be 

susceptible to infection with IAVs of different host origin and has hence been considered as potential 

mixing vessels of new IAVs. Furthermore, transmission of IAVs from swine to human and vice versa 

has been documented on several occasions and further classifies this virus as a highly important 

zoonosis. This aspect enhances the possibility of the formation and establishment of new and 

potentially more virulent viruses with the capacity to cause severe pandemics. Therefore, it is important 

to gain a deeper understanding of the evolution of SIVs, their zoonotic potential as well as host-range 

characteristics and this PhD project aimed at elucidating parts of these important points. 

The PhD thesis begins with a presentation of the aims and a brief introduction of the situation of SIV in 

Denmark. In the background section an extensive review on IAVs with emphasis on SIV is provided. 

The results obtained during the PhD are presented in two complete manuscripts and one work in 

progess, followed by a joint discussion of the main results. 

Manuscript I analyze the genetic and antigenic evolution of two of the most prevalent SIVs circulating 

in Denmark. In total, 78 sequences of the H1N1 and H1N2 subtypes, collected in the period 2003-2012, 

was analyzed. The genetic analysis was based on several computational methods for estimation of 

phylogeny, selection pressure, evolutionary rates and time of most recent common ancestor for the 

surface glycoproteins, HA and NA. The antigenic relationship of the Danish H1 SIVs was determined 

by antigenic cartography. High evolutionary rates of HA and NA compared with low evolution 

suggests that evolution is primarily controlled by purifying selection. Further, a high level of genetic 

relatedness and of low evolution was observed for the Danish H1 sequences, this observation was 

supported by both phylogeny and antigenic cartography. Antigenic cartography also revealed few 

antigenic outliers that potentially indicated drift away from current H1 viruses. The time of most recent 
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common ancestor for H1 was estimated to be markedly earlier than previously suggested. Phylogenetic 

analysis of the Danish N2 gene revealed that two different lineages are circulating in Denmark. 

Manuscript II describes the biological characterization of four different Danish SIVs and includes an 

experimental pathogenesis study performed in ferrets, which are regarded as the most appropriate small 

animal model for human IAV infections. The viruses chosen for this study were two enzootic SIVs 

(H3N2 and H1N2) and two new SIV reassortants (H1avN2hu and H1pdmN2sw). The two reassortants 

were detected for the first time in 2011 and have since then become established and are now circulating 

in Danish pigs. Viral replication in nasal wash samples and viral load in respiratory organs were 

determined. Growth kinetics of the four SIVs were determined in vitro using respiratory swine and 

human cell lines. The affinity of HA of the four SIVs for α2,3- and α2,6-receptors were assessed as 

well as receptor kinetics and antiviral susceptibility of NA. This study showed that all four SIVs were 

able to infect and transmit efficiently and to high titers via direct contact and H3N2 was found also to 

transmit efficiently via the airborne route. H3N2 and H1pdmN2sw were found to induce the most 

severe lung lesions, consistent with these two viruses expressing the highest viral load in lung tissue 

samples. Growth kinetics demonstrated that all four SIVs were able to infect and replicate to high titers 

in both swine and human respiratory cell lines.  

Receptor studies showed a high preference for binding to α2,6-receptors for the Danish SIVs. NA 

kinetics revealed a high enzyme activity for H1pdmN2sw compared to the remaining viruses, 

suggesting that NA activity alone is not sufficient for the observed airborne transmission of H3N2. 

Furthermore, it was revealed that the Danish SIVs were found to be sensitive to all of the 

neuraminidase inhibitors tested. Based on the findings in this study it was proposed that viruses with a 

human-like HA play a more significant role in transmission compared to viruses with only a human-

like NA. Furthermore, this study also underlined the importance of continued surveillance of SIVs in 

order to detect new reassortants as well as the necessity of assessing their zoonotic potentials. 

Manuscript III describes the establishment of a reverse genetics system based on a backbone from the 

Danish H1N2 SIV, which is one of the two most prevalent subtypes in Denmark. Recently, a variant of 

a North American swine H3N2 virus containing a pandemic M gene was transmitted to humans in the 

US and on few occasions human-to-human transmission was observed. These events underline the need 
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for a reverse genetics system to be used for an analysis of the behavior of a pandemic M gene in a 

Danish SIV.  
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Sammendrag (Danish summary) 
 

SAMMENDRAG (DANISH SUMMARY) 

Influenza A virus (IAV) er et vigtigt respiratorisk patogen med bred værtsspecificitet. Det naturlige 

reservoir for IAV findes i svømmefugle, men både mennesker og svin betragtes også som naturlige 

værter. I løbet af det sidste århundrede, har IAV både forårsaget alvorlige pandemier og sæson-

betingede epidemier hos mennesker. I svin, er svineinfluenza virus (SIV) endemisk og er forbundet 

med økonomiske tab for landmanden grundet påvirkningen af svinenes generelle helbred, hvilket 

derved forårsager en nedgang i produktionen. Det er tidligere blevet vist at svin er modtagelig for 

infektion med IAVs der stammer fra forskellige værter og er derfor blevet foreslået som værende 

potentielle ”blande-kar” for nye IAVs. Herudover er det i flere tilfælde blevet dokumenteret at IAV er i 

stand til at smitte fra svin til mennesker og vice versa, hvilket yderligere klassificerer dette virus, som 

en meget vigtig zoonose. Dette aspekt fremmer muligheden for dannelse og etablering af nye og 

potentielt mere virulente virus med potentiale for at forårsage alvorlige pandemier. Derfor er det vigtigt 

at opnå en større dybere forståelse af SIV evolution, det zoonotiske potentiale såvel som værts-

specificitets karakteristika og formålet med dette PhD projekt er at belyse dele af disse vigtige aspekter. 

PhD afhandlingen starter med en præsentation af formålet og en kort introduktion til SIV situationen i 

Danmark. I baggrundsafsnittet gives et dybdegående litteraturstudie af IAV med vægt på SIV. 

Resultater opnået under dette PhD projekt præsenteres i form af to komplette manuskripter, samt et 

igangværende studie, hvilket efterfølges af en generel diskussion af resultaterne. 

Manuskript I analysere den genetiske og antigene evolution af to af de hyppigst forekommende SIV 

subtyper der cirkulerer i Danmark. I alt blev 78 sekvenser, af H1N1 og H1N2 subtyperne indsamlet i 

perioden 2003-2012, analyseret. Den genetiske analyse var baseret på flere forskellige 

beregningsmetoder for at estimere fylogeni, selektionstryk, evolutionære rater og tidspunktet for den 

seneste fælles forfader for overfladeproteinerne HA og NA. Det antigene forhold mellem de danske H1 

SIV blev bestemt ved antigen kartografi. Høje evolutionære rater for HA og NA sammenholdt med lav 

evolution tyder på at evolutionen primært er kontrolleret af vedligeholdende selektion. Ydermere blev 

der observeret en tæt genetisk relation og lav evolution for de danske H1 sekvenser, en observation der 

blev understøttet af både fylogeni og antigen kartografi. Den antigene kartografi synliggjorde også få 

antigene afvigere, der potentielt kan indikere at de pågældende afvigere bevæger sig væk fra de 
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Sammendrag (Danish summary) 

nuværende H1 virus. Estimatet af tidspunktet for den seneste fælles forfader for H1 blev fundet til at 

være forekommet længe før tidligere foreslået. Fylogenetisk analyse af det danske N2 gen viste at to 

forskellige linjer cirkulerer i svin i Danmark. 

Manuskript II beskriver den biologiske karakterisering af fire forskellige danske SIV og inkluderer et 

eksperimentelt patogenese studie i fritter, der anses for at være den bedst mulige smådyrsmodel for 

humane IAV infektioner. De virus der blev udvalgt til dette studie var to enzootiske SIV (H3N2 og 

H1N2) og to nye SIV reassortanter (H1avN2hu og H1pdmN2sw). De to reassortanter blev påvist for 

første gang i 2011 og har siden da etableret sig og cirkulerer nu i danske svin. Virus replikation i 

næsevask prøver, samt virusmængde blev bestemt. Vækstkinetik for de fire virus blev bestemt in vitro i 

respiratoriske svine og humane celle-linier. Affiniteten af hver af de fire virus’ HA for α2,3- og α2,6-

receptorer blev også undersøgt, såvel som receptorkinetik og anti-viral modtagelighed for NA. Dette 

studie viste at alle fire SIV var i stand til effektivt og med høje titer-værdier, at inficere og overføres 

mellem fritter via direkte kontakt og det viste sig at H3N2 også effektivt kunne overføres mellem fritter 

ved luftbåren smitte. H3N2 og H1pdmN2sw gav de mest alvorlige læsioner i lungerne, hvilket var i 

overensstemmelse med at disse to virus også udviste den højeste virusmængde i vævsprøver fra 

lungerne. Vækstkinetikken demonstrerede at alle fire SIV var i stand til at inficere og replikere til høje 

titer-værdier i både svine og humane respiratoriske celle-linier. 

Receptor studier viste, at alle fire danske SIV udviste en høj præference for binding til α2,6-receptorer. 

NA kinetikken viste at enzym aktiviteten for H1pdmN2sw var høj i sammenligning med de resterende 

virus, hvilket tyder på at NA aktiviteten ikke alene er afgørende den luftbårne smitte der blev 

observeret for H3N2. Yderligere blev det fundet at de danske SIV var modtagelige for alle de testede 

neuraminidase inhibitorer. Baseret på fundende i dette studie kunne det tyde på at virus med et HA af 

human oprindelse spiller en større rolle i overførslen mellem fritter, sammenlignet med virus hvor NA 

er af human oprindelse. Ydermere, understregede dette studie også betydningen af en fortsat 

overvågning af SIV for at kunne detektere nye reassortanter, såvel som nødvendigheden af at være i 

stand til at undersøge disse nye reassortanters zoonotiske potentiale. 

Manuskript III beskriver etableringen af et kloningssystem, der er baseret på en dansk H1N2 SIV, der 

er en af de mest almindelige subtyper i Danmark. For nyligt blev en variant af et nordamerikansk svine 

H3N2, indeholdende et pandemisk M gen, fundet i stand til at smitte til mennesker i USA og i få 
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tilfælde blev smitte mellem mennesker også konstateret. Disse begivenheder understreger behovet for 

et kloningssystem der kan anvendes til analyse af det pandemiske M gen i en dansk SIV. 
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Introduction 

INTRODUCTION 

The circulation of SIV in pig herds is of economic concern to farmers due to production impacts, such 

as retained growth, increased mortality and use of antibiotics, as well as decreased animal health 

welfare. In addition, the circulation of SIVs in the herds also represents the risk of zoonotic 

transmissions to humans, which could have a pandemic potential. Pigs have been shown to be 

susceptible to infection with both human and avian IAVs, which have led to the hypothesis that pigs 

could serve as an intermediate host in the generation of new reassortant viruses. The importance of pigs 

in IAV ecology was further underscored by the emergence of the pandemic H1N1 in 2009 - an event 

that also highlighted the significance of understanding the evolution of these highly diverse viruses.  

In 1981 the first SIVs were detected in Danish pigs, and have been circulating endemically since. 

However, since then no further detailed studies have been conducted concerning the evolution of SIV 

in Denmark and there has been an almost complete lack of systematic surveillance.  

In 2011 a more detailed passive surveillance of SIV in Denmark was established supported by the 

Danish Veterinary and Food Administration (DVFA). In this program, SIV detected in clinical samples 

from pigs with respiratory symptoms were subtyped (HA and NA genes) and selected isolates were full 

genome sequenced. This more systematic and thorough surveillance provided an overview of the 

prevalence of the different subtypes circulating in Danish pigs. Furthermore, several new SIV 

reassortants were detected, some of which appear to have become established and now circulates in 

pigs, albeit at low levels. However, the surveillance does not consider the evolution of these viruses and 

hence no studies regarding the genetic and antigenic evolution of Danish SIVs have been conducted. 

The surveillance program did not, however, support further characterization of the genetic and 

antigenic evolution of the established subtypes, nor did it support biological and zoonotic 

characterization of the new reassortants. 

In the US, the reassortant H3N2 SIVs containing the H1N1pdm09 matrix (M) gene has been shown to 

be able to efficiently transmit to humans on several occasions, highlighting the need for assessment of 

the zoonotic potential of new reassortant viruses. Furthermore, also the need for specific tools for 
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investigation of the various barriers and factors involved in the successful adaptation of reassortant 

viruses to new hosts, are highly needed. 

The main aims of this PhD project were to improve the knowledge on the evolution of circulating SIV 

strains in Danish pigs and to characterize the new reassortant viruses. Furthermore, the aim was to 

establish a reverse genetics system to be used as a fast and functional tool for future analysis of host-

range restrictions of potential new IAV reassortants.
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Background 

BACKGROUND 

Influenza is one of the most common respiratory diseases in humans and one of the most significant, 

due to the generally high morbidity and the increased mortality of infants, elderly and chronically ill 

persons (Nicoll et al., 2012;Taubenberger and Morens, 2008). In humans, influenza is an acute 

respiratory disease with symptoms including high fever, coryza, cough, headache, prostration, malaise, 

and inflammation of the upper and sometimes the lower respiratory tract. The symptoms usually persist 

for 7 to 10 days, but weakness and fatigue can be experienced for weeks after clearance of the 

infection. Outbreaks often occur in the winter period in the northern hemisphere (Cate, 

1987;Taubenberger and Morens, 2008). 

The first reports of possible influenza pandemics can be dated back to 412 BC in early Greek writings 

and symptoms resembling those of influenza were frequently described from that point onward. It was 

not until the 18th century, that both quality and quantity of data were sufficient to be reliable as possible 

descriptions of influenza epidemics and/or pandemics. First from 1957, where the virus was available 

for further analysis, the terms pandemic and epidemic could be used without questioning (Potter, 2001). 

Only three HA subtypes of IAV (H1N1, H2N2 and H3N2) have caused epidemics in humans in 

modern times (Fig 1). The most severe pandemic in the past century was caused by the H1N1 subtype 

in 1918, also known as “the Spanish flu”, which resulted in approximately 546,000 deaths alone in the 

United States (Taubenberger and Morens, 2006) and killed up to 50 million people worldwide (Johnson 

and Mueller, 2002). In 1957, a pandemic was caused by an IAV of H2N2 subtype, known as the “Asian 

flu” due to its origin in China. The H2N2 subtype was replaced by the H3N2 subtype in 1968, which 

was the cause of the next pandemic known as the “Hong Kong flu”. In 1977, a re-emergence of a 

descendant of the 1918 H1N1 IAV occurred, which was found to be genetically similar to the viruses 

that circulated before 1957. Since it was thought highly unlikely that a virus could have circulated for 

20 years without being detected or having accumulated mutations, it was therefore suggested that the 

re-emergence had to be caused by an accidental release of a frozen version of an early 1950 strain 

(Nakajima et al., 1981;Taubenberger and Kash, 2010).    

14 
 



Background 
 

In 2009 a new pandemic H1N1 virus (H1N1pdm09) occurred which differed from the earlier known 

H1N1 viruses (Smith et al., 2009a;Smith et al., 2009b) and since then, this IAV has gradually replaced 

the seasonal H1N1 virus (Neumann and Kawaoka, 2011) and began co-circulating with H3N2 causing 

seasonal influenza epidemics in humans. 

 

 

Figure 1 An overview of the different influenza A virus (IAV) subtypes circulating in both humans and pigs during the last 

century. The jagged ends on the bars of the H1N1pdm09 and H3N2 bars indicate that these viruses continue to circulate in 

the human population. In pigs the IAV subtypes are more diverse and different variants can be found dependent on country 

and continent. Modified from (Webster and Govorkova, 2014). 
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INFLUENZA A VIRUS IN SWINE 

In swine, influenza is an important disease resulting in compromised health of pigs, and also has a 

significant impact on the production economy. SIV is also included in the porcine respiratory disease 

complex (PRDC), a term used for describing respiratory symptoms and poor growth in finishing pigs. 

PRDC is a multifactorial syndrome caused by a combination of several pathogens and environment 

(Bochev, 2007). 

Swine influenza was described for the first time in the Midwestern US in 1918 (Koen, 1919), this 

description coincided with the human influenza pandemic. It was not until 1930 that the first SIV, 

belonging to the H1N1 lineage, was isolated from North American pigs, which also happened to be the 

first IAV ever to be isolated (Shope, 1931a). The clinical signs of swine influenza resemble those also 

observed for humans and are characterized by an acute onset of the disease, fever, inactivity, 

inappetence, respiratory distress, coughing, sneezing, conjunctivitis and nasal discharge (Zell et al., 

2012). Virus is shed from nasal discharges and is transmitted via pig to pig contact by droplets and 

aerosols (Brown, 2000b). Usually the course of disease is mild and sometimes also asymptomatic 

(Loeffen et al., 1999). The morbidity is high (up to 100%) and mortality has been estimated to be low 

(around 1-4%) (Koen, 1919;Shope, 1931b), however secondary bacterial infections is a common 

sequelae and can exacerbate the severity of the clinical condition. The incubation period varies from 1-

3 days and full recovery is usually obtained 4-7 days after onset of the disease (Ma et al., 2009). In 

European pigs the virus has been found to circulate throughout the year (Zell et al., 2012), which could 

be due to modern farming facilities having a high number of pigs, where fatteners are slaughtered every 

six months, leading to a continuous introduction of new and susceptible animals into the herds (Brown, 

2000b).  

European and Danish swine influenza viruses 

The IAV observed for the first time in pigs back in 1918 of H1N1 subtype was later termed classical 

swine H1N1(Brown, 2000b). Several years later, sequencing of both human IAV and SIV revealed that 

the virus most probably spread from humans to pigs (Reid et al., 1999). 

The classical swine H1N1 virus (Fig. 2) was demonstrated in Europe in 1976, in pigs imported to Italy 

from US (Nardelli et al., 1978). Accordingly, the classical swine H1N1 was isolated during epidemics 
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from several European countries, including Denmark in the period 1981-1984 (Johnsen, 1985;Sorensen 

et al., 1981). In 1979 outbreaks of influenza among swine in the Netherlands and Germany were caused 

by a new H1N1 subtype which differed from the classical H1N1 (Pensaert et al., 1981). The new H1N1 

virus was thought to be the result of a transmission event from birds to pigs and created a new lineage, 

afterwards referred to as the avian-like H1N1 (Fig. 2) (Scholtissek et al., 1983). The avian-like H1N1 

spread throughout Europe, causing severe disease in swine and gradually replaced the classical swine 

H1N1 in Europe (Abusugra et al., 1987;Schultz et al., 1991).  

Following the “Hong Kong flu” pandemic in 1968, a human-like H3N2 virus was isolated from pigs in 

Asia (Miwa et al., 1987). This human-like H3N2 spread and became adapted to swine and started to 

circulate, though at low levels, in Europe (Ottis et al., 1982;Tumova et al., 1980). Around 1984, a 

reassortment event between the human-like H3N2 and the avian-like H1N1 took place. The human-like 

H3N2 acquired the internal genes of the avian-like H1N1, but kept the HA and NA from the human-

like H3N2 subtype (Castrucci et al., 1993). This created the reassortant human-like H3N2 virus subtype 

(Fig. 2) which induced severe clinical symptoms in pigs compared to the original human-like H3N2 

(Campitelli et al., 1997;Castrucci et al., 1993). Since its detection in the early 1980s, the reassortant 

human-like H3N2 gradually replaced the original human-like H3N2 in Europe and during the 1990s it 

was identified in several European countries including Denmark (Castro et al., 1988;Yus et al., 

1992;Zhang et al., 1989) (Bøttner, personal communication). 

In 1987, an H1N2 virus was isolated in Brittany in France, with its HA originating from the avian-like 

H1N1 and its NA originating from the reassortant human-like H3N2 (Gourreau et al., 1994). This 

H1N2 did not spread in Europe, but in 1994 another H1N2 was isolated in UK. The HA of this virus 

was found to originate from a human-like H1N1 that had been circulating in pigs since the 1977 Russia 

pandemic (Brown et al., 1993) and NA originating from the European reassortant human-like H3N2. 

This virus now had HA and NA of human-like origin, whereas all internal genes were of avian-like 

origin (Brown et al., 1998) and was therefore named reassortant human-like H1N2 (Fig. 2). This virus 

quickly spread to the central Europe (Kuntz-Simon and Madec, 2009), but has not been detected in 

Denmark (Bøtner, 1994;Trebbien et al., 2013). In 2003 a new reassortant H1N2 was detected in 

Denmark, containing an H1 of avian-like H1N1 origin and a N2 of reassortant human-like H3N2 origin 

(Fig. 2) (Trebbien et al., 2013). This subtype has since become established in Denmark and is now one 
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of the two most prevalent subtypes circulating in the Danish swine herds (unpublished data). The 

reassortant avian-like H1N2 virus has also been detected in Sweden, Germany and Italy (Balint et al., 

2009;Harder et al., 2013;Metreveli et al., 2011). Several different reassortants of the H1N2 subtype 

have been detected in different parts of Europe (Kyriakis et al., 2013;Marozin et al., 2002), which has 

made naming and interpretation complicated. 

In January 2010, the first H1N1pdm09 was detected in Danish pigs and from this first detection, the 

H1N1pdm09 started to co-circulate with the remaining enzootic SIVs in Denmark (unpublished data). 

The H1N1pdm09 which caused the latest pandemic in the human population has a unique gene 

constellation with six of its segments (PB2, PB1, PA, HA, NP and NS) derived from the North 

American triple reassortant swine (TRS) IAV and two segments (M and NA) derived from the Eurasian 

SIV lineage (Fig. 3) (Dawood et al., 2009).  

Since 2011 a more detailed passive surveillance of SIVs has been conducted in Denmark, revealing that 

the avian-like H1N1 and H1N2 SIVs are the two most prevalent subtypes circulating in Danish swine, 

followed by the H1N1pdm09. Since 2009, the H3N2 virus has only been detected few times in the 

surveillance (unpublished data). But more importantly, since the more detailed surveillance began, 

several new reassortant viruses have been detected, one of these contains seven segments derived from 

the avian-like H1N1 and a N2 most closely related to that of a human seasonal H3N2 virus that 

circulated in the mid-1990s (Breum et al., 2013). This subtype has been termed H1avN2hu (Fig. 2), to 

distinguish it from the H1N2. Another subtype containing seven genes from the H1N1pdm09 and an 

N2 gene similar to the one found in the H1avN2hu, termed H1pdmN2hu (Fig. 2), has also been 

detected, as well as a subtype containing the seven segments from H1N1pdm09 and the N2 from the 

reassortant avian-like H1N2 (termed H1pdmN2sw, Fig. 2). The H1pdmN2sw has also been detected in 

Germany (Starick et al., 2012). Reassortants different from those already mentioned have also been 

detected in Denmark, but common for the three mentioned here, are that they have all been detected in 

several submissions in the recent years, indicating that they may have become established in Danish 

pigs, albeit presumably at low levels (unpublished data). 
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Figure 2 Overview of the different influenza A virus (IAV) subtypes circulating in Europe.   

North American swine influenza viruses 

Since the first isolation of SIV virus in 1930 in US (Shope, 1931a) and until 1998-1999, only the 

classical swine H1N1 virus was isolated in the US pig population. In 1998, severe influenza outbreaks 

were observed in several states in the US. These outbreaks were found to be caused by two different 

H3N2 reassortants (Fig. 3), one was a double reassortant containing the NS, NP, M, PB2 and PA 

segments from the classical swine H1N1 and PB1, HA and NA from a seasonal human H3N2. The 

other virus was a triple reassortant containing the NP, NS and M segments from the classical swine 

H1N1 and PB1, HA and NA segments from the same seasonal human H3N2 as the double reassortant 

and also PB2 and PA segments from an avian virus (Zhou et al., 1999). The double reassortant H3N2 

virus disappeared from the pig population, whereas the triple reassortant became established in the US 

pig population (Webby et al., 2000). This triple reassortant H3N2 virus later reassorted with the 

classical swine H1N1 and evolved further through antigenic drift and different introductions of human 

H3 genes. Of the different introduction of H3 genes, three became established and gave rise to the 

phylogenetic clusters I, II and III. The H3N2 belonging to the phylogenetic cluster III has become 

dominant in North America (Gramer et al., 2007). Common for all these H3N2 reassortants are their 

constellation of internal genes; classical swine H1N1-like NP, M and NS, avian-like PB2 and PA and 
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human H3N2-like PB1, which have been termed the triple reassortant internal genes (TRIG) and appear 

to provide the virus with an advantage upon infection of the pig host (Vincent et al., 2008).  

Further reassortants have been identified and among these, the reassortant H1N1 (rH1N1, Fig. 3), with 

its surface genes originating from the classical swine H1N1 and the internal genes constituted by the 

TRIG cassette and also a virus of H1N2 subtype (Fig. 3) containing the TRIG cassette with the N2 gene 

from the triple reassortant H3N2 and the H1 from the classical swine H1N1 (Karasin et al., 

2002;Webby et al., 2004). Based on the H1s derived from classical swine H1N1s, these viruses have 

been divided phylogenetically into three different clusters termed α, β and γ. In 2003 a new H1N2 

subtype of human origin (Karasin et al., 2006) and in 2005 yet another subtype with human-origin H1 

and N1 and the TRIG cassette was identified (Fig. 3) (Vincent et al., 2009), representing separate 

introductions of human-origin H1 viruses into the US pig population. These two new lineages have 

since become endemic in US pigs and are now one of the major subtypes isolated and characterized 

from swine respiratory outbreaks (Lorusso et al., 2012) and have been assigned phylogenetically as 

belonging to cluster δ1 and δ2, respectively (Vincent et al., 2009).    

