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An evaluation of several methods of determining the
local angle of attack on wind turbine blades

S Guntur, N N Sgrensen

Wind Energy Division, Technical University of Denmark (DTU), Risg campus, Roskilde, DK

E-mail: srgu@dtu.dk

Abstract. Several methods of determining the angles of attack (AOAs) on wind turbine blades
are discussed in this paper. A brief survey of the methods that have been used in the past are
presented, and the advantages of each method are discussed relative to their application in the
BEM theory. Data from existing as well as new full rotor CFD computations of the MEXICO
rotor are used in this analysis. A more accurate estimation of the AOA is possible from 3D full
rotor CFD computations, but when working with experimental data, pressure measurements
and sectional forces are often the only data available. The aim of this work is to analyse the
reliability of some of the simpler methods of estimating the 3D effective AOA compared some
of the more rigorous CFD based methods.

1. Introduction

The angle of attack (AOA) of an airfoil is a 2D concept defined as the angle between its chord
and the undisturbed streamlines far upstream. A real, finite, airfoil trails vortices which alter
the effective angle of attack. Furthermore, if the airfoil is a part of a rotor that adds or
extracts energy to/from the flow, additional aerodynamic effects arise making it a challenge
to conceptually define the local AOA. The classical BEM theory assumes a 2D behaviour at all
span wise positions on the rotor. Although this assumption works quite well in the mid board
regions, it breaks down at the tip and the root regions. In fact, here it is also found that the
2D assumptions break down also in mid-board regions, if the span wise load distribution is not
uniform. It is necessary to define an effective AOA for the wind turbine blades especially in
the root and the tip regions because most aeroelastic codes today use 2D polars to estimate
the forces on the rotor blades. Codes based on the classical BEM theory are corrected for
the 3D effects near the root region using correction models for rotational lift augmentation,
see e.g. [1, 2, 3, 4, 5, 6, 7], and near the tip using correction factors such as Prandtl’s, see
e.g. [8,9, 10, 11]. Several methods to estimate the effective AOA on the wind turbine blades
exist. In this paper, four of the popular techniques are described and compared using data from
existing [12] as well as new full rotor computations of the MEXICO rotor, the details of which
are given in the following sections.

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
BY of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
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2. Methods of determining an angle of attack

Several techniques exist by which the effective AOA can be estimated for a given rotor. Of
others, the following four techniques are used in the current work.

1. The inverse BEM method [13, 14|, which uses the pre-determined local forces to calculate
the local induction.

2. Using CFD data to obtain the annular average of the axial velocity (and thereby the
induction @) at a given radial position in the rotor plane [15, 16, 17].

3. Using CFD data to obtain the the axial velocity at a given radial position in the rotor plane
at the location of the blade (ap). This method is similar to method (2.).

4. Determination of AOA by comparison of high-pressure-side C'p distributions of a 3D case
with a 2D case with a known AOA [18].

Methods (1.) and (4.) require sectional force coefficients and pressure distributions, respectively,
making them suitable with experimental data where sectional force coefficients and pressure
distributions are often the only data available. On the other hand, methods (2.) and (3.)
require detailed flow field information upstream and downstream of the rotor, making them
more suitable where full rotor CFD data is available.

Fn

L
rQ(1+a’) Fr %
Vo(1-a) ék’
EL

Figure 1. Schematic of a section of a blade with notations employed in this paper.

2.1. Method (1). Inverse BEM method

The inverse BEM methodology, motivated by some previous work [2, 14, 13], utilizes the pre-
determined normal and tangential forces on the blades, Fiy and Fr, obtained from experiments
or CFD computations, to calculate the local induction. Thereby, the local effective AOAs and
the 3D lift and drag polars are determined. The inverse BEM algorithm based on the available
force coefficients, C'y and Cr, for the MEXICO rotor is summarized below (see e.g., [9, 19] for
the classical BEM theory):

(i) Initialize the axial (a) and the tangential (a’) induction factors, typically a = a’ = 0.
(ii) Compute the effective inflow angle ¢ (see figure(1)), as

(1a)Vo}

(1+a)rw (1)

¢ = tan? [

(iii) Obtain sectional Cy and Cr values—in this work, data from full rotor CFD computations
of the MEXICO rotor are used.
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(iv) Calculate new values of a and o/,

1
8mrF sin® ¢
oy T 1
and,
v 1 (3)
new = BrrFsingcos _
cBCr

(v) If the difference between the new vales of [a, d'] and [anew, al,,,,] is more than a certain

tolerance, go to step 2. Else, continue.

(vi) Compute Cr, and Cp as,

Cr3p = Cncos¢ + Crsin g,
Cpap = Cnsing — Crcos ¢. (4)

These values are the new, 3D, lift and drag coefficients.

