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Vertical cross-spectral phases in atmospheric flow

A Chougule, J Mann and M Kelly

DTU Wind Energy, Risø Campus, 4000 Roskilde, Denmark

E-mail: absch@dtu.dk

Abstract. The cross-spectral phases between velocity components at two heights are analyzed
from observations at the Høvsøre test site under diabatic conditions. These phases represent the
degree to which turbulence sensed at one height leads (or lags) in time the turbulence sensed at
the other height. The phase angle of the cross-wind component is observed to be significantly
greater than the phase for the along-wind component, which in turn is greater than the phase
for the vertical component. The cross-wind and along-wind phases increase with stream-wise
wavenumber and vertical separation distance, but there is no significant change in the phase
angle of vertical velocity. The phase angles for all atmospheric stabilities show similar order in
phasing. The phase angles from the Høvsøre observations under neutral condition are compared
with a rapid distortion theory model which show similar order in phase shift.

1. Introduction
The structure of atmospheric turbulence can be analysed in terms of two-point statistics
such as normalized cross-spectra (also known as coherences), which are typically studied both
experimentally and theoretically as a function of horizontal separation distance for homogeneous
turbulence in the atmospheric surface-layer [1, 2]. The coherences of the along-wind, cross-wind
and vertical velocity components (u, v, w) decrease with increasing separation distance, as seen
from both observations and theory [2].

In this paper we investigate cross-spectra with particular emphasis on the associated phases
ϕ for vertical separations ∆z, using observations at Høvsøre under diabatic conditions [3, 4].
Chougule et al. [5] studied the vertical phase angles for all three velocity components (i.e.
ϕu, ϕv and ϕw), including their behavior in the neutral, horizontally homogeneous atmospheric
boundary layer (ABL) using measurement from Høvsøre and Cooperative Atmosphere-Surface
Exchange Study in 1999 (CASES-99) [6, 7]. Mann [2] studied ϕvw (the phase angle between v
and w) for horizontal separations, and ϕuu(≡ ϕu) and ϕuw for vertical separations where the
w-component was measured further from the surface. Few experimental investigations have been
done on the phases. Heidrick et al. [8] experimentally studied the phases of the axial velocity
component in fully developed pipe flow using measurements taken at two different points, where
the separation vector was oriented at different angles to the mean flow. Komori et al. [9]
studied the phase angle between the vertical velocity-component and temperature in stably-
stratified open-channel flow. Both Heidrick et al. [8] and Komori et al. [9] assumed turbulent
motions approach as wavelike motions. The Sandia (Veers) method [10], which is used in wind
engineering for load calculations on wind turbines, assumes an average of zero phase between
any two points because of an exponential form of the coherence function as given in Ref. [11].
The Mann method [12], based on the Mann spectral tensor model [2] and widely used in wind
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engineering, does give non-zero phases.
In addition to the observations, we also evaluate the phase angles from the Mann spectral

tensor model [2] which incorporates rapid distortion theory (RDT) [13, 14]. The phases are
determined by calculating the two-point cross-spectra of velocity components and corresponding
spectra as defined in Section 1.2. The observations and the model used for the analysis are
described in Section 2 and Section 3, respectively. The results from the observations and the
RDT model are given in Section 4. In Section 5, we discuss more details, followed by conclusions
in Section 6.

1.1. Motivation
Mann [2] modeled the evolution of turbulence induced by uniform shear using RDT [14, 13] in
a neutral surface-layer. Mann [12] used the model of [2] to develop a method to simulate the
three-dimensional wind in the time domain. The model in [2] and the method in [12] are the
industry standards for aero-elastic calculation of wind turbine loads [15]. Turbulence simulations
from [12] show systematic behavior in u, v and w fluctuations in the rotor plane of a horizontal
axis wind turbine, and when used to predict the respective phase angles between two heights,
we see that ϕv > ϕu > ϕw for k1∆z ≤ 1, where k1 is stream-wise wavenumber. We expect that
this behaviour in phasing is due to the vertical shear as depicted in Figure 1.