 

 
Figure 3 Simplified overview of the subtypes that have been isolated from the US pig population. 

Asian swine influenza viruses 

Movement of live pigs has a high impact on the introduction and establishment of new strains to 

immunologically naïve pig populations and thereby also the potential development of new SIVs. In this 

respect, Asia is very important due to the frequent import of live pigs from both Europe and the US. 
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The classical SIV was detected in Asia for the first time in the mid-1970s (Shortridge and Webster, 

1979) and human H3N2 viruses were found to circulate in different variants among pigs in Asia, 

containing the entire human-like structure (Peiris et al., 2001;Shortridge and Webster, 1979). In the late 

1990s, the reassortant human-like swine H3N2 circulating in Europe, was introduced in Asia (Gregory 

et al., 2001), and a few years later there was an introduction of European avian-like swine H1N1 which 

became dominant (Vijaykrishna et al., 2011). Other co-circulating viruses are the American triple 

reassortant H1N2 and the H1N1pdm09 as well as a wide range of transient reassortants. The only 

reassortant virus that has become established is a strain containing seven segments from the European 

avian-like swine lineage and a NS segment from the TRS lineage and this lineage is now the 

predominant virus of the European avian-like swine lineages (Vijaykrishna et al., 2011).   

Interspecies transmission between human and swine 

During the last decades, swine farming practices have significantly changed from small-scale backyard 

farming to large-scale modern-production facilities. This has also significantly increased the interface 

between human and swine, which thereby also has enhanced the probability of interspecies 

transmission. In the first line is the personnel working at these large-scale farming facilities, they 

present a naïve population in terms of SIVs and they can also be involved in the introduction of human 

IAV to pigs – a situation that potentially represents the possibility for the formation and establishment 

of new reassortant viruses in both species (Krueger and Gray, 2012). 

The first well-documented human case of infection with SIV occurred in 1958 (Gray et al., 

2012;Krueger and Gray, 2012) and since then sporadic infections with SIV have continually occurred 

(Krueger and Gray, 2012). Among the cases of SIV transmissions to humans were the incidence at Fort 

Dix, Missouri, in 1976, where several soldiers were infected with classical swine H1N1 (Gaydos et al., 

1977). In 2009 an IAV of H1N1 subtype containing segments of swine-origin, caused the first 

pandemic of this century (Garten et al., 2009;Smith et al., 2009b) and most recently cases where a 

variant of the North American H3N2 SIV, containing a H1N1pdm09 M gene, have been transmitted to 

humans on several occasions (2012;2011;Nelson et al., 2012). A general trait of the SIV transmission 

to humans is that sustained human-to-human transmission has only been observed in rare cases 

(Krueger and Gray, 2012).   
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The introduction of IAVs from human to swine has likewise occurred on several occasions with the 

first described introduction being the classical H1N1 that was transmitted from human to swine (Koen, 

1919). This was followed by the introduction of H3N2 originating from the 1968 pandemic (Miwa et 

al., 1987;Ottis et al., 1982;Tumova et al., 1980) and lately reverse zoonotic events introduced the 

H1N1pdm09 into the pigs as well (Howden et al., 2009;Moreno et al., 2010). Recently, a phylogenetic 

study also estimated that IAVs from humans have frequently been introduced to the pig population 

during the last century. In this time period at least 20 introductions of human IAVs showed sustained 

transmission in pig population for at least a year after the introduction (Nelson et al., 2014). 

These findings clearly show that human IAVs as well as SIVs both play a substantial role in the overall 

ecology of IAVs. 

BIOLOGY OF INFLUENZA VIRUSES 

Taxonomy and structure 

IAV belongs to the family Orthomyxoviridae, including five genera, Influenza A, B and C, Thogoto- 

and Isa virus. IAVs have been isolated from a wide range of species, including humans, swine, birds, 

seals, cats, horses and dogs, but aquatic birds are considered the natural reservoir of IAV (Webster et 

al., 1992). Influenza B viruses have been isolated from humans and seals and influenza C viruses have 

been isolated from humans and swine and usually only causes mild disease in the upper respiratory 

tract. Influenza B viruses can cause a wide variety of disease, but generally clinical symptoms are 

similar to those of IAV (2014;Baigent and McCauley, 2003). 

The IAV genome consists of a total of 13588 nucleotides and virions are enveloped and spherical or 

pleomorphic with a size ranging from 50-120 nm in diameter (Fujiyoshi et al., 1994). 

The genome of IAV is divided into eight negative sense RNA segments encoding at least 13 proteins. 

These proteins include polymerase basic proteins 1 and 2 (PB1 and PB2), polymerase acidic protein 

(PA), nucleocapsid protein (NP), surface glycoproteins hemagglutinin (HA) and neuraminidase (NA), 

matrix proteins (M1 and M2) and non-structural proteins 1 and 2 (NS1 and NS2, also known as nuclear 

export protein; NEP) (Table 1).  
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Table 1 Influenza A virus genome 
 

Segment 

 

Protein 

 

Size (nucleotide) 

 

Function 

1 PB2 2341 Polymerase subunit: host cap binding and endonuclease 

2 PB1 

PB1-F2 

PB1-N40 

2341 Catalytic subunit of polymerase 

Pro-apoptotic protein 

Unknown function 

3 PA 

PA-X 

2233 Subunit of polymerase, active in vRNA synthesis 

Represses cellular gene expression 

4 HA 1778 Receptor binding to sialic acids and fusion with host cells 

5 NP 1565 Nucleocapsid 

6 NA 1413 Neuraminidase, cleaves sialic acid linkages 

7 M1 

M2 

1027 

 

Matrix protein 

Ion channel 

8 NS1 

NEP (NS2) 

890 

 

Interferon response inhibitor 

RNP nuclear transport 

 

The envelope covering the virion is made of a lipid bilayer derived from the host cell membrane and 

contains the three viral proteins; HA, NA and M2 (Fig. 4). The HA protein is the most abundantly 

expressed of the three and constitutes approximately 80% of the surface proteins, NA constitutes 

approximately 17% and M2 as the least abundantly expressed protein with just 16-20 M2 proteins per 

virion (Nayak et al., 2009). On the inside of the viral membrane is M1, where it makes up a matrix that 

holds the viral nucleoproteins (vRNPs). The vRNPs are comprised of viral RNA (vRNA) and are 

wrapped around NP and small amounts of NEP and at one end of the vRNPs are the polymerase 

proteins, PA, PB1 and PB2 (Nayak et al., 2009).  
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Figure 4 A schematic presentation of an influenza A virus. The surface glycoproteins hemagglutnin (HA) and 

neuraminidase (NA), as well as the ion channel matrix 2 (M2) are located on the surface of the virion. On the inside of the 

membrane, the matrix (M1) protein forms a matrix holding the viral ribonucleoproteins (vRNPs) containing the viral 

polymerase complex (PA, PB1 and PB2) and NP, as well as small amounts of NEP (Karlsson Hedestam et al., 2008).  

 

IAVs are subtyped according to their surface glycoproteins HA and NA and to date, 18 HA and 11 NA 

subtypes have been isolated, where the H17N10 and H18N11 are the most recently discovered subtypes 

and have only been isolated from bats (Fouchier et al., 2005;Tong et al., 2013;Tong et al., 

2012;Webster et al., 1992). HA subtypes are further divided into two groups based on phylogenetic 

relationship, where group 1 includes H1, H2, H5, H6, H8, H9, H11, H12, H13, H16, H17 and H18; 

group 2 includes H3, H4, H7, H10, H14 and H15 (Fig. 5) (Air, 1981;Nobusawa et al., 1991;Wu et al., 

2014). Also NA can be divided into two groups, here group 1 contains N1, N4, N5 and N8 and group 2 

contains N2, N3, N6, N7 and N9 (Russell et al., 2006), recently N10 and N11 have been proposed to 

form group 3 (Fig. 5) (Wu et al., 2014). 
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Figure 5 Phylogenetic relationship among hemagglutinins and neuraminidases. (A) HAs can be grouped into two groups, 

group 1 and 2. The bat-derived H17 and H18, belonging to group 1, are marked with an asterisk. (B) NAs are originally 

grouped into two groups, but the bat-derived N10 and N11 (marked with asterisks) could not be placed in either group and 

were therefore proposed to form a third group (Wu et al., 2014). 

Influenza A evolution 

Antigenic variation is the evolutionary advantage of the IAV which can be divided into two 

phenomenons, namely antigenic shift and antigenic drift. Antigenic shift can occur when a host is co-

infected with two or more different IAVs and gene segments are interchanged during virion packing. 

This event is termed reassortment and is defined by the exchange of intact segments between two 

differing influenza A viruses (Brown, 2000a). 

Antigenic drift is due to the high mutational rate of the polymerase, where the lack of proofreading of 

the RNA polymerases contribute to a mutation rate of the order of 10-5 to 10-6 

substitutions/site/replication (Nobusawa and Sato, 2006;Stech et al., 1999), and the selective pressure 

of the immune system of the host. Most nucleotide substitutions are silent, meaning that they do not 

affect the virus. The majority of amino acids residues in the IAV are negatively selected, a process 

termed purifying selection. This means that substitutions are only accepted under certain selection 

pressures, since they otherwise would affect viral fitness. When amino acid residues are positively 

selected, it is termed diversifying selection and only very few residues are positively selected. The 

combination of the lack of proofreading of the polymerase and the immune pressure exerted by the host 
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will favor the situation where the virus obtains a substitution that permits its escape from the immune 

system and thereby provides a fitness advantage to the virus. The accumulation of these substitutions 

will eventually lead to the development of an antigenically different virus strain which is more fit and 

able to replace existing strains (Zell et al., 2012). 

SURFACE GLYCOPROTEINS 

Hemagglutinin 

HA is synthezised from RNA segment four as a precursor protein, HA0, consisting of a single 

polypeptide chain of 549 amino acids (for H1) (Sriwilaijaroen and Suzuki, 2012). Subsequent cleavage 

of HA0, as well as glycosylation, occurs during the co-translational process. The precursor protein is 

cleaved by cellular proteases into two chains, HA1 (327 amino acids) and HA2 (222 amino acids), 

respectively (Fig. 6). Cleavage of the precursor protein happens for most HA subtypes at a single basic 

amino acid residue which most often is arginine and rarely a lysine (Laver, 1971) and subsequent to 

cleavage, the two subunits are still linked through a disulphide bond (Sriwilaijaroen and Suzuki, 

2012;Wiley and Skehel, 1987). In poultry, virulence of H5 and H7 subtypes are determined by the 

number of basic amino acids in the cleavage site. IAVs containing a single basic amino acid at the 

cleavage site are said to be low pathogenic avian influenza (LPAI), whereas IAVs containing a multi-

basic amino acid sequence are said to be a high pathogenic avian influenza (HPAI). The difference in 

virulence of these two types is due to the cleavage of HPAI by specific proteases present throughout the 

host giving rise to a systemic infection (Alexander, 2000). 

The functional HA protein is a homotrimeric type I integral membrane protein (Fig. 6), which carries 

multiple glycosylation sites. The HA is involved in viral attachment and entry into host cells during 

virus infection, by binding to sialic acid receptors on the host cell surface. The three monomers of HA 

each consists of conserved structures, including a globular head domain and a stem region. The 

globular head region is comprised of a pocket at the distal tip, acting like the receptor binding site 

(RBS) and surrounded by antigenic sites. At the edges of the receptor binding site, three conserved 

secondary structures exists, the 130 (including residues 130-138) - and 220 (residues 221-228)-loops 

and the 190-helix (residues 190-198). A set of conserved residues, 98Y, 153W, 183H and 195Y (H3-

numbering is used throughout this thesis) forms the base of the RBS (Skehel and Wiley, 2000). The 
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antigenic sites of HA was determined by analysis of acquired mutations upon growth of the viruses in 

the presence of monoclonal antibodies and antigenic sites are defined as antibody recognizing sites. For 

H1, five antigenic sites were determined and designated accordingly: Sa (residues 128-129, 156-160, 

162-167) and Sb (residues 187-198), Ca1 (residues 169-173, 206-208, 238-240) and Ca2 (residues 140-

145, 224-225) and Cb (residues 74-79) (S: strain-specific; C: common) (Caton et al., 1982;Gerhard et 

al., 1981). For H3, these sites are designated A (122, 133, 137, 143-146), B (155-156, 158-159, 188-

189, 193), C (53-54, 275, 278), D (201, 205, 207-208, 217, 220) and E (Jahangir et al., 2012;Perez et 

al., 2013;Shin and Seong, 2013;Skowronski et al., 2013;Tharakaraman et al., 2013;Webster and Laver, 

1980;Wiley et al., 1981). Specific amino acids have previously been shown to be critical determinants 

of receptor binding specificity. Amino acids 190 and 225 have been shown to be of high importance for 

receptor binding and host specificity of H1 viruses. For H3 viruses the residues shown to be of major 

difference between human and avian viruses are located at residues 226 and 228 (Matrosovich et al., 

2000).   

 

Figure 6 Structure of influenza A virus hemagglutinin. The monomeric form of hemagglutinin showing the globular 

domain and the stem domain, where HA1 is shown in pink and HA2 in cyan. In the active trimeric form of HA, each of the 

monomers are colored and arrows depict the site of cleavage and receptorbinding site. Glycosylation sites are shown in 

yellow. Modified from (Ge et al., 2010) and (http://www.accessexcellence.org/WN/SU/avianflufeb04.php). 

Antigenic cartography is a method used for visualization of the antigenic relationship among IAVs. 

This method is based on the relative distances between antigens and selected antiserums. In this way it 
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is possible to predict when an eventual vaccine update is necessary, since viruses drifting away from 

vaccine strains will indicate a beginning antigenic diversity. Recently it has also been shown that 

substitutions at certain amino acid residues were associated with cluster transitions and/or antigenic 

outliers in antigenic cartography. In the human H3N2, these amino acids were 145, 155, 156, 158, 159, 

189 and 193 (Fig. 7)(Koel et al., 2013). Except for residue 193, the exact same amino acid residues 

were defined in North American swine H3N2 viruses (Lewis et al., 2014). For human H1N1 viruses, 

substitutions at amino acid residue 145, were also shown cause cluster transitions (Koel et al., 2013).  

 

 

Figure 7 The hemagglutinin molecule of A/Aichi/2/1968 (H3N2) influenza virus. Here, amino acid residues crucial in 

antigenic drift are indicated. (A) The trimeric model of the HA molecule. The three monomers are shown in black, grey and 

white. Amino acids involved in antigenic drift are shown in red and the receptor-binding site is shown in yellow. (B) 

Residue 145 is located in antigenic site A, and residues 155, 156, 158, 159 and 193 are in the antigenic site B. These are 

considered “cluster-transition” amino acids. Asterisks indicates accessory substitutions and position 193 is both a cluster 

transition substitution and an accessory substitution. Modified from (Koel et al., 2013).  
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Neuraminidase 

NA is a type II integral membrane protein that cleaves sialic acid linkages, including those between 

hemagglutinin and cell surface receptors, which thereby releases newly formed IAVs from the cell 

surface (Fig 8) (Palese and Compans, 1976). Structural studies have shown that NA projects slightly 

further from the membrane compared to HA and that the cell membrane of the virion is covered with 

approximately 40-50 NA spikes. These spikes are situated in clusters of approximately 300-400 HA 

spikes on an average sized virion (around 120 nm) (Harris et al., 2006). The functional NA protein 

consists of four identical monomers with a size of approximately 470 amino acids (Fig. 8). Each 

monomer consists of four structures; an N-terminal sequence, a transmembrane domain and a stalk 

domain of varying length ending in the globular head domain carrying the active site of the enzyme. 

The stalk of the NA protein has been found to vary in both length and sequence, dependent on the 

subtype (Blok and Air, 1982). A short stalk in NA has been associated with progeny viruses that are 

unable to detach from the host cell membrane, due to the inability of the active site to access the 

substrate efficiently and furthermore, stalk length has also been associated with host range restrictions 

(Castrucci and Kawaoka, 1993).  

The active site consists of a pocket on the surface of each subunit formed like a six-bladed propeller 

and constituted by 15 amino acids shown to be conserved in all IAVs (Colman et al., 1983;Varghese et 

al., 1983).  

 

Figure 8 Structure of neuraminidase. The monomer shows a propeller-like arrangement of six-bladed β sheets where the 

active site is located in the middle of this arrangement, surrounded by antigenic sites. The active protein consists of four 

monomers, of which one of the monomers has been colored. Modified from (Li et al., 2012). 

29 
 



Background 

Antigenic sites of NA have been shown to surround the enzyme active site (Malby et al., 1994;Tulip et 

al., 1992;Venkatramani et al., 2006), but the extent of antigenic sites of NA is not as well characterized 

as for HA, even though it has been shown that the antigenic drift in NA is similar for NA and HA and 

that the NA has been mutating faster, compared to HA, in the recent years. The active site of NA is also 

the target of the anti-influenza antivirals oseltamivir and zanamivir (Air, 2012).  

Glycosylation of hemagglutinin and neuraminidase 

N-linked glycosylation is a common post-translational process, in which the addition of glycans to 

glycoproteins takes place. Glycans are added to a specific glycosylation motif N-X-S/T, where T and X 

is any amino acid except P (Kornfeld and Kornfeld, 1985). Due to this highly conserved glycosylation 

motif, potential glycosylation sites can be predicted from sequence analysis, but cannot be used as the 

sole source of identification of glycosylation sites. Potential glycosylation sites can be situated in very 

close structural proximity and hence are not glycosylated due to potential restrictions in the 

surrounding amino acid sequence or steric hindrance (Blake et al., 2009;Sun et al., 2011). 

In general, N-linked glycans carry critical information in terms of correct folding, maturation and 

transport or degradation of proteins (Aebi et al., 2010), and the addition of glycans to both HA and NA 

has been shown to be critical for correct folding of the functional protein (Roberts et al., 1993;Wu et 

al., 2009). The biosynthesis and modification of glycans occurs in the endoplasmic reticulum and the 

Golgi apparatus of the host cell and therefore, the structure of the glycans are thereby also determined 

by the particular host cell (Deom and Schulze, 1985).  

The addition of glycans to both HA and NA are found both in globular and in stem regions. These 

glycosylation sites appear to have a large variation in the globular head region of HA1, whereas the 

stem regions are found to be more conserved (Wang et al., 2009). The presence of glycosylation sites 

in globular head regions is thought to provide the IAVs with a selective advantage for escaping the 

host’s immune system (Sun et al., 2011;Vigerust and Shepherd, 2007). Furthermore, glycosylation has 

also been shown to interfere with receptor binding (Gambaryan et al., 1998;Ohuchi et al., 1997), 

regulation of the catalytic activity of NA as well as prevention of proteolytical cleavage of the NA stalk 

(Matsuoka et al., 2009;Wu et al., 2009). 
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HOST FACTORS AND VIRULENCE 

Receptors 

The first stage in the viral infection cycle is the recognition and binding of HA to receptors on the 

surface of the host cell. The cell surface of mammalian cells are covered by a variety of glycans 

implicated in various physiological and pathological processes and plays an essential role in the 

attachment of different pathogens, like IAVs (de Graaf and Fouchier, 2014;Varki and Varki, 2007). 

Glycans are linked to cell-surface glycoproteins and glycolipids and at the outermost ends of the 

glycans, sialic acids (SA) can be found. SAs are a class of nine-carbon monosaccharides and the two 

most common forms of these found in mammals are N-acetylneuraminic acid (Neu5Ac) and N-

glycolylneuraminic acid (Neu5Gc), both ligands for IAVs (Suzuki et al., 1986). The distribution of 

Neu5Gc and Neu5Ac has been found to vary among tissues and animals species, but Neu5Gc is absent 

in humans due to the lack of the CMP-Neu5Ac hydroxylase (CMAH) responsible for its synthesis 

(Chou et al., 1998). Further, it has been found that IAVs prefer binding to Neu5Ac over Neu5Gc 

(Suzuki et al., 1986). In swine, both Neu5Ac and Neu5Gc have been found to be present, with the 

highest abundance of Neu5Ac (Bateman et al., 2010;Sriwilaijaroen et al., 2011). 

SAs are bound at the terminal sugar of glycoproteins and the sugar residues linked to SAs can vary in 

structure and includes galactose (Gal), N-acetylglucosamine (GlcNAc) and N-acetylgalactosamine 

(GalNAc) (Nicholls et al., 2008). Linkage of the SA to the sugar residue is generated by different α-

linkages from the 2-carbon on the SA (Nicholls et al., 2008). 

Receptor distribution  

Viruses from different host species usually display different binding preferences and this preference is 

believed to be a major determinant of IAV host range and species specificity. Typically, human IAVs 

recognize α2,6-linked SAs. It has previously been shown that α2,6-linked SAs are the most abundant 

receptor in the upper respiratory tract in humans (Shinya et al., 2006), but accordingly another study 

showed that the distribution of α2,3-linked SAs is much more widespread in the respiratory tract of 

humans than first anticipated (Nicholls et al., 2007) (Fig. 9). The same study also found that the 

expression level of α2,3-linked SAs in children was higher than their expression level of α2,6-linked 

SAs compared to that of adults. 
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Structure studies have demonstrated that the RBS of human and pig IAVs shows a slight increase in the 

receptor binding pocket site compared to that of avian influenza viruses that could increase the binding 

affinity for α2,6-SA receptors (Ha et al., 2001;Stevens et al., 2004). 

 

Figure 9 The distribution of α2,6-sialic acid (red stars) and α2,3-SA based on Maackia amurensis agglutinin (MAA)-I (blue 

stars) and MAA-II staining (yellow stars), where star size illustrate receptor abundance. Distribution was analyzed in nasal 

cavity, trachea, bronchus, bronchiole, and alveoli of humans (Nicholls et al., 2007), ferrets (Xu et al., 2010), pigs (Nelli et 

al., 2010;Trebbien et al., 2013), and chicken, as well as the small and large intestine of chickens (Costa et al., 

2012;Trebbien et al., 2013). Receptor distribution between the different studies may vary, due to the use of specific lectins, 

methods, or a difference in receptor distribution between animals. Lectin staining was not performed for the human trachea, 

nasal cavity and bronchioles of ferrets in the cited studies. Modified from (de Graaf and Fouchier, 2014). 

Avian IAVs have been shown to prefer binding to α2,3-linked SAs (Nobusawa et al., 1991;Rogers and 

Paulson, 1983), but recently it was found that some avian species have both α2,3- and α2,6-linked SAs 

in both the respiratory and intestinal tracts, though the abundance of these receptors were found to vary 

among avian species (Franca et al., 2013).  

Previous studies have reported pigs to be possible mixing vessels for new pandemic IAVs, due to the 

presence of both α2,6- and α2,3-linked SAs in the trachea (Ito et al., 1998;Suzuki et al., 2000), but 

recent studies have shown that α2,6- linked SAs were present in high amounts in all areas of the 

respiratory tract of pigs whereas α2,3- linked SAs were only detected in the lower respiratory tract 
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(Trebbien et al., 2011). Taken together, these recent findings indicate that the receptor biology of IAVs 

is more complicated than just the α2,3 over α2,6 binding and that the role of the pig as being a “mixing 

vessel” of new influenza viruses may not be unique for this specie. 

Virulence 

The host specificity and virulence of IAVs has been found to be linked to several factors. As mentioned 

previously, both HA and NA play a large role in this aspect, but are not sole determinants. Host 

specificity and virulence can be affected by several molecular determinants of the IAV, of which 

several have been identified.  

One of the virulence factors is the PB1-F2 protein, which has been found to contribute to secondary 

bacterial infections (McAuley et al., 2007) and furthermore has been shown to induce apoptosis of 

infected cells (Gibbs et al., 2003). The PB1-F2 protein induces apoptosis by localizing to the inner and 

outer mitochondrial membrane, where it is forming holes in the mitochondrial membrane and thereby 

releases cytochrome C (Zamarin et al., 2005).  

Residue 627 in PB2 has been found to be a major determinant of host specificity and pathogenicity. 

The avian consensus at this residue is glutamic acid, whereas this residue in human IAVs 

predominantly possesses a lysine and it has been shown that the E627K mutation both increases the 

pathogenicity in mammalian hosts (Shinya et al., 2004) and viral polymerase activity (Gabriel et al., 

2005).  

Especially the NS1 protein has been shown to play a wide range of roles in infection and has a major 

role in circumventing host cell immunity. The most significant function of NS1 is to antagonize IFN-

α/β mediated antiviral response of host cells, which is done by preventing activation of transcription 

factors and in this way limiting the induction of IFN-β (Hale et al., 2008;Wang et al., 2000). NS1 also 

interacts with a cellular protein, retinoic acid-inducible gene product-I (RIG-I). This protein is a 

cytoplasmic pathogen sensor that recognizes IAV ss RNA (Hale et al., 2008). The C-terminus of NS1 

has also been identified as a determinant of virulence, but acts in a way independent of the IFN-

antagonistic properties of the protein (Jackson et al., 2008). The NS1 C-terminus of avian IAVs has the 

sequence of a PDZ domain ligand. The PDZ domain is a common structure in proteins involved in the 

arrangement of signaling complexes at the cellular membrane. Hence, the PDZ domain recognizes and 
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binds to the NS1 C-terminus, which is thereby able to disrupt the signaling pathway and thus cause 

increased virulence (Jackson et al., 2008;Obenauer et al., 2006). 

