
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

General rights 
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners 
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. 
 

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research. 
• You may not further distribute the material or use it for any profit-making activity or commercial gain 
• You may freely distribute the URL identifying the publication in the public portal  

 
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately 
and investigate your claim. 

   

 

Downloaded from orbit.dtu.dk on: Dec 20, 2017

Investigation of the maximum load alleviation potential using trailing edge flaps
controlled by inflow data

Fischer, Andreas; Aagaard Madsen , Helge

Published in:
Journal of Physics: Conference Series (Online)

Link to article, DOI:
10.1088/1742-6596/555/1/012037

Publication date:
2014

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Fischer, A., & Aagaard Madsen , H. (2014). Investigation of the maximum load alleviation potential using trailing
edge flaps controlled by inflow data. Journal of Physics: Conference Series (Online), 555, [012037]. DOI:
10.1088/1742-6596/555/1/012037

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Online Research Database In Technology

https://core.ac.uk/display/43247257?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1088/1742-6596/555/1/012037
http://orbit.dtu.dk/en/publications/investigation-of-the-maximum-load-alleviation-potential-using-trailing-edge-flaps-controlled-by-inflow-data(f4008994-7057-4366-8900-c91571c57eb6).html


This content has been downloaded from IOPscience. Please scroll down to see the full text.

Download details:

IP Address: 192.38.90.17

This content was downloaded on 19/12/2014 at 10:54

Please note that terms and conditions apply.

Investigation of the maximum load alleviation potential using trailing edge flaps controlled by

inflow data

View the table of contents for this issue, or go to the journal homepage for more

2014 J. Phys.: Conf. Ser. 555 012037

(http://iopscience.iop.org/1742-6596/555/1/012037)

Home Search Collections Journals About Contact us My IOPscience

iopscience.iop.org/page/terms
http://iopscience.iop.org/1742-6596/555/1
http://iopscience.iop.org/1742-6596
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


Investigation of the maximum load alleviation

potential using trailing edge flaps controlled by

inflow data

A Fischer1, H A Madsen1

1 Department for Wind Energy, Technical University of Denmark, Frederiksborgvej 399,
DK-4000 Roskilde

E-mail: asfi@dtu.dk

Abstract. The maximum fatigue load reduction potential when using trailing edge flaps on
mega-watt wind turbines was explored. For this purpose an ideal feed forward control algorithm
using the relative velocity and angle of attack at the blade to control the loads was implemented.
The algorithm was applied to time series from computations with the aeroelastic code HAWC2
and to measured time series. The fatigue loads could be reduced by 36% in the computations if
the inflow sensor was at the same position as the blade load. The decrease of the load reduction
potential when the sensor was at a distance from the blade load location was investigated. When
the algorithm was applied to measured time series a load reduction of 23% was achieved which
is still promissing, but significantly lower than the value achieved in computations.

1. Introduction
Today most of the wind energy is produced by turbines with rotor diameters of more than 80m
and a rated power of 2MW and above. And the trend goes towards increasing size. Due to the
large size of the wind turbine rotor in combination with wind shear and turbulence the blades
are subject to cyclic loads which cause fatigue damage and limit the life time of the wind turbine.
Reducing the fatigue loads enables a bigger rotor to be mounted on the same turbine platform
and thus increase the power production. It ultimately leads to a lower cost of energy.
One of the most promising concepts to alleviate fatigue loads are trailing edge flaps. There have
been various studies with aeroelastic models [1], [2], [3], [4] as well as wind tunnel experiments
[5]. In 2006 former Risø DTU, now DTU Wind Energy, initiated a development work to design
a system applicable to modern MW wind turbines. It resulted in the design of the Controllable
Rubber Trailing Edge Flap. Some of the latest results in this project are presented in [6]. There
are good chances for this technology to become implemented in the wind turbine manufactures
design in a short time from now.
However, the above mentioned studies showed a considerable scatter in the absolute load
reduction potential. Possible reasons for the differences in load reduction potentials are the
differences in flap type, size and position, sensor type and location as well as controller
implementation in those studies. We were interested to clarify what is the theoretical absolute
limit of the fatigue load reduction obtainable with flaps when using inflow measurements on the
blade and not having any constraints on the flap. For this purpose we developed an ideal feed
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forward control algorithm which can be applied to a time series of blade loads obtained from
computations or measurements. When the ideal upper limit has been found it is then possible
to obtain detailed information about what e.g. constraints on flap amplitude, flap angle velocity
means for the load alleviation level. Furthermore, we investigated how the positioning of the
inflow sensor relative to the blade load location influences the load reduction potential and the
useful frequency band width of the control signal.
This paper is structured in the following way: In section 2 we describe the methods we used
in our investigation. First, the aeroelastic code HAWC2 is outlined. A short overview of the
measurement database used for the comparison with the computations follows. Then we derive
the ideal control algorithm. This section concludes with a reminder of the fatigue load theory.
Section 3 contains the results. We look into the power spectral density and the coherence
function of the normal force along the blade span. This analysis helps to conclude about the
ideal frequency band width of the control signal and the ideal distance between inflow sensor
and blade location. In the second part of the result section we address some issues of the ideal
control algorithm and the fatigue loads. Subsequently, we compute the fatigue loads along the
blade of a 2MW wind turbine. We compare the results to corresponding ones of a 5MW wind
turbine to detect upscaling effects and we compare the computations with measurements. In
section 4 we discuss the results, point out their significance and draw conclusions.