Figure 2. Schematic showing annuli at various stream wise positions over which the axial
velocities were extranced and used in methods (2.) and (3.).

2.2. Method (2). Computing the local induced average velocities using CFD

Another method of estimating the local AOA is through the analysis of the velocity field from
a full rotor 3D CFD computation. The aim is to obtain the induced axial velocities at the rotor
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plane, using the available data at several upstream and downstream locations [15, 16, 17]. The
CFD data from [12] was used to obtain the full velocity field in case of the MEXICO rotor.
The velocity field within an annulus of a given radial location (see figure (2)) was obtained
and averaged, and this procedure was carried out at different stream wise positions to obtain
axial velocities as a function of the stream wise position. Once the velocities are known at a
set of upstream and downstream positions, its value at the rotor plane can be estimated by
interpolation. In this work, this is done using the Lagrangian polynomial interpolation: if there
are N points z = z;, ¢ € {1,2,..N} at which the value of a function f(z;) is known, then its
value at z = zp can be determined by the general formula,

N N o
fe) =3 (e | IT 7= (5)

Z. Zq
i=1 j=Lj#i 7

The velocities at z ={-1 m, -0.5 m, 0.5 m, 1 m} were obtained from CFD data and the value
at z = 0 (rotor plane) was estimated using equation (5). A schematic is shown in figure (2)
and example in figure (3). Once the velocity is obtained, given the local blade twist and its
rotational speed, the local effective AOA can be calculated as

2
Qeff = tan™* <:"/Q> -0, (6)

where V2 is obtained as shown in figure (3) and 6 is the local twist.

2.8. Method (3). Computing the local induced velocities at the blade using CFD

This procedure is similar to method (2.) described above. Axial velocities at the different points
within an annular region shown in figure (2) are extracted from the CFD data. However, in this
method, unlike method (2.), the velocities are not averaged over the annulus, and as a result
the axial velocity is obtained as a function of the azimuth. This is repeated at various locations
upstream and downstream of the rotor, as well as at various /R locations. Interpolation by
equation (5) is performed to obtain the axial velocities at the rotor plane. As a result, axial
velocity as a function of the azimuth is obtained at the rotor plane for the desired r/R location.
As the azimuthal locations of the blades are known, the axial velocity (and thereby the induction)
at the blade location is determined, see figure (4) for an example. Once the local velocities are
determined, the effective AOA is determined by equation (6).

2.4. Method (4}). Determination of AOA through the comparison of 2D and 3D Cp curves

This method is based on the hypothesis that the high-pressure-side Cp distribution of a given
airfoil in 3D (rotational) and 2D (stationary) flows subjected to the same AOA, does not change
significantly in attached flow [18]. Hence, given a 3D pressure distribution on an airfoil at
an unknown AOA, it’s closest match to a 2D distribution from a known AOA can be used to
estimate the effective AOA in the 3D case. In the current work, the C'p distributions of a set of
2D cases (0 < a < 20°) were obtained using 2D CFD computations. Data from the full rotor
CFD computations of the MEXICO rotor mentioned previously was used to obtain the 3D Cp
distribution at a given radial position (r/R). Thereafter, the pressure side data of the 3D Cp
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of axial velocity at span wise position r/R =
0.25. The velocities at different stream wise
locations obtained directly from the CFD data is
denoted by V1. V2 denotes that obtained from
interpolation using equation (5), which is used
for estimating the effective AOA. Here, z/R = 0
corresponds to the rotor plane and the air flows
from left to right.

doi:10.1088/1742-6596/555/1/012045

rR=09%

045 —

04 ——a(r8)
—_— : &
T 0351 : — = -ap =%/Fpg
E ap, Method (3
= 3 -
=
E 5 :

025t \/ : \/ f

020 50 100 150 200 250 300 350 400
Azimuth (&) [*]

Figure 4. Axial induction factor as a function
of the azimuth at r/R = 0.95. The blades are
located at # = 90°, 210°, and 330°, highlighted
by the dotted vertical lines.

curve was isolated and compared with the 2D pressures. The closest 2D match to this 3D Cp
distribution was determined, done here using the least squares method, and this angle was taken
as the 3D effective AOA. Figure (6) shows an example of the agreement for AOA = 4°.

0 . ~o- Method (1.)

Method (2.)

.l . - Method (3.)

- ==~ Method (4.)
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Figure 5. Estimated effective AOAs from the
three methods described above.
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Figure 6. Example - the Cp distribution at
a spanwise position /R = 0.25 and v = 10
m/s from the full rotor computation, and the
Cp distribution from a 2D CFD computation at
AOA = 4°.
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Figure 7. Estimated Cp values using the  Figure 8. Estimated Cp values using the
effective AOAs from figure (5). effective AOAs from figure (5).