 

a

b

Figure 1. Sketch of the eddy
stretching due to the shear. The
turbulence sensed at point a leads
in phase with respect to the turbu-
lence sensed at point b in the rotor
plane of a horizontal axis turbine.

Chougule et al. [5] shown that under neutral, horizontally homogeneous ABL, ϕv > ϕu > ϕw

and the RDT and LES modeled phases are consistent with the observed phases under neutral
condition. There are two basic assumptions considered in the study of Chougule et al. [5],
one neutral stratification and second horizontally homogeneous flow. In order to confirm in
more detail about the phase shift due to the shearing effect and the phase behavior, we analyze
diabatic data from Høvsøre with the essentially inhomogeneous flow.

1.2. Definitions
The phases are calculated from complex cross-spectra. The cross-spectrum between velocity
components ui(t) (i = 1, 2, 3) and uj(t) (j = 1, 2, 3) at heights z1 and z2, respectively, is defined
as

χij(f,∆z) = 〈ûi(f, z1)û∗j (f, z2)〉, (1)
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where f is frequency, ∆z = z2−z1, 〈 〉 denotes ensemble averaging, ∗ denotes complex conjugate
and ûi(f, z1) is the complex-valued Fourier transform of the ith velocity component ui(t) at height
z1. The phase between the two velocity components is then

ϕij(f,∆z) = arg(χij(f,∆z)). (2)

The coherences, sometimes known as “squared coherences”, are calculated from the cross-spectra
and the single-point power-spectra via

cohij(f,∆z) =
|χij(f,∆z)|2

Fi(f, z1)Fj(f, z2)
, (3)

where Fi(f, z) = 〈ûi(f)û∗i (f)〉 is the single-point power-spectrum of the ith velocity component
ui(t) at height z.

If we assume that Taylor’s hypothesis of “frozen turbulence” is valid, then the measured
time series can be related to spatial fluctuations. So for the stream-wise direction, single-point
measurements can be related through k1 = 2πf/U , where U is the stream-wise mean wind
speed.

2. Høvsøre
The measurements are taken from the 116.5 m tall mast at the Høvsøre test site on the west
coast of Denmark. Sonic anemometers, sampling at 20 Hz and measuring in three dimensions,
are installed on the mast at heights of 10, 20, 40, 60, 80 and 100 m. The land to the east of the
mast can be considered as flat, homogeneous terrain. On the west side of the mast, land extends
1500 m to the North Sea coast, including a dune which can affect the flow. Five wind turbines
are situated to the north of the mast. More details about the location and instrumentation can
be found in Refs. [3, 4].

Winds are selected from directions between 240◦ and 300◦ from where the flow is essentially
inhomogeneous and the data limited to when the 80 m mean wind speeds fall between 8 and
9 m s−1. The calculations are done for diabatic conditions, where atmospheric stability is
classified based on the range of Obukhov lengths L0 as given in Table 1 following [16]. The
height interval chosen in the phase analysis spans 40 – 100 m. Analysis is done using seven
years of data from 2004 to 2010.

Table 1. Classification of ABL into seven atmospheric stabilities following [16].

Obukhov Length (m) Atmospheric Stability

−100 ≤ L ≤ −50 Very Unstable (VU)
−200 ≤ L ≤ −100 Unstable (U)
−500 ≤ L ≤ −200 Near Unstable (NU)
|L| ≥500 Neutral (N)
200 ≤ L ≤ 500 Near Stable (NS)
50 ≤ L ≤ 200 Stable (S)
10 ≤ L ≤ 50 Very Stable (VS)

The Figure 2 show the probability of occurrences of different atmospheric stabilities from
very unstable (negative Lo) to very stable (positive Lo) case. The Obukhov length Lo is defined
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Figure 2. Histogram of at-
mospheric stabilities based on
Obukhov lengths for wind direc-
tions between 240◦ and 300◦ at
Høvsøre test site in the west coast
of Denmark. ABL is classified into
7 stabilities following [16].

as

Lo =
−u∗3

κ(g/T )w′T ′
0

, (4)

where u∗ is the surface friction velocity which is constant within the surface layer and decrease
with the height above the surface layer, κ is the von Kármán constant (typically the value
0.4 is used), g is the acceleration due to gravity, T is the reference temperature (if moisture
is included then T is the virtual temperature and due to conserved scalar, T becomes virtual
potential temperature), w′T ′

0 is the virtual potential temperature flux at the surface.