2. Methods
2.1. HAWC2 computations
HAWC2 is an aeroelastic code for horizontal axis wind turbines [7]. The structural part is based
on a multibody formulation. Arbitrary large rotation of the bodies can be handled. The bodies
are assembled of Timoshenko beam elements. The aerodynamic model is based on the classic
blade element momentum theory. But the theory was extended to include the effects of dynamic,
skewed and sheared inflow as well as large deflections and dynamic stall of the blades. The code
can simulate trailing edge flaps on the blade. For more details of the code the reader is referred
to [7].
Computations were carried out for two different wind turbines, the NREL 5MW reference wind
turbine [8] and the NEG-Micon NM80 wind turbine [9]. The structural model for HAWC2 of
the NREL turbine was developed based on the information given in [8] and internally verified
at DTU Wind Energy. The structural model for HAWC2 of the NM80 turbine is described in
[10].
If the computations were compared to measurements, the inflow conditions in HAWC2 were
adjusted to match the measurements of a meteorological mast on the site. The wind velocity
profile in HAWC2 was given by a power law and the exponent was chosen to match the measured
wind profile as close as possible. Further, the turbulence intensity was chosen to fit to the
measurements with sonic anemometers. But in HAWC2 the turbulence intensity is constant
with the altitude while it often varied in the measurements.
The spectral characteristics of turbulence are described by the Mann turbulence model [11] in
HAWC2. The length scale L of the Mann turbulence model was set to L = 29.4m and the eddy
life time parameter to Γ = 3.9 according the recommendation for normal atmospheric conditions
in [7]. It is possible to optimize these parameters to give the best fit to the turbulence spectra
measured with the sonic anemometers, but the bad quality of the measurements in the low
frequency range caused unrealistic results and the attempt was dropped.
Both wind turbines were run with constant rotational speed in the simulations. The rotational
speed of the NM80 turbine was adjusted to match the rotational speed of the experiment. The
rotational speed of the NREL turbine was set to the value the controller proposed in [8] enforces
in steady operation.
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2.2. DAN AERO measurements
The measurements presented in this paper were carried out in the DAN-AERO MW project,
funded by the Danish Energy Research programme EFP-2007 under contract Journal no. 33033-
0074. The project was carried out in the period from March 2007 to December 2009 in
corporation between Risø DTU, now DTU Wind Energy, and the companies LM Wind Power,
Vestas Wind Systems, Siemens Wind Power and DONG Energy.
We present measurements of inflow and blade section pressure on the NEG-Micon NM80 turbine.
The three bladed turbine has a rotor diameter of 80m and the hub height is 57m, the nominal
power is 2.75MW. The turbine was placed in a small wind farm of 8 turbines at Tjæreborg,
about 1km away from the west coast of Jutland, Denmark. There was a meteorological mast in
the close vicinity of the test turbine to provide detailed measurements of the wind conditions.
A new blade with identical shape as the previous blades, but equipped with measurement devices
for very detailed experiments, was manufactured for the campaign. We analyzed the normal
force obtained from surface pressure measurements made with pressure tabs at radial position
r=13m, 19m, 30m and 37m and the local inflow vector at the blade measured with four five-
hole pitot tubes at radial position r=14.5m, 20.3m, 31m and 36m, figure 1. For details of the

Figure 1. The blade of the
NM80 turbine equipped with mea-
surement devices.

experiment the reader is referred to [9].