Other examples of features exhibited by NS1 in order to circumvent host immunity is by blockage of 

the 2’-5’-oligoadenylate synthetase (a cytoplasmic antiviral protein) activation of RNaseL, which 

otherwise inhibits viral replication by degrading RNA (Min and Krug, 2006;Silverman, 2007). Further, 

it has been shown that NS1 also prevents the maturation of dendritic cells, which thereby limits the 

activation of T-cells in the host and in this way, NS1 acts by limiting the virus-clearance exerted by the 

host (Fernandez-Sesma et al., 2006).  

REPLICATIVE CYCLUS 

Entry 

Initiation of the replication cycle of the IAV, begins by binding of the viral HAs to SA receptors at the 

surface of the host cell and subsequent receptor-mediated endocytosis (Pleschka, 2012). The low pH in 

the late endosomes causes two actions; first, protons from the endosome enters the virion via the M2 

ion-channel causing the interior of the virus to acidify. This acidification helps the viral 

ribonucleoproteins (vRNPs) to dissociate from the viral matrix. Second, the low pH also causes a 

conformational change of HA, by which the fusion peptide of the protein is exposed. This allows the 

formation of a fusion pore between the viral and the endosomal membrane (Harrison, 2008), after 

which the vRNPs are released into the cytoplasm of the cell for further transportation into the nucleus, 

where viral replication takes place (Bouvier and Palese, 2008) (Fig. 10). 
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Figure 10 Viral replication cycle. Influenza A virus attaches to sialic acid receptors at the surface of the host cell and enters 

the cell via endocytosis. Acidic environment in endosomes facilitates the release of vRNPs to the cytoplasm, after which the 

complex is transported into the nucleus. In the nucleus transcription and replication takes place, mRNA is transported to 

ribosomes for translation and vRNPs are packaged and transported to the site of assembly at the membrane, where cleavage 

of sialic acid receptors by NA releases new virions (http://www.mpi-magdeburg.mpg.de/660933/MB.png).  

Replication 

Transportation of vRNPs into the nucleus, is thought to be mediated by nuclear localization signals 

present in both PB2 and NP. Once inside the cell nucleus, replication and transcription of vRNA takes 

place. Transcription is performed by the RNA-dependent RNA-polymerase (RdRp) complex, 

comprised of the viral PB1, PB2 and PA and vRNA is transcribed into 5’- end capped and 3’-end 

polyadenylated messenger RNA (mRNA) (Pleschka, 2012). Polyadenylation is obtained by reiterative 

copying of five to seven uracils near the 5’ end of the vRNA. Capping of the 5’-end requires cap-

snatching from host cell mRNAs, which are recognized and bound by PB2 and cleaved by the 

endonucleolytic activity in the PA subunit (York and Fodor, 2013). Subsequent to capping and 

polyadenylation, the mRNA is exported to the cytoplasm for translation into viral proteins. Further, 

vRNA is also used as template for synthesis of the positive complimentary RNA (cRNA) used for the 

replication of new negative sense vRNA (Fig. 10). These new vRNAs can then be used for 
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amplification or for packaging into progeny virions. The new vRNA for packaging is co-

transcriptionally encapsidated by free NP and thus forms a new vRNP. Initially both transcription and 

replication occurs at a high rate, but later in the infection cycle transcription decreases, whereas 

replication continues (Shapiro et al., 1987). The shift from transcription to replication has been found 

to implicate, at least partly, NP which is thought to play a regulatory role in the process (Portela and 

Digard, 2002;Shapiro and Krug, 1988). Further, also M1 has been implicated in the down regulation of 

the mRNA transcription through accumulation in the late stage of infection (Perez and Donis, 1998). 

Assembly and release 

HA, NA and M2 proteins are synthesized from viral mRNA in ribosomes and into the endoplasmic 

reticulum, where they are folded and accordingly transferred to the golgi-apparatus for further post-

translational modifications, before they reach the cell membrane, where they are incorporated into the 

lipid bilayer (Bouvier and Palese, 2008). Subsequent to the transcription in the nucleus, vRNPs are 

transported through nuclear pores to the site of assembly on the cell membrane, a transport thought to 

be mediated by a NEP-M1 complex (Hutchinson and Fodor, 2013). The exact mechanism of packaging 

of vRNPs is not fully understood, but it is suggested that all eight segments contains packaging signals, 

thus ensuring correct packaging in the majority of progeny virions (Bouvier and Palese, 2008). At the 

cytoplasmic site of the cell membrane, the accumulation of M1 initiates budding and subsequent to 

budding, the new virion still remains bound to the cell surface via SA receptors until the binding has 

been cleaved by the enzymatic activity of the NA protein (Kuiken et al., 2006). 

Following successful replication and budding of the new virion, infection of new cells has to be 

initiated in order to maintain infection. A step potentially arrested by innate immune responses exerted 

by the host (Kuiken et al., 2006).  
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IMMUNOLOGY 

Successful infection by the influenza A virus is dependent of a wide spectrum of factors. Initiation of 

infection depends on the ability of the virus to infect epithelial cells, lining the respiratory tract, which 

are the primary target of the virus. Here the innate immune system is the first defense meeting the virus 

– a fast general defense system that lacks specificity and memory. 

Innate immunity 

Innate immunity can be divided into two steps, the physical barriers and the cellular immune response. 

The physical barriers include mucus found in the airways and is composed of cells, cellular debris, 

polypeptides and mucins. Mucins are a family of glycoproteins that are highly sialylated, a feature 

resulting in water being retained at the surface and thus creates a viscous gel and thereby a physical 

barrier for the virus (Nicholls, 2013). Having crossed this physical barrier successfully, the IAV 

initiates infection which is recognized by specialized pattern recognition receptors (PRRs). These 

PRRS recognize pathogen-associated molecular patterns (PAMPs) present in the pathogen or produced 

during infection (Iwasaki and Pillai, 2014). The IAV is recognized by at least three distinct classes of 

PRRs being the Toll-like receptors (TLRs), the RIG-I receptors and the NOD-like receptor family 

member termed NLRP3 (van de Sandt et al., 2012). The TLRs are both found present on the mucosal 

surface, where they recognize HA and NA proteins of the virus, as well as intracellularly where they 

recognize double stranded (ds) and ss RNA. RIG-I receptors and NLRP3 are present in the cytoplasm, 

where RIG-I receptors recognizes replicating vRNAs and NLRP3 recognize cellular damage (Iwasaki 

and Pillai, 2014). In the end, the activation of these PRRs leads to the production of IFNs, cytokines 

and chemokines, which in turn recruits neutrophils, activates macrophages and induces the maturation 

of dendritic cells (DCs) (van de Sandt et al., 2012).  

The DCs play an important role linking the innate and adaptive immune response, since they act as 

antigen presenting cells (APCs) (Fig. 11). The presentation of antigens can be accomplished in two 

ways, either by the direct infection of DCs, where antigens are presented by major histocompatibility 

complex (MHC) class I or by phagocytosis of apoptotic cells or virions, where antigens are presented 

by MHC class II complexes. The presentation by MHC class I complexes on the cell membrane are 
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recognized by CD8+ T cells, whereas presentation by the MHC class II complexes are recognized by 

CD4+ T cells (Fig. 11) (van de Sandt et al., 2012).  

Adaptive immunity 

The adaptive immune response represents the second line in the defense against infection with IAV. 

The CD4+ T cells, activated by MHC class I complexes, can be divided into T helper 1 and T helper 2 

cells. These helper cells produces cytokines, as well as assists in the proliferation and differentiation of 

B cells into antibody producing plasma cells and of CD8+ cells into cytotoxic T lymphocytes (CTLs). 

Hence, activation of CD8+ cells can take place through both antigen presenting MHC class II 

complexes and by the activated CD4+ T helper cells (Fig. 11) (van de Sandt et al., 2012;Van Reeth and 

Ma, 2012). The CTLs kills virus-infected cells and the antibody producing plasma cells (originating 

from B cells), produces antibodies mainly directed against HA, NA, M and NP (Van Reeth and Ma, 

2012).  

 

Figure 11 The adaptive immune response. Influenza virus particles are phagocytosed by antigen presenting cells (APCs), 

which accordingly presents small parts of the virus in MHC I or II complexes and are recognized by CD4+ and CD8+ T cells. 

Activated CD4+ T cells can be divided into T helper 1 or T helper 2 cells, assisting in the maturation and proliferation of 

CD8+ T cells and B cells, as well as producing cytokines. CD8+ T cells mature into cytotoxic T lymphocytes (CTLs), which 

kill virus particles and B cells mature into antibody-producing plasma cells. Both CD4+, CD8+ T cells and B cells 

participates in the establishment of memory formation preventing reinfection with the same influenza virus subtype (van de 

Sandt et al., 2012). 
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Antibodies directed against HA are able to block the binding of viruses to host cells and are thereby 

termed neutralizing antibodies, whereas antibodies directed against NA prevents the enzymatic activity 

of the protein and thereby limits the spread of new virions. Antibodies in pigs are usually detected after 

7-10 days of infection where antibody levels peak approximately after 2-3 weeks (Heinen et al., 

2000;Van Reeth et al., 2006). The usual time course of infection is relatively fast and virus is cleared 

approximately within a week. Following SIV infection, immunological memory is formed and 

reinfection with the same virus, results in a faster and stronger immune response. The circulation of 

HA-specific antibodies in serum provides immunity against homologues viruses, but under 

experimental conditions pigs have also been shown to be partially protected against different viruses of 

the same subtype and in few cases also against different subtypes. This observed partial protection is 

important information for the development of future SIV vaccines (Van Reeth and Ma, 2012). 

VACCINATION 

Due to the lower immunological pressure exerted by pigs on circulating IAVs, vaccines have not had to 

be updated at the same regular intervals as necessary for the human influenza A viruses and hence no 

formal system for the update of SIV vaccines exists. The large diversity of SIVs across countries and 

continents also complicates such an update (Van Reeth and Ma, 2012).  

Due to the great variability in the strains circulating in North America and Europe, vaccines are 

produced locally and contain different strains. Further, in US the production of autogenous vaccines 

has gained popularity. In this setting a virus isolated in a farm is inactivated and used as a vaccine on 

that specific farm now containing a herd-specific strain. Vaccination in US is in general weighted 

higher compared to Europe, as well as the update of vaccine strains (Van Reeth and Ma, 2012).  

For the last decade, the only commercial vaccine, registered for use in Europe has been Gripovac VET 

(MERIAL, NORDEN A/S), containing the A/New Jersey/8/1976(H1N1) and A/Port 

Chalmers/1/1973(H3N2) strains.  This vaccine was in 2010 replaced by Gripovac 3 - a trivalent vaccine 

containing the strains A/swine/Bakum/IDT1769/2003(H3N2), 

A/swine/Haselünne/IDT2617/2003(H1N1) and A/swine/Bakum/1832/2000(H1N2). Both vaccines are 

adjuvanted and inactivated vaccines propagated in eggs or in cell culture, but Grippovac 3 (MERIAL, 

NORDEN A/S), contain strains closer related to European contemporary circulating strains (Van Reeth 
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and Ma, 2012). It has been found that the bivalent commercial vaccine has proven more efficient and 

also induce a higher cross protection compared to the newer trivalent strain, an efficacy that was found 

to be linked to the adjuvant used in the former vaccine (Kyriakis et al., 2010). The old bivalent vaccine 

contained an oil-in-water emulsion adjuvant, whereas the newer trivalent vaccine contained a carbomer 

based adjuvant (Van Reeth and Ma, 2012) and it has been shown that the replacement of the carbomer 

with the mineral oil provided better cross protection against the H1N1pdm09 (Durrwald et al., 2010). 

Thus, not only the selection of appropriate strains for the vaccine, but also the choice of adjuvant plays 

a role in the efficacy of the vaccines against SIVs. The general view on inactivated vaccine is that it 

reduces disease symptoms, but does not prevent the infection, replication or shedding of the virus, 

although a reduction in nasal shedding has been observed in vaccinated pigs (Romagosa et al., 2011).  

A common strategy has been to vaccinate sows in order to protect against reproductive problems and to 

secure that maternally derived antibodies are transferred to the piglets (Kitikoon et al., 2006). 

Maternally derived antibodies wean after 3-4 months which mean that there is a consistent supply of 

immunological naïve pigs in the herds which gives the virus the opportunity to circulate or even persist 

in the pig herds. The natural infection of pigs with SIVs efficiently protects the pig from reinfection 

with the same or similar strains and it has been shown that this preexisting immunity effectively 

increases the antibody response upon vaccination with the inactivated vaccine (Van Reeth et al., 2006). 

  

40 
 



Background 
 

METHODS 

The four major methods used in this PhD project are described in the following sections. 

Antigenic cartography 

Traditionally viruses have been antigenically characterized by hemagglutination inhibition (HI) assay, 

in which the ability of HA to agglutinate red blood cells is measured in the presence of specific 

antisera. These antisera are raised against the same or related strains and the resulting HI titer provide 

information about the affinity of the antisera to the virus and hence the antigenic relationship between 

the tested strain and the one used to raise the antiserum. Testing of several viruses against several 

antisera results in many HI values and the interpretation is accordingly difficult and laborious (Cai et 

al., 2011;Smith et al., 2004).  

To overcome this problem, a computational method has been developed. The method, termed antigenic 

cartography, resembles much geographical cartography in which, for an example, the distances 

between cities in an area, are arranged in a map according to their mutual distances. In antigenic 

cartography, each antigen and antiserum is assigned to a point in a 2 or 3 dimensional (2/3D) map in 

relation to their antigenic distances from each other, measured by their HI titers (Fig. 12) (Cai et al., 

2011). The application of specific algorithms also allows for the identification of antigenic clusters of 

viruses with antigenic properties resembling those of one another (Lewis et al., 2014;Smith et al., 

2004).  
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Figure 12 Antigenic cartography map of SIVs and human H3N2. A 3D map of the antigenic relationship between SIVs 

isolated across the US and human H3N2. Antigens are represented as spheres and antisera as open cubes. Colors of the 

swine isolates represent the antigenic clusters to which they belong and contemporary human H3N2 viruses are shown as 

grey spheres, where the large grey sphere represents A/Victoria/361/2011. The scale bar represents one antigenic unit or a 

twofold change in HI titer. Modified from (Lewis et al., 2014).  

Antigenic cartography maps are invaluable tools for the identification of human IAVs drifting away 

from currently circulating strains or vaccine strains. When the distance between viruses expected to 

circulate in forthcoming influenza seasons is at least 2 antigenic units away from the vaccine strains, a 

vaccine update is recommended by WHO (Smith et al., 2004).  

Phylogenetic analysis 

Mapping the genetic relationship among RNA viruses is best delineated in a phylogenetic tree. 

Phylogenetic analysis is a widely used method for depicting the evolutionary relationship among 

sequences from related species. Coding sequences are compared by multiple sequence alignment, 

where similarities and differences among the sequences are used for the estimation of a common 

ancestor in a phylogenetic tree. The phylogenetic trees are constructed using computational methods 

for which three different methods exist (mentioned after the simplest and least demanding 

computational methods); Neighbour joining (NJ), Maximum likelihood (ML) and Bayesian inference 

(BI). The starting point of the algorithm behind the NJ method is an unresolved tree with a star-like 
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topology and based on a distance matrix, the program adjust branch lengths according to this matrix, 

until all branch lengths in the tree is known (Saitou and Nei, 1987). The ML method uses a statistical 

approach for determining the tree topology and the tree estimated using this method is the tree with the 

highest probability of generating the given data (Felsenstein, 1981). The BI method is different from 

the other two, in that it estimates many trees, where NJ and ML estimates only one tree, and the 

resulting phylogenetic tree is based on all of these trees by means of the posterior probability. This 

means that during the estimation of the resulting phylogenetic tree, relevant evidence for construction 

of this particular tree has been examined (Holder and Lewis, 2003;Rannala and Yang, 1996). 

Estimation of phylogenetic trees has the advantage, other than predicting evolutionary relationship 

between sequences, that they can also be used for the prediction of selection on the genes (Yang and 

Nielsen, 2000), as well as for the estimation of evolutionary rates and time of divergence in relation to 

the most recent common ancestor for a group of sequences (Holder and Lewis, 2003).  
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Animal models 

The use of animal models for studying IAV pathogenesis as well as for the assessment of zoonotic 

potential of some subtypes is of very high importance. Furthermore, the choice of animal model is 

crucial in order to ensure that the obtained results will be as closely comparable as possible to those 

expected for humans. For these purposes, several animal models have been established and among 

these are the most widely used mice, rats, guinea pigs, ferrets, non-human primates and pigs (Barnard, 

2009).  

The usage of mice and rats as model animals for IAV infection is compromised by the need to adapt the 

virus strains for obtaining effective replication, but the mouse model is widely used, due to the low 

costs of housing and its availability (Barnard, 2009;Belser et al., 2011). The guinea pig model has been 

found to support the transmission of influenza viruses without prior adaption of virus, but on the other 

hand they are poor models for viral pathogenesis (Belser et al., 2011) and use of non-human primates 

and pigs are limited due to ethics, size and costs regarding housing (Barnard, 2009;Belser et al., 2011).  

The use of ferrets as a model organism for the transmission of IAV was first described in 1933 (Smith 

et al., 1933) and subsequently, the ferret has been widely used as a small animal model for the study of 

IAV pathobiology. Ferrets have been found to be naturally susceptible to infection with IAVs without 

requirement of prior adaption (Belser et al., 2011;Shope, 1934;Smith et al., 1933). Furthermore, 

clinical symptoms are similar to those observed for humans and IAV in ferrets also follows a similar 

disease pattern. The cause of disease is acute and clinical signs typically include sneezing, nasal 

discharge, elevated body-temperature and weight loss (Maher and DeStefano, 2004;Reuman et al., 

1989). The ferret has been used in several studies for the analysis of transmission of both swine and 

human IAVs (Duan et al., 2010;Pascua et al., 2012;Pearce et al., 2012;Yen et al., 2011), due to its 

receptor distribution in the respiratory tract resembling that of humans (van Riel et al., 2007). 

Two drawbacks of the ferret model is; 1) the problem of obtaining IAV sero-negative animals for 

experiments and 2) the lack of knowledge of immune function. The missing knowledge of immune 

function is due to the limited availability of ferret-specific reagents as well as incomplete ferret genome 

sequencing and therefore enhanced efforts for mapping of the ferret immune response and closing of 
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this gap, will also help to provide an improved understanding of the human immune response to IAV 

(Belser et al., 2011;Teijaro et al., 2014). 

Reverse genetics 

Reverse genetics is a critically important system for the study of IAVs since the system provides the 

possibility of studying the exchange of segments and/or mutations at specific residues involved in host 

restriction, pathogenesis and virulence as well as the potential development of new vaccine candidates.  

The establishment of a reverse genetics system requires several steps involving extraction and 

amplification of vRNA, sequence analysis of amplified vRNA, cloning of the eight segments into 

individual plasmids, transformation of plasmids into bacteria, selection of bacterial clones possessing 

the correct insert and then transfection of several plasmids into cells for the formation of live virus 

particles. Subsequent to transfection of the eight IAV segments into cells, it is necessary that the 

polymerase proteins, as well as the NP protein, are co-expressed since infectious virions otherwise 

cannot be formed. Traditionally, an eight plus four system has been used, in which four plasmids 

expressing the necessary viral proteins, have been co-transfected with the eight plasmids containing the 

vRNA inserts (Fig. 13) (Fodor et al., 1999;Neumann et al., 1999).  
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Figure 13 Schematic representation of the eight plus four system. The eight plasmids expressing vRNA are transfected into 

cells together with the plasmids expressing the viral proteins. Modified from (Neumann et al., 1999). 

For an improved efficiency of the cloning process and to reduce the number of plasmids used for 

transfection and to enhance transfection efficiency, a bidirectional plasmid was constructed (Hoffmann 

et al., 2000b;Hoffmann et al., 2000a;Hoffmann and Webster, 2000). This plasmid (pHW2000) (Fig. 

14) was constructed so that it both contained the human DNA-dependent RNA polymerase I (Pol I) 

promoter, controlling the expression of vRNA and the Pol II promoter in the opposite direction flanked 

by a polyadenylation signal, controlling the transcription of mRNA. The backbone of the plasmid was 

derived from the cloning vector pcDNA3 (Hoffmann et al., 2000b;Hoffmann et al., 2000a). Hence, it 

was now possible to transfect cells with only eight plasmids and still obtain the protein expression 

necessary for the formation of infectious virions (Hoffmann et al., 2000a). Later on, this system was 

further refined to remove the dependency of restriction enzymes, which was done by the insertion of 

the conserved influenza gene termini. Between the conserved termini, the negative selection marker 

ccdB was added and by this, it was now possible to obtain plasmids containing any of the eight 

segments by target-primed plasmid amplification (Stech et al., 2008).  
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Figure 14 Schematic representation of the pHWSccdB plasmid. The plasmid contains the Pol I promoter (PIh), followed by 

a murine terminator (tI) sequence. The Pol I promoter and the terminator sequence are separated by the conserved influenza 

gene termini and between these the negative selection marker ccdB was inserted. Flanking the Pol I promoter and the 

murine terminator sequences are the pol II promoter (pIICMV, derived from human cytomegalovirus) and a polyadenylation 

signal (aIIBGH, from the gene encoding bovine growth hormone). The backbone of the plasmid was derived from the 

cloning vector pcDNA3. 
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ABSTRACT 

Influenza A virus is a highly contagious disease in pigs and has been endemic in Danish pigs for more 

than 30 years, with H1N1 and H1N2 being the dominating subtypes. In Denmark, the import of live 

pigs is very limited and the country can therefore be considered as a closed population, providing the 

perfect opportunity for studying the evolution of swine influenza viruses. The purpose of this study was 

to investigate the genetic and antigenic evolution of the avian-like H1N1 and H1N2 subtypes found in 

Danish pigs during the last 10 years. Viruses from a total of 78 samples were isolated and the 

hemagglutinin and neuraminidase genes full length sequenced. Genetic analysis of H1 revealed an 

overall genetic identity of 89-100 %, but no chronological drift was revealed. For N1, the overall 

genetic identity was 89-99% and phylogeny resembled that of H1. Phylogenetic analysis of the N2 

gene revealed an overall genetic identity of 88-100 % with two separate co-circulating clades.  

Surprisingly, estimation of most recent common ancestor of HA suggested the time of emergence for 

H1 to be around 1913-1919. Estimated selection pressures indicated that more purifying and less 

diversifying selection controlled the H1 evolution. For antigenic characterization, 58 of the viruses 

were tested in hemagglutination inhibition tests (HI) against a panel of representative reference sera. 

Analysis by antigenic cartography showed that most H1s clustered together, regardless of the subtype 

and year of isolation, with few outliers. These outliers were mainly within the H1N2 subtype and many 

of these were found to possess mutations at the receptor binding site 225. In conclusion, this study 

provides an important contribution to the complex epidemiology of circulating swine influenza viruses. 
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INTRODUCTION 

Swine influenza is an acute contagious respiratory disease caused by the influenza A virus (IAV). In 

swine, IAV is an important respiratory disease and today swine influenza virus (SIV) is endemic in the 

global pig population (Brown, 2012). IAV is able to escape herd immunity by the accumulation of 

point mutations in the surface glycoproteins hemagglutnin (HA) and neuraminidase (NA), known as 

antigenic drift, or by reassortment of segments from different viruses during co-infection, a process 

known as antigenic shift (Schild et al., 1974). 

The HA protein is exposed at the surface of the virus particle and is involved in viral fusion with host 

cell membranes upon infection, whereas the NA protein is involved in the release of newly formed viral 

particles from the cell surface. Due to the exposure of the HA and NA glycoproteins at the viral 

surface, both proteins are easily recognized by host immune systems (Baigent and McCauley, 2003). 

Mutations in the antigenic sites, as well as mutations at key residues involved in receptor binding and 

the deletion or addition of glycosylation sites of the HA and NA glycoproteins are all factors that have 

been reported to influence the recognition of the IAV by the host immune system (Sun et al., 2011). 

Antibodies targets specific sites on the globular head domain of the HA termed Sa, Sb, Ca1, Ca2 and 

Cb, and antigenic drift is usually caused by accumulation of amino acid substitutions in these sites 

(Caton et al., 1982). Recently, however, one amino acid alone, located at residue 145 in site Ca2, was 

found to be responsible for antigenic change of human H1N1 (Koel et al., 2013). 