3. Spectral tensor model
The Mann spectral velocity tensor model incorporates RDT [13, 14] with an assumption of a
mean uniform shear, plus a wavenumber-dependent eddy lifetime, to estimate the structure of
turbulence over uniform flat terrain, which has been extended to cover gently varying orography
[18]. The model calculates the evolution of turbulence in Fourier modes from an initial isotropic
state, the energy spectrum of which is given by the von Kármán form [19].

The Mann model contains three adjustable parameters:

• A length scale L describing the size of energy-containing eddies

• A non-dimensional anisotropy parameter Γ used in the parameterisation of the eddy lifetime

• A measure of the energy dissipation αε2/3, where the Kolmogorov constant α = 1.7 and ε
is the rate of viscous dissipation of specific turbulent kinetic energy.

The analytical form of the spectral velocity tensor in [2] is a function of these three parameters
and can be expressed as Φij(k , L,Γ, αε

2/3), where k = (k1, k2, k3) is the three-dimensional wave
vector. The modeled cross-spectra which also become functions of the three parameters, are
given as

χij(k1, L,Γ, αε
2/3,∆y,∆z) =

∫
Φij(k , L,Γ, αε

2/3) exp(i(k2∆y + k3∆z))dk⊥, (5)

where
∫

dk⊥ ≡
∫∞
−∞

∫∞
−∞ dk2dk3 and ∆y is the transverse separation distance. The three

parameters are determined by fitting model single-point power-spectra Fi(k1, L,Γ, αε
2/3) =

χii(k1, L,Γ, αε
2/3, 0, 0) (no summation), to the measured single-point power-spectra through

chi-squared fitting as given in Ref. [2].
Figure 3 gives an example of a model fit of power-spectra to the Høvsøre data at 40 m height

for unstable, neutral and stable conditions illustrating extraction of L,Γ and αε2/3. However,
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the Mann spectral tensor model assumes neutral stratification, and the three parameters for
non-neutral conditions can be obtained by forcing the model to fit with measured spectra
through chi-squared fit [2]. The three parameters subsequently used as an input to calculate
numerically the cross-spectrum between any two velocity components through equation (5).
Thus for vertical separations (∆y = 0), the model cross-spectra and phases are expressed as
χij(k1, L,Γ, αε

2/3,∆z) and ϕij(k1, L,Γ,∆z), respectively. The model phases are unaffected by
ε.

The distortion of the wave vector due to shear dU/dz is given by k(t) = (k1, k2, k30 −
k1(dU/dz)t), with the initial wave vector k0 = (k1, k2, k30). The model assumes a uniform shear
so dU/dz is constant with height which is an approximation, but we do not expect that a
non-zero d2U/dz2 would significantly alter the results. In addition to the uniform shear, the
vertically inhomogeneous effect of blocking due to the surface (e.g. ground) was included in [2];
however, it does not produce significantly different results. Nevertheless, as discussed above,
χij , Fi and ϕij are functions of L, which itself depends on the distance z from the ground. In
this way the model treats vertical inhomogeneity in application.

Figure 3. Example of the model fit of single-point spectra to the Høvsøre data at 40 m height
to determine the three parameters in the Mann model [2]. Measured (co) spectra are denoted
by points and smooth lines show modeled (co) spectra. Number of thirty-minute time series
used: Unstable; 165, Neutral; 176 and Stable; 538.

In the next section, the results from the observations and the models are provided, followed
by discussion in Section 5.

4. Results
The phases from the Høvsøre observations are shown in Figure 4(a) and the coherences in
Figure 4(b), along with the predictions from the Mann model for neutral ABL. As described
in Section 3.1, the three adjustable parameters in the model are determined by fitting the one-
dimensional power-spectra of the model to that from the data at heights 40 and 100 m (see
Figure 3). The average of the parameters at the two heights is used to calculate the model
cross-spectra. The slopes of the phase curves predicted by the model are different than those
calculated from the measurements. However, the model is able to predict the order in phasing,
ϕv > ϕu > ϕw, for k1∆z ≤ 1.