2.3. Ideal Control Algorithm
The ideal feed forward control algorithm uses the measured relative velocity Vr and angle of
attack α at a blade section to control the normal force FN . In this theoretical study the formula
is applied locally at the blade section. No assumption about the flap size is made. The relation
between the normal force FN and the inflow Vr and α is given by

FN =
1

2
ρV 2

r CN (α)c (1)

where CN is the normal force coefficient and c is the chord length of the blade section. Hence,
we define the controlled force as

FNc = FN − fcV
2
r . (2)
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The control parameter fc can then be derived by a Reynolds decomposition of the variables FN ,
Vr and CN in equation 1 into mean and fluctuating part. It reads

fc = Kα(α− α) +KVr

(
V 2
r − Vr

2

V 2
r

)
. (3)

Kα and KVr are control constants determined by numerical optimization. The numerical
optimization minimizes the objective function

〈
F 2
Nc

〉
. The overline denotes the mean value

which is derived in practice by band stop filtering the time signal of the quantity. A second,
third or fourth order Butterworth filter transfer function was created to filter the data. After
filtering the data in forward direction, the filter sequence was reversed and run back through
the filter. The resulting data has zero phase distortion and the magnitude of the filter transfer
function equals the squared magnitude of the Butterworth filter transfer function [12].
This way of defining a control algorithm corresponds to an unlimited local pitch actuator,
meaning that the local inflow measurements are used to control the local pitch. The control
strategy outlined above can also be used for a flap actuator. The relation between the control
parameter fc and the flap set angle is

∆β =
4fc

ρc∆CN,α
. (4)

∆CN,α is the change of the normal force coefficient with the angle of attack and can be estimated
as 2π in the first approach.

2.4. Fatigue Load Calculation
One can define an equivalent load range Req and the corresponding number of load ranges neq
which causes the same fatigue damage as the load spectrum of a given time series according
to the classical theory of Palmgren-Miner and Wöhler. The equivalent load range can be used
to compare the fatigue damage caused by a time series of the normal force or the blade root
bending moment with and without flap control. It was derived in [13] and is given by

Req =

(∑
niR

m
i

neq

)1/m

. (5)

We applied a Rainflow counting algorithm [14] to the time series to determine the set of load
Ranges Ri and their number of occurrence ni. The Wöhler exponent m describes the properties
of the material exposed to fatigue damage. For example, the exponent of m = 3 should be
applied for steel and m = 12 for fiber glass composites.

3. Results
3.1. Blade Loads
During operation with constant rotational speed, the power spectral density (PSD) of the normal
force on the blade is peaked at multiples of the the rotation frequency, as seen in a computation
for the NM80 wind turbine, figure 2. To control the normal force distribution on the blade we
are also interested in the coherence function of the normal force between several positions on
the blade. It gives an indication of how the spacing between sensors should be to reduce the
fluctuations of the normal force. Figure 3 shows this coherence function relative to the reference
position 30.37m. There is a high coherence coefficient for frequencies corresponding to multiples
of the rotational period. For frequencies in between the coherence coefficient is low. This is due
to the rotational sampling of the turbulence where turbulence structures bigger than the rotor
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Figure 2. PSD of the normal force from
computation for the NM80 wind turbine.
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Figure 3. Coherence of the normal force
relative to the reference position r=30.37m
from computation for the NM80 wind
turbine.

diameter will be passed several times by the rotating blade.
The coherence coefficient is smaller if the distance to the reference position is larger and the
frequency range with high coherence becomes smaller. The coherence coefficient of the normal
force at position r=30.37m and r=37.11m is high for frequencies corresponding up to about 5
times the rotational period (5p), while at positions r=30.37 and r=12.25 the coherence is only
high for frequencies corresponding to 1p.
The peak value of the coherence coefficient for multiples of the rotation period as function of the
distance to the reference position is displayed in figure 4. It is also compared to measurements
to validate the HAWC2 model. The agreement between measurement and HAWC2 is excellent
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Figure 4. peak value of the coher-
ence of the normal force for mul-
tiples of the rotation period (ref-
erence position r=30.37m) for the
NM80 wind turbine (measurement:
dashed lines, computation: solid
lines).

for frequencies up to 3p. For frequencies corresponding to 4p there is a discrepancy, but the
value of the coherence coefficient is also very low. Hence, it might be due to an uncertainty in
the computation of the coherence function. We have a good accuracy in simulating the unsteady
loads from inflow turbulence and conclude that the modeling of unsteady aerodynamics works
well in HAWC2.
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The coherence coefficient for 1p frequencies is high at all blade positions. Only one inflow
sensor could be sufficient to alleviate the fluctuations of the normal force for 1p. But for higher
frequencies the coherence coefficient drops significantly with distance. We need more than one
sensor distributed along the blade to alleviate those high frequency fluctuations.