Presently, three major SIV subtypes are co-circulating in the Danish swine population. The first 

subtype isolated from Danish swine was the classical swine H1N1 subtype which was initially detected 

in 1981(Kuntz-Simon and Madec, 2009;Nardelli et al., 1978;Sorensen et al., 1981). In 1979 outbreaks 

of influenza among swine in the Netherlands and Germany was found to be caused by a different H1N1 

subtype (Pensaert et al., 1981). This new subtype was the result of a transmission event from birds to 

swine and created a new and stable lineage, afterwards referred to as the European avian-like swine 

H1N1. The European avian-like swine H1N1 spread throughout Europe and replaced the classical 

swine H1N1 in Europe (Abusugra et al., 1987;Schultz et al., 1991). 
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Shortly after the human IAV pandemic in 1968, the pandemic H3N2 virus was isolated from pigs in 

Asia, became adapted to swine and started circulating at low levels in Europe (Ottis et al., 

1982;Tumova et al., 1980). In 1984, this human-like swine H3N2 reassorted with the avian-like swine 

H1N1 and established the European reassortant human-like swine H3N2, with internal genes 

originating from the avian-like swine H1N1 and the HA and NA from the human-like swine H3N2 

subtype (Castrucci et al., 1993). This European reassortant human-like swine H3N2 gradually replaced 

the original human-like swine H3N2 in Europe and during the 1990-ies it was found in several 

European countries (Castro et al., 1988;Yus et al., 1992;Zhang et al., 1989) including Denmark (A. 

Bøtner, personal communication). 

In 1994, an H1N2 virus was isolated from pigs in the UK. The HA of this virus was found to originate 

from a human-like H1N1 that had been circulating in pigs (Brown et al., 1993), and NA and internal 

segments all originated from the European reassortant human-like swine H3N2 and was therefore 

named reassortant human-like swine H1N2. This virus quickly spread to the western continental 

Europe (Kuntz-Simon and Madec, 2009), but has never been detected in Denmark (Bøtner, 

1994;Trebbien et al., 2013). In 2003 a different H1N2 was, however, detected in Denmark, containing 

an avian-like swine H1 and a reassortant human-like swine N2 (Trebbien et al., 2013). This subtype 

became established in Denmark and constitutes now approximately 20% of the IAVs found in Danish 

pigs (unpublished data). This H1N2 has subsequently also been detected in Sweden, Germany and Italy 

(Balint et al., 2009;Harder et al., 2013;Metreveli et al., 2011;Moreno et al., 2012). The emergence of 

the pandemic H1N1 (H1N1pdm09) virus in 2009 in humans followed by reverse zoonotic events, 

introduced yet another H1N1 virus in pigs in many countries (Pereda et al., 2010;Vijaykrishna et al., 

2010). This virus was identified for the first time in Denmark in 2010 (Breum et al., 2012). 

According to results of a passive surveillance program, the dominating subtypes in Danish pigs are, the 

avian-like swine H1N1, the avian-like swine H1N2 and H1N1pdm09, whereas H3N2 was not detected 

in 2011 and 2012 (unpublished data). Until now, none of these subtypes have been characterized in 

detail, creating a gap in the knowledge of the level of genetic and antigenic drift. Thus, the aim of the 

present study was to characterize the genetic and antigenic evolution of the two dominating SIV 

subtypes H1N1 and H1N2 by analyzing the genetic and antigenic changes of HA and NA of 78 H1 

subtype viruses collected in Denmark during the past ten years.   
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METHODS 

Virus isolation 

A total of 78 viruses were isolated from samples submitted for diagnostic purposes from swine with a 

history of respiratory disease. Briefly, Madin-Darby canine kidney (MDCK) cells were grown to 60-

70% confluency in MEM (Gibco, Carlsbad, CA, USA) containing 5% FBS, 2 mM L-glutamine, 1× 

Non-essential amino acids (NEAA) and 1× penicilin-streptomycin. Lung tissue was homogenized on 

TissueLyser (Qiagen, GmbH, Germany) in 1.5 mL 1× MEM supplemented with 1×penicillin-

streptomycin and sterile filtered. Cells were inoculated with 500 µL lung tissue homogenate for 30 min 

at 37°C, 5% CO2. Following incubation, 10 mL MEM containing 1×penicillin-streptomycin, 1×NEAA, 

2 mM L-glutamine and 2 µg/mL TPCK-treated trypsin (Sigma-Aldrich, St. Louis, MO, USA) was 

added to the cells. The cells were incubated for 72 hours and daily monitored for CPE. The supernatant 

was harvested and centrifuged at 2500 rpm for 30 minutes to clarify cell debris and then stored at -80°C 

until further analysis. 

RNA purification and real-time RT-PCR screening 

Viral RNA was purified from cultured viruses by RNeasy Mini Kit (Qiagen, GmbH, Germany) 

according to manufacturer’s instructions. Cell culture supernatant was prepared by mixing 200 µl 

isolate with 400 µl RLT-buffer containing β–mercaptoethanol. Total RNA was eluted in 60 µl RNase-

free water and stored at -80°C. 

The presence of IAV was confirmed by real-time RT-PCR using an in-house modified assay for 

detection of the matrix gene (De et al., 2009). 

Full length sequencing of HA and NA genes 

Nucleic acid amplification was performed by one-step RT-PCR using in-house primers modified from 

Hoffmann et al., (Hoffmann et al., 2001) and Superscript III One-Step RT-PCR kit with Platinum Taq 

High Fidelity (Invitrogen, Carlsbad, CA, USA). The full length amplification of HA required 600 nM 

of the pQE-HA-F 5′-CGGATAACAATTTCACACAGAGCAAAAGCAGGGG-3′ and of the pQE-

HA-R 5′ -GTTCTGAGGTCATTACTGGAGTAGAAACAAGGGTGTTTT-3′ primers. 
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PCR cycling conditions for HA was: 30 min at 55°C, 2 min at 94°C, 4 cycles of 94°C for 30 sec, 55°C 

for 30 sec and 68°C for 180sec, followed by 40 cycles of 94°C for 30 sec and 68°C for 210 sec, then 

68°C for 10min. For the full length amplification of NA 600 nM of each of the primers: pQE-NA-F 5′-

CGGATAACAATTTCACACAG AGCAAAAGCAGGAGT-3′ and pQE-NA-R 5′-

GTTCTGAGGTCATTACTGG AGTAGAAACAAGGAGTTTTTT-3′ were used. PCR conditions 

were the same as for HA, except that RT temperature was at 54°C and annealing temperature at 58°C. 

The PCR products were visualized by gel electrophoresis using E-Gel 0.8% agarose gels (Invitrogen, 

Carlsbad, CA, USA) and purified with High Pure PCR Product Purification Kit (Roche Diagnostics, 

GmbH, Germany). Purified PCR products were send for Sanger sequencing at LGC Genomics (GmbH, 

Germany). 

Sequence alignment and phylogenetic analysis 

Assembly and proofreading of sequences were performed using CLC DNA Workbench 6.0.2 (CLC bio 

A/S, Aarhus, Denmark). The full length sequences were aligned using MAFFT, followed by an 

alignment using RevTrans 1.4 with standard settings. The substitution model was determined using 

jModelTest version 2.1.1 (Posada, 2008). Based on the Akaike information criterion (AIC), a general 

time reversible (GTR) model of nucleotide substitution with gamma-distributed rate variation among 

sites was used for inferring Maximum Likelihood (ML) trees. 

Phylogenetic trees from the aligned sequences were inferred using the Bayesian Markov-Chain Monte 

Carlo (MCMC) method integrated in Mr.Bayes 3.1 (Ronquist and Huelsenbeck, 2003). The MCMC 

was run for 20 million iterations for H1 and 2.5 million iterations for N1 and N2 with 25% burn-in 

using a sampling frequency of 2500. The phylogenetic trees were rooted with appropriate outgroups 

and visualized using FigTree, version 1.3.1 (http://tree.bio.ed.ac.uk/software/figtree/). 

Selection pressures 

The mean number of substitutions per site (ω = dN/dS) (Miyata and Yasunaga, 1980) were applied to 

determine the degree of natural selection acting on the HA and NA genes. The dN/dS ratio was 

estimated using the Codeml program implemented in the PAML package (Yang, 2007). Inferred ML 

trees from the DNA substitution model test in PAUP with the GTR+I+G substitution model was used. 
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Nucleotide substitution rate and time of the most recent common ancestor 

Overall rates of evolutionary change (nucleotide substitutions per site per year) and time of the most 

recent common ancestor (tMRCA) were estimated using the BEAST program version 1.7.5 

(http://beast.bio.ed.ac.uk/; (Drummond and Rambaut, 2007). For H1 analysis, the lognormal relaxed 

molecular clock and a tree prior with coalescent constant were used with the GTR+I+G model. For N1 

and N2 analyses, the lognormal relaxed molecular clock and a tree prior population with birth/death 

rate were used, also with the GTR+I+G nucleotide substitution model. 

Two independent Bayesian MCMC analyses were performed for each gene for 20 million generations 

with sampling every 2000 generations. Convergences and effective sample sizes of the estimates were 

checked using Tracer version 1.5 (http://tree.bio.ed.ac.uk/software/tracer/) and a burn-in of 20% was 

used. Uncertainty in parameter estimates is reported as values of the 95% high posterior density (HPD). 

Virus antigenic characterization 

A hemagglutination (HA) assay was performed to determine the HA titer for each virus. An equal 

volume of 0.5% turkey red blood cell suspension was added to a serial dilution of the virus. Virus with 

HA titers above four were used for hemagglutination inhibition (HI) assays. 

HI assays against reference swine antisera were performed to compare the antigenic properties of the 

SIVs. Eight representative swine antisera collected between 1982 and 2010, representing the HAs of 

avian-like swine H1N1, avian-like swine H1N2, human-like swine H1N1, human-like swine H1N2 and 

H1N1pdm09 were used as reference sera. Sera were treated with receptor destroying enzyme (RDE), 

followed by heat inactivation at 56°C for 30 min to remove nonspecific inhibitors of hemagglutination. 

Four HA units of virus were mixed with a 10-fold serial dilution of each reference serum, followed by 

the addition of 0.5% turkey red blood cells. The reciprocal of the highest dilution of serum to 

completely prevent agglutination of turkey red blood cells by virus was considered the HI titer for that 

virus. 
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Antigenic cartography 

The quantitative analysis of the antigenic properties of the Danish H1 viruses were performed using 

antigenic cartography, as previously described for human (H3) and swine (H1) IAVs (Lorusso et al., 

2011;Smith et al., 2004). In this study, the antigenic map was generated based on HI data from 58 H1 

SIVs (divided between 35 H1N1 and 23 H1N2 isolates) versus eight reference swine antisera. The 

eight reference swine antisera were: A/swine/Côtes d’Armor/0070/2010 (rH1N1), 

A/swine/Finistere/2889/1982 (H1N1), A/swine/Côtes d’Armor/0388/2009 (H1N1), 

A/swine/Denmark/19126/1993 (H1N1), A/swine/Scotland/410440/1994 (H1N2), A/swine/Côtes 

d’Armor /0113/2006 (H1N2), A/swine/Côtes d’Armor/0186/2010 (rH1N2) and 

A/swine/Sarthe/0155/2010 (H1N1). 

Detection of possible N-linked glycosylation sites 

N-linked glycosylation of HA and NA was estimated using the program NetNGlyc 1.0 

(http://www.cbs.dtu.dk/services/NetNGlyc), to which aligned files of HA and NA were submitted. 

Potential glycosylation sites that did not exceed the threshold were excluded. Only N-glycosylation 

sites with high specificity, i.e. sites exceeding the 0.75 threshold and with Jury agreement were 

selected. 

Modeling of 3D structure 

Model prediction of the 3D structure of N1 was performed using CPHmodels ver. 3.2 

(https://www.cbs.dtu.dk/services/CPHmodels/). This program predicted an expected structure based on 

a consensus sequence and the best matching PDB structure, in this case 4b7q. The structure was further 

modified using PYMOL ver. 1.6.0.0. 

RESULTS 

Phylogenetic analysis 

Full length HA gene sequences were determined for a total of 78 SIVs collected between 2003 and 

2012 (Table 1). Comparisons of the H1 sequences revealed 89-100% identity at the nucleotide level 

and 87-100% identity at the amino acid level. The identity within the clades of the H1 tree ranged from 
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93-100% at the amino acid level. The level of nucleotide identities among the viruses isolated within 

each year decreased from 94-97 % in 2003 to 89-94% in 2012 (Table 1). 

The phylogenetic analysis of the H1 genes from Danish SIV sequences revealed a high degree of 

polytomy and the presence of several clades, mostly comprised of H1s originating from both the H1N2 

and H1N1 subtypes and no chronologic drift was observed, considering the replacement of older strains 

by newer ones (Fig 1A). For the N1 gene, the level of nucleotide similarity was 89-99%, whereas the 

identity at the amino acid level ranged from 89-100%. Similar to the H1 tree, the phylogenetic tree of 

N1 also revealed a polytomic tree with few clades (Fig 1B). The identity within the clades of the N1 

tree ranged from 93-100% at the amino acid level. 

Phylogenetic analysis of the N2 gene revealed two different and clearly distinct lineages, which are 

most illustratively shown in a radial tree (Fig 2). Recently, German swine N2 subtype viruses were 

divided into three different clades that were designated N2 group 1 through 3 (Fig 2) (Starick et al., 

2012). Most of the Danish N2 sequences were found to form one large clade within group 1, sharing 

93-100% identity at the nucleotide level (92-100% at the amino acid level). The second and much 

smaller clade showed 91-99% identity at the nucleotide level (90-99% identity at the amino acid level) 

and was found to belong to the clade designated group 2. The overall similarity of the Danish SIV N2 

gene sequences were 88-100% at the nucleotide level and 86-100% at the amino acid level. Three of 

the group 2 strains, A/swine/Denmark/1053-1/2006(H1N2), A/swine/Denmark/16525-1/2008(H1N2) 

and A/swine/Denmark/101404-1/2011(H1N2), were 97-99% identical at both amino acid and 

nucleotide levels. In contrast, the last group 2 strain (A/swine/Denmark/12687/2003/H1N2), shared 

only 91-92% similarity at the nucleotide level (90-91% similarity at the amino acid level) with the 

other three group 2 strains. 

In contrast to the finding for the H1 genes, no specific differences were observed in the percentage of 

nucleotide identities of N1 and for N2, more sequences would be necessary in order to evaluate a 

potential difference (Table 1). 

Selection pressures on Danish swine influenza viruses 

Global ratios of dN/dS were estimated to be 0.18 in the entire HA protein and 0.21 in the HA1 coding 

region.  Estimation of dN/dS for N1 gave an estimate of 0.23 and for N2 an estimate of 0.21. All dN/dS 
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values for all datasets were below 1.0, indicating lack of positive selection on the genes as a whole. 

Analysis of selection pressure at specific sites revealed that no positively selected sites were present in 

the H1 and N2 genes, but positive selection was detected at specific amino acids in the N1 gene. The 

sites predicted to be under positive selection in the N1 gene were 53V, 331M and 339Y which all were 

predicted to be located at the surface of the N1 protein (Fig 3). Position 53V is not shown in the figure 

since the 3D structure of this part of the protein has yet to be determined. 

Evolutionary rates and times of most recent common ancestor (tMRCA) 

The mean evolutionary rate described by the number of substitutions per site per year and tMRCA with 

95% HPD range for H1, N1 and N2 are summarized in table 2. Estimation of tMRCA for the H1 in 

H1N1 and H1N2 was calculated individually, to analyze if the H1 had divided into two different 

lineages after emergence of the H1N2 strain. The tMRCA for H1 in H1N1 was estimated to be 1919 

(95% HPD: 1900-1938) and the H1 in H1N2 tMRCA was estimated to be 1913 (95% HPD: 1896-

1930). The most recent common ancestor of the European (avian-like) swine N1 was dated back to 

1980 (95% HPD: 1974-1984). For the N2 gene, the tMRCA was dated to 1977 (95% HPD: 1972-

1979). 

Antigenic cartography 

A total of 23 H1N2 and 35 H1N1 Danish isolates were included in the antigenic cartography analysis. 

The isolates shown in the in three-dimensional (3D) antigenic map (Fig 4A) were colored according to 

every two years of isolation. It is evident from this map that none of the Danish H1 viruses clustered 

according to the year of isolation and H1s from the ten years of sampling were interspersed among one 

another, as seen also in the phylogenetic analysis of the genes. Antigenic outliers were defined as 

isolates distant from its counterparts by more than three antigenic units (corresponding to an eight fold 

difference in HI assay). Using A/swine/Denmark/102586-1/2007(H1N1) which was situated in the 

center of the map, as reference strain, a total of 17 isolates could be defined as antigenic outliers. Of 

these antigenic outliers, six were H1s from H1N1 and 11 were H1’s from H1N2 and five outliers were 

from 2011/12. To analyze if viruses grouped according to subtypes, H1N1 and H1N2 strains were 

colored separately (Fig 4B), which showed that HA from H1N1 and H1N2 were co-located on the 

antigenic map. 
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Substitutions associated with cluster transitions 

Previously it has been shown that certain amino acids have been associated with cluster transitions, in 

antigenic cartography, in both human and swine H3N2 (Koel et al., 2013;Lewis et al., 2014). These 

amino acid substitutions were identified at residues 145, 155, 156, 158, 159 and 189 (throughout this 

study H3 numbering for identification of amino acid residues was used). Analysis of these residues in 

all of the Danish SIV sequences revealed that residue 145 was for most sequences N, 155 most often V, 

156 was highly conserved among all sequences as K, 158 was often K, but showed more variation. 

Residue 159 was conserved in most cases as N and residue 189 was conserved in most sequences as S 

(Table 3). Sequences from the 17 antigenic outliers only showed high level of conservation at residue 

156, whereas the remaining amino acids showed a higher degree of variability (Table 3). 

Changes in antigenic sites 

Analysis of the five antigenic sites, previously identified in SIVs (Caton et al., 1982;Gerhard et al., 

1981;Luoh et al., 1992), in all Danish H1 SIV sequences showed that site Ca2 was found to be most 

prone to mutations (100% changes, meaning that mutations from consensus was observed at all 

residues in this site). Site Ca1 followed site Ca2 (with 91% changes), whereas site Sb (58% changes) 

was found to be the most conserved antigenic site in the Danish viruses. In comparison to these results, 

analysis of the 17 antigenic outliers showed that site Cb was the least conserved antigenic site (67%  

amino acids changes compared to consensus sequence), followed by site Ca1 (64%) and the most 

conserved site was site Sb (33%) (Fig 5). 

Genetic changes in receptor binding sites 

Sequences of all the Danish H1 viruses versus the sequences of the 17 antigenic outliers were analyzed 

for identification of potential mutations in receptor binding sites either specific for the Danish SIVs or 

mutations potentially involved in changes in antigenic properties of the viruses. 

Amino acids at positions 133, 138, 192, 193, 226 and 228 has previously been shown to be involved in 

receptor binding (Matrosovich et al., 2000). Residues 190D, 192Q, 226Q and 228G were highly 

conserved among all Danish SIV sequences. Residue 222K was also very well conserved, whereas 

residues 133, 138, 155, 193 and 225 revealed more diversity (Table 3). Residue 155 has been shown to 

be important for receptor affinity (Matrosovich et al., 2000;Suzuki et al., 1997) and six of the antigenic 
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outliers showed 155T and one showed 155I, whereas the remaining isolates showed 155V (Fig 5). 

Furthermore, residue 222, known to interact with α2,6-receptors (Stevens et al., 2006), was found to be 

highly conserved as K and only two Danish SIV sequences (both antigenic outliers) possessed different 

amino acids at this residue in that A/swine/Denmark/101713-1/2010(H1N1) had acquired an E and 

A/swine/Denmark/101958-1/2011(H1N2) had acquired an R (Fig 5). 

Analysis of residue 225, involved in receptor binding properties of the virus as well as adaption from 

birds to humans and swine (Matrosovich et al., 2000), showed some variability, since most sequences 

possessed the 225E substitution, but also Q/N/D/T/K was observed. 

Genetic analysis of important residues in the neuraminidase proteins 

The neuraminidase proteins of all N1 and N2 Danish SIV sequences maintained the 15 conserved 

charged amino acids that have been found to constitute the active site of the enzyme (Colman et al., 

1983). 

The substitutions H274Y and N294S known to induce drug resistance in N1 viruses (Le et al., 2005) 

were not detected in any of the Danish SIVs. Further, no stalk deletion within the Danish N2 viruses 

was observed, which has been associated with replication efficiency in vivo, increased host range and 

reduced NA enzymatic activity (Castrucci and Kawaoka, 1993). 

Glycosylation 

The degree of conservation of glycosylation sites in H1N1 HA and H1N2 HA are illustrated in table 

4A. The analysis revealed that three potential glycosylation sites at positions 15, 26 and 542 in the stalk 

region were strictly conserved for both H1N1 and H1N2 HA (Table 4A). In contrast, the glycosylation 

site at position 58, located at the globular head region, was shared only by 22 of the isolates. Further, 

some of the less well conserved glycosylation sites were found in or nearby antigenic sites. This was 

found for the glycosylation site at position 157 which was located in antigenic site Sa. The 

glycosylation site at position 218 was located close to site Ca2 and position 186/187 was found to be 

located right outside the antigenic site Sb. Several more glycosylation sites were estimated, but none of 

those were conserved. 
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Inspection of glycosylation sites of the antigenic outliers revealed that most H1 sequences had the same 

potential glycosylation sites as the rest of the Danish SIV sequences and only the isolates 

A/swine/Denmark/101958-1/2011/H1N2 and A/swine/Denmark/101107-1/2009/H1N2 appeared to 

have an extra glycosylation site at positions 186 and 58, respectively. For N1 a high degree of 

conservation was observed for all the putative glycosylation sites at positions 63, 88, 146 and 235, 

where position 63 and 88 are located in the stalk of N1 and 146 and 235 are located in a conserved part 

of the protein (Table 4B). Furthermore, position 44 was also shared by some of the isolates. N2 

sequences was found to share three highly conserved glycosylation sites at positions 61, 146 and 234, 

where positions 146 and 234 are located in the conserved part of the protein, and one less conserved 

site at position 402 (Table 4B). 

DISCUSSION 

In this study, the genetic and antigenic diversity and evolution of the two most prevalent subtypes, the 

avian-like H1N1 and H1N2, were analyzed. The analysis of SIV isolates collected from diseased pigs 

over a period of more than 10 years revealed several interesting features and greatly enhance the 

understanding of the evolution of IAV in commercial pig holdings. 

The level of diversity of the H1 gene was found to increase from 3-7% in 2003 to 6-11% in 2012, 

indicating that the selective pressure on the virus has increased over the years. This may be due to the 

increased herd sizes, even though there did not seem to be a very high level of selection on the HA 

gene as a whole. This gradual increase in diversity with time has also been observed for the HA gene of 

H1N1pdm09 circulating in humans (Li et al., 2013). 

Phylogenetic analysis of the N2 gene revealed two clearly distinct lineages, as previously observed 

(Starick et al., 2012;Trebbien et al., 2013). This study has confirmed the existence of these two 

lineages in Denmark and further showed that both lineages continuously co-circulates in the Danish 

swine herds, though dominated by NA clade 1. Phylogenetic analysis revealed that the Danish lineage 

is clearly different from the German lineage within clade 2, which is interesting since a large proportion 

of living pigs (10 million per year) are exported from Denmark to Germany. In clade 2, 

A/swine/Denmark/12687/2003(H1N2) was found to differ from the remaining Danish N2 sequences 

and as the oldest sequence in this clade, this could indicate an adaption to Danish pigs. 

60 
 



Manuscript I 
 

Analysis of the selection pressure in H1 genes revealed a higher dN/dS value for HA1 compared to the 

full HA sequence, indicating a higher degree of immunological pressure on HA1 in accordance with 

this region being part of the extracellular region of the protein. The dN/dS value estimated for the entire 

HA sequence is considered the most correct of the two, since immunological changes in the 

extracellular region can affect the intracellular region and vice versa. Previous values for avian-like 

H1s has been estimated to 0.208 (Moreno et al., 2013) and 0.17 (Lam et al., 2008;Li et al., 2011) for 

the full HA sequence and both values are in agreement with the calculated level of selection pressure 

on Danish H1sequences. Comparison with values for human H1N1 HA reveals a similar level of 

selection (Bragstad et al., 2008;Wolf et al., 2006). 

The selection pressure on the N1 gene was higher, but still comparable with previous estimates for 

European avian-like swine viruses (Fourment et al., 2010;Li et al., 2011;Xu et al., 2012). In 

comparison, the ratio for the Danish N2 gene was found to differ from previous estimates for European 

human-like H1N2 viruses (Lam et al., 2008), but it appears that there in general is some differences 

between dN/dS values for N2 genes, depending on both host and subtype from which the N2 originates 

(Lam et al., 2008;Westgeest et al., 2012;Xu et al., 2012). 

The observed lack of positive selection on the Danish HA and NA genes as a whole was in accordance 

with previous results on SIV, as well as for human H1N1 viruses (Bragstad et al., 2008;Li et al., 

2011;Moreno et al., 2013;Wolf et al., 2006). 