The model overestimates the u-, v- and w-coherence for k1∆z ≤ 1. So at a given length
scale, the fluctuations at two corresponding heights in the modeled coherent eddies are more
correlated than those from the observation. It is also observed that the modeled phases are
smaller than the phase angles from the measurements.
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Figure 4. The phases (a) and the coherences (b) between 40 and 100 m at Høvsøre for a neutral
ABL fitted with the Mann model [2]. Measurements: ϕu; –∗–, ϕv; –ut–, ϕw; –�–. Model: ϕu;
- - -, ϕv; – – –, ϕw; ——. Similar notations are followed for the coherences.

When phases are examined with different atmospheric stabilities, we observe same order in
phase shift for three velocity components as depicted in Figure 5.

Figure 5. The phases between 40 and 100 m at Høvsøre for different atmospheric stabilities for
wind directions between 240◦ and 300◦. Atmospheric stability is classified into seven stabilities
(very unstable to very stable) following [16].

5. Discussion
In this section we describe some more details about the behaviour of the phases under diabatic
conditions. The phase angles for neutral ABL are studied and compared with the RDT and
LES model in Chougule el al. [5], where the winds at Høvsøre are selected from east (between
60◦ and 120◦) with essentially homogeneous flow over flat terrain. Here we represent the results
corresponding to winds from west (from North sea, inhomogeneous terrain). There is no
significant difference in the phase angles as compared with [5]. However, it is observed that
the L and Γ parameters are significantly greater for the winds from west than those from east
for the same height span as given in Table 2.
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Table 2. L and Γ parameters at Høvsøre for the winds from east ([5]) and west.

Wind direction L(m) Γ

60◦ and 120◦ 40 3.3
240◦ and 300◦ 190 4.2

Figure 6. The phases between 40 and 100 m at Høvsøre for different atmospheric stabilities for
wind directions between 60◦ and 120◦. Atmospheric stability is classified into seven stabilities
(very unstable to very stable) following [16].

It should be noted that the model spectra fits in Figure 3 are very poor because the upstream
surface conditions are inhomogeneous, and that the fits from the eastern sector presented in
Chougule et al. [5] are much better. The predicted coherences in Figure 4 (b) are correspondingly
poor (again much worse than in Chougule et al. [5]), but the phases are still reasonable.

As discussed in Section 3.1, the phases from the Mann model are functions of L and Γ
parameters. The model phases increase with the decrease in L parameter and increases with the
increment in Γ. At a given mean wind speed (say 8 m s−1), the turbulence length scale decrease
from very unstable towards very stable (Ref. [4]) and hence the model phases should increase.
However, as shown in [4] there is no systematic effect of atmospheric stability on Γ at a given
mean wind speed. Following this discussion, it can be concluded that there is no systematic
effect of atmospheric stability on the phase angles. This can also be seen from Figure 5. The
stability based phase analysis is new relative to Chougule et al. [5]. However, the study in [4]
is also restricted to winds at Høvsøre from east and the above discussion should make more
sense when we observe the diabatic phase angles corresponding to winds from east as depicted
in Figure 6. For the winds from west reader may able to find systematic decrease in v-phase
from very unstable towards vary stable by observing Figure 5.

More intuitive explanation behind the behavior of the phase angles due to shear based on
rapid distortion theory may be found in Chougule et al. [5].

6. Conclusions
The phase angles of all three velocity components are analysed from Høvsøre data for
inhomogeneous terrain under diabatic conditions. These phases behave similarly to those under
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neutral ABL with no significant changes. The diabatic phase angles from inhomogeneous flow
are insignificantly different than those for homogeneous flow. There is no systematic effect
of atmospheric stability on the phase angles. Phases of the cross-spectra of all three velocity
components show systematic behaviour: ϕv > ϕu > ϕw for k1∆z ≤ 1. RDT model is able to
predict the observed neutral, inhomogeneous phase ordering.
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