3.2. Load Alleviation with Ideal Control
3.2.1. Control Constants The control constants were obtained by numerical optimization as
described in section 2 of one ten minutes time series. We found that the control constants Kα

and KVr were sensitive to the position of the inflow measurement and the position of the blade
load. If we performed the numerical optimization with a time series of the inflow measurement
at a fixed position and time series of the normal force at different sections of the blade, the
obtained values of Kα varied by up to 200% and KVr by up to 300%. Hence, it is necessary to
tune the control constants for each different position of inflow and blade load.
The control constant KVr showed also a variation about 50% when the numerical optimization
was performed for time series with different wind speed at hub height, i.e 6m/s, 7.06m/s and
8m/s. Kα was invariant to changes in wind speed. A further investigation of the control equation
3 is recommended. For the present implementation of the control equations KVr has to be a
function of the mean wind speed.

3.2.2. Reduction of the Fatigue Loads and Flap Activity The fatigue loads were computed for
simulations of one hour time series according to the standard [15]. We computed the equivalent
fatigue load amplitude of a 1Hz modulation for a given time series according to equation 5,
denoted by S1 for the original blade normal force coefficient and S1c for the controlled blade
normal force. The reduction of the equivalent fatigue load for the NM80 turbine operating
at constant rotation and a mean wind speed at hub height of 7.06m/s is shown in figure 5.
The band width of the control signal was chosen to include 1p and 2p (bw1), 1p to 3p (bw2)
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Figure 5. Reduction of the
equivalent fatigue load of the blade
sectional normal force (Wöhler
exponent m=10) as function of the
blade normal force position and
bandwidth of the control signal.
Inflow measured at ri=33.58m.
Legend: bw1 : 0.1-0.6Hz, bw2 : 0.1-
0.9Hz, bw3 : 0.1-1.2Hz.

and 1p to 4p (bw3). Using the largest band width (bw3) we obtain the highest fatigue load
reduction if the load position is close to the position of the measurement. If the load position is
more than 4m away from the inflow measurement position, there is no longer any advantage in
including 4p in the band width of the control signal. At this separation distance the two signals
are too incoherent at the 4p frequency to allow a load reduction. Our conclusion is supported
by figure 4 showing that the coherence coefficient for 4p decreases very quickly with distance.
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If the inflow sensor measurement position is very far away from the blade load position, the
control signal with bw1 gives the highest fatigue load reduction. The normal force and inflow
signal are incoherent at high frequencies and the control introduces additional disturbance if
high frequencies are included in the control signal. In this case it is beneficial to limit the band
width of the control signal.
We evaluated the flap activity by computing the standard deviation of the flap set angle ∆β.
The flap activity is lower at positions close to the measurement position when the band width
is reduced, figure 6. When moving further away from the measurement position it becomes
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Figure 6. Flap activity as
function of the blade normal force
position and bandwidth of the
control signal. Inflow measured at
ri=33.58m. Legend: bw1 : 0.1-
0.6Hz, bw2 : 0.1-0.9Hz, bw3 : 0.1-
1.2Hz.

independent of the band width. Hence, when the blade load position is close to the inflow
measurement position the benefit of a higher fatigue load reduction has to be paid with a higher
flap activity. When the blade load position is far away from the measurement position, a higher
fatigue load reduction is achieved with equal flap activity when the band width of the control
signal is limited to 2p.

3.2.3. Non Linearity of Fatigue Loads The behaviour of the fatigue loads depends on the
Wöhler exponent m. They are highly non-linear for large values. Figure 7(a) illustrates the
variation of the fatigue load reduction when we chose a realistic Wöhler exponent for wind
turbine blades (m=10) and run simulation with different seeds of the turbulent time series,
but keeping the statistical properties of the turbulence field. It means that the fatigue load
computation is not statistically converged and a larger time series is necessary. If we choose a
smaller Wöhler exponent of m=3 (figure 7(b)) the fatigue load reduction is independent of the
seed used for the simulation. In this case the fatigue load calculation is statistically converged.
A shorter time series is sufficient, because equation 5 is less non linear for m=3 than for m=10.
Note that the fatigue load reduction is higher when m=3 is chosen than if m=10 is chosen.
This result is counter intuitive. The reason is the statistical uncertainty for the fatigue load
calculation with m=10.