Results from the estimation of selection pressures on the N1 gene revealed three amino acids under 

positive selection and a closer analysis of these sites revealed that positions 53 and 331 were both 

found to be located in the T-cell antigenic regions, while position 339 was found to be located in the B-

cell antigenic regions and mutations at these sites might provide the neuraminidase with a selective 

advantage by allowing escape from the host immune-system. Position 339 is furthermore associated 

with host adaption after introduction of the virus from birds to humans (Tamuri et al., 2009). The 

findings are in accordance with a previous study that also identified positions 53 and 339 in North 

American SIVs as being under positive selection (Li et al., 2011), indicating the overall importance of 

these sites in the N1 gene evolution. 
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Further analysis of the selection pressure and evolution of the Danish HA and NA genes involved the 

determination of their evolutionary rates. This analysis revealed that the rate of Danish H1 and N2 was 

in accordance with previously estimated values from a study of H1N2 viruses in Italian swine (Moreno 

et al., 2013). For the Danish N1 gene the evolutionary rate was found to be higher than previously 

estimated substitution rates for Eurasian avian-like swine viruses and also higher than both classical 

swine H1N1 viruses and North American triple reassortant (TRIG) swine viruses (Dunham et al., 

2009;Fourment et al., 2010;Xu et al., 2012). 

Recently, however, a study has shown that the Eurasian avian-like HA and NA genes generally has a 

higher evolutionary rate compared to classical and TRIG swine viruses (Bhatt et al., 2013), which 

correlates well with the estimated evolutionary rate for the Danish N1 gene. This higher evolutionary 

rate for avian-like viruses has been proposed to be related to the longer circulation of the classical 

swine virus (approximately 80 years), compared to the Eurasian avian-like virus, which was not 

introduced until approximately 30 years ago. Hence, the classical swine virus could have become 

adapted to its swine host, whereas the Eurasian avian-like viruses could still be adapting to swine 

(Bhatt et al., 2013). The differences may also be explained by different management practices that put 

different pressure on viruses in one production system compared to others. 

Time of most recent common ancestor has previously been determined for H1 viruses and in this study 

it was of particular interest due to the co-circulation of two different subtypes in terms of determining if 

the two H1s could be in the process of separating into two different lineages. It was evident from both 

the antigenic cartography and the phylogeny that this was not the case. Interestingly the estimated 

tMRCA for the Danish avian-like H1 gene revealed a tMRCA to be around 1913-1919, a prediction 

that does not correlate with the established view on the evolution of European avian-like H1N1 viruses. 

The introduction of the avian-like H1 in 1979 has been regarded as an introduction of a circulating 

virus directly from an avian host, since identical H1 genes were identified in contemporary samples 

from birds (Pensaert et al., 1981). The estimated tMRCA in this study fits quite well with the presumed 

introduction of the H1 of the classical H1N1 swine virus which originated from the human H1N1 

responsible for the “Spanish” influenza pandemic in 1918 (Brown, 2000). Yet the narrow range of the 

95% HPD and the independent calculations for H1 originating from H1N1 and H1 from H1N2 are 

good indicators of sound estimates and the results are definitely worth a closer investigation. 
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The origin of the surface genes of the European reassortant human-like swine H3N2 virus is believed to 

originate from the 1968 pandemic virus, but only few studies have been performed on the origin of the 

N2 gene. The tMRCA estimated in this study correlated well with the time of the first introductions of 

human H3N2 into European swine herds in the early and mid-1970’ies (Bikour et al., 

1995;Haesebrouck and Pensaert, 1988;Tumova et al., 1980). Another study estimated the time of 

MRCA of swine H3N2 to be around 1956 for N2 (Xu et al., 2012), which correlates well with the time 

of introduction of this lineage from birds into humans during the H2N2 pandemic in 1957. This early 

estimate could be due to the inclusion of sequences from the H2N2 lineage as well as from H3N2 and 

H1N2, whereas the present study only included H1N2 sequences and a few H3N2 sequences. The 

tMRCA for N1 was estimated to be 1980, which is one year later than the first isolation of this lineage 

in swine in Belgium (Pensaert et al., 1981), and fits well with a previous study where the tMRCA for 

the Eurasian avian-like swine N1 was estimated to be 1978 (Xu et al., 2012). 

In terms of obtaining a more profound picture of the evolution of the Danish SIVs during the past ten 

years, the antigenic relationship among the viruses was also investigated, which revealed grouping of 

both H1N1 HAs and H1N2 HAs into one large group with some outliers. This further supported the co-

circulation of the H1N1 and H1N2 strains, as also seen in the phylogeny, in the herds with no apparent 

replacement of one strain by the other. The antigenic outliers determined in the cartography should be 

subject to caution, as these could be early warnings of antigenic escape from vaccines and/or herd 

immunity (Lewis et al., 2011;Smith et al., 2004). Some of the outliers were more recent strains from 

2011 and 2012 and in general many of the recent strains seemed to move away from the reference 

strain (A/swine/Denmark/19126/1993 (H1N1)), which could be an early evidence of drift that may lead 

to generation of escape mutants. In this study, 58 strains were used to create the antigenic cartography 

map and 17 of these strains could be determined as antigenic outliers, suggesting that addition of more 

strains, potentially would reveal more than just one cluster. Most outliers were found to be of H1N2 

strains and it could be speculated if the interplay between the H1 and N2 genes could affect fitness and 

antigenicity of the virus. 

Amino acid sequences of the antigenic outliers were further investigated to determine if certain residue 

changes could be specific for the outliers. The swine adapted H1N1 viruses carries certain 

characteristic amino acids and one of these, residue 155V, is usually connected with increased binding 
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affinity for the Neu5Gc receptor (Matrosovich et al., 2000), a receptor present on the respiratory cells 

of pigs (Sriwilaijaroen et al., 2011). In the Danish SIVs, the V/I155T mutation was found to be present 

in a total of nine sequences, of these, six were found in sequences of antigenic outliers, two did not 

show HA activity and could therefore not be included in the antigenic map. The remaining strains were 

situated in the lower part of the cluster of the Danish SIVs in the antigenic map. These findings 

suggested that mutations at this position could potentially play a role in antigenic escape from the 

original H1s. Residue 155 has also previously been associated as being a key amino acid in cluster 

transitions in H3N2 viruses (Koel et al., 2013;Lewis et al., 2014), but the findings also indicated that a 

V to T mutation alone is not enough to place the strains as antigenic outliers. The cluster transitions in 

H3N2 viruses was found to involve at least six key amino acids at residues 145, 155, 156, 158, 159 and 

189 and were common for both human and swine IAVs (Koel et al., 2013;Lewis et al., 2014). For 

human H1 viruses, one corresponding residue was also identified as being responsible for cluster 

transitions. This amino acid was identified at residue 145 (140 in H1 numbering) (Koel et al., 2013) 

and the Danish antigenic outliers did show variation at this residue, but the N145K substitution was 

observed in several other sequences than those of the antigenic outliers, demonstrating that this 

substitution alone cannot explain the outliers. Interestingly, two of the outliers showed the N145S 

variation as the only mutation and the possibility that their positions as antigenic outliers could be 

ascribed to this substitution is more likely. A closer investigation of the remaining residues associated 

with cluster transitions in H3N2 viruses, showed that all of the Danish SIV antigenic outliers revealed 

atypical amino acids at least at one of these positions and it was previously shown that only a single 

amino acid substitution could lead to a given strain becoming outlier (Lewis et al., 2014). 

Only one cluster was formed in the antigenic map, which may be because too few strains were 

included, but there is also the possibility that the constant supply of naïve pigs, as well as the lack of 

widespread vaccination, leads to a generally low immunological pressure on the virus and thereby less 

antigenic variability. In Denmark, the vaccine used for vaccinating sows against SIV was for decades a 

heterologous commercial bivalent vaccine containing the strains A/New Jersey/8/1976/H1N1 and 

A/Port Chalmers /1/1973/H3N2. Both strains were of human origin and it has previously been shown 

that swine vaccinated with the commercial bivalent vaccine and infected with a Eurasian avian-like 

swine H1N1 did not greatly lead to immune selection (Murcia et al., 2012). In 2010, an updated 
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trivalent vaccine against SIV was introduced. This contained the lineages 

A/swine/Bakum/IDT1769/2003/H3N2, A/swine/Haselünne/IDT2617/2003/H1N1 and 

A/swine/Bakum/1832/2000/H1N2. This trivalent vaccine now contains the European SIV strains that 

are currently circulating in swine, which could enhance the immunological pressure on SIVs and 

thereby also enhance antigenic drift of the viruses. 

European avian-like swine strains have previously been shown to have significant variability in the 

receptor binding residue 138, unlike classical strains that maintains the avian consensus (A) and it was 

furthermore observed that some European avian-like swine strains showed A138S changes (Dunham et 

al., 2009). Most of the Danish SIV sequences possessed V138, few had I138, two possessed the 

original avian A and only one sequence possessed the S138 change. Most of these amino acid changes 

would probably not change the receptor binding properties significantly, I is often interchangeable with 

V and A is, like V, also a hydrophobic amino acid. Only S, being hydrophilic, could potentially have an 

impact on receptor binding properties, but it is questionable if this change is beneficial since this 

substitution was detected in only 1 out of 78 sequences. 

Further analysis of differences in sequences at residues important for receptor binding and host 

specificity, revealed that the amino acid at residue 222,  one of the amino acids critical for interaction 

with long α-2,6-receptors (Stevens et al., 2006), was found to be highly conserved in the Danish SIV 

sequences. Only two sequences possessed substitutions at this position, A/swine/Denmark/101958-

1/2011(H1N2) with K222R and A/swine/Denmark/101713-1/2010(H1N1) with the K222E mutation. 

Since the original amino acid, K, and the mutated R are both positively charged amino acids, only the 

K222E substitution, with the negatively charged E, would potentially create a major difference in RBS 

structure. 

Other amino acid residues known to be critical for receptor binding and host specificity, are positions 

190 and 225, where 190E and 225G preferentially binds to α-2,3-receptors in avian species, 190D and 

225G favors both α-2,3- and α-2,6-receptor bindings in pigs, and 190D and 225D effectively binds to 

α-2,6-receptors in humans (Shen et al., 2009). Residue 225 has previously been found to be variable in 

European avian-like swine strains and included the avian 225G, but also G225E and G225K (Das et al., 

2010;Dunham et al., 2009). A closer inspection of residue 225 in the sequences of the antigenic outliers 
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revealed a rather high variation at this position. Indeed both 225E and 225K was observed, with 225E 

being the most common amino acid in the Danish SIV sequences. For the antigenic outliers 

225T/D/N/Q were also observed. The observed variable amino acids at this residue in sequences of 

antigenic outliers indicate an importance of this site for antigenic variability and eventual escape from 

herd immunity. 

Analysis of the neuraminidase genes revealed no stalk deletion in the Danish N2 viruses. It has 

previously been shown that the length of the stalk region correlates with the efficacy of virus 

replication (Castrucci and Kawaoka, 1993), thus indicating a potentially high replication efficacy for 

the N2 viruses, which could explain the rather fast establishment of this lineage in the Danish swine 

herds during a relatively short period of time. 

Investigation of the level of glycosylation in the Danish SIV H1 sequences revealed three highly 

conserved glycosylation sites, which all were located in the stem region of the virus. Conservation of 

these sites are thought to be involved in proper association with glycan binding-endoplasmic reticulum 

chaperones that facilitate the folding and assembly of HA (Hebert et al., 1996). For human H1 strains, 

HA have been found to contain five potential glycosylation sites at positions 14, 15, 26, 289 and 483 

(Das et al., 2010;Sun et al., 2011). Human seasonal H1N1s are more heavily glycosylated compared to 

swine viruses and least glycosylated are the avian H1s (Sun et al., 2011). These observations correlate 

very well with our results and are also in agreement with the lower immunological pressure exerted by 

the swine host. 

The potential glycosylation site at position 542 has been found to be strictly conserved in our study 

which is in accordance with previous studies (Das et al., 2010;Sun et al., 2011), but it has been 

speculated that this site might not be glycosylated since it is located at the intracellular region of HA 

(Sun et al., 2011). Observation of glycosylation sites located in or near antigenic sites were in also 

accordance with previous studies showing that oligosaccharides have the ability to sterically block 

antibody binding to HA antigenic sites and thereby shields the virus from immune recognition (Abe et 

al., 2004). Only two of the antigenic outliers were found to contain extra glycosylation sites so it is 

unlikely that alternate glycosylation sites are predictive for antigenic outliers which is in agreement 

with previous observations that found that viruses belonging to the same antigenic cluster often had 

different glycosylation states (Blackburne et al., 2008). Estimation of glycosylation sites for N1 and N2 
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revealed that site 146 was highly conserved in both subtypes and it has previously been found that the 

glycosylation of this site is conserved in all NA subtypes. Furthermore, it has been shown that the N-

glycan at this glycosylation site affects NA enzymatic activity by causing a 20-fold decrease in activity 

(Chen et al., 2012;Li et al., 1993). 

In general, variation of the glycosylation sites is an important way for the IAVs to escape host 

immunity, but for Danish SIV this ability does not appear to be very highly prioritized, due to the lower 

extent of glycosylation compared to human IAVs. This observation is in agreement with the lower 

immunological pressure exerted by the swine host. 

Denmark is a country renowned for its large export of living swine to other countries rendering it 

important to map both evolution of enzootic IAVs, as well as characterization of novel reassortants, but 

also to gain an increased understanding of the population dynamics. This study has provided a more 

detailed picture of the two most common enzootic viruses circulating in Danish pig herds. We have 

shown that the evolution of Danish avian-like H1 viruses are not chronological and that there is a lack 

of concordance between H1s and NA subtypes, which is probably due to frequent reassortment events. 

Antigenic cartography revealed that most of the Danish H1s are relatively antigenic alike, but outliers 

were also identified. Of these antigenic outliers, five were from 2011/2012 which could indicate an 

increasing drift away from the predominant herd immunity. 
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FIG 1A Phylogenetic tree of H1 sequences was inferred using the Bayesian MCMC method integrated 

in Mr.Bayes 3.1 under the GTR+I+G model by running 20 million MCMCs with 25% burn-in and a 

sampling frequency of 500. Scale bar indicates number of nucleotide substitutions per site. Danish 

swine H1N2 sequences are colored pink, Danish swine H1N1 sequences included in this study are light 

blue, European reference swine H1N1 and H1N2 sequences are black, avian sequences are green, 

human and human-like sequences are dark blue and pandemic sequences are red. 
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FIG 1B Phylogenetic tree of N1 sequences was inferred using the Bayesian MCMC method integrated 

in Mr.Bayes 3.1 under the GTR+I+G model by running 2.5 million MCMCs with 25% burn-in and a 

sampling frequency of 2500. Scale bar indicates number of nucleotide substitutions per site. Danish 

swine H1N1 sequences are light blue, reference swine H1N1 sequences are black, avian sequences are 

green, human and human-like sequences are dark blue and pandemic sequences are red. 
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FIG 2 Phylogenetic tree of N2 sequences was inferred using the Bayesian MCMC method integrated in 

Mr.Bayes 3.1 under the GTR+I+G model by running 2.5 million MCMCs with 25% burn-in and a 

sampling frequency of 2500. Scale bar indicates number of nucleotide substitutions per site. Danish 

swine H1N2 sequences are colored pink, reference swine H3N2 and H1N2 sequences are black, avian 

virus isolated from a pig is green and human sequences are dark blue. 
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FIG 3 Location of the positively selected sites 331M and 339Y in N1. Red is 339Y and green is 331M. 

The model was based on prediction of the N1 structure using the program CPH models and for this the 

PDB entry 4b7q was used. 
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FIG 4 3D Antigenic cartography maps of the Danish H1 viruses, subtype H1 from 2003 to 2012. The 

relative positions of isolates (colored dots) and swine hyperimmune antisera (open squares) were 

computed such that the distances between isolates and antisera in the map with the least error 

represents the corresponding HI measurements (Smith et al., 2004). (A) The isolates are colored 

according to their year of isolation, 2003/04 are blue, 2005/06 are green, 2007/08 yellow, 2009/10 are 

red and 2011/12 are purple, reference strains are colored grey. (B) The isolates are colored according to 

their subtype, H1N1 are blue, H1N2 are pink and reference strains are colored grey. The scale bar on 

the maps represents 1 unit of antigenic distance, corresponding to a two-fold difference in the HI assay. 
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FIG 5 Comparison of amino acid sequences from outliers in the antigenic cartography. Antigenic sites 

are shown in colored boxes, Cb is shown in dark blue, Sa in red, Ca1 in light green, Ca2 in dark green 

and Sb in light blue. The 130 loop, 190 helix and 220 loop are indicated in the blankets under the 

sequences. The host specific amino acid residue 155 is shown in a black box. 
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TABLE 1 Percentage of nucleotide similarity for H1, N1 and N2 sequences per year 

Numbers in parentheses represents the number of sequences used for the calculation 

 

TABLE 2 Mean rates of nucleotide substitutions and time of most common recent ancestor of HA and 

NA 

                                           Mean rate of nucleotide substitution                                   Time of MRCA 
Segment                            (×10-3 substitutions per site per year) 
 

 Mean 95% HPD* Mean 95% HPD 

  Lower Upper  Lower Upper 
H1 4.65 4.09 5.17 1913-1919 1896-

1900 
1930-
1938 

N1 4.12 3.39 4.91 1980 1974 1984 
N2 3.66 3.15 4.17 1977 1972 1979 

* HPD = Highest probability density 

 

 

Year of isolation 

 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 

Nucleotide 
similarity 
(%) 

 
H1 

 
95-97 
(6) 

 
93-100 
(12) 

 
93-95 
(7) 

 
92-94 
(7) 

 
91-93 
(8) 

 
91-95 
(8) 

 
89-95 
(7) 

 
89-96 
(8) 

 
90-93 
(7) 

 
89-94 
(8) 

          
 
N1 

- 
(1) 

93-99 
(6) 

92-96 
(7) 

92-95 
(5) 

91-99 
(5) 

91-96 
(6) 

90-93 
(3) 

90-96 
(6) 

90-91 
(3) 

91 
(2) 

          
 
N2 

- 
(1) 

98-100 
(6) 

- 
(1) 

91 
(2) 

95 
(3) 

89 
(2) 

94-97 
(4) 

95 
(2) 

88-95 
(4) 

93-95 
(6) 
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TABLE 3 Selected amino acids at residues important for host specificity, receptor binding and species 
specificity, as well as residues associated with potential cluster transitions in antigenic cartography in 
Danish SIV sequences 

Function Position Amino acid in 
A/swine/Denmark/19126/1993 
and 
A/swine/Denmark/WVL3/1993 

Ratio 
of substitutions 
in all sequences 

Ratio of 
substitutions in 
antigenic outliers 

130-loop 
 

133 T 46K/25R/3-*/2G/1Q/1N 11K/3-/1R/1Q/1G 
138 A 65A/13S 11A/6S 

 145 R/S 52N/24K/2S 9N/6K/2S 
Species 
specific 
 

155 V 63V/6I/9T 10V/1I/6T 

 156 K 78K 17K 
 158 G 52G/14E/5R/3-*/2N/1D/1K 8G/6E/1R/1D/1K 
 159 N 70N/4S/3D/1K 16N/1K 
 189 S 68S/6N/2D/1R/1G/1I 12S/2N/1D/1G/1I 
 
190-helix 
 
 
 
 
220-loop 

190 
192 

D 
Q 

78D 
78Q 

17D 
17Q 

193 T/P 
 
 

60T/18A 8T/9A 

 
222 

 
K 

 
76K/1R/1E 

15K/1R/1E 

225 G 65E/1Q/4N/1D/5T/2K 8E/1Q/4N/1D/2T/1K 
226 Q 78Q 17Q 
228 G 78G 17G 

*- deletion 
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TABLE 4A Glycosylation sites in H1N1 HA and H1N2 HA from the present study 

Glycosylation site 
 

% conserved H1N1 % conserved H1N2 
 

14NNST 2 0 
15NSTD 100 100 
26NVTV 100 100 
58NCSV 12 10 
123NRTS/NATS 0 7 
133NVTV 2 0 
157NNSY 2 0 
186NYSD 0 7 
187NYSD 2 0 
218NRTK 2 0 
260NKSS 2 7 
276NHTY 0 3 
487NYSK 2 0 
541NGSL 2 0 
542NGSL 96 93 

 

TABLE 4B Glycosylation sites in N1 and N2 

Glycosylation site 
N1 

% conserved Glycosylation site 
N2 

% conserved 

44NQTE 20 - - 
50NQSV 7 - - 
58NKTW 2 - - 
63NQTY 100 61NMTK/NVTK/NITE 88 
68NISN 9 70NTTI 6 
87NSSL 2 86NWTK 3 
88NSSL 75   
146NGTI 100 146NDTI 100 
234NGSC 2 234NGTC 91 
235NGSC 82 - - 
341NGTN 2 - - 
- - 402NRSG 18 
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ABSTRACT 

The reverse zoonotic events that introduced the 2009 pandemic influenza virus into pigs have 

drastically increased the diversity of swine influenza viruses in Europe. The pandemic potential of 

these novel reassortments is still unclear, necessitating enhanced surveillance of European pigs with 

additional focus on risk assessment of these new viruses. In this study, four European swine influenza 

viruses were assessed for their zoonotic potential. Two of the four viruses were enzootic viruses of 

subtype H1N2 (with avian-like H1) and H3N2 and two were new reassortants, one with avian-like H1 

and human-like N2 and one with 2009 pandemic H1 and swine-like N2. All viruses replicated to high 

titers in nasal wash- and nasal turbinate samples from inoculated ferrets and transmitted efficiently by 

direct contact. Only the H3N2 virus transmitted to naïve ferrets via the airborne route. Growth kinetics 

using a differentiated human bronchial epithelial cell line showed that all four viruses were able to 

replicate to high titers. Further, the viruses revealed preferential binding to the α2,6-silalylated glycans 

and investigation of the antiviral susceptibility of the viruses revealed that all were sensitive to 

neuraminidase inhibitors. These findings suggest that these viruses have the potential to infect humans 

and further underline the need for continued surveillance as well as biological characterization of new 

influenza A viruses.  
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INTRODUCTION 

Influenza A virus causes disease in humans, birds and some domestic animals, including swine. Swine 

influenza viruses (SIV) are enzootic in pigs worldwide and infection with the virus causes substantial 

economic loss for farmers due to secondary infections and reduced weight gain in affected pigs. 

Further, the presence of influenza A virus in swine also pose a potential health risk to humans due to 

development of new reassortant viruses with zoonotic potential as recently seen with the 2009 H1N1 

pandemic virus (H1N1pdm09) (2011a).  

Within the last few years, several new reassortant SIV have been detected throughout Europe, Asia and 

the US (Breum et al., 2013;Moreno et al., 2011;Pascua et al., 2013;Starick et al., 2011;Starick et al., 

2012;Tremblay et al., 2011), with many carrying segments from enzootic SIVs and the H1N1pdm09 

virus. In the US, recent reassortment events have led to a novel variant of the triple-reassortant H3N2, 

now containing the matrix gene from the H1N1pdm09 (2011a;2011b;2011c). This variant H3N2 

(H3N2v) has proven efficient in transmission from swine to humans, as observed at several agricultural 

fairs in the US during 2012-2013 (http://www.cdc.gov/flu/weekly/pastreports.htm).  

In Denmark, at least four SIV subtypes are enzootic in pigs, the avian-like H1N1 (Abusugra et al., 

1987;Schultz et al., 1991), the European reassortant human-like swine H3N2 (Bøtner, 1990;Castrucci 

et al., 1993) and the H1N2 with an avian-like swine H1 and N2 from the reassortant human-like swine 

H3N2 (Trebbien et al., 2013). In 2010, a reverse zoonotic event led to the introduction of the 

H1N1pdm09 into Danish swine. The virus spread and rapidly accounted a prevalence of 15-20% of 

SIV’s isolated in the country (unpublished data). During the national passive surveillance program in 

2012, at least two new reassortants were detected in Danish pigs, one with an avian-like H1N1 

backbone and an N2 gene most closely related to that of a human seasonal H3N2 virus that was 

circulating in the mid 1990-ies (H1avN2hu) (Breum et al., 2013) and one with a pandemic backbone 

and a N2 gene from the reassortant human-like swine H3N2 (H1pdmN2sw) (unpublished data), also 

detected in German pig populations (Starick et al., 2012).  

The increasing rate of new reassortments and the lack of knowledge regarding their zoonotic potential 

is a worrying aspect and it is therefore of significant importance to genetically and phenotypically 

characterize reassortants.  
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Influenza A virus infection in ferrets closely resembles that of humans considering clinical signs and 

pathogenesis (Maher and DeStefano, 2004) and therefore ferrets have been widely used as a model for 

assessment of the pandemic potential of influenza viruses. Additionally, receptor expression patterns in 

the respiratory tract of ferrets are similar to humans (Baum and Paulson, 1990;van Reeth et al., 2007).  

In this study, the pathogenicity and transmissibility of two new reassortant SIV’s, the H1avN2hu and 

H1pdmN2sw, were compared to H1N2 and H3N2 enzootic European SIV strains in the ferret model. 

This study is the first to assess the zoonotic potential of not just new reassortant viruses, but also 

contemporary virus isolates of the European H1N2 with avian-like H1 and the European reassortant 

human-like swine H3N2 virus.  

METHODS 

Viruses 

Four influenza A viruses, A/swine/Denmark/10302-2/2012(H1N2), A/swine/Denmark/10845-

1/2012(H1N2), A/swine/Denmark/101394-1/2011(H1N2) and A/swine/Denmark/101501-

1/2010(H3N2) (hereafter referred to as H1avN2hu, H1pdmN2sw, H1N2 and H3N2, respectively) were 

isolated from lung samples submitted for diagnostic purposes from swine with a history of respiratory 

disease. Viruses were grown and titrated in Madin-Darby canine kidney (MDCK) cells. Before 

inoculation, influenza viruses were passaged in the allantoic cavity of 10-day-old embryonated chicken 

eggs (Marshall Durbin, Birmingham, AL) at 35°C for 72 h. All isolates underwent a maximum of two 

passages in eggs and/or cells. 