3. The MEXICO experiment

The MEXICO (Model Experiments in Controlled Conditions) experiment was a project that was
partially funded by the European commission and was conducted in 2006 in the large scale facility
of the DNW (German-Dutch) wind tunnel in the Netherlands [20]. This experiment generated,
among other signals, surface pressure data on the blades of a wind turbine rotor of 4.5 m diameter
that can be used to extract the forces on the blades. In the experiment, pressure distributions at
five span wise positions were measured, at several pitch settings and for three tip speed ratios.
The combination of these parameters gives rise to various effective AOAs at different positions
on the blade. Full rotor CFD simulations of the MEXICO rotor have been carried out for the
same operating conditions previously [12]. The current work includes the data from [12] as well
as some new computations, which are described in the later sections. The original MEXICO
database consists of many different cases, like yaw, different pitch angles, dynamic tests, etc.,
but here the focus is on those cases with steady inflow, zero yaw, fixed pitch angle (—2.30°),
rotor speed w = 425 rpm, and free stream wind speeds V) = {10, 12,15,17,21, 24,28} m/s.

—— Method (1))
—— Method (2.)
—— Method (3)
= TwistT1
s Twist T2
Vo=10

201

——T1
—T2
——Original ||

0 022 03 039 06 0.8 1 0 0.2 04 06 08 1
"R [ R[]

Figure 9. Modified twist distributions of the  Figure 10. Angle of attack as a function of
rotor, T'1 and T2. r/R, for twisted cases T'1 and T2.
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4. CFD computations

The CFD computations of the MEXICO rotor were performed with the Ellipsys3D CFD solver,
as described in the work of Bechmann et al., see [12]. In addition, in order to investigate the
possible effects of a trailing vortex in the mid-board regions, new computations of a re-twisted
MEXICO rotor have been carried out. The only difference between the rotor configuration in
[12] and the new computations is the new blade twist distribution, which is shown in figure (9)
as T'1 and T2. These new computations were carried out at Vy = {10,12,15,17,20,25} m/s.

Spanwise location r/R=0.21988

o 1.2+
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—E—TO,‘ CFD daté, Method‘(1.)
—+—T0, CFD data, Method (2.)
1.8+ ER 0.6{ —a—T0, CFD data, Method (3.)
——2D Data
o 8nel et al. (1993)
1.6f 0.5H -+ Lindenburg (2004) ]
=« Chaviaropoulos and Hansen (2000) 4
4 Du and Selig (1998) T
147 0.4l ¢ Bak et al. (2006)
Dumitrescu et al. (2007)
O_I 12 OD

0 5 10 15 20 25 0 5 10 15 20 25
Effective angle of attack o Effective angle of attack o

Figure 11. A comparison between the lift and drag polars as predicted by the 3D correction
models and CFD data at r/R ~ 0.22 and 0.47. The 2D data is taken from wind tunnel
experimental data at Re = 0.5 x 10%, interpolated linearly to obtain the estimates at the desired
AOAs and r/R locations.
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Figure 12. A comparison between the lift and drag polars as predicted by the 3D correction
models and CFD data at /R ~ 0.95. The 2D data is taken from wind tunnel experimental
data at Re = 0.5 x 10, interpolated linearly to obtain the estimates at the desired AOAs and
r/R locations.

5. Results and discussion

The methods (1.) to (4.) were applied to the data from CFD computations of the MEXICO
rotor, and the following observations have been made.

Figures (5), (7) and (8) show the effective AOA, 3D force coefficients C1, and Cp respectively for
the original MEXICO rotor as a function of the span wise position, for cases Vy = {10, 15,24}
m/s. As one would expect, in the low and medium wind speed cases v = 10 and 15 m/s, there is
good agreement in the AOA, C, and Cp between methods (1.) to (4.) in the mid-board region.

In the case of v = 24 m/s, the effective AOAs are in the range of approximately 15° — 25°,
at which angles the airfoils on the blades are fully stalled. Consider the v = 24 m/s case in
figure (5). It can be seen that method (4.) deviates significantly relative to the other methods.
As described earlier, in method (4.), given a 3D pressure distribution, a closest 2D match is
searched for. It has been observed here that at high AOAs the change in the Cp distribution
in the 2D case (on the high-pressure-side) between consecutive AOAs is insignificant, and so
there are some cases where a unique match between the 3D and the 2D distributions cannot
be obtained. It is due to this reason that method (4.) fails as the airfoil begins to experience
separation. Therefore, since it not known a priori whether the airfoil is operating in separated
flow, method (4.) is considered to be unreliable for the current analysis and will be ignored
henceforth.