3.2.4. Comparison of NM80 and NREL5MW Turbine We computed the fatigue load reduction
for the bigger NREL 5MW wind turbine and compared the results to the ones obtained for the
NM80 turbine to investigate upscaling effects. The mean wind speed at the hub height of
the NM80 turbine of 7.06m/s was kept and extended according to the power law to altitudes
covering the rotor of the NREL turbine. The comparison was preformed at the same absolute
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Figure 7. Reduction of the equivalent fatigue load of the blade sectional normal force as
function of the blade normal force position and turbulence seed number of the simulation.
Inflow measured at ri=33.58m. Band width of control signal 0.1-1.2Hz.

blade position, figure 8. The band width of the control signal was chosen to include frequencies
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Figure 8. Reduction of the equiv-
alent fatigue load of the balde sec-
tional normal force (Wöhler expo-
nent m=10) as function of the blade
normal force position for the NM80
and NREL5MW turbine. Inflow
measured at ri=33.58m (NM80)
and ri=35.74m (NREL). Band
width of control signal 0.1-1.2Hz
(NM80) and 0.1-0.61Hz (NREL).

up to 4p for both wind turbines. The decrease of the fatigue load reduction potential when
moving away from the position of the inflow sensor is almost identical for both wind turbines.
The fact that the inflow sensor is placed close to the tip of the rotor of the NM80 turbine, but
in the radial center of the blade of the NREL turbine has no influence on the load reduction
potential. We conclude that a wind turbine with a large rotor needs more inflow sensors than a
turbine with a smaller rotor.

3.2.5. Comparison of Ideal Inflow with Real Measured Inflow We applied the control algorithm
on a time series of measured normal force and inflow. The inflow measurements at radial position
ri=20.3m were of the best quality. Hence we chose this position for the comparison with HAWC2
computations, figure 9. Note that the fatigue loads were obtained from 10 minute time series in
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this comparison due to the availability of measurement data. For the measured time series the
achieved fatigue load reduction is much lower than for the computed time series. The qualitative
behaviour in terms of band width of the control signal and distance from the measurement
position is similar. As the correlation function of the normal force from computation and
measurement was in excellent agreement, we expected the computed and measured fatigue load
reduction potential to be in better accordance. A closer look at the fatigue cycles is necessary.
The Rainflow counting plot of load range and occurrence, figure 10, shows that the reduction of
the fatigue loads is achieved by reducing the peak of the spectrum in the high load range. The
reduction is more effective for the computed time series as the controlled computed spectrum
rolls steeper off than the controlled measured spectrum while the spectra of the raw signals are
very similar in the high load range. The number of fatigue cycles is generally higher for the
measurements than for the computations, especially in the low load range. However, further
investigation is needed to clarify this problem.

4. Discussion and Conclusions
An ideal feed forward control algorithm using inflow measurements on the blade was applied to
determine the maximum fatigue load reduction obtainable by trailing edge flaps. We achieved
a fatigue load reduction of 36% (Wöhler exponent m=10) in computations with HAWC2 of
the NM80 wind turbine when the inflow was measured at the same position as the blade load.
The absolute value of the fatigue load reduction was strongly dependent on the chosen Wöhler
exponent. I.e. we obtained a fatigue load reduction of 47% for a Wöhler exponent of m=3. A
Wöhler exponent of m=3 is not representative for the system, but the fatigue load computation
with m=3 was better converged than with m=10, because of the length of the simulation time.
The value for m=3 might be more representative for the possible load reduction.
The ideal band width of the control signal is a function of the separation distance of the blade
load and the inflow sensor. Frequencies corresponding to four times the rotation frequency
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should only be included in the control signal if the inflow sensor is less than 4m away from
the blade position for the NM80 turbine. Three times the rotational frequency should only be
included in the control signal if the inflow sensor is less than 8m away. The coherence of the
blade normal force as function along the blade shows a steeper decrease for high frequencies
than for low frequencies.
Computation of the NM80 turbine were compared to computations of the bigger NREL 5MW
turbine to explore upscaling effects. The fatigue load reduction was very similar in the absolute
value and followed the same function in terms of absolute distance. The relative position on
the blade and the relative distance to the inflow sensor were not relevant. The main conclusion
from this comparison is that bigger wind turbines need more inflow sensors than smaller ones.
HAWC2 computations of the NM80 turbine were compared to measurements. The coherence
function of the blade normal force at several radial stations were in excellent agreement. The
modeling of unsteady aerodynamics works well in HAWC2. However, 10% less fatigue load
reduction was achieved when the algorithm was applied to a measured blade normal force and
inflow time series. The qualitative behaviour of the load reduction with respect to separation
to the inflow sensor was in agreement with the computation. We explored the load ranges and
their occurence of the measured and computed normal force series obtained from the Rainflow
counting algorithm to explain the difference in fatigue load reduction. The reduction of the
number of fatigue cycles in the high load range worked better for the computed time series than
for the measured time series and the overall level of the fatigue load spectrum was higher for the
measured time series. We strongly recommend a more detailed analysis concerning this issue.
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