Cell cultures 

MDCK cells were grown in Minimum Essential Medium Eagle (MEM) (Gibco, Carlsbad, CA, USA) 

containing 5% fetal calf serum (FCS), 2 mM L-glutamine, Non-essential amino acids (NEAA) and 

penicillin-streptomycin. Normal human bronchial epithelial cells (NHBE) in individual inserts were 

obtained from MatTek Corporation (Ashland, MA, USA). The cells were grown in AIR-100-ASY 

(MatTek Corporation Ashland, MA, USA) serum free media containing growth factors. The apical 

surface was washed to remove mucus and media was changed every other day.  

Primary swine respiratory epithelial cells (pSREC) were seeded into type VI collagen (Sigma-Aldrich, 

St. Louis, MO, USA)-coated tissue culture flasks and grown in Bronchial Epithelial Cell Growth 
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medium (BEGM, Lonza, Walkersville, MD, USA) with SingleQuots™ Kit containing growth factors, 

and cytokines. Medium was further supplemented with 5% FCS and 1% 

penicillin/streptomycin/amphotericin (Sigma, St. Louis, MO, US) and passaged up to five times prior to 

infection. All cells were grown at 37°C in a 5% CO2 atmosphere. 

Infection and replication kinetics 

For preparation of viral stocks, lung tissue was homogenized on TissueLyser (Qiagen, GmbH, 

Germany) in 1.5 mL MEM supplemented with penicillin-streptomycin and sterile filtered. MDCK cells 

were inoculated with 500 µL lung tissue homogenate for 30 min at 37°C, 5% CO2. Following 

incubation, 10 mL MEM containing penicillin-streptomycin, NEAA, 2 mM L-glutamine and 2 µg/mL 

tosylsulfonyl-phenylalanyl-chloromethyl-ketone (TPCK)-treated trypsin (Sigma-Aldrich, St. Louis, 

MO, USA) was added to the cells. The cells were incubated for 72 h and daily monitored for cytopathic 

effects (CPE). The supernatant was harvested and centrifuged at 2500 rpm for 30 minutes to clarify cell 

debris and then stored at -80°C until further use.  

The 50% tissue culture infectious dose (TCID50) and plaque-forming units (pfu) were determined by 

incubating serial dilutions of virus in MDCK cells at 37°C for 72 h. A hemagglutination assay was 

performed to determine the end point of infection and TCID50 was calculated using the method of Reed 

and Muench (Reed and Muench, 1938).  

Replication kinetics in MDCK cells were determined at a multiplicity of infection (MOI) of 0.01 pfu 

per cell. After 1 h of incubation the MDCK cells were washed and overlaid with infection medium 

(MEM containing 2% BSA, pen-strep, amino acids and TPCK-treated trypsin). Supernatants were 

collected and stored at -80°C for virus titration. Replication kinetics in differentiated NHBE cells were 

determined at a MOI of 0.01 pfu per cell. Cells were washed with phosphate buffered saline (PBS) to 

remove mucus before infection and were inoculated via the apical side with 200 µl diluted virus in the 

absence of trypsin. After 1 h of incubation at 37°C, viral inoculum was removed and cells were 

washed. Cells were then pre-incubated with 200 µl fresh medium at 37°C for 30 min prior to sample 

collection at specified time points. Samples were stored at -80°C. Replication kinetic in pSRECs was 

determined at an MOI of 0.01 pfu per cell. Cells were washed and infection medium (BEGM, Lonza, 

Walkersville, MD, USA) containing 0.5% BSA was added, supernatants were collected at specified 

time points and stored at -80°C for virus titration.  
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RNA purification and real time RT-PCR screening 

Viral RNA was purified from cultured viruses by RNeasy Mini Kit (Qiagen, GmbH, Germany) 

according to manufacturer’s instructions. Cell culture supernatant was prepared by mixing 200 µl 

sample with 400 µl RLT-buffer containing β–mercaptoethanol. Total RNA was eluted in 60 µl RNase-

free water and stored at -80°C. 

The presence of influenza A virus was confirmed by real-time RT-PCR using an in-house modified 

assay for detection of the matrix gene (De Vleeschauwer et al., 2009).  

Full genome sequencing and RT-PCR 

Nucleic acid amplification was performed by one-step RT-PCR using primers modified from 

Hoffmann et al., (Hoffmann et al., 2001) and the Superscript III One-Step RT-PCR kit with Platinum 

Taq High Fidelity (Invitrogen, Carlsbad, CA, USA). PCR cycling conditions for HA was as follows: 30 

min at 55°C, 2 min at 94°C, four cycles of 94°C for 30 sec, 55°C for 30 sec, 68°C for 180 sec, followed 

by 40 cycles of 94°C for 30 sec and 68°C for 210 sec and then 68°C for 10 min. For NA the same 

conditions were used, except that reverse transcriptase temperature was 54°C and annealing 

temperature 58°C. 

The PCR products were visualized by gel electrophoresis using E-Gel 0.8% agarose gels (Invitrogen, 

Carlsbad, CA, USA) and purified with High Pure PCR Product Purification Kit (Roche Diagnostics, 

GmbH, Germany). Purified PCR products were sent for single sample sequencing at LGC Genomics 

(GmbH, Germany). 

Full genome sequencing was performed on two cell culture propagated influenza positive samples by 

full length amplification of all 8 gene segments with in-house designed primers (primers available upon 

request) using SuperScript III OneStep RT-PCR System with Platinum Taq High Fidelity and PCR 

conditions similar to that described for HA full length amplification. Purified PCR products for all gene 

segments were pooled in equimolar quantity to a final amount of 1 µg and used for next generation 

sequencing (NGS) on the Ion Torrent PGM™ sequencer (Life Technologies, Carlsbad, CA, USA). 

NGS including library preparation was carried out at the Multi-Assay Core facility located at the 

Technical University of Denmark.   
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Sequence analysis 

Sequences obtained by NGS were assembled using the de novo and reference assembly tools of CLC 

Genomics Workbench 4.6.1 (CLC bio A/S, Århus, Denmark). Sequences obtained by Sanger 

sequencing was analyzed using CLC Main Workbench Version 6.9 (CLC bio A/S). 

Animals 

All animal experiments were performed in Animal Biosafety Level 2 facilities at St. Jude Children 

Research Hospital (Memphis, TN, USA), in compliance with the policies of the National Institutes of 

Health and the Animal Welfare Act and with the approval of the St. Jude Children’s Research Hospital 

Animal Care and Use Committee. In total, 36 four to six month old ferrets (Triple F farms, Sayre, PA, 

US), weighing 0.8-1.6 kg, that had been tested negative to current circulating human influenza subtypes 

by hemagglutination inhibition (HI) assay were used.  

Transmission and pathogenicity studies 

Before inoculation of the donor ferrets, baseline body temperatures and weights were documented for 

all ferrets. To test viral pathogenicity and transmission, two donor ferrets were housed in the upper 

cages of the isolator and two donor ferrets were housed in the lower cages of the isolator. Donor ferrets 

were anesthetized with isoflurane and inoculated intranasally with 106 TCID50 influenza virus in 1 ml 

PBS with antibiotics and antimycotic (Sigma, St. Louis, MO; 100 U/ml penicillin, 100 mg 

streptomycin, and 0.25 mg amphomycin per ml) with 500 µl in each nostril. At day 1 post infection 

(dpi) two of the donor ferrets were moved to separate cages each containing one naïve ferret, for direct 

contact (DC) transmission assay. For the airborne transmission (AT) assay two naïve ferrets were 

housed adjacent to the donor ferrets, separated by a double-layered grill in order to allow unobstructed 

airflow and prevent direct contact.  

After inoculation, temperature, weight and clinical signs were recorded every other day for 11 days. 

Nasal washes 

Nasal washes were collected at 1 dpi for donor ferrets and at 3, 5, 7, 9 and 11 dpi for all ferrets. Ferrets 

were anesthetized intramuscularly with 20-50 mg/kg of Ketamine, nostrils were flushed with 1 ml of 

PBS containing antibiotics and antimycotic (Sigma, St. Louis, MO, USA; 100 U/ml penicillin, 100 mg 

streptomycin, and 0.25 mg amphomycin per ml) with 500 µl in each nostril and collected into cups. 
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Nasal washes were spun down and stored at -80°C until further analysis. TCID50 were determined in 

MDCK cells and expressed as TCID50/ml. 

Ferret organ collection and virus titration 

At 5 dpi two inoculated ferrets from each group were sacrificed for pathological examination. The 

remaining ferrets were sacrificed at 21 dpi and the following tissues were collected from all animals; 

nasal turbinates, trachea, Right/left caudal and cranial lung lobes, lymph nodes, intestine, liver and 

spleen. Tissues were weighed and homogenized in MEM with antibiotics. Virus titers were determined 

in MDCK cells as described above and expressed as TCID50/g tissue. 

Serological tests 

Serum samples collected at 0 and 1 dpi and at 19 and 21 dpi were tested for antibodies. The serum 

samples were tested in a blocking ELISA using the commercially available influenza A antibody test 

kit, detecting antibodies against the NP gene (IDEXX Laboratories A/S, Switzerland), according to 

manufacturer’s instructions. The ELISA antibody values were calculated as optical density (OD) from 

each sample and presented as percent transmittance. 

Histopathology 

Samples of trachea and the left/right cranial and dorsal lung lobes were collected from two control 

ferrets and all inoculated ferrets at 5 dpi, and the remaining ferrets at 21 dpi. The tissues were fixed in 

10% neutral buffered formalin, embedded in paraffin and slides were processed by routine methods for 

histology, stained with hematoxylin and eosin and examined in a blinded fashion.  

Receptor assay 

The four viruses were tested for their HA binding activity to the following glycans; α2,3-SL 

(Neu5Acα2-3Galβ1-4Glcβ-PAA-Biotin), α2,6-SL (Neu5Acα2-6Galβ1-4Glcβ-PAA-Biotin) and α2,6-

SLN (Neu5Acα2-6Galβ1-4GlcNAcβ-PAA-Biotin) (Glycotech Corp., Gaithersburg, MD, US) as 

previously described (Matrosovich and Gambaryan, 2012).  Briefly, 32 hemagglutinating units (HAU) 

of each virus were coated to wells of enzyme-linked immunosorbent assay (ELISA) plates previously 

coated with fetuin and incubated overnight at 4°C. Plates were washed with ice-cold PBS and 

biotinylated glycans were prepared in reaction buffer (PBST and 0.1% BSA) and added to the plates, 

which were incubated at 4°C for 2 h. Plates were washed and incubated with tetramethylbenzidine 
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substrate (product) solution for 10 min. The reaction was stopped by adding 50 mM HCl and the 

absorbance (450 nM) was read in a Synergy microplate reader (Biotek Instruments Inc., Winooski, VT, 

USA).  

NA kinetics and antiviral susceptibility to neuraminidase inhibitors 

NA kinetics and antiviral susceptibility to NA inhibitors (NAI) were based on the method of Potier et 

al. (Potier et al., 1979) using methylumbelliferone N-acetylneuraminic acid (MUNANA; Sigma-

Aldrich, St Louis, MO) substrate, as described by (Jones et al., 2014). Substrate cleavage by the NA 

enzyme releases the fluorescent product 4-methylumbelliferone (4-MU) (Sigma-Aldrich, St Louis, 

MO), after which fluorescence was monitored using excitation and emission wavelengths of 360 nm 

and 460 nm, respectively.  

Enzyme kinetics data were fitted by non-linear regression to the Michaelis-Menten equation using 

GraphPad Prism version 5 (GraphPad Software, La Jolla, CA, USA) to determine the Michaelis 

Menten constant and maximum velocity (Vmax) of substrate conversion. 

Sensitivity of NA to oseltamivir carboxylate (oseltamivir) from Hoffmann-La Roche (Basel, 

Switzerland), zanamivir from Glaxo-SmithKline (Research Triangle Park, NC, USA), and peramivir 

from BioCryst Pharmaceuticals (Birmingham, AL, USA) was tested by using dilutions of inhibitors 

ranging from 5×10-7 µM to 50 µM. The drug concentration that inhibited 50% of the NA enzymatic 

activity (IC50) was determined from the dose-response curve with GraphPad Software version 5. 

Results are expressed as the average of two independent tests. 

Statistical analysis 

Two-way ANOVA with Bonferoni’s posttest was performed using GraphPad Prism version 5. 
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RESULTS 

Clinical signs and virus shedding  

Ferrets were inoculated with 106 TCID50/ml of each virus, a dose previously shown to initiate an 

infection (Lednicky et al., 2010;Stark et al., 2013). None of the ferrets developed fever, had nasal 

discharges or showed signs of lethargy during the study. The ferrets showed variable weight losses 

from mild to moderate (3-10%).  

All four viruses replicated in inoculated ferrets and were also found to be transmitted to naïve DC 

ferrets (Fig 1) as assessed by isolation of virus from nasal washes. Infectious virus was detected in 

nasal washes until approximately 7 dpi for donor ferrets and 9 dpi for ferrets inoculated with H3N2. 

The day of observed peak titers for the four viruses was found to vary (Fig 1). Ferrets inoculated with 

H1avN2hu showed a mean viral peak titer in nasal washes at 4.6 log10 TCID50/ml at day 1 p.i. and DC 

ferrets in this group had a mean viral peak titer at 3.5 log10 TCID50/ml at 7 dpi For ferrets inoculated 

with H1pdmN2sw a mean peak titer at 6.5 log10 TCID50/ml was observed at 1 dpi and DC ferrets 

showed a mean peak titer at 5.2 log10 TCID50/ml at 9 dpi. Infection with the H1N2 virus resulted in a 

mean peak viral titer at 5.1 log10 TCID50/ml 5 dpi and a mean peak viral titer at 5.5 log10 TCID50/ml 7 

dpi for DC ferrets. Finally, infection with H3N2 gave a mean peak viral titer at 5.9 log10 TCID50/ml 3 

dpi for inoculated ferrets and a mean peak viral titer at 5.4 log10 TCID50/ml 5 dpi for DC ferrets. 

Airborne transmission was observed in ferrets inoculated with H3N2 with a mean peak viral titer at 3.8 

log10 TCID50/ml 7 dpi (Fig 1). One of the AT ferrets died at 11 dpi although it was concluded that the 

cause of death was not related to the infection. By the end of the experiment IAV antibodies were 

detected in serum from all inoculated and DC ferrets, as well as the AT ferret belonging to the H3N2 

group (Fig 2). The ELISA assay was chosen for antibody detection, due to a too high background 

response in the HI assay. At 19 and 21 dpi, inoculated and DC ferrets had all seroconverted.  

Virus detection by real time RT-PCR 

Nasal wash samples from all days post infection were tested by real time RT-PCR to determine if virus 

could be replicating at levels too low to be detected by the TCID50 assay (Table 1). In general, viral 

RNA was detected in all samples from inoculated ferrets at 1 dpi, viral load was found to peak at 3 or 5 

dpi with a subsequent decline in viral RNA at 7-11 dpi. For DC ferrets the viral load for H1avN2hu and 
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H1pdmN2sw peaked between 7 and 9 dpi with a rapid decline already 2 days after viral RNA had 

peaked. For H1N2 the day of the highest viral load could not be determined due to lack of material 

from one of the ferrets at 7 dpi. The H3N2 virus was found to peak at 7 dpi, but viral load remained 

high even after the last nasal wash sampling at 11 dpi. Results from AT ferrets showed no ct values for 

H1avN2hu and H1N2, whereas low viral load was detected in one of the AT ferrets in the H1pdmN2sw 

group at 3 and 5 dpi. In the H3N2 group, AT ferrets showed viral RNA for one ferret at 5 dpi and viral 

load in both AT ferrets peaked at 11 dpi.  

Viral load in respiratory organs 

From each group, two inoculated ferrets were euthanized at 5 dpi for determination of viral titers in 

nasal turbinates, trachea, caudal and cranial lung lobe, lymph nodes, intestine, liver and spleen. No viral 

replication was detected in liver, spleen, intestines or lymph nodes. 

For all viruses, infectious virus particles were recovered from nasal turbinates, trachea and lung lobe 1 

and 2 (Fig 3). Highest viral titers were observed in nasal turbinates with mean titers ranging from 6.1 

log10 TCID50/g to 7.9 log10 TCID50/g with the highest level of virus particles observed in ferrets 

inoculated with H1avN2hu and H1N2. From the trachea, viral titers ranged from 3.82 TCID50/g to 5.45 

TCID50/g, with highest titers observed in ferrets inoculated with H1avN2hu and H3N2. Viral 

replication in caudal and cranial lung lobes lung lobes 1 and 2 showed mean titers ranging from 1.5 

log10 TCID50/g to 3.6 log10 TCID50/g with the highest level of virus particles observed in ferrets 

inoculated with H1pdmN2sw and H3N2.  

Histopathology 

No significant lesions were seen in trachea or lung tissue of the control group (Fig 4A). All four viruses 

caused hyperemia, edema and hemorrhage into alveoli as well as varying degrees of non-suppurative 

interstitial pneumonia, dysplasia of the bronchiolar epithelium and hyperplasia of the bronchus 

associated lymphoid tissue (BALT). Apart from these common characteristics, the severity of the 

lesions differed among the groups depending on the virus used for inoculation.  

Findings in trachea were alike in the four virus groups, ranging from no lesions to mild dysplasia of the 

epithelium, moderate suppurative tracheitis and single cell necrosis.  
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The viruses H3N2 and H1pdmN2sw caused the most severe lung lesions (Fig 4B and C) consisting of 

suppurative bronchiolitis and bronchitis, as well as epithelial necrosis of serous glands and perivascular 

accumulation of mononuclear cells. The inoculated ferrets (euthanized 5 dpi) furthermore had necrosis 

of bronchiolar epithelium, and in one of the H3N2 inoculated ferrets mixed bronchopneumonia was 

seen. 

The H1N2 and H1avN2hu viruses caused infiltration of a few neutrophilic granulocytes and 

mononuclear cells in the alveoli (Fig 4D and E). Both groups of inoculated ferrets (euthanized 5 dpi) 

had necrosis of the bronchiolar epithelium. Inoculation with H1avN2hu also induced perivascular 

accumulation of mononuclear cells, desquamation of bronchiolar epithelium, suppurative bronchiolitis 

and focal epithelial necrosis of serous glands. 

In vitro growth kinetics  

The in vitro replication capacity of the four European SIV strains was assessed and compared in a 

human cell line (NHBE), a swine cell line (pSRECs) and MDCK cells. Cells were inoculated with a 

low MOI (0.01).  

All four swine viruses were able to infect and replicate to high titers in NHBE cells. The H1avN2hu 

and H1pdmN2sw viruses progressively increased in titers until 48 hours post-inoculation (hpi) with 

mean peak titers at 8.0 log10 TCID50/ml and 8.9 log10 TCID50/ml, respectively. The H1N2 and H3N2 

titers increased until 60 hpi and showed mean peak titers at 9.2 log10 TCID50/ml and 9.4 log10 

TCID50/ml, respectively (Fig 5A). 

In pSREC an increase in titers were observed until 36 hpi for H1avN2hu and H1N2 with mean peak 

titers at 6.8 log10 TCID50/ml and 7.2 log10 TCID50/ml, respectively. Mean peak titers for H1pdmN2sw 

and H3N2 were 6.6 log10 TCID50/ml at 48 hpi and 6.75 log10 TCID50/ml at 60 hpi, respectively (Fig 

5B).  

In MDCK cells, the virus titers progressively increased during the first 36 hpi with highest mean peak 

titers in the range from 6.3 log10 TCID50/ml to 7.9 log10 TCID50/ml and the highest mean peak titer was 

observed for H1N2 (Fig 5C).  
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Receptor binding  

Binding of the viral HA to host receptors is known be important for the determination of 

transmissibility efficiency and host range restriction. Hence glycan binding properties of the four 

viruses were investigated by testing for their ability to bind biotinylated sialylglycopolymers in a dose-

dependent fashion.  

None of the viruses exhibited strong binding preference towards the avian α2,3 sialylglycopolymer 

(α2,3-SL) and binding to this glycan barely exceeded the threshold. The European swine viruses 

preferentially bound to the human/swine α2,6 sialylglycopolymer, with H3N2 and H1pdmN2sw 

showing the highest affinity for the human/swine α2,6 sialylglycopolymer (α2,6-SLN). H1avN2hu and 

H3N2 were found to also bind the short version of the α2,6 sialylglycopolymer (α2,6-SL). For 

H1avN2hu and H3N2, it appeared that as the concentration of sialyglycopolymers were decreased the 

receptor preference shifted from the long to the short version of the α2,6 sialylglycopolymer. Results 

are summarized in figure 6. 

Sequencing 

For examination of molecular determinants involved in receptor binding of the European SIVs, full 

length HA sequences were obtained from all four viruses using nasal washes from the day of their 

highest mean peak viral titers as templates. Amino acids previously shown to be involved in receptor 

binding are located at the distal tip of the HA monomer in positions 111 to 265 and is formed by three 

secondary structures, termed the 130-loop, the 190-helix and the 220-loop (Gamblin et al., 2004) 

(Table 2). 

The analysis of the H1 viruses, showed that variable amino acids were found at the receptor binding 

residue 138 (Dunham et al., 2009), where H1N2 possessed 138V, H1avN2hu 138I and H1pdmN2sw 

138A. 

In the 190-helix, 190D was found for H1N2 and H1pdmN2sw, whereas H1avN2hu possessed 190S and 

also residue 193 was found be variable among the European H1 viruses. At this residue, H1N2 

possessed 193T, H1avN2hu possessed 193A and H1pdmN2sw possessed 193S. 

In the 220-loop, an E225K mutation in H1N2 was observed during the study, with the 225E found in 

inoculum, an inoculated ferret and a DC ferret. The 225K variation was found in an inoculated ferret 
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and a DC ferret. The ferrets possessing the E225K mutation had not been cohoused. H1avN2hu was 

found to possess 225E and H1pdmN2sw 225D. 

Further, all H1 viruses possessed a K at position 222, which is one of the amino acids critical for 

interaction with long α2,6-receptors (Stevens et al., 2006). 

 For pandemic H1 viruses, two amino acid positions, 200 and 227, have been found to play an 

important role in terms of binding preferences of pandemic H1 versus swine H1 to sialic acid receptors 

(de Vries et al., 2011). Amino acids at these positions were found for H1pdmN2sw to be 200A and 

227E and for comparison, H1avN2hu possessed 200T and 227E and at the same positions, H1N2 

possessed 200T and 227A. 

Position 155 have previously been shown to be a residue important for host specificity (Matrosovich et 

al., 2000) and at this position, all three H1 viruses possessed 155V. 

Investigation of the receptor binding properties of the H3N2 virus showed that the European H3N2 SIV 

possessed 155Y and 158G. These two residues have previously been shown to play a critical role in 

receptor recognition (Takahashi et al., 2009). Further, amino acids at residue 226 and 228 have also 

previously been shown to play a role in receptor binding (Matrosovich et al., 2000). The European SIV 

H3N2 was found to possess 226L and 228S.  

NA kinetics  

To compare the NA enzyme kinetics of the four European SIVs, the sialidase activity of the 

neuraminidases were determined using the MUNANA fluorogenic substrate.  

Previously it has been suggested that NA activity may facilitate the transmissibility of IAVs (Campbell 

et al., 2014) and hence NA enzyme kinetics of the four European SIVs were determined, using the 

MUNANA fluorogenic substrate. The Michaelis-Menten constant (KM) is an estimate of the 

dissociation equilibrium for substrate binding to enzyme and thereby reflects the enzyme affinity for 

the substrate, where Vmax reflect the enzyme’s catalytic activity. All four European SIVs showed high 

Km values, ranging from 281 µM for H3N2 to 492 µM for H1N2. Vmax values were found to be in the 

range from 842 U/sec for H3N2 to 1845 U/sec for H1pdmN2sw (Table 3). 
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Antiviral susceptibility 

The antiviral susceptibility of the four European SIVs to three of the most commonly used 

neuraminidase inhibitors (Oseltamivir carboxylase, Zanamivir and Peramivir) was tested. All of the 

European swine influenza viruses were found to be sensitive to all of the neuraminidase inhibitors 

tested (Table 3). H3N2 was found to be the most sensitive (IC50 of 0.08 nM) to Oseltamivir 

Carboxylate and H1N2 to be the least sensitive (IC50 of 0.47 nM). For Zanamivir, H3N2 was found to 

be the most sensitive (IC50 of 0.14nM) and H1pdmN2sw to be the least sensitive (IC50 of 1.59 nM) and 

for Peramivir, the results showed that also H3N2 was the most sensitive (IC50 of 0.10 nM) and H1N2 

was the least sensitive (IC50 of 0.66 nM).  