Figures (11) and (12) show polars extracted from the CFD computations along the blades, as
well as the estimates by different 3D correction models for inboard lift augmentation applied to
a classical BEM code. The airfoil data used in this BEM code are 2D wind tunnel experimental
data from the MEXICO database. The MEXICO rotor blades consist of three different airfoil
sections of known geometry and polars, connected by transition regions. To estimate the polars
in the transition regions, linear interpolation based on the nearest known airfoils was performed.
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From figure (11), it can be seen that the methods (1.), (2.) and (3.) are in reasonable agreement
for small AOAs. Method (1.) begins to deviate with respect to the other two methods as the
AOA increases, and methods (2.) and (3.) remain in very good agreement for relatively higher
AOAs. Hence, unless the airfoil operates in deep stall, the performance of methods (2.) and (3.)
seems to be nearly the same.

The influence of the tip vortex on the local blade aerodynamics in the tip region and the use of
tip loss factors to correct for this effect in BEM codes is well known, see e.g. [8, 9, 10, 11, 19, 21].
The definition of the tip loss factor in terms of the axial induction factor has been a matter of
debate. According to [21], its definition by Glauert [9] was

a
FPR: >
ap
a
= ap = —, 7
Frr (7)

where @ is the annular average of the axial induction at a given radial position (representing
infinite blades) and ap is the local axial induction at the azimuthal blade location for a rotor
with finite (in this case, 3) number of blades. Figure (4) shows a comparison between the
values of local induction ap in the tip region estimated directly from CFD, and calculated using
equation (7). From this figure, it can be seen that there is a big difference between the value
of ap obtained by method (3.) and that obtained using equation (7). This suggests that the
Prandtl’s tip correction factor as defined by equation (7) cannot be used to accurately estimate
the local velocities at the blade.

Figure (10) shows the AOA estimates along the span wise direction, and figure (12) shows the
estimated Cp, curves close to the tip, /R = 0.95. From figure (12), it can be seen that the Cp,
curve is lowered throughout the range of «, which is a result of the tip vortex. Noting that the
effect of the trailing tip vortex is to lower the lift curve, it is therefore reasonable to expect that
a trailing vortex in the mid board section too should have the same effect on the blade sections
in its vicinity.

The vortices trailed in case T'1 have the same orientation with respect to the section at
r/R = 0.30 as does a tip vortex with respect to the sections near the tip. This implies that
its effect on the corresponding airfoil section must be that the estimated lift curve is lowered
(compared with the 2D curve), and the opposite in case T2. From figure (13) it can be seen
that this is indeed the case, as the lift curve is lowered in case T'1 and increased in case T2.

As mentioned previously, a BEM simulation incorporating correction models for the rotational
lift augmentation was also carried out. A noteworthy observation is that the augmentation of
lift due to rotation ACy, (= Crsp — Cr2p) predicted by the 3D correction models is too high
in the very inboard sections (see /R = 0.22, figure (11)) and too low in the mid/out board
sections (see r/R = 0.47, figure (11)), compared to that obtained from CFD. This means that
the effect of rotational augmentation occurs for a relatively large portion of the blade, and the
rate at which this effect is modelled to change (decrease) as a function of the radial position is
in general too high.

6. Conclusion

Various methods of estimating the AOA on wind turbine blades were discussed and their
performance was analysed using data from the MEXICO rotor CFD computations. The findings
can be summarized as follows:
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Figure 13. The 3D lift and drag polars computed at /R = 0.30 for the different blade twist
configurations T'1, T'2, and T0, where 70 denotes the original MEXICO twist configuration. The
2D data is taken from wind tunnel experimental data at Re = 0.5 x 105, interpolated linearly
to obtain the estimates at the desired AOAs and r/R locations.

e Overall, method (1.) and the CFD methods ((2.) and (3.)) agree to quite a good degree
even near the re-twisted regions in cases 71 and 7'2. This means that the inverse BEM
method does a reasonably good job.

e As long as the airfoil is not operating in deep stall, methods (2.) and (3.) perform equally
well.

e Of the methods studied, method (4.) is the least reliable.

e From the analysis of the additional twist cases T'1 and T2, a discrepancy between the
inverse BEM and CFD methods is observed even in the mid-board sections. The dominant
mechanism effecting the deviation of airfoil behaviour from 2D is therefore the presence of
trailing vortices. Hence, it can be said that the deviation of the force coefficients and the
AOA from their classical 2D definition can mainly be attributed to two phenomenon:

(i) rotational augmentation in the in-board sections, and

(ii) effect due to trailing vortices, at the tip as well as at any given mid board regions where
ever there is a non-uniformity in the span wise load distribution.

A robust correction model for airfoil coefficients should account for both of these effects,
which is a potential option for future work.
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