DISCUSSION 

The genetic background of the H1N1pdm09 virus, the recent incidents with infection of humans with 

swine derived H3N2v in the US, as well as the increased prevalence of new SIV reassortants detected 

globally (Ducatez et al., 2011;Harder et al., 2013;Mukherjee et al., 2012;Pascua et al., 2013) have 

highlighted the need to investigate the zoonotic potential of SIVs. In this study, four European SIVs 

were characterized. Two of these viruses were recently discovered reassortants and two were enzootic 

viruses having circulated in swine herds for decades.    

The ferret model is a widely used model for investigating potential pandemic and zoonotic threats of 

both swine and avian influenza viruses due to its disease course resembling that of humans (Maher and 

DeStefano, 2004). This trait also makes ferrets a suitable model for assessment of the zoonotic potential 

of the four SIVs investigated in this study. All four viruses were found to be able to infect ferrets and 

were also able to be transmitted directly to naïve cohoused ferrets. In comparison, a previous study 

showed that A/sw/Italy/3169-7/1994(H1N1), an avian-like H1N1, transmitted poorly via direct contact 

and was not able to transmit to AT ferrets. The same study also found that North American triple 

reassortant swine (TRS) viruses were readily transmissible via direct contact and that TRS viruses 

carrying swine-like HA and human-like NA versus human-like HA and human-like NA were moderate 

and efficient, respectively, in airborne transmission (Barman et al., 2012). In agreement with these 

observations, we found that the H1avN2hu/H1pdmN2sw viruses carrying human-origin NA and 

human-origin HA, respectively, were less efficient in transmission compared to the H3N2 virus 

carrying both human-origin HA and NA.  
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H1avN2hu and H1pdmN2sw showed the highest virus titers in nasal turbinates, whereas in the nasal 

washes, H1avN2hu and H1N2 showed the lowest mean peak viral titers. These findings indicate that 

H1avN2hu replicates very efficiently in tissues, but suggests that release of new viral particles, are not 

very efficient. An observation indicating that the balance between the HA and NA of this virus, is not 

optimal for efficient cleavage of viral particles. 

H3N2 and H1pdmN2sw showed the highest virus titers in lungs. The ability of H3N2 and H1pdmN2sw 

to replicate in the lungs of ferrets, were also consistent with the observation that these viruses seemed 

to induce the most severe lung lesions compared to the other two viruses. We therefore propose that the 

human-like HA (H3N2 and H1pdmN2sw) plays a more significant role in transmission than the 

human-like NA (H1avN2hu). Further supporting this theory was the detection of viral RNA in AT 

ferrets from both the H3N2 and the H1pdmN2sw virus groups. Even though the AT ferret in the 

H1pdmN2sw group showed a high ct value, this finding still suggests that H1pdmN2sw could also be 

able to transmit via airborne contact, but considerably less efficiently than the H3N2 virus. 

The European H3N2 showed a mean peak viral titer already at day 5 pi in DC ferrets, which indicated 

that this virus was the most efficient in transmitting to naïve DC ferrets of the four viruses. H3N2 was 

further found to be the only virus able to transmit and initiate an effective viral replication via airborne 

transmission. These results, combined with the efficient transmission to DC ferrets and the high viral 

titers in both nasal turbinates and trachea, showed that this virus was the most effective, of the four 

European SIVs, for replication and transmission in the ferret model. 

During this study, one of the AT ferrets in the group inoculated with H3N2 was found dead at 11 dpi. 

Pathological examinations of the ferret revealed that the death was not related to the infection. Since 

both AT ferrets in the group inoculated with H3N2 shed virus and virus was detected in nasal wash 

from the deceased ferret at 11 dpi, the results of the airborne transmission were not compromised by its 

death.  

Previously, several studies have investigated the pathogenesis of SIV in the ferret model, but most of 

these studies have investigated infections with different TRS viruses and reassortments hereof (Barman 

et al., 2012;Pascua et al., 2012;Pearce et al., 2012), as well as infection studies using the H1N1pdm09 

virus (Guarnaccia et al., 2013;Maines et al., 2009;Yen et al., 2011). In 2012, a study of the 

pathogenesis of Korean North American-like TRS H1N2 and H3N2 in ferrets, also showed high viral 
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titers from nasal washes of inoculated ferrets, but in contrast to the European SIVs, the 

A/Sw/Korea/1204/2009(H1N2) also caused severe disease in all inoculated ferrets. Further, the TRS 

viruses were shown to transmit via direct contact and A/Sw/Korea/1204/2009(H1N2) was found also to 

replicate in the lungs of ferrets, though to lower titer values than the European H3N2 and H1pdmN2sw 

(Pascua et al., 2012). 

The H1N1pdm09 has also previously been shown to transmit via direct contact between ferrets (Yen et 

al., 2011), but did not transmit efficiently via airborne contact. The study by Yen et al., also detected 

H1N1pdm09 in the lower respiratory tract at high titers and in comparison to this, the European 

H1pdmN2sw lung titers were found to be considerably lower.  

For further assessment of the zoonotic potential of the European SIVs, they were all tested for their 

ability to replicate in a human airway cell line and compared to their replication efficiency in a swine 

airway cell line and MDCK cells, the cell line primarily used for isolation of IAVs.  

A classification criteria has previously been established based on the observation that the in vitro 

replication of IAVs from various species between 8 and 24 hpi correlates with infection in humans 

(Ilyushina et al., 2012). This system classified viruses into three groups on the basis of replication 

kinetics at 24 hpi: rapid/high (≥4 Log10 TCID50/ml), delayed/intermediate (<4 Log10, but surpassed this 

level at subsequent time points), and low (<4 Log10 throughout the study) (Jones et al., 2014). Applying 

this classification to the European SIVs showed that they at 24 hpi in NHBE cells all belonged to the 

rapid/high replication kinetics and only in pSREC cells could the H3N2 be classified as replicating at 

delayed/intermediate level. In conclusion, the high level of replication in NHBE cells of all four SIVs, 

suggested that these viruses have the ability to efficiently infect cells in the human respiratory airway. 

The potential ability of the European SIVs to replicate efficiently in humans was also analyzed in terms 

of their receptor binding properties, important amino acids involved in receptor binding and host 

specificities. Human IAVs bind preferentially to α2,6-SL, and α2,6-SLN and to a lesser extent α2,3-SL 

as representatives of α2,6- and α2,3-linked Neu5Ac receptors (Stevens et al., 2006). This is consistent 

with the high efficiency of infection and transmission of the European H3N2 virus, since it was found 

to bind both α2,6-SL and α2,6-SLN, but does not explain the less efficient infection and transmission of 

the H1avN2hu, that was also shown to bind these two receptors. 
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The observed preferences of the European SIVs fit well with the high viral replication in the upper 

respiratory tracts, where these receptor types mainly are present. The predominant binding to the α2,6 

receptors also correlates well with amino acids in the receptor binding area that are characteristic for 

binding to this receptor in positions 190, 225, 226 and 228 that are typically observed in human adapted 

virus strains (Matrosovich et al., 2000). 

The 190D was present in H1N2 and H1pdmN2sw, whereas H1avN2hu possessed 190S. This amino 

acid has been shown to play an important role in binding of SIVs and human IAVs to the α-2,6 receptor 

in concert with the amino acid at position 225 (Matrosovich et al., 2000). It could be speculated that the 

D to S mutation potentially affects binding of the H1avN2hu to the α2,6 receptor. Concerning the 

amino acid at residue 225, this was found to vary between all four European SIVs, with the 

H1pdmN2sw showing the “avian” 225D and H1avN2hu a 225E variation. Most interesting was H1N2 

that showed both 225E and 225K. The 225E variant was found in inoculum, whereas the 225K 

variation was found in an inoculated ferret and a DC ferret, but since these ferrets were not cohoused, 

this mutation may have been random. The receptor binding domain at residue 225 has previously been 

found to be variable in European avian-like swine strains and has been shown to include the avian 

225G, but also 225E and 225K (Dunham et al., 2009), thus demonstrating that the E225K mutation 

observed in H1N2 is not uncommon.  

In H1 HA, “avian” residues 226Q and 228G has been found to be present in human viruses (Glaser et 

al., 2005;Matrosovich et al., 2000) and these “avian” residues were also present in the European swine 

influenza H1 viruses. The European H3N2 virus possessed 226L and 228S at these respective residues. 

These amino acids have previously been shown, for the human H3 subtype, to reduce the affinity for 

α2,3 receptor binding, as well as increase the affinity for α2,6 receptors (Matrosovich et al., 

2000;Nobusawa et al., 2000;Rogers et al., 1983). Taken together, these findings are in accordance with 

the observed ability of the European H3N2 to infect both human and swine cell lines, as well as 

infecting and transmitting between ferrets, considering the α2,6 specificity required for infection of the 

above mentioned systems and also strongly supports its observed preference for binding of α2,6 

sialylglycopolymers. 

Earlier studies of RBS in H1 subtypes has shown that the European avian-like swine strains have 

significant variability in the receptor binding residue 138, unlike classical strains that maintains the 
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avian consensus (138A) (Dunham et al., 2009). This observation is in agreement with the findings in 

this study where the two avian-like H1’s showed both 138I/V and the H1pdm09, where the HA 

originates from a North American TRS lineage, which yet again originates from the classical H1N1 

swine lineage (Smith et al., 2009), showed the 138A variation. 

The European H3N2 was shown in this study to possess amino acids 155Y and 158G, mutations found 

to be present in human H3’s and both mutations have previously been shown to play a critical role in 

recognition of two major molecular species of sialic acids, namely 5-N-acetylneuraminic acid 

(Neu5Ac) and 5-N-glycolylneuraminic acid (Neu5Gc), where Neu5GC is an analog of sialic acid, 

expressed in many animal tissues, but absent from humans (Chou et al., 1998;Matrosovich et al., 

2000;Takahashi et al., 2009). Previously, T155Y and E158G substitutions was found to preferably bind 

to α2,6 receptors and  have also been proposed to be mainly responsible for the wide binding pattern of 

H3 viruses that potentially are able to infect a variety of animals (Takahashi et al., 2009). All the 

European H1 SIVs were found to possess 155V, which have previously been shown to increase the 

affinity of SIVs for Neu5Gc (Bateman et al., 2010;Chou et al., 1998;Sriwilaijaroen et al., 2011). In 

human H1 viruses, 155T has been found to be conserved at this position (Matrosovich et al., 2000), 

which could explain the observed enhanced growth of especially H1N2 and H1avN2hu in pSRECs 

compared to that of H3N2. 

Specifically for the H1pdmN2sw, it has previously been shown that T200A and E227A mutations in 

pandemic H1 were very important for strong fetuin binding (a blood-glycoprotein containing α2,3 and 

α2,6 sialic acids in a 2:1 ratio) of HA (de Vries et al., 2011). This suggests that since H1pdmN2sw only 

possesses one of these two mutations this could possibly affect the binding of this virus to the α2,6 

receptor, but also suggests that the virus could be in the process of adapting to swine. 

It has previously been found that the level of NA activity of particular influenza strains affects 

transmission efficiency in both guinea pigs and ferrets (Campbell et al., 2014;Govorkova, 2013). 

Further it was found that PR8 modified by reverse genetics to contain a pandemic matrix (M) gene 

enhanced NA activity (Campbell et al., 2014). Of the European SIVs, only H1pdmN2sw contained a 

pandemic M gene and interestingly, the H1pdmN2sw showed higher enzyme activity (a higher Vmax) 

than the H3N2 virus, despite comparable KM values. These findings suggest that NA activity is not 

sufficient to confer airborne contact transmission of the H3N2 virus. 
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It would be interesting though, to test if NA activity and transmission efficiency of the European H3N2 

virus would increase further if the original M gene was replaced with a pandemic M gene. 

Ferrets used for transmission studies are usually sero-negative to circulating human IAVs and is hence 

expected not to have acquired any previous immunity. For this reason, infection of the ferrets does not 

quite mirror the case in the human population, since vaccination as well as previously acquired 

immunity plays a role in a potential infection. With the transmission efficiency and ability to replicate 

in human respiratory cells observed in this study for the European SIV H3N2, there is a possibility that 

this virus could potentially transmit to humans. For the past 25 years, the European H3N2 virus has 

been adapting to swine and the degree of antigenic relation between this virus and the human seasonal 

H3N2 virus is likely to have increased dramatically. A recent study did show that contemporary human 

seasonal H3N2 viruses had obtained substantial antigenic distance from swine H3N2 viruses, even 

though the lineages shared a common ancestor. Hence, the authors speculated that this increasing 

distance could pose a risk for the youngest of the human population, since they could become 

increasingly susceptible to infections with swine H3N2 due to the lack of cross-reacting immunity 

(Lewis et al., 2014).  

Here we have shown the ability of four European SIVs to transmit efficiently in the ferret model via 

direct contact. Furthermore we showed that one of these viruses, H3N2, also had the ability to 

efficiently transmit via the airborne route. These findings stress the need for a continued and systematic 

surveillance of the European SIVs in order to detect new reassortants as well as monitoring the 

evolution of both reassortants and enzootic strains and further shows the importance of assessing their 

zoonotic potentials. 
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FIG 1 Replication kinetics in the upper respiratory tract of the four European swine influenza viruses. Groups of four ferrets were 

intranasally inoculated with 1 ml of 106 TCID50 (0.5 ml per nostril) of the respective viruses. Each virus group contained eight ferrets, four 

donor ferrets (until 5 dpi), two direct contacts and two airborne transmission contacts. (A) H1avN2hu (B) H1N2 (C) H3N2 (D) H1pdmN2sw. 

Nasal washes were collected on days 1, 3, 5, 7, 9 and 11 after infection. Data are presented as mean virus titer ± SEM (log10 TCID50/ml) on 

the indicated day. Limit of detection was 101 TCID50/ml. 
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FIG 2 Seroconversion of ferrets. Ferrets were tested for seroconversion at 19 and 21 dpi, using a 

blocking-ELISA, detecting antibodies against the NP gene. Serum samples were tested in duplicate and 

mean values are presented as percent transmittance ± SEM 
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FIG 3 Comparison of European swine influenza virus titers recovered from ferret tissues. Ferrets 

were inoculated intranasally with 1 ml of 106 TCID50 (0.5 ml per nostril) with H1N2, H1avN2hu, 

H3N2 or H1pdmN2sw, and tissues were collected at day 5 p.i. Titers are expressed as log10 TCID50 per 

gram of tissue. Each bar represents two ferrets. Data are presented as mean virus titer ± SEM (log10 

TCID50/g) from the indicated tissue. Limit of detection was 101 TCID50/g. 
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FIG 4 Lung pathology in ferrets inoculated with one of the four European swine influenza 

viruses A) Normal lung tissue from control ferret; B) Ferret inoculated with H3N2, euthanized 5 days 

post infection (dpi). Suppurative bronchiolitis, dysplasia of bronchiolar epithelium and hyperplasia of 

the bronchus associated lymphoid tissue (BALT) (asterisks); C) Ferret inoculated with H1pdmN2sw, 

euthanized 5 dpi. Suppurative bronchiolitis, dysplasia and desquamation (arrowhead) of bronchiolar 

epithelium and BALT hyperplasia (asterisks); D) Ferret inoculated with H1N2, euthanized 5 dpi. 

Suppurative bronchiolitis and peribronchiolar infiltration of mononuclear cells. Dysplasia, necrosis and 

desquamation (arrowhead) of bronchiolar epithelium; E) Ferret inoculated with H1avN2hu, euthanized 

5 dpi. Suppurative bronchiolitis, and dysplasia, necrosis and desquamation (arrowhead) of bronchiolar 

epithelium. Hematoxylin and eosin, scale bar 100 µm. 

111 
 



Manuscript II 

MDCK

0 20 40 60 80
0

2

4

6

8

10
H1avN2hu
H1pdmN2sw
H1N2
H3N2

C

Hours Post InfectionM
ea

n 
Vi

ru
s 

Ti
te

r 
(L

og
10

 T
CI

D
50

/m
l)

pSREC

0 20 40 60 80
0

2

4

6

8

10
H1avN2hu
H1pdmN2sw
H1N2
H3N2

B

Hours Post InfectionM
ea

n 
Vi

ru
s 

Ti
te

r 
(L

og
10

 T
CI

D
50

/m
l)

NHBE

0 20 40 60 80
0

2

4

6

8

10
H1avN2hu
H1pdmN2sw
H1N2
H3N2

A

Hours Post InfectionM
ea

n 
Vi

ru
s 

Ti
te

r 
(L

og
10

 T
CI

D
50

/m
l)

 

 

FIG 5 Replication kinetics of European swine influenza viruses in normal human bronchial 

epithelial (NHBE) cells, primary swine respiratory epithelial (pSREC) cells and MDCK cells. 

Growth curves were obtained by inoculating cells with an MOI of 0.01 PFU/cell with H1N2, 

H1avN2hu, H1pdmN2sw or H3N2, respectively. Supernatant was harvested and titrated in MDCK 

cells at 8, 10, 12, 18, 20, 24, 36, 48 and 60 hours post infection. Data are expressed as mean log10 

TCID50 ± SEM from three independent experiments performed in duplicate.  
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FIG 6 Receptor specificity of four European swine influenza viruses. analysis of receptor-binding 

specificity against sialyl glycans. The receptor-binding specificity of the four European swine influenza 

viruses H1N2, H1avN2hu, H1pdmN2sw and H3N2 were tested in a dose dependent glycan array assay 

against the sialyl glycans α2,6-SL and α2,6-SLN (representing the human/swine receptors) and  α2,3SL 

(representing the avian receptor).  
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Table 1 Virus detection in nasal wash samples by real time RT-PCR  

 

Virus/ group 

Day post infection 

1 3 5 7 9 11 

H1avN2hu 

 

Inoculated ++/++ +++/+++ +++/+++ ++/+ +/+ +/+ 

DC n.a. -/+ -/+++ ++/+++ ++/++ ++/+ 

AT n.a. -/- -/- -/- -/- -/- 

      

H1pdmN2sw Inoculated +++/+++ +++/++ +++/+++ ++/+ +/+ +/- 

DC n.a. +/+ +/+++ +/+++ +++/+++ ++/+ 

AT n.a. +/- +/- -/- -/- -/- 

      

H1N2 Inoculated ++/++ +++/+++ +++/+++ ++/++ ++/+ +/+ 

DC n.a. +/+ +++/+++ +++/* ++/++ +/+ 

AT n.a. -/- -/- -/- -/- -/- 

      

H3N2 Inoculated +++/++ +++/+++ +++/+++ +/++ ++/++ +/+ 

DC n.a. ++/+ +++/++ +++/+++ +++/+++ +++/+++ 

AT n.a. -/- +/- +++/- +++/- +++/+++ 

      

Controls  -/- -/- -/- -/- -/- -/- 

+++: ct < 25, ++: ct = 25-30, +: ct < 30, (+): ct > 40, - :no ct, n.a.: Not applied, *: Not enough sample 
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Table 2 Sequence analysis of receptor binding residues and host specific amino acids in the four 

European swine influenza viruses  

 Amino acid position 
  130 loop   190 helix  220 loop 

Subtype 133 137 138 155 158 190 193 194 200 222 225 226 227 228 
H3N2 - N - Y G E N L - - G L - S 
H1N2 T T V V - D T L T K E/K Q A G 
H1avN2hu T T I V - S A L T K E Q E G 
H1pdmN2sw N T A V - D S L A K D Q E G 
 

 

TABLE 3 NA enzyme kinetics and antiviral susceptibility of European swine influenza viruses using 

MUNANA substrate 

 
 
Virus 

Vmax  
[mean (95% CI)] 

Km (µM)  
[mean (95% CI)] 
 

        IC50 (nM) [mean (95% CI)] 
 

Oseltamivir Zanamivir Peramivir 

H1avN2hu 1364  
(1257-1472) 

376.5  
(272.6-480.4) 

0.10  
(0.07-0.14) 

0.43 
(0.25-0.75) 

0.14  
(0.08-0.26) 

H1pdmN2sw 1845  
(1655-2036) 

487  
(320.5-653.6) 

0.29  
(0.19-0.44) 

1.59  
(0.85-2.98) 

0.48  
(0.30-0.77) 

H1N2 1495  
(1219-1772) 

492  
(191.7-792.4) 

0.47  
(0.31-0.72) 

1.48  
(0.86-2.56) 

0.66  
(0.43-1.01) 

H3N2 842.4  
(743.9-940.9) 

281.1  
(158.7-403.5) 

0.08  
(0.05-0.12) 

0.14  
(0.05-0.35) 

0.10  
(0.07-0.14) 

The Michaelis-Menten constant (Km) and maximum velocity (Vmax) of substrate conversion were 

fitted to the Michaelis-Menten kinetics by non-linear regression. CI, confidence interval 
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INTRODUCTION 

Influenza A virus (IAV) is an important pathogen affecting many different species. The natural 

reservoir of influenza A virus are waterfowls, from which 16 different hemagglutinins (HA) and 9 

neuraminidases (NA), have been isolated (Fouchier et al., 2005;Webster et al., 1992). HA and NA are 

both surface glycoproteins and the subtypes of IAV is defined by these proteins. IAVs are able to 

circumvent host immunity either by subtle changes at antigenic sites in the surface glycoproteins, a 

process termed antigenic drift or by the exchange of segments between different subtypes thus creating 

new reassortants, a process termed antigenic shift (Schild et al., 1974;Webster et al., 1992). 

Many different species, including humans and pigs, serves as hosts for IAV. Seasonal epidemics in the 

human population yearly claims between 250,000 and 500,000 live worldwide 

(http://www.who.int/mediacentre/factsheets/fs211/en/). During the last century, four different IAV 

subtypes have caused pandemics in the human population. In 1918, H1N1 caused “the Spanish flu” that 

was responsible for the death of more than 50 million people worldwide (Johnson and Mueller, 2002). 

In 1957, a pandemic was caused by an H2N2 subtype, followed by the pandemic in 1968 caused by 

H3N2 and the latest pandemic in 2009 caused by a novel H1N1 virus (Neumann and Kawaoka, 2011). 

This virus was termed H1N1pdm09 to distinguish it from the previous seasonal H1N1. At present, 

H3N2 and H1N1pdm09, which have largely replaced the seasonal H1N1, continue to co-circulate in 

the human population (Neumann and Kawaoka, 2011). Until 2009, subtypes found to circulate in the 

pig population included H3N2, H1N1 and H1N2, though a great variability exists regarding the gene 

constellation and origin, depending on the continent and region in which the different subtypes 

circulates (Lorusso et al., 2012;Zell et al., 2012;Zhu H et al., 2012). In 2009, human-to-swine 

transmissions introduced the H1N1pdm09 in the pig population (Forgie et al., 2011;Howden et al., 

2009), and was subsequently detected throughout the pig population worldwide (Moreno et al., 

2010;Pereda et al., 2010;Song et al., 2010;Sreta et al., 2010;Welsh et al., 2010). It appears that the 

introduction of the H1N1pdm09 to the pig population has increased the number of reassortants between 

this virus and endemic SIVs in the recent years (Kitikoon et al., 2011;Moreno et al., 2011;Nelson et al., 

2012;Pereda et al., 2011;Starick et al., 2011;Zhu et al., 2011). Recent events in the US where a new 

reassortant of the US SIV H3N2 containing the matrix protein from the H1N1pdm09 and termed 

H3N2v, were found to be transmitted to humans on several occasions. Further, this reassortant virus 
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was found capable of human-to-human transmission in few cases (2011b;2011a;2012). These recent 

incidents indicates an important role of the pandemic matrix gene for effective transmission and further 

stress the importance of surveillance in pig populations as well as studies aimed at elucidating how the 

acquisition of genes derived from the H1N1pdm09 affects transmissibility, replication and viral fitness 

in human and pig in vitro and in vivo models.  

Reverse genetics systems for IAV offer the ability to generate recombinant viruses, which then can be 

used for investigation of interactions between segments from different subtypes as well as replication 

and viral fitness. A reverse genetics system established by Stech et al, has the advantage of omitting the 

use of restriction enzymes and instead relies on the incorporation of the segment of interest to be by 

target-primed plasmid amplification (Stech et al., 2008). This feature provides a fast and efficient way 

of cloning the eight segments needed for the generation of the desired IAV.  

In this study, the reverse genetics system developed by Stech et al. (Stech et al., 2008) was established 

with a Danish SIV of the H1N2 subtype used as backbone. The effects of exchanging the original M 

gene with an M gene originating from the H1N1pdm09 was sought elucidated in terms of assessing the 

infectious potential in cell types of both human and swine origin of the recombinant virus compared to 

the wild type virus.  
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METHODS 

Cells and viruses  

A/swine/Denmark/10845-1/2012(H1pdmN2sw) and A/swine/Denmark/101394-1/2011(H1N2) were 

isolated from samples submitted for diagnostic purposes from swine with a history of respiratory 

disease. Briefly, Madin-Darby canine kidney (MDCK) cells were grown to 60-70% confluency in 

MEM (Gibco, Carlsbad, CA, USA) containing 5% FBS, 2 mM L-glutamine, 1× Non-essential amino 

acids (NEAA) and 1× penicillin-streptomycin. Lung tissue was homogenized on TissueLyser (Qiagen, 

GmbH, Germany) in 1.5 mL 1× MEM supplemented with 1×penicillin-streptomycin and sterile 

filtered. Cells were inoculated with 500 µL lung tissue homogenate for 30 min at 37°C, 5% CO2. 

Following incubation, 10 mL MEM containing 1×penicillin-streptomycin, 1×NEAA, 2 mM L-

glutamine and 2 µg/mL tosylsulfonyl-phenylalanyl-chloromethyl-ketone (TPCK)-treated trypsin 

(Sigma-Aldrich, St. Louis, MO, USA) was added to the cells. The cells were incubated for 72 hours 

and daily monitored for CPE. The supernatant was harvested and centrifuged at 2500 Rpm for 30 

minutes to clarify cell debris and then stored at -80°C until further use.  

RNA purification and real time RT-PCR screening 

Viral RNA was purified from cultured viruses by RNeasy Mini Kit (Qiagen, GmbH, Germany) 

according to manufacturer’s instructions. Cell culture supernatant was prepared by mixing 200 µl 

sample with 400 µl RLT-buffer containing β–mercaptoethanol. Total RNA was eluted in 60 µl RNase-

free water and stored at -80°C. The presence of influenza A virus was confirmed by real-time RT-PCR 

using an in-house modified assay for detection of the matrix gene (De Vleeschauwer et al., 2009).  

Full genome sequencing and RT-PCR 

Nucleic acid amplification for sequencing of specific influenza A virus genes, were performed by one-

step RT-PCR using primers modified from Hoffmann et al., (Hoffmann et al., 2001) and the 

Superscript III One-Step RT-PCR kit with Platinum Taq High Fidelity (Invitrogen, Carlsbad, CA, 

USA). PCR cycling conditions for NA was as follows: 30 min at 58°C, 2 min at 94°C, four cycles of 

94°C for 30 sec, 54°C for 30 sec, 68°C for 180 sec, followed by 40 cycles of 94°C for 30 sec and 68°C 

for 210 sec and then 68°C for 10 min. PCR cycling conditions for M was as follows: 30 min at 50°C, 2 
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min at 94°C, 40 cycles of 94°C for 30 sec, 56°C for 30 sec and 68°C for 180 sec and then 68°C for 10 

min.  

For the amplification of nucleic acid for target-primed plasmid amplification, primers modified from 

Stech et al., were used (Table1) and amplification was performed using the same RT-PCR kit as for the 

amplification of specific influenza A virus genes. PCR cycling conditions for PB1, PB2, PA, NP and 

HA were similar to those used for amplification of NA, whereas conditions for NS were similar to 

those used for amplification of M. Specific temperatures used for the reverse transcription and 

annealing steps are listed in table 1.  

The PCR products were visualized by gel electrophoresis using E-Gel 0.8% agarose gels (Invitrogen, 

Carlsbad, CA, USA) and purified with High Pure PCR Product Purification Kit (Roche Diagnostics, 

GmbH, Germany). Purified PCR products of specific influenza A virus genes were send for single 

sample sequencing at LGC Genomics (GmbH, Germany). 

Full genome sequencing was performed on the A/swine/Denmark/101394-1/2011(H1N2) cell culture 

propagated virus by full length amplification of all 8 gene segments with in-house designed primers 

(primers available upon request) using SuperScript III One-Step RT-PCR System with Platinum Taq 

High Fidelity and PCR conditions similar to those described for NA and M full length amplification. 

Purified PCR products for all gene segments were pooled in equimolar quantity to a final amount of 1 

µg and used for next generation sequencing (NGS) on the Ion Torrent PGM™ sequencer (Life 

Technologies, Carlsbad, CA, USA). NGS including library preparation was carried out at the Multi-

Assay Core facility located at the Technical University of Denmark.   

Sequences obtained by NGS were assembled using the features de novo and reference assembly of 

CLC Genomics Workbench 4.6.1 (CLC bio A/S, Århus, Denmark). Sequences obtained by Sanger 

sequencing was analyzed using CLC Main Workbench Version 6.9 (CLC bio A/S, Århus, Denmark). 
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Phylogenetic tree 

Phylogenetic trees from aligned sequences were inferred using the Bayesian Markov-Chain Monte 

Carlo (MCMC) method integrated in Mr.Bayes 3.1 (Ronquist and Huelsenbeck, 2003). The MCMC 

was run for 2 million iterations under the GTR+I+G model, and using a 25% burn-in and a sampling 

frequency of 2000. The phylogenetic tree was visualized using FigTree, version 1.3.1 

(http://tree.bio.ed.ac.uk/software/figtree/) and midpoint rooted for clarity. 

Target-primed plasmid amplification and transformation 

For the target primed plasmid amplification, 100 ng of pHWSccdB plasmid (kindly provided by Dr. 

Jürgen Stech) and PCR product of varying concentration dependent of the gene as previously described 

(Stech et al., 2008). For each gene, the plasmid and the gene specific PCR product was mixed with 2U 

Phusion High-Fidelity DNA Polymerase according to manufacturer’s instructions (Thermo Fischer 

Scientific, Copenhagen, Denmark). PCR cycling conditions were as follows: 30 sec at 98°C, followed 

by 35 cycles of 98°C for 10 sec and 48°C for 60 sec and 72°C for 5.30 min. Following target-primed 

plasmid amplification, 5 or 10 µl of the reaction mixture was transformed into One-shot TOP10 

competent cells (Life technologies, Carlsbad, CA, USA), according to manufacturer’s instructions and 

streaked on LB plates containing 100 µg/mL ampicillin. 

Verification of inserts 

For PCR screening, four to five colonies were selected and streaked on fresh LB plates with ampicillin 

and were subsequently screened using Qiagen OneStep RT-PCR kit (Qiagen, GmbH, Germany). 

Primers targeting the area surrounding the insert in the plasmids were used for amplification (primers 

available upon request). For PCR, the following conditions were used: 30 sec at 98°C, followed by 35 

cycles of 98°C for 10 sec and 55°C for 60 sec and 72°C for 5.30 min.  

Plasmids containing inserts of correct size were purified using Pure-Link Quick Plasmid DNA Mini-

prep kit (Life technologies, Carlsbad, CA, USA) according to manufacturer’s instructions and send for 

single sample sequencing at LGC Genomics (GmbH, Germany). Sequences were verified using CLC 

Main Workbench Version 6.9 (CLC bio A/S, Århus, Denmark). Plasmids from correct clones were 

purified and stored at -80°C until further use. 
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RESULTS AND DISCUSSION 

The work plan of this study was to amplify each segment from a Danish H1N2 SIV and a pandemic M 

segment, clone the obtained PCR products into plasmids and transform the plasmids into competent E. 

coli bacteria. Following selection and verification of correct clones, each of the cloned genes are tested 

by co-transfection with seven plasmids encoding the genes of the A/Puerto Rico/8/1934(H1N1) (PR8) 

strain into a co-culture of 293T and MDCK cells. After the test, all eight genes to be used for the final 

recombinant IAVs are transfected into a 293T/MDCK co-culture (Fig. 1). This will result in two 

recombinant IAVs; one virus will be wild type and contain the original M segment, whereas the second 

virus will contain the pandemic M segment. Finally, growth kinetics of the recombinant IAVs will be 

tested and compared in vitro in the human epithelial cell line A549, MDCK cells and a primary swine 

kidney cell culture. Furthermore, receptor binding preferences and NA kinetics of the recombinant 

IAVs will also be tested.  

For the establishment of the reverse genetics backbone, it was chosen to use a strain of H1N2 subtype, 

since this subtype is one of the two most prevalent subtypes circulating in Danish pigs and also due to 

its high success in becoming an established subtype in Denmark (unpublished data), since its first 

detection in 2003 (Trebbien et al., 2013). The specific strain name of the virus to be used as backbone 

was A/swine/Denmark/101394-1/2011(H1N2). Furthermore, HA and NA sequences of this subtype 

were analyzed and H1 was found not to possess any substitutions that distinguished this virus from the 

main part of the Danish swine H1N2s. The H1 of this virus was shown to be antigenically closely 

related to the remaining part of the Danish H1 viruses and phylogeny of the N2 gene showed that the 

virus belonged to clade 1 together with the main part of Danish N2 viruses (Fobian et al., 2014). 

Selection of the pandemic M gene was based on phylogeny (Fig. 2). Due to the previous cases of the 

North American H3N2 viruses containing the pandemic M segment, it was decided that the Danish M 

segment to be used for the recombinant virus, had to be as closely related to the North American 

pandemic M segment as possible, in order to more closely mimic the suggested role of this segment in 

transmission as well as its apparent impact on NA activity (Campbell et al., 2014;Lakdawala et al., 

2011). 
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At present, five of the eight segments of the H1N2 backbone, as well as the pandemic M segment, have 

been successfully amplified and verified (Table 2). PB1, PA and HA have all been amplified but 

specific sequencing primers for verification of these segments remains to be designed. 

In recent studies, the reverse genetics systems have been used to analyze various aspects related to 

virulence and host range restrictions. One study showed that mutations in a triple reassortant H1N2 

virus that was acquired  in HA and NA through a single passage in ferrets, substantially altered 

virulence and transmissibility of the virus (Pascua et al., 2012). Another study showed that the 

introduction of the pandemic NA into a triple reassortant H1N2 increased airborne transmission in 

ferrets (Yen et al., 2011). 

Therefore the establishment of this reverse genetics system will be invaluable in the assessment of the 

zoonotic potential of new reassortants as well as in the analysis of host range restrictions in Danish 

SIVs. 
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FIG 1 A schematic representation of the principles of reverse genetics. (A) Target primed amplification 

of the PCR amplicons and the pHWSccdB plasmid where the strands of the PCR amplicon serve as 

megaprimers. Upon amplification the ccdB marker is replaced by the viral gene (Stech et al., 2008). 

(B) The clones containing the eight different segments are transfected into a co-culture of 293T and 

MDCK cells and recombinant virus can accordingly be rescued. Modified from 

(http://www.aht.org.uk/cms-display/science_eqflu.html and 

http://www.nature.com/scitable/content/cells-growing-in-a-tissue-culture-14264811) 
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FIG 2 Phylogenetic tree of M sequences (position 29-920) was inferred using the Bayesian MCMC 

method integrated in Mr.Bayes 3.1 under the GTR+I+G model by running 2 million MCMCs with 25% 

burn-in and a sampling frequency of 2000. Scale bar indicates number of nucleotide substitutions per 

site. Tree was midpoint rooted for clarity. Variant influenza A viruses isolated from humans are colored 

green and the two swine influenza viruses used in this study are colored red. 
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Table 1 Primer sets used for the amplification of Danish swine influenza A virus genes 

Gene Forward primer Reverse primer RT  
tempe-
rature/ °C  

Annealing 
tempe-
rature/ °C 

PB2 PHW-M-PB2-F2*: 
gaagttggggggg 
agcRaaagcaggTCAAATATATTC 

PHW-PB2-2341r: 
ccgccgggttatt 
agtagaaacaaggTCGTTT 

55 52 

PB1 PHW-M-PB1-F2*: 
gaagttggggggg 
agcRaaagcaggCAAAC 

PHW-PB1-2341r: 
ccgccgggttatt agtagaaacaaggCATTT 

52 52 

PA PHW-M-PA-F2*: 
gaagttggggggg 
agcRaaagcaggTACTG 

PHW-PA-2233r: 
ccgccgggttatt agtagaaacaaggTACTT 

52 52 

HA PHW-HAf: 
gaagttggggggg agcgaaagcaggGG 

PHW-M-HAr*: 
ccgccgggttatt 
agtagaaacaaggGTGTTTT 

55 55 

NP PHW-M-NP-F2*: 
gaagttggggggg 
agcAaaagcaggGTAGATAATC 

PHW-NPr: 
ccgccgggttatt 
agtagaaacaaggGTATTTTT 

58 54 

NA PHW-N12458f: 
gaagttggggggg agcgaaagcaggAGT 

PHW-M-N12458r*: 
ccgccgggttatt 
agtagaaacaaggAGTTTTTT 

54 58 

M PHW-2-Mf*: 
gaagttggggggg 
agcgaaagcaggTAGATATTG 

PHW-2-Mr*: 
ccgccgggttatt 
agtagaaacaaggTAGTTTTTTACTC 

50 56 

NS PHW-M-H3NSF1*: 
gaagttggggggg 
agcAaaagcaggGTGACAAAGACA 

PHW-H3NSR1*: 
ccgccgggttatt 
agtagaaacaaggGTGTTTTTTAT 
 

58 55 

*Primers modified from (Stech et al., 2008). The 5’ ends of the primers are derived from the pHW2000 

regions (italic), followed by influenza virus termini sequences (lower cases) and gene-specific 

nucleotides at the 3’ end (uppercase bold). Nucleotides highlighted as uppercase bold in the influenza 

virus termini sequence, are nucleotides found to be prominent among Danish SIV sequences 
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Table 2 Amplified and/or verified plasmids for the establishment of a reverse genetics system 

Segment  Strain Amplified Verified 

PB1 A/swine/Denmark/101394-1/2011(H1N2) x - 

PB2 A/swine/Denmark/101394-1/2011(H1N2) x x 

PA A/swine/Denmark/101394-1/2011(H1N2) x - 

NP A/swine/Denmark/101394-1/2011(H1N2) x x 

HA A/swine/Denmark/101394-1/2011(H1N2) x - 

NA A/swine/Denmark/101394-1/2011(H1N2) x x 

M A/swine/Denmark/101394-1/2011(H1N2)/ 

A/swine/Denmark/10845-1/2012(H1pdmN2sw)  

x 

x 

x 

x 

NS A/swine/Denmark/101394-1/2011(H1N2) x x 
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DISCUSSION, CONCLUSIONS AND PERSPECTIVES 

Pigs are one of the main hosts of IAV and have been considered mixing vessels of new reassortant 

viruses, since they can be infected with both human and avian IAVs (de Graaf and Fouchier, 

2014;Scholtissek et al., 1985).  With the emergence of H1N1pdm09 as the first pandemic in this 

century containing both Eurasian avian-like and North American segments of swine-origin (Garten et 

al., 2009;Smith et al., 2009b), followed a renewed interest in the pigs as potential mixing vessels of 

new reassortant viruses with zoonotic potential and at the same time also highlighted the importance 

surveillance of IAV in swine. However, the impact of SIV infection on animal health is also an 

important aspect as well as the economic impact of SIV to the industry.  

The main aim of this PhD study was to analyze the influenza ecology and evolution of the two most 

prevalent viruses having circulated among Danish pigs during the previous ten years and at the same 

time investigate the zoonotic potential of both enzootic viruses as well as newly emerged reassortants 

in the ferret model. Furthermore, in order to be able to investigate factors essential for replication as 

well as for determination of host range restrictions, a reverse genetics system was sought established 

for future detailed studies of these viruses.  

Since 2011, a systematic passive surveillance of SIVs has been conducted in Denmark, which has given 

a more detailed insight in the different subtypes circulating in Danish pigs and has resulted in the 

detection of new reassortant SIVs. However, a thorough study of the evolution of Danish SIVs over a 

longer period of time has not previously been performed. 

In my studies, Bayesian phylogeny was used to infer the genetic relationship between sequences of HA 

and NA sampled from a period of ten years. Traditionally ML analysis has been widely used for the 

estimation of genetic relationships among sequences, but in the recent years, the use of BI for these 

estimations have become more widely accepted (Holder and Lewis, 2003;Smith et al., 2012). One of 

the advantages of using BI over ML, is that BI allows for the incorporation of prior information, which 

means that results obtained from a previous model can be used to inform the current model and hence 

improve the basis for the estimation, as well as the reliability of the outcome. In contrast to this, the 

more traditional ML method assumes that all priors are uniform and is thus a more rigid model 
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compared to BI (Holder and Lewis, 2003). The phylogenetic trees of the Danish H1 viruses inferred by 

this Bayesian approach showed no chronological drift as well as no specific clustering of the H1’s in 

terms of their subtypes and the overall structure of the phylogenetic tree appeared to be random, 

suggesting that the drift of Danish H1 SIVs was not strongly driven by host immunity. This is in 

agreement with studies performed on H1 and H3 subtypes in humans (Bhatt et al., 2011;Rambaut et al., 

2008;Wolf et al., 2006). The immune pressure is believed to lead to the ladder-like phylogeny observed 

for H3N2, in which older strains are gradually replaced by newer ones (Smith et al., 2004). In 

comparison, the human H1N1 does not show this ladder-like phylogeny, probably due to the weaker 

pressure exerted by the host immune system (Wolf et al., 2006).  

Further, as part of the evolution study, we estimated the tMRCA of the avian-like H1, but surprisingly 

our results did not correlate with previous estimates (Dunham et al., 2009;Lycett et al., 2012;Suzuki 

and Nei, 2002;Xu et al., 2011), nor the time of the first detection of this virus in swine (Pensaert et al., 

1981).  If our estimate is correct, the avian-like H1 must have circulated unnoticed for almost seventy 

years in either birds and/or pigs. Thus, one plausible hypothesis is that the virus emerged in birds 

around 1917 where it circulated and drifted for decades, before different viruses were introduced into 

the swine host which possibly could have been through several independent introductions. An alternate 

explanation is that the virus emerged in birds around 1917 and was shortly after introduced to swine, 

followed by decades of silent circulation, before the drifted viruses gained increased virulence and 

became swine pathogens. A combination of these two explanations is also possible.  Indeed, it has 

previously been found that IAV subtypes could potentially have circulated undetected for a period of 

time before the initial detection, as seen with the wholly human H3N2 virus detected in swine in US 

(Nelson et al., 2014), and the H1N1pdm09 (Smith et al., 2009b). Until the pandemic in 2009, SIV 

surveillance was scarce or completely lacking and has previously also been based on serological 

evidence. Therefore an undetected circulation of the avian-like H1N1 in Danish and/or European pigs 

is not unlikely, especially if the virus was only circulating at low levels.  

Considering the incongruence of the result obtained in this study and those obtained previously, several 

factors must be considered when estimating tMRCA, since this estimate depends on the method used, 

the choice of nucleotide substitution model, the amount and age of sequences used for the estimation, 

as well as the length of sequences (e.g. HA1 versus full length HA), just to mention some of the factors.  
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In my study a coalescent tree prior assuming a constant population size back through time was used. 

This prior was chosen since it has been found to be most suitable for trees describing the relationship 

among individuals in the same population or species (Kingman, 2000). The coalescent tree prior was 

also used in a recent study, but with the application of a different nucleotide substitution model (Lycett 

et al., 2012) and their tMRCA also differed significantly from the one obtained in this study. Other 

studies (Dunham et al., 2009;Xu et al., 2011) have used the Bayesian skyline coalescent prior due to 

the ability of this model to describe the fluctuating population dynamics that are characteristic of IAV 

(Rambaut et al., 2008) and also obtained tMRCAs differing significantly from the one in this study.  

In conclusion, the means of estimating tMRCA for whole viruses or just selected genes can be 

undertaken by several different methods. Therefore, it is necessary to carefully select the models to be 

used based on the information available. A critical evaluation and perhaps reassessment of the obtained 

results by the use of different models is also extremely important and it will definitely be worthwhile to 

further analyze the obtained result from the Danish H1 SIV.   

Since the 1980’s, the pig production has increased dramatically which has led to more consistent 

infection chains and thereby also an increased spread of SIVs. With the introduction of the 

H1N1pdm09 to pigs, the number of new reassortants has increased (Breum et al., 2013;Moreno et al., 

2011;Pascua et al., 2013;Starick et al., 2011;Starick et al., 2012;Tremblay et al., 2011). This increase 

could also be considered an artefact following enhanced surveillance as well as the development of 

more efficient tools for detection of IAVs in general, but it appears that especially segments from 

H1N1pdm09 is favored during reassortment (Stincarelli et al., 2013). During the previous three years 

the Danish passive surveillance has detected several new reassortants and many of these are containing 

pandemic segments. Most new reassortants seem to be transient viruses, but few appear to have become 

established. My experiment in which the zoonotic potential of two reassortant and two enzootic SIVs 

were assessed showed interestingly that the H3N2 virus was efficiently transmitted between ferrets via 

aerosols. This finding further underlined the need to assess the zoonotic potential of both enzootic and 

reassortant viruses and in the particular case of the H3N2 virus, the need for a further characterization 

of this virus was also highlighted. No evolutionary studies regarding genetic and antigenic evolution of 

this particular virus in Denmark has been conducted and it would be interesting to analyze the 

evolutionary rate and the phylogeny of this virus as well to see if the phylogeny adapts the same ladder 
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like tree structure as the one observed for human H3N2 viruses. In terms of the ability of this virus to 

transmit via the airborne route, an antigenic characterization would be interesting in order to define the 

antigenic relatedness to currently circulating human H3N2 strains which could further be used to assess 

the zoonotic potential of this virus. A recent study showed that the difference between human H3N2 

and North American swine H3N2 was profound enough that new introduction of human IAVs into pigs 

or vice versa would not be prevented by population immunity (Lewis et al., 2014). 

The risk of a zoonotic event caused by the swine H3N2 virus is most likely not impending. In the 

period from 2009 and until 2012, the swine H3N2 virus has not been detected in the Danish passive 

surveillance. In 2013 the swine H3N2 was detected in a single submission (unpublished data), but due 

to lack of genetic characterization of this subtype it is not certain if the virus is a new introduction or 

whether the swine H3N2 is circulating at very low levels in pigs. The low detection of the H3N2 in 

Danish pigs is not uncommon and several European countries report a low circulation of this subtype 

compared to the H1N1 and H1N2 subtypes (Harder et al., 2013)(http://www.esnip3.eu/). 

During my assessment of the zoonotic potential of the new reassortants, it was also observed that the 

efficiency of transmission among the ferrets seemed to correlate with the human-origin of the surface 

glycoproteins. Hence, the H3N2 virus having both surface glycoproteins of human-origin also was 

shown to be the most efficient virus for transmission between ferrets. It was also found that the 

H1pdmN2sw carrying a human-like HA was more efficiently transmitted compared to the H1avN2hu 

carrying the human-like NA. In light of a recent study, where the introduction of human IAVs were 

suggested to occur more frequently than previously assumed (Nelson et al., 2014), these findings are 

highly important and vaccination of farmers is highly recommended for the limitation of this  

problem/interface. However, in pigs this problem would unfortunately not be limited significantly by 

vaccination, since vaccinated pigs can still be infected and shed virus (Romagosa et al., 2011).   

The human IAV vaccine strains are updated each year depending on the strains thought to be most 

prevalent in the forthcoming season. Since the introduction of the H1N1pdm09, this strain has largely 

(Neumann and Kawaoka, 2011)(if not completely), replaced the former seasonal H1N1 and has now 

also replaced the seasonal H1N1 in the current vaccines (http://www.cdc.gov/flu/about/season/vaccine-

selection.htm). In comparison, SIV vaccines in Europe have only been updated once since the first 

vaccine (Gripovac VET) was licensed in the mid-1980s which is due to the requirement for very 
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laborious and stringent efficacy tests for the included strains that has to be performed before a new 

vaccine can be licensed (Van Reeth and Ma, 2012). The new Gripovac 3 vaccine now contains 

contemporary SIV strains with the H1N1 strain now with a H1 of avian origin, compared to the 

previous H1N1 that was a human strain and in addition to the H3N2 strain also contains a H1N2 strain. 

The inclusion of the H1N2 strain is of minor significance in a Danish perspective, since the H1 in this 

strain is of human origin and has not been detected in Denmark (Trebbien et al., 2013). In contrast, and 

based on results from my evolution study, it is expected that the avian-like H1N1would provide enough 

cross-protection against the Danish avian-like H1N2 based on their high antigenic similarity. A 

problem that can be considered significant though, in light of the evolution of SIVs in recent years, is 

that it has not been considered necessary to include H1N1pdm09 in SIV vaccines (Van Reeth and Ma, 

2012) and in Denmark, vaccination against this subtype is allowed only after applying for dispensation 

and only if the herd has already been tested positive for H1N1pdm09 (unpublished data).  

Denmark is a country with a large export of live pigs to other countries, which includes the export of 

live pigs to Asia (Takemae et al., 2011;Zhu H et al., 2012) to be used for breeding. For an example, the 

extraordinary high population density in Hong Kong, combined with an expanding pig industry to 

which live pigs are imported from both US and Europe that also has live bird markets are all together 

creating the perfect opportunity for new reassortments to occur and thereby also the potential 

establishment of new pandemics. It is therefore highly important to continue and expand the 

surveillance of IAVs in Danish pigs in order to detect new reassortants as well as to monitor the 

evolution of enzootic viruses in regard to take appropriate precautions as well as developing new and 

more effective vaccines.   

In conclusion, the results of these studies clearly showed that the overall ecology of IAVs is very 

complex and many aspects still remain to be elucidated. After the emergence of the H1N1pdm09, pigs 

have regained attention as possible sources of future pandemics and reverse zoonotic events have given 

rise to an increased number of reassortants and by that also an increased risk of new pandemics. Hence, 

gaining further insight into this important pathogen requires the consideration of several factors. It is 

therefore considered highly important that future studies of SIVs are focusing on the determinants of 

virulence and host range selection which can be analyzed using the reverse genetics system which was 

partly developed in this PhD project. The use of this system combined with the continued surveillance 
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strategy revealing new reassortants can then be used for assessment of zoonotic potential by analyzing 

growth kinetics in human cell lines as well as receptor binding preferences. 

Elucidation of factors involved in host range selection and virulence may in the long run lead to the 

development of new and more efficient vaccines as well as the potential development of new antivirals 

– both factors that are beneficial not just to the general pig health but also seen from a human health 

aspect.  
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